National Library of Energy BETA

Sample records for accelerator center slac

  1. 2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).

  2. SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a Diamondoid Tip Adding a Layer of Tiny Diamonds Could Boost the Power of Electron Guns Used in Research and Industry Prev Next Headlines SLAC's Stanley Brodsky Shares...

  3. SLAC National Accelerator Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator Laboratory (SLAC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. SLAC National Accelerator Laboratory 2 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial

  4. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM ...

  5. SLAC-Built Detector Prepares for Life at Jefferson Lab (SLAC News Center) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab SLAC-Built Detector Prepares for Life at Jefferson Lab (SLAC News Center) External Link: https://news.slac.stanford.edu/image/slac-built-detector-prepares-life-jefferson... By jlab_admin on Tue, 2012-04-17

  6. Secretary Chu Speaks at SLAC National Accelerator Laboratory

    Broader source: Energy.gov [DOE]

    On Friday, August 24, 2012, Secretary Chu gave a speech commemorating the 50th Anniversary of SLAC National Accelerator Laboratory. You can find the powerpoint presentation below.

  7. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Authors: Merrill, Frank E. [1] ; Borozdin, Konstantin N. [1] ; Garnett, Robert W. [1] ; Mariam, Fesseha G. [1] ; Saunders, Alexander [1] ; Walstrom, Peter L. [1] ; Morris, Christopher [1] + Show Author Affiliations Los Alamos National

  8. Preliminary Notice of Violation, SLAC National Accelerator Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEA-2009-01 | Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Preliminary Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 April 3, 2009 This letter refers to the Department of Energy's (DOE) Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances associated with the September 13, 2007 On April 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of

  9. SLAC National Accelerator Laboratory Technologies Available for Licensing -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories SLAC National Accelerator Laboratory Technologies

  10. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards SLAC National Accelerator Laboratory Print ...

  11. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card ...

  12. Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 September 3, 2009 Issued to Stanford University related to a PVC Pipe Explosion at the SLAC National Accelerator Laboratory On September 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement issued a Final Notice of Violation (WEA-2009-01) to Stanford University for violations of 10 C.F.R. 851

  13. Using The SLAC Two-Mile Accelerator for Powering an FEL

    SciTech Connect (OSTI)

    Barletta, W.A.; Sessler, A.M.; Yu, L.H.; /Brookhaven

    2012-06-29

    A parameter survey is made, employing the recently developed 2D formalism for an FEL, of the characteristics of an FEL using the SLAC accelerator. Attention is focused upon a wavelength of 40 {angstrom} (the water window) and 1 {angstrom} case is also presented. They consider employing the SLAC linac with its present operating parameters and with improved parameters such as would be supplied by a new photo-cathode injector. They find that improved parameters are necessary, but that the parameters presently achieved with present-day photo-cathode guns are adequate to reach the water window.

  14. 2012 Annual Planning Summary for SLAC Site Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SLAC Site Office 2012 Annual Planning Summary for SLAC Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within SLAC Site Office. PDF icon APS-2012-SLAC.pdf File APS-2012-SLAC.xlsx More Documents & Publications 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) EA-1904: Draft Environmental Assessment EA-1904: Final Environmental Assessment

  15. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect (OSTI)

    Rosenzweig, James; Travish, Gil; Hogan, Mark; Muggli, Patric; /Southern California U.

    2012-07-05

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.

  16. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect (OSTI)

    Rosenzweig, J. B.; Andonian, G.; Niknejadi, P.; Travish, G.; Williams, O.; Xuan, K.; Muggli, P.; Yakimenko, V.

    2010-11-04

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation (CCR) production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of the FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are performing measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains, and observe resonantly driven CCR as well as deflection modes. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for high efficiency operation with pulse trains, and explore transverse modes for the first time.

  17. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  18. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect (OSTI)

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  19. SLAC Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : Linac...

  20. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  1. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  2. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    SciTech Connect (OSTI)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  3. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Stanford Linear Accelerator Center A Mission Accomplishment (Quality and Productivity of R&D) B+ Construction and Operation of Research Facilities B- S&T ProjectProgram Management ...

  4. SLAC All Access: FACET

    ScienceCinema (OSTI)

    Hogan, Mark

    2014-09-15

    SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.

  5. Fermilab | Illinois Accelerator Research Center | Accelerators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opportunity to develop and share the known and still unexplored benefits of particle accelerators. Benefits to Society photo Each generation of particle accelerators and...

  6. Independent Oversight Inspection, Stanford Linear Accelerator Center -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2007 | Department of Energy Stanford Linear Accelerator Center - January 2007 Independent Oversight Inspection, Stanford Linear Accelerator Center - January 2007 January 2007 Inspection of Environment, Safety, and Health Programs at the Stanford Linear Accelerator Center This report provides the results of an inspection of the environment, safety, and health programs at the Department of Energy's (DOE) Stanford Linear Accelerator Center. The inspection was conducted during October

  7. Photo of the Week: Lego Rendition of SLAC National Laboratory...

    Energy Savers [EERE]

    See an actual photo of the SLAC linac. | Photo courtesy of Greg Stewart, SLAC National Accelerator Laboratory. Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of ...

  8. Fermilab | Illinois Accelerator Research Center | Illinois Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. More pictures of the finished building. The...

  9. Labs at-a-Glance: SLAC National Accelerator Laboratory | U.S...

    Office of Science (SC) Website

    Particle Physics Accelerator Science and Technology Condensed Matter Physics and Materials Science Chemical and Molecular Science Large Scale User Facilities Advanced ...

  10. HEP-Req_SLAC.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Accelerator Modeling Finite Element Approach Lie-Quan Lee SLAC National Accelerator Laboratory Large Scale Computing and Storage Requirements for High Energy Physics NERSC/ASCR/HEP Workshop, Washington D.C., November 12-13, 2009 NERSC Project * Project name: Advanced Modeling for Particle Accelerators * Principle Investigator: Kwok Ko * Participating institutions: - SLAC, BNL, FNAL, ORNL, TJNAF - CW09 Users * ANL * CERN * Cornell University * Los Alamos Lab * Michigan State University * Paul

  11. Microsoft Word - poa_slac_ind2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL ACCELERATOR LABORATORY * 2575 SAND HILL ROAD * MENLO PARK * CALIFORNIA * 94025 * USA SLAC is operated by Stanford University for the U.S. Department of Energy STANFORD...

  12. Solar Technology Acceleration Center is Powering Up - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technology Acceleration Center is Powering Up October 21, 2009 Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in Aurora, Colo., today, ...

  13. SLAC Snapshot

    Broader source: Energy.gov [DOE]

    Biologists have long dreamed of making images of viruses, whole microbes and living cells without freezing slicing or otherwise disturbing them -- learn how researchers at SLAC are making that dream a reality with their help of the world's first hard X-ray free-electron laser.

  14. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  15. First Director Named for Center for Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Director Named for Center for Accelerator Science First Director Named for Center for Accelerator Science From the Old Dominion University Release Newport News, Va., Nov. 10, 2009 - Jean R. Delayen, a principal scientist in the accelerator division at the Department of Energy's Thomas Jefferson National Accelerator Facility and professor of accelerator physics at Old Dominion University, has been named the first director of the Center for Accelerator Science, which was created in 2008 by

  16. NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process April 4, 2016 - 10:46am Addthis News release from the National Renewable Energy Laboratory and SLAC National Accelerator Laboratory, April 1. Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and SLAC National Accelerator Laboratory have been able to pinpoint for the first time what happens during a key

  17. ODU establishes a Center for Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ODU establishes a Center for Accelerator Science From an Old Dominion News Release - ODU establishes a Center for Accelerator Science NEWPORT NEWS, Va., Sept. 19, 2008 - Old Dominion University has established a Center for Accelerator Science that will tap into the rapid growth of particle accelerator technologies for atom-smashing experiments, as well as for materials processing, medical imaging and radiation therapies against cancer. The center will receive personnel and funding support from

  18. 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)

    Broader source: Energy.gov [DOE]

    Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

  19. SLAC Access Update | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC Access Update Effective October 2015, visit the SUSB VUE Center for badging and SLAC access. Before traveling to SLAC, please complete these procedures. 1. Register through the user portal to provide or update contact information; also confirm your proximity access/expiration through the user portal. 2. Alert us of all experimenters who will participate in scheduled experiments by listing everyone on proposals & beam time/support requests. Contact URA to add additional members to your

  20. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema (OSTI)

    Haase, Andy

    2014-06-13

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  1. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect (OSTI)

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  2. IARC - Illinois Accelerator Research Center | Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology development and testing facilities. Speak with experts in the field. photo...

  3. IARC - Illinois Accelerator Research Center | Pilot Program ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utilities Environmental cleanup Defense & security Medicine Food and beverage processing Food packaging and safety Magnet designers and manufacturers Accelerator component...

  4. Illinois Accelerator Research Center Business Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plenary session Time Description Speakers 8:30-8:50 AM Current and future accelerator applications Director Nigel Lockyer, Fermilab 8:50-9:15 AM Leveraging lab-university-industry partnerships Assistant Director Andria Winters, Illinois DCEO 9:15-9:35 AM DOE Accelerator Stewardship Pilot program Stewardship Program Director Eric Colby, DOE 9:35-9:55 AM Fermilab accelerator facilities & infrastructure IARC Director Robert Kephart, Fermilab 9:55-10:15 AM Argonne accelerator facilities &

  5. The Illinois Accelerator Research Center, or IARC,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will work side-by-side with industrial partners to develop breakthroughs in accelerator technology and new applications in energy and environment, medicine, industry, national...

  6. SLAC E144 Plots, Simulation Results, and Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The 1997 E144 experiments at the Stanford Linear Accelerator Center (SLAC) utilitized extremely high laser intensities and collided huge groups of photons together so violently that positron-electron pairs were briefly created, actual particles of matter and antimatter. Instead of matter exploding into heat and light, light actually become matter. That accomplishment opened a new path into the exploration of the interactions of electrons and photons or quantum electrodynamics (QED). The E144 information at this website includes Feynmann Diagrams, simulation results, and data files. See also aseries of frames showing the E144 laser colliding with a beam electron and producing an electron-positron pair at http://www.slac.stanford.edu/exp/e144/focpic/focpic.html and lists of collaborators' papers, theses, and a page of press articles.

  7. RF breakdown experiments at SLAC

    SciTech Connect (OSTI)

    Laurent, L. [University of California Davis, Davis, California 95616 (United States); Vlieks, A.; Pearson, C.; Caryotakis, G.; Luhmann, N.C. [Stanford Linear Accelerator Center, Menlo Park, California 94025 (United States)

    1999-05-01

    RF breakdown is a critical issue in the conditioning of klystrons, accelerator sections, and rf components for the next linear collider (NLC), as well as other high gradient accelerators and high power microwave sources. SLAC is conducting a series of experiments using an X-band traveling wave ring to characterize the processes and trigger mechanisms associated with rf breakdown. The goal of the research is to identify materials, processes, and manufacturing methods that will increase the breakdown threshold and minimize the time required for conditioning. {copyright} {ital 1999 American Institute of Physics.}

  8. Results From Plasma Wakefield Acceleration Experiments at FACET...

    Office of Scientific and Technical Information (OSTI)

    International Particle Accelerator Conference (IPAC-2011), San Sebastian, Spain, 4-9 Sep 2011 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE ...

  9. Secretary Chu to Join Representatives Lofgren and Honda at the SLAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Accelerator Laboratory | Department of Energy Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory Secretary Chu to Join Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory August 13, 2010 - 12:00am Addthis Washington, D.C. - On Monday, U.S. Energy Secretary Steven Chu will visit the SLAC National Accelerator Laboratory in Menlo Park, California. Secretary Chu will join Representatives Zoe Lofgren and Mike Honda and Stanford

  10. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  11. New!LBNL'SLAC'FNAL!initiative:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    !!! New!LBNL'SLAC'FNAL!initiative: ! x J.'L.!Vay,!T.!Drummond,!A.!Koniges,!B.!Loring,! ! C.!Mitchell,!J.!Qiang,!O.!Ruebel,!R.!Ryne,!H.!Vincenti ! ! Lawrence!Berkeley!National!Laboratory,!CA,!USA ! ! D.!P.!Grote ! ! Lawrence!Livermore!National!Laboratory,!CA,!USA ! ! Axel!Hübl! ! ! Helmholtz'Zentrum!Dresden!Rossendorf!,!Germany ! Advanced!Modeling!of!Particle!Accelerators ! NERSC!Exascale!Science!Application!Program!meeting ! 12/04/2014 ! Accelerators*are*essen,al*tools*of*science*and*tech. *

  12. SLAC-PUB-15416 April

    Office of Scientific and Technical Information (OSTI)

    Accelerator Laboratory Stanford University Menlo Park, CA 94025, USA Frank Zimmermann CERN, Geneva, Switzerland Abstract A ring-based Higgs factory with a center-of-mass energy...

  13. Accelerator on a Chip

    SciTech Connect (OSTI)

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  14. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  15. SLAC-PUB-2446

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2446 December 1979 (T/E) THE TAU LEPTON" Martin L. Per1 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 U.S.A. Submitted to Annual Review of Nuclear and Particle Science * Work supported by the Department of Energy, contract DE-AC03-76SF00515. TAU LEPTON TABLE OF CONTENTS -2- -1. SI INTRODUCTION 1.1 The Definition of a Lepton 1.2 The Tau Lepton 2. THEORETICAL FRAMEWORK 2.1 2.2 2.3 2.4 Weak Interactions and Lepton Conservation Simple Models for New Charged

  16. Latest Plasma Wakefield Acceleration Results from the FACET Project...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  17. New Solutions with Accelerated Expansion in String Theory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  18. fwp100211-slac | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Chemical Control of Fluid Flow and Contaminant Release in Shale Microfractures Last Reviewed 12/8/2015 FWP 100211 Goal The project goal is to identify geochemical reactions induced in shales upon injection of hydraulic fracturing fluids and to assess the impact of these reactions on shale porosity and release of contaminants, such as uranium. Performers SLAC National Accelerator Laboratory, Menlo Park, CA Background Current hydraulic fracturing technologies recover less than 30% of

  19. NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process April 1, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and SLAC National Accelerator Laboratory have been able to pinpoint for the first time what happens during a key manufacturing process of silicon solar cells. Their paper, "The formation mechanism for printed silver-contacts for silicon solar cells," appears in the journal Nature Communications. The paper was

  20. SLAC-PUB-15224 August

    Office of Scientific and Technical Information (OSTI)

    24 August 25, 2012 Theoretical Summary Lecture for Higgs Hunting 2012 Michael E. Peskin 1 SLAC, Stanford University, Menlo Park, California 94025 USA ABSTRACT In this lecture, I...

  1. SLAC All Access: Laser Labs

    ScienceCinema (OSTI)

    Minitti, Mike; Woods Mike

    2014-06-03

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  2. The Illinois Accelerator Research Center, or IARC, will

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will work side by side with industrial partners to develop breakthroughs in accelerator technology and new applications in energy and environment, medicine, industry, national...

  3. Fermilab | Illinois Accelerator Research Center | What is IARC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IARC will provide a state-of-the-art facility for research, development and industrialization of particle accelerator technology. The design and construction of the IARC...

  4. Center for Inverse Design: Partner Institutions in the Center for Inverse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Partner Institutions in the Center for Inverse Design This page provides information about the six institutions that are partners in the Center of Inverse Design: the National Renewable Energy Laboratory (NREL), Colorado School of Mines (CSM), Oregon State University (OSU), Northwestern University (NU), Stanford Linear Accelerator Center (SLAC), and University of Colorado at Boulder (CU). You can also find information about the groups and departments within these institutions, where

  5. SLAC Partners with Palo Alto Firm to Make Klystrons Much More Efficient:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New 'GREEN-RF' technology recycles energy that would otherwise go to waste in accelerating particles for science, medicine, industry | Department of Energy SLAC Partners with Palo Alto Firm to Make Klystrons Much More Efficient: New 'GREEN-RF' technology recycles energy that would otherwise go to waste in accelerating particles for science, medicine, industry SLAC Partners with Palo Alto Firm to Make Klystrons Much More Efficient: New 'GREEN-RF' technology recycles energy that would

  6. Photon Science : SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affairs | Org Chart Photon Science Faculty Arthur I. Bienenstock * John Galayda Chi-Chang Kao Srinivas Raghu Gordon E. Brown, Jr. Siegfried Glenzer Young Lee David A. Reis Axel...

  7. Kwok Ko SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T racking: Track3P - Multipacting & Dark Current EM P ar1cle---in---cell: Pic3P - RF Guns & Sources (e.g. Klystron) Mul1---physics: T EM3P - EM, Thermal & Structural Effects...

  8. IARC - Illinois Accelerator Research Center | Pilot Program | Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Who should attend? Agenda Time Description Speakers 8-8:30 AM Registration, coffee, rolls, networking opportunity (Wilson Hall atrium) Plenary session (Wilson Hall, One West conference room) Time Description Speakers 8:30-8:50 AM Current and future accelerator applications Director Nigel Lockyer, Fermilab 8:50-9:15 AM Leveraging lab-university-industry partnerships Assistant Director Andria Winters, Illinois DCEO 9:15-9:35 AM DOE Accelerator Stewardship Pilot Program Stewardship Program Director

  9. Accelerator on a Chip | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerator on a Chip Accelerator on a Chip February 4, 2016 - 5:24pm Addthis Scientists at SLAC are attempting to build a particle accelerator the size of a shoe box. | Video courtesy of SLAC. Andrew Gordon SLAC National Accelerator Laboratory Could tiny chips no bigger than grains of rice do the job of a huge particle accelerator? At full potential, a series of these "accelerators on a chip" could boost electrons to the same high energies achieved in SLAC National Accelerator

  10. Wake fields in SLAC Linac Collimators

    SciTech Connect (OSTI)

    Novokhatski, Alexander; Decker, F. -J.; Smith, H.; Sullivan, M.

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. In addition, we also present results from experimental measurements that confirm our model.

  11. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  12. IARC - Illinois Accelerator Research Center | Pilot Program | Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions The Midwest Launch of the Accelerator Stewardship Test Facility Pilot Program begins at 8:30 on Tuesday April 28th in One West of Wilson Hall. One West is on the west side of the first floor of Wilson hall. Directions on how to get to Fermilab are here: http://www.fnal.gov/pub/visiting/hours/index.html. You must bring a valid photo ID to access the lab. Downloadable maps showing parking areas outside of Wilson Hall are shown here: http://fnal.gov/pub/visiting/map/site.html. Restricted

  13. THE LABORATORY Located in Menlo Park, California, SLAC National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE LABORATORY Located in Menlo Park, California, SLAC National Accelerator Laboratory is home to some of the world's most cutting-edge technologies, used by researchers worldwide to uncover scientifc mysteries on the smallest and the largest scales-from the workings of the atom to the mysteries of the cosmos. The result has been 50 years of discovery and innovation in both basic and applied science, with tangible benefts for our everyday lives. The following examples highlight some of the roles

  14. Review of trigger and on-line processors at SLAC

    SciTech Connect (OSTI)

    Lankford, A.J.

    1984-07-01

    The role of trigger and on-line processors in reducing data rates to manageable proportions in e/sup +/e/sup -/ physics experiments is defined not by high physics or background rates, but by the large event sizes of the general-purpose detectors employed. The rate of e/sup +/e/sup -/ annihilation is low, and backgrounds are not high; yet the number of physics processes which can be studied is vast and varied. This paper begins by briefly describing the role of trigger processors in the e/sup +/e/sup -/ context. The usual flow of the trigger decision process is illustrated with selected examples of SLAC trigger processing. The features are mentioned of triggering at the SLC and the trigger processing plans of the two SLC detectors: The Mark II and the SLD. The most common on-line processors at SLAC, the BADC, the SLAC Scanner Processor, the SLAC FASTBUS Controller, and the VAX CAMAC Channel, are discussed. Uses of the 168/E, 3081/E, and FASTBUS VAX processors are mentioned. The manner in which these processors are interfaced and the function they serve on line is described. Finally, the accelerator control system for the SLC is outlined. This paper is a survey in nature, and hence, relies heavily upon references to previous publications for detailed description of work mentioned here. 27 references, 9 figures, 1 table.

  15. SLAC Lightsource User Access Guidelines and Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource User Access Guidelines & Agreement August 3, 2011 SLAC-I-030-306-001-00-R002 1 SLAC Lightsource User Access Guidelines and Agreement LCLS / SSRL User Research Administration approval (signature/date): LCLS Safety Office approval (signature/date): SSRL Safety Office approval (signature/date): XFO Operations approval (signature/date): Revision Record Revision Date Revised Section(s) Affected Description of Change R001 October 4 th , 2010 User Form Updated SLAC Lightsource User

  16. SLAC Dosimeter / ID Request Form A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb 2009 (updated 13 May 2010) SLAC-I-760-0A07J-006-R010 1 of 2 SLAC Dosimeter / ID Request Form A (For applicants who have completed SLAC Environment, Safety, and Health Training) Sections 1-5 completed by applicant. Section 1: Contact Information Last name: First name: MI: Male Female Birth year (yyyy): Job title: Contact information/mailing address: City: State: Zip code: Country: Dept/Group: Phone number: Mail stop: Users or non-SLAC employees only: List employer, company, or university :

  17. SLAC Dosimeter / ID Request Form A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a replacement dosimeter because my dosimeter: Is lost* Was damagedcompromised* Was forgotten Was turned in Expired Other (please explain) * Submit a SLAC LostDamaged Dosimeter...

  18. Recent Upgrade of the Klystron Modulator at SLAC

    SciTech Connect (OSTI)

    Nguyen, M.N.; Burkhart, C.P.; Lam, B.K.; Morris, B.; /SLAC

    2011-11-04

    The SLAC National Accelerator Laboratory employs 244 klystron modulators on its two-mile-long linear accelerator that has been operational since the early days of the SLAC establishment in the sixties. Each of these original modulators was designed to provide 250 kV, 262 A and 3.5 {mu}S at up to 360 pps using an inductance-capacitance resonant charging system, a modified type-E pulse-forming network (PFN), and a pulse transformer. The modulator internal control comprised of large step-start resistor-contactors, vacuum-tube amplifiers, and 120 Vac relays for logical signals. A major, power-component-only upgrade, which began in 1983 to accommodate the required beam energy of the SLAC Linear Collider (SLC) project, raised the modulator peak output capacity to 360 kV, 420 A and 5.0 {mu}S at a reduced pulse repetition rate of 120 pps. In an effort to improve safety, performance, reliability and maintainability of the modulator, this recent upgrade focuses on the remaining three-phase AC power input and modulator controls. The upgrade includes the utilization of primary SCR phase control rectifiers, integrated fault protection and voltage regulation circuitries, and programmable logic controllers (PLC) -- with an emphasis on component physical layouts for safety and maintainability concerns. In this paper, we will describe the design and implementation of each upgraded component in the modulator control system. We will also report the testing and present status of the modified modulators.

  19. SLAC Next-Generation High Availability Power Supply

    SciTech Connect (OSTI)

    Bellomo, P.; MacNair, D.; ,

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  20. An X-Band Gun Test Area at SLAC

    SciTech Connect (OSTI)

    Limborg-Deprey, C.; Adolphsen, C.; Chu, T.S.; Dunning, M.P.; Jobe, R.K.; Jongewaard, E.N.; Hast, C.; Vlieks, A.E.; Wang, F.; Walz, D.R.; Marsh, R.A.; Anderson, S.G.; Hartemann, F.V.; Houck, T.L.; /LLNL, Livermore

    2012-09-07

    The X-Band Test Area (XTA) is being assembled in the NLCTA tunnel at SLAC to serve as a test facility for new RF guns. The first gun to be tested will be an upgraded version of the 5.6 cell, 200 MV/m peak field X-band gun designed at SLAC in 2003 for the Compton Scattering experiment run in ASTA. This new version includes some features implemented in 2006 on the LCLS gun such as racetrack couplers, increased mode separation and elliptical irises. These upgrades were developed in collaboration with LLNL since the same gun will be used in an injector for a LLNL Gamma-ray Source. Our beamline includes an X-band acceleration section which takes the electron beam up to 100 MeV and an electron beam measurement station. Other X-Band guns such as the UCLA Hybrid gun will be characterized at our facility.

  1. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    SciTech Connect (OSTI)

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  2. Sensitivity Upgrades to the Idaho Accelerator Center Neutron Time of Flight Spectrometer

    SciTech Connect (OSTI)

    Thompson, S. J.; Kinlaw, M. T.; Harmon, J. F.; Wells, D. P.; Hunt, A. W.

    2007-10-26

    Past experiments have shown that discrimination between between fissionable and non-fissionable materials is possible using an interrogation technique that monitors for high energy prompt fission neutrons. Several recent upgrades have been made to the neutron time of flight spectrometer at the Idaho Accelerator Center with the intent of increasing neutron detection sensitivity, allowing for system use in nonproliferation and security applications.

  3. RF Gun Photocathode Research at SLAC

    SciTech Connect (OSTI)

    Jongewaard, E.; Akre, R.; Brachmann, A.; Corbett, J.; Gilevich, S.; Grouev, K.; Hering, P.; P.Krejcik,; Lewandowski, J.; Loos, H.; Montagne, T.; Sheppard, J.C.; Stefan, P.; Vlieks, A.; Weathersby, S.; Zhou, F.; /SLAC

    2012-05-16

    LCLS is presently operating with a third copper photocathode in the original rf gun, with a quantum efficiency (QE) of {approx}1 x 10{sup -4} and projected emittance {gamma}{var_epsilon}{sub x,y} = 0.45 {micro}m at 250 pC bunch charge. The spare LCLS gun is installed in the SLAC Accelerator Structure Test Area (ASTA), fully processed to high rf power. As part of a wider photocathode R and D program, a UV laser system and additional gun diagnostics are being installed at ASTA to measure QE, QE lifetime, and electron beam emittance under a variety of operating conditions. The near-term goals are to test and verify the spare photocathode production/installation sequence, including transfer from the final holding chamber to the rf gun. Mid- and longer-term goals include development of a rigorous understanding of plasma and laser-assisted surface conditioning and investigation of new, high-QE photocathode materials. In parallel, an x-ray photoemission spectroscopy station is nearing completion, to analyze Cu photocathode surface chemistry. In this paper we review the status and anticipated operating parameters of ASTA and the spectroscopy test chamber.

  4. Working at SLAC | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new Science and User Support Building (SUSB) in 2015. FOOD OPTIONS at SLAC include Starbucks or the EAT Club (pre-order lunch for delivery noon to the Arrillaga Recreation...

  5. X-BAND KLYSTRON DEVELOPMENT AT SLAC

    SciTech Connect (OSTI)

    Vlieks, Arnold E.; /SLAC

    2009-08-03

    The development of X-band klystrons at SLAC originated with the idea of building an X-band Linear Collider in the late 1980's. Since then much effort has been expended in developing a reliable X-band Power source capable of delivering >50 MW RF power in pulse widths >1.5 {micro}s. I will report on some of the technical issues and design strategies which have led to the current SLAC klystron designs.

  6. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    SciTech Connect (OSTI)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  7. ESTB: A New Beam Test Facility at SLAC

    SciTech Connect (OSTI)

    Pivi, M.; Fieguth, T.; Hast, C.; Iverson, R.; Jaros, J.; Jobe, K.; Keller, L.; Walz, D.; Weathersby, S.; Woods, M.; /SLAC

    2011-04-05

    End Station A Test Beam (ESTB) is a beam line at SLAC using a small fraction of the bunches of the 13.6 GeV electron beam from the Linac Coherent Light Source (LCLS), restoring test beam capabilities in the large End Station A (ESA) experimental hall. ESTB will provide one of a kind test beam essential for developing accelerator instrumentation and accelerator R&D, performing particle and particle astrophysics detector research, linear collider machine and detector interface (MDI) R&D studies, development of radiation-hard detectors, and material damage studies with several distinctive features. In the past, 18 institutions participated in the ESA program at SLAC. In stage I, 4 new kicker magnets will be added to divert 5 Hz of the LCLS beam to the A-line. A new beam dump will be installed and a new Personnel Protection System (PPS) is being built in ESA. In stage II, a secondary hadron target will be installed, able to produce pions up to about 12 GeV/c at 1 particle/pulse.

  8. Design of the SLAC RCE Platform: A General Purpose ATCA Based...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; STANFORD LINEAR ACCELERATOR CENTER; DATA ACQUISITION SYSTEMS; DESIGN; INTEGRATED ...

  9. Joint Center for Artificial Photosynthesis

    ScienceCinema (OSTI)

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

    2013-12-19

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  10. Latest Plasma Wakefield Acceleration Results from the FACET Project...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Invited paper at the North American Particle Accelerator Conference (PAC 2013), 29 Sep - 4 Oct 2013, Pasadena, CA, USA Research Org: SLAC National ...

  11. S-Band Loads for SLAC Linac

    SciTech Connect (OSTI)

    Krasnykh, A.; Decker, F.-J.; LeClair, R.; /INTA Technologies, Santa Clara

    2012-08-28

    The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

  12. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect (OSTI)

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  13. Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities

    SciTech Connect (OSTI)

    Ganguly, Suprotim; Raje, Sanyukta; Kumar, Satish; Sartor, Dale; Greenberg, Steve

    2016-01-01

    This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – September 2015) and Phase 2 (October 2015 – September 2016).

  14. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  15. Researchers Create Transparent Lithium-Ion Battery - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Create Transparent Lithium-Ion Battery Stanford and SLAC National Accelerator Laboratory researchers have invented a transparent lithium-ion battery that is also highly ...

  16. PEP-II Large Power Supplies Rebuild Program at SLAC

    SciTech Connect (OSTI)

    Bellomo, P.; Lipari, J.J.; de Lira, A.C.; Rafael, F.S.; /SLAC

    2005-05-17

    Seven large power supplies (LGPS) with output ratings from 72kW to 270kW power PEP-II quad magnets in the electron-positron collider region. These supplies have posed serious maintenance and reliability problems since they were installed in 1997, resulting in loss of accelerator availability. A redesign/rebuild program was undertaken by the SLAC Power Conversion Department. During the 2004 summer shutdown all the control circuits in these supplies were redesigned and replaced. A new PWM control board, programmable logic controller, and touch panel have been installed to improve LGPS reliability, and to make troubleshooting easier. In this paper we present the details of this rebuilding program and results.

  17. A Look Inside SLAC's Battery Lab

    ScienceCinema (OSTI)

    Wei Seh, Zhi

    2014-07-21

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  18. A Look Inside SLAC's Battery Lab

    SciTech Connect (OSTI)

    Wei Seh, Zhi

    2014-07-17

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  19. Photo of the Week: What Does a Particle Accelerator Have in Common...

    Energy Savers [EERE]

    Learn more about how FACET works. | Photo courtesy of SLAC National Accelerator Laboratory. Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of Public Affairs Every ...

  20. Preliminary Notice of Violation, SLAC National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Enforcement issued a Preliminary Notice of Violation (WEA-2009-01) to Stanford University for violations of 10 C.F.R. 851 associated with a polyvinyl chloride pipe ...

  1. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    Authors: Merrill, Frank E. 1 ; Borozdin, Konstantin N. 1 ; Garnett, Robert W. 1 ; Mariam, Fesseha G. 1 ; Saunders, Alexander 1 ; Walstrom, Peter L. 1 ; Morris, ...

  2. SSRL Science in SLAC Today | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science in SLAC Today Subscribe to SSRL Science in SLAC Today feed URL: https://www6.slac.stanford.edu/blog-tags/stanford-synchrotron-radiation-lightsource-ssrl Updated: 45 min 24 sec ago SLAC's Historic Linac Turns 50 and Gets a Makeover Wed, 2016/05/04 - 11:00am The lab's signature particle highway prepares to enter another era of transformative science as the home of the LCLS-II X-ray laser. Your One-stop Shop for Producing, Crystallizing Biomolecules Tue, 2016/04/26 - 11:46am The

  3. 2013 Annual Planning Summary for the SLAC Site Office

    Broader source: Energy.gov [DOE]

    ​The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the SLAC Site Office.

  4. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect (OSTI)

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  5. The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Hennessey, John (President, Stanford University)

    2012-03-14

    The first speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was John Hennessey, President of Stanford University. He discussed the important role that the academic world plays as a partner in innovative energy research by presenting a case study involving Stanford and SLAC. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  6. Andrew Hutton Named Head of Jefferson Lab's Accelerator Division |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gordon About Us Andrew Gordon - SLAC National Accelerator Laboratory Andrew Gordon is the External Communications Manager at SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. Most Recent Accelerator on a Chip February 4

    Gumbiner About Us Andrew Gumbiner - Contractor, Advanced Research Projects Agency-Energy. Andrew Gumbiner is a contractor with the Advanced Research Projects Agency-Energy. Most Recent PNNL Helps the Navy Stay Cool and Conserve

  7. Connecting Accelerator RD to User Needs | U.S. DOE Office of...

    Office of Science (SC) Website

    areas (center) supported by the Office of Science (adapted from SLAC Task Force report). ... as motivated by a few main technical goals: improved particle beam quality ...

  8. Relativistic klystron research at SLAC and LLNL

    SciTech Connect (OSTI)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Barletta, W.A.; Birx, D.L.; Boyd, J.K.; Houck, T.; Westenskow, G.A.; Yu, S.S.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab.

  9. Emittance Studies of the BNL/SLAC/UCLA 1.6 Cell Photocathode RF Gun

    SciTech Connect (OSTI)

    Palmer, D.T.; Wang, X.J.; Miller, R.H.; Babzien, M.; Ben-Zvi, I.; Pellegrini, C.; Sheehan, J.; Skaritka, J.; Winick, H.; Woodle, M.; Yakimenko, V.; /Brookhaven

    2011-09-09

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 {mu}s. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, {epsilon}{sub o}, of the copper cathode has been measured.

  10. Brodsky, S.J.; /SLAC; Fleuret, F.; /Ecole Polytechnique; Hadjidakis...

    Office of Scientific and Technical Information (OSTI)

    Physics Opportunities of a Fixed-Target Experiment using the LHC Beams Brodsky, S.J.; SLAC; Fleuret, F.; Ecole Polytechnique; Hadjidakis, C.; Lansberg, J.P.; Orsay, IPN 08...

  11. accelerators | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    accelerators

  12. FermilabAcceleratorCapabilities.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois Accelerator Research Center - IARC Dr. Bob Kephart Director, Illinois Accelerator Research Center Dr. Charlie Cooper General Manager, Illinois Accelerator Research Center Illinois Accelerator Research Center The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. IARC will provide a state-of-the-art facility for research, development and industrialization of particle accelerator technology. A major

  13. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge Tennessee

    SciTech Connect (OSTI)

    Watson, David; Jardine, Philip; Gu, Baohua; Parker, Jack; Brandt, Craig; Holladay, Susan; Wolfe, Amy; Bogle, Mary Anna; Lowe, Kenneth; Hyder, Kirk

    2006-06-01

    The Field Research Center (FRC) in Oak Ridge (Fig. 1), Tennessee supports the U.S. Department of Energy's (DOE's) Environmental Remediation Sciences Program (ERSP) goal of understanding the complex physical, chemical, and biological properties of contaminated sites for new solutions to environmental remediation and long-term stewardship. In particular, the FRC provides the opportunity for researchers to conduct studies that promote the understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of existing remediation options, and the development of improved remediation strategies. It offers a series of contaminated sites around the former S-3 Waste Disposal Ponds and uncontaminated sites in which investigators and students conduct field research or collect samples for laboratory analysis. FRC research also spurs the development of new and improved characterization and monitoring tools. Site specific knowledge gained from research conducted at the FRC also provides the DOE-Oak Ridge Office of Environmental Management (EM) the critical scientific knowledge needed to make cleanup decisions for the S-3 Ponds and other sites on the Oak Ridge Reservation (ORR).

  14. CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and people highlights from the Lujan Neutron Scattering Center at LANSCE CENTER SCIENCE & PEOPLE the Lujan April 2014 LA-UR-14-22812 I N S I D E 2 Seeking design rules for efficient lighting sources 3 Rate-dependent deformation mechanisms in beryllium 4 Improved understanding of a semiconductor used in infrared detectors 6 Mike Fitzsimmons elected NNSA Fellow 7 Pressure tuning: a new approach for making zero thermal expansion materials 8 Neutron scattering enables structural

  15. EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 E-mail: dave.osugi@sso.science.doe.gov

  16. Experimental Tests of the GDH and Other Sum Rules at SLAC (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Experimental Tests of the GDH and Other Sum Rules at SLAC Citation Details In-Document Search Title: Experimental Tests of the GDH and Other Sum Rules at SLAC You...

  17. Do you have the correct Visa stamp for getting a SLAC badge?...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from foreign countries should follow this advice to obtain the correct stamp on their passport in order to obtain a SLAC badge. For more detailed information on SLAC access and...

  18. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  19. SLAC Users Bulletin No. 102, November 1985-April 1986

    SciTech Connect (OSTI)

    Keller, L. P.; Edminster, D. [eds.] [eds.

    1986-01-01

    The status experimental activities at SLAC is reported, including the long-range schedule and a list of approved high-energy experiments. Work on PEP, SPEAR, and the SLC is included, as well as computing. Such operational data as operating hours and experimental hours are given. (LEW)

  20. Illinois Accelerator Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VEHICLE TECHNOLOGIES OFFICE Idling Reduction for Emergency and Other Service Vehicles Emergency vehicles, such as police cars, ambulances, and fire trucks, along with other service vehicles such as armored cars, are often exempt from laws that limit engine idling. However, these vehicles can save fuel and reduce emissions with technologies that allow them to perform vital services without idling. Police Vehicles Police cruisers spend much of their time parked and running while offcers monitor

  1. SLAC Science Focus Area | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC Science Focus Area SFA banner Rifle Research Ferrihydrite banner Nano biogenic uraninite Introduction: Uranium is a toxic and problematic redox-active contaminant at U.S. Department of Energy (DOE) legacy nuclear sites, present in more contaminant plumes than any other radionuclide except for tritium. Elevated concentrations of uranium in groundwater pose ongoing threats to human and ecosystem health, and challenges site cleanup and closure. The ability to predict subsurface fate and

  2. Before Arriving at SLAC | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Before Arriving at SLAC □ Contact the Stanford Guest House to make reservations □ Review Check-In Procedures & Advance Requirements for Foreign Nationals □ Review Safety of Scheduled Experiments & Complete Training □ Complete User Agreements □ Establish or Confirm User Financial Accounts □ Order Chemicals, Gases, Cryogenics □ Coordinate Equipiment Modifications □ Establish or Confirm Computer Accounts, Set up & Access Electronic Logbooks (eLogs) □ Coordinate

  3. Design of the SLAC RCE Platform: A General Purpose ATCA Based Data

    Office of Scientific and Technical Information (OSTI)

    Acquisition System (Conference) | SciTech Connect Conference: Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System Citation Details In-Document Search Title: Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System The SLAC RCE platform is a general purpose clustered data acquisition system implemented on a custom ATCA compliant blade, called the Cluster On Board (COB). The core of the system is the Reconfigurable Cluster Element

  4. Do you have the correct Visa stamp for getting a SLAC badge? | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Do you have the correct Visa stamp for getting a SLAC badge? Users from foreign countries should follow this advice to obtain the correct stamp on their passport in order to obtain a SLAC badge. For more detailed information on SLAC access and visa documentation requirements, please refer to the following link. Upon entering the US, travelers will present their passport to the Immigration Officer at the airport who may ask a few questions about the purpose

  5. SLAC Site Office EA / EIS | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC Site Office EA EIS Safety and Security Policy (SSP) SSP Home About Frequently Used Resources NEPA Documents Categorical Exclusion Determinations Environmental Assessments...

  6. Data Needs for LCLS-II Amedeo Perazzo SLAC Joint Facilities User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amedeo Perazzo SLAC Joint Facilities User Forum on Data Intensive Computing, June 16 th 2014 Joint Facilities User Forum on Data Intensive Computing - LCLS-II Data Needs ...

  7. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  8. Fermilab | Directorate | Fermilab Accelerator Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Advisory Committee Meeting of the Fermilab Accelerator Advisory Committee December 8-10, 2015 Charge Agenda (Access Key Required) Closeout Report Final Report October 14-16, 2014 Charge Agenda (Access Key Required) Closeout Report Final Report February 6-8, 2013 Charge Agenda (Access Key Required) Closeout Report Final Report John Galambos (ORNL), Chair Frederick Bordry (CERN) Wolfram Fischer (BNL) Mark Hogan (SLAC) Jens Knobloch (BESSY) Wim Leemans (LBNL) Roland Garoby (CERN)

  9. SuperB Progress Report for Accelerator

    SciTech Connect (OSTI)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

  10. 17 GHz High Gradient Accelerator Research

    SciTech Connect (OSTI)

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  11. SLAC All Access: Atomic, Molecular and Optical Science Instrument

    ScienceCinema (OSTI)

    Bozek, John

    2014-06-03

    John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.

  12. Two-klystron Binary Pulse Compression at SLAC

    SciTech Connect (OSTI)

    Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.

    1993-04-01

    The Binary Pulse Compression system installed at SLAC was tested using two klystrons, one with 10 MW and the other with 34 MW output. By compressing 560 ns klystron pulses into 70 ns, the measured BPC output was 175 MW, limited by the available power from the two klystrons. This output was used to provide 100-MW input to a 30-cell X-band structure in which a 100-MV/m gradient was obtained. This system, using the higher klystron outputs expected in the future has the potential to deliver the 350 MW needed to obtain 100 MV/m gradients in the 1.8-m NLC prototype structure. This note describes the timing, triggering, and phase coding used in the two-klystron experiment, and the expected and measured net-work response to three- or two-stage modulation.

  13. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    SciTech Connect (OSTI)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem important to the nations scientific progress as described shortly. Further, SLAC researchers routinely generate massive amounts of data, and frequently collaborate with other researchers located around the world. Thus SLAC is an ideal teammate through which to develop, test and deploy this technology. The nature of the datasets generated by simulations performed at SLAC presented unique visualization challenges especially when dealing with higher-order elements that were addressed during this Phase II. During this Phase II, we have developed a strong platform for collaborative visualization based on ParaView. We have developed and deployed a ParaView Web Visualization framework that can be used for effective collaboration over the Web. Collaborating and visualizing over the Web presents the community with unique opportunities for sharing and accessing visualization and HPC resources that hitherto with either inaccessible or difficult to use. The technology we developed in here will alleviate both these issues as it becomes widely deployed and adopted.

  14. Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator Citation Details In-Document Search Title: Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch lengths were

  15. ILC @ SLAC R&D Program for a Polarized RF Gun

    SciTech Connect (OSTI)

    Clendenin, J.E.; Brachman, A.; Dowell, D.H.; Garwin, E.L.; Ioakemidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.A.; Prescott, C.Y.; Wang, J.W.; Lewellen, J.W.; Prepost, R.; /Wisconsin U., Madison

    2006-01-25

    Photocathode rf guns produce high-energy low-emittance electron beams. DC guns utilizing GaAs photocathodes have proven successful for generating polarized electron beams for accelerators, but they require rf bunching systems that significantly increase the transverse emittance of the beam. With higher extraction field and beam energy, rf guns can support higher current densities at the cathode. The source laser system can then be used to generate the high peak current, relatively low duty-factor micropulses required by the ILC without the need for post-extraction rf bunching. The net result is that the injection system for a polarized rf gun can be identical to that for an unpolarized rf gun. However, there is some uncertainty as to the survivability of an activated GaAs cathode in the environment of an operating rf gun. Consequently, before attempting to design a polarized rf gun for the ILC, SLAC plans to develop an rf test gun to demonstrate the rf operating conditions suitable for an activated GaAs cathode.

  16. Documenting the Physical Universe:Preserving the Record of SLAC from 1962 to 2005

    SciTech Connect (OSTI)

    Deken, Jean Marie; /SLAC

    2006-03-10

    Since 1905, Albert Einstein's ''miraculous year'', modern physics has advanced explosively. In 2005, the World Year of Physics, a session at the SAA Annual meeting discusses three institutional initiatives--Einstein's collected papers, an international geophysical program, and a research laboratory--to examine how physics and physicists are documented and how that documentation is being collected, preserved, and used. This paper provides a brief introduction to the research laboratory (SLAC), discusses the origins of the SLAC Archives and History Office, its present-day operations, and the present and future challenges it faces in attempting to preserve an accurate historical record of SLAC's activities.

  17. Spin structure functions of the neutron g{sub 1}{sup n}: SLAC...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Spin structure functions of the neutron gsub 1sup n: SLAC E154 results Citation Details In-Document Search Title: Spin structure functions of the neutron gsub ...

  18. Microsoft Word - aac2012_Li_1_WG4-SLAC-PUB-15212.doc

    Office of Scientific and Technical Information (OSTI)

    et al., "Results from Plasma Wakefield Experiments at FACET", IPAC'11, San Sebastian, Spain, 2011, SLAC-PUB-14560. 5. E. Adli et al., to be published. 6. S.Z. Li and M.J. Hogan,...

  19. Support and utilization of the LSI-11 processor family at SLAC

    SciTech Connect (OSTI)

    Kieffer, J.; Logg, C.A.; Farwell, D.E.

    1981-01-01

    Microcomputer systems based on the DEC LSI-11 processor family have been in use at SLAC for five years. They are used for a wide variety of applications. The support of these systems is divided into three general areas: engineering, maintenance, and software. Engineering specifies the system to match user requirements. SLAC has been able to design one general purpose system which can be tailored to fit many specific requirements. Maintenance provides system and component diagnostic services and repair. Software support includes software consulting services, assistance in systems design, and the development and support of special purpose operating systems and programs. These support functions are handled as subtasks by three teams in the SLAC Electronics Instrumentation Group. Each of these teams utilizes several LSI-11 systems in the performance of its primary tasks. They work closely together to jointly provide overall support for the larger SLAC community.

  20. SLAC Site Office Homepage | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The SLAC Site Office (SSO) is an organization within the U.S. Department of Energy's Office of Science with responsibility to oversee and manage the Management and Operating (M&O) ...

  1. Lattice Design for ERL Options at SLAC (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Lattice Design for ERL Options at SLAC You ... This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ...

  2. Measurements, system response, and calibration of the SLAC T-510 experiment

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SciTech Connect Search Results Conference: Measurements, system response, and calibration of the SLAC T-510 experiment Citation Details In-Document Search Title: Measurements, system response, and calibration of the SLAC T-510 experiment Authors: Wissel, Stephanie A. ; /UCLA ; Bechtol, K. ; /Chicago U. ; Belov, K. ; /Caltech, JPL /UCLA ; Borch, K. ; /UCLA ; Chen, P. ; /Taiwan, Natl Taiwan U. ; Clem, J. ; /Delaware U. ; Gorham, P.W. ; /Hawaii U. ; Hast, C. ;

  3. Measurements, system response, and calibration of the SLAC T-510 experiment

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Measurements, system response, and calibration of the SLAC T-510 experiment Citation Details In-Document Search Title: Measurements, system response, and calibration of the SLAC T-510 experiment × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  4. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) A Construction and Operation of Research Facilities B+ S&T ProjectProgram Management A Contractor LeadershipStewardship B+ Environment, Safety and Health B+...

  5. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) A Construction and Operation of Research Facilities B+ S&T ProjectProgram Management A Contractor Leadership...

  6. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) A Construction and Operation of Research Facilities A- S&T ProjectProgram Management A Contractor LeadershipStewardship A- Environment Safety and Health B+ ...

  7. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management A- Contractor LeadershipStewardship B+ Environment Safety and Health B ...

  8. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) A- Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor Leadership...

  9. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) B- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management B- Contractor LeadershipStewardship C+ Environment Safety and Health B- ...

  10. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management A- Contractor LeadershipStewardship B Environment Safety and Health B- ...

  11. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    SciTech Connect (OSTI)

    Ives, Robert Lawrence; Parsons, Gregory; Williams, Philip; Oldham, Christopher; Mundy, Zach; Dolgashev, Valery

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  12. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  13. A Look Inside SLAC's Battery Lab - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Little Shade Can Go a Long Way A Little Shade Can Go a Long Way May 10, 2010 - 11:02am Addthis Allison Casey Senior Communicator, NREL Spring is my favorite time of year. The snow (finally!) stops, the temperature is perfect, and everything is colorful again. We rarely need to turn on the heat or air conditioner to stay comfortable at home, and there's nothing better than a relaxing evening on the deck. But that doesn't last long, and soon the hot days of summer will be upon us. At my house,

  14. Facilities and Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Argonne Tandem Linac Accelerator System Argonne-Northwestern Solar Energy Research Center Center for Nanoscale Materials Facilities & Centers Argonne's...

  15. Beam Dynamics Studies for a Laser Acceleration Experiment (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Beam Dynamics Studies for a Laser Acceleration Experiment Citation Details In-Document Search Title: Beam Dynamics Studies for a Laser Acceleration Experiment The NLC Test Accelerator (NLCTA) at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun is being installed together with a large-angle extraction line at 60 MeV followed by a matching section, buncher and final focus for the laser acceleration experiment,

  16. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond slac Topic Congratulations to SLAC National Accelerator Laboratory on its Golden Anniversary by Kate Bannan 27 Aug, 2012 in Science Communications SLAC was established in1962 at Stanford University. The SLAC National Accelerator Laboratory is a Department of Energy Office of Science national laboratory and home to a two-mile linear accelerator-the longest in the world. Originally a particle physics research center, SLAC is now a

  17. Initial Testing of the Mark-0 X-Band RF Gun at SLAC

    SciTech Connect (OSTI)

    Vlieks, Arnold; Adolphsen, C.; Dolgashev, V.; Lewandowski, J.; Limborg, Cecile; Weathersby, S.; /SLAC

    2012-06-06

    A new X-band RF gun (Mark-0) has been assembled, tuned and was tested in the ASTA facility at SLAC. This gun has been improved from an earlier gun used in Compton-scattering experiments at SLAC by the introduction of a racetrack dual-input coupler to reduce quadrupole fields. Waveguide-to-coupler irises were also redesigned to reduce surface magnetic fields and therefore peak pulse surface heating. Tests of this photocathode gun will allow us to gain early operational experience for beam tests of a new gun with further improvements (Mark-1) being prepared for SLAC's X-Band Test Area (XTA) program and the LLNL MEGa-ray program. Results of current testing up to {approx} 200 MV/m peak surface Electric fields are presented.

  18. Spin structure functions of the neutron g{sub 1}{sup n}: SLAC E154 results

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Spin structure functions of the neutron g{sub 1}{sup n}: SLAC E154 results Citation Details In-Document Search Title: Spin structure functions of the neutron g{sub 1}{sup n}: SLAC E154 results We report on a precision measurement of the neutron spin structure function g{sub 1}{sup n} using deep inelastic scattering of polarized electrons by polarized {sup 3}He. For the kinematic range 0.014<x<0.7 and 1(GeV/c){sup 2}<Q{sup

  19. 2012 Annual Planning Summary for Sandia Site Office | Department of Energy

    Energy Savers [EERE]

    SLAC Site Office 2012 Annual Planning Summary for SLAC Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within SLAC Site Office. PDF icon APS-2012-SLAC.pdf File APS-2012-SLAC.xlsx More Documents & Publications 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) EA-1904: Draft Environmental Assessment EA-1904: Final Environmental Assessment

    Sandia Site Office 2012 Annual Planning Summary

  20. Energy Frontier Research Centers: A View from Senior EFRC Representatives (2011 EFRC Summit, panel session)

    ScienceCinema (OSTI)

    Drell, Persis (SLAC); Armstrong, Neal (University of Arizona); Carter, Emily (Princeton University); DePaolo, Don (Lawrence Berkeley National Laboratory); Gunnoe, Brent (University of Virginia)

    2012-03-16

    A distinguished panel of scientists from the EFRC community provide their perspective on the importance of EFRCs for addressing critical energy needs at the 2011 EFRC Summit. Persis Drell, Director at SLAC, served as moderator. Panel members are Neal Armstrong (Director of the Center for Interface Science: Solar Electric Materials, led by the University of Arizona), Emily Carter (Co-Director of the Combustion EFRC, led by Princeton University. She is also Team Leader of the Heterogeneous Functional Materials Center, led by the University of South Caroline), Don DePaolo (Director of the Center for Nanoscale Control of Geologic CO2, led by LBNL), and Brent Gunnoe (Director of the Center for Catalytic Hydrocarbon Functionalization, led by the University of Virginia). The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  1. Quality Assurance Plan for Field Activities at the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Brandt, C.C.

    2002-02-28

    The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) has established a Natural and Accelerated Bioremediation Research (NABIR) program Field Research Center (FRC) for the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. The FRC is located in Bear Creek Valley within the Y-12 Plant area of responsibility on DOE's Oak Ridge Reservation in Tennessee. The NABIR program is a long-term effort designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. The FRC provides a site for investigators in the NABIR program to conduct research and obtain samples related to in situ bioremediation. The FRC is integrated with existing and future laboratory and field research and provides a means of examining the biogeochemical processes that influence bioremediation under controlled small-scale field conditions. This Quality Assurance Plan (QAP) documents the quality assurance protocols for field and laboratory activities performed by the FRC staff. It supplements the requirements in the ORNL Nuclear Quality Assurance Program and the ESD Quality Assurance Program. The QAP addresses the requirements in Title 10 CFR, Part 830 Subpart A, ''Quality Assurance Requirements'', using a graded approach appropriate for Research and Development projects based on guidance from ''Implementation Guide for Quality Assurance Programs for Basic and Applied Research'' (DOE-ER-STD-6001-92). It also supports the NABIR FRC Management Plan (Watson and Quarles 2000a) which outlines the overall procedures, roles and responsibilities for conducting research at the FRC. The QAP summarizes the organization, work activities, and qualify assurance and quality control protocols that will be used to generate scientifically defensible data at the FRC. The QAP pertains to field measurements and sample collection conducted by the FRC to characterize the site and in support of NABIR-funded investigations at the FRC. NABIR investigators who collect their own samples or measurements at the FRC will be responsible for developing their own data quality assurance protocol. Notably, this QAP will be of direct benefit to NABIR investigators who will be provided with and use the documented quality data about the FRC to support their investigations.

  2. U.S. DOE and DOD Manufacturing Innovation Multi-Topic Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ames Laboratory Henry Lomasney Sandia Solar Technology Apurva Mehta Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory Eric Miller DOE Fuel Cells ...

  3. Gravitational Instability of a Nonrotating Galaxy (Conference...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Invited talk at Particle Accelerator Conference (PAC 09), Vancouver, BC, Canada, 4-8 May 2009 Research Org: Stanford Linear Accelerator Center (SLAC) ...

  4. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    SciTech Connect (OSTI)

    N /A

    2000-04-18

    The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediation under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.

  5. Lattice design and optimization for the PEP-X ultra low emittance storage ring at SLAC

    SciTech Connect (OSTI)

    Wang, Min-Huey; Nosochkov, Yuri; Bane, Karl; Cai, Yunhai; Hettel, Robert; Huang, Xiaobiao; /SLAC

    2011-08-12

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. One of the possibilities is a new PEP-X 4.5 GeV storage ring that would be housed in the 2.2 km PEP-II tunnel. The PEP-X is designed to produce photon beams having brightness near 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV with 3.5 m undulator at beam current of 1.5 A. This report presents an overview of the PEP-X baseline lattice design and describes the lattice optimization procedures in order to maximize the beam dynamic aperture. The complete report of PEP-X baseline design is published in SLAC report.

  6. SLAC E155 and E155x Numeric Data Results and Data Plots: Nucleon Spin Structure Functions

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The extension run, E155x, also makes data available. See the E155x home page at http://www.slac.stanford.edu/exp/e155/e155extension/e155x.html

  7. Report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs

    Office of Scientific and Technical Information (OSTI)

    Factory: Linear Vs. Circular' (HF2012) (Conference) | SciTech Connect SciTech Connect Search Results Conference: Report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear Vs. Circular' (HF2012) Citation Details In-Document Search Title: Report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear Vs. Circular' (HF2012) Authors: Blondel, Alain ; Chao, Alex ; /Geneva U., astr /SLAC ; Chou, Weiren ; /Fermilab ; Gao, Jie ; /Beijing, Inst. High

  8. Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 GHz

    SciTech Connect (OSTI)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Siemann, R.H.; Henke, H.

    1997-05-01

    A prototype of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz) was built for research in high gradient acceleration. A traveling-wave design with single input and output feeds was chosen for the prototype which was fabricated by wire electrodischarge machining. Features of the mechanical design for the prototype are described. Design improvements are presented including considerations of cooling and vacuum.

  9. 2003 SSRL Accelerator Physics Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Accelerator Physics Schedule Proposal Deadline Schedule Announcement Experimental Period Duration Mon, Dec 02, '02 17:00 Tue, Dec 03, '02 13:00 Mon, Dec 09, '02 18:00-Wed, Dec 11, '02 02:00 32 hrs Tue, Jan 07, 09:00 Tue, Jan 07, 13:00 Mon, Jan 13, 18:00-Wed, Jan 15, 02:00 32 hrs Mon, Feb 03, 17:00 Tue, Feb 04, 17:00 Mon, Feb 10, 18:00-Wed, Feb 12, 02:00 32 hrs Mon, Feb 24, 17:00 Tue, Feb 25, 13:00 Mon, Mar 03, 18:00-Wed, Mar 05, 02:00 32 hrs SLAC SSRL SSRL Last Updated: 25 February 2003

  10. Ion Acceleration by Laser Plasma Interaction from Cryogenic Micro Jets - Oral Presentation

    SciTech Connect (OSTI)

    Propp, Adrienne

    2015-08-25

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for this type of interaction, capable of producing the highest proton energies possible with today’s laser technologies. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis and investigate new, potentially more efficient mechanisms of ion acceleration, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we acheived a pure proton beam with an indiciation of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic jets into droplet streams. This type of target should solve our problems with the jet as it will prevent the flow of exocurrent into the nozzle. It is also highly effective as it is even more mass-limited than standard cryogenic jets. Furthermore, jets break up spontaneously anyway. If we can control the breakup, we can synchronize the droplet emission with the laser pulses. In order to assist the team prepare for an experiment later this year, I familiarized myself with the physics and theory of droplet formation, calculated values for the required parameters, and ordered the required materials for modification of the jet. Future experiments will test these droplet streams and continue towards the goal of ion acceleration using cryogenic targets.

  11. Latest Plasma Wakefield Acceleration Results from the FACET Project

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Latest Plasma Wakefield Acceleration Results from the FACET Project Citation Details In-Document Search Title: Latest Plasma Wakefield Acceleration Results from the FACET Project Authors: Litos, M.D. ; Adli, E. ; /Oslo U. ; Clarke, C.I. ; Corde, S. ; Delahaye, J.P. ; England, R.J. ; Fisher, A.S. ; Frederico, J. ; Gessner, S. ; Hogan, M.J. ; Li, S. ; Walz, D. ; White, G. ; Wu, Z. ; Yakimenko, V. ; /SLAC ; An, W. ; Clayton, C.E. ; Joshi, C. more »; Lu, W. ;

  12. Results From Plasma Wakefield Acceleration Experiments at FACET

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Results From Plasma Wakefield Acceleration Experiments at FACET Citation Details In-Document Search Title: Results From Plasma Wakefield Acceleration Experiments at FACET Authors: Li, S.Z. ; Clarke, C.I. ; England, R.J. ; Frederico, J. ; Gessner, S.J. ; Hogan, M.J. ; Jobe, R.K. ; Litos, M.D. ; Walz, D.R. ; /SLAC ; Muggli, P. ; /Munich, Max Planck Inst. ; An, W. ; Clayton, C.E. ; Joshi, C. ; Lu, W. ; Marsh, K.A. ; Mori, W. ; Tochitsky, S. ; /UCLA more »; Adli,

  13. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Nobel Prize Topic Congratulations to SLAC National Accelerator Laboratory on its Golden Anniversary by Kate Bannan 27 Aug, 2012 in Science Communications SLAC was established in1962 at Stanford University. The SLAC National Accelerator Laboratory is a Department of Energy Office of Science national laboratory and home to a two-mile linear accelerator-the longest in the world. Originally a particle physics research center, SLAC is now

  14. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Stanford Topic Congratulations to SLAC National Accelerator Laboratory on its Golden Anniversary by Kate Bannan 27 Aug, 2012 in Science Communications SLAC was established in1962 at Stanford University. The SLAC National Accelerator Laboratory is a Department of Energy Office of Science national laboratory and home to a two-mile linear accelerator-the longest in the world. Originally a particle physics research center, SLAC is now a

  15. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond SLAC National Accelerator Laboratory on its Golden Anniversary by Kate Bannan on Mon, Aug 27, 2012 SLAC was established in1962 at Stanford University. The SLAC National Accelerator Laboratory is a Department of Energy Office of Science national laboratory and home to a two-mile linear accelerator-the longest in the world. Originally a particle physics research center, SLAC is now a multipurpose laboratory for astrophysics, photon

  16. A 4 to 0.1 nm FEL Based on the SLAC Linac

    SciTech Connect (OSTI)

    Pellegrini, C.; /UCLA

    2012-06-05

    The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

  17. 'Erratic' Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Their work was supported by supercomputing resources at the National Energy Research Scientific Computing Center (NERSC). Traditional accelerators, like the Large Hadron Collider ...

  18. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of...

  19. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responds to radiological incident August 27, 2012 The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The

  20. Discovery of Four Gravitationally Lensed Quasarsfrom the Sloan...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: The Astronimical Journal Research Org: Stanford Linear Accelerator Center (SLAC) Sponsoring Org: USDOE...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Baciu, Paul" Name Name ORCID Search Authors Type: All BookMonograph ConferenceEvent ... Center, Casper, WY (United States) S. M. Stoller (United States) SLAC National Accelerator ...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Hovland, Paul" Name Name ORCID Search Authors Type: All BookMonograph ConferenceEvent ... Center, Casper, WY (United States) S. M. Stoller (United States) SLAC National Accelerator ...

  3. 2014 Annual Planning Summary for the NNSA Global Threat Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon NNSA-GTRI-NEPA-APS-2014.pdf More Documents & Publications 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) 2012 Annual Planning ...

  4. EA-1426: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1426: Finding of No Significant Impact Linac Coherent Light Source Project, Stanford ... Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), ...

  5. Search for CPT Violation in B0-B0bar Oscillations with BABAR...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at 4th Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, 8-11 Aug 2007 Research Org: Stanford Linear Accelerator Center (SLAC) ...

  6. An Automated Implementation of On-shell Methods for One-Loop...

    Office of Scientific and Technical Information (OSTI)

    Review D Research Org: Stanford Linear Accelerator Center (SLAC) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: Phenomenology-HEP,HEPPH

  7. Preliminary Results From the GLAST Silicon Tracker Beam Test...

    Office of Scientific and Technical Information (OSTI)

    for VERTEX 2006: 15th International Workshop on Vertex Detectors, Perugia, Italy, 25-29 Sep 2006 Research Org: Stanford Linear Accelerator Center (SLAC) Sponsoring Org: USDOE ...

  8. Exclusive Hadronic Final States in E+ E- Interactions at BaBar...

    Office of Scientific and Technical Information (OSTI)

    Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2007), Munich, Germany, 16-20 Apr 2007 Research Org: Stanford Linear Accelerator Center (SLAC) Sponsoring...

  9. Type A Investigation of the Electrical Arc Injury at the Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On October 11, 2004, at approximately 11:15 am, a subcontractor electrician working at the Stanford Linear Accelerator Center (SLAC) received serious burn injuries requiring ...

  10. Evidence for charge Kondo effect in superconducting Tl-doped...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Physical Review Letters Research Org: Stanford Linear Accelerator Center (SLAC) ...

  11. The E158 Experiment (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    From parity Violation to Hadronic Structure and More (PAVI06), Milos, Greece, 16-20 May 2006 Research Org: Stanford Linear Accelerator Center (SLAC) Sponsoring Org: USDOE Country...

  12. A Gravity Dual of Metastable Dynamical Supersymmetry Breaking...

    Office of Scientific and Technical Information (OSTI)

    the expectation values of operators in the dual field theory in terms of the asymptotic values ... (JHEP) Research Org: Stanford Linear Accelerator Center (SLAC) ...

  13. Holographic Systematics of D-brane Inflation (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    branch of the dual gauge theory, in the presence of ... by the most relevant operators that do not destroy the ... Research Org: Stanford Linear Accelerator Center (SLAC) ...

  14. A New Center for Organic Electronics at Masdar Institute | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource A New Center for Organic Electronics at Masdar Institute Friday, August 2, 2013 - 10:00am SLAC, Conference Room 137-322 Presented by Samuele Lilliu Masdar Institute is a graduate level, research-oriented university, which is focused on alternative energy, sustainability, and the environment. It is located in Masdar City in Abu Dhabi, United Arab Emirates. The project here outlined focuses on improving the performance of organic/hybrid bulk heterojunction

  15. Poeh Cultural Center wins grant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poeh Cultural Center wins grant, educates public Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Poeh Cultural Center wins grant Native American Venture Acceleration Fund money helps increase education and tourism. May 2, 2016 Poeh Cultural Center and Museum received a grant through the Native American Venture Acceleration Fund in January to develop training programs for artists and to increase

  16. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  17. Accelerators, Electrodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    icon-science.jpg Accelerators, Electrodynamics National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  18. Detecting Energy Modulation in a Dielectric Laser Accelerator

    SciTech Connect (OSTI)

    Lukaczyk, Louis

    2015-08-21

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the un-accelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  19. HANDBOOK OF ACCELERATOR PHYSICS AND ENGINEERING Editors: M. Tigner, Cornell

    Office of Scientific and Technical Information (OSTI)

    BNL 66455 April 19,1999 HANDBOOK OF ACCELERATOR PHYSICS AND ENGINEERING Editors: M. Tigner, Cornell A. Chao, SLAC Pubiisher: World Scientific Sections written by Thomas Roser, BNL: 2.7.1 - Thomas - BMT equation 2.2.2 - Spin or Algebra 2.7.3 - Spin Rotators and Siberian Snakes 2.7.4 - Ring with Spin Rotator and Siberian Snakes 2.7.5 - Depolarizing Resonances and Spin Flippers & 7.6.2 - Proton Beam Polarimeters introducing a large number of background beam- ion events. No indirect beam-beam

  20. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  1. LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  2. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since 1972, providing the beam current required by all the experimental areas that support NNSA-DP and other DOE missions. The LINAC's capability to reliably deliver beam current is the key to the LANSCE's ability to do research-and thus the key to meeting NNSA and DOE mission deliverables. The LANSCE Accelerator The LANSCE

  3. Fermilab | Illinois Accelerator Research Center | IARC Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IARC Facilities Rendering Visit the IARC Multimedia Gallery The IARC Facility Located in the heart of the industrial area of the Fermi lab campus, IARC will consist of 36, 000 ...

  4. Fermilab | Illinois Accelerator Research Center | Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multimedia Gallery Pictures of the Finished OTE Building thumbnail Front view of IARC with Wilson Hall in the Background. Download: Hi-Res | Med-Res thumbnail Front view of IARC ...

  5. Fermilab | Illinois Accelerator Research Center | Fermilab Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Further details can be found at http:www-ppd.fnal.govFTBF. The Neutron Therapy ... Vertical quadrupole collaring press 6.7 m deep. Horizontal collar press, 6m long, in ...

  6. Fermilab | Illinois Accelerator Research Center | Fermilab Core...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design of high power targets High and low-level RF systems Cryogenic Refrigeration systems Control, Interlock, and Data acquisition systems VHDL, PLD, PLC, DSP ...

  7. Fermilab | Illinois Accelerator Research Center | Contact IARC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Charlie Cooper Ccooper@fnal.gov (630) 840-2538 As General Manager of IARC my role is to assist the Director to make sure all phases of IARC operations run as smoothly...

  8. Fermilab | Illinois Accelerator Research Center | Construction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Progress 08142013 photo photo 04152013 photo 04012013 photo 03262013 photo 03192013 photo 03112013 photo 03042013 photo 02252013 photo 02182013 photo...

  9. Fermilab | Illinois Accelerator Research Center | More Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Information General Office of Partnerships and Technology Transfer Illinois Department of Commerce and Economic Opportunity Department of Energy Advanced Superconductor Test...

  10. Fermilab | Illinois Accelerator Research Center | Funding and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition, Fermilab envisions IARC projects funded via grants from SBIRSTTR, CRADA, DARPA, DTRA, ARPA-E, Illinois DCFO, private industry, etc. Interested companies are ...

  11. CAMS Center for Accelerator Mass Spectrometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the art instrumentation, to develop and apply unique, ultra-sensitive isotope ratio measurement and ion beam analytical techniques to address a broad spectrum of scientific...

  12. Acceleration switch

    DOE Patents [OSTI]

    Abbin, J.P. Jr.; Middleton, J.N.; Schildknecht, H.E.

    1979-08-20

    An improved acceleration switch is described which is of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  13. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Middleton, John N.; Schildknecht, Harold E.

    1981-01-01

    The disclosure relates to an improved acceleration switch, of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  14. ACCELERATE ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama, State of the Union, Feb. 13, 2013 The U.S. Department of Energy, Council on Competitiveness and Alliance to Save Energy have joined forces to undertake in Accelerate Energy...

  15. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  16. ION ACCELERATOR

    DOE Patents [OSTI]

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  17. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab's Accelerator Complex photo Fermilab's accelerator complex comprises seven particle accelerators and storage rings. It produces the world's most powerful, high-energy...

  18. Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research Storage at the ... discusses how a next-gen grid needs next-gen storage. ... understand their basic science, accelerate ...

  19. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget | Department of Energy Accelerating Clean Energy Technology Solutions through the President's Budget Accelerating Clean Energy Technology Solutions through the President's Budget February 12, 2016 - 1:00am Addthis World leaders launch Mission Innovation at the United Nations Climate Change Conference 2015 (COP21) in Paris-Le Bourget, France, November 30, 2015. World leaders launch Mission Innovation at the United Nations Climate Change Conference 2015 (COP21) in Paris-Le Bourget,

  20. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund April 20, 2009 LOS ALAMOS, New Mexico, April 20, 2009-Los Alamos National Laboratory is soliciting ideas for projects that facilitate the creation and growth of regional businesses based on Los Alamos National Laboratory (LANL) technology or expertise. The Los Alamos National Security, LLC (LANS) Venture Acceleration Fund will provide investments of up to $350,000 annually with awards of up to $100,000 per project to facilitate projects with regional entrepreneurs,

  1. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Accelerator Systems MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. CONTACT Richard Sheffield (505) 667-1237 Email Revolutionizing Microstructural Physics to Empower Nuclear Energy Realizing MaRIE's full suite of capabilities requires developing and integrating a suite of

  2. SLAC Partners with Palo Alto Firm to Make Klystrons Much More...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that generate microwaves for accelerating particles - much more energy efficient. The new technology, called GREEN-RF, could dramatically cut the cost of operating both big ...

  3. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Drell, Persis [SLAC Director

    2011-06-08

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  4. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Drell, Persis [SLAC Director] [SLAC Director

    2011-03-22

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  5. A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC

    SciTech Connect (OSTI)

    Pernet, Pierre-Louis; /Ecole Polytechnique, Lausanne /SLAC

    2012-01-06

    With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.

  6. Accelerator Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Events Transportation Lederman Science Center Fermilab Cultural Events Fermilab Natural Areas Barn Dances Sign up for community newsletter Resources for ... Resources for...

  7. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Facility Proton Radiography Facility Lujan Neutron Scattering Center Center for Integrated Nanotechnologies Materials Science Laboratory National High Magnetic Field Laboratory ...

  8. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    SciTech Connect (OSTI)

    O. Kononenko

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  9. Cascaded target normal sheath acceleration

    SciTech Connect (OSTI)

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  10. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  11. ACCELERATION INTEGRATOR

    DOE Patents [OSTI]

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  12. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect (OSTI)

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  13. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  14. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy 2, 2015 - 2:00pm Addthis Accelerating Innovation: PowerAmerica Is Up and Running -Rob Ivester, Deputy Director, Advanced Manufacturing Office The excitement and drive to deliver was evident to me last week when I joined nearly 100 PowerAmerica members for their kick-off meeting at NC State University in Raleigh, North Carolina. PowerAmerica, also called the Next Generation Power Electronics Manufacturing Innovation Institute, will develop advanced manufacturing processes and work to

  15. Application Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest

  16. DOE - Office of Legacy Management -- Stanford Linear Accelerator...

    Office of Legacy Management (LM)

    The Stanford Linear Accelerator Center was established in 1962 as a research facility for high energy particle physics. The Environmental Management mission at this site is to ...

  17. HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fidelity simulation of a diverse range of kinetic systems. Available for thumbnail of Feynman Center (505) 665-9090 Email HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid...

  18. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    SciTech Connect (OSTI)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  19. SLAC Site Office CX Determinations | U.S. DOE Office of Science...

    Office of Science (SC) Website

    SS-SC-15-02 .pdf file (494KB) B1.23 07152015 Facility for Advanced Accelerator Experimental Tests II (FACET-II) SS-SC-15-03 .pdf file (674KB) B3.10 04072015 CX Determination...

  20. VLHC accelerator physics

    SciTech Connect (OSTI)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  1. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  2. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  3. Correlation of Beam Parameters to Decelerating Gradient in the E-167 Plasma Wakefield Acceleration Experiment

    SciTech Connect (OSTI)

    Blumenfeld, I.; Berry, M.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Kirby, N.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-27

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas [1,2]. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch length and beam waist location were varied systematically at constant charge. Here we investigate the correlation of peak beam current to the decelerating gradient. Limits on the transformer ratio will also be discussed. The results are compared to simulation.

  4. Jefferson Lab, ODU team up for center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab, ODU team up for center Jefferson Lab, ODU team up for center Michael Schwartz Inside Business, October 6-12, 2008 It pays to have a world renowned subatomic particle accelerator in your backyard. Old Dominion University, in collaboration with the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility, better known as Jefferson Lab in Newport News, announced last week the creation of the Center for Accelerator Science, an academic entity that puts ODU in the same company

  5. Naked singularities as particle accelerators

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.

    2010-11-15

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  6. Detecting Partial Energy Modulation in a Dielectric Laser Accelerator - Oral Presentation

    SciTech Connect (OSTI)

    Lukaczyk, Louis

    2015-08-24

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the unaccelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  7. Fermilab | Science | Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research and development of future particle accelerators, contributing to the design and exploration of the next generation of machines. These accelerators, each with its own...

  8. Focusing in Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    McMillan, E. M.

    1950-08-24

    Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

  9. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24

  10. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  11. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  12. <...

  13. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  14. Induction linear accelerator technology for SDIO applications

    SciTech Connect (OSTI)

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser. (LEW)

  15. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  16. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  17. Building a Tabletop Accelerator

    SciTech Connect (OSTI)

    Leemans, Wim

    2015-05-06

    Berkeley Lab physicist Wim Leemans discusses his research on developing a tabletop-size particle accelerator.

  18. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  19. Muon Collider Progress: Accelerators

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  20. Data Plots of Run I - III Results from SLAC E-158: A precision Measurement of the Weak Mixing Angle in Moller Scattering

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Three physics runs were made in 2002 and 2003 by E-158. As a result, the E-158 Collaboration announced that it had made "the first observation of Parity Violation in electron-electron (Moller) scattering). This precise Parity Violation measurement gives the best determination of the electron's weak charge at low energy (low momentum transfer between interacting particles). E158's measurement tests the predicted running (or evolution) of this weak charge with energy, and searches for new phenomena at TeV energy scales (one thousand times the proton-mass energy scale).[Copied from the experiment's public home page at http://www-project slac.stanford.edu/3158/Default.htm] See also the E158 page for collaborators at http://www.slac.stanford.edu/exp/e158/. Both websites provide data and detailed information.

  21. Jefferson Lab technology, capabilities take center stage in construction of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    portion of DOE's Spallation Neutron Source accelerator | Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator Medium beta cryomodule JLab staff prepare to load the medium β cryomodule onto a flatbed semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January 27, 2003 Jefferson Lab is once again

  22. Photon Science Seminar Series | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Seminar Series SLAC's Photon Science Seminar Series brings together scientists from SLAC's Linac Coherent Light Source, Stanford Synchrotron Radiation Lightsource, Photon Science and Accelerator directorates, including researchers from the Center for Sustainable Energy through Catalysis and two joint SLAC-Stanford institutes: the Stanford Institute for Materials and Energy Sciences and the Pulse Institute for Ultrafast Energy Science. The seminar series' main goals are to

  1. Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Jefferson Lab is recognized as a world leader in accelerator science. This expertise comes from the planning, building, maintaining and operating of the Continuous Electron Beam Accelerator Facility (CEBAF) - the lab's particle accelerator. CEBAF is based on superconducting radiofrequency (SRF) technology. It produces a stream of charged electrons that scientists use to probe the nucleus of the atom. CEBAF was the first large-scale application of SRF technology in the world,

  2. Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selection of Venture Acceleration Fund recipients March 8, 2010 LOS ALAMOS, New Mexico, March 8, 2010-Los Alamos National Laboratory (LANL) has selected Simtable and Southwest Bio Fuels as recipients of $100,000 awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund invests in creating and growing Northern New Mexico businesses that have an association with LANL technology or expertise. Venture Acceleration Fund investments help

  3. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Accelerated Aging Studies Factors such as temperature, pressure, or radiation

  4. Accelerator Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  5. Accelerator & Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  6. Ground Broken for New Job-Creating Accelerator Research Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Illinois Accelerator Research Center (IARC) will provide a state-of-the-art facility ... to partner with the State of Illinois and looks forward to seeing IARC come to fruition." ...

  7. Accelerators AND Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators AND Beams TOOLS Of DiScOvery anD innOvaTiOn Published by the Division of Physics of Beams of the American Physical Society Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . Why.care.about.accelerators?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . What.are.accelerators.for?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 .

  8. New Facility Saves $20 Million, Accelerates Waste Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Facility Saves $20 Million, Accelerates Waste Processing New Facility Saves $20 Million, Accelerates Waste Processing August 15, 2012 - 12:00pm Addthis The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). The Transuranic Waste Processing Center (TWPC) processes, repackages, and ships the site's legacy TRU waste offsite. OAK RIDGE, Tenn. - Oak Ridge's EM program recently began operations at a newly constructed facility that

  9. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  10. The Fermilab Particle Astrophysics Center

    SciTech Connect (OSTI)

    Not Available

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  11. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  12. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    SciTech Connect (OSTI)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.

    2010-10-27

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  13. Center for Functional Nanomaterials (CFN) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Functional Nanomaterials (CFN) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES

  14. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Nanotechnologies (CINT) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  15. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  16. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 - Los Alamos National Laboratory has selected Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides investments of up to $100,000 to regional entrepreneurs, companies, investors, or strategic partners

  17. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  18. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  19. Linear inductive accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Gerasimov, A.I.; Pavlovskiy, A.I.

    1983-11-01

    A proposed accelerator, differing from existing ones in that it is loaded through a capacitor on a solenoid which is uniformly distributed throughout the accelerating system and connected to an independent electrical current source, is discussed. The design of the system makes it possible to improve the uniformity of the electrical field and increase the longitudinal focusing magnetic field. This is especially important for high-current accelerators.

  20. Linear induction accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Pavlovskiy, A.I.

    1984-03-01

    A linear induction accelerator of charged particles, containing inductors and an acceleration circuit, characterized by the fact that, for the purpose of increasing the power of the accelerator, each inductor is made in the form of a toroidal line with distributed parameters, from one end of which in the gap of the line a ring commutator is included, and from the other end of the ine a resistor is hooked up, is described.

  1. ACCELERATION RESPONSIVE SWITCH

    DOE Patents [OSTI]

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  2. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Final Paper

    SciTech Connect (OSTI)

    Araya, Million

    2015-08-21

    SPEAR3 is a 234 m circular storage ring at SLACs synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hz 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz injection ready signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.

  3. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells for wakefield suppression in both, superconducting RF and room-temperature high-energy accelerators of the ... acts as an extremely efficient higher order mode ...

  4. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property ...

  5. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 ... of Taos, will continue development of a solar thermal heating prototype that uses heat ...

  6. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  7. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  8. From Autos to Accelerators

    Broader source: Energy.gov [DOE]

    In a town haunted by the remains of fallen automobile plants, some companies are hiring workers to put their car-manufacturing skills toward building particle accelerators.

  9. SLAC Site Office Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  10. SLAC-PUB-8640

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of the time as a proton and part of the time as a neutron surrounded by a positive meson cloud." and also: "...it is to be expected that the magnetic field associated with the ...

  11. slac_nums

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  12. Accelerators (5/5)

    SciTech Connect (OSTI)

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  13. Accelerators (4/5)

    SciTech Connect (OSTI)

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Accelerators (3/5)

    SciTech Connect (OSTI)

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  15. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  17. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  18. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  19. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  20. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  1. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  2. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  3. Danforth Center Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Danforth Center Tour Danforth Center Tour As part of our Events & Topics in Bioenergy and the Environment series, we hosted a tour to the Donald Danforth Plant Science Center to...

  4. The Illinois Accelerator Research Center, or IARC, will

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. * With a strong focus on innovation and industrialization, IARC will attract high-tech companies and train Illinois citizens to develop advanced technology with...

  5. Sprints Accelerate Research - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips

  6. ARM - External Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govExternal Data Center External Data Center Order Data Description of External Data Streams Data Viewers and Plots (selected data sets) XDC Documentation External Data Center The ...

  7. Breaking Ground for GE Oil & Gas Tech Center|GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Oil & Gas Technology Center in Oklahoma City Click to email this to a friend ... Research Oil & Gas Technology Center in Oklahoma City 125M global hub to accelerate ...

  8. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect (OSTI)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.

  9. HEAVY ION LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  10. Based Accelerators Gennady Shvets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finally, I will discuss a new structure-based laser-driven surface wave accelerator based on silicon carbide (SiC) that employs a polaritonic material with a negative dielectric ...

  11. CLASHING BEAM PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  12. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  13. Bisfuel links - Research centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research centers http://bioenergy.asu.edu/" target="_blank">Center for Bioenergy and Photosynthesis

  14. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  15. LANS Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund announces "Call for Ideas" August 2, 2010 LOS ALAMOS, New Mexico, August 2, 2010-Through September 1, 2010, Northern New Mexico Connect (NNM Connect) is accepting idea statements for the Los Alamos National Security, LLC Venture Acceleration Fund (VAF). VAF invests in creating and growing Northern New Mexico businesses that have an association with Los Alamos National Laboratory technology or expertise. It invests up to $100,000 in businesses that use

  16. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  17. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  18. Native American Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Native American Venture Acceleration Fund provides boost to six regional businesses February 26, 2013 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, New Mexico, Feb. 26, 2013-Six Native American businesses received grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help

  19. Accelerating Scientific Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Scientific Discovery at the Spallation Neutron Source Stuart Campbell Neutron Data Analysis & Visualization Division 2 Developing and applying the world's best tools for neutron scattering High Flux Isotope Reactor: Intense steady-state neutron flux and a high-brightness cold neutron source Spallation Neutron Source: World's most powerful accelerator-based neutron source Biology and Soft Matter Chemical and Engineering Materials Neutron Data Analysis and Visualization Quantum

  20. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regional businesses receive Native American Venture Acceleration Fund grants February 1, 2016 Investing in Northern New Mexico's economy through jobs, new revenue LOS ALAMOS, N.M., Feb. 1, 2016-Four Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients

  1. Center for Beam Physics: 1994--95

    SciTech Connect (OSTI)

    1995-05-01

    The Center for Beam Physics is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Lawrence Berkeley Laboratory of the University of California. At the heart of the Center`s mission is a fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Dedicated to exploring the frontiers of particle and photon beam physics, its primary mission is to promote the science and technology of the production, manipulation, storage, and control of systems of charged particles and photons. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP`s team and gives a brief review of the multifaceted activities during 1994 and 1995.

  2. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    video SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of...

  3. Mike Ross | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mike Ross About Us Mike Ross - Science Writer at SLAC National Accelerator Laboratory Mike Ross is a science writer at SLAC National Accelerator Laboratory. Most Recent Light ...

  4. Head Erosion with Emittance Growth in PWFA (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: contributed to 15th Advanced Accelerator Concepts Workshop (AAC 2012), 10-15 Jun 2012: Austin, Texas Research Org: SLAC National Accelerator Laboratory (SLAC)...

  5. DYNAMIC APERTURE STUDIES FOR THE LHC HIGH LUMINOSITY LATTICE...

    Office of Scientific and Technical Information (OSTI)

    Particle Accelerator Conference (IPAC 2015), 3-8 May 2015. Richmond, Virginia, USA Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office...

  6. The Super-B Project Accelerator Status

    SciTech Connect (OSTI)

    Biagini, M.E.; Alesini, D.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Marcellini, F.; Mazzitelli, G.; Preger, M.; Raimondi, P.; Sanelli, C.; Serio, M.; Stecchi, A.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachmann, A.; Cai, Y.; /SLAC /Novosibirsk, IYF /Annecy, LAPP /LPSC, Grenoble /Orsay, LAL /Saclay /Pisa U. /CERN

    2011-08-17

    The SuperB project is an international effort aiming at building in Italy a very high luminosity e{sup +}e{sup -} (10{sup 36} cm{sup -2} sec{sup -1}) asymmetric collider at the Y(4S) energy in the CM. The accelerator design has been extensively studied and changed during the past year. The present design, based on the new collision scheme, with large Piwinski angle and the use of 'crab waist' sextupoles already successfully tested at the DA{Phi}NE {Phi}-Factory at LNF Frascati, provides larger flexibility, better dynamic aperture and spin manipulation sections in the Low Energy Ring (LER) for longitudinal polarization of the electron beam at the Interaction Point (IP). The Interaction Region (IR) has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the project status will be presented in this paper. The SuperB collider can reach a peak luminosity of 10{sup 36} cm{sup -2} sec{sup -1} with beam currents and bunch lengths similar to those of the past and present e{sup +}e{sup -} Factories, through the use of smaller emittances and new scheme of crossing angle collision. The beams are stored in two rings at 6.7 GeV (HER) and 4.2 GeV (LER). Unique features of the project are the polarization of the electron beam in the LER and the possibility to decrease the energies for running at the {tau}/charm threshold. The option to reuse the PEP-II B-Factory (SLAC) hardware will allow reducing costs. The SuperB facility will require a big complex of civil infrastructure. The main construction, which will house the final part of the LINAC, the injection lines, the damping rings, and the storage rings, will be mainly underground. Two sites have been considered: the campus of Tor Vergata University near Frascati, and the INFN Frascati Laboratory. No decision has been made yet. A footprint of the possible SuperB layout on the LNF area is shown in Fig. 1.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  17. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  18. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOE Patents [OSTI]

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  19. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  20. Public to have rare opportunity to tour Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosenfest: celebrate Louis Rosen, tour LANSCE Public to have rare opportunity to tour Neutron Science Center Tour attendees can expect to see many facets of the LANSCE, including areas along the linear accelerator beam line, the control room area, and one or more experimental areas. May 10, 2011 Aerial View of Neutron Science Center Aerial View of Neutron Science Center Contact James Rickman Communications Office (505) 665-9203 Email LANL Rosenfest will celebrate life of LANSCE founder Louis

  1. DOE Provides $30 Million to Jump Start Bioenergy Research Centers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment

  2. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... BYPASS 19 First National Technology First National Technology Center Center System Performance Specifications Fault Clearing Without Grid: 10-15 X Rated Current Overload: 150% ...

  3. NREL: Education Center - Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Programs NREL's Education Center in Golden, Colorado, offers a variety of program topics and experiences for students and adult groups addressing...

  4. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Geophysical Experiences Materials Design Calendar NSEC Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission...

  5. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  6. Annual Site Environmental Report: 2002

    SciTech Connect (OSTI)

    Nuckolls, H.; /SLAC

    2006-04-19

    This report provides information about environmental programs during 2002 at the Stanford Linear Accelerator Center (SLAC). Seasonal activities that span calendar years are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded, research and development center with Stanford University as the M&O contractor. The most noteworthy information in this report is summarized in this section. This summary demonstrates the effective application of SLAC environmental management in meeting the site's integrated safety management system (ISMS) goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring that proper procedures are followed so that worker safety and health are protected; the environment is protected; and compliance is ensured. Throughout 2002, SLAC focused on these activities through the SLAC management systems (described in Chapter 3). These systems were also the way SLAC approached implementing ''greening of the government'' initiatives such as Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC did not receive any notices of violation during 2002. In addition, many improvements were continued during 2002, in decreasing air emission rates, the storm drain system, groundwater restoration, and planning for a chemical management system to manage chemical use better.

  7. Annual Site Environmental Report: 2005

    SciTech Connect (OSTI)

    sabba, d

    2007-02-03

    This report provides information about environmental programs during 2005 at the Stanford Linear Accelerator Center (SLAC). Seasonal activities that span calendar years are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. SLAC effectively applied environmental management in meeting the site's integrated safety and environmental management system (ISEMS) goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring that proper procedures are followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2005, SLAC focused on these activities through the SLAC management systems (described in Chapter 3). These systems were also the way SLAC approached implementing ''greening of the government'' initiatives such as Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. There were no reportable releases to the environment from SLAC operations during 2005. In addition, many improvements were continued during 2005, in waste minimization, recycling, stormwater drain system, groundwater restoration, and implementing a chemical management system (CMS) to better manage chemical use. Program-specific details are discussed.

  8. Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2008-09-24 OSTI Identifier: 938638 Report Number(s): SLAC-PUB-13390 TRN: ... Concepts Workshop (AAC08), Santa Cruz, California, 27 Jul - 2 Aug 2008 Research ...

  9. Report of the ICFA Beam Dynamics Workshop 'Accelerators for a...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2013-02-01 OSTI Identifier: 1127908 Report Number(s): SLAC-PUB-15370 ... MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to ...

  10. WIPP - CBFO Accelerating Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting About Regional Resource Centers Significant expansion of wind energy deployment will be required to achieve the President's goal of doubling renewable energy production in the United States by 2020. Wind energy currently provides more than 4% of the nation's electricity but has the potential to provide much more. Increasing the country's percentage from wind power will mean

  11. DOE to Invest $250 Million in New Bioenergy Centers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    $250 Million in New Bioenergy Centers DOE to Invest $250 Million in New Bioenergy Centers August 2, 2006 - 4:48pm Addthis Basic Genomics Research on the Development of Biofuels to be Accelerated JOLIET, IL - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman announced today that DOE will spend $250 million to establish and operate two new Bioenergy Research Centers to accelerate basic research on the development of cellulosic ethanol and other biofuels. The Secretary made the

  12. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of ...

  13. Accelerator research studies

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  14. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  15. Commissioning the GTA accelerator

    SciTech Connect (OSTI)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-09-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  16. Commissioning the GTA accelerator

    SciTech Connect (OSTI)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V. ); Connolly, R.; Weiss, R. (Gr

    1992-01-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  17. Accelerators for Cancer Therapy

    DOE R&D Accomplishments [OSTI]

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  18. SSRL Accelerator Phycics Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at.gif (15297 bytes) BeamOptics.gif (29047 bytes) ICFA2000t.gif (31362 bytes) Home Page LCLS Accelerator Physics at SSRL The field tha t can be covered by the Accelerator Physics...

  19. Linear Accelerator | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator Producing brilliant x-ray beams at the APS begins with electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage...

  20. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  1. Venture Acceleration Fund wins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins entrepreneurship award October 23, 2014 Fund supports economic development in Northern New Mexico LOS ALAMOS, N.M., Oct. 23, 2014-The Venture Acceleration Fund (VAF) created by Los Alamos National Security, LLC (LANS) and administered by the Regional Development Corporation received the 2014 entrepreneurship award from the International Economic Development Council (IEDC). The award was presented at IEDC's annual conference this week in Fort Worth, Texas. "Since the VAF was initiated

  2. WIPP Accelerating Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other

  3. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Kristin Persson is one of the founding scientists behind the Materials Project, a computational tool aimed at taking the guesswork out of new materials discoveries, especially those aimed at energy applications like batteries. (Roy Kaltschmidt, LBNL) New materials are crucial to building a clean energy

  4. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 4, 2014 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, N.M., Feb. 4, 2014-Six Northern New Mexico Native American-owned and operated businesses received a total of $60,000 in grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. - 2

  5. Acceleration during magnetic reconnection

    SciTech Connect (OSTI)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  6. ACCELERATION INTEGRATING MEANS

    DOE Patents [OSTI]

    Wilkes, D.F.

    1961-08-29

    An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

  7. History of Proton Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    Alvarez, L. W.

    1987-01-01

    Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

  8. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities

  9. Theory Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory Center The Center for Theoretical and Computational Physics pursues a broad program of research in support of the physics being studied at Jefferson Lab and related facilities around the world. The Theory Center provides opportunities for interested scientists and students to visit the lab and work closely with theoretical and experimental colleagues.The center also advises the lab on the scientific merit of its program and its plans for future development. The center provides scientific

  10. tracc-comuting-center-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Research and Analysis Computing Center

  11. Navigating the State and Local Solution Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEATHERIZATION AND INTERGOVERNMENTAL PROGRAMS Navigating The State and Local Solution Center Eleni Pelican Policy Advisor Weatherization and Intergovernmental Programs April 28, 2016 2 WIP - Who we are and what we do Mission: Accelerate deployment of energy efficiency and renewable energy technologies over a wide range of stakeholders in partnership with states and local governments. Strategic objective: "Deploy the clean energy technologies we have" through near-term activities that

  12. National Energ y Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Report This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098. LBNL-49186, December 2001 National Energ y Research Scientific Computing Center 2001 Annual Report NERSC aspires to be a world leader in accelerating scientific discovery through computation. Our vision is to provide high- performance computing tools to tackle science's biggest and most challenging

  13. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  14. Accelerator Stewardship Test Facility Program - Elliptical Twin...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications Citation Details In-Document Search Title: Accelerator Stewardship Test Facility ...

  15. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema (OSTI)

    None

    2011-10-06

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  16. Proceedings of a workshop on Applications of Accelerators

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B. [ed.] [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A.M.; Alonso, J.R. [eds.] [Lawrence Berkeley Lab., CA (United States)

    1994-01-31

    This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation Electrification Acceleration Programs The Oregon Public Utility Commission must direct electric utilities to file applications for programs to accelerate transportation electrification. Eligible programs include investments in or customer rebates for electric vehicle supply equipment (EVSE). Among other criteria, programs must stimulate innovation, competition, and customer choice in EVSE and plug-in electric vehicle charging. (Reference Senate Bill 1547

  18. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  19. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2015 Nearly $700,000 in new revenue generated last two years LOS ALAMOS, N.M., March 3, 2015-Six Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. - 2 - "Our

  20. Model-independent particle accelerator tuning

    SciTech Connect (OSTI)

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the schemes ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerators transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.

  1. ARM - News Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP 6 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field...

  2. ARM - News Center Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP 6 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field...

  3. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  4. Siemens Technology Accelerator | Open Energy Information

    Open Energy Info (EERE)

    Technology Accelerator Jump to: navigation, search Name: Siemens Technology Accelerator Place: Germany Sector: Services Product: General Financial & Legal Services ( Subsidiary ...

  5. SETsquared Business Acceleration | Open Energy Information

    Open Energy Info (EERE)

    SETsquared Business Acceleration Jump to: navigation, search Name: SETsquared Business Acceleration Place: United Kingdom Sector: Services Product: General Financial & Legal...

  6. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  7. NREL: Education Center - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Events Unless otherwise notified, events listed here will be held at the NREL Education Center, 15013 Denver West Parkway, Golden, CO. The Education Center phone number is 303-384-6565. June 2016 Sustainable NREL Walking Campus Tour June 17, 2016, 9:30 - 11:15 am Golden, CO Contact: NREL Education Center 303-384-6565 NREL exemplifies environmental sustainability throughout its operations. Visitors learn about renewable energy and energy efficiency research as

  8. ASU EFRC - Center researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center researchers Chad Simmons Academic Professional Gerdenis Kodis Research Assistant Professor Raimund Fromme Faculty Research Associate Yuichi Terazono Faculty Research...

  9. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program

  10. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  11. Green Jobs Training Center

    Broader source: Energy.gov [DOE]

    Provides an overview of the training available through the Green Jobs Training Center including certification courses and the apprenticeship program.

  12. High-gradient compact linear accelerator

    DOE Patents [OSTI]

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  13. Naked singularities as particle accelerators. II

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    2011-03-15

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as the final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.

  14. Data center cooling method

    DOE Patents [OSTI]

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  15. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  16. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideum awarded Venture Acceleration Funds Motion recognition software business receives Venture Acceleration Funds LANS Venture Acceleration Fund (VAF) award enabled Ideum to develop motion recognition software for international release. April 3, 2012 Jim Spadaccini, owner of Ideum a software development company in Corrales Jim Spadaccini (R) has tapped into the Lab's economic development programs: VAF, NMSBA, Market Intelligence. Ideum, his Corrales, New Mexico based business, creates

  17. HIGH ENERGY PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  18. Accelerating Spectrum Sharing Technologies

    SciTech Connect (OSTI)

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  19. Accelerate Energy Productivity 2030 Launch

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy kicked off Accelerate Energy Productivity 2030. This initiative supports President Obama’s goal to double our energy productivity by 2030.

  20. 2012 Advanced Accelerator Concepts Workshop

    SciTech Connect (OSTI)

    Downer, Michael C.

    2015-03-23

    We report on the organization and outcome of the 2012 Advanced Accelerator Concepts Workshop, held in Austin, Texas in June 2012.

  1. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  2. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  3. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  4. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator R&D Accelerator R&D Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Accelerator R&D R&D model Figure 1: Conceptual drawing of a superconducting radio-frequency accelerator with a PBG coupler cell. The ultimate goal of this project is to experimentally demonstrate the applicability of

  5. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  6. EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dollars | Department of Energy Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other

  7. Center for Bio-inspired Solar Fuel Production Personnel | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Bio-inspired Solar Fuel Production Personnel Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center ...

  8. 2012 Annual Planning Summary for Oak Ridge Office | Department of Energy

    Energy Savers [EERE]

    Oak Ridge Office 2012 Annual Planning Summary for Oak Ridge Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the Oak Ridge Office. PDF icon APS-2012-ORO.pdf More Documents & Publications 2011 Annual Planning Summary for Oak Ridge Operations Office (OR) 2012 Annual Planning Summary for SLAC Site Office 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)

  9. 2013 Annual Planning Summary for the Office of Fossil Energy | Department

    Energy Savers [EERE]

    of Energy Fossil Energy 2013 Annual Planning Summary for the Office of Fossil Energy 2013 Annual Planning Summary for the Office of Fossil Energy The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Office of Fossil Energy. PDF icon FE-NEPA-APS-2013 More Documents & Publications 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) 2012 Annual Planning Summary for SLAC Site Office 2012 Annual

  10. 2014 Annual Planning Summary for the NNSA Production Office | Department of

    Energy Savers [EERE]

    Energy Production Office 2014 Annual Planning Summary for the NNSA Production Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the NNSA Production Office. PDF icon NNSA-ProductionOffice-NEPA-APS-2014.pdf More Documents & Publications 2013 Annual Planning Summary for the NNSA Production Office 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) 2012 Annual Planning Summary for SLAC

  11. GO 2009 Annual NEPA Planning Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GO 2009 Annual NEPA Planning Summary GO 2009 Annual NEPA Planning Summary 2009 Annual National Environmental Policy Act Planning Summary for the U.S. Department of Energy's Golden Field Office (GO). PDF icon GO 2009 Annual NEPA Planning Summary More Documents & Publications 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) 2012 Annual Planning Summary for SLAC Site Office 2010 Annual Planning Summary for Nevada Site

  12. Sub-Picosecond X-Ray Pulses Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Workshop on the Interactions of Intense Sub-Picosecond X-Ray Pulses with Matter (SLAC, January 23-24, 1997) During the last five years studies have been conducted at the Stanford Linear Accelerator Center (SLAC) and the Deutsches Elektronen-Synchrotron (DESY) in Hamburg concerning the feasibility of driving an Angstrom-wavelength Free-Electron Laser (FEL) with a high energy rf linac. Recent promising advances in linac, rf gun, and insertion device technologies make it seem likely

  13. NREL: Measurement and Instrumentation Data Center (MIDC) Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these stations: NREL Restore original map zoom magnification Click station on map above or select from drop down and click go NREL Solar Radiation Research Laboratory (BMS) NREL National Wind Technology Center (M2) NREL Vehicle Testing and Integration Facility RSR Solar Technology Acceleration Center (SolarTAC) SOLRMAP Southwest Solar Research Park SOLRMAP University of Arizona (OASIS) SOLRMAP La Ola Lanai (RSR) SOLRMAP Kalaeloa Oahu (RSR) SOLRMAP Tri-State Escalante (RSR) SOLRMAP Loyola

  14. NREL: Measurement and Instrumentation Data Center (MIDC) Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the following stations: NREL Solar Radiation Research Laboratory (BMS) NREL/SRRL, Golden, Colorado National Wind Technology Center M2 Tower NREL/NWTC, Boulder, Colorado Vehicle Testing and Integration Facility RSR NREL/VTIF, Golden, Colorado Solar Technology Acceleration Center (SolarTAC) MRI, Aurora, Colorado SOLRMAP: Southwest Solar Research Park (SSRP) Southwest Solar Technologies Inc, Phoenix, Arizona SOLRMAP: University of Arizona (OASIS) University of Arizona, Tucson, Arizona SOLRMAP: La

  15. National Energy Research Scientific Computing Center NERSC Exceeds Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Center NERSC Exceeds Reliability Standards With Tape-Based Active Archive Research Facility Accelerates Access to Data while Supporting Exponential Growth Founded in 1974, the National Energy Research Scientific Computing Center (NERSC) is the primary scientific com- puting facility for the Office of Science in the U.S. Department of Energy. NERSC is located at Lawrence Berkeley National Laboratory's Oakland Scientific Facility in Oakland, California and is mandated with

  16. PERSONNEL PROTECTION SYSTEM UPGRADE FOR THE LCLS ELECTRON BEAM...

    Office of Scientific and Technical Information (OSTI)

    Experimental Physics Control Systems (ICALEPCS 2015), 17-23 Oct, 2015, Melbourne, Australia Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE...

  17. Inverse Cascade of Non-helical Magnetic Turbulence in a Relativistic...

    Office of Scientific and Technical Information (OSTI)

    2 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: National Science Foundation (NSF);US DOE Office of Science (DOE SC) Country of Publication: United ...

  18. Beam Loading by Distributed Injection of Electrons in a Plasma...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  19. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    lightcone - local versus global features ILight Cone 2013), 20-24 May 2013. Skiathos, Greece","SLAC National Accelerator Laboratory (SLAC)","US DOE Office of Science (DOE...

  20. QCD on the Light-Front - A Systematic Approach to Hadron Physics...

    Office of Scientific and Technical Information (OSTI)

    lightcone - local versus global features ILight Cone 2013), 20-24 May 2013. Skiathos, Greece Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE...

  1. Analysis of Beam Dynamics in a Circular Higgs Factory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Circular e+e- Colliders - Higgs Factory (HF2014) October 9-12, 2014. Beijing, China Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office ...

  2. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    to To be determined","SLAC National Accelerator Laboratory (SLAC)","USDOE","08 HYDROGEN; ASYMMETRY; BOSONS; GLUONS; HYDROGEN; LUMINOSITY; NEUTRONS; NUCLEAR MATTER; NUCLEI;...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    States) S. M. Stoller (United States) SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) STI Submitter (STIS), Anywhere (United States) Salt Repository...

  4. Radiation Dose Measurement for High-Intensity Laser Interactions...

    Office of Scientific and Technical Information (OSTI)

    Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: OPTICS, SAFETY...

  5. Measuring the Invisible Higgs Width at the 7 and 8 TeV LHC (Journal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: DOE Country of Publication: United States Language: English Subject: Experiment-HEP, Phenomenology-HEP,HEPPH

  6. B \\to Mu Mu And B \\to Tau Nu Decays (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HE...

  7. Chiral anomaly and the BaBar and belle measurements of the gamma...

    Office of Scientific and Technical Information (OSTI)

    Workshop on QCD - Theory and Experiment (QCD@Work 2012), 18-21 Jun 2012. Lecce, Italy Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE ...

  8. Exotic/charmonium Hadron Spectroscopy at Belle and BaBar (Conference...

    Office of Scientific and Technical Information (OSTI)

    Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HE...

  9. Dispersion in the Presence of Strong Transverse Wakefields (Conference...

    Office of Scientific and Technical Information (OSTI)

    Science, Technology and Applications, 12-16 May 1997, Vancouver, British Columbia, Canada Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: USDOE ...

  10. Searches for Exotic Decays of the Upsilon(3S) at BaBar (Conference...

    Office of Scientific and Technical Information (OSTI)

    of Lake Louise Winter Institute: Fundamental Interactions (LLWI 2009), Lake Louise, Alberta, Canada, 16-21 Feb 2009 Research Org: SLAC National Accelerator Laboratory (SLAC)...

  11. Higgs + Multi-Jets in Gluon Fusion (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Corrections fpr the LHC and Future Colliders (RADCOR 2015), 15-19 Jun 2015. Los Angeles, CA Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE ...

  12. Radiative and Leptonic B-meson Decays from the B-factories (Conference...

    Office of Scientific and Technical Information (OSTI)

    Workshop on Theory, Phenomenology and Experiments in Heavy Flavor Physics, Capri, Italy, 16-18 Jun 2008 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring ...

  13. Conceptual Design for CLIC Gun Pulser (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);WFO Country of Publication: United States Language: English Subject: ACCSYS...

  14. Analysis of Beam Dynamics in a Circular Higgs Factory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Circular e+e- Colliders - Higgs Factory (HF2014) October 9-12, 2014. Beijing, China Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE...

  15. Phantom of the Hartle-Hawking instanton: Connecting inflation...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 76; Journal Issue: 2; Journal ID: ISSN 1434-6044 Publisher: Springer Research Org: SLAC National Accelerator Laboratory (SLAC), ...

  16. Non-Thermal Electron Energization from Magnetic Reconnection...

    Office of Scientific and Technical Information (OSTI)

    Publisher: American Physical Society (APS) Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);Fusion Energy Sciences ...

  17. Wnt Antagonists Bind through a Short Peptide to the First beta...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: BIO

  18. Syntaxin 1a Variants Lacking an N-peptide or Bearing the LE Mutation...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: BIO ...

  19. LANSCE | Lujan Center | Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Center Data Management Lujan Neutron Scattering Center Logo The Lujan Center within LANSCE utilizes a pulsed source and has a complement of 15 instruments. It maintains a ...

  20. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  1. General purpose programmable accelerator board

    DOE Patents [OSTI]

    Robertson, Perry J.; Witzke, Edward L.

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  2. Energy Department to Award $100 Million for Energy Frontier Research Centers

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Ernest Moniz today announced a proposed $100 million in FY2014 funding for Energy Frontier Research Centers to accelerate the scientific breakthroughs needed to build a new 21st-century energy economy.

  3. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy, National Nuclear Security Administration nnsa.energy.gov Publications 2009 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC

  4. Relativistic Guiding Center Equations

    SciTech Connect (OSTI)

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  5. WIPP - Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Joint Information Center is located at 4021 National Parks Highway in Carlsbad, N.M. Joint Information Center In the unlikely event of an emergency, the WIPP Joint Information Center (JIC) serves as a central control point to coordinate multi-agency efforts to issue timely and accurate information to the public, news media and project employees. Emergency contact information: The public If the JIC is activated, members of the general public, including family members, may call (575) 234-7380

  6. The Intermediate Higgs (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Intermediate Higgs Citation Details In-Document Search Title: The Intermediate Higgs Authors: Katz, Emanuel ; /Boston U. /SLAC ; Nelson, Ann E. ; /Washington U., Seattle ; Walker, Devin G.E. ; /Harvard U. Publication Date: 2005-06-20 OSTI Identifier: 890349 Report Number(s): SLAC-PUB-11111 hep-ph/0504252 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: JHEP 0508:074,2005 Research Org: Stanford Linear Accelerator Center (SLAC) Sponsoring Org:

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    research of national importance at research centers and through the National Biodiesel Board. For more information, see the STRDD Program website. The program is not...

  8. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This list is frequently updated and will provide users with the latest information on Center publications. http:science.energy.govbesefrcpublications View all News Items

  9. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  10. LANSCE | Lujan Center | Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Julian Chen, new Protein Crystallography Station lead scientist, carving out elite niche: neutron studies of membrane proteins The Lujan Center Science & People October...

  11. APS Conference Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines intellectual stimulation with natural beauty. The Conference Center is within walking distance of the Argonne Guest House, a full-service, professionally-managed hotel and...

  12. Extreme Environments (EFree) Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extreme Environments (EFree ) Center LLNL Co-PI: Jonathon Crowhurst e-mail bio Novel materials for energy applications Ultrafast reflectivity measurements under high pressure...

  13. Center of Innovation- Energy

    Broader source: Energy.gov [DOE]

    Jill Stuckey, Director, Center fof Innovation - Energy, presents on Georgia's workforce development opportunities for the Biomass/Clean Cities States Webinar.

  14. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nonlinear Studies We conduct and support basic scientific research in nonlinear and ... into consideration both the Lab's needs for basic science relevant to ...

  15. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... * DEA is suitable for online- measurements of phase transitions in composite manufacturing Conclusions Summary Polymer Engineering Center University of Wisconsin-Madison Prof. ...

  16. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  17. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, Victor W.

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  18. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  19. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  20. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  1. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  2. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    SciTech Connect (OSTI)

    Wilson, Joshua L

    2008-09-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed employing the three basic shapes discussed previously. Bench measurements are performed on the prototype cavities to evaluate dispersion by measuring the field distribution along these cavities. The measurement results are compared to the simulations and theoretical results, and good agreement is shown. Once validated, the developed models are used to design twisted accelerating structures with specific phase velocities and good accelerating performance.

  3. Accelerated cleanup risk reduction

    SciTech Connect (OSTI)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation period in which the well was `capped`. Our results show the formation of an inclined gas phase during injection and a fast collapse of the steam zone within an hour of terminating steam injection. The majority of destruction occurs during the collapse phase, when contaminant laden water is drawn back towards the well. Little to no noncondensible gasses are created in this process, removing any possibility of sparging processes interfering with contaminant destruction. Our models suggest that the thermal region should be as hot and as large as possible. To have HPO accepted, we need to demonstrate the in situ destruction of contaminants. This requires the ability to inexpensively sample at depth and under high temperatures. We proved the ability to implies monitoring points at depths exceeding 150 feet in highly heterogeneous soils by use of cone penetrometry. In addition, an extractive system has been developed for sampling fluids and measuring their chemistry under the range of extreme conditions expected. We conducted a collaborative field test of HPO at a Superfund site in southern California where the contaminant is mainly creosote and pentachlorophenol. Field results confirm the destruction of contaminants by HPO, validate our field design from simulations, demonstrate that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells (and minimal capital cost) and yield reliable cost estimates for future commercial application. We also tested the in situ microbial filter technology as a means to intercept and destroy the accelerated flow of contaminants caused by the injection of steam. A series of laboratory and field tests revealed that the selected bacterial species effectively degrades trichloroethene in LLNL Groundwater and under LLNL site conditions. In addition, it was demonstrated that the bacteria effectively attach to the LLNL subsurface media. An in-well treatability study indicated that the bacteria initially degrade greater than 99% of the contaminant, to concentrations less than regulatory limit

  4. Accelerating Electrolyte Discovery for Energy Storage with High Throughput

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Screening - Joint Center for Energy Storage Research December 26, 2014, Research Highlights Accelerating Electrolyte Discovery for Energy Storage with High Throughput Screening A screening scheme has been developed to down-select molecule candidates based on successive property evaluations obtained from high-throughput computations. Here we show the down-select results for ~1400 candidates for non-aqueous redox flow battery application. Scientific Achievement We have developed a strategy to

  5. SLAC-PUB-15832 November

    Office of Scientific and Technical Information (OSTI)

    AdSCFT correspondence is a powerful tool for computing observables in strongly coupled systems with conformal symmetry by mapping them to weakly coupled dual gravitational...

  6. SLAC Snapshot | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    makes them important for both diseases trying to infect them and the drugs devised to fight them. These proteins are also exceptionally difficult to image - scientists can spend...

  7. SLAC-PUB-15178 July

    Office of Scientific and Technical Information (OSTI)

    D. Zep- penfeld, Phys. Rev. D 70, 113009 (2004) hep-ph0406323, hep-ph0407190. 7 R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. D uhrssen, JHEP 08 (2009) 009...

  8. SLAC-PUB-15193 Compact

    Office of Scientific and Technical Information (OSTI)

    10 decompression (black), and for a transverse gradient undulator without decompression (red). Another method to reduce the gain length of a large energy spread beam is by decom-...

  9. Energy efficient data centers

    SciTech Connect (OSTI)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case study findings, and participation in data center industry meetings and workshops. Industry partners enthusiastically provided valuable insight into current practice, and helped to identify areas where additional public interest research could lead to significant efficiency improvement. This helped to define and prioritize the research agenda. The interaction involved industry representatives with expertise in all aspects of data center facilities, including specialized facility infrastructure systems and computing equipment. In addition to the input obtained through industry workshops, LBNL's participation in a three-day, comprehensive design ''charrette'' hosted by the Rocky Mountain Institute (RMI) yielded a number of innovative ideas for future research.

  10. Annual Site Environmental Report, 2007(ASER)

    SciTech Connect (OSTI)

    Sabba, D

    2008-10-07

    This report provides information about environmental programs during the calendar year (CY) of 2007 at the Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2007/2008 (October 2007 through May 2008), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423 and DOE Order 450.1, 'Environmental Protection Program', SLAC effectively implemented and integrated the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2007, SLAC focused on development and implementation of SLAC management systems to ensure continual improvement. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13148. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations at SLAC. The annual management review and ranking of environmental aspects were completed this year by SLAC's EMS Steering Committee, the Environmental Safety Committee (ESC) and thirteen objectives and targets were established for 2007. For each objective and target, a work plan, or Environmental Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management. During 2007, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during 2007. SLAC replaced two process tanks at the Plating Shop which previously contained chromium solutions with non-chromium containing solutions, reducing the overall use of hazardous chemicals. In addition, 346 polychlorinated biphenyl (PCB)-contaminated capacitors were replaced with non-PCB capacitors, reducing the potential of a release of oil with PCBs during an event such as a fire or an earthquake. SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions. During 2007, SLAC obtained a new facility-wide wastewater discharge permit which replaced four separate permits that were previously issued to SLAC. In 2007, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management (RPRWM) Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. In 2007, the SLAC Environmental Restoration Program continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2007 submittals to the RWQCB were completed and submitted on time.

  11. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideum accelerates international software launch as a result of VAF award and business coaching Jim Spadaccini was first drawn to New Mexico by the beauty of Chaco Canyon. "I was...

  12. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 115

  13. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 244

  14. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 373

  15. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  16. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  17. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  18. How Particle Accelerators Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... How are particle accelerators used in medical applications? Tens of millions of patients receive accelerator-based diagnoses and therapy each year in hospitals and clinics around ...

  19. Berkeley Lab Particle Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traditional particle accelerators, like the Large Hadron Collider at CERN, which is 17 miles ... Particle Accelerators NERSC Resources Used: Edison, Hopper DOE Program ...

  20. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the ...

  1. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United ...

  2. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  3. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC...

    Office of Scientific and Technical Information (OSTI)

    Title: COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Acceleration and transport of high-energy particles and fluid ...

  4. High-Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  5. Alternative Fuels Data Center: Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on Google Bookmark Alternative Fuels Data Center: Biodiesel on Delicious Rank Alternative Fuels Data Center: Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Biodiesel on

  6. Alternative Fuels Data Center: Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Contacts to someone by E-mail Share Alternative Fuels Data Center: Contacts on Facebook Tweet about Alternative Fuels Data Center: Contacts on Twitter Bookmark Alternative Fuels Data Center: Contacts on Google Bookmark Alternative Fuels Data Center: Contacts on Delicious Rank Alternative Fuels Data Center: Contacts on Digg Find More places to share Alternative Fuels Data Center: Contacts on AddThis.com...

  7. Alternative Fuels Data Center: Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center:

  8. Alternative Fuels Data Center: Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More

  9. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  10. Alternative Fuels Data Center: Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on

  11. Alternative Fuels Data Center: Tools

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools to someone by E-mail Share Alternative Fuels Data Center: Tools on Facebook Tweet about Alternative Fuels Data Center: Tools on Twitter Bookmark Alternative Fuels Data Center: Tools on Google Bookmark Alternative Fuels Data Center: Tools on Delicious Rank Alternative Fuels Data Center: Tools on Digg Find More places to share Alternative Fuels Data Center: Tools on AddThis.com... Tools The Alternative Fuels Data Center offers a large collection of helpful tools. These calculators,

  12. Alternative Fuels Data Center: Widgets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Widgets to someone by E-mail Share Alternative Fuels Data Center: Widgets on Facebook Tweet about Alternative Fuels Data Center: Widgets on Twitter Bookmark Alternative Fuels Data Center: Widgets on Google Bookmark Alternative Fuels Data Center: Widgets on Delicious Rank Alternative Fuels Data Center: Widgets on Digg Find More places to share Alternative Fuels Data Center: Widgets on AddThis.com... Widgets

  13. Alternative Fuels Data Center: Glossary

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Glossary to someone by E-mail Share Alternative Fuels Data Center: Glossary on Facebook Tweet about Alternative Fuels Data Center: Glossary on Twitter Bookmark Alternative Fuels Data Center: Glossary on Google Bookmark Alternative Fuels Data Center: Glossary on Delicious Rank Alternative Fuels Data Center: Glossary on Digg Find More places to share Alternative Fuels Data Center: Glossary on AddThis.com...

  14. Alternative Fuels Data Center: Webmaster

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Webmaster to someone by E-mail Share Alternative Fuels Data Center: Webmaster on Facebook Tweet about Alternative Fuels Data Center: Webmaster on Twitter Bookmark Alternative Fuels Data Center: Webmaster on Google Bookmark Alternative Fuels Data Center: Webmaster on Delicious Rank Alternative Fuels Data Center: Webmaster on Digg Find More places to share Alternative Fuels Data Center: Webmaster on

  15. Alternative Fuels Data Center: Disclaimer

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Disclaimer to someone by E-mail Share Alternative Fuels Data Center: Disclaimer on Facebook Tweet about Alternative Fuels Data Center: Disclaimer on Twitter Bookmark Alternative Fuels Data Center: Disclaimer on Google Bookmark Alternative Fuels Data Center: Disclaimer on Delicious Rank Alternative Fuels Data Center: Disclaimer on Digg Find More places to share Alternative Fuels Data Center: Disclaimer on

  16. Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  17. BPA Visitor Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and is located at BPA headquarters in Portland, Oregon at 905 NE 11th Ave. (Public Transit @ the Lloyd Center MAX Station). Many of the publications available in the Visitor...

  18. WIPP Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Skeen-Whitlock Building in Carlsbad. The WIPP Experience Exhibit at 4021 National Parks Highway in Carlsbad, N.M. WIPP Information Center Address: 4021 National Parks Highway...

  19. Type A Investigation of the Electrical Arc Injury at the Stanford Linear

    Energy Savers [EERE]

    Accelerator Complex on October 11, 2004 | Department of Energy of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004 Type A Investigation of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004 November 15, 2004 On October 11, 2004, at approximately 11:15 am, a subcontractor electrician working at the Stanford Linear Accelerator Center (SLAC) received serious burn injuries requiring hospitalization due to an electrical

  20. Energy Security Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Security Center Energy Security Center Developing new ideas for reliable, secure, and sustainable carbon neutral energy solutions for the nation-the portal to LANL's diverse energy security research enterprise. Contact Leader Steven Buelow (505) 663 5629 Email Program Administrator Jutta Kayser (505) 663-5649 Email Research focus areas Materials and concepts for clean energy Science for renewable energy sources Superconducting cables Energy storage Fuel cells Mitigating impacts of global