Sample records for accelerates methane output

  1. Method and apparatus for varying accelerator beam output energy

    DOE Patents [OSTI]

    Young, Lloyd M. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  2. A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    oxidation of methane above gas hydrates at Hydrate Ridge, NEsediment from a marine gas hydrate area. Environ. Microbiol.

  3. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems

    SciTech Connect (OSTI)

    Kessler, D.A.; Gamezo, V.N.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC (United States)

    2010-11-15T23:59:59.000Z

    Flame acceleration and deflagration-to-detonation transitions (DDT) in large obstructed channels filled with a stoichiometric methane-air mixture are simulated using a single-step reaction mechanism. The reaction parameters are calibrated using known velocities and length scales of laminar flames and detonations. Calculations of the flame dynamics and DDT in channels with obstacles are compared to previously reported experimental data. The results obtained using the simple reaction model qualitatively, and in many cases, quantitatively match the experiments and are found to be largely insensitive to small variations in model parameters. (author)

  4. Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space

    DOE Patents [OSTI]

    Schach Von Wittenau, Alexis E. (Livermore, CA)

    2003-01-01T23:59:59.000Z

    A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.

  5. Enhanced Renewable Methane Production System | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

  6. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24T23:59:59.000Z

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  7. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  8. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25T23:59:59.000Z

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  9. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui (Los Alamos, NM); Barnes, Cris W. (Santa Fe, NM)

    2002-01-01T23:59:59.000Z

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  10. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    1999-01-11T23:59:59.000Z

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  11. Methane Hydrate Program

    Office of Environmental Management (EM)

    Biofilms in Fracture-Dominated Sediment that Anaerobically Oxidize Methane. Applied and Environmental Microbiology, 77, 7 pp. Brunner, C., Ingram, W., Meyers, S.,...

  12. Methane Digester Loan Program

    Broader source: Energy.gov [DOE]

    Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by...

  13. RMOTC - News - Methane Test 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy (DOE), Los Alamos National Laboratory (LANL) and Chevron Corporation. The test was a methane controlled-release experiment and was designed to measure methane...

  14. Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    a relatively small transition metal- based active site28,29 to achieve a difficult chemical transformationMechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase Mu-Hyun Baik, Martin 2393 3.1. KIE in Methane Oxidations 2394 3.2. Primary and Secondary KIEs 2396 3.3. Other KIEs 2396 3

  15. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    Biofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, Thomas K; and Ferry, James G (March 2013) Biofuels: Microbially Generated Methane and Hydrogen. In: e

  16. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23T23:59:59.000Z

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  17. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01T23:59:59.000Z

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  18. Coal Bed Methane Protection Act (Montana)

    Broader source: Energy.gov [DOE]

    The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

  19. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26T23:59:59.000Z

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  20. IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    it to a gas hydrate formation. In fact, the gas hydrate formation in the remaining free porosity after manuscript, published in "Fifth International Conference on Gas Hydrates (ICGH 5),, Tromdheim : Norway (2005IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE M.L. Zanota(1) , L. Perier

  1. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARMMeasurementsMethane Gas Outreach Home Room

  2. Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production 

    E-Print Network [OSTI]

    Zulkarnain, Ismail

    2006-04-12T23:59:59.000Z

    Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas rate peaks. It is inherent that permeability ...

  3. Accelerators and the Accelerator Community

    E-Print Network [OSTI]

    Malamud, Ernest

    2009-01-01T23:59:59.000Z

    for a PhD in accelerator physics was by E.O. Lawrence.of Beams) organizes accelerator physics sessions at APSstudents specializing in accelerator physics are not being “

  4. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15T23:59:59.000Z

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  5. Serial Input Output

    SciTech Connect (OSTI)

    Waite, Anthony; /SLAC

    2011-09-07T23:59:59.000Z

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each stream, record or block name must be unique in its category (i.e. all streams must have different names, but a stream can have the same name as a record). Each category is an arbitrary length list which is handled by a 'manager' and there is one manager for each category.

  6. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31T23:59:59.000Z

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

  7. Nonequilibrium clumped isotope signals in microbial methane

    E-Print Network [OSTI]

    Wang, David T.

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

  8. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24T23:59:59.000Z

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  9. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D'Este, Joseph R. (Pittsburgh, PA)

    1998-01-01T23:59:59.000Z

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  10. Methane Activation Structural and Mechanistic Requirements for

    E-Print Network [OSTI]

    Iglesia, Enrique

    Methane Activation Structural and Mechanistic Requirements for Methane Activation and Chemical and petrochemical processes and in fuel cells. The strong bonds in CH4 (439 kJmolÀ1 [1] ) and the endothermic nature by BP as part of the Methane Conversion Cooperative Research Program at the University of California

  11. Predicting Methane Production in Dairy Mohammad Ramin

    E-Print Network [OSTI]

    Predicting Methane Production in Dairy Cows Mohammad Ramin Faculty of Natural Resources and Agricultural Sciences Department of Agricultural Research for Northern Sweden Umeå Doctoral Thesis Swedish (Karoline) #12;Predicting Methane Production in Dairy cows Abstract Methane is a potent greenhouse gas

  12. Coalbed methane production case histories

    SciTech Connect (OSTI)

    Not Available

    1981-02-01T23:59:59.000Z

    The production of methane gas from coal and coal-bearing rocks is one of the prime objectives of the Department of Energy's Methane Recovery from Coalbeds Project. This report contains brief description of wells that are presently producing gas from coal or coal-bearing rocks. Data from three gob gas production areas in Illinois, an in-mine horizontal borehole degasification, and eleven vertical boreholes are presented. Production charts and electric logs of the producing zones are included for some of the wells. Additional information on dry gas production from the San Juan Basin, Colorado/New Mexico and the Greater Green River Coal Region, Colorado/Wyoming is also included.

  13. Methane adsorption on Devonian shales 

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01T23:59:59.000Z

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  14. Methane adsorption on Devonian shales

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01T23:59:59.000Z

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  15. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect (OSTI)

    Valentine, David

    2012-09-30T23:59:59.000Z

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date, with five more circulating in draft form, and several others planned.

  16. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

  17. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

    1981-01-01T23:59:59.000Z

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  18. 6, 68416852, 2006 Methane emission

    E-Print Network [OSTI]

    Boyer, Edmond

    is an important greenhouse gas, whose radiative forcing (1750­1998) has been estimated to be 0.48 Wm -2 , 20). The methane bud-15 get (sources and sinks) was believed to be relatively well known, however, recently confusing results were obtained in studies of CH4 soil fluxes in the Venezuelan savanna region (Hao et al

  19. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23T23:59:59.000Z

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  20. Methane conversion for application in fuel cells

    SciTech Connect (OSTI)

    Mulder, A. [Gastec N.V., Apeldoorn (Netherlands); Looy, F. van [Utrecht Univ. (Netherlands). Dept. of Inorganic Chemistry; Waveren, A. van; Wingerden, A.J.M. van

    1996-12-31T23:59:59.000Z

    Conventional steam reformers are large and expensive for small scale fuel cell installations. But also the high endothermicity of the reforming reaction for the production of synthesis gas is a drawback. An alternative to conventional steam reforming is the partial oxidation of methane to synthesis gas. This process is slightly exothermic. The flexibility of the process makes small scale application possible. However, the partial oxidation process seems especially attractive for application within a high temperature fuel cell, because of relatively high CO/H{sub 2}-ratio for the output gases. In this paper the results of the study on the mechanism of the partial oxidation to synthesis gas on silica-supported nickel catalysts are discussed. Moreover, a process for the partial oxidation is proposed in which air instead of oxygen can be used. Based on the results of the mechanistic study two processes for the catalytic partial oxidation are proposed and simulated using the Aspen Plus flowsheeting program with which the mass and heat balances were optimized.

  1. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  2. Variable energy constant current accelerator structure

    DOE Patents [OSTI]

    Anderson, O.A.

    1988-07-13T23:59:59.000Z

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90/degree/ intervals with opposing electrodes maintained at the same potential. 12 figs., 3 tabs.

  3. Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions

    E-Print Network [OSTI]

    Zhang, Youxue

    Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions are suitable for gas hydrate stability [Lunine and Stevenson, 1985]. Enor- mous amounts of methane are stored as gas hydrate and free gas in the pore space of marine sediment [Kvenvolden, 1988; Buffet, 2000

  4. Anaerobic Methane Oxidation in a Landfill-Leachate Plume

    E-Print Network [OSTI]

    Grossman, E. L.; Cifuentes, L. A.; Cozzarelli, I. M.

    2002-01-01T23:59:59.000Z

    , and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (?13C) values suggest anaerobic methane oxidation was occurring within the plume and at its margins. Methane ?13C values increased from about...

  5. Methane productivity and nutrient recovery from manure Henrik B. Mller

    E-Print Network [OSTI]

    Methane productivity and nutrient recovery from manure Henrik B. Møller Danish Institute This thesis, entitled "Methane productivity and nutrient recovery from manure" is presented in partial of digested and separated products.................... 13 3. Methane productivity and greenhouse gas emissions

  6. Scientists detect methane levels three times larger than expected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

  7. Direct Observation of the Active Center for Methane Dehydroaromatizati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Dehydroaromatization Using an Ultrahigh Field 95Mo NMR Spectroscopy. Abstract: Direct conversion of methane to value-added chemicals remains a challenge from both...

  8. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  9. Accelerate Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Energy Productivity 2030 Over the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake...

  10. Coalbed Methane | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents CleanSeattle,Coalbed Methane Coalbed

  11. Methane Hydrate | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your Next Road TripMentor-ProtegeEnergy »Methane

  12. Methane Credit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II JumpMepsolarMesilla,Methane Credit Jump

  13. Overload protection circuit for output driver

    DOE Patents [OSTI]

    Stewart, Roger G. (Neshanic Station, NJ)

    1982-05-11T23:59:59.000Z

    A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

  14. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACME - AcceleratedAccelerating

  15. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    University, School of Engineering, Ocean .. Engineel'ing-and nutrition, ocean engineering and methane generation. In

  16. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  17. DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2003-04-01T23:59:59.000Z

    During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

  18. DUAL-OUTPUT HOLA FIRMWARE AND TESTS

    E-Print Network [OSTI]

    another channel (thus, "dual-output" HOLA) · Another LDC+ROMB block was added to receive data from side S32PCI64 "SOLAR" mezzanine card: Provides access to S-LINK via PCI bus The first prototype of dual-outputDUAL-OUTPUT HOLA FIRMWARE AND TESTS Anton Kapliy Mel Shochet Fukun Tang Daping Weng #12;Summary

  19. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    E-Print Network [OSTI]

    Green, Michael A.

    2005-01-01T23:59:59.000Z

    Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

  20. MethaneHydrateRD_FC.indd

    Office of Environmental Management (EM)

    source of natural gas in 1983. The Methane Hydrate Research and Development Act of 2000 established DOE as the lead U.S. agency for R&D in this fi eld. Early phases of...

  1. High Temperature Solar Splitting of Methane

    E-Print Network [OSTI]

    of Methane to Hydrogen and Carbon Allan Lewandowski (NREL) Alan Weimer (University of Colorado, Boulder) Team Members: CU: Jaimee Dahl, Karen Buechler, Chris Perkins NREL: Carl Bingham, Judy Netter Allan Lewandowski

  2. The role of methane in tropospheric chemistry

    E-Print Network [OSTI]

    Golomb, D.

    1989-01-01T23:59:59.000Z

    While methane is chemically quite inert to reactions with atmospheric molecular species, it does react with atomic species and molecular radicals. Because of its relatively large abundance in the global troposphere and ...

  3. Transient Supersonic Methane-Air Flames

    E-Print Network [OSTI]

    Richards, John L.

    2012-07-16T23:59:59.000Z

    The purpose of this study was to investigate the thermochemical properties of a transient supersonic flame. Creation of the transient flame was controlled by pulsing air in 200 millisecond intervals into a combustor filled with flowing methane...

  4. A Novel Approach to Non linear Shock Acceleration

    E-Print Network [OSTI]

    Pasquale Blasi

    2001-11-28T23:59:59.000Z

    First order Fermi acceleration at astrophysical shocks is often invoked as a mechanism for the generation of non-thermal particles. This mechanism is especially simple in the approximation that the accelerated particles behave like test particles, not affecting the shocked fluid. Many complications enter the calculations when the accelerated particles have a backreaction on the fluid, in which case we may enter the non linear regime of shock acceleration. In this paper we summarize the main features of a semi-analytical approach to the study of the non linearity in shock acceleration, and compare some of the results with previous attempts and with the output of numerical simulations.

  5. MUON ACCELERATION

    SciTech Connect (OSTI)

    BERG,S.J.

    2003-11-18T23:59:59.000Z

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  6. Accelerators and the Accelerator Community

    SciTech Connect (OSTI)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01T23:59:59.000Z

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  7. Peculiar acceleration

    E-Print Network [OSTI]

    Luca Amendola; Claudia Quercellini; Amedeo Balbi

    2007-08-08T23:59:59.000Z

    It has been proposed recently to observe the change in cosmological redshift of distant galaxies or quasars with the next generation of large telescope and ultra-stable spectrographs (the so-called Sandage-Loeb test). Here we investigate the possibility of observing the change in peculiar velocity in nearby clusters and galaxies. This ``peculiar acceleration'' could help reconstructing the gravitational potential without assuming virialization. We show that the expected effect is of the same order of magnitude of the cosmological velocity shift. Finally, we discuss how to convert the theoretical predictions into quantities directly related to observations.

  8. ACCELERATE ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy ThisThistheSummaryACCELERATE ENERGY

  9. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) -Choices toLeeLinear Accelerator

  10. Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product

    SciTech Connect (OSTI)

    Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

    2000-07-01T23:59:59.000Z

    For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

  11. Variable energy constant current accelerator structure

    DOE Patents [OSTI]

    Anderson, Oscar A. (Berkeley, CA)

    1990-01-01T23:59:59.000Z

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  12. OUTPUT REGULATION OF NONLINEAR NEUTRAL SYSTEMS

    E-Print Network [OSTI]

    Fridman, Emilia

    OUTPUT REGULATION OF NONLINEAR NEUTRAL SYSTEMS Emilia Fridman1 Department of Electrical Engineering, Tel-Aviv University Ramat-Aviv, Tel-Aviv 69978, Israel emilia@eng.tau.ac.il Summary. Output regulation regulation, regulator equations, center manifold 1 Introduction One of the most important problems in control

  13. ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

  14. Methane Adsorption and Dissociation and Oxygen Adsorption and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Adsorption and Dissociation and Oxygen Adsorption and Reaction with CO on Pd Nanoparticles on MgO(100) and on Pd(111). Methane Adsorption and Dissociation and Oxygen...

  15. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Broader source: Energy.gov (indexed) [DOE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

  16. Reply to Saba and Orzechowski and Schon: Methane contamination of

    E-Print Network [OSTI]

    Jackson, Robert B.

    , and that the ratios of methane to ethane and propane were different [figure 4b (3)]. Furthermore, the methane present underground gas storage, leading to documented leaks into well water (5). The DEP correspondence they cite

  17. Numerical modeling of methane venting from lake sediments

    E-Print Network [OSTI]

    Scandella, Benjamin P. (Benjamin Paul)

    2010-01-01T23:59:59.000Z

    The dynamics of methane transport in lake sediments control the release of methane into the water column above, and the portion that reaches the atmosphere may contribute significantly to the greenhouse effect. The observed ...

  18. Diurnal variations in methane emission from rice plants

    E-Print Network [OSTI]

    Laskowski, Nicholas Aaron

    2004-11-15T23:59:59.000Z

    A greenhouse study was conducted to investigate the mechanisms causing diurnal variations in methane emission from rice plants (Oryza sativa L.). Methane emission was measured using a closed chamber system on individual rice plants at five stages...

  19. CFD Modeling of Methane Production from Hydrate-Bearing Reservoir

    SciTech Connect (OSTI)

    Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

    2007-04-01T23:59:59.000Z

    Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

  20. SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS

    SciTech Connect (OSTI)

    Klein, J; Jeffrey Holder, J

    2007-07-16T23:59:59.000Z

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

  1. Screening tests for improved methane cracking materials

    SciTech Connect (OSTI)

    Klein, J. E.; Hoelder, J. S. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15T23:59:59.000Z

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{sup R} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 deg.C, 101.3 kPa (760 torr) with a 10 seem feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAESr getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas. (authors)

  2. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, M.S.; Steinberg, M.

    1985-06-19T23:59:59.000Z

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  3. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01T23:59:59.000Z

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  4. Accelerating DSMC data extraction.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01T23:59:59.000Z

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  5. The Production of Non-Methane Hydrocarbons by Marine Plankton

    E-Print Network [OSTI]

    The Production of Non-Methane Hydrocarbons by Marine Plankton Stephanie Lyn Shaw Center for Global://web.mit.edu/cgcs/ Printed on recycled paper #12;1 The Production of Non-Methane Hydrocarbons by Marine Plankton by Stephanie of Non-Methane Hydrocarbons by Marine Plankton by Stephanie Lyn Shaw Submitted to the Department of Earth

  6. Introduction In the past two centuries, atmospheric methane

    E-Print Network [OSTI]

    Haak, Hein

    of methane in the atmosphere is controlled by oxidation, mainly in chemical reaction with the hydroxyl by the combination of pre-industrial methane concentration levels from ice cores and bottom-up estimates based important terms in the global methane budget. Anthropogenic source estimates are mainly based on socio

  7. Measurements of Methane Emissions at Natural Gas Production Sites

    E-Print Network [OSTI]

    Lightsey, Glenn

    Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

  8. Bayesian Learning of unobservable output 1 Bayesian Learning of unobservable output

    E-Print Network [OSTI]

    Provence Aix-Marseille I, Université de

    Bayesian Learning of unobservable output 1 Bayesian Learning of unobservable output aggregating the consistency of our method and illustrate its efficiency using simulations. Although up to our knowledge there are no similar algorithms for unobservable output, we compared in our simulations to supervised approaches

  9. for sequence accelerators

    E-Print Network [OSTI]

    Zakharov, Vladimir

    Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona April 17, 2012 #12;Wynn's -algorithm for sequence accelerators using high

  10. Factors influencing methane distribution in Texas ground water

    SciTech Connect (OSTI)

    Zhang, C.; Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States)

    1998-01-01T23:59:59.000Z

    To determine the factors that influence the distribution of methane in Texas ground water, water samples were collected from 40 wells in east-central and central Texas aquifers. Among the chemical parameters examined, sulfate is most important in controlling methane distribution. Methane occurs in high concentration in east-central Texas only where sulfate concentration is low, supporting the hypothesis that abundant microbial methane production does not begin until sulfate is depleted. Because water samples from central Texas are high in either oxygen or sulfate, methane concentrations are low in these waters. A positive correlation between methane and sulfate in these waters indicates a different, perhaps thermogenic, origin for the trace methane. The {sup 13}C/{sup 12}C ratios of dissolved methane ranged from {minus}80{per_thousand} to {minus}21{per_thousand} in east-central Texas and {minus}41.2{per_thousand} to {minus}8.5{per_thousand} in central Texas. Low values of < {minus}50{per_thousand} in the east-central Texas ground water indicate a microbial origin for methane and are consistent with the observed sulfate-methane relationship; high {sup 13}C/{sup 12}C ratios of > {minus}31{per_thousand} likely result from bacterial methane oxidation. Similarly, methane with high {sup 13}C/{sup 12}C ratios in central Texas may reflect partial oxidation of the methane pool. Overall, water samples from both regions show a positive correlation between sulfate concentration and the {sup 13}C/{sup 12}C ratio of methane, suggesting that methane oxidation may be associated with sulfate reduction in Texas ground water.

  11. Accelerating deactivation

    SciTech Connect (OSTI)

    FISHBACK, K.M.

    1999-02-01T23:59:59.000Z

    In recent years, the focus of the U.S. Department of Energy (DOE) complex has shifted from defense production to facility stabilization, decommissioning, and environmental restoration. This shift from production to cleanup requires a parallel shift from operations-focused management to project-focused management for an efficient facility deactivation. In the operation-focused management organization, activities are planned and executed based on production goals and are typically repetitive and cyclic. In the project-focused management environment, activities are based on a defined scope/end objective, start date, and completion date. Since the workforce used to perform production operations is also usually relied onto perform facility deactivation, it is important to shift from an operations management approach to a project management approach. It is best if the transition is accomplished quickly so the project can move forward and workers don't spend a lot of energy anticipating change. Therefore, it is essential that managers, planners, and other workers understand the key elements associated with planning a deactivation project. This paper describes a planning approach that has been used successfully to plan deactivation projects consistent with the requirements provided in DOE Order 430.1A Life Cycle Asset Management and the companion Deactivation Implementation Guide, G430. 1A-3, while exceeding schedule expectations and reducing costs. Although the planning of a deactivation project closely mirrors the classic project planning for construction projects, there are unique variations associated with facility deactivation. The key elements of planning a deactivation project are discussed relative to scope, schedule, and cost. Management tools such as project metrics and histograms are discussed as desired outputs from the planning process. In addition, lessons learned from planning deactivation projects across the DOE complex are discussed relative to making the transition from operations management to project management and the implications for deactivation project planning.

  12. Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems

    SciTech Connect (OSTI)

    Komar, C.A. (ed.)

    1980-01-01T23:59:59.000Z

    This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

  13. Multiorbit induction accelerators

    SciTech Connect (OSTI)

    Zvontsov, A.A.; Kas'yanov, V.A.; Chakhlov, V.L.

    1985-09-01T23:59:59.000Z

    Large numbers of particles accelerated per cycle are made possible by accelerating simultaneously in several equilibrium orbits in a single betatron structure. (AIP)

  14. ACCELERATOR TEST FACILITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY PHYSICS DEPARTMENT Effective: 04012004 Page 1 of 2 Subject: Accelerator Test Facility - Linear Accelerator General Systems Guide Prepared by: Michael Zarcone...

  15. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  16. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, V.W.

    1990-07-03T23:59:59.000Z

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  17. Technical Note Methane gas migration through geomembranes

    E-Print Network [OSTI]

    coefficient of PVC, LLDPE, and HDPE geomembranes by performing the standard gas transport test (ASTM D1434). The measured methane gas permeability coefficient through a PVC geomembrane is 7.55 3 104 ml(STP).mil/m2.day thicknesses is proposed using the measured permeability coefficients for PVC, LLDPE, and HDPE geomembranes

  18. Methane production from ozonated pulp mill effluent

    SciTech Connect (OSTI)

    Bremmon, C.E.; Jurgensen, M.F.; Patton, J.T.

    1980-07-01T23:59:59.000Z

    A study was made of the production of methane from desugared spent sulfite liquor (SSL) reacted with ozone. The ozonated SSL was fed continuously to three anaerobic fermenters for three months as the sole source of carbon and energy. The fermenters were inoculated with anaerobic bacteria obtained from sewage sludge and acclimated for 1 month in ozonated SSL prior to continuous fermentation. Chemical and biological parameters such as COD, BOD, total sulfur content, redox potential, pH, fatty acid composition, and methane bacteria populations were monitored to determine changes in the SSL during fermentation. Methane production from ozone-treated SSL averaged 1.7 liters/ liter or 17 ml of CH/sub 4/ produced/gram of volatile solids fed. Fatty acis analysis of fermenter effluent indicated a net production of 58 mM/ liter of acetate during ozonated SSL fermentation. This acetic acid production shows future potential for further fermentation by protein-producing yeast. Although the rate of conversion of volatile solids to CH/sub 4/ in this process was not competitive with domestic or agricultural waste digesters, this study did indicate the potential benefits of ozonating organic wastes for increased methane fermentation yields.

  19. 2, 11971241, 2005 Control of methane

    E-Print Network [OSTI]

    Boyer, Edmond

    Version Interactive Discussion EGU Abstract The North Sea hosts large coal, oil and gas reservoirs of giant sulphide- oxidizing bacteria above patches of black sediments and carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Au- thigenic Carbonates

  20. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15T23:59:59.000Z

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  1. POLE PLACEMENT BY STATIC OUTPUT FEEDBACK FOR ...

    E-Print Network [OSTI]

    SIAM (#1) 1035 2001 Apr 10 12:32:38

    2002-06-04T23:59:59.000Z

    topology) subset U of such systems, where the real pole placement map is not surjective. It follows that, for ... Key words. linear systems, static output control feedback, pole placement. AMS subject .... is an integral power of 2. In the opposite ...

  2. Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs

    E-Print Network [OSTI]

    Venditti, David A.

    Anisotropic grid–adaptive strategies are presented for viscous flow simulations in which the accurate prediction of multiple aerodynamic outputs (such as the lift, drag, and moment coefficients) is required from a single ...

  3. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31T23:59:59.000Z

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  4. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-11-12T23:59:59.000Z

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  5. Methane oxidation over dual redox catalysts

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

    1992-06-01T23:59:59.000Z

    Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C[sub 2] hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C[sub 2] hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe[sup III] or Sn[sup IV], was found to be essential for the selectivity switch from C[sub 2] coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu[sup II](ion exchanged) Fe[sup III](framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La[sub 2]O[sub 3] has been discovered for potentially commercially attractive process for the conversion of methane to C[sub 2] hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C[sub 2] hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

  6. Shaping the output pulse of a linear-transformer-driver module.

    SciTech Connect (OSTI)

    Long, Finis W.; McKee, G. Randall; Stoltzfus, Brian Scott; Woodworth, Joseph Ray; McKenney, John Lee; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John L.; Stygar, William A.; Savage, Mark Edward; LeChien, Keith, R.; Van De Valde, David M. (EG& G, Albuquerque, NM)

    2008-11-01T23:59:59.000Z

    We demonstrate that a wide variety of current-pulse shapes can be generated using a linear-transformer-driver (LTD) module that drives an internal water-insulated transmission line. The shapes are produced by varying the timing and initial charge voltage of each of the module's cavities. The LTD-driven accelerator architecture outlined in [Phys. Rev. ST Accel. Beams 10, 030401 (2007)] provides additional pulse-shaping flexibility by allowing the modules that drive the accelerator to be triggered at different times. The module output pulses would be combined and symmetrized by water-insulated radial-transmission-line impedance transformers [Phys. Rev. ST Accel. Beams 11, 030401 (2008)].

  7. SLAC National Accelerator Laboratory Accelerator Physics Faculty Search

    E-Print Network [OSTI]

    Ford, James

    SLAC National Accelerator Laboratory Accelerator Physics Faculty Search The SLAC National Accelerator Laboratory invites applications for a faculty appointment in Accelerator Physics (LCLS), LCLS-II, SPEAR-3, NLC Test Accelerator (NLCTA), Cathode Test Facility (CTF), the proposed

  8. Regulation of methane genes and genome expression

    SciTech Connect (OSTI)

    John N. Reeve

    2009-09-09T23:59:59.000Z

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ?H (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein, designated TFE, that had sequences in common with the eukaryotic general transcription factor TFIIE, stimulated archaeal transcription initiation and that the archaeal TATA-box binding protein (TBP) remained attached to the promoter region whereas the transcription factor TFB dissociated from the template DNA following initiation. DNA sequences that directed the localized assembly of archaeal histones into archaeal nucleosomes were identified, and we established that transcription by an archaeal RNA polymerase was slowed but not blocked by archaeal nucleosomes. We developed a new protocol to purify archaeal RNA polymerases and with this enzyme and additional improvements to the in vitro transcription system, we established the template requirements for archaeal transcription termination, investigated the activities of proteins predicted to be methane gene regulators, and established how TrpY, a novel archaeal regulator of expression of the tryptophan biosynthetic operon functions in M. thermautotrophicus. This also resulted in the discovery that almost all M. thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan (5MTR) had mutations in trpY and were therefore 5MTR through de-repressed trp operon expression. This established a very simple, practical procedure to determine and quantify the DNA sequence changes that result from exposure of this Archaeon to any experimental mutagenesis protocol. Following the discovery that the Thermococcus kodakaraensis was amenable to genetic manipulation, we established this technology at OSU and subsequently added plasmid expression, a reporter system and additional genetic selections to the T. kodakaraensis genetic toolbox. We established that transcription and translation are coupled in this Archaeon, and by combining in vitro transcription and in vivo genetics, we documented that both TFB1 and TFB2 support transcription initiation in T. kodakaraensis. We quantified the roles of ribosome binding sequences and alternative initiation codons in translation initiation, established that polarity e

  9. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22T23:59:59.000Z

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  10. IBEX - a pulsed power accelerator that generates no prepulse

    SciTech Connect (OSTI)

    Ramirez, J.J.; Corley, J.P.; Mazarakis, M.G.

    1983-01-01T23:59:59.000Z

    Intense relativistic electron beams are produced in vacuum diodes driven by pulsed power accelerators. For pulse widths approx. 100 nsec, pulse forming lines (PPL) are used to generate the accelerating voltage pulse. This pulse is produced by sequential switching of stored energy through two or more stages. Capacitance and/or inductive coupling usually results in the generation of a low level prepulse voltage some time during the switching sequence. This prepulse is known to have a substantial effect on the performance of the vacuum diode during the main accelerating pulse. Most accelerators use various schemes for reducing this prepulse to acceptable levels. The Isolated Blumlein PPL concept was developed at Sandia to allow for the generation of the main accelerating pulse without generating a prepulse voltage. This concept was implemented into the IBEX accelerator that generates a 4 MV, 100 kA, 20 nsec output pulse. Design and performance data are presented.

  11. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect (OSTI)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01T23:59:59.000Z

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  12. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01T23:59:59.000Z

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  13. Alternative technologies to steam-methane reforming

    SciTech Connect (OSTI)

    Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

    1995-11-01T23:59:59.000Z

    Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

  14. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

    2007-07-31T23:59:59.000Z

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  15. Single Inductor Dual Output Buck Converter

    E-Print Network [OSTI]

    Eachempatti, Haritha

    2010-07-14T23:59:59.000Z

    of value 3V. The main focus areas are low cross regulation between the outputs and supply of completely independent load current levels while maintaining desired values (1.2V,1.5V) within well controlled ripple levels. Dynamic hysteresis control is used...

  16. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

    1990-01-01T23:59:59.000Z

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  17. Bioenergy technology balancing energy output with environmental

    E-Print Network [OSTI]

    Levi, Ran

    E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy° 50° #12;Same climate data (A1F1 scenario for 2050 - 2080) but the genotype is one which is less

  18. Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs

    E-Print Network [OSTI]

    Peraire, Jaime

    Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs David A. Venditti and David L Anisotropic grid­adaptive strategies are presented for viscous flow simulations in which the accurate estimation and Hessian-based anisotropic grid adaptation. Airfoil test cases are presented to demonstrate

  19. Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase

    E-Print Network [OSTI]

    Kopp, Daniel Arthur

    2003-01-01T23:59:59.000Z

    Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

  20. DOE/AMO NG Infrastructure R & D & Methane emissions Mitigation...

    Broader source: Energy.gov (indexed) [DOE]

    and Confidential to NYSEARCHNGA DOEAMO NG INFRASTRUCTURE R & D & METHANE EMISSIONS MITIGATION WORKSHOP November 2014 David Merte & Daphne D'Zurko, NYSEARCHNGA...

  1. Energy Department Expands Research into Methane Hydrates, a Vast...

    Broader source: Energy.gov (indexed) [DOE]

    of methane in shallow subsurface and water columns, and the role gas hydrates play in carbon cycling. DOE Investment: approximately 650,000 Massachusetts Institute of...

  2. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution...

  3. Extreme Methane Emissions from a Swiss Hydropower Reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using

  4. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    governments are considering a diverse energy mix that includes a growing proportion of renewable energy sources and natural gas. Proponents of this approach suggest that methane...

  5. anthropogenic methane emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMISSIONS FROM MSW LANDFILLS D. SAVANNE*, P. CASSINI the contribution to the greenhouse effect due to methane emitted by municipal solid waste landfills. The objective of the...

  6. Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells

    E-Print Network [OSTI]

    West, Margrit Evelyn

    1995-01-01T23:59:59.000Z

    Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

  7. Analysis of a direct methane conversion to high molecular weight hydrocarbons

    E-Print Network [OSTI]

    Al-Ghafran, Moh'd. J.

    2000-01-01T23:59:59.000Z

    Methane conversion to heavier hydrocarbons was studied using electrical furnaces and a plasma apparatus. The experiments were performed with pure methane for the electrical furnace experiments while pure methane and additions such as hydrogen...

  8. New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry

    E-Print Network [OSTI]

    Girguis, Peter R.

    , likely exceeding reserves of conventional oil and gas (Collett and Kuuskraa, 1998). In deep-ocean regionsNew constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep

  9. Some Frontiers of Accelerator Physics

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    Some Frontiers of Accelerator Physics A.M. Sessler OctoberSOME FRONTIERS OF ACCELERATOR PHYSICS* Andrew M. Sessleris Some Frontiers of Accelerator Physics and it is most

  10. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05T23:59:59.000Z

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  11. A combined compensation method for the output voltage of an insulated core transformer power supply

    SciTech Connect (OSTI)

    Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.; Qin, B.; Chen, D. Z. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-15T23:59:59.000Z

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  12. U.S. and Japan Complete Successful Field Trial of Methane Hydrate...

    Office of Environmental Management (EM)

    Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2,...

  13. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

  14. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEA. Digesters Have Received Attention for Their Potential to

  15. UFO - The Universal FeynRules Output

    E-Print Network [OSTI]

    Céline Degrande; Claude Duhr; Benjamin Fuks; David Grellscheid; Olivier Mattelaer; Thomas Reiter

    2012-07-31T23:59:59.000Z

    We present a new model format for automatized matrix-element generators, the so- called Universal FeynRules Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a Python module that can easily be linked to other computer codes. We then describe an interface for the Mathematica package FeynRules that allows for an automatic output of models in the UFO format.

  16. UFO - The Universal FeynRules Output

    E-Print Network [OSTI]

    Degrande, Céline; Fuks, Benjamin; Grellscheid, David; Mattelaer, Olivier; Reiter, Thomas

    2011-01-01T23:59:59.000Z

    We present a new model format for automatized matrix-element generators, the so- called Universal FeynRules Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a Python module that can easily be linked to other computer codes. We then describe an interface for the Mathematica package FeynRules that allows for an automatic output of models in the UFO format.

  17. Boosting America's Hydropower Output | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximatelyBoosting America's Hydropower Output

  18. Characterizing detonator output using dynamic witness plates

    SciTech Connect (OSTI)

    Murphy, Michael John [Los Alamos National Laboratory; Adrian, Ronald J [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

  19. Entanglement of Accelerating Particles

    E-Print Network [OSTI]

    W. L. Ku; M. -C. Chu

    2007-09-03T23:59:59.000Z

    We study how the entanglement of a maximally entangled pair of particles is affected when one or both of the pair are uniformly accelerated, while the detector remains in an inertial frame. We find that the entanglement is unchanged if all degrees of freedom are considered. However, particle pairs are produced, and the entanglements of different bipartite systems may change with the acceleration. In particular, the entanglement between accelerating fermions is transferred preferentially to the produced antiparticles when the acceleration is large, and the entanglement transfer is complete when the acceleration approaches infinity. However, for scalar particles, no entanglement transfer to the antiparticles is observed.

  20. EIA - Greenhouse Gas Emissions - Methane Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23. Methane

  1. File:Methane.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park at Methil Jump to:Methane.pdf Jump to:

  2. methane_hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T.External Links ExternalMethane Hydrates Special

  3. Methane Stakeholder Roundtables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy MetalProgramFiscalMethane

  4. Methane Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls,MccoyMerrimac,MesoFuelMethane Power Inc Jump to:

  5. Methane Hydrate Annual Reports | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6,Projects38, 1)QuestionnairesMentorMethane

  6. Methane Stakeholder Roundtables | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6,Projects38,R&D Methane HydrateHydrates

  7. Methane Hydrate Advisory Committee | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstitute Regarding ProposedOnU.SformentorsThe Methane

  8. Methane hydrate research at NETL: Research to make methane production from hydrates a reality

    SciTech Connect (OSTI)

    Taylor, C.E.; Link, D.D.; English, N.

    2007-03-01T23:59:59.000Z

    Research is underway at NETL to understand the physical properties of methane hydrates. Five key areas of research that need further investigation have been identified. These five areas, i.e. thermal properties of hydrates in sediments, kinetics of natural hydrate dissociation, hysteresis effects, permeability of sediments to gas flow and capillary pressures within sediments, and hydrate distribution at porous scale, are important to the production models that will be used for producing methane from hydrate deposits. NETL is using both laboratory experiments and computational modeling to address these five key areas. The laboratory and computational research reinforce each other by providing feedback. The laboratory results are used in the computational models and the results from the computational modeling is used to help direct future laboratory research. The data generated at NETL will be used to help fulfill The National Methane Hydrate R&D Program of a “long-term supply of natural gas by developing the knowledge and technology base to allow commercial production of methane from domestic hydrate deposits by the year 2015” as outlined on the NETL Website [NETL Website, 2005. http://www.netl.doe.gov/scngo/Natural%20Gas/hydrates/index.html]. Laboratory research is accomplished in one of the numerous high-pressure hydrate cells available ranging in size from 0.15 mL to 15 L in volume. A dedicated high-pressure view cell within the Raman spectrometer allows for monitoring the formation and dissociation of hydrates. Thermal conductivity of hydrates (synthetic and natural) at a certain temperature and pressure is performed in a NETL-designed cell. Computational modeling studies are investigating the kinetics of hydrate formation and dissociation, modeling methane hydrate reservoirs, molecular dynamics simulations of hydrate formation, dissociation, and thermal properties, and Monte Carlo simulations of hydrate formation and dissociation.

  9. Comparison of CAISO-run Plexos output with LLNL-run Plexos output

    SciTech Connect (OSTI)

    Schmidt, A; Meyers, C; Smith, S

    2011-12-20T23:59:59.000Z

    In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.

  10. METHANE IN SUBSURFACE: MATHEMATICAL MODELING AND COMPUTATIONAL CHALLENGES

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    consortium led by Chevron, in gas hydrate drilling, research expeditions [6], and observatories [5, 7] which help to evaluate methane hydrate as an energy resource. Although the existence of gas hydrates and energy recovery involving the evolution of methane gas in the subsurface. In particular, we develop

  11. Homogeneous Catalysis Selective Oxidation of Methane to Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    Homogeneous Catalysis Selective Oxidation of Methane to Methanol Catalyzed, with CÀH Activation (generated by dissolution[6] of Au2O3) react with methane at 1808C to selectively generate methanol (as a mixture of the ester and methanol) in high yield (Table 1, entries 1 and 2). As expected, the irreversible

  12. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15T23:59:59.000Z

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  13. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    SciTech Connect (OSTI)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30T23:59:59.000Z

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  14. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L. (Los Alamos, NM); Carlsten, Bruce E. (Los Alamos, NM); Young, Lloyd M. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  15. Production of natural gas from methane hydrate by a constant downhole pressure well

    SciTech Connect (OSTI)

    Ahmadi, G. (Clarkson Univ., Potsdam, NY); Ji, C. (Clarkson Univ., Potsdam, NY); Smith, D.H.

    2007-07-01T23:59:59.000Z

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied.

  16. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01T23:59:59.000Z

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  17. THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Chen, Y; Sampayan, S E

    2009-08-17T23:59:59.000Z

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  18. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  19. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. World crude output overcomes Persian Gulf disruption

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    Several OPEC producers made good on their promises to replace 2.7 MMbpd of oil exports that vanished from the world market after Iraq took over Kuwait. Even more incredibly, they accomplished this while a breathtaking 1.2- MMbopd reduction in Soviet output took place during the course of 1991. After Abu Dhabi, Indonesia, Iran, Libya, Nigeria, Saudi Arabia and Venezuela turned the taps wide open, their combined output rose 2.95 MMbopd. Put together with a 282,000-bopd increase by Norway and contributions from smaller producers, this enabled world oil production to remain within 400,000 bopd of its 1990 level. The 60.5-MMbopd average was off by just 0.7%. This paper reports that improvement took place in five of eight regions. Largest increases were in Western Europe and Africa. Greatest reductions occurred in Eastern Europe and the Middle East. Fifteen nations produced 1 MMbopd or more last year, compared with 17 during 1990.

  1. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30T23:59:59.000Z

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  2. Advanced Accelerator Concepts Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on high energy ion generation Levi Schachter Active Media Accelerators Benjamin Bowes Ultrafast 2-D radiative transport in a micron-scale aluminum plasma excited at...

  3. Accelerator Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility Vitaly Yakimenko October 6-7, 2010 ATF User meeting DOE HE, S. Vigdor, ALD - (Contact) T. Ludlam Chair, Physics Department V. Yakimenko Director ATF, Accelerator...

  4. Accelerator Concepts Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colliders to Synchrotron Radiation Sources. The wide scope of the workshop includes new methods of particle acceleration to high energies, techniques for production of...

  5. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01T23:59:59.000Z

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  6. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting RF Module with a PBG Coupler Cell, 2013 North American Particle Accelerator Conference, Pasadena, CA, September 29 - October 4th, 2013. Evgenya I. Simakov,...

  7. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  8. Methane coupling by membrane reactor. First quarterly report, 1997

    SciTech Connect (OSTI)

    Ma, Yi Hua

    1997-05-01T23:59:59.000Z

    The Mn-W-Na/SiO{sub 2} catalyst was studied by running the methane coupling reactions at different methane to oxygen ratios, temperatures and dilution gas flow rates. For methane to oxygen ratios less than 3, the C{sub 2} yield was almost the same; and C{sub 2} yield began to decrease as the methane to oxygen ratio was further increased. The optimal temperature observed was around 800{degrees}C, where the C{sub 2} yield reached a maximum value. Increasing the dilution gas (helium) flow rate resulted in higher C{sub 2} selectivity; however, after a certain dilution gas flow rate the C{sub 2} yield began to decrease due to a decrease in methane conversion as a result of the reduced contact time. The stability study of the catalyst showed that, after five successive run cycles, the C{sub 2} yield obtained decreased from 24% to 19% at 780 {degrees}C, and methane, oxygen and helium flow rates of 12.2, 4.1, and 44. 3 mm/min, respectively. XRD analysis showed that, after the reaction, the XRD peaks of the cristabolite and Na{sub 2}WO{sub 4} phases in the catalyst became smaller than those in the fresh catalyst, and that at least one new, unidentified phase was observed. Mn-W-Na/SiO{sub 2} catalyst was used as the methane oxidative coupling catalyst in a porous membrane reactor and its performance was compared with a packed reactor operated at similar conditions. Although the membrane reactor showed lower methane conversion at the same reaction conditions, it gave higher C{sub 2} selectivity and C{sub 2} yield at similar methane conversions.

  9. Conversion of methane and acetylene into gasoline range hydrocarbons

    E-Print Network [OSTI]

    Alkhawaldeh, Ammar

    2000-01-01T23:59:59.000Z

    Conversion Apparatus. . . 20 22 Temperature Profile Inside the Reactor. . 30 Methane and Acetylene Conversion over Time on Stream, T = 412 C, Molar Feed Ratio = 6/I (CH4/CqHr). . 36 Mass Flow Rate (g/s) of the Effluent Gas (Unreacted Methane... and Acetylene, Isobutane, Ethylene, and Nitrogen) from the Reactor Integrated over Time on Stream. 40 Mass Flow Rate (g/s) of the Gas Products (Isobutane and Ethylene) Integrated over Time on Stream. 41 Methane and Acetylene Conversion over Time on Stream...

  10. The electronic spectra and structure of bis(2,2'biphenylene) methane 

    E-Print Network [OSTI]

    Hofer, Owen Charles

    1965-01-01T23:59:59.000Z

    Transit ion Sysssetries ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ 12 Theuretioal Calculation uf Fluorene and Bis(2iiR bipheuyleme) Methane . ~ ~ ~ ~ ~ ~ 13 Theoretioal Caloulatiun and Experimental Beta Sf Flugrene and Bis(2 2 bkpMenylsne) Methane ~ ~ ~ ~ . ~ e... Calouiation of Fluorene ~ ~ . ~ ~ ~ . ~ ~ 22 P Matrix of Bis(2~2 biphemyleue) Methane ~ ~ ~ 23 P Matrix of Bis(2, 2 biphewylene) Methane (Continued) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 24 P Matrix of Fluorene ~ ~ 25 Gesssa Matrix of Bis(2, 2 biphenyleue) Methane ~ ~ 26...

  11. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    E-Print Network [OSTI]

    Spentzouris, Panagiotis

    2008-01-01T23:59:59.000Z

    program for computational accelerator physics development isof computational accelerator physics applications, withof computational accelerator physics. Under ComPASS, the

  12. Soft-Input Soft-Output Sphere Decoding Christoph Studer

    E-Print Network [OSTI]

    Soft-Input Soft-Output Sphere Decoding Christoph Studer Integrated Systems Laboratory ETH Zurich Soft-input soft-output (SISO) detection in multiple-input multiple-output (MIMO) systems constitutes Laboratory ETH Zurich, 8092 Zurich, Switzerland Email: boelcskei@nari.ee.ethz.ch Abstract--Soft-input soft

  13. Neutrino physics at accelerators

    E-Print Network [OSTI]

    Enrique Fernandez

    2006-07-16T23:59:59.000Z

    Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.

  14. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  15. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  17. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  18. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  19. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21T23:59:59.000Z

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

  20. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  1. Output error identification of hydrogenerator conduit dynamics

    SciTech Connect (OSTI)

    Vogt, M.A.; Wozniak, L. (Illinois Univ., Urbana, IL (USA)); Whittemore, T.R. (Bureau of Reclamation, Denver, CO (USA))

    1989-09-01T23:59:59.000Z

    Two output error model reference adaptive identifiers are considered for estimating the parameters in a reduced order gate position to pressure model for the hydrogenerator. This information may later be useful in an adaptive controller. Gradient and sensitivity functions identifiers are discussed for the hydroelectric application and connections are made between their structural differences and relative performance. Simulations are presented to support the conclusion that the latter algorithm is more robust, having better disturbance rejection and less plant model mismatch sensitivity. For identification from recorded plant data from step gate inputs, the other algorithm even fails to converge. A method for checking the estimated parameters is developed by relating the coefficients in the reduced order model to head, an externally measurable parameter.

  2. Accelerated Quantum Dynamics

    E-Print Network [OSTI]

    Lynch, Morgan H

    2015-01-01T23:59:59.000Z

    In this paper we establish a formalism for the computation of observables due to acceleration-induced particle physics processes. General expressions for the transition rate, multiplicity, power, spectra, and displacement law of particles undergoing time-dependent acceleration and transitioning into a final state of arbitrary particle number are obtained. The transition rate, power, and spectra are characterised by unique polynomials of multiplicity and thermal distributions of both bosonic and fermionic statistics. The acceleration dependent multiplicity is computed in terms of the branching fractions of the associated inertial processes. The displacement law of the spectra predicts the energy of the emitted particles are directly proportional to the accelerated temperature. These results extend our understanding of particle physics into the high acceleration sector.

  3. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect (OSTI)

    Arntz, Floyd; /Diversified Tech., Bedford; Kardo-Sysoev, A.; /Ioffe Phys. Tech. Inst.; Krasnykh, A.; /SLAC

    2008-12-16T23:59:59.000Z

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac applications; for instance, it could be employed to both accelerate the beam and to stabilize the superbunch mode of operation in circular track machines.

  4. air methane vam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 161 Uncorking the bottle: What triggered the PaleoceneEocene thermal maximum methane release? Geosciences...

  5. Biomass Gasification and Methane Digester Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In order to be eligible for the exemption, methane digester equipment must be certified by the Michigan Department of Agriculture (MDA) and the farm must be verified as compliant under the...

  6. Commissioning of output factors for uniform scanning proton beams

    SciTech Connect (OSTI)

    Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer [ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Treatment Centers, 420 North Walnut Street, Bloomington, Indiana 47404 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States)

    2011-04-15T23:59:59.000Z

    Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output measurements for proton treatments.

  7. Methanation in catalyst-sprayed tube wall reactors: a review

    SciTech Connect (OSTI)

    Pennline, H. W.; Schehl, R. R.; Haynes, W. P.; Forney, A. J.

    1980-09-01T23:59:59.000Z

    The design and operation of catalyst-sprayed tube wall reactors for methanation are discussed. Reactor tubes were either coated on the inner surface or on the outer surface with a Raney nickel catalyst. A liquid coolant, which was opposite the catalyst-reactant gas-side, removed the heat of methanation. Catalyst performance, reactor operating conditions, spent catalyst analyses, and other results are presented for five PDU tests.

  8. Nuclear magnetic resonance study of methane adsorbed on porous silicon 

    E-Print Network [OSTI]

    Li, Feng

    1992-01-01T23:59:59.000Z

    technique studied hydrogen physisorbed on graphitized carbon black. In their study, temperatures ranged from 12 K to 28 K, and coverages ranged from 0. 03 to 0. 33 of a statistical monolayer. Their results showed that both Tt and Tz increased... of methane adsorbed on graphite. The thermal properties of the 2-D system are inuch more complex than that of bulk methane. Results from neutron scattering, calorimetric 3 4 and thermodynamic studies showed the existence of a, complicated phase diagram...

  9. Nuclear magnetic resonance study of methane adsorbed on porous silicon

    E-Print Network [OSTI]

    Li, Feng

    1992-01-01T23:59:59.000Z

    NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG I I Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1992 Major Subject: Physics NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG LI Approved as to style and content by: . P. Kirk (Chair of Committee) i G. Agnolet (Member) J. H. Ross, r (Member) M...

  10. The study of methane adsorbed on porous silicon by NMR

    E-Print Network [OSTI]

    Czermak, Adam Kazimierz

    1986-01-01T23:59:59.000Z

    THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1986... Major Subject: Physics THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Approved as to style and content by: e Wile . Kirk (Chairman of Committee) J eevak M. Par pi a (Member) Randall L. Geiger...

  11. Velocity of sound in solid methane near melting temperatures

    E-Print Network [OSTI]

    Whitehead, John Martin

    1968-01-01T23:59:59.000Z

    VELOCITY OF SOUND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1968 Ma)or Sub)ect: Physics VELOCITY OF SOVND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Approved as to style and content by& (Chairman of Committee) (Head of Departsmnt) (Mem er (Member) May 1968...

  12. Two dimensional properties of methane adsorbed on porous silicon

    E-Print Network [OSTI]

    Tennis, Richard Franklin

    1989-01-01T23:59:59.000Z

    TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1989 Major Subject: Physics TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Approved as to style and content by: P. Kirk (C ir of Committee) Glenn olet (M er) Da J. Ernst...

  13. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Dublin, OH); Litt, Robert D. (Westerville, OH); Dongming, Qiu (Dublin, OH); Silva, Laura J. (Plain City, OH); Lamont, Micheal Jay (Plain City, OH); Fanelli, Maddalena (Plain City, OH); Simmons, Wayne W. (Plain city, OH); Perry, Steven (Galloway, OH)

    2011-10-04T23:59:59.000Z

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  14. Jar mechanism accelerator

    SciTech Connect (OSTI)

    Anderson, E.A.; Webb, D.D.

    1989-07-11T23:59:59.000Z

    This patent describes an accelerator for use with a jar mechanism in a well pipe string to enhance the jarring impact delivered to a stuck object wherein the jar mechanism includes inner and outer members for connection, respectively, between the well pipe string the stuck object. The jar mechanism members are constructed to (1) restrict relative longitudinal movement therebetween to build up energy in the well pipe string and accelerator and then (2) to release the jar mechanism members for unrestrained, free relative longitudinal movement therebetween to engage jarring surfaces on the jar mechanism members for delivering a jarring impact to the stuck object. The accelerator includes: inner and outer telescopically connected members relatively movable longitudinally to accumulate energy in the accelerator; the inner and outer accelerator members each having means for connecting the accelerator in the well pipe string; means associated with the inner and outer members for initially accomodating a predetermined minimum length of unrestrained, free relative longitudinal movement between the inner and outer accelerator members.

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were generated of these seismic data with cores, logging, and other well data. Unfortunately, the Hot Ice No. 1 well did not encounter hydrates in the reservoir sands, although brine-saturated sands containing minor amounts of methane were encountered within the hydrate stability zone (HSZ). Synthetic seismograms created from well log data were in agreement with reflectivity data measured by the 3D VSP survey. Modeled synthetic seismograms indicated a detectable seismic response would be expected in the presence of hydrate-bearing sands. Such a response was detected in the 3D VSP data at locations up-dip to the west of the Hot Ice No. 1 wellbore. Results of this project suggest that the presence of hydrate-bearing strata may not be related as simply to HSZ thickness as previously thought. Geological complications of reservoir facies distribution within fluvial-deltaic environments will require sophisticated detection technologies to assess the locations of recoverable volumes of methane contained in hydrates. High-resolution surface seismic data and more rigorous well log data analysis offer the best near-term potential. The hydrate resource potential is huge, but better tools are needed to accurately assess their location, distribution and economic recoverability.

  16. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09T23:59:59.000Z

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  17. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16T23:59:59.000Z

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  18. BNL | Accelerator Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and new approaches to particle acceleration and x-ray generation. A next-generation ultra-fast CO2 laser based on chirped pulse amplification in isotopic gas mixtures is...

  19. Field Exploration of Methane Seep Near Atqasuk

    SciTech Connect (OSTI)

    Katey Walter, Dennis Witmer, Gwen Holdmann

    2008-12-31T23:59:59.000Z

    Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

  20. Electrochemistry of soluble methane monooxygenase on a modified gold electrode : implications for chemical sensing in natural waters

    E-Print Network [OSTI]

    Chuang, Janet Duanping

    2005-01-01T23:59:59.000Z

    This work explored the possibility of using the soluble methane monooxygenase (MMO) enzyme, a three-component enzyme which catalyzes the oxygenation of methane and other substrates, to design a methane sensor for use in ...

  1. CEBAF accelerator achievements

    SciTech Connect (OSTI)

    Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

    2011-06-01T23:59:59.000Z

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  2. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12T23:59:59.000Z

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  3. APT accelerator technology

    SciTech Connect (OSTI)

    Schneider, J.D.

    1996-09-01T23:59:59.000Z

    Proposed accelerator production of tritium (APT) project requires an accelerator providing a cw proton beam of 100 mA at 1300 MeV. Since most of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operaional reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA`s proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7-KeV, 8-m long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. Detailed design and technology experiments are underway on medium-beta superconducting cavities to assess feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities.

  4. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    SciTech Connect (OSTI)

    Collett, Tim; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta; Myers, Greg; Divins, David; Morell, Margo

    2013-11-30T23:59:59.000Z

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these e?orts have been episodic in nature. To further our understanding, these e?orts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and o?ers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  5. Plasma-based accelerator structures

    SciTech Connect (OSTI)

    Schroeder, Carl B.

    1999-12-01T23:59:59.000Z

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  6. Physically Based Rendering Intersection Acceleration

    E-Print Network [OSTI]

    Kazhdan, Michael

    Physically Based Rendering (600.657) Intersection Acceleration #12;Intersection Testing Accelerated partitions: Group objects into clusters Cluster volumes may overlap #12;Uniform (Voxel) Grid Acceleration Acceleration · Trace rays through grid cells ­ Fast ­ Incremental A B C D E F Only check primitives

  7. Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2004-07-01T23:59:59.000Z

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

  8. Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report

    SciTech Connect (OSTI)

    Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

    1993-09-01T23:59:59.000Z

    In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

  9. average power output: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the bucket). For low Carroll, David L. 7 High power multi-output piezoelectric transformers. Open Access Theses and Dissertations Summary: ??Piezoelectric transformers have...

  10. action potential output: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HF efficiency, but does not necessarily yield a higher measurable power (power in the bucket). For low Carroll, David L. 376 A Spatial Analysis of Multivariate Output from...

  11. advisory capability output: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HF efficiency, but does not necessarily yield a higher measurable power (power in the bucket). For low Carroll, David L. 453 A Spatial Analysis of Multivariate Output from...

  12. Sandia National Laboratories: simulating solar-power-plant output...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulating solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

  13. Applying guidance for methane emission estimation for landfills

    SciTech Connect (OSTI)

    Scharff, Heijo [NV Afvalzorg, Postbus 2, 1566 ZG Assendelft (Netherlands)]. E-mail: h.scharff@afvalzorg.nl; Jacobs, Joeri [NV Afvalzorg, Postbus 2, 1566 ZG Assendelft (Netherlands)]. E-mail: j.jacobs@afvalzorg.nl

    2006-07-01T23:59:59.000Z

    Quantification of methane emission from landfills is important to evaluate measures for reduction of greenhouse gas emissions. Both the United Nations and the European Union have adopted protocols to ensure quantification of methane emission from individual landfills. The purpose of these protocols is to disclose emission data to regulators and the general public. Criteria such as timeliness, completeness, certainty, comparability, consistency and transparency are set for inclusion of emission data in a publicly accessible database. All methods given as guidance to landfill operators to estimate landfill methane emissions are based on models. In this paper the consequences of applying six different models for estimates of three landfills are explored. It is not the intention of this paper to criticise or validate models. The modelling results are compared with whole site methane emission measurements. A huge difference in results is observed. This raises doubts about the accuracy of the models. It also indicates that at least some of the criteria previously mentioned are not met for the tools currently available to estimate methane emissions from individual landfills. This will inevitably lead to compiling and comparing data with an incomparable origin. Harmonisation of models is recommended. This may not necessarily reduce uncertainty, but it will at least result in comparable, consistent and transparent data.

  14. Structural stability of methane hydrate at high pressures

    SciTech Connect (OSTI)

    Shu, Jinfu; Chen, Xiaojia; Chou, I.-Ming; Yang, Wenge; Hu, Jingzhu; Hemley, Russell J.; Mao, Ho-kwang

    2011-01-01T23:59:59.000Z

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P6{sub 3}/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH{sub 4})-host (H{sub 2}O) interactions in the stabilization of the hydrate structures under pressure.

  15. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab's Accelerator Complex photo

  16. Fermilab | Science | Particle Accelerators | Leading Accelerator Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab's Accelerator ComplexLeading

  17. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12T23:59:59.000Z

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  20. Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints by Marcus. The third case examines the benefits of increased policy coordination between air pollution constraints

  1. New mineralogy of the outer solar system and the high-pressure behaviour of methane 

    E-Print Network [OSTI]

    Maynard-Casely, Helen E.

    2009-01-01T23:59:59.000Z

    This thesis will introduce the study of methane as a mineral. Along with ammonia and water, methane is one of the main planetary-forming materials in the outer solar system. The topic of `new mineralogy of the outer solar ...

  2. Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)

    E-Print Network [OSTI]

    Boyer, Edmond

    Géosciences, 1A rue de la Férolerie, 45071 Orléans Cedex 2, France Abstract Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced

  3. Coalbed Methane Produced Water Screening Tool for Treatment Technology and Beneficial Use 2013 Supporting Information

    E-Print Network [OSTI]

    Coalbed Methane Produced Water Screening Tool for Treatment Technology and Beneficial Use 2013 1 (to sustain instream #12;Coalbed Methane Produced Water Screening Tool for Treatment Technology Supporting Information 1.0 Produced Water Regulatory Framework for WY and NM

  4. ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL

    E-Print Network [OSTI]

    ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL recovered. Carbon sequestration, therefore, allows the utilization of unexploited mineral resources while potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian Basin

  5. Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames

  6. Magnitude and spatio-temporal variability of methane emissions from a eutrophic freshwater lake

    E-Print Network [OSTI]

    Varadharajan, Charuleka, 1980-

    2009-01-01T23:59:59.000Z

    Methane is the second most important greenhouse gas after carbon dioxide, and it can significantly impact global climate change. Considerable amounts of methane can be released to the atmosphere from freshwater lakes, ...

  7. Energy Policy Seminar Series: Climate impacts of methane-emitting energy technologies

    E-Print Network [OSTI]

    Chen, Kuang-Yu

    of greenhouse gases, most notably methane and carbon dioxide, and these gases have dissimilar properties. This research finds that methane-emitting energy such as natural gas becomes significantly more carbon dioxide

  8. MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION

    E-Print Network [OSTI]

    Seitzman, Jerry M.

    MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION of Technology August 2008 #12;MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET

  9. Modeling ruminant methane emissions from the U.S. beef cattle industry

    E-Print Network [OSTI]

    Turk, Danny Carroll

    1993-01-01T23:59:59.000Z

    Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

  10. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    E-Print Network [OSTI]

    Locatelli, R.

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model ...

  11. Control of substrate access to the active site in methane monooxygenase

    E-Print Network [OSTI]

    Lee, Seung Jae

    Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by ...

  12. Sensor response rate accelerator

    DOE Patents [OSTI]

    Vogt, Michael C. (Westmont, IL)

    2002-01-01T23:59:59.000Z

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  13. Verification of hourly forecasts of wind turbine power output

    SciTech Connect (OSTI)

    Wegley, H.L.

    1984-08-01T23:59:59.000Z

    A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

  14. Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment

    E-Print Network [OSTI]

    Yaghi, Omar M.

    this disadvantage include · storing methane as liquefied natural gas (LNG, at 112 K) or compressed natural gas (CNG

  15. Timelines for mitigating methane emissions from energy technologies

    E-Print Network [OSTI]

    Roy, Mandira; Trancik, Jessika E

    2015-01-01T23:59:59.000Z

    Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

  16. Perturbations for transient acceleration

    SciTech Connect (OSTI)

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried [Universidade Federal do Espírito Santo, Departamento de Física, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitória, Espírito Santo (Brazil); Hipólito-Ricaldi, Wiliam S., E-mail: win_unac@hotmail.com, E-mail: hipolito@ceunes.ufes.br, E-mail: winfried.zimdahl@pq.cnpq.br [Universidade Federal do Espírito Santo, Departamento de Ciências Naturais, Grupo de Física Teórica, Rodovia BR 101 Norte, km 60, Campus de São Mateus, CEP 29932-540, São Mateus, Espírito Santo (Brazil)

    2012-04-01T23:59:59.000Z

    According to the standard ?CDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  17. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect (OSTI)

    Deborah Kosmack

    2008-10-31T23:59:59.000Z

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  18. Interactive Computing 1 Input/Output and Complex Arithmetic

    E-Print Network [OSTI]

    Verschelde, Jan

    Interactive Computing 1 Input/Output and Complex Arithmetic interactive Python scripts complex Software (MCS 507 L-3) Interactive Computing 30 August 2013 1 / 33 #12;Interactive Computing 1 Input/Output and Complex Arithmetic interactive Python scripts complex arithmetic 2 Python Coding Style and pylint coding

  19. A Note on Platt's Probabilistic Outputs for Support Vector Machines

    E-Print Network [OSTI]

    Abu-Mostafa, Yaser S.

    A Note on Platt's Probabilistic Outputs for Support Vector Machines Hsuan-Tien Lin (htlin, National Chengchi University, Taipei 116, Taiwan Abstract. Platt's probabilistic outputs for Support Vector Machines (Platt, 2000) has been popular for applications that require posterior class probabilities

  20. Output regulation problem for differentiable families of linear systems

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    The output regulation problem arose as one of the main research topics in linear control theory in the 1970s regulation when modeled by a global or a local differentiable family. Partially supported by DGICYT n.PB97Output regulation problem for differentiable families of linear systems Albert Compta and Marta Pe

  1. Challenges in Predicting Power Output from Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Challenges in Predicting Power Output from Offshore Wind Farms R. J. Barthelmie1 and S. C. Pryor2 Abstract: Offshore wind energy is developing rapidly in Europe and the trend is towards large wind farms an offshore wind farm, accurate assessment of the wind resource/power output from the wind farm is a necessity

  2. A Counterexample to Additivity of Minimum Output Entropy

    E-Print Network [OSTI]

    M. B. Hastings

    2009-12-30T23:59:59.000Z

    We present a random construction of a pair of channels which gives, with non-zero probability for sufficiently large dimensions, a counterexample to the minimum output entropy conjecture. As shown by Shor, this implies a violation of the additivity conjecture for the classical capacity of quantum channels. The violation of the minimum output entropy conjecture is relatively small.

  3. Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory-phase transition metal oxide cations can convert methane to methanol. Methane activation by MO+ is discussed such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

  4. Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by FeO

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by Fe.1063/1.1448489 I. INTRODUCTION The direct oxidation of methane to an easily transport- able liquid such as methanol process and as the simplest model for alkane oxidation.1,2 Although no direct, efficient methane­methanol

  5. Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing

    E-Print Network [OSTI]

    Sessions, Alex L.

    Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing Running Title: Novel Methane, Ethane, and Propane Oxidizing Bacteria Section incubating sediment with 13 C-labeled methane, ethane, or propane, we5 confirmed the incorporation of 13 C

  6. EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS

    E-Print Network [OSTI]

    Saylor, John R.

    Chapter 65 EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS Ch.D. Taylor-mounted scrubber and water sprays can reduced methane levels at the face. The current research was conducted to determine how the sprays and scrubber interact to reduce methane levels, and what spray configurations

  7. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21T23:59:59.000Z

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  8. Compatibility of selected ceramics with steam-methane reformer environments

    SciTech Connect (OSTI)

    Keiser, J.R.; Howell, M. [Oak Ridge National Lab., TN (United States); Williams, J.J.; Rosenberg, R.A. [Stone and Webster Engineering Corp., Boston, MA (United States)

    1996-04-01T23:59:59.000Z

    Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

  9. Coke profile and effect on methane/ethylene conversion process

    E-Print Network [OSTI]

    Al-Solami, Bandar

    2002-01-01T23:59:59.000Z

    with distance along the reactor, and therefore the coke distribution should follow a similar pattern. A distribution of coke deposits along the reactor was also observed by Noda er al. (1974) in a study of iso-pentane isomerization. In this case the coke..., methane, ethane, ethylene, propane, iso-butane, butane, iso-pentane, pentane and hexanes. Also, the flow rate of the effluent stream is measured using the bubble meter. The mole percentages of methane and ethylene are subtracted of the effluent stream...

  10. International Cooperation in Methane Hydrates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » International Cooperation in Methane

  11. Metro Methane Recovery Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls,MccoyMerrimac,MesoFuelMethane PowerMetro Methane

  12. Most efficient quantum thermoelectric at finite power output

    E-Print Network [OSTI]

    Robert S. Whitney

    2014-03-13T23:59:59.000Z

    Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems; heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output, and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output, but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.

  13. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: A PENELOPE Monte Carlo study

    SciTech Connect (OSTI)

    Benmakhlouf, Hamza, E-mail: hamza.benmakhlouf@karolinska.se [Department of Medical Physics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden, and Department of Physics, Medical Radiation Physics, Stockholm University and Karolinska Institute, SE-171 76 Stockholm (Sweden)] [Department of Medical Physics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden, and Department of Physics, Medical Radiation Physics, Stockholm University and Karolinska Institute, SE-171 76 Stockholm (Sweden); Sempau, Josep [Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, E-08028, Barcelona (Spain)] [Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, E-08028, Barcelona (Spain); Andreo, Pedro [Department of Physics, Medical Radiation Physics, Stockholm University and Karolinska Institute, SE-171 76 Stockholm (Sweden)] [Department of Physics, Medical Radiation Physics, Stockholm University and Karolinska Institute, SE-171 76 Stockholm (Sweden)

    2014-04-15T23:59:59.000Z

    Purpose: To determine detector-specific output correction factors,k{sub Q} {sub c{sub l{sub i{sub n}}}} {sub ,Q} {sub m{sub s{sub r}}} {sup f{sub {sup {sub c}{sub l}{sub i}{sub n}{sub {sup ,f{sub {sup {sub m}{sub s}{sub r}{sub ,}}}}}}}} in 6 MV small photon beams for air and liquid ionization chambers, silicon diodes, and diamond detectors from two manufacturers. Methods: Field output factors, defined according to the international formalism published byAlfonso et al. [Med. Phys. 35, 5179–5186 (2008)], relate the dosimetry of small photon beams to that of the machine-specific reference field; they include a correction to measured ratios of detector readings, conventionally used as output factors in broad beams. Output correction factors were calculated with the PENELOPE Monte Carlo (MC) system with a statistical uncertainty (type-A) of 0.15% or lower. The geometries of the detectors were coded using blueprints provided by the manufacturers, and phase-space files for field sizes between 0.5 × 0.5 cm{sup 2} and 10 × 10 cm{sup 2} from a Varian Clinac iX 6 MV linac used as sources. The output correction factors were determined scoring the absorbed dose within a detector and to a small water volume in the absence of the detector, both at a depth of 10 cm, for each small field and for the reference beam of 10 × 10 cm{sup 2}. Results: The Monte Carlo calculated output correction factors for the liquid ionization chamber and the diamond detector were within about ±1% of unity even for the smallest field sizes. Corrections were found to be significant for small air ionization chambers due to their cavity dimensions, as expected. The correction factors for silicon diodes varied with the detector type (shielded or unshielded), confirming the findings by other authors; different corrections for the detectors from the two manufacturers were obtained. The differences in the calculated factors for the various detectors were analyzed thoroughly and whenever possible the results were compared to published data, often calculated for different accelerators and using the EGSnrc MC system. The differences were used to estimate a type-B uncertainty for the correction factors. Together with the type-A uncertainty from the Monte Carlo calculations, an estimation of the combined standard uncertainty was made, assigned to the mean correction factors from various estimates. Conclusions: The present work provides a consistent and specific set of data for the output correction factors of a broad set of detectors in a Varian Clinac iX 6 MV accelerator and contributes to improving the understanding of the physics of small photon beams. The correction factors cannot in general be neglected for any detector and, as expected, their magnitude increases with decreasing field size. Due to the reduced number of clinical accelerator types currently available, it is suggested that detector output correction factors be given specifically for linac models and field sizes, rather than for a beam quality specifier that necessarily varies with the accelerator type and field size due to the different electron spot dimensions and photon collimation systems used by each accelerator model.

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models and to research teams for developing future gas-hydrate projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and has been documented by the project team. This Topical Report documents drilling and coring operations and other daily activities.

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

  17. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation.

  18. Saving Output to a File (Using Codeblocks or Dev-C++) Saving Your Output to a File

    E-Print Network [OSTI]

    Sokol, Dina

    Saving Output to a File (Using Codeblocks or Dev-C++) Saving Your Output to a File To save | New | Source File. d. In the new window, right-click and select Paste. e. Then select "File | Save as" to save and name the file. i. In the window that pops up, the bottom fill-in box is labelled "Save as type

  19. Low-level 14C measurements and Accelerator Mass Spectrometry

    SciTech Connect (OSTI)

    Litherland, A.E.; Beukens, R.P.; Zhao, X.-L.; Kieser, W.E. [IsoTrace Laboratory, University of Toronto, Toronto, ON, M5S 1A7 (Canada); Gove, H.E. [IsoTrace Laboratory, University of Toronto, Toronto, ON, M5S 1A7 (Canada); Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627-0171 (United States)

    2005-09-08T23:59:59.000Z

    Accelerator Mass Spectrometry (AMS) and isotope enrichment were used in 1991 to estimate that the 14C content of methane in natural gas was {<=}1.6x10-18 of the total carbon. The low content of 14C in underground hydrocarbons was verified later in the remarkable results from the Borexino test scintillation counter for solar neutrino studies. Since then studies of the 14C background problem have demonstrated that much of the background originally observed in the AMS measurements can, in principle, be eliminated. However, many difficulties and other backgrounds are to be faced as the limit for AMS is pushed still further towards possibly a ratio of < 10-21. These will be discussed.

  20. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Municipal Solid Waste-Sewage Sludge. b 4.15 SCF CH 4 / cu ftUP I j methane 31.5 scf sludge 18.61b water 161b Btu/scfsewer 65.3 lb ( 7.9 gal) sludge ash 1.74 lb stack emissions

  1. RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART I: ALLENE developed in our laboratory for the reactions of C3-C4 unsaturated hydrocarbons. The main reaction pathways2007 #12;3 INTRODUCTION Soots and polyaromatic hydrocarbons (PAH), which are present in the exhaust gas

  2. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  3. The Optimization of Well Spacing in a Coalbed Methane Reservoir

    E-Print Network [OSTI]

    Sinurat, Pahala Dominicus

    2012-02-14T23:59:59.000Z

    reserve estimation for a coalbed methane reservoir. Other numerical reservoir simulation studies were presented by David, H. and Law, S.18, Hower, T.L.19, and Jalal, J. and Shahab, D.M.20. They showed the application of a compositional simulator...

  4. METHANE IN SUBSURFACE: MATHEMATICAL MODELING AND COMPUTATIONAL CHALLENGES

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    ), in collaboration with the U.S. Geological Survey (USGS), and an industry consortium led by Chevron, in gas hydrate as an energy resource. Although the existence of gas hydrates in nature has been known for many decades, our and energy recovery involving the evolution of methane gas in the subsurface. In particular, we develop

  5. RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    /s at 333 K and mixtures containing 55.6% argon, 15.3% methane (99.95 %, pure supplied by Alphagaz - L'Air propyne, allene, propene, propane, 1-butene, 1,3-butadiene, 1,2-butadiene, vinylacetylene, diacetylene

  6. Gettering of hydrogen and methane from a helium gas mixture

    SciTech Connect (OSTI)

    Cárdenas, Rosa Elia, E-mail: recarde1@uiwtx.edu [Department of Physics, The University of the Incarnate Word, 4301 Broadway, San Antonio, Texas 78209 (United States); Stewart, Kenneth D.; Cowgill, Donald F., E-mail: dfcowgi@sandia.gov [Sandia National Laboratories, Hydrogen and Metallurgical Sciences, 7011 East Avenue, Livermore, California 94550 (United States)

    2014-11-01T23:59:59.000Z

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup ®} getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650?°C to decompose the methane, and the second at 110?°C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  7. Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

    E-Print Network [OSTI]

    Texas at Austin, University of

    Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane 1 Funded by Environmental. of Electrical and Computer Engineering, University of Texas, Austin #12;Motivation No other chip based optical Similar to: Doping of Semiconductor 3 #12;4 Photonic Crystal Bio-Chemical Sensors Loncar et al, Appl. Phys

  8. Formation and retention of methane in coal. Final report

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15T23:59:59.000Z

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  9. Partial oxidation of methane to syngas in different reactor types

    SciTech Connect (OSTI)

    Lapszewicz, J.A.; Campbell, I.; Charlton, B.G.; Foulds, G.A. [CSIRO Division of Coal and Energy Technology, Menai (Australia)

    1995-12-01T23:59:59.000Z

    The performance of Rh/ZnO/{gamma}-Al{sub 2}O{sub 3} catalyst for partial oxidation of methane to syngas was compared in fixed and fluidised bed reactors. Catalyst activity was found not to be a limiting factor under any experimental conditions and complete oxygen conversions were observed in all tests. In the fixed bed reactor both methane conversion and syngas selectivity were increasing with space velocity as the result of an autothermal effect. Satisfactory control of the catalyst temperature at high space velocities could only be achieved with addition of inert diluent or steam to the feed. Different conversion and selectivity patterns were observed in fluidised bed reactor. Methane conversion and carbon monoxide selectivity were decreasing with increasing gas flow. By contrast, hydrogen selectivity showed distinct maximum at medium space velocities. These results are interpreted in terms of catalyst backmixing and its effect on primary and secondary reactions. Improved temperature control was also achieved in fluidised bed reactor. Several experiments using fluidised bed reactor were carried out at elevated pressures. To eliminate the occurrence of non-catalytic gas phase reactions between methane and oxygen very short feed mixing times (< 1 ms) were employed. Despite these measures the reactor could not be successfully operated at pressures above 0.7 MPa. The implications of these findings for process development are discussed.

  10. Methane-assisted combustion synthesis of nanocomposite tin dioxide materials

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Methane-assisted combustion synthesis of nanocomposite tin dioxide materials S.D. Bakrania *, C., Ann Arbor, MI 48109-2125, USA Abstract Combustion synthesis of tin dioxide (SnO2) was studied using: Combustion synthesis; Nanoparticles; Tin dioxide; Metals 1. Introduction Tin dioxide (SnO2) is the most

  11. Variability of the methane trapping in martian subsurface clathrate hydrates

    E-Print Network [OSTI]

    Caroline Thomas; Olivier Mousis; Sylvain Picaud; Vincent Ballenegger

    2008-10-23T23:59:59.000Z

    Recent observations have evidenced traces of methane CH4 heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxyde, nitrogen and argon, together with methane. Besides, because there is no low temperature restriction in our model, we are able to determine the composition of clathrate hydrates formed at temperatures corresponding to the extreme ones measured in the polar caps. Our results show that methane enriched clathrate hydrates could be stable in the subsurface of Mars only if a primitive CH4-rich atmosphere has existed or if a subsurface source of CH4 has been (or is still) present.

  12. ESTIMATING METHANE EMISSION AND OXIDATION FROM TWO TEMPORARY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    layer waste gas composition were measured on two French MBT plants with aerobic pre-treatment process using old municipal solid waste material (Huber-Humer & al, 2007, 2008). Another result of these studies amount of fugitive methane emissions for landfills without waste pre-treatment (Tarimini & al, 2003

  13. Direct Biological Conversion of Electrical Current into Methane by

    E-Print Network [OSTI]

    produced from renewable energy sources (such as wind, solar, or biomass) into a biofuel (methane) as well. Revised manuscript received March 5, 2009. Accepted March 6, 2009. New sustainable methods are needed to produce renewable energy carriers that can be stored and used for transportation, heating, or chemical

  14. TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    their whole lives to accelerator physics. As high energysome appreciation of accelerator physics. We cannot, nor dolectures on basic accelerator physics; then you will hear

  15. Progress on laser plasma accelerators

    SciTech Connect (OSTI)

    Chen, P.

    1986-04-01T23:59:59.000Z

    Several laser plasma accelerator schemes are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA). Theory indicates that a very high acceleration gradient, of order 1 GeV/m, can exist in the plasma wave driven by the beating lasers. Experimental results obtained on the PBWA experiment at UCLA confirms this. Parameters related to the PBWA as an accelerator system are derived, among them issues concerning the efficiency and the laser power and energy requirements are discussed.

  16. Particle Acceleration at Relativistic Shocks

    E-Print Network [OSTI]

    Yves A. Gallant

    2002-01-15T23:59:59.000Z

    I review the current status of Fermi acceleration theory at relativistic shocks. I first discuss the relativistic shock jump conditions, then describe the non-relativistic Fermi mechanism and the differences introduced by relativistic flows. I present numerical calculations of the accelerated particle spectrum, and examine the maximum energy attainable by this process. I briefly consider the minimum energy for Fermi acceleration, and a possible electron pre-acceleration mechanism.

  17. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect (OSTI)

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28T23:59:59.000Z

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  18. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31T23:59:59.000Z

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

  19. Methane oxidation over dual redox catalysts. Final report

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

    1992-06-01T23:59:59.000Z

    Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C{sub 2} hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C{sub 2} hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe{sup III} or Sn{sup IV}, was found to be essential for the selectivity switch from C{sub 2} coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu{sup II}(ion exchanged) Fe{sup III}(framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La{sub 2}O{sub 3} has been discovered for potentially commercially attractive process for the conversion of methane to C{sub 2} hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C{sub 2} hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

  20. Correction method for in-air output ratio for output variations occurring with changes in backscattered radiation

    SciTech Connect (OSTI)

    Tajiri, Minoru; Tokiya, Yuji; Watanabe, Kazuhiro [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); International University of Health and Welfare, 1-4-3, Mita, Minato-ku, Tokyo 108-8329 (Japan); Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2012-02-15T23:59:59.000Z

    Purpose: The in-air output ratio (S{sub c}) for a rectangular field is usually obtained using an equivalent square field formula. However, it is well-known that S{sub c} obtained using an equivalent square field formula differs slightly from the measured S{sub c}. Though several correction methods have been suggested for the monitor-backscatter effect, the authors propose a more simple correction method for a rectangular field. Methods: For rectangular fields and equivalent square fields, the authors assumed that the output variation was the product of six output variations for each backscattering area at the top of the collimator jaws, and the correction factor was the ratio of the output variation for a rectangular field to the output variation for an equivalent square field. The output variation was measured by using a telescope measurement. Results: The differences between the measured and corrected S{sub c} ranged from -0.20% to 0.28% for symmetric rectangular fields by applying the correction factor to S{sub c} obtained using an equivalent square field formula. This correction method is also available for asymmetric rectangular fields. Conclusions: The authors propose a method to correct S{sub c} obtained using an equivalent square field formula, and a method to obtain the output variation for a field defined by collimator jaws.

  1. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    SciTech Connect (OSTI)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15T23:59:59.000Z

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  2. Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)

    E-Print Network [OSTI]

    Berwald, D H; Myers, T J; Paulson, C C; Peacock, M A; Piaszczyk, C M; Rathke, J W; Piechowiak, E M

    1996-01-01T23:59:59.000Z

    Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)

  3. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  4. The Effect of Signal Quality on Six Cardiac Output Estimators

    E-Print Network [OSTI]

    Mark, Roger Greenwood

    The effect of signal quality on the accuracy of cardiac output (CO) estimation from arterial blood pressure (ABP) was evaluated using data from the MIMIC II database. Thermodilution CO (TCO) was the gold standard. A total ...

  5. Development of Regional Wind Resource and Wind Plant Output Datasets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

  6. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts

  7. Corticospinal Output to Hindlimb Muscles in the Primate

    E-Print Network [OSTI]

    Hudson, Heather M

    2011-05-31T23:59:59.000Z

    The overall goal of this study was to investigate the properties of corticospinal output to a wide range of hindlimb muscles in the primate and to map the representation of individual muscles in hindlimb motor cortex. ...

  8. Grid adaptation for functional outputs of compressible flow simulations

    E-Print Network [OSTI]

    Venditti, David Anthony, 1973-

    2002-01-01T23:59:59.000Z

    An error correction and grid adaptive method is presented for improving the accuracy of functional outputs of compressible flow simulations. The procedure is based on an adjoint formulation in which the estimated error in ...

  9. Process and Intermediate Calculations User AccessInputs Outputs

    E-Print Network [OSTI]

    Process and Intermediate Calculations User AccessInputs Outputs Fire Behavior & Probability STARFire System Flow Valuation Processing Temporal Schedules Smoke · Zones · Zone impact · Emissions Fire and compare Valuation (Structured Elicit Process) 1) Value Layers: · Point (housing, cultural trees, etc

  10. Radiation from Accelerated Branes

    E-Print Network [OSTI]

    Mohab Abou-Zeid; Miguel S. Costa

    2000-01-29T23:59:59.000Z

    The radiation emitted by accelerated fundamental strings and D-branes is studied within the linear approximation to the supergravity limit of string theory. We show that scalar, gauge field and gravitational radiation is generically emitted by such branes. In the case where an external scalar field accelerates the branes, we derive a Larmor-type formula for the emitted scalar radiation and study the angular distribution of the outgoing energy flux. The classical radii of the branes are calculated by means of the corresponding Thompson scattering cross sections. Within the linear approximation, the interaction of the external scalar field with the velocity fields of the branes gives a contribution to the observed gauge field and gravitational radiation.

  11. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E. (Los Alamos, NM); Jachim, Stephen P. (Los Alamos, NM); Natter, Eckard F. (Santa Fe, NM)

    1991-01-01T23:59:59.000Z

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  12. Accelerator research studies

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  13. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21T23:59:59.000Z

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  14. Accelerating QDP++ using GPUs

    E-Print Network [OSTI]

    Frank Winter

    2011-05-11T23:59:59.000Z

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an application example a smearing routine was accelerated to execute on a GPU. A significant speed-up compared to normal CPU execution could be measured.

  15. CESR Test Accelerator

    E-Print Network [OSTI]

    Rubin, David L

    2013-01-01T23:59:59.000Z

    The Cornell Electron Storage Ring (CESR) was reconfigured in 2008 as a test accelerator to investigate the physics of ultra-low emittance damping rings. During the approximately 40 days/year available for dedicated operation as a test accelerator, specialized instrumentation is used to measure growth and mitigation of the electron cloud, emittance growth due to electron cloud, intra-beam scattering, and ions, and single and multi-bunch instabilities generated by collective effects. The flexibility of the CESR guide field optics and the integration of accelerator modeling codes with the control system have made possible an extraordinary range of experiments. Findings at CesrTA with respect to electron cloud effects, emittance tuning techniques, and beam instrumentation for measuring electron cloud, beam sizes, and beam positions are the basis for much of the design of the ILC damping rings as documented in the ILC-Technical Design Report. The program has allowed the Cornell group to cultivate the kind of talen...

  16. Regulatory Reform to Promote Clean Energy: The Potential of Output-Based Emissions Standards

    SciTech Connect (OSTI)

    Cox, Matthew [Georgia Institute of Technology] [Georgia Institute of Technology; Brown, Dr. Marilyn Ann [Georgia Institute of Technology] [Georgia Institute of Technology; Jackson, Roderick K [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Barriers to industrial energy-efficient technologies hinder their use. A number of EPA analyses and industrial experts have found that the utilization of input-based emissions standards (measured in parts-per-million or pounds/MMBtu) in the Clean Air Act creates a regulatory barrier to the installation and deployment of technologies that emit fewer criteria pollutants and use energy more efficiently. Changing emission management strategies to an output-based emissions standard (measured in tons of pollutant emitted) is a way to ameliorate some of these barriers. Combined heat and power (CHP) is one of the key technologies that would see increased industrial application if the emissions standards were modified. Many states have made this change since the EPA first approved it in 2000, although direction from the Federal government could speed implementation modifications. To analyze the national impact of accelerated state adoption of output-based standards on CHP technologies, this paper uses detailed National Energy Modeling System (NEMS) and spreadsheet analysis illustrating two phased-in adoption scenarios for output-based emissions standards in the industrial sector. Benefit/cost metrics are calculated from a private and public perspective, and also a social perspective that considers the criteria and carbon air pollution emissions. These scenarios are compared to the reference case of AEO 2010 and are quite favorable, with a social benefit-cost ratio of 16.0 for a five-year phase-in scenario. In addition, the appropriateness of the Federal role, applicability, technology readiness, and administrative feasibility are discussed.

  17. Recent Advances in Plasma Acceleration

    SciTech Connect (OSTI)

    Hogan, Mark

    2007-03-19T23:59:59.000Z

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  18. Muon Acceleration - RLA and FFAG

    SciTech Connect (OSTI)

    Alex Bogacz

    2011-10-01T23:59:59.000Z

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  19. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect (OSTI)

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31T23:59:59.000Z

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

  20. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01T23:59:59.000Z

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  1. Particle Acceleration by MHD Turbulence

    E-Print Network [OSTI]

    Jungyeon Cho; A. Lazarian

    2005-10-21T23:59:59.000Z

    Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure (low-$\\beta$) and gaseous pressure (high-$\\beta$) dominated plasmas. We consider the acceleration by large scale compressions in both slow and fast particle diffusion limits. We compare the results with the acceleration rate that arises from resonance scattering and Transit-Time Damping (TTD). We establish that fast modes accelerate particles more efficiently than slow modes. We find that particle acceleration by pitch-angle scattering and TTD dominates acceleration by slow or fast modes when the spatial diffusion rate is small. When the rate of spatial diffusion of particles is high, we establish an enhancement of the efficiency of particle acceleration by slow and fast modes in weak turbulence. We show that highly supersonic turbulence is an efficient agent for particle acceleration. We find that even incompressible turbulence can accelerate particles on the scales comparable with the particle mean free path.

  2. Accelerators AND Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACME -Toggle FermilabAccelerators

  3. Steam methane reforming in molten carbonate salt. Final report

    SciTech Connect (OSTI)

    Erickson, D.C.

    1996-05-01T23:59:59.000Z

    This report documents the work accomplished on the project {open_quotes}Steam Methane Reforming in Molten Carbonate Salt.{close_quotes}. This effort has established the conceptual basis for molten carbonate-based steam reforming of methane. It has not proceeded to prototype verification, because corrosion concerns have led to reluctance on the part of large hydrogen producers to adopt the technology. Therefore the focus was shifted to a less corrosive embodiment of the same technology. After considerable development effort it was discovered that a European company (Catalysts and Chemicals Europe) was developing a similar process ({open_quotes}Regate{close_quotes}). Accordingly the focus was shifted a second time, to develop an improvement which is generic to both types of reforming. That work is still in progress, and shows substantial promise.

  4. Methane storms as a driver of Titan's dune orientation

    E-Print Network [OSTI]

    Charnay, Benjamin; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Pont, Sylvain Courrech du; Lucas, Antoine

    2015-01-01T23:59:59.000Z

    Titan's equatorial regions are covered by eastward propagating linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs), which are oriented westward at these latitudes, similar to trade winds on Earth. Different hypotheses have been proposed to address this apparent contradiction, involving Saturn's gravitational tides, large scale topography or wind statistics, but none of them can explain a global eastward dune propagation in the equatorial band. Here we analyse the impact of equinoctial tropical methane storms developing in the superrotating atmosphere (i.e. the eastward winds at high altitude) on Titan's dune orientation. Using mesoscale simulations of convective methane clouds with a GCM wind profile featuring superrotation, we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport, allowing dunes to extend eastward. This analysis therefore suggests a coupling between superrotation, tro...

  5. Seismic-Scale Rock Physics of Methane Hydrate

    SciTech Connect (OSTI)

    Amos Nur

    2009-01-08T23:59:59.000Z

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  6. Water storage key factor in coalbed methane production

    SciTech Connect (OSTI)

    Luckianow, B.J. (Taurus Exploration Inc., Birmingham, AL (US)); Hall, W.L. (Dames and Moore, Atlanta, GA (US))

    1991-03-11T23:59:59.000Z

    Storage ponds provide a cost-effective means to temporarily retain water produced with coalbed methane and permit gas production during times when stream flow rates drop. Normally, water produced with the gas is run into nearby streams, with the dilution rate closely monitored and controlled by environmental agencies. During low stream flow in the Black Warrior basin, Ala., large volumes of produced water must be stored to prevent shut-in of coalbed methane fields. The authors discuss how they constructed such production water facilities for the Cedar Cove field to eliminate periodic field shut-ins as a result of excess water production. The effectiveness of such a storage approach is governed by receiving stream flow variability, production water flow characteristics, and the economics of storage pond construction.

  7. Catalyst for the methanation of carbon monoxide in sour gas

    DOE Patents [OSTI]

    Kustes, William A. (Louisville, KY); Hausberger, Arthur L. (Louisville, KY)

    1985-01-01T23:59:59.000Z

    The invention involves the synergistic effect of the specific catalytic constituents on a specific series of carriers for the methanation of carbon monoxide in the presence of sulfur at relatively high temperatures and at low steam to gas ratios in the range of 0.2:1 or less. This effect was obtained with catalysts comprising the mixed sulfides and oxides of nickel and chromium supported on carriers comprising magnesium aluminate and magnesium silicate. Conversion of carbon monoxide to methane was in the range of from 40 to 80%. Tests of this combination of metal oxides and sulfides on other carriers and tests of other metal oxides and sulfides on the same carrier produced a much lower level of conversion.

  8. Modified Magnicon for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-19T23:59:59.000Z

    Analysis, and low-power cold tests are described on a modified design intended for the Ka-band pulsed magnicon now in use for high-gradient accelerator R and D and rare elementary particle searches at the Yale University Beam Physics Laboratory. The modification is mainly to the output cavity of the magnicon, which presently operates in the TM310 mode. It is proposed to substitute for this a dual-chamber TE311 cavity structure. The first chamber is to extract about 40% of the beam power (about 25 MW) at 34.272 GHz, while the second chamber is to convey the power to four WR-28 output waveguides. Minor design changes are also proposed for the penultimate 11.424 GHz cavity and the beam collector. The intention of these design changes is to allow the magnicon to operate reliably 24/7, with minor sensitivity to operating parameters.

  9. Nonlinear quantum input-output analysis using Volterra series

    E-Print Network [OSTI]

    Jing Zhang; Yu-xi Liu; Re-Bing Wu; Kurt Jacobs; Sahin Kaya Ozdemir; Lan Yang; Tzyh-Jong Tarn; Franco Nori

    2014-08-04T23:59:59.000Z

    Quantum input-output theory plays a very important role for analyzing the dynamics of quantum systems, especially large-scale quantum networks. As an extension of the input-output formalism of Gardiner and Collet, we develop a new approach based on the quantum version of the Volterra series which can be used to analyze nonlinear quantum input-output dynamics. By this approach, we can ignore the internal dynamics of the quantum input-output system and represent the system dynamics by a series of kernel functions. This approach has the great advantage of modelling weak-nonlinear quantum networks. In our approach, the number of parameters, represented by the kernel functions, used to describe the input-output response of a weak-nonlinear quantum network, increases linearly with the scale of the quantum network, not exponentially as usual. Additionally, our approach can be used to formulate the quantum network with both nonlinear and nonconservative components, e.g., quantum amplifiers, which cannot be modelled by the existing methods, such as the Hudson-Parthasarathy model and the quantum transfer function model. We apply our general method to several examples, including Kerr cavities, optomechanical transducers, and a particular coherent feedback system with a nonlinear component and a quantum amplifier in the feedback loop. This approach provides a powerful way to the modelling and control of nonlinear quantum networks.

  10. The world of quantum noise and the fundamental output process

    E-Print Network [OSTI]

    V. P. Belavkin; O. Hirota; R. Hudson

    2005-10-04T23:59:59.000Z

    A stationary theory of quantum stochastic processes of second order is outlined. It includes KMS processes in wide sense like the equilibrium finite temperature quantum noise given by the Planck's spectral formula. It is shown that for each stationary noise there exists a natural output process output process which is identical to the noise in the infinite temperature limit, and flipping with the noise if the time is reversed at finite temperature. A canonical Hilbert space representation of the quantum noise and the fundamental output process is established and a decomposition of their spectra is found. A brief explanation of quantum stochastic integration with respect to the input-output processes is given using only correlation functions. This provides a mathematical foundation for linear stationary filtering transformations of quantum stochastic processes. It is proved that the colored quantum stationary noise and its time-reversed version can be obtained in the second order theory by a linear nonadapted filtering of the standard vacuum noise uniquely defined by the canonical creation and annihilation operators on the spectrum of the input-output pair.

  11. Central-northern Appalachian coalbed methane flow grows

    SciTech Connect (OSTI)

    Lyons, P.C. [Geological Survey, Reston, VA (United States)

    1997-07-07T23:59:59.000Z

    Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

  12. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01T23:59:59.000Z

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  13. Method for in situ biological conversion of coal to methane

    DOE Patents [OSTI]

    Volkwein, Jon C. (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

  14. Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2008-08-11T23:59:59.000Z

    The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

  15. Microwave generated electrodeless lamp for producing bright output

    SciTech Connect (OSTI)

    Wood, Ch. H.; Ury, M. G.

    1985-03-26T23:59:59.000Z

    A microwave generated electrodeless light source for producing a bright output comprising a lamp structure including a microwave chamber and a plasma medium-containing lamp envelope having a maximum dimension which is substantially less than a wavelength disposed therein. To provide the desired radiation output the interior of the chamber is coated with a UV-reflective material and the chamber has an opening for allowing UV radiation to exit, which is covered with a metallic mesh. The chamber is arranged to be near-resonant at a single wavelength, and the lamp envelope has a fill including mercury at an operating pressure of 1-2 atmospheres, while a power density of at least 250-300 (watts/cm/sup 3/) is coupled to the envelope to result in a relatively high deep UV output at a relatively high brightness.

  16. Closed-loop control of ionization oscillations in Hall accelerators

    SciTech Connect (OSTI)

    Barral, S.; Kaczmarczyk, J.; Kurzyna, J. [Institute of Plasma Physics and Laser Microfusion, 01497 Warsaw (Poland); Dudeck, M. [Universite Pierre et Marie Curie, Institut Jean Le Rond d'Alembert, 75252 Paris (France)

    2011-08-15T23:59:59.000Z

    Feedback control of ionization oscillations in Hall accelerators is investigated with a proportional-integral-derivative controller acting on the discharge voltage. The stability of the current is found to systematically improve with proportional control, whereas integral and derivative control have in most cases a detrimental or insignificant impact. At low discharge voltages, proportional control eliminates at the same time ionization breathing oscillations as well as a coexisting low frequency mode. A progressive deterioration of the stability is observed at higher voltage, presumably attributable to the limited output voltage range of the controller. The time-averaged characteristics of the discharge such as average current, thrust and efficiency, remain unchanged within measurement uncertainties.

  17. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10T23:59:59.000Z

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  18. Feed forward rf control system of the accelerator test facility

    SciTech Connect (OSTI)

    Ben-Zvi, I.; Xie, Jialin; Zhang, Renshan.

    1991-01-01T23:59:59.000Z

    We report a scheme to control the amplitude and phase of the rf accelerating field in a klystron driven electron linac. The amplitude and phase distribution within the rf pulse can be controlled to follow specified functions to reduce the energy spread of the electron beam being accelerated. The scheme employs fast beam energy and phase detectors and voltage-controlled electronic attenuator and phase shifter in the amplifier chain. The control voltages of these devices are generated by arbitrary function generators. The function generators' outputs are calculated numerically using an algorithm which takes into consideration the desired target function and the deviation (due to load variations or system parameter drift) from the target function. Results of preliminary tests on producing flat rf power and phase pulses from a high power klystron indicate that amplitude variation of {plus minus}0.2% and phase variation of {plus minus}1{degree} can be readily achieved. 4 refs., 3 figs.

  19. A Novel Linear Accelerator For Image Guided Radiation Therapy

    SciTech Connect (OSTI)

    Ding Xiaodong; Boucher, Salime [RadiaBeam Technologies, 1717 Stewart St., Santa Monica, CA 90404 (United States)

    2011-06-01T23:59:59.000Z

    RadiaBeam is developing a novel linear accelerator which produces both kilovoltage ({approx}100 keV) X-rays for imaging, and megavoltage (6 to 20 MeV) X-rays for therapy. We call this system the DEXITron: Dual Energy X-ray source for Imaging and Therapy. The Dexitron is enabled by an innovation in the electromagnetic design of the linac, which allows the output energy to be rapidly switched from high energy to low energy. In brief, the method involves switching the phase of the radiofrequency (RF) power by 180 degrees at some point in the linac such that, after that point, the linac decelerates the beam, rather than accelerating it. The Dexitron will have comparable cost to other linacs, and avoids the problems associated with current IGRT equipment.

  20. Self-consistent input-output formulation of quantum feedback

    SciTech Connect (OSTI)

    Yanagisawa, M. [Department of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Hope, J. J. [Department of Quantum Science, The Australian National University, Canberra, ACT 0200 (Australia)

    2010-12-15T23:59:59.000Z

    A simple method of analyzing quantum feedback circuits is presented. The classical analysis of feedback circuits can be generalized to apply to quantum systems by mapping the field operators of various outputs to other inputs via the standard input-output formalism. Unfortunately, this has led to unphysical results such as the violation of the Heisenberg uncertainty principle for in-loop fields. This paper shows that this general approach can be redeemed by ensuring a self-consistently Hermitian Hamiltonian. The calculations are based on a noncommutative calculus of operator derivatives. A full description of several examples of quantum linear and nonlinear feedback for optical systems is presented.

  1. Motor-output variability in a ballistic task

    E-Print Network [OSTI]

    Weeks, Douglas Lane

    1981-01-01T23:59:59.000Z

    MOTOR-OUTPUT VARIABILIT'f IN A BALLISTIC TASK A Thesis by DOUGLAS LANE WEEKS Submitted to the Graduate College of Texas ASM University in partsal fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject...: Physical Education MOTOR-OUTPUT VARIABILITY IN A BALLISTIC TASK A Thesis by DOUGLAS LANE WEEKS Approved as to style and content by: Chairman of Committee , ember C ee. yc ace Member )g p~ Head of Department August 1981 ADS!RACT !Notor...

  2. Thomas Precession by Uniform Acceleration

    E-Print Network [OSTI]

    Miroslav Pardy

    2014-12-09T23:59:59.000Z

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  3. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Accelerator Hall A Hall B Hall C 12 GeV Upgrade Experimental Techniques...

  4. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04T23:59:59.000Z

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  5. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, J.A.; Greenwald, S.

    1989-05-30T23:59:59.000Z

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  6. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

    1989-01-01T23:59:59.000Z

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  7. Thomas Precession by Uniform Acceleration

    E-Print Network [OSTI]

    Pardy, Miroslav

    2015-01-01T23:59:59.000Z

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  8. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  9. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    E-Print Network [OSTI]

    Cary, J.R.

    2008-01-01T23:59:59.000Z

    a broad computational accelerator physics initiative † J Rbroad computational accelerator physics initiative J R Caryand future to the accelerator physics community of the

  10. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    E-Print Network [OSTI]

    Kwon, T.H.

    2012-01-01T23:59:59.000Z

    Dissociation heat of mixed-gas hydrate composed of methaneInternational Conference on Gas Hydrates (ICGH 2008), 2008,and specific heats of gas hydrates under submarine and

  11. Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates

    E-Print Network [OSTI]

    Berg, Richard D.

    2008-01-01T23:59:59.000Z

    methane flux from underlying gas hydrate. Geology , 24 (7),overlying the Blake Ridge gas hydrates. In Proceedings ofgas transport in shallow sediments of an accretionary complex, Southern Hydrate

  12. Quarterly review of methane from coal seams Technology. Volume 7, Numbers 1 and 2. October 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Contents include: basin activities--(western Washington, Powder River Basin, Wyoming, Greater Green River Basin, Wyoming and Colorado, Piceance Basin, Colorado, San Juan Basin, Colorado and New Mexico, Raton Basin, Colorado and New Mexico, Black Warrior Basin, Alabama); features--(research in small-scale gas processing, GRI publications on coalbed methane, coalbed methane information sources); methane from coal seams research--(multiple coal seams project, hydrologic characterization of coal seams, spalling and the development of a hydraulic-fracturing strategy for coal, geologic evaluation of critical production parameters for coalbed methane resources, permeability changes resulting from gas desorption); technical events; departments.

  13. Production and Ebullition of Methane in a Shallow Eutrophic Lake (Lake Elsinore, CA)

    E-Print Network [OSTI]

    Martinez, Denise Nicole

    2012-01-01T23:59:59.000Z

    Methane release through resuspension of littoral sediment.its susceptibility to resuspension as well as its particleet al. , 2011). Sediment resuspension brought about through

  14. Presentations from the March 27th - 28th Methane Hydrates Advisory...

    Office of Environmental Management (EM)

    from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate Research DOE's Natural Gas Hydrates Program Gas Hydrates as a Geohazard: What...

  15. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  16. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  17. The Radiological Research Accelerator THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    The Radiological Research Accelerator Facility #12;84 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY Director: David J. Brenner, Ph.D., D.Sc., Manager: Stephen A. Marino, M.S. An NIH SupportedV/µm 4 He ions using the microbeam facility (Exp. 73) also continued. The transformation frequency

  18. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    SciTech Connect (OSTI)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O'Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K. [Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany) and Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany); Stanford Linear Accelerator Center (United States); Max-Planck-Institut fuer Physik, Muenchen (Germany); Tech-X Corporation, Boulder, Colorado (United States) and 1348 Redwood Ave., Boulder, Colorado 80304 (United States); Budker Institute of Nuclear Physics SB RAS, 630090, Novosibirsk (Russian Federation) and Novosibirsk State University, 630090, Novosibirsk (Russian Federation)

    2012-12-21T23:59:59.000Z

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  19. Muon Collider Progress: Accelerators

    E-Print Network [OSTI]

    Michael S. Zisman

    2011-09-14T23:59:59.000Z

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance ("cooling"). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  20. Control of fuel cell power output Federico Zenith, Sigurd Skogestad *

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of fuel cell power output Federico Zenith, Sigurd Skogestad * Department of Chemical A simplified dynamic model for fuel cells is developed, based on the concept of instantaneous characteristic, which is the set of values of current and voltage that a fuel cell can reach instantaneously

  1. On Optimal Distributed Output-Feedback Control over Acyclic Graphs

    E-Print Network [OSTI]

    Gattami, Ather

    2012-01-01T23:59:59.000Z

    In this paper, we consider the problem of distributed optimal control of linear dynamical systems with a quadratic cost criterion. We study the case of output feedback control for two interconnected dynamical systems, and show that the linear optimal solution can be obtained from a combination of two uncoupled Riccati equations and two coupled Riccati equations.

  2. TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT

    E-Print Network [OSTI]

    Pang, Grantham

    1 TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT Grantham Pang, Chi emitting diodes; tricolor display; audio communication. I. Introduction This paper relates to a tricolor broadcasting through the visible light rays transmitted by the display panel or assembly. Keywords: light

  3. The effects of output transformers on distortion in audio amplifiers

    E-Print Network [OSTI]

    Lanier, Ross Edwin

    1949-01-01T23:59:59.000Z

    Introduction ~. . . . . . . . , . . . . . . ~. . . . . 7 Frequency Discrimination. . . . . . . . . . . . . . . . 9 Harmonic Distortion. ~ ~. . . . ~ 21 Distortion by the Intermodulationmethod. . . . . . . . 47 Comparison of Harmonic and Intermodulation... current in the primary as a function of frequency . 19 Output voltage of transformer 3 without direct current in the primary as a function of frequency 20 Block diagram for measuring distortion by the harmonic method 26 Per cent harmonic distortion...

  4. ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO

    E-Print Network [OSTI]

    Groppi, Christopher

    Initialization Program - ADIOS INITB Appendix 2 Test Program - ADIOS TEST Appendix 3 AND9513 Utilization Appendix HI-506A. Multiplexer F. Sprague UHP -507 Relay Driver G. Teledyne Solid-State Relays H. Advanced bus driver, a 4-bit relay driver, or two solid-state relays. Three of the digital output bits can

  5. Convergent relaxations of polynomial matrix inequalities and static output feedback

    E-Print Network [OSTI]

    Henrion, Didier

    (LMI) relaxations to solve non-convex polynomial matrix in- equality (PMI) optimization problems minimizers that satisfy the PMI. The approach is successfully applied to PMIs arising from static output- mulated as polynomial matrix inequality (PMI) optimization problems in the controller parameters

  6. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01T23:59:59.000Z

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  7. I Investigation of Pellet Acceleration

    E-Print Network [OSTI]

    I Investigation of Pellet Acceleration by an Arc heated Gas Gun An Interim Report INVESTIGATION OP PELLET ACCELERATION BY AN ARC HEATED GAS GUN* An Interim Report on the Investigations carried, and K.-V. Weisberg Abstract. Deep penetration of pellets into the JET plasma may prove to be a useful

  8. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  9. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

    2011-05-15T23:59:59.000Z

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  10. Particle Acceleration in Astrophysical Sources

    E-Print Network [OSTI]

    Amato, Elena

    2015-01-01T23:59:59.000Z

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  11. Oxidation Reactions Performed by Soluble Methane Monooxygenase Hydroxylase Intermediates H[subscript peroxo] and Q Proceed by Distinct Mechanisms

    E-Print Network [OSTI]

    Tinberg, Christine E.

    Soluble methane monooxygenase is a bacterial enzyme that converts methane to methanol at a carboxylate-bridged diiron center with exquisite control. Because the oxidizing power required for this transformation is demanding, ...

  12. Velocity bunching in travelling wave accelerator with low acceleration gradient

    E-Print Network [OSTI]

    Huang, Rui-Xuan; Li, Wei-Wei; Jia, Qi-Ka

    2013-01-01T23:59:59.000Z

    We present the analytical and simulated results concerning the influences of the acceleration gradient in the velocity bunching process, which is a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. Our study shows that the bunch compression application with low acceleration gradient is more tolerant to phase jitter and more successful to obtain compressed electron beam with symmetrical longitudinal distribution and low energy spread. We also present a transverse emittance compensation scheme to compensate the emittance growth caused by the increasing of the space charge force in the compressing process that is easy to be adjusted for different compressing factors.

  13. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22T23:59:59.000Z

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  14. Appalachian basin coal-bed methane: Elephant or flea

    SciTech Connect (OSTI)

    Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

    1991-08-01T23:59:59.000Z

    Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

  15. New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN ECoalbed Methane Proved

  16. New York Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) LiquidsCoalbed Methane Proved

  17. Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet) Texas Coalbed Methane Proved

  18. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197 14,1978. Number ofCoalbed Methane

  19. METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard Cowart, Chair DATE: JuneON24 March 2014 Re:METHANE

  20. Methane Hydrate Advisory Committee Charter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard2015 RDSHARP Supporting ElementsDepartmentMethane

  1. Methane Hydrate Advisory Committee Meeting Minutes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy MetalProgram Areas »26,Methane

  2. Methane Hydrate R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy MetalProgramFiscal YearMethane

  3. Methane Hydrates and Climate Change | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstitute RegardingMethane hydrates store huge volumes

  4. Landfill Methane Project Development Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLand O LakesMethane Project

  5. Four Corners methane hotspot points to coal-related sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms & NewsMethane hotspot

  6. Radiological Research Accelerator Facility Service Request Form

    E-Print Network [OSTI]

    Radiological Research Accelerator Facility Service Request Form National Institute of Biomedical Imaging and Bioengineering Radiological Research Accelerator Facility Service request form Estimate when(s) to control for this experiment (if more than one, please prioritize): Radiological Research Accelerator

  7. FPGA Acceleration of Discrete Molecular Dynamics Simulation

    E-Print Network [OSTI]

    Herbordt, Martin

    ' & $ % FPGA Acceleration of Discrete Molecular Dynamics Simulation Joshua Model Thesis submitted UNIVERSITY COLLEGE OF ENGINEERING Thesis FPGA Acceleration of Discrete Molecular Dynamics Simulation Acceleration of Discrete Molecular Dynamics Simulation Joshua Model ABSTRACT Molecular dynamics simulation

  8. TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    IN THE PHYSICS OF PARTICLE ACCELERATORS A.M. Sessler TWO-IN THE PHYSICS OF PARTICLE ACCELERATORS Andrew M. SesslerBruck, "Circular Particle Accelerators," PUF, Paris (1966).

  9. Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor

    E-Print Network [OSTI]

    Mallinson, Richard

    Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge help reduce the problem of global warming. There are vast reserves of natural gas around the world.1, Room T 335, Norman, Oklahoma 73019 This study on the partial oxidation of methane in a silent electric

  10. Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde

    E-Print Network [OSTI]

    Haller, Gary L.

    that of oil. Methane, as the principle component of the natural gas and by product of oil refining and chemical processing, has been considered as an important sustainable feedstock for the chemical industry­4]. Industrially, formaldehyde is produced from methane by a three-step process including: (i) high temperature

  11. SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    process of a solar reformer of dry methane reforming was proposed to operate in a temperature range of 600SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR Khalid Al-Ali 1 including lower melting point, thermal and chemical stability, acting simultaneously as heat transport

  12. Methane emission from flooded coal seams in abandoned mines, in the light of laboratory investigations

    E-Print Network [OSTI]

    Boyer, Edmond

    Methane emission from flooded coal seams in abandoned mines, in the light of laboratory of methane from flooded unexploited coal seams Field experience from the flooding operations of the abandoned gassy coal seams in abandoned mines. The tests included the following main stages: - Determining

  13. Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane-

    E-Print Network [OSTI]

    Gülder, �mer L.

    -based to hydrogen-based economy are still under discussion and the implementation of the hydrogen- based economy methane flame in the methane- dominated regime. Copyright ª 2014, Hydrogen Energy Publications, LLC appear to be a promising option to synergistically pave the way toward pure hydrogen- based combustion

  14. A MOLECULAR SIMULATION STUDY OF ADSORPTION OF NITROGEN AND METHANE IN TITANIUM SILICATE (ETS-4)

    E-Print Network [OSTI]

    Lisal, Martin

    A MOLECULAR SIMULATION STUDY OF ADSORPTION OF NITROGEN AND METHANE IN TITANIUM SILICATE (ETS-4 titanium silicate ETS-4 (Engelhard titanium silicate) are calculated using grand canonical Monte Carlo. Commun. 2010, Vol. 75, No. 2, pp. 145­164 Adsorption of Nitrogen and Methane in Titanium Silicate 145

  15. A LEAN METHANE PREMIXED LAMINAR FLAME DOPED WITH COMPONENTS OF DIESEL FUEL

    E-Print Network [OSTI]

    Boyer, Edmond

    A LEAN METHANE PREMIXED LAMINAR FLAME DOPED WITH COMPONENTS OF DIESEL FUEL PART I: N-BUTYLBENZENE E better understand the chemistry involved during the combustion of components of diesel fuel flow rate analyses. Keywords: Premixed laminar flame, methane, n-butylbenzene, modelling, diesel fuel

  16. Molecular Properties of the "Ideal" Inhaled Anesthetic: Studies of Fluorinated Methanes, Ethanes, Propanes,

    E-Print Network [OSTI]

    Hudlicky, Tomas

    , Propanes, and Butanes E. 1Eger, 11, MD*, J. Liu, MD*, D. D. Koblin, PhD, MDt, M. J. Laster, DVM*, S. Taheri unfluorinated, partially fluorinated, and perfluorinated methanes, ethanes, propanes, and butanes to define fluorinated methanes, ethanes, propanes, and butanes, also obtaining limited data on longer- chained alkanes

  17. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

  18. Author's personal copy Methane seepage along the Hikurangi Margin of New Zealand: Geochemical

    E-Print Network [OSTI]

    Wehrli, Bernhard

    : Methane seepage gas hydrate water column sea surface carbon isotopes Hikurangi Margin The concentration and carbon isotope values of dissolved methane were measured in the water column at Rock Garden, Omakere­Temperature­Depth (CTD) operations were at Faure Site of Rock Garden. Here, seafloor bubble release was observed by ROV

  19. Microbes Turn Electricity Directly To Methane Without Hydrogen Generation March 30, 2009

    E-Print Network [OSTI]

    catalysts and at a lower energy level than converting carbon dioxide to methane using conventional, non Park, Pa. -- A tiny microbe can take electricity and directly convert carbon dioxide and water to methane, producing a portable energy source with a potentially neutral carbon footprint, according

  20. Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge

    E-Print Network [OSTI]

    Mallinson, Richard

    Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge production has been steam reforming, shown in reaction 4. It is very useful to use low-cost materials

  1. Substrate Hydroxylation in Methane Monooxygenase: Quantitative Modeling via Mixed Quantum Mechanics/

    E-Print Network [OSTI]

    Gherman, Benjamin F.

    at an atomic level of detail.4-7 In particular, the use of ab initio quantum chemical methods based on densitySubstrate Hydroxylation in Methane Monooxygenase: Quantitative Modeling via Mixed Quantum Mechanics with mixed quantum mechanics/molecular mechanics (QM/MM) methods, the hydroxylation of methane

  2. Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , steam, burning velocity, chemiluminescence, OH Introduction In ultra-wet gas turbines, the heatExperimental investigation of burning velocities of ultra-wet methane-air-steam mixtures Eric Abstract Global burning velocities of methane-air-steam mixtures are measured on prismatic laminar Bunsen

  3. Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions

    E-Print Network [OSTI]

    Columbia University

    for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard methane (CH4 )annually to the world's total CH4 emission of ~550 Tg/yr. Recycling and thermal treatment destined for landfills and to mitigating CH4 emission. Waste generation is estimated to more than double

  4. MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE

    E-Print Network [OSTI]

    MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

  5. Acetic Acid from the Carbonylation of Chloride Methane Over Rhodium Based Catalysts

    E-Print Network [OSTI]

    Bao, Xinhe

    on an indirect route via synthesis gas (syngas), i.e., methane is first con- verted to syngas before it is further transformed into other useful products [6]. However, the production of syngas from methane) 130:286­290 DOI 10.1007/s10562-009-0017-9 #12;[12], which is produced from syngas feedstock with Cu

  6. MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR WATER -METHANE AND WATER -ETHANE MIXTURES

    E-Print Network [OSTI]

    1 MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR WATER - METHANE AND WATER - ETHANE MIXTURES Jeffrey were used to calculate water - methane and water - ethane phase equilibria over a wide range and petrochemical industry, natural and petroleum gas production, and environmental control. For many

  7. Experimental study on the formation and dissociation conditions of methane hydrates in porous media

    E-Print Network [OSTI]

    Jung, Woodong

    2002-01-01T23:59:59.000Z

    hydrates formed by methane gas and pure water in porous media. Methane gas hydrates were formed in a cell packed with 0.177-mm (0.007 in) diameter single sand (U.S. Sieve Series Designation Mesh No. 80) and 0.420-mm (0.017 in) diameter single sand (U...

  8. Department of Earth and Mineral Engineering Spring 2011 Oxidative Coupling of Methane Reactor

    E-Print Network [OSTI]

    Demirel, Melik C.

    Reactor Overview The sponsor has tasked our team with the design, construction and testing of an experimental reactor designed to couple methane to ethane and dehydrogenate ethane to ethylene. The reactor and build the reactor and perform methane conversion testing to provide proof of concept for the OCM

  9. Modeling the climate response to a massive methane release from gas hydrates

    E-Print Network [OSTI]

    Renssen, Hans

    Modeling the climate response to a massive methane release from gas hydrates H. Renssen and C. J release from gas hydrates, Paleoceanography, 19, PA2010, doi:10.1029/2003PA000968. 1. Introduction [2] Catastrophic releases of methane gas from hydrates (clathrates) have been mentioned to be responsible for rapid

  10. Observer-Controllers for Output Regulation: the Internal Model Principle Revisited

    E-Print Network [OSTI]

    Pao, Lucy Y.

    Observer-Controllers for Output Regulation: the Internal Model Principle Revisited Jason H. Laks rejection;tracking;model predictive control;output feedback control 1 Introduction Output regulation, the design of an output regulating observer-controller is less clear. This latter approach is based

  11. Acceleration of Radiance for Lighting Simulation by Using Parallel Computing with OpenCL

    SciTech Connect (OSTI)

    Zuo, Wangda; McNeil, Andrew; Wetter, Michael; Lee, Eleanor

    2011-09-06T23:59:59.000Z

    We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross-platform parallel programming language. Numerical experiments show that the combination of the above measures can speed up the annual daylighting simulations 101.7 times or 28.6 times when the sky vector has 146 or 2306 elements, respectively.

  12. High methane formation during the temperature-programmed decomposition in flowing hydrogen of supported mononuclear and polynuclear carbonyl complexes

    SciTech Connect (OSTI)

    Hucul, D.A.; Brenner, A.

    1981-01-14T23:59:59.000Z

    This paper presents the first detailed study of the temperature-programmed decomposition (TPDE) in flowing hydrogen of every element which forms a stable carbonyl. The investigation shows that these systems have an unexpectedly high propensity to form methane. The parameters affecting the yield of methane are described and this stoichiometric reaction is compared to catalytic methanation. (AT)

  13. Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates

    E-Print Network [OSTI]

    methane release from gas hydrates Gavin A. Schmidt and Drew T. Shindell National Aeronautics and Space of methane gas (CH4) from hydrate deposits on the continental slope. We investigate whether reported PETM, and climate change as a consequence of a massive methane release from gas hydrates, Paleoceanography, 18

  14. On Hastings' counterexamples to the minimum output entropy additivity conjecture

    E-Print Network [OSTI]

    Fernando G. S. L. Brandao; Michal Horodecki

    2009-07-19T23:59:59.000Z

    Hastings recently reported a randomized construction of channels violating the minimum output entropy additivity conjecture. Here we revisit his argument, presenting a simplified proof. In particular, we do not resort to the exact probability distribution of the Schmidt coefficients of a random bipartite pure state, as in the original proof, but rather derive the necessary large deviation bounds by a concentration of measure argument. Furthermore, we prove non-additivity for the overwhelming majority of channels consisting of a Haar random isometry followed by partial trace over the environment, for an environment dimension much bigger than the output dimension. This makes Hastings' original reasoning clearer and extends the class of channels for which additivity can be shown to be violated.

  15. Optical device with conical input and output prism faces

    DOE Patents [OSTI]

    Brunsden, Barry S. (Chicago, IL)

    1981-01-01T23:59:59.000Z

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  16. An Advanced simulation Code for Modeling Inductive Output Tubes

    SciTech Connect (OSTI)

    Thuc Bui; R. Lawrence Ives

    2012-04-27T23:59:59.000Z

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

  17. Experimental test accelerator (ETA) II

    SciTech Connect (OSTI)

    Fessenden, T.J.; Atchison, W.L.; Birx, D.L.

    1981-03-06T23:59:59.000Z

    The Experimental Test Accelerator (ETA) is designed to produce a 10 kAmp electron beam at an energy of 4.5 MeV in 40 nsec pulses at an average rate of 2 pps. The accelerator also operates in bursts of 5 pulses spaced by as little as one millisec at an average rate of 5 pps. The machine is currently operating near 80% of its design values and has accumulated over 2.5 million pulses - mostly at a rate of one pps. The plasma cathode electron source, the remainder of the accelerator, and the operating characteristics of the machine are discussed.

  18. Cosmic Particle Acceleration: Basic Issues

    E-Print Network [OSTI]

    T. W. Jones

    2000-12-22T23:59:59.000Z

    Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

  19. Reliable Gas Turbine Output: Attaining Temperature Independent Performance

    E-Print Network [OSTI]

    Neeley, J. E.; Patton, S.; Holder, F.

    % of the electric system, could create reliability and operational problems. This paper explores the potential for maintaining constant, reliable outputs from gas turbines by cooling ambient air temperatures before the air is used in the compressor section... strides have been made in the development of both aircraft, aircraft-derivative, and industrial gas turbines. The Basic Cycle The basic gas turbine engine consists of a compressor, a combustor, and a turbine in series. The intake air is compressed...

  20. Simple SPICE model for comparison of CMOS output driver circuits

    E-Print Network [OSTI]

    Hermann, John Karl

    1993-01-01T23:59:59.000Z

    to monitor the ground nodes of output driver circuits for noise. Both relative performance and noise levels are generated through the simulations. A test device was built to confirm that the model was effective in speed and noise comparisons. Values were... on CMOS technologies. Journal model is IEEE 'I?ansactions on Automatic Control. A. Literature Survey Research has been done in the past concerning noise generated by digital logic de- vices. In particular, Advanced CMOS Logic (ACL) integrated circuits...

  1. Terahertz radiation from laser accelerated electron bunches

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    NUMBER 5 MAY 2004 Terahertz radiation from laser acceleratedand millimeter wave radiation from laser acceleratedNo. 5, May 2004 Terahertz radiation from laser accelerated

  2. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01T23:59:59.000Z

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  3. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United...

  4. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Particle Accelerator Sets World Record Berkeley Lab Particle Accelerator Sets World Record Simulations at NERSC Help Validate Experimental Laser-Plasma Design December...

  5. Input-output multiplier distributions from probabilistic production paths

    SciTech Connect (OSTI)

    Konecny, R.T.

    1987-01-01T23:59:59.000Z

    In the standard Leontief input-output model, a single dominant technology is assumed in the production of a particular commodity. However, in the real world, quite similar commodities are produced by firms with vastly different technologies. In addressing this limitation, the Probabilistic Production Path model (PPP) is used to investigate both the method of production and identity of the producer. An important feature of the PPP model is the consideration of the effects that heterogeneous technologies and dissimilar trade patterns have on the properties of the distribution of input-output multipliers. The derivation of the distribution of output multipliers is generalized for discrete probabilities based on market shares. Due to the complexity of the generalized solution, a simulation model is used to approximate the multiplier distribution. Results of the model show that the distributional properties of the multipliers are unpredictable, with the majority of the distributions being multimodal. Typically, the mean of the multipliers lies in a trough between two modes. Multimodal multiplier distributions were found to have a tighter symmetric interval than the corresponding standard normal confidence interval. Therefore, the use of the normal confidence interval appears to be sufficient, though overstated, for the construction of confidence intervals in the PPP model.

  6. Development of output user interface software to support analysis

    SciTech Connect (OSTI)

    Wahanani, Nursinta Adi, E-mail: sintaadi@batan.go.id; Natsir, Khairina, E-mail: sintaadi@batan.go.id; Hartini, Entin, E-mail: sintaadi@batan.go.id [Center for Development of Nuclear Informatics - National Nuclear Energy Agency, PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)

    2014-09-30T23:59:59.000Z

    Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this software 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.

  7. Ring laser having an output at a single frequency

    DOE Patents [OSTI]

    Hackell, Lloyd A. (Livermore, CA)

    1991-01-01T23:59:59.000Z

    A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.

  8. Variability of the methane trapping in martian subsurface clathrate hydrates

    E-Print Network [OSTI]

    Thomas, Caroline; Picaud, Sylvain; Ballenegger, Vincent

    2008-01-01T23:59:59.000Z

    Recent observations have evidenced traces of methane CH4 heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxyde, nitrogen and argon, together with met...

  9. Structure Stability of Methane Hydrate at High Pressures

    SciTech Connect (OSTI)

    J Shu; X Chen; I Chou; W Yang; J Hu; R Hemley; K Mao

    2011-12-31T23:59:59.000Z

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P6{sub 3}/mmc, respectively. Upon compression, sI methanehydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methanehydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methanehydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3mstructure and ice VII (Pn3m). The results highlight the role of guest (CH{sub 4})-host (H{sub 2}O) interactions in the stabilization of the hydratestructures under pressure.

  10. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01T23:59:59.000Z

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  11. Linear Accelerator | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photo below). Selective phasing of the electric field accelerates the electrons to 450 million volts (MeV). At 450 MeV, the electrons are relativistic: they are traveling at...

  12. The Sustainable Building-Accelerator 

    E-Print Network [OSTI]

    Maassen, W.H.

    2011-01-01T23:59:59.000Z

    stages to generate optimal design solutions. The ''Sustainable Building - Accelerator'' supports stakeholders to decide on sustainable solutions by giving them cost and benefit information of design solutions. This information provides them...

  13. Israel Careers ACCELERATE YOUR FUTURE

    E-Print Network [OSTI]

    Rimon, Elon

    Lithography Control products within the product lifecycle process including defining requirements, settingIsrael Careers ACCELERATE YOUR FUTURE Product Marketing Manager Job Description: Product Marketing Manager at the Optical Metrology Division is responsible for product strategy and customer interface

  14. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect (OSTI)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01T23:59:59.000Z

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

  15. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31T23:59:59.000Z

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  16. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18T23:59:59.000Z

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  17. BRIEF HISTORY OF FFAG ACCELERATORS.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2006-12-04T23:59:59.000Z

    Colleagues of mine have asked me few times why we have today so much interest in Fixed-Field Alternating-Gradient (FFAG) accelerators when these were invented a long time ago, and have always been ignored since then. I try here to give a reply with a short history of FFAG accelerators, at least as I know it. I take also the opportunity to clarify few definitions.

  18. DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL

    E-Print Network [OSTI]

    DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL D. Douglas, S. V, Newport News, VA23606, USA Abstract An upgrade of the Jefferson Lab IR FEL [1] is now un- der construction. It will provide 10 kW output light power in a wavelength range of 2­10 µm. The FEL will be driven by a modest

  19. Quarterly review of methane from coal-seams technology. Volume 7, Number 3, July-September 1989

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The report contains: sources of coal well information; Powder River Basin, Wyoming; greater Green River coal region, Wyoming and Colorado; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; the United States coalbed methane resource; western cretaceous coal seams project; multiple coal seams project; spalling and the development of a hydraulic fracturing strategy for coal; geologic evaluation of critical production parameters for coalbed methane resources; coalbed methane opportunities in Alberta; the coalbed methane forum; eastern coalbed methane forum.

  20. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19T23:59:59.000Z

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  1. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    SciTech Connect (OSTI)

    Mea Cook; Lloyd Keigwin

    2007-11-30T23:59:59.000Z

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers produced by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.

  2. Absorption Coefficients of the Methane-Nitrogen Binary Ice System: Implications for Pluto

    E-Print Network [OSTI]

    Protopapa, S; Tegler, S C; Bergonio, J M

    2015-01-01T23:59:59.000Z

    The methane-nitrogen phase diagram of Prokhvatilov and Yantsevich (1983) indicates that at temperatures relevant to the surfaces of icy dwarf planets like Pluto, two phases contribute to the methane absorptions: nitrogen saturated with methane $\\bf{\\bar{N_{2}}}$:CH$_{4}$ and methane saturated with nitrogen $\\bf{\\bar{CH_{4}}}$:N$_{2}$. No optical constants are available so far for the latter component limiting construction of a proper model, in compliance with thermodynamic equilibrium considerations. New optical constants for solid solutions of methane diluted in nitrogen (N$_{2}$:CH$_{4}$) and nitrogen diluted in methane (CH$_{4}$:N$_{2}$) are presented at temperatures between 40 and 90 K, in the wavelength range 1.1-2.7 $\\mu$m at different mixing ratios. These optical constants are derived from transmission measurements of crystals grown from the liquid phase in closed cells. A systematic study of the changes of methane and nitrogen solid mixtures spectral behavior with mixing ratio and temperature is prese...

  3. High Gradient Two-Beam Electron Accelerator

    SciTech Connect (OSTI)

    Jiang, Y. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Kazakov, S. Yu. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kuzikov, S. V. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Institute of Applied Physics, Nizhny Novgorod, 603600 (Russian Federation); Hirshfield, J. L. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States)

    2010-11-04T23:59:59.000Z

    A high-gradient two-beam electron accelerator structure using detuned cavities is described. A self-consistent theory based on a circuit model is presented to calculate idealized acceleration gradient, transformer ratio, and efficiency for energy transfer from the drive beam to the accelerated beam. Experimental efforts are being carried out to demonstrate this acceleration concept.

  4. RADIO EMISSION OF SOLAR FLARE PARTICLE ACCELERATION

    E-Print Network [OSTI]

    RADIO EMISSION OF SOLAR FLARE PARTICLE ACCELERATION A. O. Benz Abstract The solar corona is a very be considered as a particle accelerator. The free mobility of charged particles in a dilute plasma to accelerate particles in resonance. From a plasma physics point of view, acceleration is not surprising

  5. DEVELOPMENT OF A CATALYST/SORBENT FOR METHANE REFORMING

    SciTech Connect (OSTI)

    B.H. Shanks; T.D. Wheelock; Justinus A. Satrio; Timothy Diehl; Brigitte Vollmer

    2004-09-27T23:59:59.000Z

    This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material with {gamma}-alumina having a much greater surface area. This replacement had the unfortunate consequence of reducing the overall compressive strength of the core-in-shell pellets. Therefore, a preliminary study of the factors that control the surface area and compressive strength of the shell material was conducted. The important factors were identified as the relative concentrations and particle size distributions of the {alpha}-alumina, {gamma}-alumina, and limestone particles plus the calcination temperature and time used for sintering the shell material. An optimization of these factors in the future could lead to the development of a material that has both the necessary mechanical strength and catalytic activity.

  6. Identification of the source of methane at a hazardous waste treatment facility using isotopic analysis

    SciTech Connect (OSTI)

    Hackley, K.C.; Liu, C.L. (Illinois State Geological Survey, Peabody, IL (United States)); Trainor, D.P. (Dames and Moore, Madison, WI (United States))

    1992-01-01T23:59:59.000Z

    Isotopic analyses have been used to determine the source of methane in subsurface sediments at a hazardous waste treatment facility in the Lake Calumet area of Chicago, Illinois. The study area is surrounded by landfills and other waste management operations and has a long history of waste disposal. The facility property consists of land constructed of approximately 15 feet of fill placed over lake sediments. The fill is underlain by successively older lacustrine and glacial till deposits to a maximum depth of approximately 80 feet. During a subsurface investigation of the site performed for a RCRA Facility Investigation of former solid waste management units (SWMUs) in the fill, significant quantities of methane were encountered in the natural deposits. Gas samples were collected from the headspace of 11 piezometers screened at depths of approximately 30, 40, and 50 feet beneath the surface. Methane concentrations up to 75% by volume were observed in some of the piezometers. Stable isotope analyses were completed on methane and associated CO[sub 2] separated from the gas samples. Radiocarbon (C-14) analyses were also completed on several of the samples. The delta C-13 results for the intermediate and deep zones are indicative of methane produced by microbial reduction of CO[sub 2]. The methane occurring in the shallow zone appears to be a mixture of methane from the intermediate zone and methane produced by microbial fermentation of naturally (nonanthropogenic) buried organic matter within the shallow lacustrine sediments. According to the isotopic and chemical results, the methane does not appear to be related to gas generation from nearby landfills or from organic wastes previously placed in the former facility SWMUs.

  7. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  8. Ultra-high vacuum photoelectron linear accelerator

    DOE Patents [OSTI]

    Yu, David U.L.; Luo, Yan

    2013-07-16T23:59:59.000Z

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  9. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

    2009-06-02T23:59:59.000Z

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  10. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

    2010-08-24T23:59:59.000Z

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  11. Efficient gas-separation process to upgrade dilute methane stream for use as fuel

    DOE Patents [OSTI]

    Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

    2012-03-06T23:59:59.000Z

    A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

  12. Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC

    E-Print Network [OSTI]

    Wechsler, Risa H.

    #12;Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC is continually improving accelerators, both here and at other laboratories, and paving the way for a new generation of particle acceleration technology. SLAC's famous linear accelerator

  13. New thermodynamic diagrams developed for methane and ethane

    SciTech Connect (OSTI)

    Yaws, C.L.; Sheth, S.D.; Han, M. [Lamar Univ., Beaumont, TX (United States)

    1995-12-04T23:59:59.000Z

    Thermodynamic diagrams have been developed for methane and ethane. The diagrams determine volume and enthalpy as a function of pressure and temperature. The diagrams cover a wide range of conditions and are designed for ease of use. The enthalpy diagrams also contain constant-entropy lines, which allow engineers to solve second-law problems such as adiabatic expansion and fluid compression. Each diagram includes: a two-phase region for saturated liquid and vapor; a superheated gas region for gases at temperatures above the saturation temperature; a subcooled liquid region for liquids at temperatures below the saturation temperature; and a supercritical region for temperatures and pressures above the critical point. Representative engineering uses are illustrated in three examples.

  14. DOE final report: Studies on the microbial formation of methane

    SciTech Connect (OSTI)

    Wolfe, Ralph S.

    2001-04-01T23:59:59.000Z

    The microbial formation of methane is carried out by methanogens which are found wherever active anaerobic degradation of organic matter occurs. We developed a procedure for reliable culture of 'Methanococus jannaschii' which yields 8 g wet weight of cells per liter of medium. To initiate a study of proteomics, this organism was grown at two levels of hydrogen partial pressure, very low (650 Pa) and high (178 kPa). When cells were exposed to hydrogen excess conditions, they possessed very low or undetectable levels of four flagella-related polypeptides, whereas, when hydrogen became limiting, these proteins were synthesized. Thus, use of proteomics showed, for the first time, that this methanogen can regulate expression of proteins, and these experiments open the door for general studies of regulation in this hyperthermophile.

  15. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    SciTech Connect (OSTI)

    B. Wilding; D. Bramwell

    1999-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

  16. Quarterly Review of Methane from Coal-Seams Technology. Volume 8, Number 4, July 1991. Report for October-December 1990

    SciTech Connect (OSTI)

    McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

    1991-01-01T23:59:59.000Z

    Contents include reports on: Powder River Basin, Wyoming and Montana; Piceance Basin, Colorado; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; Coalbed Methane Development in the Appalachian Basin; Geologic Evaluation of Critical Production Parameters for Coalbed Methane Resources; Reservoir Engineering and Analysis; Coordinated Laboratory Studies in Support of Hydraulic Fracturing of Coalbed Methane; Physical Sciences Coalbed Methane Research; Coalbed Methane Opportunities in Alberta.

  17. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    the Energy Balance of Ethanol Fuels , for Applied Energyadditive are explored in Ethanol fuel. 8.2.1 Autoignition offuels Fuel Methane Propane Butane Gasoline Ethanol AFR

  18. Superconducting Magnets for Particle Accelerators

    E-Print Network [OSTI]

    Rossi, L

    2012-01-01T23:59:59.000Z

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  19. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05T23:59:59.000Z

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  20. Symposium on accelerator mass spectrometry

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  1. Design of a free-electron laser driven by the LBNLlaser-plasma-accelerator

    SciTech Connect (OSTI)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-09-10T23:59:59.000Z

    We discuss the design and current status of a compactfree-electron laser (FEL), generating ultra-fast, high-peak flux, VUVpulses driven by a high-current, GeV electron beam from the existingLawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator,whose active acceleration length is only a few cm. The proposedultra-fast source would be intrinsically temporally synchronized to thedrive laser pulse, enabling pump-probe studies in ultra-fast science withpulse lengths of tens of fs. Owing to the high current (&10 kA) ofthe laser-plasma-accelerated electron beams, saturated output fluxes arepotentially greater than 1013 photons/pulse. Devices based both on SASEand high-harmonic generated input seeds, to reduce undulator length andfluctuations, are considered.

  2. DIFFUSIVE ACCELERATION OF PARTICLES AT OBLIQUE, RELATIVISTIC, MAGNETOHYDRODYNAMIC SHOCKS

    SciTech Connect (OSTI)

    Summerlin, Errol J. [Heliospheric Physics Laboratory, Code 672, NASA's Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Baring, Matthew G., E-mail: errol.summerlin@nasa.gov, E-mail: baring@rice.edu [Department of Physics and Astronomy, MS 108, Rice University, Houston, TX 77251 (United States)

    2012-01-20T23:59:59.000Z

    Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma-ray bursts. These sources remain good candidate sites for the generation of ultrahigh energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are germane to the production of relativistic electrons and ions are outlined. The technique employed to identify these characteristics is a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, magnetohydrodynamic (MHD) shocks. Using a compact prescription for diffusion of charges in MHD turbulence, this approach generates particle angular and momentum distributions at any position upstream or downstream of the shock. Simulation output is presented for both small angle and large angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffmann-Teller frame does not exist. The distribution function power-law indices compare favorably with results from other techniques. They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of MHD turbulence that propagates along fields in shock environs. An interesting regime of flat-spectrum generation is addressed; we provide evidence for it being due to shock drift acceleration, a phenomenon well known in heliospheric shock studies. The impact of these theoretical results on blazar science is outlined. Specifically, Fermi Large Area Telescope gamma-ray observations of these relativistic jet sources are providing significant constraints on important environmental quantities for relativistic shocks, namely, the field obliquity, the frequency of scattering, and the level of field turbulence.

  3. Spatial Interference Mitigation for Multiple Input Multiple Output Ad Hoc Networks: MISO Gains

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Spatial Interference Mitigation for Multiple Input Multiple Output Ad Hoc Networks: MISO Gains beamforming for a multiple input single output (MISO) ad hoc network to increase the density of successful

  4. Design of a 3.3 V analog video line driver with controlled output impedance

    E-Print Network [OSTI]

    Ramachandran, Narayan Prasad

    2004-09-30T23:59:59.000Z

    impedance of the line. The main requirements for design are high output swing, high linearity, matched impedance to the line and power efficiency. These requirements are addressed by a class AB amplifier whose output impedance can be controlled through...

  5. Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical Region

    E-Print Network [OSTI]

    Chalkiadakis, Georgios

    Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical potentially dis- tributed renewable energy resources (su years, estimating the power output of in- herently intermittent and potentially distributed renewable

  6. Efficient control of accelerator maps

    E-Print Network [OSTI]

    Jehan Boreux; Timoteo Carletti; Charalampos Skokos; Yannis Papaphilippou; Michel Vittot

    2011-09-21T23:59:59.000Z

    Recently, the Hamiltonian Control Theory was used in [Boreux et al.] to increase the dynamic aperture of a ring particle accelerator having a localized thin sextupole magnet. In this letter, these results are extended by proving that a simplified version of the obtained general control term leads to significant improvements of the dynamic aperture of the uncontrolled model. In addition, the dynamics of flat beams based on the same accelerator model can be significantly improved by a reduced controlled term applied in only 1 degree of freedom.

  7. Accelerated dynamics simulations of nanotubes.

    SciTech Connect (OSTI)

    Uberuaga, B. P. (Blas Pedro); Stuart, S. J. (Steve J.); Voter, A. F.

    2002-01-01T23:59:59.000Z

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  8. Weak-Chaos Ratchet Accelerator

    E-Print Network [OSTI]

    Itzhack Dana; Vladislav B. Roitberg

    2012-05-28T23:59:59.000Z

    Classical Hamiltonian systems with a mixed phase space and some asymmetry may exhibit chaotic ratchet effects. The most significant such effect is a directed momentum current or acceleration. In known model systems, this effect may arise only for sufficiently strong chaos. In this paper, a Hamiltonian ratchet accelerator is introduced, featuring a momentum current for arbitrarily weak chaos. The system is a realistic, generalized kicked rotor and is exactly solvable to some extent, leading to analytical expressions for the momentum current. While this current arises also for relatively strong chaos, the maximal current is shown to occur, at least in one case, precisely in a limit of arbitrarily weak chaos.

  9. Centralized digital control of accelerators

    SciTech Connect (OSTI)

    Melen, R.E.

    1983-09-01T23:59:59.000Z

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  10. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30T23:59:59.000Z

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  11. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a broad computational accelerator physics

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a broad at Lawrence Livermore National Laboratory. #12;COMPASS, the COMmunity Petascale project for Accelerator for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation

  12. Analysis of a direct methane conversion to high molecular weight hydrocarbons 

    E-Print Network [OSTI]

    Al-Ghafran, Moh'd. J.

    2000-01-01T23:59:59.000Z

    . Other ways I'or cracking are thermite, shock tubes, adiabatic compression, photolysis, and irradiation. The conversion of methane to acetylene is proposed because it can be converted to heavier hydrocarbons. Many studies on the effect of temperature...

  13. Experimental characterization of an Ion Transport Membrane (ITM) reactor for methane oxyfuel combustion

    E-Print Network [OSTI]

    Apo, Daniel Jolomi

    2012-01-01T23:59:59.000Z

    Ion Transport Membranes (ITM) which conduct both electrons and oxygen ions have been investigated experimentally for oxygen separation and fuel (mostly methane) conversion purposes over the last three decades. The fuel ...

  14. Modelling the effects of genetic line and feeding system on methane emissions from dairy systems 

    E-Print Network [OSTI]

    Bell, Matthew

    2011-06-28T23:59:59.000Z

    Dairy cattle make a significant contribution to global methane emissions. Milking cows in the UK make up about a fifth of the total cattle population, with Holstein-Friesian cows being the most common breed. Investigating ...

  15. The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India

    E-Print Network [OSTI]

    Chatterjee, A.

    High-frequency atmospheric measurements of methane (CH[subscript 4]), nitrous oxide (N[subscript 2]O) and sulfur hexafluoride (SF[subscript 6]) from Darjeeling, India are presented from December 2011 (CH[subscript 4])/March ...

  16. A Process-based Analysis of Methane Exchanges Between Alaskan Terrestrial Ecosystems and the Atmosphere

    E-Print Network [OSTI]

    Zhuang, Qianlai.

    We developed and used a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in Alaskan soils have changed over the past century in response to observed changes ...

  17. Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback

    E-Print Network [OSTI]

    Gao, Xiang

    Climate change and permafrost thaw have been suggested to increase high latitude methane emissions that could potentially represent a strong feedback to the climate system. Using an integrated earth-system model framework, ...

  18. Determining the Fate of Methane Released from the Seafloor in Deep and Shallow Water Environments 

    E-Print Network [OSTI]

    Du, Mengran

    2014-08-12T23:59:59.000Z

    Marine gas seeps and accidental marine oil spills are sources of methane (CH_(4)) to the ocean, and potentially to the atmosphere, though the magnitude of the fluxes and dynamics of these systems are poorly defined. For example, the ultimate...

  19. Insights into the different dioxygen activation pathways of methane and toluene monooxygenase hydroxylases

    E-Print Network [OSTI]

    Bochevarov, Arteum D.

    The methane and toluene monooxygenase hydroxylases (MMOH and TMOH, respectively) have almost identical active sites, yet the physical and chemical properties of their oxygenated intermediates, designated P*, H[subscript ...

  20. Radiochemical Transformation of High Pressure Methane under Gamma, Electron, and Neutron Irradiation

    E-Print Network [OSTI]

    Clemens, Jeffrey Tyler

    2014-05-01T23:59:59.000Z

    The chemical effects of irradiation on high pressure methane and noble gas mixtures were investigated using gamma, electron beam, and neutron irradiation sources. The gamma source used was the La-140 source from the Nuclear Science Center (NSC...

  1. Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature

    E-Print Network [OSTI]

    Mallinson, Richard

    - ronmental impact. Present technology uses steam reforming to produce synthesis gas which is converted into enhance- ment of the carbon balance of methane conversion by reforming with CO2 in order to "recycle

  2. Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts

    E-Print Network [OSTI]

    Blaylock, Donnie Wayne

    2011-01-01T23:59:59.000Z

    The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications including petrochemical processing and ammonia synthesis. ...

  3. Selection of best drilling, completion and stimulation method for coalbed methane reservoirs

    E-Print Network [OSTI]

    Ramaswamy, Sunil

    2008-10-10T23:59:59.000Z

    reservoirs, coalbed methane (CBM) reservoirs, gas shales, oil shales, tar sands, heavy oil and gas hydrates. 1 All natural resources, such as gold, zinc, oil, gas, etc., are distributed log normally in nature. John Masters introduced the concept for oil...

  4. Selection of best drilling, completion and stimulation method for coalbed methane reservoirs

    E-Print Network [OSTI]

    Ramaswamy, Sunil

    2009-05-15T23:59:59.000Z

    reservoirs, coalbed methane (CBM) reservoirs, gas shales, oil shales, tar sands, heavy oil and gas hydrates. 1 All natural resources, such as gold, zinc, oil, gas, etc., are distributed log normally in nature. John Masters introduced the concept for oil...

  5. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a ...

  6. Structural and mutagenesis studies of soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath)

    E-Print Network [OSTI]

    Chatwood, Lisa L., 1979-

    2004-01-01T23:59:59.000Z

    The solution structure for the 27 kDa flavin binding domain of soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath) was solved by NMR spectroscopy. The structure consists of a two domains, an FAD ...

  7. Determining the Fate of Methane Released from the Seafloor in Deep and Shallow Water Environments

    E-Print Network [OSTI]

    Du, Mengran

    2014-08-12T23:59:59.000Z

    Marine gas seeps and accidental marine oil spills are sources of methane (CH_(4)) to the ocean, and potentially to the atmosphere, though the magnitude of the fluxes and dynamics of these systems are poorly defined. For example, the ultimate...

  8. Sensitivity analysis of modeling parameters that affect the dual peaking behaviour in coalbed methane reservoirs

    E-Print Network [OSTI]

    Okeke, Amarachukwu Ngozi

    2006-10-30T23:59:59.000Z

    of the various modeling parameters on its reservoir performance. A dual porosity coalbed methane simulator is used to model primary production from a single well coal seam, for a variety of coal properties for this work. Varying different coal properties...

  9. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    E-Print Network [OSTI]

    Reagan, Matthew T.

    2008-01-01T23:59:59.000Z

    Potential effects of gas hydrate on human welfare. Proc.W.S. A review of methane and gas hydrates in the dynamic,Geology of Natural Gas Hydrates, M. Max, A.H. Johnson, W.P.

  10. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08T23:59:59.000Z

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  11. Soft-Input Soft-Output King Decoder for Coded MIMO Wireless Communications

    E-Print Network [OSTI]

    Soft-Input Soft-Output King Decoder for Coded MIMO Wireless Communications Giuseppe PAPA, Domenico,{domenico.ciuonzo,gianmarco.romano,pierluigi.salvorossi}@unina2.it Abstract--This paper presents a Soft-Input Soft-Output (SISO) version of the King Decoder (KD for Multiple-Input Multiple-Output (MIMO) communication systems. More specifically, four versions of the KD

  12. A Framework to Determine the Probability Density Function for the Output Power of Wind Farms

    E-Print Network [OSTI]

    Liberzon, Daniel

    A Framework to Determine the Probability Density Function for the Output Power of Wind Farms Sairaj to the power output of a wind farm while factoring in the availability of the wind turbines in the farm availability model for the wind turbines, we propose a method to determine the wind-farm power output pdf

  13. Sulfur resistance of Group VIII transition metal promoted nickel catalysts for synthesis gas methanation 

    E-Print Network [OSTI]

    Hamlin, Kellee Hall

    1986-01-01T23:59:59.000Z

    and support. Finally a special thanks to my parents for their love and support throughout. TABLE OF CONTENTS CHAPTER I INTRODUCTION II LITERATURE REVIEW III APPARATUS AND PROCEDURE . Page Feed System Temperature Control and Heating Tubular Reactor...Os . . 44 CHAPTER I INTRODUCTION Methanation has been used for many years to remove traces of CO and COr from hydrogen rich gases such as those used for ammonia synthesis. Recent interest is primarily in the methanation of CO as the final step...

  14. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions

    SciTech Connect (OSTI)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

    2011-05-15T23:59:59.000Z

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

  15. The commercial production of coalbed methane: A review of 53 wells in the Black Warrior Basin

    SciTech Connect (OSTI)

    Dunn, B.W.

    1984-09-01T23:59:59.000Z

    This paper reviews the actual performance of 53 conventionally drilled vertical coalbed methane wells developed by a joint coal industry/gas industry effort. The unique characteristics of the coalbed reservoir are briefly described. Actual gas production and computer model predictions are compared and the costs and revenues are discussed with specific emphasis on the economic results. This paper differs from previous technically oriented discussions of coalbed methane production in that economic viability, initially established in February of 1982, continues to be demonstrated.

  16. Closing the Gaps in the Budgets of Methane and Nitrous Oxide

    SciTech Connect (OSTI)

    Khalil, Aslam; Rice, Andrew; Rasmussen, Reinhold

    2013-11-22T23:59:59.000Z

    Together methane and nitrous oxide contribute almost 40% of the estimated increase in radiative forcing caused by the buildup of greenhouse gases during the last 250 years (IPCC, 2007). These increases are attributed to human activities. Since the emissions of these gases are from biogenic sources and closely associated with living things in the major terrestrial ecosystems of the world, climate change is expected to cause feedbacks that may further increase emissions even from systems normally classified as natural. Our results support the idea that while past increases of methane were driven by direct emissions from human activities, some of these have reached their limits and that the future of methane changes may be determined by feedbacks from warming temperatures. The greatly increased current focus on the arctic and the fate of the carbon frozen in its permafrost is an example of such a feedback that could exceed the direct increases caused by future human activities (Zimov et al. 2006). Our research was aimed at three broad areas to address open questions about the global budgets of methane and nitrous oxide. These areas of inquiry were: The processes by which methane and nitrous oxide are emitted, new sources such as trees and plants, and integration of results to refine the global budgets both at present and of the past decades. For the process studies the main research was to quantify the effect of changes in the ambient temperature on the emissions of methane and nitrous oxide from rice agriculture. Additionally, the emissions of methane and nitrous oxide under present conditions were estimated using the experimental data on how fertilizer applications and water management affect emissions. Rice was chosen for detailed study because it is a prototype system of the wider terrestrial source, its role in methane emissions is well established, it is easy to cultivate and it represents a major anthropogenic source. Here we will discuss the highlights of the results that were obtained.

  17. Effect of adding nitrogen on the yield of hydrogen cyanide in oxidative ammonolysis of methane

    SciTech Connect (OSTI)

    Grin, G.I.; Trusov, N.V.; Dmitriev, N.M.

    1994-02-20T23:59:59.000Z

    On the basis of an empirical model of the process of oxidative ammonolysis of methane, a study was made of the effect of adding nitrogen to the initial methane-ammonia-air mixture. In the general case, the N{sub 2} introduction was shown to decrease the autothermal temperature of the synthesis, though at small flows of the initial mixture some increase in t{sub conv} is possible. An explanation of this phenomenon was proposed.

  18. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    SciTech Connect (OSTI)

    Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

    2008-04-15T23:59:59.000Z

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

  19. Effect of methane pulsation on methanotropic biodegradation of trichloroethylene in an in-situ model aquifer

    E-Print Network [OSTI]

    Natarajan, Ranjan

    1993-01-01T23:59:59.000Z

    EFFECT OF METHANE PULSATION ON METHANOTROPHIC BIODEGRADATION OF TRICHLOROETHYLENE IN AN IN-SITU MODEL AQUIFER A Thesis by RAN JAN NATARAJAN Submitted to the OIIice of Graduate Studies of Texas A8rM University in partial fulfillment... of Department) August 1993 Major Subject: Agricultural Engineering ABSTRACT Effect of Methane Pulsation on Methanotrophic Biodegradation of Trichloroethylene in an in-situ Model Aquifer. (August 1993) Ranjan Natarajan, B. E. , P. S. G College...

  20. The oxidative dimerization of methane over promoted and unpromoted magnesium oxide monoliths

    E-Print Network [OSTI]

    Aigler, Jane Marie

    1989-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE May 1989 Major Subject: Chemistry THE OXIDATIVE DIMERIZATION OF METHANE OVER PROMOTED AND UNPROMOTED MAGNESIUM OxiDE MONOLITHS A Thesis by JANE MARIE AIGLER Approved as to style and content by: uns or (Chair of Commi... ee) os e (Member) nt ony (Member) a (Head of Department) May 1989 ABSTRACT The Oxidative Dimerization of Methane over Promoted and Unpromoted Magnesium Oxide Monoliths. (May 1989) Jane Marie Aigier, B. S. , Pennsylvania State University...

  1. Formation of ozone and oxidation of methane in a direct current corona discharge

    E-Print Network [OSTI]

    Tangirala, Umashanker

    1976-01-01T23:59:59.000Z

    FORMATION OF OZONE AND OXIDATION OF METHANE IN A DIRECT CURRENT CORONA DISCHARGE A Thesis by UMASHANKER TANGIRALA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1976 Major Subject: Chemical Engineering FORMATION OF OZONE AND OXIDATION OF METHANE IN A DIRECT CURRENT CORONA DISCHARGE A Thesis by UMASHANKER TANGIRALA Approved as to style and content by: (Chairman of Committee) ( ad of Department...

  2. The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas

    E-Print Network [OSTI]

    Wieland, Denton R.

    1958-01-01T23:59:59.000Z

    ABSTRACT The object of the work reported In this dissertation was to determine the solubility of sulfur in gaseous methane carbon dioxide, and hydrogen sulfide and in mixtures of these gases, at various pressures and temperatures* Sulfur solubility... of methane and propane (which has a critical pressure of approximately the same value of hydrogen sulfide) is 1500 psia. To have liquid in this system at 1500 psia, however, would require a maximum temperature of 20?F which is well below the minimum...

  3. The electrical and lumen output characteristics of an RF lamp

    SciTech Connect (OSTI)

    Alexandrovich, B.M.; Godyak, V.A.; Piejak, R.B. [Osram Sylvania Inc., Beverly, MA (United States)

    1996-12-31T23:59:59.000Z

    Low pressure rf discharges have been studied for over a century. Their first practical application for lighting was proposed by Tesla in 1891. Since then hundreds of patents have been published attempting to implement rf lighting. However, progress in understanding rf discharge phenomena (mostly driven by plasma processing needs) and dramatic improvement in the performance/cost ratio of rf power sources have recently opened the door for development of rf light sources. Today commercial inductively coupled electrodeless lamps are offered by Matsuhita, Philips and GE. In this work the authors present measurements of the electrical characteristics and lumen output from a 2.65 MHz driven inductively coupled light source. Measurements were made on a spherical lamp of 3.125 inch diameter with a re-entrant cavity that houses a cylindrical ferrite core around which is wrapped the primary coil.

  4. Phase Stable Net Acceleration of Electrons From a Two-Stage Optical Accelerator

    SciTech Connect (OSTI)

    Sears, Christopher M.S.; /SLAC /Munich, Max Planck Inst. Quantenopt.; Colby, Eric; England, R.J.; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; /SLAC; Plettner, Tomas; Byer, Robert L.; /Stanford U., Phys. Dept.

    2011-11-11T23:59:59.000Z

    In this article we demonstrate the net acceleration of relativistic electrons using a direct, in-vacuum interaction with a laser. In the experiment, an electron beam from a conventional accelerator is first energy modulated at optical frequencies in an inverse-free-electron-laser and bunched in a chicane. This is followed by a second stage optical accelerator to obtain net acceleration. The optical phase between accelerator stages is monitored and controlled in order to scan the accelerating phase and observe net acceleration and deceleration. Phase jitter measurements indicate control of the phase to {approx}13{sup o} allowing for stable net acceleration of electrons with lasers.

  5. Fresnel diffraction patterns as accelerating beams

    E-Print Network [OSTI]

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01T23:59:59.000Z

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  6. Modelling of stable isotope fractionation by methane oxidation and diffusion in landfill cover soils

    SciTech Connect (OSTI)

    Mahieu, Koenraad [Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure links 653, B-9000 Ghent (Belgium); Department of Applied Mathematics, Biometrics and Process Control (BIOMATH), Ghent University, Coupure links 653, B-9000 Ghent (Belgium)], E-mail: Koenraad.mahieu@lid.kviv.be; De Visscher, Alex [Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 (Canada); Vanrolleghem, Peter A. [Department of Applied Mathematics, Biometrics and Process Control (BIOMATH), Ghent University, Coupure links 653, B-9000 Ghent (Belgium); Department of Civil Engineering (modelEAU), Universite Laval, Pavillon Pouliot, Quebec, G1K 7P4 (Canada); Van Cleemput, Oswald [Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure links 653, B-9000 Ghent (Belgium)

    2008-07-01T23:59:59.000Z

    A technique to measure biological methane oxidation in landfill cover soils that is gaining increased interest is the measurement of stable isotope fractionation in the methane. Usually to quantify methane oxidation, only fractionation by oxidation is taken into account. Recently it was shown that neglecting the isotope fractionation by diffusion results in underestimation of the methane oxidation. In this study a simulation model was developed that describes gas transport and methane oxidation in landfill cover soils. The model distinguishes between {sup 12}CH{sub 4}, {sup 13}CH{sub 4}, and {sup 12}CH{sub 3}D explicitly, and includes isotope fractionation by diffusion and oxidation. To evaluate the model, the simulations were compared with column experiments from previous studies. The predicted concentration profiles and isotopic profiles match the measured ones very well, with a root mean square deviation (RMSD) of 1.7 vol% in the concentration and a RMSD of 0.8 per mille in the {delta}{sup 13}C value, with {delta}{sup 13}C the relative {sup 13}C abundance as compared to an international standard. Overall, the comparison shows that a model-based isotope approach for the determination of methane oxidation efficiencies is feasible and superior to existing isotope methods.

  7. Quarterly Review of Methane from Coal-Seams Technology. Volume 9, Number 1, November 1991

    SciTech Connect (OSTI)

    McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

    1991-11-01T23:59:59.000Z

    The paper contains: basin activities--(Powder River Basin, Wyoming and Montana, Wind River Basin-Wyoming, Greater Green River coal region-Wyoming and Colorado, Uinta Basin-Utah, Piceance Basin-Colorado, San Juan Basin-Colorado and New Mexico, Raton Basin-Colorado and New Mexico, and Black Warrior Basin-Alabama); features--(relation between basin hydrology and fruitland gas composition, San Juan Basin, Colorado and New Mexico); methane from coal seams research--(western Cretaceous coal seam project, multiple coal seams project, coalbed methane technology development in the Appalachian Basin, methane from coal deposits technical evaluation and data base (reservoir engineering and analysis), development of formation evaluation technology for coalbed methane development, improved evaluation of coal reservoirs through specialized core analysis, and effective design, real-data analysis, and post-job evaluation of hydraulic fracturing treatments); technical events--(the Coalbed Methane Forums in Denver, Eastern Coalbed Methane Forum in Tuscaloosa, Society of Petroleum Engineers--Gas Technology Symposium, and Society for Mining, Metallurgy, and Exploration--annual meeting).

  8. Large-scale simulation of methane dissociation along the West Spitzbergen Margin

    SciTech Connect (OSTI)

    Reagan, M.T.; Moridis, G.J.

    2009-07-15T23:59:59.000Z

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of methane into the atmosphere. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope west of Spitsbergen could be an indication of this process, if the source of the methane can be confidently attributed to dissociating hydrates. In the first large-scale simulation study of its kind, we simulate shallow hydrate dissociation in conditions representative of the West Spitsbergen margin to test the hypothesis that the observed gas release originated from hydrates. The simulation results are consistent with this hypothesis, and are in remarkable agreement with the recently published observations. They show that shallow, low-saturation hydrate deposits, when subjected to temperature increases at the seafloor, can release significant quantities of methane, and that the releases will be localized near the landward limit of the top of the GHSZ. These results indicate the possibility that hydrate dissociation and methane release may be both a consequence and a cause of climate change.

  9. METHANE HYDRATE STUDIES: DELINEATING PROPERTIES OF HOST SEDIMENTS TO ESTABLISH REPRODUCIBLE DECOMPOSITION KINETICS.

    SciTech Connect (OSTI)

    Mahajan, Devinder; Jones, Keith W.; Feng, Huan; Winters, William J.

    2004-12-01T23:59:59.000Z

    The use of methane hydrate as an energy source requires development of a reliable method for its extraction from its highly dispersed locations in oceanic margin sediments and permafrost. The high pressure (up to 70 MPa) and low temperature (272 K to 278 K) conditions under which hydrates are stable in the marine environment can be mimicked in a laboratory setting and several kinetic studies of pure methane hydrate decomposition have been reported. However, the effect of host sediments on methane hydrate occurrence and decomposition are required to develop reliable hydrate models. In this paper, we describe methods to measure sediment properties as they relate to pore-space methane gas hydrate. Traditional geotechnical techniques are compared to the micrometer level by use of the synchrotron Computed Microtomography (CMT) technique. CMT was used to measure the porosity at the micrometer level and to show pore-space pathways through field samples. Porosities for three sediment samples: one from a site on Georges Bank and two from the known Blake Ridge methane hydrate site, from different depths below the mud line were measured by traditional drying and by the new CMT techniques and found to be in good agreement. The integration of the two analytical approaches is necessary to enable better understanding of methane hydrate interactions with the surrounding sediment particles.

  10. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

    2011-06-01T23:59:59.000Z

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

  11. Physics Needs for Future Accelerators

    E-Print Network [OSTI]

    Lykken, J D

    2000-01-01T23:59:59.000Z

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  12. Petawatt pulsed-power accelerator

    DOE Patents [OSTI]

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16T23:59:59.000Z

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  13. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  14. Accelerating Multimedia with Enhanced Microprocessors

    E-Print Network [OSTI]

    Lee, Ruby B.

    Accelerating Multimedia with Enhanced Microprocessors A minimalistic set of multimedia instructions introduced into PA-RISC microprocessors implements SIMD-MIMD parallelism with insignificant changes to the underlying microprocessor. Thus, a software video decoder attains MPEG video and audio decom- pression

  15. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11T23:59:59.000Z

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  16. Physics Needs for Future Accelerators

    E-Print Network [OSTI]

    Joseph D. Lykken

    2000-01-30T23:59:59.000Z

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  17. Thomas Jefferson National Accelerator Facility

    SciTech Connect (OSTI)

    Joseph Grames, Douglas Higinbotham, Hugh Montgomery

    2010-09-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  18. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  19. A Software System for Modeling and Controlling Accelerator Physics Parameters at the Advanced Light Source

    E-Print Network [OSTI]

    Schachinger, L.C.

    2011-01-01T23:59:59.000Z

    and Controlling Accelerator Physics Parameters at theLight Source for accelerator physics studies and accelerator

  20. accelerator driven radioactive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T. Sasa; K. Tsujimoto; H. Takano 3 Developments in laser-driven plasma accelerators CERN Preprints Summary: Laser-driven plasma accelerators provide acceleration gradients...