National Library of Energy BETA

Sample records for accelerator center menlo

  1. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  2. THE LABORATORY Located in Menlo Park, California, SLAC National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE LABORATORY Located in Menlo Park, California, SLAC National Accelerator Laboratory is home to some of the world's most cutting-edge technologies, used by researchers worldwide to uncover scientifc mysteries on the smallest and the largest scales-from the workings of the atom to the mysteries of the cosmos. The result has been 50 years of discovery and innovation in both basic and applied science, with tangible benefts for our everyday lives. The following examples highlight some of the roles

  3. West Menlo Park, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Menlo Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4335499, -122.2030209 Show Map Loading map... "minzoom":false,"mappi...

  4. Fermilab | Illinois Accelerator Research Center | Illinois Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. More pictures of the finished building. The...

  5. Hayashida, Masaaki; /Tokyo U., ICRR /KIPAC, Menlo Park; Stawarz...

    Office of Scientific and Technical Information (OSTI)

    GeV Emission tfrom the Circinus Galaxy with the Fermi-Lat Hayashida, Masaaki; Tokyo U., ICRR KIPAC, Menlo Park; Stawarz, Lukasz; JAXA, Tokyo Jagiellonian U., Astron. Observ.;...

  6. 2575 Sand Hill Road * Mail Stop 103 * Menlo Park, CA 94025-7015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    575 Sand Hill Road * Mail Stop 103 * Menlo Park, CA 94025-7015 650-926-2288 * Fax 650-926-4695 SLAC is operated by Stanford University for the U.S. Department of Energy SLAC National Accelerator Laboratory LCLS Users' Newsletter, Issue 1, April 8, 2009 Dear Colleagues: We would like to present to you the first issue of the LCLS Users' Newsletter. We are pleased to report that we have recruited Henia Kamil as the LCLS User Research Administrator Manager. Please join me in welcoming Henia and feel

  7. Fermilab | Illinois Accelerator Research Center | Fermilab Core

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Core Capabilities photo Core capabilities Areas of Expertise Accelerator Science Beam dynamics and theory Design of linear and circular accelerators Simulation and Modeling Phase-space manipulation Energy Deposition Accelerator Operation Operation and commissioning of large, complex accelerator systems Accelerator Technology (design, fabrication, test) Particle sources Superconducting RF cavities and Cryomodules Conventional magnets Pulsed magnets and kickers Superconducting

  8. Fermilab | Illinois Accelerator Research Center | More Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Information General Office of Partnerships and Technology Transfer Illinois Department of Commerce and Economic Opportunity Department of Energy Advanced Superconductor Test Accelerator Accelerator Applications 4th Edition, "Accelerators and Beams, Tools of Discovery and Innovation"

  9. Fermilab | Illinois Accelerator Research Center | Accelerators and Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators and Society Physicists have been inventing new types of accelerators to propel charged particles to higher and higher energies for more than 80 years. Today, besides their role in scientific discovery, scientists estimate that more than 30,000 accelerators are at work worldwide in areas ranging from diagnosing and treating disease to powering industrial processes. The accelerators of tomorrow promise still greater opportunities. Next-generation particle beams represent cheaper,

  10. IARC - Illinois Accelerator Research Center | Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi National Accelerator Laboratory and Argonne National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology development and testing facilities. Speak with experts in the field. photo collage Accelerator technologies are vital to broad sectors of the U.S. economy, including medicine, industry, defense and security, energy and environment. With this pilot program, the DOE Office of Science National Laboratories are opening their doors to potential

  11. Illinois Accelerator Research Center Business Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plenary session Time Description Speakers 8:30-8:50 AM Current and future accelerator applications Director Nigel Lockyer, Fermilab 8:50-9:15 AM Leveraging lab-university-industry partnerships Assistant Director Andria Winters, Illinois DCEO 9:15-9:35 AM DOE Accelerator Stewardship Pilot program Stewardship Program Director Eric Colby, DOE 9:35-9:55 AM Fermilab accelerator facilities & infrastructure IARC Director Robert Kephart, Fermilab 9:55-10:15 AM Argonne accelerator facilities &

  12. Fermilab | Illinois Accelerator Research Center | Contact IARC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact IARC IARC Organizational Chart thumb IARC Director Robert Kephart Kephart@fnal.gov (630) 840-3135 As the Director of IARC my goal is to bridge the gap between breakthroughs in accelerator science and technology and solutions for society. IARC will allow our university and laboratory partners to leverage Fermilab's extensive accelerator infrastructure and expertise, resulting in new accelerator-based products and businesses in the United States. thumb IARC General Manager Charlie Cooper

  13. The Illinois Accelerator Research Center, or IARC,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will work side-by-side with industrial partners to develop breakthroughs in accelerator technology and new applications in energy and environment, medicine, industry, national...

  14. Fermilab | Illinois Accelerator Research Center | What is IARC?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What is IARC? Mission To partner with industry to exploit technology developed in the pursuit of science to create the next generation of industrial accelerators, products, and new applications. Vision To be the preeminent technology source for accelerator based products and services, serving as the seed for US industrial growth. Rendering Conceptual rendering courtesy of Ross Barney Associates and ARUP The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being

  15. IARC - Illinois Accelerator Research Center | Pilot Program ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Stewardship Test Facility Pilot Program begins at 8:30 on Tuesday April 28th in One West of Wilson Hall. One West is on the west side of the first floor of Wilson hall. ...

  16. Solar Technology Acceleration Center is Powering Up - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technology Acceleration Center is Powering Up October 21, 2009 Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in Aurora, Colo., today, to mark a milestone in "Powering Up" one of the world's largest solar test and demonstration facilities. Since announcing the initial launch of SolarTAC one year ago, the site infrastructure development has progressed to the point where members can now break ground for their planned solar technology

  17. DOE - Office of Legacy Management -- Stanford Linear Accelerator Center -

    Office of Legacy Management (LM)

    005 Stanford Linear Accelerator Center - 005 FUSRAP Considered Sites Site: Stanford Linear Accelerator Center (005) More information at www.slac.stanford.edu Designated Name: Not Designated under FUSRAP Alternate Name: SLAC Location: Palo Alto, California Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Research Site Disposition: Remediation completed by DOE Office of Environmental Management in 2014. DOE Office of Science is responsible for long-term

  18. EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 E-mail: dave.osugi@sso.science.doe.gov

  19. 2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).

  20. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  1. The Illinois Accelerator Research Center, or IARC, will

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will work side by side with industrial partners to develop breakthroughs in accelerator technology and new applications in energy and environment, medicine, industry, national...

  2. IARC - Illinois Accelerator Research Center | Pilot Program | Who Attends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Who should attend? Are you interested in developing, testing or applying accelerator technologies? Do you want to network and explore opportunities for partnerships? Do you want to benefit from the expertise and world-class equipment available at two famous national research laboratories, Argonne and Fermilab? Do you want to take behind-the-scenes tours of the world-class accelerator technology facilities that have been built at Argonne and Fermilab in recent years to collaborate with industry?

  3. Sprints Accelerate Research - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 1, 2015, News Articles Sprints Accelerate Research TimberImage(post.get_field('image')).alt In October 2014, we introduced "Sprints" to accelerate research and meet our goal of developing two battery prototypes, one for transportation and the other for the grid. Each Sprint begins with the identification of a critical scientific question for prototype development that must be answered within a few month timeframe, and the formation of the right team of scientists and engineers

  4. ODU establishes a Center for Accelerator Science | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atom-smashing experiments, as well as for materials processing, medical imaging and radiation therapies against cancer. The center will receive personnel and funding support from...

  5. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    SciTech Connect (OSTI)

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  6. Sensitivity Upgrades to the Idaho Accelerator Center Neutron Time of Flight Spectrometer

    SciTech Connect (OSTI)

    Thompson, S. J.; Kinlaw, M. T.; Harmon, J. F.; Wells, D. P.; Hunt, A. W.

    2007-10-26

    Past experiments have shown that discrimination between between fissionable and non-fissionable materials is possible using an interrogation technique that monitors for high energy prompt fission neutrons. Several recent upgrades have been made to the neutron time of flight spectrometer at the Idaho Accelerator Center with the intent of increasing neutron detection sensitivity, allowing for system use in nonproliferation and security applications.

  7. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect (OSTI)

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  8. Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities

    SciTech Connect (OSTI)

    Ganguly, Suprotim; Raje, Sanyukta; Kumar, Satish; Sartor, Dale; Greenberg, Steve

    2016-01-01

    This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – September 2015) and Phase 2 (October 2015 – September 2016).

  9. Klystron Modulator Design for the Los Alamos Neutron Science Center Accelerator

    SciTech Connect (OSTI)

    Reass, William A.; Baca, David M.; Partridge, Edward R.; Rees, Daniel E.

    2012-06-22

    This paper will describe the design of the 44 modulator systems that will be installed to upgrade the Los Alamos Neutron Science Center (LANSCE) accelerator RF system. The klystrons can operate up to 86 kV with a nominal 32 Amp beam current with a 120 Hz repetition rate and 15% duty cycle. The klystrons are a mod-anode design. The modulator is designed with analog feedback control to ensure the klystron beam current is flat-top regulated. To achieve fast switching while maintaining linear feedback control, a grid-clamp, totem-pole modulator configuration is used with an 'on' deck and an 'off' deck. The on and off deck modulators are of identical design and utilize a cascode connected planar triode, cathode driven with a high speed MOSFET. The derived feedback is connected to the planar triode grid to enable the flat-top control. Although modern design approaches suggest solid state designs may be considered, the planar triode (Eimac Y-847B) is very cost effective, is easy to integrate with the existing hardware, and provides a simplified linear feedback control mechanism. The design is very compact and fault tolerant. This paper will review the complete electrical design, operational performance, and system characterization as applied to the LANSCE installation.

  10. Brookhaven Lab Named an NVIDIA GPU Research Center: Designation recognizes research utilizing GPU-accelerated computing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Brookhaven National Laboratory has been named a 2016 GPU Research Center by NVIDIA, the world leader in visual computing.

  11. SLAC-PUB-15416 April

    Office of Scientific and Technical Information (OSTI)

    Accelerator Laboratory Stanford University Menlo Park, CA 94025, USA Frank Zimmermann CERN, Geneva, Switzerland Abstract A ring-based Higgs factory with a center-of-mass energy...

  12. Nonlinear Fields and Dynamic Aperture near Low-Order Resonances...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Center, Menlo Park, CA (US) Sponsoring Org: USDOE Office of Energy Research (ER) (US) Country of Publication: United States Language: English Subject: 43 PARTICLE...

  13. Direct Measurement of the Neutral Weak Dipole Moments of the...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Stanford Linear Accelerator Center, Menlo Park, CA (US) Sponsoring Org: USDOE Office of Energy Research (ER) (US) Country of Publication: United States Language: ...

  14. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge Tennessee

    SciTech Connect (OSTI)

    Watson, David; Jardine, Philip; Gu, Baohua; Parker, Jack; Brandt, Craig; Holladay, Susan; Wolfe, Amy; Bogle, Mary Anna; Lowe, Kenneth; Hyder, Kirk

    2006-06-01

    The Field Research Center (FRC) in Oak Ridge (Fig. 1), Tennessee supports the U.S. Department of Energy's (DOE's) Environmental Remediation Sciences Program (ERSP) goal of understanding the complex physical, chemical, and biological properties of contaminated sites for new solutions to environmental remediation and long-term stewardship. In particular, the FRC provides the opportunity for researchers to conduct studies that promote the understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of existing remediation options, and the development of improved remediation strategies. It offers a series of contaminated sites around the former S-3 Waste Disposal Ponds and uncontaminated sites in which investigators and students conduct field research or collect samples for laboratory analysis. FRC research also spurs the development of new and improved characterization and monitoring tools. Site specific knowledge gained from research conducted at the FRC also provides the DOE-Oak Ridge Office of Environmental Management (EM) the critical scientific knowledge needed to make cleanup decisions for the S-3 Ponds and other sites on the Oak Ridge Reservation (ORR).

  15. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect (OSTI)

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  16. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Laboratory, Menlo Park, California 94025 ; Zalden, Peter ; PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 ; Chen, Frank ; Department ...

  18. Illinois Accelerator Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VEHICLE TECHNOLOGIES OFFICE Idling Reduction for Emergency and Other Service Vehicles Emergency vehicles, such as police cars, ambulances, and fire trucks, along with other service vehicles such as armored cars, are often exempt from laws that limit engine idling. However, these vehicles can save fuel and reduce emissions with technologies that allow them to perform vital services without idling. Police Vehicles Police cruisers spend much of their time parked and running while offcers monitor

  19. SU-E-J-137: Image Registration Tool for Patient Setup in Korea Heavy Ion Medical Accelerator Center

    SciTech Connect (OSTI)

    Kim, M; Suh, T; Cho, W; Jung, W

    2015-06-15

    Purpose: A potential validation tool for compensating patient positioning error was developed using 2D/3D and 3D/3D image registration. Methods: For 2D/3D registration, digitally reconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR. We adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-Knife system from the anterior-posterior (AP) and right lateral (RL) views. The 3D-CT and two orthogonal images of an anthropomorphic phantom and head and neck cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT image were applied. After registration, the translation and rotation factors were calculated to position a couch to be movable in six dimensions. Results: Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23° ± 0.40° for rotations were acquired by 2D/3D registration using an anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00° ± 0.2° for rotations were acquired using CT image sets. Conclusion: We demonstrated that this validation tool could compensate for patient positioning error. In addition, this research could be the fundamental step for compensating patient positioning error at the first Korea heavy-ion medical accelerator treatment center.

  20. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    SciTech Connect (OSTI)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg from Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.

  1. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  2. LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  3. Making Galaxies: One Star at a Time (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    National Accelerator Laboratory, Menlo Park, California, presented on September 18, ... Research Org: SLAC (SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United ...

  4. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  5. Fermilab | Tevatron | Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator photo Fermilab is home to the Tevatron, once the most powerful particle accelerator in the United States and the second most powerful particle accelerator in the world. The Tevatron was the second most powerful particle accelerator in the world before it shut down on Sept. 29, 2011. It accelerated beams of protons and antiprotons to 99.999954 percent of the speed of light around a four-mile circumference. The two beams collided at the centers of two 5,000-ton detectors positioned

  6. Quality Assurance Plan for Field Activities at the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Brandt, C.C.

    2002-02-28

    The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) has established a Natural and Accelerated Bioremediation Research (NABIR) program Field Research Center (FRC) for the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. The FRC is located in Bear Creek Valley within the Y-12 Plant area of responsibility on DOE's Oak Ridge Reservation in Tennessee. The NABIR program is a long-term effort designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. The FRC provides a site for investigators in the NABIR program to conduct research and obtain samples related to in situ bioremediation. The FRC is integrated with existing and future laboratory and field research and provides a means of examining the biogeochemical processes that influence bioremediation under controlled small-scale field conditions. This Quality Assurance Plan (QAP) documents the quality assurance protocols for field and laboratory activities performed by the FRC staff. It supplements the requirements in the ORNL Nuclear Quality Assurance Program and the ESD Quality Assurance Program. The QAP addresses the requirements in Title 10 CFR, Part 830 Subpart A, ''Quality Assurance Requirements'', using a graded approach appropriate for Research and Development projects based on guidance from ''Implementation Guide for Quality Assurance Programs for Basic and Applied Research'' (DOE-ER-STD-6001-92). It also supports the NABIR FRC Management Plan (Watson and Quarles 2000a) which outlines the overall procedures, roles and responsibilities for conducting research at the FRC. The QAP summarizes the organization, work activities, and qualify assurance and quality control protocols that will be used to generate scientifically defensible data at the FRC. The QAP pertains to field measurements and sample collection conducted by the

  7. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    SciTech Connect (OSTI)

    N /A

    2000-04-18

    The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediation under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or

  8. Independent Oversight Inspection, Stanford Linear Accelerator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, and Health Programs at the Stanford Linear Accelerator Center This report provides the results of an inspection of the environment, safety, and health programs at the ...

  9. 'Erratic' Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Their work was supported by supercomputing resources at the National Energy Research Scientific Computing Center (NERSC). Traditional accelerators, like the Large Hadron Collider ...

  10. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responds to radiological incident August 27, 2012 The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The

  11. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Connect activities through the Regional Development Corporation. "This is the third round of proposals for these Venture Acceleration Fund awards, which have already...

  12. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Science with the NERSC Burst Buffer Early User Program Wahid Bhimji , ... Early User Program, focused on real science applications and workflows that can ...

  13. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  14. Accelerators, Electrodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    icon-science.jpg Accelerators, Electrodynamics National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  15. Poeh Cultural Center wins grant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poeh Cultural Center wins grant, educates public Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Poeh Cultural Center wins grant Native American Venture Acceleration Fund money helps increase education and tourism. May 2, 2016 Poeh Cultural Center and Museum received a grant through the Native American Venture Acceleration Fund in January to develop training programs for artists and to

  16. LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  17. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since 1972, providing the beam current required by all the experimental areas that support NNSA-DP and other DOE missions. The LINAC's capability to reliably deliver beam current is the key to the LANSCE's ability to do research-and thus the key to meeting NNSA and DOE mission deliverables. The LANSCE Accelerator The LANSCE

  18. ACCELERATE ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama, State of the Union, Feb. 13, 2013 The U.S. Department of Energy, Council on Competitiveness and Alliance to Save Energy have joined forces to undertake in Accelerate Energy...

  19. Acceleration switch

    DOE Patents [OSTI]

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  20. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  1. Acceleration switch

    DOE Patents [OSTI]

    Abbin, J.P. Jr.; Middleton, J.N.; Schildknecht, H.E.

    1979-08-20

    An improved acceleration switch is described which is of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  2. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Middleton, John N.; Schildknecht, Harold E.

    1981-01-01

    The disclosure relates to an improved acceleration switch, of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  3. ION ACCELERATOR

    DOE Patents [OSTI]

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  4. Independent Oversight Inspection, Stanford Linear Accelerator Center -

    Office of Environmental Management (EM)

    Energy Plant - June 2009 Independent Oversight Inspection, Pantex Plant - June 2009 June 2009 Inspection of Environment, Safety, and Health Programs at the Pantex Plant This report documents the results of an inspection of the environment, safety, and health programs at the Department of Energy's (DOE) Pantex Plant. The inspection was performed during March and April 2009 by the DOE Office of Independent Oversight's Office of Environment, Safety and Health Evaluations, which is within the

  5. Fermilab | Illinois Accelerator Research Center | Construction Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Progress 08/14/2013 photo photo 04/15/2013 photo 04/01/2013 photo 03/26/2013 photo 03/19/2013 photo 03/11/2013 photo 03/04/2013 photo 02/25/2013 photo 02/18/2013 photo 02/11/2013 photo 02/06/2013 photo 01/07/2013 photo 01/02/2013 photo 12/03/2012 photo 11/19/2012 photo 11/06/2012 photo 10/29/2012 photo 10/22/2012 photo 10/15/2012 photo 10/08/2012 photo 09/21/2012 photo 08/29/2012 photo 08/28/2012 photo 07/13/2012 photo 06/29/2012 photo

  6. Fermilab | Illinois Accelerator Research Center | Fermilab Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Through IARC access to many Fermilab facilities would be possible. These facilities are further detailed below, but include: conventional and superconducting magnet testing and assembly facilities, SRF cavity assembly, processing and test facilities, access to various particle beams, superconducting cabling manufacturing and testing, particle detector manufacturing and development and high performance computing resources. 1) Beam Test Facilities: NML Pulsed SRF Facility A RF unit test

  7. Fermilab | Illinois Accelerator Research Center | IARC Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IARC Facilities Rendering Visit the IARC Multimedia Gallery The IARC Facility Located in the heart of the industrial area of the Fermi lab campus, IARC will consist of 36, 000 square feet of heavy assembly, technical, and office space in the existing heavy industrial building plus an additional 47,000 square feet of technical, office and educational space in the State funded addition. The resulting 83,000 square foot IARC complex will provide space and infrastructure for scientists and engineers

  8. Fermilab | Illinois Accelerator Research Center | Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multimedia Gallery Pictures of the Finished OTE Building thumbnail Front view of IARC with Wilson Hall in the Background. Download: Hi-Res | Med-Res thumbnail Front view of IARC with Wilson Hall in the Background. (Pictures courtesy of Ross Barney Architects, Photographer Kate Joyce Studios). Download: Med-Res thumbnail View of east side of OTE building. (Pictures courtesy of Ross Barney Architects, Photographer Kate Joyce Studios). Download: Med-Res thumbnail Ground view of west side of OTE

  9. Fermilab | Illinois Accelerator Research Center | Funding and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition, Fermilab envisions IARC projects funded via grants from SBIRSTTR, CRADA, DARPA, DTRA, ARPA-E, Illinois DCFO, private industry, etc. Interested companies are ...

  10. CAMS Center for Accelerator Mass Spectrometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the art instrumentation, to develop and apply unique, ultra-sensitive isotope ratio measurement and ion beam analytical techniques to address a broad spectrum of scientific...

  11. IARC - Illinois Accelerator Research Center | Pilot Program ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Description Speakers 8-8:30 AM Registration, coffee, rolls, networking opportunity (Wilson Hall atrium) Plenary session (Wilson Hall, One West conference room) Time ...

  12. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Accelerator Systems MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. CONTACT Richard Sheffield (505) 667-1237 Email Revolutionizing Microstructural Physics to Empower Nuclear Energy Realizing MaRIE's full suite of capabilities requires developing and integrating a suite of

  13. Accelerator Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Events Transportation Lederman Science Center Fermilab Cultural Events Fermilab Natural Areas Barn Dances Sign up for community newsletter Resources for ... Resources for...

  14. CLSF (Center for Lignocellulose Structure and Formation) - About the Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Center EFRCs (Energy Frontier Research Centers) The Center for Lignocellulose Structure and Formation (CLSF) is one of 46 Energy Frontier Research Centers (EFRC) initially established in 2009 by the US Department of Energy to accelerate research to meet critical energy challenges of the 21st century. EFRCs integrate the expertise of multiple leading scientific investigators to enable fundamental research of a scope and complexity that would not be possible with the small group research

  15. Cascaded target normal sheath acceleration

    SciTech Connect (OSTI)

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  16. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  17. ACCELERATION INTEGRATOR

    DOE Patents [OSTI]

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  18. Accelerate Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Minnesota-Center for Sustainable Building Research * Xcel Energy Colorado-NREL 22 Project ... * NBIComEd Zero Energy Summit * Energy Trust of Oregon WebEx * NYSERDA New Construction ...

  19. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  20. Application Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest

  1. DOE - Office of Legacy Management -- Stanford Linear Accelerator...

    Office of Legacy Management (LM)

    The Stanford Linear Accelerator Center was established in 1962 as a research facility for high energy particle physics. The Environmental Management mission at this site is to ...

  2. Ground Broken for New Job-Creating Accelerator Research Facility...

    Energy Savers [EERE]

    DOE's Office of Science Director William Brinkman participated in the groundbreaking ceremony. "The Illinois Accelerator Research Center will help fuel innovation by developing ...

  3. HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fidelity simulation of a diverse range of kinetic systems. Available for thumbnail of Feynman Center (505) 665-9090 Email HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid...

  4. Accelerators and the Accelerator Community

    SciTech Connect (OSTI)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  5. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  6. VLHC accelerator physics

    SciTech Connect (OSTI)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  7. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  8. /Harvard-Smithsonian Ctr. Astrophys.; Madejski, G.; /KIPAC, Menlo...

    Office of Scientific and Technical Information (OSTI)

    Rivers, E.; Caltech; Stern, D.; Caltech, JPL; Walton, D.J.; Caltech; Zhang, W.W.; NASA, Goddard Astrophysics,ASTRO Astrophysics,ASTRO Abstract Not Provided http:...

  9. Menlo Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Power Adura Systems Amprius Calisolar Inc Cleantech Circle LLC Cnano Technology Ltd El Dorado Ventures GGV Capital HID Laboratories Inc Hara Software Inc Imara Corp formerly Lion...

  10. Inverse free-electron laser accelerator development

    SciTech Connect (OSTI)

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 {times} 10{sup 11} W) CO{sub 2} laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 {mu}sec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment.

  11. Naked singularities as particle accelerators

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.

    2010-11-15

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  12. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  13. Jefferson Lab, ODU team up for center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab, ODU team up for center Jefferson Lab, ODU team up for center Michael Schwartz Inside Business, October 6-12, 2008 It pays to have a world renowned subatomic particle accelerator in your backyard. Old Dominion University, in collaboration with the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility, better known as Jefferson Lab in Newport News, announced last week the creation of the Center for Accelerator Science, an academic entity that puts ODU in the same company

  14. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab's Accelerator Complex photo Fermilab's accelerator complex comprises seven particle accelerators and storage rings. It produces the world's most powerful, high-energy neutrino beam and provides proton beams for various experiments and R&D programs. Fermilab's accelerator complex delivers high-intensity neutrino beams and provides optimal beam for a broad range of new and existing experiments, including the Deep Underground Neutrino Experiment, Muon g-2 and Mu2e. Fermilab's

  15. New results of development on high efficiency high gradient supercondu...

    Office of Scientific and Technical Information (OSTI)

    Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) SLAC National Accelerator Lab., Menlo Park, CA (United States) Peking Univ., Beijing (China) OTIC, ...

  16. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  17. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  18. <...

  19. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24

  20. Induction linear accelerator technology for SDIO applications

    SciTech Connect (OSTI)

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser. (LEW)

  21. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  22. Building a Tabletop Accelerator

    SciTech Connect (OSTI)

    Leemans, Wim

    2015-05-06

    Berkeley Lab physicist Wim Leemans discusses his research on developing a tabletop-size particle accelerator.

  1. Accelerator on a Chip

    Broader source: Energy.gov [DOE]

    Scientists at the National Labs are attempting to build the world’s smallest particle accelerator.

  2. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  3. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  4. Future HEP Accelerators: The US Perspective

    SciTech Connect (OSTI)

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  5. About Accelerators | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Accelerators Jefferson Lab is home to two superconducting radiofrequency accelerators: the Continuous Electron Beam Accelerator Facility and the Free-Electron Laser. The CEBAF accelerator is a unique accelerator used to conduct investigations in the field of nuclear physics. It provides high-current, medium-energy electron beams concurrently to three experimental halls for the study of quarks and gluons, protons and neutrons and the nucleus of the atom. The Jefferson Lab Free-Electron

  6. Fermilab | Science | Particle Accelerators | Leading Accelerator Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leading Accelerator Technology photo From blueprint to construction, Fermilab scientists and engineers develop particle accelerators to produce beams to take particle physics to the next level, collaborating with scientists and laboratories around the world to help build these complex machines. Researchers build accelerators to be efficient and robust along every step of the particle beam's path, from the time it's born to its termination on target. The machines themselves must be efficient,

  7. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  8. Muon Collider Progress: Accelerators

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  9. The CAMS Accelerator Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the cams accelerator facility The CAMS Accelerator Facility Today CAMS's primary facility is a ~10,000 ft2 building that houses three state-of-the-art, accelerator-based technologies. Upper Left: The HVEC 10 MV Model FN Tandem Van de Graaff Accelerator and the lighter-ion AMS beamline. Upper Right: The NEC 1.0 MV Model 3SDH-1 Tandem Accelerator for BioAMS. Lower: The NEC 1.7 MV Model 5SDH-2 Tandem Accelerator for Ion Beam Analysis and neutron production. CAMS' principal research instrument is a

  10. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  11. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator R&D R&D model Figure 1: Conceptual drawing of a superconducting radio-frequency accelerator with a PBG coupler cell. The ultimate goal of this project is to ...

  12. Jefferson Lab technology, capabilities take center stage in construction of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    portion of DOE's Spallation Neutron Source accelerator | Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator Medium beta cryomodule JLab staff prepare to load the medium β cryomodule onto a flatbed semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January 27, 2003 Jefferson Lab is once again

  13. Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selection of Venture Acceleration Fund recipients March 8, 2010 LOS ALAMOS, New Mexico, March 8, 2010-Los Alamos National Laboratory (LANL) has selected Simtable and Southwest Bio Fuels as recipients of $100,000 awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund invests in creating and growing Northern New Mexico businesses that have an association with LANL technology or expertise. Venture Acceleration Fund investments help

  14. Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Jefferson Lab is recognized as a world leader in accelerator science. This expertise comes from the planning, building, maintaining and operating of the Continuous Electron Beam Accelerator Facility (CEBAF) - the lab's particle accelerator. CEBAF is based on superconducting radiofrequency (SRF) technology. It produces a stream of charged electrons that scientists use to probe the nucleus of the atom. CEBAF was the first large-scale application of SRF technology in the world,

  15. Fermilab | Science | Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Accelerators PXIE As America's particle physics laboratory, Fermilab operates and builds powerful particle accelerators for investigating the smallest things human beings have ever observed. About 2,300 physicists from all over the world come to Fermilab to conduct experiments using particle accelerators. These machines not only drive discovery, they are themselves the subjects of research and innovation. Scientists and engineers at Fermilab actively advance accelerator science and

  16. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Accelerated Aging Studies Factors such as temperature, pressure, or radiation

  17. Accelerator & Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  18. Accelerator and fusion research division. 1992 Summary of activities

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  19. Accelerator Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  20. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  1. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  2. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  3. The Fermilab Particle Astrophysics Center

    SciTech Connect (OSTI)

    Not Available

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  4. The Dielectric Wall Accelerator

    SciTech Connect (OSTI)

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  5. XRMS: X-Ray Spectroscopy of Magnetic Solids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XRMS: X-Ray Spectroscopy of Magnetic Solids October 22-23, 2011 SLAC National Accelerator Laboratory, Menlo Park, CA More information...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    States) S. M. Stoller (United States) SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) STI Submitter (STIS), Anywhere (United States) Salt Repository...

  7. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of Science Content Owner: Cathy...

  8. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    2016 STIP Working Meeting AGENDA Week View Activities (located on SLAC National Accelerator Laboratory, in Menlo Park, CA) Monday, April 11, 2016: STIP Orientation and E-Link ...

  9. Proposal to Search for Magnetically Charged Particles with Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Lab., Menlo Park, CA (United States) Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of Publication: ...

  10. A two fluid description of the Quantum Hall Soliton (Journal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of ...

  11. EA-1975: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment EA-1975: Final Environmental Assessment Linac Coherent Light Source-IL, SLAC National Accelerator Laboratory, Menlo Park, California DOE issued a ...

  12. Characterization of electronic structure of periodically strained...

    Office of Scientific and Technical Information (OSTI)

    1501 Page Mill Road, Palo Alto, California 94304, USA Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, ...

  13. Ultrafast myoglobin structural dynamics observed with an X-ray...

    Office of Scientific and Technical Information (OSTI)

    Univ. of Palermo (Italy). Dept. of Physics. Univ. of Grenoble Alpes and Institute of Structural Biology (France) SLAC National Accelerator Laboratory, Menlo Park, CA (Untied ...

  14. Microsoft Word - poa_slac_ind2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL ACCELERATOR LABORATORY * 2575 SAND HILL ROAD * MENLO PARK * CALIFORNIA * 94025 * USA SLAC is operated by Stanford University for the U.S. Department of Energy STANFORD...

  15. Linear inductive accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Gerasimov, A.I.; Pavlovskiy, A.I.

    1983-11-01

    A proposed accelerator, differing from existing ones in that it is loaded through a capacitor on a solenoid which is uniformly distributed throughout the accelerating system and connected to an independent electrical current source, is discussed. The design of the system makes it possible to improve the uniformity of the electrical field and increase the longitudinal focusing magnetic field. This is especially important for high-current accelerators.

  16. Linear induction accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Pavlovskiy, A.I.

    1984-03-01

    A linear induction accelerator of charged particles, containing inductors and an acceleration circuit, characterized by the fact that, for the purpose of increasing the power of the accelerator, each inductor is made in the form of a toroidal line with distributed parameters, from one end of which in the gap of the line a ring commutator is included, and from the other end of the ine a resistor is hooked up, is described.

  17. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 - Los Alamos National Laboratory has selected Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides investments of up to $100,000 to regional entrepreneurs, companies, investors, or strategic partners

  18. ACCELERATION RESPONSIVE SWITCH

    DOE Patents [OSTI]

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  19. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  1. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  2. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  3. From Autos to Accelerators

    Broader source: Energy.gov [DOE]

    In a town haunted by the remains of fallen automobile plants, some companies are hiring workers to put their car-manufacturing skills toward building particle accelerators.

  4. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  5. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property ...

  6. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 ... of Taos, will continue development of a solar thermal heating prototype that uses heat ...

  7. Accelerated Molecular Dynamics Methods

    Broader source: Energy.gov [DOE]

    This presentation on Accelerated Molecular Dynamics Methods was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  8. Center for Functional Nanomaterials (CFN) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Functional Nanomaterials (CFN) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES

  9. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Nanotechnologies (CINT) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  10. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  11. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanoscale Materials (CNM) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  12. High Throughput Materials Characterization John M. Gregoire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper for Establishing a User Facility for Synchrotron-based High Throughput Materials Characterization John M. Gregoire 1 , Matthew J. Kramer 2 , Apurva Mehta 3 1 Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, gregoire@caltech.edu 2 Critial Materials Institute, Ames Laboratory, Iowa State University, Ames IA, mjkramer@ameslab.gov 3 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA,

  13. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  15. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  17. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  18. Accelerators (5/5)

    SciTech Connect (OSTI)

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  19. Accelerators (4/5)

    SciTech Connect (OSTI)

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  20. Accelerators (3/5)

    SciTech Connect (OSTI)

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  1. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  2. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  3. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  4. Concentrating Photovoltaics at the Solar Technology Acceleration Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph shows concentrating photovoltaic (CPV) systems that use Fresnel lenses to concentrate sunlight onto solar cells. Researchers from the National Renewable Energy Laboratory and Japan...

  5. First Director Named for Center for Accelerator Science | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interspersed with his work in the U.S., he has also been a visiting researcher and teacher at laboratories and universities in China, Taiwan, Japan, Australia, India, Israel and ...

  6. The Illinois Accelerator Research Center, or IARC, will

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. * With a strong focus on innovation and industrialization, IARC will attract high-tech companies and train Illinois citizens to develop advanced technology with...

  7. Danforth Center Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Danforth Center Tour Danforth Center Tour As part of our Events & Topics in Bioenergy and the Environment series, we hosted a tour to the Donald Danforth Plant Science Center to...

  8. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient modeling of laser-plasma accelerators using the ponderomotive-based code INF&RNO C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators for radiation production or as drivers for future high-energy colliders. [1, 2] In a laser plasma accelerator, a short and intense laser

  9. Energy Frontier Research Centers (EFRCs) | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center About / Energy Frontier Research Centers (EFRCs) Energy Frontier Research Centers (EFRCs) On April 27, 2009, the White House announced that the U.S. Department of Energy Office of Science will invest $777 million in Energy Frontier Research Centers (EFRCs) over five years. In a major effort to accelerate the scientific breakthroughs needed to build a new 21st-century energy economy, 46 new multi-million-dollar EFRCs have been established at universities, national laboratories,

  10. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  11. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  12. CLASHING BEAM PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  13. HEAVY ION LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  14. Accelerator on a Chip

    SciTech Connect (OSTI)

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  15. Based Accelerators Gennady Shvets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finally, I will discuss a new structure-based laser-driven surface wave accelerator based on silicon carbide (SiC) that employs a polaritonic material with a negative dielectric ...

  16. ARM - External Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govExternal Data Center External Data Center Order Data Description of External Data Streams Data Viewers and Plots (selected data sets) XDC Documentation External Data Center The ...

  17. Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Energy Frontier Research Center HomeEnergy ResearchEFRCsSolid-State Lighting Science ...

  18. LANS Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund announces "Call for Ideas" August 2, 2010 LOS ALAMOS, New Mexico, August 2, 2010-Through September 1, 2010, Northern New Mexico Connect (NNM Connect) is accepting idea statements for the Los Alamos National Security, LLC Venture Acceleration Fund (VAF). VAF invests in creating and growing Northern New Mexico businesses that have an association with Los Alamos National Laboratory technology or expertise. It invests up to $100,000 in businesses that use

  19. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  20. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  1. Native American Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Native American Venture Acceleration Fund provides boost to six regional businesses February 26, 2013 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, New Mexico, Feb. 26, 2013-Six Native American businesses received grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help

  2. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  3. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regional businesses receive Native American Venture Acceleration Fund grants February 1, 2016 Investing in Northern New Mexico's economy through jobs, new revenue LOS ALAMOS, N.M., Feb. 1, 2016-Four Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients

  4. Greg Wilson to Lead National Center for Photovoltaics - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greg Stewart About Us Greg Stewart - SLAC National Accelerator Laboratory Greg Stewart is a graphic designer for SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. Most Recent Three Ways to Bust Ghostly Dark Matter March 30 NREL

    Greg Wilson to Lead National Center for Photovoltaics November 11, 2011 Photo of Dr. Gregory M. Wilson Dr. Gregory M. Wilson has been named director of the National Center for Photovoltaics at NREL. Dr. Gregory M.

  5. Guthrie County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Iowa Coon Rapids, Iowa Guthrie Center, Iowa Jamaica, Iowa Menlo, Iowa Panora, Iowa Stuart, Iowa Yale, Iowa Retrieved from "http:en.openei.orgwindex.php?titleGuthrieCounty...

  6. Bisfuel links - Research centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research centers http://bioenergy.asu.edu/" target="_blank">Center for Bioenergy and Photosynthesis

  7. Joint Center for Artificial Photosynthesis

    ScienceCinema (OSTI)

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

    2013-12-19

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  8. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  9. Center for Beam Physics: 1994--95

    SciTech Connect (OSTI)

    1995-05-01

    The Center for Beam Physics is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Lawrence Berkeley Laboratory of the University of California. At the heart of the Center`s mission is a fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Dedicated to exploring the frontiers of particle and photon beam physics, its primary mission is to promote the science and technology of the production, manipulation, storage, and control of systems of charged particles and photons. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP`s team and gives a brief review of the multifaceted activities during 1994 and 1995.

  10. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOE Patents [OSTI]

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  11. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  12. Accelerator Technology | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Accelerator Technology ATLAS at the LHC Cosmology & Astrophysics Instrumentation Precision Muon Physics Neutrino Physics Theoretical High Energy Physics Accelerator Technology Accelerator Technology To make the next generation of world-class particle accelerators - one even grander than the Large Hadron Collider in Switzerland - scientists will need to either create an extraordinarily large machine or rethink the basic principles that underpin the functioning of the accelerator.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  8. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  9. WIPP - CBFO Accelerating Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting About Regional Resource Centers Significant expansion of wind energy deployment will be required to achieve the President's goal of doubling renewable energy production in the United States by 2020. Wind energy currently provides more than 4% of the nation's electricity but has the potential to provide much more. Increasing the country's percentage from wind power will mean

  10. Fermilab | Science | Particle Accelerators | LHC and Future Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LHC, LCLS-II and future accelerators photo Fermilab is actively involved in the research and development of future particle accelerators around the world, contributing to the next generation of machines. These accelerators, each with its own specialty, would open new windows into our universe, allowing us to view it from as yet unexplored vantages. Upgrades to the Large Hadron Collider thumb Through its participation in the LHC Accelerator Research Program, called US LARP, Fermilab contributes

  11. Public to have rare opportunity to tour Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosenfest: celebrate Louis Rosen, tour LANSCE Public to have rare opportunity to tour Neutron Science Center Tour attendees can expect to see many facets of the LANSCE, including areas along the linear accelerator beam line, the control room area, and one or more experimental areas. May 10, 2011 Aerial View of Neutron Science Center Aerial View of Neutron Science Center Contact James Rickman Communications Office (505) 665-9203 Email LANL Rosenfest will celebrate life of LANSCE founder Louis

  12. DOE Provides $30 Million to Jump Start Bioenergy Research Centers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment

  13. Commissioning the GTA accelerator

    SciTech Connect (OSTI)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-09-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  14. Commissioning the GTA accelerator

    SciTech Connect (OSTI)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V. ); Connolly, R.; Weiss, R. (Gr

    1992-01-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  15. Accelerator research studies

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  16. Accelerators for Cancer Therapy

    DOE R&D Accomplishments [OSTI]

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  17. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  18. Biofuels Information Center

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase ...

  19. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Geophysical Experiences Materials Design Calendar NSEC Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission...

  20. NREL: Education Center - Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Programs NREL's Education Center in Golden, Colorado, offers a variety of program topics and experiences for students and adult groups addressing...

  1. NREL: Education Center - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Events Unless otherwise notified, events listed here will be held at the NREL Education Center, 15013 Denver West Parkway, Golden, CO. The...

  2. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  3. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First National Technology First National Technology Center Center Electronic Equipment - manufactured to withstand 8 milliseconds of voltage disruption CBEMA Curve - Chips ...

  4. Venture Acceleration Fund wins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins entrepreneurship award October 23, 2014 Fund supports economic development in Northern New Mexico LOS ALAMOS, N.M., Oct. 23, 2014-The Venture Acceleration Fund (VAF) created by Los Alamos National Security, LLC (LANS) and administered by the Regional Development Corporation received the 2014 entrepreneurship award from the International Economic Development Council (IEDC). The award was presented at IEDC's annual conference this week in Fort Worth, Texas. "Since the VAF was initiated

  5. WIPP Accelerating Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other

  6. Market Acceleration & Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration & Deployment - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  7. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 4, 2014 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, N.M., Feb. 4, 2014-Six Northern New Mexico Native American-owned and operated businesses received a total of $60,000 in grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. - 2

  8. Accelerating Scientific Workflows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with the Burst Buffer: Accelerating Scientific Workflows in Chombo-Crunch Andrey Ovsyannikov* (NERSC, LBL) with David Trebotich, Brian Van Straalen (CRD, LBL) August 22 nd , 2016 *aovsyannikov@lbl.gov Carbon sequestration Main goal is to enable accurate prediction of the fate of geologically stored CO 2 Acetate solution Pore scale 100 µm Pore scale Field scale Flow and transport typically simulated at field scale CO 2 trapping mechanisms governed by emergent processes at pore (micro) scale è

  9. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  10. SPEAR3 Accelerator Physics Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPEAR3 ACCELERATOR PHYSICS UPDATE* J. Safranek , W.J. Corbett, R. Hettel, X. Huang, Y. ... We will give an overview of recent and ongoing accelerator physics activities, including ...

  11. SSRL Accelerator Phycics Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at.gif (15297 bytes) BeamOptics.gif (29047 bytes) ICFA2000t.gif (31362 bytes) Home Page LCLS Accelerator Physics at SSRL The field tha t can be covered by the Accelerator Physics...

  12. Linear Accelerator | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator Producing brilliant x-ray beams at the APS begins with electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage...

  13. ACCELERATION INTEGRATING MEANS

    DOE Patents [OSTI]

    Wilkes, D.F.

    1961-08-29

    An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

  14. Acceleration during magnetic reconnection

    SciTech Connect (OSTI)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  15. History of Proton Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    Alvarez, L. W.

    1987-01-01

    Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

  16. DOE to Invest $250 Million in New Bioenergy Centers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    $250 Million in New Bioenergy Centers DOE to Invest $250 Million in New Bioenergy Centers August 2, 2006 - 4:48pm Addthis Basic Genomics Research on the Development of Biofuels to be Accelerated JOLIET, IL - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman announced today that DOE will spend $250 million to establish and operate two new Bioenergy Research Centers to accelerate basic research on the development of cellulosic ethanol and other biofuels. The Secretary made the

  17. Accelerator Design and Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Design and Development Accelerator Design and Development Scientists around the world rely on particle accelerators to yield insights on the structure and function of ...

  18. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  19. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    SciTech Connect (OSTI)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  20. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema (OSTI)

    None

    2011-10-06

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  1. Proceedings of a workshop on Applications of Accelerators

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B. [ed.] [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A.M.; Alonso, J.R. [eds.] [Lawrence Berkeley Lab., CA (United States)

    1994-01-31

    This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited.

  2. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  3. RSF Data Center Tour

    SciTech Connect (OSTI)

    Powers, Chuck

    2011-01-01

    The Data Center in the Research Support Facility on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) marks a significant accomplishment in its ultra-efficiency. Data centers by nature are very energy intensive. The RSF Data Center was designed to use 80% less energy than NREL's old data center, which had been in use for the last 30 years. This tour takes you through the data center highlighting its energy saving techniques.

  4. Theory Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory Center The Center for Theoretical and Computational Physics pursues a broad program of research in support of the physics being studied at Jefferson Lab and related facilities around the world. The Theory Center provides opportunities for interested scientists and students to visit the lab and work closely with theoretical and experimental colleagues.The center also advises the lab on the scientific merit of its program and its plans for future development. The center provides scientific

  5. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2015 Nearly $700,000 in new revenue generated last two years LOS ALAMOS, N.M., March 3, 2015-Six Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. "Our Native

  6. tracc-comuting-center-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Research and Analysis Computing Center

  7. Center for Inverse Design: Inverse Design Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Design Approach This page describes the inverse materials design methodology used by the Center for Inverse Design, which integrates and combines the following: (1) theory, or prediction, (2) synthesis, or realization, and (3) characterization, or validation. The result of this approach is an acceleration-by orders of magnitude-in developing new materials for solar energy technologies. The figure illustrates the research approach, outlined under the three primary steps. Flow diagram that

  8. Model-independent particle accelerator tuning

    SciTech Connect (OSTI)

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the schemes ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerators transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation Electrification Acceleration Programs The Oregon Public Utility Commission must direct electric utilities to file applications for programs to accelerate transportation electrification. Eligible programs include investments in or customer rebates for electric vehicle supply equipment (EVSE). Among other criteria, programs must stimulate innovation, competition, and customer choice in EVSE and plug-in electric vehicle charging. (Reference Senate Bill 1547

  10. Siemens Technology Accelerator | Open Energy Information

    Open Energy Info (EERE)

    Technology Accelerator Jump to: navigation, search Name: Siemens Technology Accelerator Place: Germany Sector: Services Product: General Financial & Legal Services ( Subsidiary ...

  11. SETsquared Business Acceleration | Open Energy Information

    Open Energy Info (EERE)

    SETsquared Business Acceleration Jump to: navigation, search Name: SETsquared Business Acceleration Place: United Kingdom Sector: Services Product: General Financial & Legal...

  12. Automating linear accelerator quality assurance

    SciTech Connect (OSTI)

    Eckhause, Tobias; Thorwarth, Ryan; Moran, Jean M.; Al-Hallaq, Hania; Farrey, Karl; Ritter, Timothy; DeMarco, John; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Park, SungYong; Perez, Mario; Booth, Jeremy T.

    2015-10-15

    Purpose: The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. Methods: The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. Results: For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The

  13. High-gradient compact linear accelerator

    DOE Patents [OSTI]

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  14. High-gradient compact linear accelerator

    DOE Patents [OSTI]

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  15. Naked singularities as particle accelerators. II

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    2011-03-15

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as the final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.

  16. HIGH ENERGY PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  17. Accelerating Spectrum Sharing Technologies

    SciTech Connect (OSTI)

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  18. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  19. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideum awarded Venture Acceleration Funds Motion recognition software business receives Venture Acceleration Funds LANS Venture Acceleration Fund (VAF) award enabled Ideum to develop motion recognition software for international release. April 3, 2012 Jim Spadaccini, owner of Ideum a software development company in Corrales Jim Spadaccini (R) has tapped into the Lab's economic development programs: VAF, NMSBA, Market Intelligence. Ideum, his Corrales, New Mexico based business, creates

  20. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  1. Service Center Evaluation Guide

    Office of Energy Efficiency and Renewable Energy (EERE)

    To be assured of a quality product, customers of motor repair service centers need to be knowledgeable about the service they're purchasing. This guide provides information to assist in evaluating motor repair service centers.

  2. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more ...

  3. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  4. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  5. Accelerated Aging of Roofing Surfaces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National ... H. Laboratory method mimicking natural soiling and weathering of outdoor surfaces. Ser. ...

  6. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  7. 2012 Advanced Accelerator Concepts Workshop

    SciTech Connect (OSTI)

    Downer, Michael C.

    2015-03-23

    We report on the organization and outcome of the 2012 Advanced Accelerator Concepts Workshop, held in Austin, Texas in June 2012.

  8. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator R&D Accelerator R&D Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Accelerator R&D R&D model Figure 1: Conceptual drawing of a superconducting radio-frequency accelerator with a PBG coupler cell. The ultimate goal of this project is to experimentally demonstrate the applicability of

  9. Better Buildings Energy Data Accelerator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Energy Data Accelerator *NEW PROJECT* 2014 Building Technologies Office ... 5. Successfully provide whole-building data access to 20% of included building owners ...

  10. Energy Data Accelerator Stakeholder Engagement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Data Accelerator Stakeholder Engagement 2015 Building Technologies Office Peer ... All Cities and Utilities interested in whole building data access * Key stakeholders, e.g. ...

  11. Accelerate Energy Productivity 2030 Launch

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy kicked off Accelerate Energy Productivity 2030. This initiative supports President Obama’s goal to double our energy productivity by 2030.

  12. Center for Advanced Photophysics | About The Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Victor Klimov - Center for Advanced Solar Photophysics Message from Center Director The solution to the global energy challenge requires revolutionary breakthroughs in areas such as the conversion of solar energy into electrical power or chemical fuels. The principles for capturing solar light and converting it into electrical charges have not changed for more than four decades. Previous advances in this area have mostly relied on iterative improvements in material quality and/or device

  13. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  14. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program under

  15. Green Jobs Training Center

    Broader source: Energy.gov [DOE]

    Provides an overview of the training available through the Green Jobs Training Center including certification courses and the apprenticeship program.

  16. ASU EFRC - Center researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center researchers Chad Simmons Academic Professional Gerdenis Kodis Research Assistant Professor Raimund Fromme Faculty Research Associate Yuichi Terazono Faculty Research...

  17. Data center cooling method

    DOE Patents [OSTI]

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  18. Argonne Wakefield Accelerator Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities 4 Tesla Magnet Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility In order to achieve the high accelerating gradients needed to produce the tremendous energies required by a future particle accelerator, scientists have been looking for new ideas and solutions. Wakefield acceleration offers a potentially bold new path for the construction of the next generation of particle accelerators. The Argonne Wakefield

  19. accelerators | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    accelerators A snapshot of NNSA's counterterrorism mission NNSA's mission of counterterrorism and counterproliferation is supported through innovative science and technology. Recently, Associate Administrator and Deputy Undersecretary for Counterterrorism and Counterproliferation Jay Tilden visited Oak Ridge National Laboratory (ORNL) and met with... Los Alamos plasma research shows promise for future compact accelerators The team in front of Los Alamos' Trident Laser Target Chamber. Back, from

  20. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  1. General purpose programmable accelerator board

    DOE Patents [OSTI]

    Robertson, Perry J.; Witzke, Edward L.

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  2. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  3. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  4. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, Victor W.

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  5. EXOTIC MAGNETS FOR ACCELERATORS.

    SciTech Connect (OSTI)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  6. Center for Inverse Design: Organization of the Center for Inverse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization of the Center for Inverse Design This page shows the organizational management structure of the Center for Inverse Design, an Energy Frontier Research Center. It also ...

  7. NREL: Measurement and Instrumentation Data Center (MIDC) Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these stations: NREL Restore original map zoom magnification Click station on map above or select from drop down and click go NREL Solar Radiation Research Laboratory (BMS) NREL National Wind Technology Center (M2) NREL Vehicle Testing and Integration Facility RSR Solar Technology Acceleration Center (SolarTAC) University of Oregon (SRML) SOLRMAP Southwest Solar Research Park SOLRMAP University of Arizona (OASIS) SOLRMAP La Ola Lanai (RSR) SOLRMAP Kalaeloa Oahu (RSR) SOLRMAP Tri-State Escalante

  8. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  9. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  10. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  11. Accelerated cleanup risk reduction

    SciTech Connect (OSTI)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation

  12. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  13. METHODS AND MEANS FOR OBTAINING HYDROMAGNETICALLY ACCELERATED PLASMA JET

    DOE Patents [OSTI]

    Marshall, J. Jr.

    1960-11-22

    A hydromagnetic plasma accelerator is described comprising in combination a center electrode, an outer electrode coaxial with the center electrode and defining an annular vacuum chamber therebetween, insulating closure means between the electrodes at one end, means for iniroducing an ionizable gas into the annular vacuum chamber near one end thereof, and means including a power supply for applying a voltage between the electrodes at the end having the closure means, the open ends of the electrodes being adapted for connection to a vacuumed atilization chamber.

  14. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy, National Nuclear Security Administration nnsa.energy.gov Publications 2009 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC

  15. Relativistic Guiding Center Equations

    SciTech Connect (OSTI)

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  16. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nonlinear Studies Center for Nonlinear Studies We conduct and support basic scientific research in nonlinear and complex systems phenomena and promote their use in applied research programs. Contact CNLS Office (505) 667-1444 Email Leader Robert Ecke (505) 667-6733 Email Conducting and supporting basic scientific research in nonlinear and complex systems phenomena The Center for Nonlinear Studies (CNLS) at Los Alamos chooses a small number (two to three) focus topics periodically and

  17. WIPP - Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Joint Information Center is located at 4021 National Parks Highway in Carlsbad, N.M. Joint Information Center In the unlikely event of an emergency, the WIPP Joint Information Center (JIC) serves as a central control point to coordinate multi-agency efforts to issue timely and accurate information to the public, news media and project employees. Emergency contact information: The public If the JIC is activated, members of the general public, including family members, may call (575) 234-7380

  18. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Engineering Center University of Wisconsin-Madison Experimental and Numerical Studies of the Temperature Field in Selective Laser Sintering to Improve Shrinkage and Warpage Prediction Prof. Dr.-Ing. Natalie Rudolph Polymer Engineering Center Department of Mechanical Engineering University of Wisconsin-Madison 1513 University Ave Madison, WI 53706 Advanced Qualification of Additive Manufacturing Materials Workshop, July 20-21, 2015 in Santa Fe, NM Polymer Engineering Center University of

  19. Data Center Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Energy Efficiency In 2014, data centers in the U.S. con- sumed an estimated 70 billion kWh, 1.8% of total U.S. electricity consump- tion. 1 Thus, it is no surprise that both private and public sector efforts are underway to reduce energy use in data centers. Executive Order (E.O.) 13693 "Planning for Federal Sustain- ability in the Next Decade" outlines the energy efficiency requirements and strategies for federal data centers. The Federal Energy Management Program (FEMP)

  20. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    research of national importance at research centers and through the National Biodiesel Board. For more information, see the STRDD Program website. The program is not...

  2. ARM - News Center Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CenterNews Center Archive Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes117 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 7 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 CARES 1 Data Quality Office 2 ENA 2 GOAMAZON 7 HI-SCALE 4 LASIC 3 MAGIC 15 MC3E 17 PECAN 3 SGP 8 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and

  3. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This list is frequently updated and will provide users with the latest information on Center publications. http:science.energy.govbesefrcpublications View all News Items

  4. National Security Education Center

    SciTech Connect (OSTI)

    Hurd, Alan J.

    2015-04-22

    Information about the National Security Education Center is given. Information about the Center’s history and current practices, including its facilities and its practicality are outlined.

  5. NREL: Education Center - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to reply. Your name: Your email address: Your message: Send Message Printable Version Education Center Home Hours, Directions & Contact Information Group Programs A Model of...

  6. Center of Innovation- Energy

    Broader source: Energy.gov [DOE]

    Jill Stuckey, Director, Center fof Innovation - Energy, presents on Georgia's workforce development opportunities for the Biomass/Clean Cities States Webinar.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    New propane commercial mowers are eligible for 15% of the cost of the equipment. Dedicated propane mower conversions are eligible for 750. New center articulated or oscillating ...

  8. APS Conference Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines intellectual stimulation with natural beauty. The Conference Center is within walking distance of the Argonne Guest House, a full-service, professionally-managed hotel and...

  9. Accelerating Electrolyte Discovery for Energy Storage with High Throughput

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Screening - Joint Center for Energy Storage Research December 26, 2014, Research Highlights Accelerating Electrolyte Discovery for Energy Storage with High Throughput Screening A screening scheme has been developed to down-select molecule candidates based on successive property evaluations obtained from high-throughput computations. Here we show the down-select results for ~1400 candidates for non-aqueous redox flow battery application. Scientific Achievement We have developed a strategy to

  10. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  11. FermilabAcceleratorCapabilities.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of accelerator technology for energy and the ... opportunities to a new generation of Illinois engineers ... 900 degrees C in gas pressure (Ar + O2 mix) up to 100 bar. ...

  12. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideum accelerates international software launch as a result of VAF award and business coaching Jim Spadaccini was first drawn to New Mexico by the beauty of Chaco Canyon. "I was...

  13. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Fermilab Accelerator Science and Technology Facility photo The Fermilab Accelerator Science and Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams and for accelerator research aimed at intensity frontier proton accelerators. FAST will also be unique in the United States as a particle beam research facility based on superconducting radio-frequency technology, on which nearly all proposed future accelerators in the world are

  14. Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; ACCELERATION; ACCELERATORS; ELECTRON BEAMS; ELECTRONS; METERS; ...

  15. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  16. Overview of linear induction accelerators

    SciTech Connect (OSTI)

    Briggs, R.J.

    1988-07-15

    In this paper, we survey the US induction linac technology, emphasizing electron machines. We also give a simplified description of how induction machines couple energy to the electron beam to illustrate many general issues that designers of high-brightness and high-average-power induction linacs must consider. We give an example of the application of induction accelerator technology to the relativistic klystron, a power source for high-gradient accelerators. 8 figs., 1 tab.

  17. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  18. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  19. SPEAR3 Accelerator Physics Update

    SciTech Connect (OSTI)

    Safranek, James A.; Corbett, W.Jeff; Gierman, S.; Hettel, R.O.; Huang, X.; Nosochkov, Yuri; Sebek, Jim; Terebilo, Andrei; /SLAC

    2007-11-02

    The SPEAR3 storage ring at Stanford Synchrotron Radiation Laboratory has been delivering photon beams for three years. We will give an overview of recent and ongoing accelerator physics activities, including 500 mA fills, work toward top-off injection, long-term orbit stability characterization and improvement, fast orbit feedback, new chicane optics, low alpha optics & short bunches, low emittance optics, and MATLAB software. The accelerator physics group has a strong program to characterize and improve SPEAR3 performance

  20. SLAC National Accelerator Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator...

  1. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  2. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC...

    Office of Scientific and Technical Information (OSTI)

    Title: COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Acceleration and transport of high-energy particles and fluid ...

  3. Berkeley Lab Particle Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traditional particle accelerators, like the Large Hadron Collider at CERN, which is 17 miles ... Particle Accelerators NERSC Resources Used: Edison, Hopper DOE Program ...

  4. BELLA: The Berkeley Lab Laser Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA: The Berkeley Lab Laser Accelerator Community Berkeley Global Campus Environmental ... Project Description BELLA, the Berkeley Laboratory Laser Accelerator created an ...

  5. High-Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  6. SuperB Progress Report for Accelerator

    SciTech Connect (OSTI)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national

  7. Energy efficient data centers

    SciTech Connect (OSTI)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case

  8. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  9. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 115

  10. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 244

  11. ARM - News Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes117 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 7 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 CARES 1 Data Quality Office 2 ENA 2 GOAMAZON 7 HI-SCALE 4 LASIC 3 MAGIC 15 MC3E 17 PECAN 3 SGP 8 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility

  12. Alternative Fuels Data Center: Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on Google Bookmark Alternative Fuels Data Center: Biodiesel on Delicious Rank Alternative Fuels Data Center: Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Biodiesel on

  13. Alternative Fuels Data Center: Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Contacts to someone by E-mail Share Alternative Fuels Data Center: Contacts on Facebook Tweet about Alternative Fuels Data Center: Contacts on Twitter Bookmark Alternative Fuels Data Center: Contacts on Google Bookmark Alternative Fuels Data Center: Contacts on Delicious Rank Alternative Fuels Data Center: Contacts on Digg Find More places to share Alternative Fuels Data Center: Contacts on AddThis.com...

  14. Alternative Fuels Data Center: Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center:

  15. Alternative Fuels Data Center: Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More

  16. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  17. Alternative Fuels Data Center: Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on

  18. Alternative Fuels Data Center: Tools

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools to someone by E-mail Share Alternative Fuels Data Center: Tools on Facebook Tweet about Alternative Fuels Data Center: Tools on Twitter Bookmark Alternative Fuels Data Center: Tools on Google Bookmark Alternative Fuels Data Center: Tools on Delicious Rank Alternative Fuels Data Center: Tools on Digg Find More places to share Alternative Fuels Data Center: Tools on AddThis.com... Tools The Alternative Fuels Data Center offers a large collection of helpful tools. These calculators,

  19. Alternative Fuels Data Center: Widgets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Widgets to someone by E-mail Share Alternative Fuels Data Center: Widgets on Facebook Tweet about Alternative Fuels Data Center: Widgets on Twitter Bookmark Alternative Fuels Data Center: Widgets on Google Bookmark Alternative Fuels Data Center: Widgets on Delicious Rank Alternative Fuels Data Center: Widgets on Digg Find More places to share Alternative Fuels Data Center: Widgets on AddThis.com... Widgets

  20. Alternative Fuels Data Center: Glossary

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Glossary to someone by E-mail Share Alternative Fuels Data Center: Glossary on Facebook Tweet about Alternative Fuels Data Center: Glossary on Twitter Bookmark Alternative Fuels Data Center: Glossary on Google Bookmark Alternative Fuels Data Center: Glossary on Delicious Rank Alternative Fuels Data Center: Glossary on Digg Find More places to share Alternative Fuels Data Center: Glossary on AddThis.com...

  1. Alternative Fuels Data Center: Webmaster

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Webmaster to someone by E-mail Share Alternative Fuels Data Center: Webmaster on Facebook Tweet about Alternative Fuels Data Center: Webmaster on Twitter Bookmark Alternative Fuels Data Center: Webmaster on Google Bookmark Alternative Fuels Data Center: Webmaster on Delicious Rank Alternative Fuels Data Center: Webmaster on Digg Find More places to share Alternative Fuels Data Center: Webmaster on

  2. Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  3. BPA Visitor Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and is located at BPA headquarters in Portland, Oregon at 905 NE 11th Ave. (Public Transit @ the Lloyd Center MAX Station). Many of the publications available in the Visitor...

  4. Energy Security Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Security Center Energy Security Center Developing new ideas for reliable, secure, and sustainable carbon neutral energy solutions for the nation-the portal to LANL's diverse energy security research enterprise. Contact Leader Steven Buelow (505) 663 5629 Email Program Administrator Jutta Kayser (505) 663-5649 Email Research focus areas Materials and concepts for clean energy Science for renewable energy sources Superconducting cables Energy storage Fuel cells Mitigating impacts of global

  5. Data center cooling system

    SciTech Connect (OSTI)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  6. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase deployment of biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive maps and analysis of all relevant biomass data with the purpose of growing the domestic bioenergy market for biofuels and biopower

  7. LANSCE | Lujan Center | Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Lujan Center: Science & People The Lujan Center, Science & People April 2014 In This Issue: * Olivier Gourdon: A crystallographer keen on showing off the revealing properties of neutrons *Seeking design rules for efficient lighting sources * Rate-dependent deformation mechanisms in beryllium * Improved understanding of a semiconductor used in infrared detectors * Mike Fitzsimmons elected NNSA Fellow * Pressure tuning: a new approach for making zero thermal expansion materials *

  8. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Lujan Publications: 2009 - 2012 2012 | 2011 | 2010 | 2009 Publication acknowledgement Lujan Center monitors the number of papers published as a result of the use of our facilities. The Lujan Center's sponsoring agencies requires users to publish results from their non proprietary research. Authorship of publications based on research from user facilities should reflect the normal considerations of recognizing collaborations. Proprietary users are not required to publish. Users are

  9. CNEEC - Center Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals Concept of the integrated center The overarching goal of the Center is to increase the efficiency of energy conversion by manipulating materials at the nanometer scale. We develop advanced fabrication and characterization methodologies to understand how nanostructuring can optimize light absorption through quantum and optical confinement and improve catalysis through theory-driven design. Each is manipulated to improve performance and efficiency in energy conversion and storage devices.

  10. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSEC » Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission critical research at LANL and the outside research community. Contact Director Robert Ecke (505) 667-6733 Email Deputy Director Aric Hagberg (505) 665-4958 Email Executive Administrator Elissa (Ellie) Vigil (505) 667-2818 Email Identify and study complex nonlinear phenomena using a diverse set of research approaches and methodologies, particularly those of statistical physics, nonlinear

  11. Accelerator Technology Division annual report, FY 1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  12. Ultra-high vacuum photoelectron linear accelerator

    DOE Patents [OSTI]

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  13. Symposium on accelerator mass spectrometry

    SciTech Connect (OSTI)

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  14. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  15. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  16. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    SciTech Connect (OSTI)

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.

  17. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  18. Muon Acceleration R and D

    SciTech Connect (OSTI)

    Torun, Yagmur

    2009-12-17

    An intense muon source can be built in stages to support a uniquely broad program in high energy physics. Starting with a low-energy cooled muon beam, extraordinarily precise lepton flavor violation experiments are possible. Upgrading the facility with acceleration and a muon storage ring, one can build a Neutrino Factory that would allow a neutrino mixing physics program with unprecedented precision. Adding further acceleration and a collider ring, an energy-frontier muon collider can explore electroweak symmetry breaking and open a window to new physics.

  19. OpenMP for Accelerators

    SciTech Connect (OSTI)

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  20. Home Energy Information Accelerator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Accelerator Home Energy Information Accelerator Lead Performer: U.S. Department of Energy - Washington, D.C. Funding Type: Direct Funded Program Website: http://www1.eere.energy.gov/buildings/betterbuildings/accelerators/energ... PROJECT OBJECTIVE The U.S. Department of Energy (DOE) is expanding the Better Buildings initiative to engage leaders in a set of Better Buildings Accelerators. These accelerators are designed to demonstrate specific innovative policies and approaches, which

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    SmartWay Transport Partnership The SmartWay Transport Partnership is a market-based public-private collaboration between the U.S. Environmental Protection Agency (EPA) and the domestic freight industry. This partnership is designed to reduce greenhouse gases and air pollution by accelerating the adoption of advanced technologies and operational practices which increase fuel efficiency and reduce emissions from goods movement. EPA provides partners with performance benchmarking tools, fleet

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technology Advancement Funding - South Coast The South Coast Air Quality Management District's (SCAQMD) Clean Fuels Program provides funding for research, development, demonstration, and deployment projects that are expected to help accelerate the commercialization of advanced low emission transportation technologies. Eligible projects include powertrains and energy storage or conversion devices (e.g., fuel cells and batteries), and implementation of clean fuels (e.g., natural gas, propane, and

  3. Center for Inverse Design: Partner Institutions in the Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partner Institutions in the Center for Inverse Design This page provides information about the six institutions that are partners in the Center of Inverse Design: the National ...

  4. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  5. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific ...

  6. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details ... of ab initio PDOS simulations. * Direct comparison between anharmonicity-smoothed ...

  7. Petawatt pulsed-power accelerator

    DOE Patents [OSTI]

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  8. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  9. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  10. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  11. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  12. Alternative Fuels Data Center: Biobutanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biobutanol to someone by E-mail Share Alternative Fuels Data Center: Biobutanol on Facebook Tweet about Alternative Fuels Data Center: Biobutanol on Twitter Bookmark Alternative Fuels Data Center: Biobutanol on Google Bookmark Alternative Fuels Data Center: Biobutanol on Delicious Rank Alternative Fuels Data Center: Biobutanol on Digg Find More places to share Alternative Fuels Data Center: Biobutanol on AddThis.com... More in this section... Biobutanol Dimethyl Ether Methanol Renewable

  13. Alternative Fuels Data Center: Methanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Methanol to someone by E-mail Share Alternative Fuels Data Center: Methanol on Facebook Tweet about Alternative Fuels Data Center: Methanol on Twitter Bookmark Alternative Fuels Data Center: Methanol on Google Bookmark Alternative Fuels Data Center: Methanol on Delicious Rank Alternative Fuels Data Center: Methanol on Digg Find More places to share Alternative Fuels Data Center: Methanol on AddThis.com... More in this section... Biobutanol Dimethyl Ether Methanol Renewable Hydrocarbon Biofuels

  14. Alternative Fuels Data Center: Telework

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Telework to someone by E-mail Share Alternative Fuels Data Center: Telework on Facebook Tweet about Alternative Fuels Data Center: Telework on Twitter Bookmark Alternative Fuels Data Center: Telework on Google Bookmark Alternative Fuels Data Center: Telework on Delicious Rank Alternative Fuels Data Center: Telework on Digg Find More places to share Alternative Fuels Data Center: Telework on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior

  15. Alternative Fuels Data Center: Publications

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Publications Printable Version Share this resource Send a link to Alternative Fuels Data Center: Publications to someone by E-mail Share Alternative Fuels Data Center: Publications on Facebook Tweet about Alternative Fuels Data Center: Publications on Twitter Bookmark Alternative Fuels Data Center: Publications on Google Bookmark Alternative Fuels Data Center: Publications on Delicious Rank Alternative Fuels Data Center: Publications on Digg Find More places to share Alternative Fuels Data

  16. Learning Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Learning Center The Argonne Learning Center contains four student research laboratories, three learning classrooms and a historic 1960's control room facility where...

  17. DOE New Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is Part of New Research Center to do Energy Research at LSU The Department of Energy has awarded LSU a $12.5 million grant to set up an Energy Frontier Research Center (EFRC) to find greener and better sources of energy as efficient substitutes for fossil fuel. The EFRC will be headed by Jerry Spivey, McLaurin Shivers Professor of Chemical Engineering at LSU. His team will consist of 21 researchers from across nine institutions. The multi-disciplinary research project will utilize, among other

  18. Call center construction underway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.O. Box 2078 Carlsbad, New Mexico 88221 Westinghouse News For Immediate Release Call Center Construction Underway CARLSBAD, N.M., January 28, 2000 - Morrison-Knudsen (MK) and the Westinghouse Government Services Group are making significant progress on getting the Valor Telecommunications call center ready for occupancy. After only two weeks on the job, "design and construction work is in high gear," said Charlie Moore, MK Construction Manager. The 62,000-square-foot facility at 3111

  19. WIPP Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP milestones are noted on banners at the WIPP Experience Exhibit at the Skeen-Whitlock Building in Carlsbad. The WIPP Experience Exhibit at 4021 National Parks Highway in Carlsbad, N.M. WIPP Information Center Address: 4021 National Parks Highway Carlsbad, NM 88220 Toll-free telephone number: 1-800-336-WIPP (9477) E-mail inquiries are welcomed For emergency contact information, please refer to the Joint Information Center page. Media Contacts Tim Runyon U.S. Department of Energy WIPP Recovery

  20. The story of the Tevatron accelerators: Accelerator science and technology breakthroughs, achievements and lessons

    SciTech Connect (OSTI)

    Shiltsev, V.; /Fermilab

    2012-01-01

    For almost a quarter of a century, the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program - since it began operation in December of 1985, until it was overtaken by LHC in 2011. The aim of this unique scientific instrument was to explore the elementary particle physics reactions with center of mass collision energies of up to 1.96 TeV. The initial design luminosity of the Tevatron was 10{sup 30} cm{sup -2} s{sup -1}, however as a result of two decades of upgrades, the accelerator has been able to deliver 430 times higher luminosities to each of two high luminosity experiments, CDF and D0. The Tevatron has been shut off since September 30, 2011. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for many technological breakthroughs and numerous physics discoveries. In this paper, we briefly present the history of the Tevatron, major advances in accelerator physics, technology implemented during the long quest for better and better performance, and the lessons learned from our experience.

  1. DEPARTMENT OF I Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF I Office of ENERGY Science SLAC Site Office SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS-8A Menlo Park, CA 94025 DATE: January 11, 2012 MEMORANDUM ...

  2. Low-Cost, Highly Transparent, Flexible, Low-Emission Coating Film to Enable Electrochromic Windows with Increased Energy Savings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lead Performer: ITN Energy Systems - Littleton, CO Partners: -- Electric Power Research Institute - Palo Alto, CA -- Colorado School of Mines - Golden, CO -- Stanford Linear Accelerator - Menlo Park, CA -- Lawrence Berkeley National Laboratory - Berkeley, CA

  3. Dynamic Windows

    Broader source: Energy.gov [DOE]

    Lead Performer: National Renewable Energy Laboratory - Golden, CO Partners: -- Sage Electrochromics - Faribault, MN -- e-Chromic Technologies, Inc. - Boulder, CO -- Colorado School of Mines - Golden, CO -- Stanford Linear Accelerator - Menlo Park, CA -- University of Denver - Denver, CO

  4. CX-005191: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiation Portal MonitorCX(s) Applied: B2.2Date: 01/31/2011Location(s): Menlo Park, CaliforniaOffice(s): Stanford Linear Accelerator Site Office

  5. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  6. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  7. Alternative Fuels Data Center

    SciTech Connect (OSTI)

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  8. Carolinas Energy Career Center

    SciTech Connect (OSTI)

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: • Development and Pilot of a New Advanced Welding Curriculum, • Program Enhancement of Non-Destructive Examination (NDE) Technology, • Student Support through implementation of a model targeted toward Energy and STEM Careers to support student learning, • Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: • Increased capacity to serve and train students in emerging energy industry careers; • Developed new courses and curricula to support emerging energy industry careers; • Established new training/laboratory resources; • Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.

  9. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect (OSTI)

    MELINDA KRAHENBUHL

    2010-05-28

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  10. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOE Patents [OSTI]

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  11. Ultra-accelerated natural sunlight exposure testing facilities

    DOE Patents [OSTI]

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  12. Proceedings of the 22nd Particle Accelerator Conference (PAC'07)

    SciTech Connect (OSTI)

    N /A

    2007-08-01

    The twenty-second Particle Accelerator Conference, PAC'07, took place at the Albuquerque Convention Centre in Albuquerque, the largest city in New Mexico, from Monday to Friday, 2007 June 25 to 29. It was attended by over 1350 delegates from 25 different countries (63% North America, 24% Europe, 11% Asia and 2% Other), and was held under the auspices of the two professional societies that oversee and make holding this series of conferences possible, the Division of Physics of Beams within APS, and the Nuclear and Plasma Sciences Society within IEEE. As host of the conference, Los Alamos National Laboratory (LANL) is especially thanked for their many contributions and assistance both prior to and during the conference. The Convention Center was an ideal location for information sharing and discussions between the interdisciplinary aspects of the accelerator community, as well as for related meetings and ad-hoc 'rump' sessions.

  13. Center Objective | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Center Objective Solar Fuel Our objective is to adapt the fundamental principles of natural photosynthesis to the man-made production of hydrogen or other fuels from sunlight A multidisciplinary team of the Center for Bio-Inspired Solar Fuel Production (BISfuel) researches artificial photosynthetic antennas and reaction centers that

  14. The US Muon Accelerator Program

    SciTech Connect (OSTI)

    Torun, Y.; Kirk, H.; Bross, A.; Geer, Steve; Shiltsev, Vladimir; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  15. Linear induction accelerator parameter options

    SciTech Connect (OSTI)

    Birx, D.L.; Caporaso, G.J.; Reginato, L.L.

    1986-04-21

    The principal undertaking of the Beam Research Program over the past decade has been the investigation of propagating intense self-focused beams. Recently, the major activity of the program has shifted toward the investigation of converting high quality electron beams directly to laser radiation. During the early years of the program, accelerator development was directed toward the generation of very high current (>10 kA), high energy beams (>50 MeV). In its new mission, the program has shifted the emphasis toward the production of lower current beams (>3 kA) with high brightness (>10/sup 6/ A/(rad-cm)/sup 2/) at very high average power levels. In efforts to produce these intense beams, the state of the art of linear induction accelerators (LIA) has been advanced to the point of satisfying not only the current requirements but also future national needs.

  16. Semiclassical geons at particle accelerators

    SciTech Connect (OSTI)

    Olmo, Gonzalo J.

    2014-02-01

    We point out that in certain four-dimensional extensions of general relativity constructed within the Palatini formalism stable self-gravitating objects with a discrete mass and charge spectrum may exist. The incorporation of nonlinearities in the electromagnetic field may effectively reduce their mass spectrum by many orders of magnitude. As a consequence, these objects could be within (or near) the reach of current particle accelerators. We provide an exactly solvable model to support this idea.

  17. Accelerator on a Chip: How It Works

    SciTech Connect (OSTI)

    2014-06-30

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  18. X-Windows Acceleration via NX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly...

  19. Accelerator on a Chip: How It Works

    ScienceCinema (OSTI)

    None

    2014-07-16

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  20. Symposium report on frontier applications of accelerators

    SciTech Connect (OSTI)

    Parsa, Z.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  1. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultt fr Physik and Astronomie, Theoretische Physik I, Ruhr-Universitt Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup 1}. At gradients above 1.6 keV cm{sup 1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  2. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  3. Karen Nunez, Procedures Center Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the accelerator based on their knowledge and work they do. I get the benefit of learning a bit about these different perspectives while recording the necessary...

  4. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    Electricity Infrastructure Operations Center Jump to: navigation, search Logo: Electricity Infrastructure Operations Center Name Electricity Infrastructure Operations Center...

  5. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Materials Classification & Accelerated Property Predictions using Machine Learning Citation Details In-Document Search Title: Materials Classification & ...

  6. Plasma Wakefield Acceleration: How it Works

    SciTech Connect (OSTI)

    2014-11-05

    This animation explains how electrons can be efficiently accelerated to high energy using wakes created in a plasma.

  7. Venture Acceleration Fund wins entrepreneurship award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund wins award Venture Acceleration Fund wins entrepreneurship award The Venture Acceleration Fund received the 2014 entrepreneurship award from the International Economic Development Council. October 23, 2014 Purple Adobe Lavender Farm in Abiquiu, N.M., owned by Elizabeth and Roger Inman was one of 10 Northern New Mexico businesses to receive a Venture Acceleration Fund award this summer. Purple Adobe Lavender Farm in Abiquiu, N.M., owned by Elizabeth and Roger Inman was

  8. Mechanical Design Engineering, MDE, Accelerator Operations and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOT-MDE's primary responsibilities include supporting accelerator operations, maintenance, and performance improvement projects; developing leadership roles in projects...

  9. Comments on backreaction and cosmic acceleration

    SciTech Connect (OSTI)

    Kolb, Edward W.; Matarrese, Sabinio; Riotto, Antonion; /CERN

    2005-11-01

    In this brief WEB note we comment on recent papers related to our paper ''On Acceleration Without Dark Energy''.

  10. Evaluation of Longitudinal Variabler in Relativistic Accelerators

    Energy Science and Technology Software Center (OSTI)

    1995-07-13

    ELVIRA is an encoding of an analytical formula to the calculation of longitudinal dynamics variable evolution during an accelerator ramp.

  11. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Author Paul Brophy Conference World Geothermal Energy Summit; Jakarta, Indonesia; 20120706...

  12. How Particle Accelerators Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particle Accelerators Work How Particle Accelerators Work June 18, 2014 - 4:11pm Addthis Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Infographic by Sarah Gerrity, Energy Department. Ben Dotson Ben Dotson Former Project Coordinator for Digital Reform, Office of Public Affairs What are the key facts? A particle accelerator is a machine that accelerates elementary particles, such as electrons or protons, to very high energies. Whether it's

  13. Thurston Energy Outreach Center

    SciTech Connect (OSTI)

    Pierce, P.; Young, M.

    1984-09-01

    In Olympia, the Washington Energy Extension Service program is provided by the Olympic Renewable Resources Association's Energy Outreach Center. The Center has provided Thurston County residents with consistent and reliable information on energy conservation and renewable resources since 1980. During those four years, a seasonal pattern of activities has developed which reflects strong shifts in class attendance and inquiries by EOC users over the course of the year. Classes include: design of superinsulated passive solar and earth sheltered homes; sunspace design, coldframe construction and tax credits for solar energy systems; caulking, weatherstripping, storm windows and chimney cleaning; and solar and wood hot water systems. All are scheduled according to dictates of seasonal needs and interests.

  14. Aperture center energy showcase

    SciTech Connect (OSTI)

    Torres, J. J.

    2012-03-01

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), and the partnership provides a unique opportunity to take technology research and development from demonstration to application in a sustainable community. A project under that CRADA, Aperture Center Energy Showcase, offers a means to develop exhibits and demonstrations that present feedback to community members, Sandia customers, and visitors. The technologies included in the showcase focus on renewable energy and its efficiency, and resilience. These technologies are generally scalable, and provide secure, efficient solutions to energy production, delivery, and usage. In addition to establishing an Energy Showcase, support offices and conference capabilities that facilitate research, collaboration, and demonstration were created. The Aperture Center project focuses on establishing a location that provides outreach, awareness, and demonstration of research findings, emerging technologies, and project developments to Sandia customers, visitors, and Mesa del Sol community members.

  15. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, William M.

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  16. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  17. Terahertz-driven linear electron acceleration

    SciTech Connect (OSTI)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  18. Data Centers and Servers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings Past Projects Data Centers and Servers Data Centers and Servers Photo of the Green Data Center at the Research Support Facility. Data centers are one of ...

  19. | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forms for more information. ANSER Center Travel Checklist ANSER Center Grant Acknowledgment ANSER Center Purchase Order Instructions ANSER Center Purchase Order Form Bid ...

  20. Center for Functional Nanomaterials

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Implementation Working Group A hydrogen implementation working group, consisting of federal, state, and county agency representatives and industry stakeholders, facilitates the establishment of infrastructure and policies across all state agencies with the goal of promoting the expansion of hydrogen-based energy in Hawaii. The Director of the Hawaii Center for Advanced Transportation Technologies serves as the state Hydrogen Implementation Coordinator (Coordinator). The Coordinator

  2. Extreme Environments (EFree) Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extreme Environments (EFree ) Center LLNL Co-PI: Jonathon Crowhurst [e-mail] [bio] Novel materials for energy applications Ultrafast reflectivity measurements under high pressure Transient reflectivity of BaFe2As2 at the indicated pressures in neon. In this experiment we measure pump-driven ultrafast reflectivity changes in order to infer the time scale of electron phonon coupling, and help to assess its role and importance in new superconducting systems. We believe this is the first time such

  3. National Fertilizer Development Center

    Office of Legacy Management (LM)

    h-L National Fertilizer Development Center May 15, 1980 nww Hr. William Et Mott, Director Environmental Control Technology Division Office of Environment Dcpartiaent of Energy Washington, DC 20545 Dear Mr. Mott: This is in response to your letter of May 5 requesting ccmments on a report dated Xarct; 1930 which summarizes a preliminary radiological survey of facilities used in the early 1950's for studies of recovery of uranium from leached zone ore. I have made a few suggested changes to the

  4. factsheet: National Prototype Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the World Safer This enduring national asset integrates science and technology for manufacturing success that meets our customer's special manufacturability challenges. Since its establishment in 1997, more than 5,0 0 0 i ndustr ies and government agencies have capitalized on the resources of the National Prototype Center (NPC). These customers received subject -matter expertise as well as critical manufacturing resources enabling development of i n novat ive manufacturing solutions.

  5. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Science for our Nation's Energy Future US Department of Energy Office of Science www.energyfrontier.us 43 ABOVE: CFSES addresses safe, secure and economical underground storage of CO2 by integrating multiple scientific disciplines to understand the various processes occurring from molecular to field scales. TOP: CFSES combines experimental data (top left) with state-of-the-art simulations (top right) to create tools that will help determine what will happen when CO2 is injected

  6. LANSCE | Lujan Center | Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIPPO Engineering Diffraction SMARTS Protein Crystallography PCS Neutron Imaging Capability Neutron Radiography Contacts Lujan Center Leader Aaron Couture (acting) 505.667.1730 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Charles Kelsey (acting) 505.667.8755 User Program Administration lujan-uo@lanl.gov Administrative Assistant Julie Quintana-Valdez 505.665.5390 Department of Energy, National Nuclear

  7. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA » MPA-CINT Center for Integrated Nanotechnologies Nanomaterials integration is one of many approaches we take in addressing a range of challenges, from human health to national defense. Contact Us CINT Co-Director Quanxi Jia Email Deputy Group Leader (acting) Alex Lacerda Email Group Office (505) 667-9243 First in-situ images of void collapse in explosives Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under shock

  8. Doyle Conservation Center (DCC)

    High Performance Buildings Database

    Leominster, MA Built on a 50-acre reservation in Leominster, the Doyle Conservation Center (DCC) houses core Trustees staff and serves as a central training facility that showcases the organization's conservation activities. The DCC's LEED Gold rating reflects the mission of the Trustees of Reservations, which is "To preserve, for public use and enjoyment, properties of exceptional scenic, historic, and ecological value in Massachusetts." The DCC is accessible to the public and is often rented out by various groups and organizations.

  9. Venkat Srinivasan - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venkat Srinivasan Deputy Director, Research and Development Venkat Srinivasan, JCESR Deputy Director, Research and Development, facilitates and integrates the center's many research activities across the entire program and delivers the programs' progress to the Executive Committee. Srinivasan is a Staff Scientist at Lawrence Berkeley National Laboratory. He also serves on the Leadership Council of CalCharge, a public-private partnership in California working to accelerate the development,

  10. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    SciTech Connect (OSTI)

    Gavrish, Yu. N.; Koloskov, S. A.; Smirnov, V. P.; Strokach, A. P.

    2015-12-15

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  11. Proton Acceleration: New Developments in Energy Increase, Focusing...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; ACCELERATION; ACCELERATORS; BRIGHTNESS; FOCUSING; ION BEAMS; ION SOURCES; LASERS; PLASMA; ...

  12. Accelerate Energy Productivity 2030 fact sheet | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Energy Productivity 2030 fact sheet Accelerate Energy Productivity 2030 fact sheet PDF icon Accelerate Energy Productivity 2030 Fact Sheet- Updated More Documents &...

  13. Supply Chain Management Center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Supply Chain Management Center

  14. Accelerator Technology Division annual report, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; {Phi} Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  15. Accelerated learning approaches for maintenance training

    SciTech Connect (OSTI)

    Erickson, E.J.

    1991-01-01

    As a training tool, Accelerated Learning techniques have been in use since 1956. Trainers from a variety of applications and disciplines have found success in using Accelerated Learning approaches, such as training aids, positive affirmations, memory aids, room arrangement, color patterns, and music. Some have thought that maintenance training and Accelerated Learning have nothing in common. Recent training applications by industry and education of Accelerated Learning are proving very successful by several standards. This paper cites available resource examples and challenges maintenance trainers to adopt new ideas and concepts to accelerate learning in all training setting. 7 refs.

  16. Accelerator Technology Division progress report, FY 1992

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  17. SAID Partial Wave Analyses from CNS DAC (Center for Nuclear Studies Data Analysis Center)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    George Washington University (GW) has one of the largest university-based nuclear-physics groups in the nation. Many of the current and future projects are geared to Thomas Jefferson National Accelerator Facility (JLab) at Newport News, VA. JLab is the world's premier electron accelerator for nuclear physics, and GW is one of the charter members of the governing body of JLab, the Southeastern Universities Research Association (SURA). The George Washington Data Analysis Center (DAC) was created in 1998 by an agreement among the Department of Energy, Jefferson Lab, and the GW Center for Nuclear Studies.The activities of the DAC fall into four distinct categories: 1) Performing partial-wave analyses of fundamental two- and three-body reactions; 2) Maintenance of databases associated with these reactions; 3) Development of software to disseminate DAC results (as well as the results of competing model-independent analyses and potential approaches); and 4) Phenomenological and theoretical investigations which bridge the gap between theory and experiment; in particular, the extraction of N* and D * hadronic and electromagnetic couplings. Partial Wave Analyses (and the associated databases) available at GW are: Pion-Nucleon, Kaon-Nucleon, Nucleon-Nucleon, Pion Photoproduction, Pion Electroproduction, Kaon Photoproduction, Eta Photoproduction, Eta-Prime Photoproduction, Pion-Deuteron (elastic), and Pion-Deuteron to Proton+Proton. [Taken from http://www.gwu.edu/~ndl/dac.htm">http://www.gwu.edu/~ndl/dac.htm

  18. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  19. Terahertz-driven linear electron acceleration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  20. Deuterium accelerator experiments for APT.

    SciTech Connect (OSTI)

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  1. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  2. Radiological Training for Accelerator Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to

  3. LCLS CDR Chapter 7 - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Accelerator TECHNICAL SYNOPSIS In order for the SASE FEL to operate in saturation, a high electron peak current with small transverse and longitudinal emittance is required. The LCLS nominally operates within a range of wavelengths from 15 to 1.5 Å. The most challenging parameters coincide with the 1.5-Å configuration with maximum peak current of 3.4 kA, transverse normalized slice' emittance of 1.2 µm, and top end energy of 14.35 GeV. Since the rf photocathode gun produces 1 nC in a bunch

  4. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  5. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Do alternative fuel vehicles (AFVs) improve air quality? How does the use of alternative fuels affect smog formation? You may find answers to these and other questions through the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC)-the nation's most com- prehensive repository of perfor- mance data and general informa- tion on AFVs. To date, more than 600 vehi- cles-including light-duty cars, trucks, vans, transit buses, and heavy-duty trucks-have been tested on various

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service The Texas Gas Service Conservation Program offers a rebate of up to $2,000 for the purchase of a qualified NGV or $3,000 for the conversion of a gasoline powered vehicle to operate on natural gas. The rebate is available for up to five vehicles per customer, and only centers certified by the Railroad Commission of Texas may perform conversions. A rebate of $1,000 is also available for the purchase of a natural gas

  8. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  9. Providence Newberg Medical Center

    High Performance Buildings Database

    Newberg, Oregon In 2002, Providence Health & Services began planning a new 188,000 square foot medical center in Newberg, Oregon to respond to the growing community's need for accessible health care. Since this was Providence's first new hospital in almost thirty years, its leaders decided to approach the project through innovative planning, design, and construction, including the achievement of lifecycle energy savings and a potential LEED certification. The hospital is comprised of 40 inpatient beds with views out to the surrounding rural landscape or into lushly planted internal courtyards.

  10. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect (OSTI)

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  11. Data center coolant switch

    SciTech Connect (OSTI)

    Iyengar, Madhusudan K.; Parida, Pritish R.; Schultz, Mark D.

    2015-10-06

    A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.

  12. Sustainable Biofuels Development Center

    SciTech Connect (OSTI)

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  13. A review of ion sources for medical accelerators (invited)

    SciTech Connect (OSTI)

    Muramatsu, M.; Kitagawa, A.

    2012-02-15

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 10{sup 10} pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 10{sup 8} or 10{sup 9} pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of

  14. Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    Energy Efficient Materials A DOE Energy Frontier Research Center Overview Research Events News Internships People Contact Us RSS Feed - News and Events Plastic Solar Solid State Lighting High-Efficiency Solar Cells Thermoelectrics Undergraduate Internship Program Overview The Center for Energy Efficient Materials (CEEM) is an Energy Frontier Research Center funded by the Office of Basic Energy Sciences of the US Department of Energy. The principal activity of the Center is a cross-disciplinary

  15. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center The U.S. Department of Energy's (DOE) Office of Enterprise Assessments (EA) provides expert evaluations of management performance in safety, security and other areas by seasoned experts who are independent of line management. Information related to enforcement, safety, security, emergency management and cyber performance management is made available to the public in the EA Information Center. Enforcement Info Center The Department's Enforcement Office conducts

  16. LANSCE | Lujan Center | Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Center Data Management Lujan Neutron Scattering Center Logo The Lujan Center within LANSCE utilizes a pulsed source and has a complement of 15 instruments. It maintains a data archive of approximately 4 TB that includes all neutron scattering data collected since it came on line in 1986. Data gathered at the Lujan Center are now archived using the IBM Tivoli Storage System. No Personal information shall be stored with the data other than the User's home institution and institutional

  17. Beam Matching to a Plasma Wakefield Accelerator Using a Ramped...

    Office of Scientific and Technical Information (OSTI)

    ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; ACCELERATORS; BETATRON OSCILLATIONS; FOCUSING; PLASMA; STANFORD ...

  18. Beam Matching to a Plasma Wakefield Accelerator Using a Ramped...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; ACCELERATORS; BETATRON OSCILLATIONS; FOCUSING; PLASMA; STANFORD ...

  19. The CEBAF Electron Accelerator Project (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; ACCELERATORS; COMMISSIONING; CONSTRUCTION; ELECTRON BEAMS; ELECTRONS; NUCLEAR PHYSICS; ...

  20. IDEA Clean Energy Application Center

    SciTech Connect (OSTI)

    Thornton, Robert

    2013-09-30

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  1. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect (OSTI)

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  2. Model-independent particle accelerator tuning

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less

  3. Abramovo Counterterrorism Training Center

    SciTech Connect (OSTI)

    Hayes, Christopher M; Ross, Larry; Lingenfelter, Forrest E; Sokolnikov, Pavel I; Kaldenbach, Karen Yvonne; Estigneev, Yuri; Murievav, Andrey

    2011-01-01

    The U.S. government has been assisting the Russian Federation (RF) Ministry of Defense (MOD) for many years with nuclear weapons transportation security (NWTS) through the provision of specialized guard escort railcars and cargo railcars with integrated physical security and communication systems, armored transport vehicles, and armored escort vehicles. As a natural continuation of the NWTS program, a partnership has been formed to construct a training center that will provide counterterrorism training to personnel in all branches of the RF MOD. The Abramovo Counterterrorism Training Center (ACTC) is a multinational, multiagency project with funding from Canada, RF and the U.S. Departments of Defense and Energy. ACTC will be a facility where MOD personnel can conduct basic through advanced training in various security measures to protect Category IA material against the threat of terrorist attack. The training will enhance defense-in-depth principles by integrating MOD guard force personnel into the overall physical protection systems and improving their overall response time and neutralization capabilities. The ACTC project includes infrastructure improvements, renovation of existing buildings, construction of new buildings, construction of new training facilities, and provision of training and other equipment. Classroom training will be conducted in a renovated training building. Basic and intermediate training will be conducted on three different security training areas where various obstacles and static training devices will be constructed. The central element of ACTC, where advanced training will be held, is the 'autodrome,' a 3 km road along which various terrorist events can be staged to challenge MOD personnel in realistic and dynamic nuclear weapons transportation scenarios. This paper will address the ACTC project elements and the vision for training development and integrating this training into actual nuclear weapons transportation operations.

  4. Accelerated Characterization of Polymer Properties

    SciTech Connect (OSTI)

    R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo

    2003-07-30

    This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

  5. 1997 SSRL Accelerator Physics Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Accelerator Physics Schedule Proposal Deadline Schedule Announcement Experimental Period Duration Mon, Nov 11, '96 17:00 Tue, Nov 12, '96 13:00 Tue, Nov 19, '96 15:00-Wed, Nov 20, '96 02:00 11 hrs Mon, Dec 02, '96 17:00 Tue, Dec 03, '96 13:00 Mon, Dec 09, '96 06:00-Wed, Dec 11, '96 02:00 44 hrs Mon, Jan 06, 17:00 Tue, Jan 07, 13:00 Mon, Jan 13, 18:00-Wed, Jan 15, 02:00 32 hrs Mon, Jan 20, 17:00 Tue, Jan 21, 13:00 Mon, Jan 27, 06:00-Wed, Jan 29, 02:00 44 hrs Mon, Feb 03, 17:00 Tue, Feb 04,

  6. 1998 SSRL Accelerator Physics Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 SSRL Accelerator Physics Schedule Proposal Deadline Schedule Announcement Experimental Period Duration Tue, Nov 11, 17:00 Wed, Nov 12, '97 17:00 Mon, Nov 17, '97 18:00-Wed, Nov 19, '97 02:00 32 hrs Mon, Dec 01, '97 17:00 Tue, Dec 02, '97 13:00 Mon, Dec 08, '97 06:00-Wed, Dec 10, '97 02:00 44 hrs Mon, Jan 05, 17:00 Tue, Jan 06, 13:00 Mon, Jan 12, 18:00-Wed, Jan 14, 02:00 32 hrs Fri, Jan 16, 17:00 Tue, Jan 20, 13:00 Mon, Jan 26, 06:00-Wed, Jan 28, 02:00 44 hrs Mon, Feb 02, 17:00 Tue, Feb 03,

  7. 1999 SSRL Accelerator Physics Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Accelerator Physics Schedule Proposal Deadline Schedule Announcement Experimental Period Duration Mon, Nov 30, '98 17:00 Tue, Dec 01, '98 13:00 Mon, Dec 07, '98 06:00-Wed, Dec 09, '98 02:00 44 hrs Mon, Jan 04, 17:00 Tue, Jan 05, 13:00 Mon, Jan 11, 18:00-Wed, Jan 13, 02:00 32 hrs Fri, Jan 15, 17:00 Tue, Jan 19, 13:00 Mon, Jan 25, 06:00-Wed, Jan 27, 02:00 44 hrs Mon, Feb 01, 17:00 Tue, Feb 02, 13:00 Tue, Feb 09, 18:00-Thu, Feb 11, 02:00 32 hrs Tue, Feb 16, 17:00 Wed, Feb 17, 17:00 Mon, Feb

  8. 2000 SSRL Accelerator Physics Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Accelerator Physics Schedule Proposal Deadline Schedule Announcement Experimental Period Duration Mon, Nov 08, '99 17:00 Tue, Nov 09, '99 13:00 Mon, Nov 15, '99 18:00-Wed, Nov 17, '99 02:00 32 hrs Mon, Nov 29, '99 17:00 Tue, Nov 30, '99 13:00 Mon, Dec 06, '99 06:00-Wed, Dec 08, '99 02:00 44 hrs Mon, Jan 03, 17:00 Tue, Jan 04, 13:00 Mon, Jan 10, 18:00-Wed, Jan 12, 02:00 32 hrs Fri, Jan 14, 17:00 Tue, Jan 18, 13:00 Mon, Jan 24, 06:00-Wed, Jan 26, 02:00 44 hrs Mon, Feb 14, 17:00 Tue, Feb 15,

  9. 2001 SSRL Accelerator Physics Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Accelerator Physics Schedule Proposal Deadline Schedule Announcement Experimental Period Duration Mon, Nov 06, '00 17:00 Tue, Nov 07, '00 13:00 Mon, Nov 13, '00 18:00-Wed, Nov 15, '00 02:00 32 hrs Mon, Dec 04, '00 17:00 Tue, Dec 05, '00 13:00 Mon, Dec 11, '00 06:00-Wed, Dec 13, '00 02:00 44 hrs Mon, Jan 01, 17:00 Tue, Jan 02, 13:00 Mon, Jan 08, 18:00-Wed, Jan 10, 02:00 32 hrs Fri, Jan 12, 12:00 Tue, Jan 16, 13:00 Mon, Jan 22, 06:00-Wed, Jan 24, 02:00 44 hrs Mon, Jan 29, 17:00 Tue, Jan 30,

  10. 2002 SSRL Accelerator Physics Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Accelerator Physics Schedule Proposal Deadline Schedule Announcement Experimental Period Duration Mon, Nov 05, '01 17:00 Tue, Nov 06, '01 13:00 Mon, Nov 12, '01 18:00-Wed, Nov 14, '01 02:00 32 hrs Mon, Dec 03, '01 17:00 Tue, Dec 04, '01 13:00 Mon, Dec 10, '01 06:00-Wed, Dec 12, '01 02:00 44 hrs Mon, Dec 17, '01 09:00 Tue, Dec 18, '01 13:00 Mon, Jan 07, 18:00-Wed, Jan 9, 02:00 32 hrs Mon, Jan 14, 12:00 Tue, Jan 15, 13:00 Tue, Jan 22, 06:00-Thu, Jan 24, 02:00 44 hrs Mon, Jan 28, 17:00 Tue,

  11. 2003 SSRL Accelerator Physics Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Accelerator Physics Schedule Proposal Deadline Schedule Announcement Experimental Period Duration Mon, Dec 02, '02 17:00 Tue, Dec 03, '02 13:00 Mon, Dec 09, '02 18:00-Wed, Dec 11, '02 02:00 32 hrs Tue, Jan 07, 09:00 Tue, Jan 07, 13:00 Mon, Jan 13, 18:00-Wed, Jan 15, 02:00 32 hrs Mon, Feb 03, 17:00 Tue, Feb 04, 17:00 Mon, Feb 10, 18:00-Wed, Feb 12, 02:00 32 hrs Mon, Feb 24, 17:00 Tue, Feb 25, 13:00 Mon, Mar 03, 18:00-Wed, Mar 05, 02:00 32 hrs SLAC SSRL SSRL Last Updated: 25 February 2003

  12. Accelerator and Fusion Research Division: 1984 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers.

  13. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Nitschke, J.M.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  14. Accelerating Offshore Wind Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up

  15. Accelerator Technology Division progress report, FY 1993

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-12-31

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

  16. Lab seeks venture acceleration initiative partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration initiative partners Lab seeks Venture Acceleration initiative partners The Venture Acceleration Initiative is a pilot program to strategically spin off from the Lab start-up companies with emphasis on establishing new businesses in northern New Mexico. June 9, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable

  17. 'Erratic' Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lasers Pave Way for Tabletop Accelerators 'Erratic' Lasers Pave Way for Tabletop Accelerators Simulations at NERSC help researchers simplify design of mini particle accelerators June 9, 2014 Kate Green, KGreene@lbl.gov, 510-486-4404 laserplasmaaccelerator 3D map of the longitudinal wakefield generated by the incoherent combination of 208 low-energy laser beamlets. In the region behind the driver, the wakefield is regular. Image: Carlo Benedetti, Berkeley Lab Making a tabletop particle

  18. Kwok Ko SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kwok Ko SLAC National Accelerator Laboratory Work supported by US DOE Offices of HEP, ASCR and BES under contract AC02-76SF00515. Large Scale Computing and Storage Requirements for High Energy Physics Rockville, MD, November 27-28, 2012 Present and Future Computing Requirements for Advanced Modeling for Particle Accelerator 1. Advanced Modeling for Particle Accelerators (AMPA) NERSC Repositories: m349 Principal Investigator: K. Ko Senior Investigators: SLAC - L. Ge, Z. Li, C. Ng, L. Xiao, FNAL -

  19. LANL announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL announces Venture Acceleration Fund recipients LANL announces Venture Acceleration Fund recipients Ideum and OnQueue are the latest recipients of the awards from the Los Alamos National Security, LLC Venture Acceleration Fund. September 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  20. RDC receives award for Accelerate Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RDC Receives Award for Accelerate Program Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit RDC receives award for Accelerate Program Accelerate is designed to help graduate more technical career students, place them in jobs, and better prepare them for career and educational advancement. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community

  1. Report on accelerated corrosion studies.

    SciTech Connect (OSTI)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  2. Materials considerations in accelerator targets

    SciTech Connect (OSTI)

    Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-08-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from the coextruded product was modeled from experimental and operational data. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes the manufacturing technologies evaluated and presents the model for tritium retention in aluminum clad, aluminum-lithium alloy tritium production targets.

  3. Accelerating cleanup: Paths to closure

    SciTech Connect (OSTI)

    1998-06-01

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  4. Offshore Wind Accelerator | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy....

  5. Seventhwave: Accelerate Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Performance is designed to harness the energy savings potential of the commercial building sector by scaling owner demand for energy performance at a cost comparable to ...

  6. Thomas Jefferson National Accelerator Facility Technology Marketing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Jefferson National Accelerator Facility Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Thomas...

  7. ICFA: International Committee for Future Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ICFA - International Committee for Future Accelerators Membership Secretary What, Why, Who is ICFA? ICFA Meetings Panels Recent Linear Collider Activities Statements Related...

  8. Accelerator Operations and Technology, AOT: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADE Accelerator and Operations Technology, AOT About Us AOT Home Groups High Power Electrodynamics Instrumentation, Controls Mechanical Design Engineering Operations Radio...

  9. Case Study - Minnesota Power - Accelerating Grid Modernization...

    Broader source: Energy.gov (indexed) [DOE]

    Study-Minnesota Power November 2012 1 SGIG Accelerates Grid Modernization in ... challenges involving billing and outage notification data coming in from smart meters at least ...

  10. Accelerated Technique for Carbon Mesoporous Materials - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Accelerated Technique for Carbon Mesoporous Materials Oak Ridge National Laboratory Contact ORNL About This Technology...

  11. CONVERGENCE ANALYSIS FOR ANDERSON ACCELERATION ALEX TOTH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numerical Linear Algebra with Applications, 16 (2009), pp. 197-221. 13 M. Ferris, O. Mangasarian,...

  12. Facility for Advanced Accelerator Experimental Tests (FACET)...

    Office of Science (SC) Website

    Experimental Tests (FACET) Accelerator Test Facility (ATF) Facility Ops Projects, ... link , began operation in April 2012 as a test bed for technologies that could power the ...

  13. Accelerators for Testing Radiation Tolerances of Electronics...

    Office of Science (SC) Website

    Accelerated beams test semiconductor devices for tolerances to space radiation. ... The ability to test in air makes it possible to quickly change components and to easily ...

  14. Educating and Training Accelerator Scientists and Technologists...

    Office of Scientific and Technical Information (OSTI)

    and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a...

  15. Nonthermally dominated electron acceleration during magnetic...

    Office of Scientific and Technical Information (OSTI)

    nonrelativistic proton-electron plasma with conditions similar to solar corona and flares. ... highly efficient electron acceleration in solar flares and other astrophysical systems. ...

  16. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop ...

  17. State Strategies for Accelerating Transmission Development for...

    Open Energy Info (EERE)

    Strategies for Accelerating Transmission Development for Renewable Energy Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: State Strategies for...

  18. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016...

  19. NREL: Wind Research - Market Acceleration and Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration and Deployment Three participants in the Collegiate Wind Competition work on computer components of a small wind turbine. Photo by U.S. Department of Energy ...

  20. STATUS OF THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Chen, Y; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Carroll, J; Cook, E; Falabella, S; Guethlein, G; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-04-22

    The dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL) uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system is capable of accelerating any charge to mass ratio particle. Applications of high gradient proton and electron versions of this accelerator will be discussed. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, photoconductive switches and compact proton sources.