Powered by Deep Web Technologies
Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

E-Print Network 3.0 - accelerated bioremediation research Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Second International Conference on Remediation of Contaminated Sediments (Venice, Italy; 30 Sep3 Oct 2003). ISBN 1-57477- Summary: and Accelerated Bioremediation...

2

Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediation under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.

N /A

2000-04-18T23:59:59.000Z

3

Quality Assurance Plan for Field Activities at the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) has established a Natural and Accelerated Bioremediation Research (NABIR) program Field Research Center (FRC) for the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. The FRC is located in Bear Creek Valley within the Y-12 Plant area of responsibility on DOE's Oak Ridge Reservation in Tennessee. The NABIR program is a long-term effort designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. The FRC provides a site for investigators in the NABIR program to conduct research and obtain samples related to in situ bioremediation. The FRC is integrated with existing and future laboratory and field research and provides a means of examining the biogeochemical processes that influence bioremediation under controlled small-scale field conditions. This Quality Assurance Plan (QAP) documents the quality assurance protocols for field and laboratory activities performed by the FRC staff. It supplements the requirements in the ORNL Nuclear Quality Assurance Program and the ESD Quality Assurance Program. The QAP addresses the requirements in Title 10 CFR, Part 830 Subpart A, ''Quality Assurance Requirements'', using a graded approach appropriate for Research and Development projects based on guidance from ''Implementation Guide for Quality Assurance Programs for Basic and Applied Research'' (DOE-ER-STD-6001-92). It also supports the NABIR FRC Management Plan (Watson and Quarles 2000a) which outlines the overall procedures, roles and responsibilities for conducting research at the FRC. The QAP summarizes the organization, work activities, and qualify assurance and quality control protocols that will be used to generate scientifically defensible data at the FRC. The QAP pertains to field measurements and sample collection conducted by the FRC to characterize the site and in support of NABIR-funded investigations at the FRC. NABIR investigators who collect their own samples or measurements at the FRC will be responsible for developing their own data quality assurance protocol. Notably, this QAP will be of direct benefit to NABIR investigators who will be provided with and use the documented quality data about the FRC to support their investigations.

Brandt, C.C.

2002-02-28T23:59:59.000Z

4

Method for phosphate-accelerated bioremediation  

DOE Patents [OSTI]

An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in fluid communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

Looney, Brian B. (Aiken, SC); Lombard, Kenneth H. (Augusta, GA); Hazen, Terry C. (Augusta, GA); Pfiffner, Susan M. (Knoxville, TN); Phelps, Tommy J. (Knoxville, TN); Borthen, James W. (Seattle, WA)

1996-01-01T23:59:59.000Z

5

Apparatus and method for phosphate-accelerated bioremediation  

DOE Patents [OSTI]

An apparatus and method are provided for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site and provides for the use of a passive delivery system. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate. 8 figs.

Looney, B.B.; Pfiffner, S.M.; Phelps, T.J.; Lombard, K.H.; Hazen, T.C.; Borthen, J.W.

1998-05-19T23:59:59.000Z

6

Apparatus and method for phosphate-accelerated bioremediation  

DOE Patents [OSTI]

An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in fluid communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

Looney, B.B.; Phelps, T.J.; Hazen, T.C.; Pfiffner, S.M.; Lombard, K.H.; Borthen, J.W.

1994-01-01T23:59:59.000Z

7

Apparatus and method for phosphate-accelerated bioremediation  

DOE Patents [OSTI]

An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site and provides for the use of a passive delivery system. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

Looney, Brian B. (Aiken, SC); Pfiffner, Susan M. (Knoxville, TN); Phelps, Tommy J. (Knoxville, TN); Lombard, Kenneth H. (Augusta, GA); Hazen, Terry C. (Augusta, GA); Borthen, James W. (Seattle, WA)

1998-01-01T23:59:59.000Z

8

Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides  

SciTech Connect (OSTI)

Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that uses thisstrategy.

Hazen, Terry C.; Tabak, Henry H.

2007-03-15T23:59:59.000Z

9

Accelerator research studies  

SciTech Connect (OSTI)

The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

Not Available

1993-01-01T23:59:59.000Z

10

Advanced accelerator simulation research: miniaturizing accelerators from kilometers to meters  

E-Print Network [OSTI]

Advanced accelerator simulation research: miniaturizing accelerators from kilometers to meters W: Advanced accelerator research is aimed at finding new technologies that can dramatically reduce the size and cost of future high-energy accelerators. Supercomputing is already playing a dramatic and critical role

Geddes, Cameron Guy Robinson

11

Accelerators for Intensity Frontier Research  

SciTech Connect (OSTI)

In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

Derwent, Paul; /Fermilab

2012-05-11T23:59:59.000Z

12

Accelerators: powering cutting-edge research  

E-Print Network [OSTI]

Accelerators: powering cutting-edge research #12;What is a particle accelerator? Booster ourselves. Particle accelerators are our attempt to turn back the clock and see into the early stages of the Universe. They accelerate everyday charged particles (electrons or protons) to close to the speed of light

Crowther, Paul

13

Accelerator Research Department BAccelerator Research Department B E163: Laser Acceleration  

E-Print Network [OSTI]

1 Accelerator Research Department BAccelerator Research Department B E163: Laser Acceleration, D. R. Walz Stanford Linear Accelerator Center R. L. Byer, T. Plettner Stanford University * Spokesman. #12;2 Accelerator Research Department B Outline · Introduction ­­ Future requirements for high

Wechsler, Risa H.

14

Cometabolic bioremediation  

E-Print Network [OSTI]

Intrinsic bioremediation of MTBE-contaminated groundwater atcontaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine,Methyl tert-butyl ether (MTBE) has also been remediated

Hazen, Terry C.

2010-01-01T23:59:59.000Z

15

Heavy-Ion Fusion Accelerator Research, 1991  

SciTech Connect (OSTI)

This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators.

Not Available

1992-03-01T23:59:59.000Z

16

17 GHz High Gradient Accelerator Research  

SciTech Connect (OSTI)

This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

Temkin, Richard J. [MIT] [MIT; Shapiro, Michael A. [MIT] [MIT

2013-07-10T23:59:59.000Z

17

Cometabolic bioremediation  

SciTech Connect (OSTI)

Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

Hazen, Terry C.

2009-02-15T23:59:59.000Z

18

applied research accelerator: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

period including: Entrepreneurial thinking, aspirations and role models The business planning researchers from across SICSA to accelerate promising research ideas...

19

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

20

Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC  

E-Print Network [OSTI]

#12;Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC is continually improving accelerators, both here and at other laboratories, and paving the way for a new generation of particle acceleration technology. SLAC's famous linear accelerator

Wechsler, Risa H.

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)  

SciTech Connect (OSTI)

This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into an insoluble salt in the sediment. In other cases, the opposite occurs--the solubility of the altered species increases, increasing the mobility of the contaminant and allowing it to be more easily flushed from the environment. Both of these kinds of transformations present opportunities for bioremediation of metals and radionuclides--either to lock them in place, or to accelerate their removal. DOE's goal is to reduce the risk and related exposure to ground water, sediment, and soil contamination at Department of Energy facilities. Subsurface bioremediation of metals and radionuclides at the site of contamination (in situ bioremediation) is not yet in widespread use. However, successful in situ applications of bioremediation to petroleum products and chlorinated solvents provide experience from which scientists can draw. Taken together, the accomplishments in these areas have led scientists and engineers to be optimistic about applying this technology to the mixtures of metals and radionuclides that are found at some of the most contaminated DOE sites. This primer examines some of the basic microbial and chemical processes that are a part of bioremediation, specifically the bioremediation of metals and radionuclides. The primer is divided into six sections, with the information in each building on that of the previous. The sections include features that highlight topics of interest and provide background information on specific biological and chemical processes and reactions. The first section briefly examines the scope of the contamination problem at DOE facilities. The second section gives a summary of some of the most commonly used bioremediation technologies, including successful in situ and ex situ techniques. The third discusses chemical and physical properties of metals and radionuclides found in contaminant mixtures at DOE sites, including solubility and the most common oxidation states in which these materials are found. The fourth section is an overview of the basic microbial processes that occur in bioremediation. The fifth section looks at specific in s

Palmisano, Anna; Hazen, Terry

2003-09-30T23:59:59.000Z

22

accelerator research final: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: week period including: Entrepreneurial thinking, aspirations and role models The business planning researchers from across SICSA to accelerate promising...

23

RESEARCH ON HIGH BEAM-CURRENT ACCELERATORS  

E-Print Network [OSTI]

and M. Wilson, Particle Accelerators 10, 223 13. A. I.Proc. 1976 Proton Linear Accelerator Conf. , Chalk River,and D. Keefe, Particle Accelerators~' 23. S. Humphries, J.

Keefe, Denis

2014-01-01T23:59:59.000Z

24

Systems biology approach to bioremediation  

SciTech Connect (OSTI)

Bioremediation has historically been approached as a ?black box? in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ?black box?.

Chakraborty, R.; Wu, C. H.; Hazen, T. C.

2012-01-01T23:59:59.000Z

25

Accelerator and Fusion Research Division 1989 summary of activities  

SciTech Connect (OSTI)

This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

Not Available

1990-06-01T23:59:59.000Z

26

Accelerator Fusion Research Division 1991 summary of activities  

SciTech Connect (OSTI)

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

27

Accelerator & Fusion Research Division 1991 summary of activities  

SciTech Connect (OSTI)

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

28

Accelerator and fusion research division. 1992 Summary of activities  

SciTech Connect (OSTI)

This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

Not Available

1992-12-01T23:59:59.000Z

29

13 In Situ: Groundwater Bioremediation  

E-Print Network [OSTI]

and Bioaugmentation of Groundwater ............................ 2589 5 Intrinsic Bioremediation and Modeling attenuation. 1 Introduction A patent for in situ bioremediation of groundwater contaminated with gasoline13 In Situ: Groundwater Bioremediation T. C. Hazen Lawrence Berkeley National Laboratory, Berkeley

Hazen, Terry

30

E-Print Network 3.0 - accelerator research center Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Collection: Computer Technologies and Information Sciences 4 Accelerator Research Department BAccelerator Research Department B E163: Laser Acceleration Summary: 1...

31

E-Print Network 3.0 - advanced accelerator research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced accelerator research Page: << < 1 2 3 4 5 > >> 1 SLAC Colloquium Accelerator...

32

Accelerator and Fusion Research Division: 1987 summary of activities  

SciTech Connect (OSTI)

An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

Not Available

1988-04-01T23:59:59.000Z

33

EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development  

Broader source: Energy.gov [DOE]

Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

34

Accelerator & Fusion Research Division: 1993 Summary of activities  

SciTech Connect (OSTI)

The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

Chew, J.

1994-04-01T23:59:59.000Z

35

idaho Accelerator Center Advanced Fuel Cycle Research  

SciTech Connect (OSTI)

The technical effort has been in two parts called; Materials Science and Instrumentation Development. The Materials Science technical program has been based on a series of research and development achievements in Positron-Annihilation Spectroscopy (PAS) for defect detection in structural materials. This work is of particular importance in nuclear power and its supporting systems as the work included detection of defects introduced by mechanical and thermal phenomena as well as those caused by irradiation damage. The second part of the program has focused on instrumentation development using active interrogation techniques supporting proliferation resistant recycling methodologies and nuclear material safeguards. This effort has also lead to basic physics studies of various phenomena relating to photo-fission. Highlights of accomplishments and facility improvement legacies in these areas over the program period include

Wells, Douglas; Dale, Dan

2011-10-20T23:59:59.000Z

36

Technical Basis for Assessing Uranium Bioremediation Performance  

SciTech Connect (OSTI)

In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL NGuessan

2008-04-01T23:59:59.000Z

37

Outline History Basic Theory Research Future Accelerators References Brief Overview of Wakefield  

E-Print Network [OSTI]

Outline History Basic Theory Research Future Accelerators References Brief Overview of Wakefield Acceleration Eugene S. Evans1 November 9, 2010 1 University of California, Berkeley Eugene S. Evans Brief Overview of Wakefield Acceleration #12;Outline History Basic Theory Research Future Accelerators References

Budker, Dmitry

38

Bioremediation of nanomaterials  

DOE Patents [OSTI]

The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

2013-05-14T23:59:59.000Z

39

Accelerator and Fusion Research Division: 1984 summary of activities  

SciTech Connect (OSTI)

During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers.

Not Available

1985-05-01T23:59:59.000Z

40

uge particle accelerators have been at the vanguard of research in particle  

E-Print Network [OSTI]

H uge particle accelerators have been at the vanguard of research in particle physics for more than to develop new and more compact accelerator technologies. Threereports1­3 inthisissue(frompage535) announce counterparts, positrons, can then `surf' the electric field of a wave's wake. Particles have been accelerated

Geddes, Cameron Guy Robinson

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

E-Print Network 3.0 - accelerator research complex Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

complex Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator research complex Page: << < 1 2 3 4 5 > >> 1 KJKDec. 52002 Opportunities for...

42

Summary proceedings of a workshop on Bioremediation and its Societal Implications and Concerns (BASIC)  

SciTech Connect (OSTI)

This document summarizes the proceedings of a workshop on Bioremediation and Its Societal Implications and Concerns (BASIC) held July 18-19, 1996 at the Airlie Center near Warrenton, Virginia. The workshop was sponsored by the Office of Health and Environmental Research (OHER), U.S. Department of Energy (DOE), as part of its fundamental research program in Natural and Accelerated Bioremediation Research (NABIR). The information summarized in these proceedings represents the general conclusions of the workshop participants, and not the opinions of workshop organizers or sponsors. Neither are they consensus opinions, as opinions differed among participants on a number of points. The general conclusions presented below were reached through a review, synthesis, and condensation of notes taken by NABIR Program Office staff and OHER program managers throughout the workshop. Specific contributions by participants during breakout sessions are recorded in bullet form in the appropriate sections, without attribution to the contributors. These contributions were transcribed as faithfully as possible from notes about the original discussions. They were edited only to make them grammatically correct, parallel in structure, and understandable to someone not familiar with the NABIR Program or BASIC element.

Drell, D.W. [Department of Energy, Germantown, MD (United States). Office of Health and Environmental Research, Health Effects and Life Sciences Research Division; Metting, F.B. Jr. [Pacific Northwest National Lab., Richland, WA (United States); Wuy, L.D. [ed.] [Lawrence Berkeley National Lab., CA (United States)

1996-11-01T23:59:59.000Z

43

Ground Broken for New Job-Creating Accelerator Research Facility...  

Office of Environmental Management (EM)

our nation in the areas of sustainable energy, a cleaner environment, economic security, health care and national defense. The accelerators of tomorrow have the potential to make...

44

SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research  

SciTech Connect (OSTI)

This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

McDonald, R.J. (ed.)

1987-09-01T23:59:59.000Z

45

E-Print Network 3.0 - accelerate cancer research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cancer research Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerate cancer research Page: << < 1 2 3 4 5 > >> 1 http:www.purdue.edu...

46

Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department  

SciTech Connect (OSTI)

Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As the department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.

Colby, Eric R.; Hogan, Mark J.; /SLAC

2011-11-14T23:59:59.000Z

47

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80  

E-Print Network [OSTI]

Aspects of Controlled Thermonuclear Research, Tucson,Aspects of Controlled Thermonuclear Research, Tucson,Aspects of Controlled Thermonuclear Research, Tucson,

Authors, Various

2010-01-01T23:59:59.000Z

48

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81  

E-Print Network [OSTI]

Studies Neutral Beam Plasma Research Basic Plasma Theoryand tempera- NEUTRAL BEAM PLASMA RESEARCH We are conducting

Johnson Ed, R.K.

2010-01-01T23:59:59.000Z

49

Bioremediation of metals and radionuclides: What it is and How itWorks  

SciTech Connect (OSTI)

This primer is intended for people interested in DOE environmental problems and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on physical environment, microbial communities, and nature of contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through inoculation with microorganisms (bioaugmentation) or the addition of nutrients (biostimulation).

McCullough, J.; Hazen, Terry; Benson, Sally

1999-01-01T23:59:59.000Z

50

accelerator fusion research: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the Fusion Ignition Research Experiment (FIRE), a tokamak designed for burning plasma research. Engineering 17 Research Needs Workshop for Magnetic Fusion Energy Plasma Physics...

51

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80  

E-Print Network [OSTI]

iizI/-l4. Neutral team Plasma Research K. F. Schoenberg, "Studies Neutral Beam Plasma Research Neutral Beam Theory25%). Neutral Beam Plasma Research W are conducting research

Authors, Various

2010-01-01T23:59:59.000Z

52

Abstract of Invited Talk to be Presented at Sixteenth International Conference on the Application of Accelerators in Research and Industry  

E-Print Network [OSTI]

of Accelerators in Research and Industry Denton, Texas - November 1-4, 2000 Properties of Estuarine Sediments from

Brookhaven National Laboratory

53

Genomic and physiological perspectives on bioremediation processes at the FRC  

SciTech Connect (OSTI)

A suite of molecular and physiological studies, including metal reduction assays, metagenomics, functional gene microarrays and community sequence analyses were applied to investigate organisms involved in bioremediation processes at the ERSP Field Research Center and to understand the effects of stress on the makeup and evolution of microbial communities to inform effective remediation strategies.

Cardenas, Erick; Leigh, Mary Beth; Hemme, Christopher; Gentry, Terry; Harzman, Christina; Wu, Weimin; Criddle, Craig S.; Zhou, Jizhong; Marsh, Terence; Tiedje, James M.

2006-04-05T23:59:59.000Z

54

E-Print Network 3.0 - accelerator research hifar Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

related to the feasibility of IFE. These research areas include heavy... -ion accelerators, Krypton- Fluoride (KrF) gas lasers, diode-pumped, solid-state (DPSSL) lasers, IFE...

55

Legal and social concerns to the development of bioremediation technologies  

SciTech Connect (OSTI)

The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment.

Bilyard, G.R.; McCabe, G.H.; White, K.A.; Gajewski, S.W.; Hendrickson, P.L.; Jaksch, J.A.; Kirwan-Taylor, H.A.; McKinney, M.D.

1996-09-01T23:59:59.000Z

56

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy...  

Energy Savers [EERE]

extreme environments. Researchers will rely on the most advanced techniques of modern genomics to develop breeding and other strategies to improve the crops. The research will be...

57

Bioremediation of PCBs. CRADA final report  

SciTech Connect (OSTI)

The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.

Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div., TN (United States)] [Oak Ridge National Lab., TN (United States). Chemical Technology Div., TN (United States); Abramowicz, D.A. [General Electric Co. Corporate Research and Development, Niskayuna, NY (United States)] [General Electric Co. Corporate Research and Development, Niskayuna, NY (United States)

1996-06-01T23:59:59.000Z

58

Computational Science Guides and Accelerates Hydrogen Research (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in using computational science to enhance hydrogen-related research and development in areas such as storage and photobiology. Work was performed by NREL's Chemical and Materials Science Center and Biosciences Center.

Not Available

2010-12-01T23:59:59.000Z

59

Bioremediation Synthetic Ecology  

E-Print Network [OSTI]

Dimension BTI Researchers test 3-D printing technology to scale up--and down For the Record 14 BTI members

Netoff, Theoden

60

In situ bioremediation of petrol contaminated groundwater  

E-Print Network [OSTI]

) Bacterial Diversity and Aerobic Biodegradation Potential in a BTEX-Contaminated Aquifer Water Air Soil21/11/08 1 In situ bioremediation of petrol contaminated groundwater Guido Miguel Delgadillo EVS and facts · Likelihood of contamination · Benefits of in situ bioremediation So... Ask not what groundwater

Blouin-Demers, Gabriel

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

uge particle accelerators have been at the vanguard of research in particle  

E-Print Network [OSTI]

under construc- tion at CERN in Geneva,will attempt to find the Higgs boson, a particle associatedH uge particle accelerators have been at the vanguard of research in particle physics for more than half a century; through high-energy collisions of accelera- ted particles, the fundamental building

Valero-Cuevas, Francisco

62

Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques  

SciTech Connect (OSTI)

The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

Lovley, Derek R. [University of Massachusetts, Amherst] [University of Massachusetts, Amherst

2012-11-28T23:59:59.000Z

63

7 Cometabolic Bioremediation T. C. Hazen  

E-Print Network [OSTI]

bioremediation has been used on some of the most recalcitrant contami- nants, e.g., PCE, TCE, MTBE, TNT, dioxane and aromatic hydrocar- bons, MTBE, explosives, dioxane, PCBs, and pesticides. Microorganisms are versatile

Hazen, Terry

64

Bioremediation: Hope / Hype for Environmental Cleanup  

ScienceCinema (OSTI)

Terry Hazen discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention. His talk was presented July 18, 2007.

Terry Hazen

2013-06-11T23:59:59.000Z

65

Accelerator research studies. Technical progress report, June 1, 1992--May 31, 1993  

SciTech Connect (OSTI)

The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ``Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,`` (P.I., M. Reiser); TASK B, ``Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,`` (Co-P.I.`s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ``Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,`` (Co-P.I.`s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

Not Available

1993-03-01T23:59:59.000Z

66

Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators  

SciTech Connect (OSTI)

The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor.

Nitschke, J.M. (ed.)

1984-04-01T23:59:59.000Z

67

ORIGINAL PAPER Bioremediation of oily sludge-contaminated soil  

E-Print Network [OSTI]

ORIGINAL PAPER Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes In situ bioremediation of oily sludge- contaminated soil by biostimulation of indigenous microbes through. Keywords Bioremediation Biostimulation In situ Microbial community Oily sludge Introduction

Ma, Lena

68

The proton injector for the accelerator facility of antiproton and ion research (FAIR)  

SciTech Connect (OSTI)

The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 ?s. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3? mm?mrad (norm., rms)

Ullmann, C., E-mail: c.ullmann@gsi.de; Kester, O. [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut fr Angewandte Physik, Goethe-Universitt Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Berezov, R.; Fils, J.; Hollinger, R.; Vinzenz, W. [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany)] [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O. [Commissariat lEnergie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)] [Commissariat lEnergie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)

2014-02-15T23:59:59.000Z

69

CHARACTERIZATION OF POLYLACTIC ACID COLLOIDS FOR IN SITU BIOREMEDIATION  

SciTech Connect (OSTI)

Groundwater contamination is a widespread problem. As human activities generate chemical wastes, we seek quick, yet not always environmentally friendly, ways to dispose of them. Often, chemicals are dumped into waste containers and buried. Unfortunately, these chemicals may spill or leak, seep deeper into the ground, and eventually reach groundwater. Chlorinated organic solvents such as trichloroethene, tetrachloroethane, and chloroform are common contaminants in groundwater [1]. These solvents originate from chemical spills, tank leaks, and waste disposal practices [2]. Such contaminants are harmful to humans, and need to be removed to restore clean groundwater. There are two types of methods to clean chemically contaminated soil and groundwater: ex situ and in situ. Both types have advantages and disadvantages. In situ remediation avoids the cost of removing the contaminated material and has a lower risk of worker exposure to the contaminants. One in situ technique that shows promise is remediation, which uses microorganisms to anaerobically degrade contaminants. In bioremediation in situ, the microorganisms that are already present in the ground utilize nutrients that are injected into the ground to metabolize the contaminants into nonhazardous materials. The nutrients serve as a carbon source for the microbes. Though this method has been used with some success, there have been problems with too rapid release of nutrients to the microbes. In these cases, the microbes multiplied too rapidly and caused biofouling. This can occur when the nutrient content of the bioremediation solution is too high, as when lactate or lactic acid is the nutrient. Lactic acid is typically produced in carbohydrate matter by fermentation, and is used mainly in the food and pharmaceutical industries [3]. Because it has been found difficult to uniformly distribute lactate solutions in a contaminated area due to biofouling, it was suggested that polylactic acid, in colloidal form, be used instead. Polylactic acid (PLA) is a polymer of lactic acid, C3H6O3 [3]. PLA is used in medicine and agriculture. In medicine, PLA is used in sutures because it degrades within the body after the incision has healed. In agriculture, PLA is used in combination with polyglycolic acid for the release of chemicals [4]. We expect PLA to degrade in the ground at a rate that allows bioremediation to occur as intended. Currently, bioremediation of chlorinated solvents involves injecting nutrient containing solvents into the ground to induce the expected activity of the microbes. The solution must have a proper amount of nutrients for the microbes to metabolize so that they can continue to degrade the contaminants. If too much nutrient is available, and the microbes multiply too fast and clog the injection point, the solution may not reach the area where the contaminants are. One way to slowly release the nutrients for bioremediation is to package them as colloids. Colloids are particles that are less than one micrometer in size, with surface chemical properties that allow them to remain suspended in water and, therefore, to travel with water. Our research addresses the problem of packaging nutrients as colloids to support bioremediation.

Ashley N. Westbrook

2003-07-01T23:59:59.000Z

70

Computational studies and optimization of wakefield accelerators  

E-Print Network [OSTI]

optimization of wakefield accelerators C. G. R. Geddes 1 ,from the U.S. -LHC Accelerator Research Program (LARP),driven plasma wakefield accelerators produce accelerating

Geddes, C.G.R.

2010-01-01T23:59:59.000Z

71

Hydrogen as an Indicator to Assess Biological Activity During Trace-Metal Bioremediation  

SciTech Connect (OSTI)

The design and operation of a trace-metal or radionuclide bioremediation scheme requires that specific redox conditions be achieved at given zones of an aquifer for a pre-determined duration. Tools are therefore needed to identify and quantify the terminal electron accepting processes (TEAPs) that are being achieved during bioremediation in an aquifer, and that this be done at a high spatial resolution. Dissolved hydrogen (H{sub 2}) concentrations have been shown to correlate with specific TEAPs during bioremediation in an aquifer (Table 1). Theoretical analysis has shown that these steady-state hydrogen levels are solely dependent upon the physiological parameters of the hydrogen-consuming microorganisms, with hydrogen concentrations increasing as each successive TEAP yields less energy for bacterial growth. The assumptions for this statement may not hold during a bioremediation scheme in which an organic substrate is injected into the subsurface and where organisms may consume hydrogen and carbon simultaneously. This research examines the effects of simultaneous hydrogen and carbon utilization through obtaining kinetic parameters of both hydrogen and carbon consumption under iron reducing conditions in batch experiments. A dual-donor model was formulated and compared to flow-through column experiments.

Jaffe, Peter R.; Lovley, Derek; Komlos, John; Brown, Derick

2004-03-17T23:59:59.000Z

72

Accelerator and Fusion Research Division annual report, October 1980-September 1981. Fiscal year, 1981  

SciTech Connect (OSTI)

Major accomplishments during fiscal year 1981 are presented. During the Laboratory's 50th anniversary celebrations, AFRD and the Nuclear Science Division formally dedicated the new (third) SuperHILAC injector that adds ions as heavy as uranium to the ion repertoire at LBL's national accelerator facilities. The Bevalac's new multiparticle detectors (the Heavy Ion Spectrometer System and the GSI-LBL Plastic Ball/Plastic Wall) were completed in time to take data before the mid-year shutdown to install the new vacuum liner, which passed a milestone in-place test with flying colors in September. The Bevalac biomedical program continued patient treatment with neon beams aimed at establishing a complete data base for a dedicated biomedical accelerator, the design of which NCI funded during the year. Our program to develop alternative Isabelle superconducting dipole magnets, which DOE initiated in FY80, proved the worth of a new magnet construction technique and set a world record - 7.6 Tesla at 1.8 K - with a model magnet in our upgraded test facility. Final test results at LBL were obtained by the Magnetic Fusion Energy Group on the powerful neutral beam injectors developed for Princeton's TFTR. The devices exceeded the original design requirements, thereby completing the six-year, multi-million-dollar NBSTF effort. The group also demonstrated the feasibility of efficient negative-ion-based neutral beam plasma heating for the future by generating 1 A of negative ions at 34 kV for 7 seconds using a newly developed source. Collaborations with other research centers continued, including: (1) the design of LBL/Exxon-dedicated beam lines for the Stanford Synchrotron Radiation Laboratory; (2) beam cooling tests at Fermilab and the design of a beam cooling system for a proton-antiproton facility there; and (3) the development of a high-current betatron for possible application to a free electron laser.

Johnson, R.K.; Thomson, H.A. (eds.)

1982-04-01T23:59:59.000Z

73

Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado  

E-Print Network [OSTI]

bioremediation at Rifle, Colorado. J. Contam. Hydrol. 2009 (Bioremediation at Rifle, Colorado Li Li a* , Carl I. Steefelcontaminated site near Rifle, Colorado. We use the reactive

Li, L.

2009-01-01T23:59:59.000Z

74

Microbial petroleum degradation enhancement by oil spill bioremediation products.  

E-Print Network [OSTI]

??Biodegradation of an artificially weathered crude oil (Alaska North Slope) was compared using 13 different oil spill bioremediation agents. All products were evaluated under identical (more)

Lee, Salvador Aldrett

2012-01-01T23:59:59.000Z

75

ANNUAL REPORT FOR ACCELERATOR & FUSION RESEARCH DIVISION. FISCAL YEAR 1979 OCTOBER 1978 - SEPTEMBER 1979  

E-Print Network [OSTI]

Physics Neutral Beam Plasma Research Plasma Theory Tormac3. Neutral Bean Plasma Research 4. Basic Plasma Theory 5.1153. Neutral Beam Plasma Research Basic physics research is

Authors, Various

2010-01-01T23:59:59.000Z

76

Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259  

SciTech Connect (OSTI)

This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

Kramer, W.

2011-10-01T23:59:59.000Z

77

pH control with silicates minerals for in situ bioremediation of chlorinated solventsfor in situ bioremediation of chlorinated solvents  

E-Print Network [OSTI]

stations in Switzerland Electron donor Fermentation not detected or stations in Switzerland What is in situ bioremediation? In situ bioremediation (ISB) is a H2 Acetate CO2PCE, TCE Fermentation Volatile organic compounds in groundwater (Switzerland 2009) Source: OFEV 1 g

78

Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980. [Lead abstract  

SciTech Connect (OSTI)

Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)

Pirruccello, M.C.; Tobias, C.A. (eds.)

1980-11-01T23:59:59.000Z

79

Research proposal for development of an electron stripper using a thin liquid lithium film for rare isotope accelerator.  

SciTech Connect (OSTI)

Hydrodynamic instability phenomena in a thin liquid lithium film, which has been proposed for the first stripper in the driver linac of Rare Isotope Accelerator (RIA), were discussed. Since it was considered that film instability could significantly impair the feasibility of the liquid lithium film stripper concept, potential issues and research tasks in the RIA project due to these instability phenomena were raised. In order to investigate these instability phenomena, a research proposal plan was developed. In the theoretical part of this research proposal, a use of the linear stability theory was suggested. In the experimental part, it was pointed out that the concept of Reynolds number and Weber number scaling may allow conducting a preliminary experiment using inert simulants, hence reducing technical difficulty, complexity, and cost of the experiments. After confirming the thin film formation in the preliminary experiment using simulants, demonstration experiments using liquid lithium were proposed.

Momozaki, Y.; Nuclear Engineering Division

2006-03-06T23:59:59.000Z

80

ENHANCING STAKEHOLDER ACCEPTANCE OF BIOREMEDIATION TECHNOLOGIES  

SciTech Connect (OSTI)

This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal control over exposure as low. Slightly more than half believe that risk reduction should be balanced against cost. We also found that distrust of DOE and its contractors exists, primarily due to the perception that site managers do not share public values; hence, the public is generally unwilling to defer to DOE in its decision-making. The concomitant belief of inefficacy confounds distrust by generating frustration that DOE does not care. Moreover, the public is split with respect to trust of each other, primarily because of the belief that citizens lack technical competence. With respect to bioremediation support, we found that more than 40% of the public has no opinion. However, of those who do, 3 of 4 are favorably disposed particularly among those who believe that risk is lower and who are more trusting of site management. We presented survey respondents with four alternative participation strategies based on the results of the Q analysis and asked their judgments of each. The public prefers strategies that shifts power to them. The least empowered strategy (feedback) was supported by 46%; support grew as public power increased, reaching 66% support for independently facilitated deliberation. More DOE distrust generates more support for high power strategies. We offer the following recommendations to enhance public acceptance. First, and perhaps most importantly, site managers should pursue robust trust-building efforts to gain public confidence in DOE risk management that meets public expectations. Public trust decreases risk perception, which increases public willingness to defer to site managers discretion in decision-making, which in turn increases public acceptance of the decisions that result. Second, site managers should address public concerns about bioremediation such as its effectiveness in reducing risk, performance compared to other remediation alternatives, costs compared against benefits, time required to start and complete remediation, level of risk that is currently posed by contamination, and scope of application. Third, more should be d

Focht, Will; Albright, Matt; Anex, Robert P., Jr., ed.

2009-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Rate controlling model for bioremediation of oil contaminated soil  

SciTech Connect (OSTI)

A mathematical model of bio-remediation of hydrocarbons in a soil matrix has been developed to predict the rate controlling step and the remediation rate during the bioremediation of a contaminated soil. The model is based on mass transfer of oxygen and oil into the aqueous solution in the soil matrix and the biodegradation of the hydrocarbons in the aqueous solution. Monod's equation was used to describe the biodegradation rate in aqueous solution while the mass transfer equations were used to describe the mass transfer rates of oxygen and oil in the soil matrix. Results from model calculations indicate that the bio-remediation rate increases and approaches a limiting value when one of the rates becomes controlling. When the parameters of the site soil samples are measured and the solubilities of oxygen and oil in aqueous solution are obtained, the bioremediation rate can be predicted by this model. The rate controlling step of the bioremediation site may be identified quickly and steps to improve the bioremediation rate can be recommended. 8 refs., 7 figs.

Li, K.Y.; Annamali, S.N.; Hopper, J.R. (Lamar Univ., Beaumont, TX (United States))

1993-11-01T23:59:59.000Z

82

Accelerators and the Accelerator Community  

E-Print Network [OSTI]

of electrostatic accelerators, while Ernest O. Lawrence (CBP 820 LBNL TBA ACCELERATORS ANDTHE ACCELERATOR COMMUNITY 1 ANDREW SESSLER Lawrence Berkeley

Malamud, Ernest

2009-01-01T23:59:59.000Z

83

Bioremediation Well Borehole Soil Sampling and Data Analysis Summary Report for the 100-N Area Bioremediation Project  

SciTech Connect (OSTI)

The purpose of this report is to present data and findings acquired during the drilling and construction of seven bioremediation wells in the 100-N Area in conjunction with remediation of the UPR-100-N-17 petroleum waste site.

D. A. Gamon

2009-09-28T23:59:59.000Z

84

EA-1196: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

85

Research on acceleration method of reactor physics based on FPGA platforms  

SciTech Connect (OSTI)

The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

Li, C.; Yu, G.; Wang, K. [Department of Engineering Physics, Tsinghua University, Beijing (China)

2013-07-01T23:59:59.000Z

86

Vision, Robotics and Images Research Group, UFPR 1 GPU-accelerated PSF Estimation with a  

E-Print Network [OSTI]

with a Cooperative Particle Swarm Optimization Kiepenheuer Institute for Solar Physics Freiburg, 04.06.2013 Peter F) Kiepenheuer Institute for Solar Physics, Freiburg, Germany #12;Vision, Robotics and Images Research Group on the dynamics of a bird flock Find good "food" regions in search space Does not guaranty optimal solution

87

Hydrogen as an Indicator to Assess Biological Activity During Trace-Metal Bioremediation  

SciTech Connect (OSTI)

Trace-metal and/or radionuclide bioremediation schemes require that specific redox conditions be achieved at given zones of an aquifer. Tools are therefore needed to identify the terminal electron acceptor processes (TEAPs) that are being achieved during bioremediation in an aquifer. Dissolved hydrogen (H2) concentrations have been shown to correlate with specific TEAPs during bioremediation in an aquifer. Theoretical analysis has shown that these steady-state H2 levels are solely dependent upon the physiological parameters of the hydrogen-consuming microorganisms, with H2 concentrations increasing as each successive TEAP yields less energy for bacterial growth. The objective of this research was to determine if H2 can still be used as an indicator of TEAPs during a uranium bioremediation scheme where an organic substrate is injected into the subsurface and organisms may consume H2 and carbon simultaneously. In addition, the effect of iron bioavailability on H2 concentrations during iron reduction was observed. The first phase of research determined the effect of a competing electron donor (acetate) on the kinetics of H2 utilization by Geobacter sulfurreducens in batch cultures under iron reducing conditions. The results indicate that, though the Monod kinetic coefficients describing the rate of H2 utilization under iron-reducing conditions correlate energetically with the coefficients found in previous experiments under methanogenic and sulfate-reducing conditions, conventionally measured growth kinetics do not predict the steady state H2 levels typical for each TEAP. In addition, with acetate and H2 as simultaneous electron donors, there is slight inhibition between the two electron donors for G. sulfurreducens, and this can be modeled through competitive inhibition terms in the classic Monod formulation, resulting in slightly higher H2 concentrations under steady state conditions in the presence of acetate. This dual-donor model indicates that the steady state H2 concentration in the presence of an organic as electron donor is not only dependent on the biokinetic coefficients of the TEAP, but also the concentration of the organic substrate, and that the H2 concentration does not start to change very dramatically as long as the organic substrate concentration remains below the half saturation constant. The results for this phase of research are provided in Section 1. The second phase of research measured steady-state H2 concentrations under iron reducing conditions using NABIR Field Research Center background soil in a simulated bioremediation scenario involving acetate injection to stimulate indigenous microbial activity in a flow-through column. Steady-state H2 concentrations measured during this long-term (500 day) column experiment were higher than observed for iron-reducing conditions in the field even though evidence suggests that iron reduction was the dominant TEAP in the column. Additional column experiments were performed to determine the effect of iron bioavailability on steady-state H2 concentrations using the humics analogue, AQDS (9,10-anthraquinone-2,6-disulfonic acid). The iron reduction rate in the column with AQDS was double the rate in a parallel column without AQDS and lower steady state H2 levels were observed in the presence of AQDS, indicating that even though iron reduction does occur, a decreased bioavailability of iron may inhibit iron reduction such that H2 concentrations increase to levels that are more typical for less energetically favorable reactions (sulfate-reduction, methanogenigesis). The results for this phase of research are in Section 2. A final phase of research measured the effect of carbon concentration and iron bioavailability on surface bound iron reduction kinetics and steady-state H2 levels using synthetic iron oxide coated sand (IOCS). Results show a significant decrease in the microbial iron reduction and acetate oxidation rates for systems with surface bound Fe(III) (IOCS) compared to soluble Fe(III) (ferric citrate). The addition of AQDS did not affect the rate of iron r

Peter R. Jaffe, John Komlos, Derick Brown

2005-09-27T23:59:59.000Z

88

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy Crop  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of Energy AtNoticeMotorThis8,Production and

89

Remediation of contaminated soils and sediments using Daramend bioremediation  

SciTech Connect (OSTI)

Soils and sediments containing polyaromatic hydrocarbons (PAH), petroleum hydrocarbons, heavy oils, chlorinated phenols, pesticides, herbicides and phthalates, either individually or in combination, have been difficult to remediate in the past. Not only the species of contaminant, but contaminant concentrations were roadblocks to successful use of bioremediation. Daramend{sup Tm} remediation has removed many of these obstacles through extensive research. Bench-scale, pilot-scale and full-scale demonstrations have been conducted at a variety of industrial sites. At a manufactured gas site, 295 days of Daramend remediation reduced concentrations of chrysene and fluoranthene from 38.9 mg/kg to 5.9 mg/kg and 84.6 mg/kg to 7.8 mg/kg respectively. Elsewhere, the total PAH concentration in a silty soil was reduced from 1,442 mg/kg to 36 mg/kg. Concentrations of even the most refractory PAHs (e.g. pyrene, benzo(a)pyrene) were reduced to below the established clean-up guidelines. Total petroleum hydrocarbons (diesel fuel) have also been reduced from 8,700 mg/kg to 34 mg/kg after 182 days of treatment. Similarly, in a clay soil contaminated by crude oil processing, the concentrations of high molecular weight aliphatic hydrocarbons were rapidly reduced (138 days) to below the remediation criteria. Demonstrations with wood treatment site soils have proven Daramend remediation effective in enhancing the target compound degradation rates. Soils containing 2170 mg PCP/kg were shown to contain only 11 mg PCP/kg after 280 days of Darmend remediation. The issue of toxicity of soil containing increased amounts of pentachlorophenols was solved. Performance data collected during these projects indicate that Daramend remediation provides a cost effective method for clean-up of soils and sediments containing a variety of organic compounds.

Burwell, S.W.; Bucens, P.G.; Seech, A.G.

1996-05-01T23:59:59.000Z

90

YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).  

SciTech Connect (OSTI)

The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

2010-04-28T23:59:59.000Z

91

Bioremediation of Uranium Plumes with Nano-scale  

E-Print Network [OSTI]

(IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

Fay, Noah

92

Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report  

SciTech Connect (OSTI)

The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

Altman, D.J.

2001-01-12T23:59:59.000Z

93

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications  

E-Print Network [OSTI]

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V

2014-01-01T23:59:59.000Z

94

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.  

SciTech Connect (OSTI)

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V.; Piot, P.

2013-09-01T23:59:59.000Z

95

Genome-Based Models to Optimize In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Waste Organic Matter  

SciTech Connect (OSTI)

The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.

Lovley, Derek R

2012-12-28T23:59:59.000Z

96

Investigations on potential bacteria for the bioremediation treatment of environments contaminated with hydrocarbons  

SciTech Connect (OSTI)

In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submitted to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.

Lazar, I.; Voicu, A.; Dobrota, S.; Stefanescu, M. [Institute of Biology of Romanian Academy, Bucharest (Romania)] [and others

1995-12-31T23:59:59.000Z

97

Accelerators, Electrodynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuel ProductionForAccelerators,

98

LASER ACCELERATORS  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA Accelerator & Fusion Researchat the 1983 Particle Accelerator Conference, Santa Fe, NM,March 21-23, 1983 LASER ACCELERATORS A.M. Sessler TWO-WEEK

Sessler, A.M.

2008-01-01T23:59:59.000Z

99

Bioremediation of oil-contaminated soil -- A rate model  

SciTech Connect (OSTI)

Three rate equations, a modified Monod equation and two mass transfer rate equations, were used to calculate the biodegradation rate, oxygen transfer rate and oil transfer rate during a bioremediation process of oil-contaminated soil. Based on experimental rate constants, these three rates were calculated and compared. It was found the bioremediation rate of oil-contaminated soil could be controlled by the mass transfer process of oil into aqueous solution (0.12 mg BOD/(1-h)). When the oil transfer rate is enhanced by at least 10 times, the oxygen transfer process (0.1--1.0 mg BOD/(1-h)) becomes the rate-controlling step. For most of the cases, the biodegradation of oil in aqueous solution is not the limiting step unless the microbial population in the aqueous solution is less than 100 mg VSS/1.

Li, K.Y.; Zhang, Y.; Xu, T. [Lamar Univ., Beaumont, TX (United States). Chemical Engineering Dept.] [Lamar Univ., Beaumont, TX (United States). Chemical Engineering Dept.

1995-12-31T23:59:59.000Z

100

Paper K-05, in: B.C. Alleman and M.E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation--2005. Proceedings of the Eighth International In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland; June 69,  

E-Print Network [OSTI]

Paper K-05, in: B.C. Alleman and M.E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation--2005. Proceedings of the Eighth International In Situ and On-Site Bioremediation Symposium

Ma, Lena

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Multicomponent reactive transport modeling of uranium bioremediation field experiments  

SciTech Connect (OSTI)

Biostimulation field experiments with acetate amendment are being performed at a former uranium mill tailings site in Rifle, Colorado, to investigate subsurface processes controlling in situ bioremediation of uranium-contaminated groundwater. An important part of the research is identifying and quantifying field-scale models of the principal terminal electron-accepting processes (TEAPs) during biostimulation and the consequent biogeochemical impacts to the subsurface receiving environment. Integrating abiotic chemistry with the microbially mediated TEAPs in the reaction network brings into play geochemical observations (e.g., pH, alkalinity, redox potential, major ions, and secondary minerals) that the reactive transport model must recognize. These additional constraints provide for a more systematic and mechanistic interpretation of the field behaviors during biostimulation. The reaction network specification developed for the 2002 biostimulation field experiment was successfully applied without additional calibration to the 2003 and 2007 field experiments. The robustness of the model specification is significant in that 1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and 2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four TEAPs, two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation, and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site that demonstrated that the bulk (~90%) of Fe(III) bioreduction is associated with the phyllosilicates rather than the iron oxides. The uranium reaction network includes a U(VI) surface complexation model based on laboratory studies with Old Rifle UMTRA sediments and aqueous complexation reactions that include ternary complexes (e.g., calcium-uranyl-carbonate). The bioreduced U(IV), Fe(II), and sulfide components produced during the experiments are strongly associated with the solid phases and may play an important role in long-term uranium immobilization.

Fang, Yilin; Yabusaki, Steven B.; Morrison, Stan J.; Amonette, James E.; Long, Philip E.

2009-10-15T23:59:59.000Z

102

Molecular Analysis of Rates of Metal Reduction andMetabolic State of Geobacter Species During in situ Uranium Bioremediation  

SciTech Connect (OSTI)

This report summarizes progress from June 2004 through April 2005. Research focused on monitoring the in situ rates of metabolism and the metabolic state of Geobacteraceae during in situ bioremediation of uranium at the field study site in Rifle, Colorado. As detailed below, it was demonstrated for the first time that it is possible to quantify in situ levels of transcripts for key metabolic genes and from this information infer not only rates of electron transfer to metals, but also nutrient limitations which might be limiting this process.

Lovley, Derek R.

2005-06-01T23:59:59.000Z

103

Sampling and Analysis Instruction for Installation of UPR-100-N-17 Bioremediation Wells and Performance of Bioventing Pilot Tests  

SciTech Connect (OSTI)

Sampling and analytical requirements for in situ bioremediation pilot study for remediation of vadose zone petroleum hydrocarbon contamination.

W. S. Thompson

2008-12-30T23:59:59.000Z

104

Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research  

SciTech Connect (OSTI)

A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

Redondo, L. M.; Canacsinh, H.; Ferrao, N.; Mendes, C. [Instituto Superior de Engenharia de Lisboa (ISEL), R. Conselheiro Emidio Navarro 1, Lisbon 1959-007 (Portugal); Nuclear Physics Center-Lisbon University (CFNUL), Av. Prof. Gama Pinto 2, Lisbon 1649-003 (Portugal); Silva, J. Fernando [Instituto Superior Tecnico (IST), Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, Lisbon 1049-001 (Portugal); Center for Innovation in Electrical and Energy Engineering-TU Lisbon, Av. Rovisco Pais 1, Lisbon 1049-001 (Portugal); Soares, R. [Nuclear Physics Center--Lisbon University (CFNUL), Av. Prof. Gama Pinto 2, Lisbon 1649-003 (Portugal); ABT Group, TE Department, Site de Prevessin, FR-01631 CERN (Switzerland); Schipper, J.; Fowler, A. [ABT Group, TE Department, Site de Prevessin, FR-01631 CERN (Switzerland)

2010-07-15T23:59:59.000Z

105

Future Accelerators (?)  

E-Print Network [OSTI]

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

106

Characterization of chemically modified enzymes for bioremediation-reactions. 1997 annual progress report  

SciTech Connect (OSTI)

'Many, if not most, biological transformation reactions of interest to US Department of Energy (DOE) site remediation involve substrates that are only sparingly soluble in aqueous environments. Hence, destruction of these recalcitrant and toxic materials would benefit tremendously if their degradation could be performed in nonaqueous environments. Organic biocatalysis may be motivated by the nature of the substrate itself, augmented mass transport, ease of product recovery, or novel reaction pathways afforded by the organic solvent. For instance, polychlorinated biphenyls (PCBs) are sparingly soluble in water, but may be more effectively processed when solubilized by organic liquids. However, naturally-occurring enzymes are not soluble in organic solvents. Indeed, most spontaneously denature and, depending on the solvent used, typically form inactive and insoluble precipitates. The objective of the current work is to gain a fundamental understanding of the molecular and catalytic properties of enzymes that have been chemically-modified so that they are catalytically-active and chemically-thermally-stable in organic solvents. The premise for this study is that highly stable enzymes which are catalytically active in both water and in a range of organic solvents are optimally suited for bioremediation where substrates of interest are more soluble and may be processed with greater specificity in nonaqueous solvents. The proposed research program will enable the development of nonaqueous bioremediation technologies for the treatment of DOE sites contaminated with aqueous-insoluble organic compounds. Such compounds may include dense nonaqueous phase liquids, trichloroethylene (TCE), trichloroacetic acid, trans-dichloroethylene, diesel fuel, and PCBs. These compounds have been identified as targets for technology development in the ``EM Technology Needs Database,'''' and are contaminants at the following DOE sites: K-25 Site plumes; ORNL WAGS 1, 4, and 5; Paducah plumes; Portsmouth plumes; the X-701B Holding Pond; and the Y-12 Poplar Creek and Bear Creek Watersheds.'

Kaufman, E.N. [Oak Ridge National Lab., TN (US); Adams, M.W.W. [Univ. of Georgia, Athens, GA (US)

1997-09-01T23:59:59.000Z

107

Reduction and Reoxidation of Soils During & After Uranium Bioremediation; Implications for Long-Term Uraninite Stability & Bioremediation Scheme Implementation  

SciTech Connect (OSTI)

This research focuses on the conditions and rates under which uranium will be remobilized after it has been precipitated biologically, and what alterations can be implemented to increase its long-term stability in groundwater after the injection of an electron donor has been discontinued. Furthermore, this research addresses short-term iron reoxidation as a mechanism to enhance/extend uranium bioremediation under iron reduction, without its remobilization. The research to date has focused on long term column experiments involving the biological removal of uranium from groundwater under iron and sulfate reducing conditions. Aquifer sediment was collected from the background area of the Old Rifle UMTRA site and dried and sieved (<2 mm) before being packed into four 15 cm long x 5 cm diameter glass columns. The initial porosity of each column ranged from 0.33 to 0.40. Prior to biostimulation of the columns, 30 mM bicarbonate (purged with CO2/N2 gas, 20:80 ratio) was pumped through the columns to flush out the natural uranium present in the sediment. After the natural uranium was flushed out of the system, 20 uM of uranyl acetate was added to the 30 mM bicarbonate influent media. The column was operated for 11 days to ensure that the effluent U(VI) concentration was equal to the influent U(VI) concentration (no removal of U(VI) occurred before biostimulation). The start of the biostimulation experiment was facilitated by the addition of one pore volume of a growth culture containing the Fe(III) and U(VI) reducing microorganism, Geobacter metallireducens. Flow to the columns was suspended for 24 hours, after which pumping was resumed with acetate (2.8-3.0 mM), as well as trace vitamins and minerals, supplied to the feed media. The columns were operated at 22 +/- 1 degrees C, upright and under up-flow conditions at a rate of 0.2 ml/min (equivalent to a linear groundwater travel time of approximately 135 m/yr). Water samples from column inlets and outlets were collected and analyzed for acetate, U(VI), Fe(II), Br-, NO3- and SO42-. Iron reduction and U(VI) removal was detected in all four columns after three days of column operation with acetate in the inflow. The Fe(II) concentration at the effluent of the columns increased at a rate of 16.6 (+/-1.9) uM/d until leveling off after 10 days of column operation. The pseudo steady-state Fe(II) concentration at the effluent for each column ranged 130 uM to 170 uM. Uranium removal reached steady-state conditions after approximately 23 days of column operation with removal of between 58% to 77% of the initial 20 uM U(VI) added at the influent of the column.

Jaffe, Peter R.

2005-06-01T23:59:59.000Z

108

Beam-Dynamics Studies and Advanced Accelerator Research at CTF-3 Compact Final Focus, Laser Compton Scattering, Plasmas, etc.  

E-Print Network [OSTI]

Preliminary investigations are summarized on the possible use of the CTF3 facility for extended beam-dynamics studies and advanced accelerator R&D, which would exploit its unique properties and beam availability. The key element of these considerations is the possible addition of a test beam-delivery system comprising a compact final focus and advanced collimation concepts, scaled from 3 TeV down to low energy and having a short total length. Operational experience, verification of critical questions (octupole tail folding, beam halo transport, etc.), diagnostics (e.g., rf BPMs) and stabilization could all be explored in such a facility, which would benefit not only the CLIC study, but all linear collider projects. Another interesting application would be the study of plasma-beam interaction, which may include plasma focusing, plasma acceleration, ion-channel radiation, and plasma wigglers.

Assmann, R W; Burkhardt, H; Corsini, R; Faus-Golfe, A; Gronberg, J; Redaelli, S; Schulte, Daniel; Velasco, M; Zimmermann, Frank

2002-01-01T23:59:59.000Z

109

Accelerator Mass Spectrometric (AMS) Measurements of Plutonium Activity Concentrations and 240Pu/239Pu Atom Ratios In Soil Extracts Supplied by the Carlsbad Environmental Monitoring & Research Center  

SciTech Connect (OSTI)

Plutonium-239 ({sup 239}Pu) and plutonium-239+240 ({sup 239+240}Pu) activities concentrations and {sup 240}Pu/{sup 239}Pu atom ratios are reported for a series of chemically purified soil extracts received from the Carlsbad Environmental Monitoring & Research Center (CEMRC) in New Mexico. Samples were analyzed without further purification at the Lawrence Livermore National Laboratory (LLNL) using accelerator mass spectrometry (AMS). This report also includes a brief description of the AMS system and internal laboratory procedures used to ensure the quality and reliability of the measurement data.

Hamilton, T F; Brown, T A; Marchetti, A A; Martinelli, R E; Kehl, S R

2005-02-28T23:59:59.000Z

110

In situ bioremediation enhanced with air sparging and vapor extraction  

SciTech Connect (OSTI)

Eaton Corporation operates a corporate airport hangar facility in central Michigan. Testing showed, and soil and groundwater investigation confirmed, that two underground storage tanks leaked. This release sent an undetermined amount of Jet A kerosene into the soil and groundwater. As a result, the Michigan Department of Natural Resources (MDNR) listed the facility on the Act 307 list of contaminated sites (Michigan equivalent of a Superfund listing). The objective of the remediation was to clean up an aquifer and soil system contaminated with Jet A kerosene. This cleanup used pump and treat, bioremediation, soil vapor extraction, and air sparging technologies.

Fesko, S. [Eaton Corp., Willoughby Hills, OH (United States)

1996-11-01T23:59:59.000Z

111

Fermilab | Illinois Accelerator Research Center | Illinois Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|Upcoming Events andWelcome

112

COLLECTIVE EFFECT ACCELERATORS AND THE CHALLENGE OF ATTAINING ULTRA-HIGH ENERGIES  

E-Print Network [OSTI]

F. Cole, ed. , "Collective Accelerators, A Study Carried outUNIVERSITY OF CALIFORNIA Accelerator & Fusion ResearchCommittee of Future Accelerators - RAL Conference, The

Sessler, A.M.

2008-01-01T23:59:59.000Z

113

Basic Electropolishing Process Research and Development in Support of Improved Reliable Performance SRF Cavities for the Future Accelerator  

SciTech Connect (OSTI)

Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nanosmoothness. Electropolishing is the technique of choice to be developed for high-field superconducting radiofrequency cavities. Electrochemical impedance spectroscopy (EIS) and related techniques point to the electropolishing mechanism of Nb in a sulfuric and hydrofluoric acid electrolyte of controlled by a compact surface salt film under F- diffusion-limited mass transport control. These and other findings are currently guiding a systematic characterization to form the basis for cavity process optimization, such as flowrate, electrolyte composition and temperature. This integrated analysis is expected to provide optimum EP parameter sets for a controlled, reproducible and uniform surface leveling for Nb SRF cavities.

H. Tian, C.E. Reece,M.J. Kelley

2009-05-01T23:59:59.000Z

114

Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history  

E-Print Network [OSTI]

Costa, C. F. EPAs Alaska oil spill bioremediation project.for the Exxon Valdez oil spill. Nature 1994, 368, 413418.from the 1989 Exxon Valdez oil spill. Mar. Ecol. Prog. Ser.

Atlas, R.M.

2012-01-01T23:59:59.000Z

115

Toxicity of oiled wetland sediments influenced by natural and enhanced bioremediation  

E-Print Network [OSTI]

were set aside for petroleum bioremediation studies. Phase I began in December of 1994 and monitored sediment toxicity associated with intrinsic petroleum degradation. Acute toxicity was evaluated using the Microtox 100% Test on sediment elutriates from...

Mueller, Danica Christine

1998-01-01T23:59:59.000Z

116

Integrated Ecogenomics Study for Bioremediation of Cr(VI) at Hanford 100H Area  

E-Print Network [OSTI]

reducer isolated from the Hanford 100H site capable of Iron(study for bioremediation of Cr(VI) at Hanford 100H area RomyVI)contamination at Hanford ?? Cr(VI) highly soluble, toxic

Chakraborty, Romy

2008-01-01T23:59:59.000Z

117

Bioremediation: Hope/Hype for Environmental Cleanup (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2007: Terry Hazen, Senior Staff Scientists and Head of the LBNL Ecology Department, discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention.

Hazen, Terry [LBNL, Ecology Dept

2011-04-28T23:59:59.000Z

118

The application of molecular genetics techniques to bioremediation processes  

SciTech Connect (OSTI)

Bioremediation is a process in which microorganisms are used to degrade toxic compounds. This technology has been used successfully to clean up a number of organic wastes including diesel fuel and creosote. Due to the increasingly stringent regulations affecting contaminated sites, a number of new technologies are being pursued that attempt to remediate wastes in situ, thus leaving the wastes undisturbed. One such pursuit has led to the proposal that molecular genetic techniques can be used to assess the genetic ecology of a contaminated waste site and that, subsequently, one can manipulate the indigenous microbial population so as to increase the biodegradation rate. Such a technology is heavily dependent on molecular genetic technique such as gene probing to determine the presence, distribution and ability of microbial genes to be expressed/amplified in the contaminated soil or water matrix. 117 refs., 14 figs., 13 tabs.

Alpert, S. (Alpert (S.), Palo Alto, CA (USA))

1989-12-01T23:59:59.000Z

119

Accelerator on a Chip: How It Works  

SciTech Connect (OSTI)

In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

None

2014-06-30T23:59:59.000Z

120

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS  

E-Print Network [OSTI]

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

Magee, Joseph W.

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Accelerate Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerate Energy Productivity 2030 Over the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake...

122

ACCELERATE ENERGY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ACCELERATE ENERGY PRODUCTIVITY 2030 A Partnership To Double U.S. Energy Productivity By 2030 LEARN MORE AT: www.energy2030.org "I'm issuing a new goal for America: let's cut in...

123

Acceleration Fund  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office AboutAccelerateAccelerating

124

Noncompetitive microbial diversity patterns in soils: their causes and implications for bioremediation  

SciTech Connect (OSTI)

This funding provided support for over nine years of research on the structure and function of microbial communities in subsurface environments. The overarching goal during these years was to understand the impact of mixed contaminants, particularly heavy metals like uranium, on the structure and function of microbial communities. In addition we sought to identify microbial populations that were actively involved in the reduction of metals because these species of bacteria hold the potential for immobilizing soluble metals moving in subsurface water. Bacterial mediated biochemical reduction of metals like uranium, technetium and chromium, greatly reduces their mobility through complexation and precipitation. Hence, by taking advantage of natural metabolic capabilities of subsurface microbial populations it is possible to bioremediate contaminated subsurface environments with a cost-effective in situ approach. Towards this end we have i.) identified bacterial populations that have thrived under the adverse conditions at the contaminated FRC site, ii.) phylogenetically identified populations that respond to imposed remediation conditions at the FRC, iii.) used metagenomics to begin a reconstruction of the metabolic web in a contaminated subsurface zone, iv.) investigated the metal reducing attributes of a Gram-positive spore forming rod also capable of dechlorination.

James M. Tiedje; Jizhong Zhou; Anthony Palumbo; Nathaniel Ostrom; Terence L. Marsh

2007-07-05T23:59:59.000Z

125

Accelerating Ocean Energy to the Marketplace Environmental Research at the U.S. Department of Energy National Laboratories  

SciTech Connect (OSTI)

The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

2010-10-06T23:59:59.000Z

126

Maximal acceleration or maximal accelerations?  

E-Print Network [OSTI]

We review the arguments supporting the existence of a maximal acceleration for a massive particle and show that different values of this upper limit can be predicted in different physical situations.

A. Feoli

2002-10-12T23:59:59.000Z

127

Accelerated Testing Validation  

E-Print Network [OSTI]

the University of California. Accelerated Testing Validationmaterials requires relevant Accelerated Stress Tests (ASTs),

Mukundan, Rangachary

2013-01-01T23:59:59.000Z

128

E-Print Network 3.0 - accelerator center university Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Collection: Computer Technologies and Information Sciences 4 Accelerator Research Department BAccelerator Research Department B E163: Laser Acceleration Summary: , D....

129

New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation  

SciTech Connect (OSTI)

Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amended with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.

Not Available

2011-06-22T23:59:59.000Z

130

Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation  

SciTech Connect (OSTI)

Implementation of uranium bioremediation requires methods to monitor the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here we report a proteomics-based approach to simultaneously document strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching LC MS/MS spectra to peptides predicted from 7 isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and G. bemidjiensis like strains and later possible emergence of M21 and G. bemidjiensis like strains more closely related to G. lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-CoA and pyruvate for central metabolism while abundant peptides matching TCA cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

Wilkins, Mike [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Williams, Ken [Lawrence Berkeley National Laboratory (LBNL); Callister, Stephen J [Pacific Northwest National Laboratory (PNNL); Mouser, Paula J [University of Massachusetts, Amherst; Elifantz, Hila [University of Massachusetts, Amherst; N'Guessan, A. Lucie [University of Massachusetts, Amherst; Thomas, Brian [University of California, Berkeley; Nicora, Carrie D. [Pacific Northwest National Laboratory (PNNL); Shah, Manesh B [ORNL; Abraham, Paul E [ORNL; Lipton, Mary S [Pacific Northwest National Laboratory (PNNL); Lovley, Derek [University of Massachusetts, Amherst; Hettich, Robert {Bob} L [ORNL; Long, Phil [Pacific Northwest National Laboratory (PNNL); Banfield, Jillian F. [University of California, Berkeley

2009-01-01T23:59:59.000Z

131

Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation  

SciTech Connect (OSTI)

Implementation of uranium bioremediation requires methods to monitor the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here we report a proteomics-based approach to simultaneously document strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching LC MS/MS spectra to peptides predicted from 7 isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and G. bemidjiensislike strains and later possible emergence of M21 and G. bemidjiensislike strains more closely related to G. lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-CoA and pyruvate for central metabolism while abundant peptides matching TCA cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

Wilkins, Michael J.; VerBerkmoes, Nathan C.; Williams, Kenneth H.; Callister, Stephen J.; Mouser, Paula; Elifantz, H.; N'Guessan, A. Lucie; Thomas, Brian C.; Nicora, Carrie D.; Shah, Manesh B.; Abraham, Paul; Lipton, Mary S.; Lovely, Derek R.; Hettich, Robert L.; Long, Philip E.; Banfield, Jillian F.

2009-10-01T23:59:59.000Z

132

Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation  

SciTech Connect (OSTI)

Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

Wilkins, M.J.; VerBerkmoes, N.C.; Williams, K.H.; Callister, S.J.; Mouser, P.J.; Elifantz, H.; N'Guessan, A.L.; Thomas, B.C.; Nicora, C.D.; Shah, M.B.; Lipton, M.S.; Lovley, D.R.; Hettich, R.L.; Long, P.E.; Banfield, J.F.; Abraham, P.

2009-08-01T23:59:59.000Z

133

In situ recycling of contaminated soil uses bioremediation  

SciTech Connect (OSTI)

OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties.

Shevlin, P.J.; Reel, D.A.

1996-04-01T23:59:59.000Z

134

Accelerators for Testing Radiation Tolerances of Electronics...  

Office of Science (SC) Website

and Lawrence Berkeley National Laboratory 88-Inch Cyclotron Developed in: 1980's (LBNL); 1995, upgrades in 2001, 2003 (TAMU) Result of NP research: Accelerator Physics...

135

Grid Engineering for Accelerated Renewable Energy Deployment  

Broader source: Energy.gov [DOE]

The SunShot Grid Engineering for Accelerated Renewable Energy Deployment (GEARED) program supports increased power system research, development, and analytical capacity while simultaneously growing...

136

Numerical simulations in support of the in situ bioremediation demonstration at Savannah River  

SciTech Connect (OSTI)

This report assesses the performance of the in situ bioremediation technology demonstrated at the Savannah River Integrated Demonstration (SRID) site in 1992--1993. The goal of the technology demonstration was to stimulate naturally occurring methanotrophic bacteria at the SRID site with injection of methane, air and air-phase nutrients (nitrogen and phosphate) such that significant amounts of the chlorinated solvent present in the subsurface would be degraded. Our approach is based on site-specific numerical simulations using the TRAMP computer code. In this report, we discuss the interactions among the physical and biochemical processes involved in in situ bioremediation. We also investigate improvements to technology performance, make predictions regarding the performance of this technology over long periods of time and at different sites, and compare in situ bioremediation with other remediation technologies.

Travis, B.J.; Rosenberg, N.D.

1994-06-01T23:59:59.000Z

137

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility  

E-Print Network [OSTI]

, Higashi-Hiroshima, Japan, 3 HudsonAlpha-JGI, HudsonAlpha Genome Sequencing Center, Huntsville, Alabama, United States of America, 4 Department of Energy Joint Genome Institute, Walnut Creek, California, United genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve

138

GPU accelerated cardiac electrophysiology  

E-Print Network [OSTI]

OF THE THESIS GPU Accelerated Cardiac Electrophysiology bySAN DIEGO GPU Accelerated Cardiac Electrophysiology A thesistoolkit for developing GPU accelerated programs called CUDA,

Lionetti, Fred

2010-01-01T23:59:59.000Z

139

The Bucharest Tandem Accelerator - part of the European Infrastructure  

SciTech Connect (OSTI)

The Bucharest Tandem van de Graaff accelerator in Bucharest is described. The scientific program in both applied and basic research is outlined. Through many international collaborations, the accelerator is, indeed, part of the European Nuclear Physics Research infrastructure.

Zamfir, Nicolae Victor [Horia Hulubei National Institute of Physics and Nuclear Engineering, P.O. Box Mg-6, Bucharest-Magurele (Romania)

2007-04-23T23:59:59.000Z

140

Accelerator Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAbout ScienceAboutAcceleration

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

OSTI Customized, Office of Scientific and Technical Information...  

Office of Scientific and Technical Information (OSTI)

projects, including the former Environmental Management Science Program (EMSP) and the Natural and Accelerated Bioremediation Research (NABIR) programs. Office of Biological and...

142

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY  

E-Print Network [OSTI]

: Stephen A. Marino, M.S. Chief Physicist: Gerhard Randers-Pehrson, Ph.D. Funding During this year, we were of the mutagenesis of human-hamster hybrid (AL) cells by charged particles (Exp. 43) resumed this year. Tom Hei) cells by an exact number of 4 He ion traversals (Exp. 76) continue to be investigated by Tom Hei

143

Accelerators and the Accelerator Community  

SciTech Connect (OSTI)

In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

Malamud, Ernest; Sessler, Andrew

2008-06-01T23:59:59.000Z

144

Application Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication Acceleration on Current and Future Cray

145

Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado  

SciTech Connect (OSTI)

Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can be an effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.

Li, L.; Steefel, C.I.; Williams, K.H.; Wilkins, M.J.; Hubbard, S.S.

2009-04-20T23:59:59.000Z

146

Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)  

SciTech Connect (OSTI)

Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R.; Long, P.E.; Lipton, M.S.

2010-02-15T23:59:59.000Z

147

Development of a biomarker for Geobacter activity and strain composition; Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).  

SciTech Connect (OSTI)

Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the U.S. Department of Energys Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

Wilkins, Michael J.; Callister, Stephen J.; Miletto, Marzia; Williams, Kenneth H.; Nicora, Carrie D.; Lovely, Derek R.; Long, Philip E.; Lipton, Mary S.

2011-01-01T23:59:59.000Z

148

In-Situ Bioremediation of Perchlorate in Groundwater and Soil  

E-Print Network [OSTI]

flow anaerobic immobilized sludge reactor. Water Research,OF PROPIONATE BY METHANOGENIC SLUDGE AND DEFINED CULTURES.flow anaerobic immobilized sludge reactor. Water Research,

Jin, Liyan

2012-01-01T23:59:59.000Z

149

Teleportation of Accelerated Information  

E-Print Network [OSTI]

A theoretical quantum teleportation protocal is suggested to teleport accelerated and non-accelerated information over different classes of accelerated quantum channels. For the accelerated information, it is shown that the fidelity of the teleported state increases as the entanglement of the initial quantum channel increases. However as the difference between the accelerated channel and the accelerated information decreases the fidelity increases. The fidelity of the non accelerated information increases as the entanglement of the initial quantum channel increases, while the accelerations of the quantum channel has a little effect. The possibility of sending quantum information over accelerated quantum channels is much better than sending classical information.

N. Metwally

2012-06-17T23:59:59.000Z

150

E-Print Network 3.0 - accelerator controls system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility (ATF) Summary: ., Vista Control Systems, Omega-P Inc., STI Optronics, TR Research Inc. Universities: Catholic U., U... FACTS Accelerator Test Facility...

151

E-Print Network 3.0 - accelerator physics issues Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-4, 2002 1 Accelerator Research Department B Dept. of Applied Physics Laser... Accelerators for High Energy Physics Robert L. Byer Chair, Applied Physics Dept., Stanford...

152

E-Print Network 3.0 - accelerator-based bnct facility Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Beam Physics Research at The University of Chicago Summary: Accelerator (RIA) project for a state-of -the-art ion accelerator based of super- conducting rf...

153

E-Print Network 3.0 - accelerator facility complex Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large... of an advanced exotic beam facility evolved from the Rare Isotope Accelerator (RIA) concept. The OMB and the DOE... Focus Research Areas 1. Fundamental Accelerator...

154

E-Print Network 3.0 - accelerated retrieval project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Beam Physics Research at The University of Chicago Summary: Accelerator (RIA) project for a state-of -the-art ion accelerator based of super- conducting rf...

155

Opportunities to Advance Fundamental Symmetries Research with Project-X is a staged evolution of the Fermilab accelerator complex realized by the dramatic  

E-Print Network [OSTI]

-X is a staged evolution of the Fermilab accelerator complex realized by the dramatic advances in super-conducting RF technology [1] of the past decade and it is central to Fermilab's strategic plan for the comingV would produce intense neutrino sources and beams illuminating near detectors on the Fermilab site

156

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre and astroparticle physics as well as accelerator physics. The Photo Injector Test Facility PITZ in Zeuthen (near XFEL. As part of the accelerator R&D program of the Helmholtz Association the focus of the research

157

Laser plasma accelerators  

SciTech Connect (OSTI)

This review article highlights the tremendous evolution of the research on laser plasma accelerators which has, in record time, led to the production of high quality electron beams at the GeV level, using compact laser systems. I will describe the path we followed to explore different injection schemes and I will present the most significant breakthrough which allowed us to generate stable, high peak current and high quality electron beams, with control of the charge, of the relative energy spread and of the electron energy.

Malka, V. [Laboratoire d'Optique Appliquee, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

2012-05-15T23:59:59.000Z

158

for sequence accelerators  

E-Print Network [OSTI]

Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona April 17, 2012 #12;Wynn's -algorithm for sequence accelerators using high

Zakharov, Vladimir

159

COLLECTIVE PHENOMENA IN ACCELERATORS  

E-Print Network [OSTI]

Proc. 1971 Particle Accelerator Conference, IEEE Trans. onConference on High-Energy Accelerators) 1971 (CERN, Geneva,and P. R. Zenkevich, Particle Accelerators b 1 (1972). M. S.

Sessler, Andrew M.

2008-01-01T23:59:59.000Z

160

High-Current Accelerators  

E-Print Network [OSTI]

F i g . 13 F i g . 14 A 48 ACCELERATOR F i g . 25 F i g . 16supply. Extrapolation of accelerator energy and current9 . A-48 high-current accelerator, low-velocity end. Fig.

Lawrence, Ernest O.

1955-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Multiorbit induction accelerators  

SciTech Connect (OSTI)

Large numbers of particles accelerated per cycle are made possible by accelerating simultaneously in several equilibrium orbits in a single betatron structure. (AIP)

Zvontsov, A.A.; Kas'yanov, V.A.; Chakhlov, V.L.

1985-09-01T23:59:59.000Z

162

Bioremediation of ground water contaminants at a uranium mill tailings site  

SciTech Connect (OSTI)

Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites.

Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States)

1995-12-31T23:59:59.000Z

163

Stable isotopic investigations of in situ bioremediation of chlorinated organic solvents. 1997 annual progress report  

SciTech Connect (OSTI)

'The author has made significant progress in developing innovative methods for investigating the mechanism and extent of in situ bioremediation of chlorinated organic solvents. These methods use precise isotopic ratio measurements of chlorine and carbon in reactant and product species in laboratory experiments and in materials from field demonstration sites. Specific tasks completed during FY 1997 include: (1) refinement and publication of a new analytical method for precise determination of chlorine and carbon isotope ratios in chlorinated volatile organic compounds; (2) laboratory experiments involving biological degradation of chlorinated solvents in liquid cultures and soil columns; and (3) use of chlorine and carbon isotope ratios to investigate natural attenuation of trichloroethene at the Paducah Gaseous Diffusion Plant. This work can have immediate impact because it will provide the fundamental basis for a new and cost-effective means of evaluating and monitoring the effectiveness of in situ bioremediation schemes for chlorinated organic solvents in soils, vadose horizons, and groundwater plumes.'

Sturchio, N.C.

1997-01-01T23:59:59.000Z

164

Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1  

SciTech Connect (OSTI)

The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

1997-05-10T23:59:59.000Z

165

Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater  

SciTech Connect (OSTI)

The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well-recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, acetate amendments initially promoted the growth of metal-reducing Geobacter species followed by the growth of sulfate-reducers, as previously observed. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater prior to the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the amoeboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity, and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.

Holmes, Dawn; Giloteaux, L.; Williams, Kenneth H.; Wrighton, Kelly C.; Wilkins, Michael J.; Thompson, Courtney A.; Roper, Thomas J.; Long, Philip E.; Lovley, Derek

2013-07-28T23:59:59.000Z

166

Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation  

SciTech Connect (OSTI)

Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitance of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.

Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

2011-01-24T23:59:59.000Z

167

In situ bioremediation of petroleum in tight soils using hydraulic fracturing  

SciTech Connect (OSTI)

This case study evaluated the effectiveness of in situ bioremediation of petroleum hydrocarbons in tight soils. The study area was contaminated with cutting oil from historic releases from underground piping, probably dating back to the 1940`s. Previous site assessment work indicated that the only chemicals of concern were total petroleum hydrocarbons (TPH). Two fracture sets (stacks) were installed at different locations to evaluate this in situ bioremediation technique under passive and active conditions. Several injection wells were drilled at both locations to provide entry for hydraulic fracturing equipment. A series of circular, horizontal fractures 40 to 50 feet in diameter were created at different depths, based on the vertical extent of contamination at the site. The injection wells were screened across the contaminated interval which effectively created underground bioreactors. Soils were sampled and analyzed for total petroleum hydrocarbons on five separate occasions over the nine-month study. Initial average soil concentrations of total petroleum hydrocarbons of 5,700 mg/kg were reduced to 475 mg/kg within nine months of hydraulic fracturing. The analytical results indicate an average reduction in TPH at the sample locations of 92 percent over the nine-month study period. This project demonstrates that in situ bioremediation using hydraulic fracturing has significant potential as a treatment technology for petroleum contaminated soils.

Stavnes, S. [Environmental Protection Agency, Denver, CO (United States); Yorke, C.A. [Foremost Solutions, Inc., Golden, CO (United States); Thompson, L. [Pintail Systems, Inc., Aurora, CO (United States)

1996-12-31T23:59:59.000Z

168

Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control  

SciTech Connect (OSTI)

On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U. [Univ. of Tennessee, Knoxville, TN (United States); Burlage, R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1998-11-01T23:59:59.000Z

169

Accelerator and electrodynamics capability review  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

Jones, Kevin W [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

170

In-Situ Bioremediation of Perchlorate in Groundwater and Soil  

E-Print Network [OSTI]

Announcement of the Drinking Water Contaminant Candidateof perchlorate in drinking water. Water Research, 2009. 43(of perchlorate in drinking water sources. Journal American

Jin, Liyan

2012-01-01T23:59:59.000Z

171

I. ACCELERATION A. Introduction  

E-Print Network [OSTI]

I. ACCELERATION A. Introduction Following cooling and initial bunch compression, the beams must be rapidly accelerated. The acceleration needed for a Higgs collider is probably the most conventional part undertaken. A sequence of linacs would work, but would be expensive. Some form of circulating acceleration

McDonald, Kirk

172

Superconducting Radiofrequency (SRF) Accelerator Cavities  

ScienceCinema (OSTI)

Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

Reece, Charlie

2014-05-22T23:59:59.000Z

173

Acceleration of Field-Scale Bioreduction of U(VI) in a Shallow Alluvial Aquifer: Temporal and Spatial Evolution of Biogeochemistry  

SciTech Connect (OSTI)

Uranium mill tailings sites provide access to uranium-contaminated groundwater at sites that are shallow and low hazard, making it possible to address the following scientific objectives: (1) Determine the dominant electron accepting processes at field sites with long-term metal/rad contamination; (2) Define the biogeochemical transformations that may be important to either natural or accelerated bioremediation under field conditions; and (3) Examine the potential for using biostimulation (electron donor addition) to accelerate reduction of U(VI) to U(IV) at the field scale.

Long, Phil

2005-04-20T23:59:59.000Z

174

Symposium on accelerator mass spectrometry  

SciTech Connect (OSTI)

The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

None

1981-01-01T23:59:59.000Z

175

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre/m) Accelerator Research DESY DESY is one of the world's leading research centres for photon science, particle with universities. The DESY focus is on conventional and plasma-based accele- rators with applications in photon

176

High-powered pulsed-ion-beam acceleration and transport  

SciTech Connect (OSTI)

The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

Humphries, S. Jr.; Lockner, T.R.

1981-11-01T23:59:59.000Z

177

Heavy-ion Accelerators for Testing Microelectronic Components...  

Office of Science (SC) Website

Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of...

178

Trace Metal Bioremediation: Assessment of Model Components from Laboratory and Field Studies to Identify Critical Variables  

SciTech Connect (OSTI)

The objective of this project was to gain an insight into the modeling support needed for the understanding, design, and operation of trace metal/radionuclide bioremediation. To achieve this objective, a workshop was convened to discuss the elements such a model should contain. A ''protomodel'' was developed, based on the recommendations of the workshop, and was used to perform sensitivity analysis as well as some preliminary simulations in support for bioremediation test experiments at UMTRA sites. To simulate the numerous biogeochemical processes that will occur during the bioremediation of uranium contaminated aquifers, a time-dependent one-dimensional reactive transport model has been developed. The model consists of a set of coupled, steady state mass balance equations, accounting for advection, diffusion, dispersion, and a kinetic formulation of the transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and uranium. This set of equations is solved numerically, using a finite element scheme. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species are passed to a modified version of MINTEQA2, which calculates the speciation and solubilities of the species of interest. Kinetics of abiotic reactions are described as being proportional to the difference between the actual and equilibrium concentration. A global uncertainty assessment, determined by Random Sampling High Dimensional Model Representation (RS-HDMR), was performed to attain a phenomenological understanding of the origins of output variability and to suggest input parameter refinements as well as to provide guidance for field experiments to improve the quality of the model predictions. Results indicated that for the usually high nitrate contents found ate many DOE sites, overall bioremediation of trace metals was highly sensitive to the formulation of the denitrification process. Simulations were performed to illustrate the effect of biostimulation on the transport and precipitation of uranium in the subsurface, at conditions equivalent to UMTRA sites. These simulations predicted that uranium would precipitate in bands that are located relatively close to the acetate injection well. The simulations also showed the importance of properly determining U(IV) oxidative dissolution rates, in order to assess the stability of precipitates once oxygenated water reenters the aquifer after bioremediation is discontinued. The objective of this project was to provide guidance to NABIR's Systems Integration Element, on the development of models to simulate the bioremediation of trace metals and radionuclides. Such models necessarily need to integrate hydrological, geochemical, and microbiological processes. In order to gain a better understanding of the key processes that such a model should contain, it was deemed desirable to convene a workshop with experts from these different fields. The goal was to obtain a preliminary consensus on the required level of detail for the formulations of these different chemical, physical, and microbiological processes. The workshop was held on December 18, 1998.

Peter Jaffe; Herschel Rabitz

2003-02-14T23:59:59.000Z

179

Accelerator R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(505) 667-5657 Email Accelerator R&D R&D model Figure 1: Conceptual drawing of a superconducting radio-frequency accelerator with a PBG coupler cell. The ultimate goal of this...

180

Field test and mathematical modeling of bioremediation of an oil-contaminated soil. Part 2: Mathematical modeling  

SciTech Connect (OSTI)

A mathematical model was developed to describe the oxygen transfer from the air, the oil transfer from the soil, and the bio-reaction in the aqueous phase. Important parameters used in this model were obtained independently either in the laboratory or from the literature. The oil transfer rate constant, K[sub 1]a, was found to be a function of time during the remediation. The oil transfer rate controlling in this bioremediation process is confirmed again by the parameters obtained from simulation results for each plot. An example of calculation was used to illustrate the oil transfer controlling step in the bioremediation of oil contaminated soil.

Li, K.Y.; Xu, T.; Colapret, J.A. (Lamar Univ., Beaumont, TX (United States)); Cawley, W.A. (Gulf Coast Hazardous Substance Research Center, Beaumont, TX (United States)); Bonner, J.S. (Texas A and M Univ., College Station, TX (United States). Civil Engineering Dept.); Ernest, A.; Verramachaneni, P.B. (Texas A and I Univ., Kingsville, TX (United States). Environmental Engineering Dept.)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Molecular Analysis of Phosphate Limitation in Geobacteraceae During the Bioremediation of a Uranium-Contaminated Aquifer  

SciTech Connect (OSTI)

Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve due to the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.

N'Guessan, A. Lucie; Elifantz, H.; Nevin, Kelly P.; Mouser, Paula; Methe, Barbara; Woodard, Trevor L.; Manley, Kimberley; Williams, Kenneth H.; Wilkins, Michael J.; Larsen, Joern T.; Long, Philip E.; Lovley, Derek R.

2010-02-01T23:59:59.000Z

182

Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer  

SciTech Connect (OSTI)

Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphatelimitation were identified by microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high-affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU upregulated the most. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium-bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve because of the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.

N'Guessan, A. Lucie; Elifantz, H.; Nevin, Kelly P.; Mouser, Paula; Methe, Barbara; Woodard, Trevor L.; Manley, Kimberley; Williams, Kenneth H.; Wilkins, Michael J.; Larsen, Joern T.; Long, Philip E.; Lovley, Derek R.

2010-01-10T23:59:59.000Z

183

Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer  

SciTech Connect (OSTI)

Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve due to the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.

N'Guessan, L.A.; Elifantz, H.; Nevin, K.P.; Mouser, P.J.; Methe, B.; Woodard, T. L.; Manley, K.; Williams, K. H.; Wilkins, M. J.; Larsen, J.T.; Long, P. E.; Lovley, D. R.

2009-09-01T23:59:59.000Z

184

History of Proton Linear Accelerators  

E-Print Network [OSTI]

much. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,HISTORY OF PROTON LINEAR ACCELERATORS Luis W. Alvarez TWO-

Alvarez, Luis W.

1987-01-01T23:59:59.000Z

185

LARGE-APERTURE D- ACCELERATORS  

E-Print Network [OSTI]

Vignetted current profile at accelerator entrance aperture 'LARGE-APERTURE D" ACCELERATORS* 0. A. Anderson" " Lawrencen i a 9-1720 Abstract Accelerator designs are described for

Anderson, O.A.

2010-01-01T23:59:59.000Z

186

Beam Dynamics for Induction Accelerators  

E-Print Network [OSTI]

Dynamics for Induction Accelerators Edward P. Lee Lawrencea natural candidate accelerator for a heavy ion fusion (HIF)words: Fusion, Induction, Accelerators, Dynamics This work

Lee, E.P.

2014-01-01T23:59:59.000Z

187

Research Councils UK Transforming  

E-Print Network [OSTI]

research is helping to accelerate the use of green energy technologies. RCUK has played a key role to help combat climate change, accelerate the deployment of green energy technologies and create newResearch Councils UK Transforming our energy future #12;Research funded by the Research Councils

Berzins, M.

188

DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research  

SciTech Connect (OSTI)

General Electrics (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energys cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

2009-07-31T23:59:59.000Z

189

E-Print Network 3.0 - accelerator experimental tests Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Physics 6 Research in: Experimental Photonuclear Physics Summary: & Phenomenology Particle Astrophysics & Cosmology Accelerator Physics Health Physics...

190

Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer  

SciTech Connect (OSTI)

Experiments at the Department of Energys Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

2011-07-07T23:59:59.000Z

191

Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer  

SciTech Connect (OSTI)

Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

2011-04-01T23:59:59.000Z

192

Bioremediation demonstration on Kwajalein Island: Site characterization and on-site biotreatability studies  

SciTech Connect (OSTI)

An environmental study was conducted during February 1991 on Kwajalein Island, a US Army Kwajalein Atoll (USAKA) Base in the Republic of the Marshall Islands (RMI). This study was undertaken for the US Department of Energy (DOE) Hazardous Waste Remedial Actions Program (HAZWRAP) acting in behalf of USAKA. The purpose of the study was to determine if selected locations for new construction on Kwajalein Island were contaminated by petroleum hydrocarbons as suspected and, if so, whether bioremediation appeared to be a feasible technology for environmental restoration. Two different sites were evaluated: (1) the site planned freshwater production facility and (2) a site adjacent to an aboveground diesel fuel storage tank. Within the proposed construction zone for the freshwater production facility (a.k.a desalination plant), total petroleum hydrocarbons (TPH) where either absent or at low levels. Characterization data for another potential construction site adjacent to an aboveground diesel fuel storage tank southeast of the old diesel power plant revealed high concentrations of diesel fuel in the soil and groundwater beneath the site. Results of this investigation indicate that there are petroleum-contaminated soils on Kwajalein Island and bioremediation appears to be a viable environmental restoration technique. Further experimentation and field demonstration are required to determine the design and operating conditions that provide for optimum biodegradation and restoration of the petroleum-contaminated soils. 17 refs., 7 figs., 26 figs.

Siegrist, R.L.; Korte, N.E.; Pickering, D.A. (Oak Ridge National Lab., TN (United States)); Phelps, T.J. (Tennessee Univ., Knoxville, TN (United States))

1991-09-01T23:59:59.000Z

193

Fermilab | Illinois Accelerator Research Center | Accelerators and Society  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab at Work

194

Compost Science and Utilization, 9(4):274-283 (2001) BIOREMEDIATION OF A PCB-CONTAMINATED SOIL VIA COMPOSTING  

E-Print Network [OSTI]

Compost Science and Utilization, 9(4):274-283 (2001) BIOREMEDIATION OF A PCB-CONTAMINATED SOIL VIA COMPOSTING Frederick C. Michel Jr.1 , John Quensen, C.A.Reddy NSF Center for Microbial Ecology, Michigan and composted in field scale piles to determine the effect of soil to amendment ratio on PCB degradation

Michel Jr., Frederick C.

2001-01-01T23:59:59.000Z

195

Bioremediation of a Process Waste Lagoon at a Southern Polish Oil Refinery -DoE's First Demonstration Project in Poland  

E-Print Network [OSTI]

Bioremediation of a Process Waste Lagoon at a Southern Polish Oil Refinery - DoE's First by the Czechowice Oil Refinery, located in southern Poland, has produced an estimated 120 thousand tons of acidic company thereby eliminating the contaminants while providing the refinery an additional revenue source

Hazen, Terry

196

Model-based Analysis of Mixed Uranium(VI) Reduction by Biotic and Abiotic Pathways During in Situ Bioremediation  

SciTech Connect (OSTI)

Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes direct quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.

Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

2013-10-24T23:59:59.000Z

197

Rare Kaon Decays, KEK experiment E391 and E14 at the Japan Physics and Accelerator Research Complex (J-PARC)  

SciTech Connect (OSTI)

The goal of the J-PARC neutral kaon experiment (E14/KOTO) is to discover and measure the rate of the kaon rare decay to pi-zero and two neutrinos. This flavor changing neutral current decay proceeds through second-order weak interactions. Other, as yet undiscovered particles, which can mediate the decay could provide an enhancement (or depletion) to the branching ratio which in the Standard Model is accurately predicted within a few percent to be 2.8x10-11. The experiment is designed to observe more than 100 events at the Standard Model branching. It is a follow-up of the KEK E391a experiment and has stage-2 approval by J-PARC PAC in 2007. E14/KOTO has collaborators from Japan (Kyoto, Osaka, Yamagata, Saga), US (Arizona State, Chicago, Michigan Ann Arbor), Taiwan (National Taiwan), Korea, and Russia (Dubna). The experiment exploits the 300kW 30-50 GeV proton delivery of the J-PARC accelerator with a hermetic high acceptance detector with a fine grained Cesium Iodide (CsI) crystal calorimeter, and state of the art electronic front end and data acquisition system. With the recovery of the tsunami disaster on March 11th 2011, E14 is scheduled to start collecting data in December 2012. During the detector construction phase, Chicago focuses on the front end electronics readout of the entire detector system, particularly the CsI calorimeter. The CsI crystals together with its photomultipliers were previously used at the Fermilab KTeV experiment (E832/E799), and were loaned to E14 via this Chicago DOE support. The new readout electronics includes an innovative 10-pole pulse-shaping technique coupled with high speed digitization (14-bit 125MHz and 12-bit 500MHz). This new instrument enables us to measure both energy and timing, particularly with timing resolution better than 100 psec. Besides the cost saving by elimination of the standard time to digital converters, it is now possible to measure the momenta of the final state photons for additional background suppression. Chicago also designed and built several technically difficult hardware items including the vacuum cable feed-through (for a total of 3500 channels); special 50 ohm single-ended signal to 100 ohm differential signal converters; and last but not least, the recommendations on the selection of the differential signal cables for all detector elements to eliminate ground loops while maintaining signal fidelity.

Wah, Yau Wai [University of Chicago

2012-12-06T23:59:59.000Z

198

Accelerator Center: National symbol or white elephant?  

SciTech Connect (OSTI)

This article discusses the possible future of the National Accelerator Center facility in South Africa. This state of the art facility with a 200-megaelectrol-volt proton cyclotron, carries out important nuclear physics research but takes a huge part of South Africa`s total science research budget.

NONE

1995-06-02T23:59:59.000Z

199

Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides  

E-Print Network [OSTI]

tailings remedial action (UMTRA) sites in Colorado and Newfield scale at the Old Rifle UMTRA site in Rifle, Colorado (subsurface of the Old Rifle UMTRA site stimulated the loss

Hazen, Terry C.

2010-01-01T23:59:59.000Z

200

Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides  

E-Print Network [OSTI]

lead, zinc, and cadmium in smelter-contaminated soils usingof metal availability in smelter soil using earthworms andnear a former Zn and Pb smelter to test the ability of soil

Hazen, Terry C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides  

E-Print Network [OSTI]

wetlands are volatilized. Microalgae and bacteria were shownvaried in each system. Microalgae were harvested using DAF

Hazen, Terry C.

2010-01-01T23:59:59.000Z

202

The Bucharest FN Tandem Accelerator: Modernization and Development  

SciTech Connect (OSTI)

The Bucharest FN tandem accelerator, installed in 1973 and upgraded in 1983 to 9 MV, has been used for atomic and nuclear physics studies as well as for different applications using accelerated ion beams. In the last three years a program of modernization of the tandem accelerator including the replacement of the old accelerator equipment by new ones, installation of a pelletron system for the Van de Graaff generator and installation of new negative ion injectors was undertaken. In parallel a development of the tandem accelerator was started. In 2009, a beam pulsing system in the nanosecond range is scheduled to be installed. All these works aimed to transform the tandem accelerator in a reliable and efficient tool for research and applications are presented. The main lines of the research program at the Bucharest tandem accelerator are shortly presented too.

Dobrescu, S.; Mosu, D. V.; Moisa, D.; Papureanu, S. [National Institute for Physics and Nuclear Engineering 'Horia Hulubei' (IFIN-HH) 77125 Magurele-Ilfov (Romania)

2009-03-10T23:59:59.000Z

203

High-brightness H/sup -/ accelerators  

SciTech Connect (OSTI)

Neutral particle beam (NPB) devices based on high-brightness H/sup -/ accelerators are an important component of proposed strategic defense systems. The basic rationale and R and D program are outlined and examples given of the underlying technology thrusts toward advanced systems. Much of the research accomplished in the past year is applicable to accelerator systems in general; some of these activities are discussed.

Jameson, R.A.

1987-01-01T23:59:59.000Z

204

Beam Coupling to Optical Scale Accelerating Structures  

SciTech Connect (OSTI)

Current research efforts into structure based laser acceleration of electrons utilize beams from standard RF linacs. These beams must be coupled into very small structures with transverse dimensions comparable to the laser wavelength. To obtain decent transmission, a permanent magnet quadrupole (PMQ) triplet with a focusing gradient of 560 T/m is used to focus into the structure. Also of interest is the induced wakefield from the structure, useful for diagnosing potential accelerator structures or as novel radiation sources.

Sears, C.M.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; Lincoln, M.R.; Siemann, R.H.; Spencer, J.E.; /SLAC; Plettner, T.; /Stanford U., Phys. Dept.

2007-03-27T23:59:59.000Z

205

Beam Coupling to Optical Scale Accelerating Structures  

SciTech Connect (OSTI)

Current research efforts into structure based laser acceleration of electrons utilize beams from standard RF linacs. These beams must be coupled into very small structures with transverse dimensions comparable to the laser wavelength. To obtain decent transmission, a permanent magnet quadrupole (PMQ) triplet with a focusing gradient of 560 T/m is used to focus into the structure. Also of interest is the induced wakefield from the structure, useful for diagnosing potential accelerator structures or as novel radiation sources.

Sears, Christopher M. S.; Colby, Eric R.; Cowan, Benjamin M.; Ischebeck, Rasmus; Lincoln, Melissa R.; Siemann, Robert H.; Spencer, James E. [Stanford Linear Accelerator Center, Menlo Park, CA 94025 (United States); Byer, Robert L.; Plettner, Tomas [Stanford University, Stanford, CA 94305 (United States)

2006-11-27T23:59:59.000Z

206

ACCELERATOR R&D S U M M A R Y  

E-Print Network [OSTI]

1 ACCELERATOR R&D P5 @ BNL 3/6/08 S U M M A R Y Medium & Longer Term [AARD = Advanced Accelerator R&D] #12;2 · Accelerators remain an essential component in Elementary Particle Physics Research · Accelerator capabilities are prominent in defining the frontiers of Elementary Particle Science · EPP2010

207

E-Print Network 3.0 - accelerated stem growth Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated stem growth Page: << < 1 2 3 4 5 > >> 1 research>>research>> Prof. Philip...

208

Optically pulsed electron accelerator  

DOE Patents [OSTI]

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, J.S.; Sheffield, R.L.

1985-05-20T23:59:59.000Z

209

Market Acceleration (Fact Sheet)  

SciTech Connect (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

Not Available

2010-09-01T23:59:59.000Z

210

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

211

Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation  

SciTech Connect (OSTI)

In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The results obtained from this study showed that the test area contamination is extremely heterogeneous, and that it contains extremely high levels of the three major contaminants, HMX, RDX and TNT. The potential for success of a bioremediation strategy is discussed.

Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

1999-12-01T23:59:59.000Z

212

Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams  

SciTech Connect (OSTI)

Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

Siemann, R.H.; /SLAC

2011-10-24T23:59:59.000Z

213

Acceleration Worksheet 8/24/2011 ACCELERATION WORKSHEET  

E-Print Network [OSTI]

Acceleration Worksheet 8/24/2011 ACCELERATION WORKSHEET College of Arts and Sciences Name _____________ TO _____________ month/year month/year II. I meet the requirements for acceleration under [fill out either a) or b;Acceleration Worksheet 8/24/2011 Acceleration 2011-2012 Courses of Study The faculty of the college desires

Davis, H. Floyd

214

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

2004-07-23T23:59:59.000Z

215

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

2001-01-08T23:59:59.000Z

216

Microscale acceleration history discriminators  

DOE Patents [OSTI]

A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

217

Neutrino physics at accelerators  

E-Print Network [OSTI]

Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.

Enrique Fernandez

2006-07-16T23:59:59.000Z

218

Accelerators (5/5)  

ScienceCinema (OSTI)

1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

None

2011-10-06T23:59:59.000Z

219

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

2011-07-21T23:59:59.000Z

220

Accelerators (4/5)  

ScienceCinema (OSTI)

1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

None

2011-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Accelerators (3/5)  

ScienceCinema (OSTI)

1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

None

2011-10-06T23:59:59.000Z

222

Stable isotopic investigations of in-situ bioremediation of chlorinated organic solvents. 1998 annual progress report  

SciTech Connect (OSTI)

'Contamination of soils and groundwaters with chlorinated aliphatic hydrocarbons (CAHs) is one of the most serious environmental problems in the DOE system and in the nation at large. These compounds are designated as priority pollutants by the US Environmental Protection Agency (EPA) and are known or suspected to be carcinogenic or mutagenic in humans. These compounds are readily transported by groundwater and are not reduced to acceptable concentrations for human consumption by most municipal water supply treatments; thus the compounds represent a significant hazard to a large portion of the human population. In situ bioremediation is an emerging technology that shows great promise for mitigation of CAH contamination at many sites. One of the most severe limitations of in-situ bioremediation is the difficulty of proving when it is working at a given site. The concentrations of CAHs and their degradation products in plumes may be difficult to relate to the efficiency of the remediation process because of dilution effects, but this problem is mitigated to a large extent by measuring isotope ratios. If there is a significant isotopic fractionation between CAHs and derivative chlorine-bearing products, then the fraction of CAH that is dechlorinated can be inferred from the {sup 37}Cl/{sup 35}Cl and {sup 13}C/{sup 12}C isotope ratios of the residual CAH. It is important to point out that there is currently no published information available on the magnitude of chlorine and carbon isotopic fractionation associated with biological degradation of CAHs. The authors plan to help eliminate this important gap in the knowledge with the work being performed here. This work is relevant to EMSP goals because it will provide a new and cost-effective means of evaluating and monitoring the effectiveness of in-situ bioremediation. It will employ newly developed techniques to characterize isotopic fractionation (of chlorine and carbon) associated with biotic and abiotic degradation of CAHs in laboratory microcosms. These techniques and the data acquired by using them in laboratory studies will form the fundamental basis for quantitative assessment of the mechanisms, rates, and efficiencies of various in-situ bioremediation schemes for CAHs. This report summarizes work as of 21 months into a 36-month project. First, the author has developed methods for precise measurement of stable carbon and chlorine isotope ratios of micromolar amounts of CAHs. He has also developed methods for quantitative extraction of CAHs from water and air. He has applied these methods in laboratory experiments, to investigate isotopic fractionation caused by microbial degradation and by abiotic processes such as evaporation and chemical reduction. He has also applied these methods to field investigations of contaminated groundwater aquifers at the Paducah Gaseous Diffusion Plant, Kentucky and at several manufacturing plants in the Chicago and Kansas City metropolitan areas. Results of much of this work have already been incorporated into four manuscripts that have been published, accepted for publication, or are in review.'

Sturchio, N.C.

1998-06-01T23:59:59.000Z

223

Accelerator Modeling with MATLAB Accelerator Toolbox  

SciTech Connect (OSTI)

This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources.

Terebilo, Andrei

2002-08-21T23:59:59.000Z

224

Accelerated Quantum Dynamics  

E-Print Network [OSTI]

In this paper we establish a formalism for the computation of observables due to acceleration-induced particle physics processes. General expressions for the transition rate, multiplicity, power, spectra, and displacement law of particles undergoing time-dependent acceleration and transitioning into a final state of arbitrary particle number are obtained. The transition rate, power, and spectra are characterised by unique polynomials of multiplicity and thermal distributions of both bosonic and fermionic statistics. The acceleration dependent multiplicity is computed in terms of the branching fractions of the associated inertial processes. The displacement law of the spectra predicts the energy of the emitted particles are directly proportional to the accelerated temperature. These results extend our understanding of particle physics into the high acceleration sector.

Lynch, Morgan H

2015-01-01T23:59:59.000Z

225

Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site  

SciTech Connect (OSTI)

This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 {mu}g/L in the aqueous phase and from approximately 10 to 290 {mu}g/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone.

Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

1995-03-01T23:59:59.000Z

226

Cometabolic bioremediation  

E-Print Network [OSTI]

contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine,Geobacter, Clavibacter) BTEX, PCE, PAHs, Pyrene, Atrazine,VC, 1,1-DCE, 1,1,1- TCA, MTBE PCE, TCE, DCE, VC, Hexachloro-

Hazen, Terry C.

2010-01-01T23:59:59.000Z

227

Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » RemovingResearch CORE-SHELL NANOPARTICLES AND

228

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network [OSTI]

Lancaster, R.B. Yourd, Pre~,Accelerator A wideroe~,Basedcarbon beam medical accelerator facility. N "' . ,;j "' ::lEat the MARIA Workshop III: Accelerator Systems for Relat ic

Gough, R.A.

2013-01-01T23:59:59.000Z

229

History of Proton Linear Accelerators  

E-Print Network [OSTI]

the board to show why the accelerator couldn't work. Then atmuch. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,

Alvarez, Luis W.

1986-01-01T23:59:59.000Z

230

Accelerated Least Squares Multidimensional Scaling  

E-Print Network [OSTI]

x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De

Leeuw, Jan de

2006-01-01T23:59:59.000Z

231

Accelerated Least Squares Multidimensional Scaling  

E-Print Network [OSTI]

x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De

Jan de Leeuw

2011-01-01T23:59:59.000Z

232

Accelerator on a Chip  

ScienceCinema (OSTI)

SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

England, Joel

2014-07-16T23:59:59.000Z

233

Charged particle accelerator grating  

DOE Patents [OSTI]

A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

Palmer, R.B.

1985-09-09T23:59:59.000Z

234

Accelerator on a Chip  

SciTech Connect (OSTI)

SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

England, Joel

2014-06-30T23:59:59.000Z

235

Breakthrough: Fermilab Accelerator Technology  

SciTech Connect (OSTI)

There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

None

2012-04-23T23:59:59.000Z

236

Breakthrough: Fermilab Accelerator Technology  

ScienceCinema (OSTI)

There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

None

2014-08-12T23:59:59.000Z

237

CEBAF accelerator achievements  

SciTech Connect (OSTI)

In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

2011-06-01T23:59:59.000Z

238

RESEARCH ACCELERATOR DIVISION K. JONES, DIVISION DIRECTOR  

E-Print Network [OSTI]

TECHNICIAN K. DANILOVA DATABASE PROG Controls Hardware P. W RIGHT TEAM LEADER J. STIGAL ENGINEER B. STONE

239

Illinois Accelerator Research Center Business Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |Endecaheme c-Type| EMSLemployed inIhorIii;.}

240

IARC - Illinois Accelerator Research Center | Pilot Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In About | Careers | ContactFermi

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fermilab | Illinois Accelerator Research Center | Construction Progress  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab at

242

Fermilab | Illinois Accelerator Research Center | Contact IARC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab atContact

243

Fermilab | Illinois Accelerator Research Center | Fermilab Core  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab

244

Fermilab | Illinois Accelerator Research Center | Fermilab Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto FermilabFacilities

245

Fermilab | Illinois Accelerator Research Center | IARC Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphotoIARC Facilities

246

Fermilab | Illinois Accelerator Research Center | Image Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphotoIARC

247

Fermilab | Illinois Accelerator Research Center | More Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphotoIARCMore Information

248

NREL: Wind Research - Market Acceleration and Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField Verification Project TheMarket

249

The Illinois Accelerator Research Center, or IARC,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience andFebruaryTheFarrel W.GreatProcess of|

250

The BNL Accelerator Test Facility control system  

SciTech Connect (OSTI)

Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

1993-01-01T23:59:59.000Z

251

Advanced Accelerator Applications University Participation Program  

SciTech Connect (OSTI)

Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

Y. Chen; A. Hechanova

2007-07-25T23:59:59.000Z

252

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

253

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

SciTech Connect (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-04-15T23:59:59.000Z

254

R&D of Accelerator Structures at SLAC  

SciTech Connect (OSTI)

The research activities for accelerator structures at SLAC are reviewed including the achievement via the main linac design for the Next Linear Collider (NLC), the program adjustment after the decision of the International Linear Collider (ILC) to be based on superconducting technology, and the work progress for the ILC, photon science at SLAC and basic accelerator structure studies.

Wang, J.W.; /SLAC

2007-01-17T23:59:59.000Z

255

Production, Characterization, and Acceleration of Optical Microbunches  

SciTech Connect (OSTI)

Optical microbunches with a spacing of 800 nm have been produced for laser acceleration research. The microbunches are produced using a inverse Free-Electron-Laser (IFEL) followed by a dispersive chicane. The microbunched electron beam is characterized by coherent optical transition radiation (COTR) with good agreement to the analytic theory for bunch formation. In a second experiment the bunches are accelerated in a second stage to achieve for the first time direct net acceleration of electrons traveling in a vacuum with visible light. This dissertation presents the theory of microbunch formation and characterization of the microbunches. It also presents the design of the experimental hardware from magnetostatic and particle tracking simulations, to fabrication and measurement of the undulator and chicane magnets. Finally, the dissertation discusses three experiments aimed at demonstrating the IFEL interaction, microbunch production, and the net acceleration of the microbunched beam. At the close of the dissertation, a separate but related research effort on the tight focusing of electrons for coupling into optical scale, Photonic Bandgap, structures is presented. This includes the design and fabrication of a strong focusing permanent magnet quadrupole triplet and an outline of an initial experiment using the triplet to observe wakefields generated by an electron beam passing through an optical scale accelerator.

Sears, Christopher M.S.; /Stanford U. /SLAC

2008-06-20T23:59:59.000Z

256

ACCELERATED IMPROVEMENT A CONCENTRATED APPROACH  

E-Print Network [OSTI]

ACCELERATED IMPROVEMENT A CONCENTRATED APPROACH FOR CONTINUOUS IMPROVEMENT #12;Accelerated.quality.wisc.edu O F F I C E O F Q U A L I T Y I M P R O V E M E N T Accelerated Improvement This guide to improving resources. You will find helpful information needed to conduct an Accelerated Improvement project

Shapiro, Vadim

257

Plasma-based accelerator structures  

SciTech Connect (OSTI)

Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

Schroeder, Carl B.

1999-12-01T23:59:59.000Z

258

Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999  

SciTech Connect (OSTI)

The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess and remediate one of these lagoons. The remediation tested and evaluated a combination of U.S. and Polish-developed biological remediation technologies. Specifically, the goal of the demonstration was to reduce the environmental risk from PAH compounds in soil and to provide a green zone (grassy area) adjacent to the site boundary. The site was characterized using the DOE-developed Expedited Site Characterization (ESC) methodology. Based on the results of the ESC, a risk assessment was conducted using established U.S. procedures. Based on the results of the ESC and risk assessment, a 0.3-hectare site, the smallest of the waste lagoons, was selected for a modified aerobic biopile demonstration. This Executive Summary and the supporting report and appendices document the activities and results of this cooperative venture.

Hazen, Terry

2000-04-01T23:59:59.000Z

259

Fermilab | Science | Particle Accelerators | Fermilab's Accelerator Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's Accelerator

260

Fermilab | Science | Particle Accelerators | Leading Accelerator Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's AcceleratorLHC

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Microelectromechanical acceleration-sensing apparatus  

DOE Patents [OSTI]

An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

2006-12-12T23:59:59.000Z

262

Experimental study of photonic band gap accelerator structures  

E-Print Network [OSTI]

This thesis reports theoretical and experimental research on a novel accelerator concept using a photonic bandgap (PBG) structure. Major advances in higher order mode (HOM) damping are required for the next generation of ...

Marsh, Roark A

2009-01-01T23:59:59.000Z

263

Accelerating government R&D with private financing  

E-Print Network [OSTI]

In this thesis, I argue that accelerating government research and development (R&D) with private financing could simultaneously improve the nation's war fighting readiness and economy. I submit that better utilization of ...

Corzine, Andy Robert, 1970-

2009-01-01T23:59:59.000Z

264

Surge Block Method for Controlling Well Clogging and Sampling Sediment during Bioremediation  

SciTech Connect (OSTI)

A surge block treatment method (i.e. inserting a solid rod plunger with a flat seal that closely fits the casing interior into a well and stocking it up and down) was performed for the rehabilitation of wells clogged with biomass and for the collection of time series sediment samples during in situ bioremediation tests for U(VI) immobilization at a the U.S. Department of Energy site in Oak Ridge, TN. The clogging caused by biomass growth had been controlled by using routine surge block treatment for18 times over a nearly four year test period. The treatment frequency was dependent of the dosage of electron donor injection and microbial community developed in the subsurface. Hydraulic tests showed that the apparent aquifer transmissivity at a clogged well with an inner diameter (ID) of 10.16 cm was increased by 8 13 times after the rehabilitation, indicating the effectiveness of the rehabilitation. Simultaneously with the rehabilitation, the surge block method was successfully used for collecting time series sediment samples composed of fine particles (clay and silt) from wells with ID 1.9 10.16 cm for the analysis of mineralogical and geochemical composition and microbial community during the same period. Our results demonstrated that the surge block method provided a cost-effective approach for both well rehabilitation and frequent solid sampling at the same location.

Wu, Wei-min [Stanford University] [Stanford University; Watson, David B [ORNL] [ORNL; Luo, Jian [Stanford University] [Stanford University; Carley, Jack M [ORNL] [ORNL; Mehlhorn, Tonia L [ORNL] [ORNL; Kitanidis, Peter K. [Stanford University] [Stanford University; Jardine, Philip [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Criddle, Craig [Stanford University] [Stanford University

2013-01-01T23:59:59.000Z

265

The design and management of system components for in situ methanotrophic bioremediation of chlorinated hydrocarbons  

SciTech Connect (OSTI)

The successful operation of an in situ bioremediation system is inherent within its design. Well-organized system components enable ease of maintenance, limited down time, and relatively rapid data acquisition. The design effort in this project focused on injection of a low-pressure air/methane mixture into a horizontal well below the water table, a methane-blending system that provided control of the injected mixture, redundant safety interlocks, vapor-phase extraction from a second horizontal well, and an off-gas treatment system that provided efficient thermal catalytic oxidation of the extracted contaminant vapors. The control instrumentation provided sufficient redundancies to allow the system to remain in operation in the event of a component failure, and equally important, the safe shut down of the system should any designed safety parameters be exceeded (i.e., high methane concentration). Final design approval took into consideration the reliability of the equipment and the components specified. Product knowledge and proper application limited the risk of a component or system failure while providing a safe, efficient, and cost-effective remediation system. Microprocessor data acquisition and system control were integrated with an autodialer to provide 24 hr emergency response and operation without on-site supervision. This integrated system also insured accurate data analysis and minimum downtime. Since operations commenced, the system has operated a total of 7,760 hours out of the possible 8,837 hours available. This equates to an operating efficiency of 87.8%.

Lombard, K.H. [Bechtel Savannah River, Inc., Aiken, SC (United States); Borthen, J.W. [ECOVA Corp., Aiken, SC (United States); Hazen, T.C. [Westinghouse Savannah River Co., Aiken, SC (United States)

1992-12-31T23:59:59.000Z

266

Observation on the biodegradation and bioremediation potential of methyl t-butyl ether  

SciTech Connect (OSTI)

There have been few reports documenting evidence for the biodegradation of the fuel oxygenate alkyl ether, methyl t-butyl ether (MTBE) in groundwater, soils, and biosludges. Partial (or complete) microbial breakdown of MTBE has been observed in an anaerobic subsoil, a river sediment under methanogenic conditions, a cyclohexane-degrading bacterial consortium and a pure culture of the methylotroph, Methylisnus trichosporium OB3b. An aerobic bacterial enrichment (BC-1) isolated from an industrial transient (non-accumulating) metabolic intermediate. The studies suggest that MTBE is cleaved by BC-1 to TBA which is then metabolized via isopropanol and acetone. There is little information on the occurrence of indigenous MTBE-degraders in groundwater, soils and activated sludges. Preliminary evidence has been obtained, however, from a marketing terminal groundwater site that naturally-occurring MTBE-degraders are present in some monitoring wells. Microcosm experiments with groundwater from this aquifer show that MTBE is aerobically degraded (no TBA formed) with a first-order decay rate (0.31/day) similar to BTEX. Also, MTBE did not inhibit the intrinsic biodegradation potential of BTEX in groundwater microcosms. In summary, the data presented indicate that MTBE biodegradation has been observed in some environmental media. Further work is needed to assess the feasibility of using indigenous or derived aerobic and anaerobic MTBE-degrading cultures for treating fuel ethers in groundwaters or wastewater with in-situ or ex-situ bioremediation technologies.

Salanitro, J.; Wisniewski, H.; McAllister, P. [Shell Development Co., Houston, TX (United States)

1995-12-31T23:59:59.000Z

267

Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation  

SciTech Connect (OSTI)

Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density (?50 mA/m2) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control produced low, steady currents (?0.2 mA/m2). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. These results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode and that current levels are likely related to rates of subsurface metabolism. It is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

Williams, Kenneth H.; Nevin, Kelly P.; Franks, Ashley; Englert, Andreas L.; Long, Philip E.; Lovley, Derek R.

2010-01-01T23:59:59.000Z

268

An Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation  

SciTech Connect (OSTI)

Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density ({<=}50 mA/m{sup 2}) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control electrode not exposed to acetate produced low, steady currents ({<=}0.2 mA/m{sup 2}). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode, and these results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. Thus it is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

Williams, K.H.; Nevin, K.P.; Franks, A.; Englert, A.; Long, P.E.; Lovley, D.R.

2009-11-15T23:59:59.000Z

269

Accelerated molecular dynamics methods  

SciTech Connect (OSTI)

The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

Perez, Danny [Los Alamos National Laboratory

2011-01-04T23:59:59.000Z

270

Accelerating Scientific Discovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office AboutAccelerate ProgramAccelerating

271

Laboratory Directed Research and Development Program FY 2007  

E-Print Network [OSTI]

environments, which will enable a more realistic assessment of sustainable bioremediation technologies.

editor, Todd C Hansen,

2008-01-01T23:59:59.000Z

272

Laboratory Directed Research and Development Program FY 2006  

E-Print Network [OSTI]

environments, which will enable a more realistic assessment of sustainable bioremediation technologies.

Hansen Ed., Todd

2007-01-01T23:59:59.000Z

273

Laboratory Directed Research and Development Program FY 2008 Annual Report  

E-Print Network [OSTI]

environments, which will enable a more realistic assessment of sustainable bioremediation technologies.

editor, Todd C Hansen

2009-01-01T23:59:59.000Z

274

Accelerating News Issue 5  

E-Print Network [OSTI]

In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

Szeberenyi, A

2013-01-01T23:59:59.000Z

275

E-Print Network 3.0 - accelerated life-time testing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: ,9 . Despite its impact on the performance and life- time of wind turbines, the published research on wind... for the drive average train acceleration...

276

E-Print Network 3.0 - autoresonant acceleration proof-of-principle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of autoresonant continuously phase-locked Bernstein... is an important goal of plasma research. For example, such waves can be used for charged particle acceleration1 Source:...

277

E-Print Network 3.0 - accelerator driven transmuter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FOR NUCLEAR RESEARCH CERN-LHC98-12 (EET) Summary: Verification of Neutron Phenomenology in Lead and Transmutation by Adiabatic Resonance Crossing in Accelerator... ) Also...

278

E-Print Network 3.0 - accelerator driven transmutation technologies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FOR NUCLEAR RESEARCH CERN-LHC98-12 (EET) Summary: Verification of Neutron Phenomenology in Lead and Transmutation by Adiabatic Resonance Crossing in Accelerator... ) Also...

279

E-Print Network 3.0 - accelerator driven transmutation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FOR NUCLEAR RESEARCH CERN-LHC98-12 (EET) Summary: Verification of Neutron Phenomenology in Lead and Transmutation by Adiabatic Resonance Crossing in Accelerator... ) Also...

280

E-Print Network 3.0 - accelerated 56fe particles Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated 56fe particles Page: << < 1 2 3 4 5 > >> 1 RADIATION RESEARCH 162, 655659 (2004)...

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

An exploration of accelerated pre-registration courses in physiotherapy: perceptions of practitioners.  

E-Print Network [OSTI]

??The aim of this research study was to explore physiotherapy clinicians perceptions of both traditional and accelerated pre-registration physiotherapy training courses with regard to professional (more)

Milligan, James

2010-01-01T23:59:59.000Z

282

E-Print Network 3.0 - accelerated line-by-line calculations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology, Center for Solar-Terrestrial Research Collection: Physics 78 MEASUREMENTS AND INSTRUMENTATION Summary: and accelerator rooms, the photon and neutron activation in any...

283

Photo of the Week: What Does a Particle Accelerator Have in Common...  

Energy Savers [EERE]

could be widely used in medicine and industry -- particle accelerators are used for cancer research, processing computer chips, and even producing the shrink wrap used to keep...

284

ELECTRON INJECTION INTO CYCLIC ACCELERATOR USING  

E-Print Network [OSTI]

ELECTRON INJECTION INTO CYCLIC ACCELERATOR USING LASER WAKEFIELD ACCELERATION Ya. V. Getmanov, O. A acceleration #12;Storage ring with laser injection CYCLIC ACCELERATOR RF Electron injection The LWFA beam ­ accelerating light, 5 ­ accelerated electrons, 6 ­fast kicker - + accelerating laser pulse evaporatinglaser

285

MnDRIVE Minnesota Discovery Research and InnoVation Economy Funding Program MnDRIVE: Advancing industry, conserving our environment  

E-Print Network [OSTI]

industry, conserving our environment Goal Apply research-based new technology to solve environmental impact of upcoming mining projects in northern Minnesota · Microbial bioremediation renders wastes in fracking for recovery of natural gas from shale · Microbial remediation provides solutions for currently

Blanchette, Robert A.

286

Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3  

SciTech Connect (OSTI)

This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

Hazen, T.C.

1991-09-18T23:59:59.000Z

287

Acceleration and Classical Electromagnetic Radiation  

E-Print Network [OSTI]

Classical radiation from an accelerated charge is reviewed along with the reciprocal topic of accelerated observers detecting radiation from a static charge. This review commemerates Bahram Mashhoon's 60th birthday.

E. N. Glass

2008-01-09T23:59:59.000Z

288

Accelerating into the Future Zero to 1GeV in a Few Centimeters  

ScienceCinema (OSTI)

July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

LBNL

2009-09-01T23:59:59.000Z

289

Charge Diagnostics for Laser Plasma Accelerators  

E-Print Network [OSTI]

the 1989 Particle Accelerator Conference, IEEE, Piscataway,Diagnostics for Laser Plasma Accelerators K . Nakamura, A .ALS) synchrotron booster accelerator. The sensitivity of the

Nakamura, K.

2011-01-01T23:59:59.000Z

290

Microbial Diversity and Bioremediation of aHydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico)  

SciTech Connect (OSTI)

Hydrocarbon contamination of groundwater resources hasbecome a major environmental and human health concern in many parts ofthe world. Our objectives were to employ both culture andculture-independent techniques to characterize the dynamics of microbialcommunity structure within a fluidized bed reactor used to bioremediate adiesel-contaminated groundwater in a tropical environment. Under normaloperating conditions, 97 to 99 percent of total hydrocarbons were removedwith only 14 min hydraulic retention time. Over 25 different cultureswere isolated from the treatment unit (96 percent which utilized dieselconstituents as sole carbon source). Approximately 20 percent of theisolates were also capable of complete denitrification to nitrogen gas.Sequence analysis of 16S rDNA demonstrated ample diversity with mostbelonging to the infinity, beta and gamma subdivision of theProteobacteria, Bacilli, and Actinobacteria groups. Moreover, the geneticconstitution of the microbial community was examined at multiple timepoints with a Functional Gene Array (FGA) containing over 12,000 probesfor genes involved in organic degradation and major biogeochemicalcycles. Total community DNA was extracted and amplified using anisothermal phi29 polymerase-based technique, labeled with Cy5 dye, andhybridized to the arrays in 50 percent formimide overnight at 50 degreesC. Cluster analysis revealed comparable profiles over the course oftreatment suggesting the early selection of a very stable microbialcommunity. A total of 270 genes for organic contaminant degradation(including naphthalene, toluene [aerobic and anaerobic], octane,biphenyl, pyrene, xylene, phenanthrene, and benzene); and 333 genesinvolved in metabolic activities (nitrite and nitrous oxide reductases[nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB],potential metal reducing C-type cytochromes, and methane monooxygenase[pmoA]) were repeatedly detected. Genes for degradation of MTBE,nitroaromatics and chlorinated compounds werealso present, indicating abroad catabolic potential of the treatment unit. FGA's demonstrated theearly establishment of a diverse community with concurrent aerobic andanaerobic processes contributing to the bioremediationprocess.

Rodriguez-Martinez, E.M.; Perez, Ernie X.; Schadt, ChristopherW.; Zhou, Jizhong; Massol-Deya, Arturo A.

2006-09-30T23:59:59.000Z

291

Characterization and Transcription of Arsenic Respiration and Resistance Genes During In Situ Uranium Bioremediation  

SciTech Connect (OSTI)

The possibility of arsenic release and the potential role of Geobacter in arsenic biogeochemistry during in situ uranium bioremediation was investigated because increased availability of organic matter has been associated with substantial releases of arsenic in other subsurface environments. In a field experiment conducted at the Rifle, CO study site, groundwater arsenic concentrations increased when acetate was added. The number of transcripts from arrA, which codes for the alpha subunit of dissimilatory As(V) reductase, and acr3, which codes for the arsenic pump protein Acr3, were determined with quantitative RT-PCR. Most of the arrA (> 60%) and acr3-1 (> 90%) sequences that were recovered were most similar to Geobacter species, while the majority of acr3-2 (>50%) sequences were most closely related to Rhodoferax ferrireducens. Analysis of transcript abundance demonstrated that transcription of acr3-1 by the subsurface Geobacter community was correlated with arsenic concentrations in the groundwater. In contrast, Geobacter arrA transcript numbers lagged behind the major arsenic release and remained high even after arsenic concentrations declined. This suggested that factors other than As(V) availability regulated transcription of arrA in situ even though the presence of As(V) increased transcription of arrA in cultures of G. lovleyi, which was capable of As(V) reduction. These results demonstrate that subsurface Geobacter species can tightly regulate their physiological response to changes in groundwater arsenic concentrations. The transcriptomic approach developed here should be useful for the study of a diversity of other environments in which Geobacter species are considered to have an important influence on arsenic biogeochemistry.

Giloteaux, L.; Holmes, Dawn E.; Williams, Kenneth H.; Wrighton, Kelly C.; Wilkins, Michael J.; Montgomery, Alison P.; Smith, Jessica A.; Orellana, Roberto; Thompson, Courtney A.; Roper, Thomas J.; Long, Philip E.; Lovley, Derek R.

2013-02-04T23:59:59.000Z

292

Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer  

SciTech Connect (OSTI)

The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

Williams, K.H.; N'Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

2009-11-15T23:59:59.000Z

293

Acceleration in de Sitter spacetimes  

E-Print Network [OSTI]

We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a new metric with a reasonable physical meaning.

Ion I. Cotaescu

2014-07-09T23:59:59.000Z

294

Adaptive control for accelerators  

DOE Patents [OSTI]

An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

Eaton, Lawrie E. (Los Alamos, NM); Jachim, Stephen P. (Los Alamos, NM); Natter, Eckard F. (Santa Fe, NM)

1991-01-01T23:59:59.000Z

295

Review of ion accelerators  

SciTech Connect (OSTI)

The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

Alonso, J.

1990-06-01T23:59:59.000Z

296

Linear induction accelerator  

DOE Patents [OSTI]

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

297

Accelerators AND Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office Workshop WorkingAccelerators AND

298

Accelerating QDP++ using GPUs  

E-Print Network [OSTI]

Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an application example a smearing routine was accelerated to execute on a GPU. A significant speed-up compared to normal CPU execution could be measured.

Frank Winter

2011-05-11T23:59:59.000Z

299

Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)  

E-Print Network [OSTI]

Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)

Berwald, D H; Myers, T J; Paulson, C C; Peacock, M A; Piaszczyk, C M; Rathke, J W; Piechowiak, E M

1996-01-01T23:59:59.000Z

300

Recent Advances in Plasma Acceleration  

SciTech Connect (OSTI)

The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

Hogan, Mark

2007-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization...  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and Intergovernmental Program (WIP) Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and...

302

Accelerating Energy Savings Performance Contracting Through Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Provides...

303

Safety of Accelerator Facilities - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

304

APT accelerator. Topical report  

SciTech Connect (OSTI)

The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

Lawrence, G.; Rusthoi, D. [comp.] [ed.

1995-03-01T23:59:59.000Z

305

Black holes at accelerators.  

E-Print Network [OSTI]

ar X iv :h ep -p h/ 05 11 12 8v 3 6 A pr 2 00 6 Black Holes at Accelerators Bryan Webber Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK In theories with large extra dimensions and TeV-scale gravity, black holes... 2000 3000 Missing ET (GeV) Ar bi tra ry S ca le p p ? QCD SUSY 5 TeV BH (n=6) 5 TeV BH (n=2) (PT > 600 GeV) (SUGRA point 5) Figure 10: Missing transverse energy for various processes at the LHC. 4.2. Event Characteristics Turning from single...

Webber, Bryan R

306

Accelerator Concepts Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAbout ScienceAboutAcceleration and FocusingAAC

307

Fermilab | Tevatron | Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified Forces | Do all theAccelerator

308

Investigations of the plasma and structure based accelerators  

SciTech Connect (OSTI)

The objective of our research during the reported period was three-fold: (a) theoretical investigation of novel mechanisms of injection into laser wake field accelerators; (b) theoretical investigation of single-shot frequency domain diagnostics of relativistic plasma wakes, specifically in the context of spatio-temporal evolution of the ?¢????plasma bubble?¢???;(c) experimental and theoretical investigation of laser-driven accelerating structure, specifically in the context of the Surface Wave Accelerator Based on SiC (SWABSIC).

Shvets, Gennady

2012-08-30T23:59:59.000Z

309

Joint Research Synchrotron Radiation Laboratory  

E-Print Network [OSTI]

research works on advanced solid state spectroscopy. In 2005, the operation of the PF ring was quitted from Laboratory (SRL) was estab- lished in 1975 as a research group dedicating to study solid state physics using of the accelerator physics group and the solid state spectroscopy group. The members of the accelerator group have

Katsumoto, Shingo

310

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre DESY DESY is one of the world's leading research centres for photon science, particle and astroparticle with universities. The DESY focus is on conventional and plasma-based accele- rators with applications in photon

311

A proposal for a 1 GeV plasma-wakefield acceleration experiment at SLAC  

SciTech Connect (OSTI)

A plasma-based wakefield acceleration (PWFA) experiment is proposed that will accelerate parts of an SLC bunch by up to 1 GeV/m over a length of 1 m. A single SLC bunch is used to both induce wakefields in the one meter long plasma and to witness the resulting beam acceleration. The proposed experiment will explore and further develop the techniques that are needed to apply high-gradient plasma wakefield acceleration to large scale accelerators. The one meter length of the experiment is about two orders of magnitude larger than other high-gradient PWFA experiments and the 1 GeV/m accelerating gradient is roughly ten times larger than that achieved with conventional metallic structures. Using existing SLAC facilities, the proposed experiment will allow the study of high-gradient acceleration at the forefront of advanced accelerator research.

Katsouleas, T.; Lee, S. [Univ. of Southern California, Los Angeles, CA (United States); Assmann, R. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

1997-07-01T23:59:59.000Z

312

Hazen, T. C., A. J. Tien, A. Worsztynowicz, D. J. Altman, K. Ulfig, and T. Manko. 2003. Biopiles for Remediation of Petroleum-Contaminated Soils: A Polish Case Study. NATO Advanced Research  

E-Print Network [OSTI]

(a)pyrene and BTEX compounds were identified as the contaminants of concern. Approximately 3,300 m3 of contaminated for Remediation of Petroleum-Contaminated Soils: A Polish Case Study. NATO Advanced Research Workshop Volume on The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions. V. Sasek, J. Glaser, and P

Hazen, Terry

313

Dec 21, 2005 HEPAP Accel Research Subpanel 1 Bob Siemann  

E-Print Network [OSTI]

1 Dec 21, 2005 HEPAP Accel Research Subpanel 1 Bob Siemann SLAC HEPAP Subpanel on Accelerator students in these collaborations #12;2 Dec 21, 2005 HEPAP Accel Research Subpanel 3 Plasma Accelerators energy physics and colliders Dec 21, 2005 HEPAP Accel Research Subpanel 4 Plasma Wakefield Acceleration

Wechsler, Risa H.

314

Accelerating and Retarding Anomalous Diffusion  

E-Print Network [OSTI]

In this paper Gaussian models of retarded and accelerated anomalous diffusion are considered. Stochastic differential equations of fractional order driven by single or multiple fractional Gaussian noise terms are introduced to describe retarding and accelerating subdiffusion and superdiffusion. Short and long time asymptotic limits of the mean squared displacement of the stochastic processes associated with the solutions of these equations are studied. Specific cases of these equations are shown to provide possible descriptions of retarding or accelerating anomalous diffusion.

Chai Hok Eab; S. C. Lim

2012-01-14T23:59:59.000Z

315

Cast dielectric composite linear accelerator  

DOE Patents [OSTI]

A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

2009-11-10T23:59:59.000Z

316

Modern electron accelerators for radiography  

SciTech Connect (OSTI)

Over the past dozen years or so there have been significant advances in electron accelerators designed specifically for radiography of hydrodynamic experiments. Accelerator technology has evolved to accomodate the radiographers' contitiuing quest for multiple images in t h e and space:, improvements in electron beam quality have resulted in smaller radiographic spot sizes for better resolution, while higher radiation do% now provides imprcwed penetration of large, dense objects. Inductive isolation and acceleration techniques have played a ley rob in these advances.

Ekdahl, C. A. (Carl A.)

2001-01-01T23:59:59.000Z

317

High Energy Density Physics and Exotic Acceleration Schemes  

SciTech Connect (OSTI)

The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.

Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

2005-09-27T23:59:59.000Z

318

Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density  

SciTech Connect (OSTI)

The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

Bake, Muhammad Ali; Xie Baisong [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shan Zhang [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hong Xueren [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Hongyu [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd, Shanghai 200136 (China)

2012-08-15T23:59:59.000Z

319

Accelerating Combined Heat & Power Deployment  

Broader source: Energy.gov (indexed) [DOE]

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

320

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

Nation, J.A.; Greenwald, S.

1989-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

1989-01-01T23:59:59.000Z

322

Lab Breakthrough: Fermilab Accelerator Technology  

Broader source: Energy.gov [DOE]

Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

323

Non-Paraxial Accelerating Beams  

E-Print Network [OSTI]

We present the spatially accelerating solutions of the Maxwell equations. Such non-paraxial beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams. For both TE and TM polarizations, the beams exhibit shape-preserving bending with sub-wavelength features, and the Poynting vector of the main lobe displays a turn of more than 90 degrees. We show that these accelerating beams are self-healing, analyze their properties, and compare to the paraxial Airy beams. Finally, we present the new family of periodic accelerating beams which can be constructed from our solutions.

Ido Kaminer; Rivka Bekenstein; Jonathan Nemirovsky; Mordechai Segev

2012-02-03T23:59:59.000Z

324

Compact accelerator for medical therapy  

DOE Patents [OSTI]

A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

2010-05-04T23:59:59.000Z

325

Muon Collider Progress: Accelerators  

E-Print Network [OSTI]

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance ("cooling"). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Michael S. Zisman

2011-09-14T23:59:59.000Z

326

EuCARD 2010 Accelerator Technology in Europe  

E-Print Network [OSTI]

Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new infrastructure, develop the existing, and generally make the infrastructure available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD European Coordination of Accelerator R&D. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement control systems, RF-gun co-design, thin-film superconducting technology, superconducting transpo...

Romaniuk, R S

2010-01-01T23:59:59.000Z

327

Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245  

SciTech Connect (OSTI)

In 1965 and 1966, approximately 303 m{sup 3} of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

Saueressig, Daniel G. [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)

2013-07-01T23:59:59.000Z

328

Computational accelerator science needs towards laser-plasma accelerators for future colliders  

E-Print Network [OSTI]

Laser plasma accelerators have the potential to reduce the size of future linacs for high energy physics by more than an order of magnitude, due to their high gradient. Research is in progress at current facilities, including the BELLA PetaWatt laser at LBNL, towards high quality 10 GeV beams and staging of multiple modules, as well as control of injection and beam quality. The path towards high-energy physics applications will likely involve hundreds of such stages, with beam transport, conditioning and focusing. Current research focuses on addressing physics and R&D challenges required for a detailed conceptual design of a future collider. Here, the tools used to model these accelerators and their resource requirements are summarized, both for current work and to support R&D addressing issues related to collider concepts.

Geddes, C G R; Schroeder, C B; Esarey, E; Leemans, W P

2013-01-01T23:59:59.000Z

329

Enhanced bioremediation process: A case study of effectiveness on PAH contamination in soils at a former wood-treating site  

SciTech Connect (OSTI)

The Enhanced Bioremediation Process (EBP) technology is an exsitu biodegradation process that utilizes bacterial and fungal inoculants to effectively oxidize and bioremediate persistent hard to degrade organics in contaminated soils. The EBP fungal inoculants produce highly reactive extracellular peroxidase enzymes that can oxidize and degrade lignin, a complex, natural polymer composed of phenylpropane units that is resistant to decay. The lignin peroxidase enzymes are highly nonspecific because of their ability to oxidize the heterogenic lignin molecule, and are capable of degrading a wide variety of complex organic compounds. Because the chemical sub-structure of lignin (1,2-aryl diethers, alkyl sidechains and connected aryl systems) resembles that of many persistent organic compounds, the EBP inoculants are very effective in biodegrading similar hazardous organic pollutants in contaminated soils. As an inadvertent by-product of these biochemical processes, the EBP organisms reduce the organic constituents to a soluble form. In a soluble form, the indigenous organisms can further degrade the contaminants. The technology is applied in such a manner as to maximize the activity of the indigenous organisms by establishing optimum growth conditions. The efficacy of the EBP technology in degrading persistent environmental pollutants has been documented at both the bench scale and pilot demonstration levels. A recently completed field pilot demonstration was conducted at a creosote contaminated site. The demonstration entailed the treatment of approximately 700 tons of soil contaminated with PAH constituents. Laboratory analyses of pre and post-treated soils indicate that total average PAH concentrations in many samples were reduced by greater than 91 percent over a two month treatment period.

Mills, W.F. [Miltech Environmental, Inc., Tucker, GA (United States); Matens, B.L. [Dames and Moore, Baton Rouge, LA (United States); Buchalter, D.S. [EMCON, Norcross, GA (United States); Montgomery, D.N. [Georgia Dept. of Transportation, Forest Park, GA (United States). Office of Materials and Research

1997-12-31T23:59:59.000Z

330

Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE  

SciTech Connect (OSTI)

Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested included a series of air, air:methane, and air:methane:nutrient pulses of the test plot using horizontal injection wells. During the test period, the levels of TCE reduced drastically in almost all test samples. Sediment core samples (n = 367) taken from 0 m (surface)-43 m depth were probed for gene coding for methanotrophic soluble methane monooxygenase (sMMO) and heterotrophic toluene dioxygenase (TOD), which are known to co-metabolize TCE. The same sediment samples were also probed for genes coding for methanol dehydrogenase (MDH) (catalyzing the oxidation of methanol to formaldehyde) to assess specifically changes in methylotrophic bacterial populations in the site. Gene hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent injection of 4% methane:air (v/v) resulted in an 85% decline probably due to nutrient limitations, since addition of nutrients (gaseous nitrogen and phosphorus) thereafter caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process, and eventually they were non-detectable by the final treatment, suggesting that methanotrophs displaced the TOD gene containing heterotrophs. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with results showing the concomitant decline in TCE concentrations, increases in chloride concentration and increases in methanotroph viable counts, provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. Our results suggest that sMMO genes are responsible for most, if not all, of the observed biodegradation of TCE. This study demonstrates that the use of nucleic acid analytical methods provided a gene specific assessment of the effects of in situ treatment technologies.

Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

2009-03-15T23:59:59.000Z

331

Programming and Scheduling Model for Supporting Heterogeneous Accelerators in Tobias Beisel and Tobias Wiersema and Christian Plessl and Andr Brinkmann  

E-Print Network [OSTI]

Programming and Scheduling Model for Supporting Heterogeneous Accelerators in Linux Tobias Beisel of such heterogeneous systems is still a subject of research. While many efforts address the programming of accelerators, scheduling heterogeneous systems, i. e., mapping parts of an application to accelerators at runtime, is still

Hellebrand, Sybille

332

Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment  

SciTech Connect (OSTI)

Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after {approx}30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been incorporated into the modeling. In this case, an initially small population of slow growing sulfate reducers is active from the initiation of biostimulation. Three-dimensional, variably saturated flow modeling was used to address impacts of a falling water table during acetate injection. These impacts included a significant reduction in aquifer saturated thickness and isolation of residual reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions; however, the ranges were sufficiently small to preserve general trends. Large computer memory and high computational performance were required to simulate the detailed coupled process models for multiple biogeochemical components in highly resolved heterogeneous materials for the 110-day field experiment and 50 days of post-biostimulation behavior. In this case, a highly-scalable subsurface simulator operating on 128 processor cores for 12 hours was used to simulate each realization. An equivalent simulation without parallel processing would have taken 60 days, assuming sufficient memory was available.

Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

2011-11-01T23:59:59.000Z

333

Laser acceleration of ion beams  

E-Print Network [OSTI]

We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

2007-02-01T23:59:59.000Z

334

Particle Acceleration in Astrophysical Sources  

E-Print Network [OSTI]

Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

Amato, Elena

2015-01-01T23:59:59.000Z

335

Bayesian Optimum Planning for Accelerated Life Tests  

E-Print Network [OSTI]

Bayesian Optimum Planning for Accelerated Life Tests Yao Zhang and William Q. Meeker Dept for optimum accelerated life test planning with one accelerating variable, when the acceleration model design; Preposterior; Reliability. 1 #12;2 1 Introduction 1.1 Background and Motivation Accelerated life

336

Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies  

E-Print Network [OSTI]

al. 2005 Impact of SciDAC on accelerator projects across the171; Spentzouris P 2006 Accelerator modeling under SciDAC:of next-generation accelerator design, analysis, and

Spentzouris, Panagiotis

2008-01-01T23:59:59.000Z

337

Velocity bunching in travelling wave accelerator with low acceleration gradient  

E-Print Network [OSTI]

We present the analytical and simulated results concerning the influences of the acceleration gradient in the velocity bunching process, which is a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. Our study shows that the bunch compression application with low acceleration gradient is more tolerant to phase jitter and more successful to obtain compressed electron beam with symmetrical longitudinal distribution and low energy spread. We also present a transverse emittance compensation scheme to compensate the emittance growth caused by the increasing of the space charge force in the compressing process that is easy to be adjusted for different compressing factors.

Huang, Rui-Xuan; Li, Wei-Wei; Jia, Qi-Ka

2013-01-01T23:59:59.000Z

338

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOE Patents [OSTI]

An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

Birx, D.L.; Reginato, L.L.

1984-03-22T23:59:59.000Z

339

Materials Research in the Information Age  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 | Tags: Materials...

340

Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

Leemans, Wim [LOASIS Program, AFRD

2011-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

RFQ accelerator tuning system  

DOE Patents [OSTI]

A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

Bolie, Victor W. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

342

RFQ accelerator tuning system  

DOE Patents [OSTI]

A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

Bolie, V.W.

1990-07-03T23:59:59.000Z

343

Negative hydrogen ion sources for accelerators  

SciTech Connect (OSTI)

A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

Moehs, D.P.; /Fermilab; Peters, J.; /DESY; Sherman, J.; /Los Alamos

2005-08-01T23:59:59.000Z

344

Quantum Communication with an Accelerated Partner  

E-Print Network [OSTI]

An unsolved problem in relativistic quantum information research is how to model efficient, directional quantum communication between localised parties in a fully quantum field theoretical framework. We propose a tractable approach to this problem based on solving the Heisenberg evolution of localized field observables. We illustrate our approach by analysing, and obtaining approximate analytical solutions to, the problem of communicating coherent states between an inertial sender, Alice and an accelerated receiver, Rob. We use these results to determine the efficiency with which continuous variable quantum key distribution could be carried out over such a communication channel.

T. G. Downes; T. C. Ralph; N. Walk

2012-10-28T23:59:59.000Z

345

Accelerator Physics and Design at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuel ProductionFor AcademicAccelerator

346

SPEAR3 Accelerator | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearchInnovationSPEAR3 Accelerator SPEAR3 SSRL

347

CALCIUM SULFATE-INDUCED ACCELERATED CORROSION  

E-Print Network [OSTI]

10286 CALCIUM SULFATE-INDUCED ACCELERATED CORROSION HilaryCT Calcium Sulf(1teinduced Accelerated Corrosion By Hilaryof the Caso - induced accelerated attack on pure iron and

Akuezue, Hilary Chikezie

2013-01-01T23:59:59.000Z

348

PROTON ACCELERATION AT OBLIQUE SHOCKS  

SciTech Connect (OSTI)

Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

Galinsky, V. L.; Shevchenko, V. I., E-mail: vit@ucsd.edu [ECE Department, UC San Diego, MC 407, La Jolla, CA 92093-0407 (United States)

2011-06-20T23:59:59.000Z

349

Cosmic Particle Acceleration: Basic Issues  

E-Print Network [OSTI]

Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

T. W. Jones

2000-12-22T23:59:59.000Z

350

Cascaded target normal sheath acceleration  

SciTech Connect (OSTI)

A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

2013-11-15T23:59:59.000Z

351

Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures  

SciTech Connect (OSTI)

The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

Byer, Robert L.

2013-11-07T23:59:59.000Z

352

Charge Diagnostics for Laser Plasma Accelerators  

E-Print Network [OSTI]

Laser plasma accelerator, charge diagnostics, Lanex, ICT,Charge Diagnostics for Laser Plasma Accelerators K .CHARGE DIAGNOSTICS CROSS-CALIBRATIONS WITH LASER PLASMA

Nakamura, K.

2011-01-01T23:59:59.000Z

353

CRAD, Criticality Safety - Idaho Accelerated Retrieval Project...  

Broader source: Energy.gov (indexed) [DOE]

Criticality Safety - Idaho Accelerated Retrieval Project Phase II CRAD, Criticality Safety - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to...

354

Hyundai Sonata HEV Accelerated Testing - March 2013  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata HEV Accelerated Testing - March 2013 Two model year 2011 Hyundai Sonata hybrid electric vehicles (HEVs) entered Accelerated testing during June 2011 in a fleet in...

355

CRAD, Occupational Safety & Health - Idaho Accelerated Retrieval...  

Broader source: Energy.gov (indexed) [DOE]

Occupational Safety & Health - Idaho Accelerated Retrieval Project Phase II CRAD, Occupational Safety & Health - Idaho Accelerated Retrieval Project Phase II February 2006 A...

356

Accelerated Laboratory Tests Using Simultaneous UV, Temperature...  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV,...

357

Comparing Accelerated Testing and Outdoor Exposure | Department...  

Broader source: Energy.gov (indexed) [DOE]

Comparing Accelerated Testing and Outdoor Exposure Comparing Accelerated Testing and Outdoor Exposure Presented at the PV Module Reliability Workshop, February 26 - 27 2013,...

358

ACCELERATED SCHEMES FOR A CLASS OF VARIATIONAL ...  

E-Print Network [OSTI]

We propose a novel method, namely the accelerated mirror-prox (AMP) method, ... the rate of convergence of the AMP method can be accelerated in terms of.

2014-03-17T23:59:59.000Z

359

Chevrolet Malibu HEV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Malibu HEV Accelerated Testing - June 2013 Four model year 2013 Chevrolet Malibu hybrid electric vehicles (HEVs) entered Accelerated testing during November 2012 in a fleet in...

360

Accelerating DSMC data extraction.  

SciTech Connect (OSTI)

In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

Gallis, Michail A.; Piekos, Edward Stanley

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Accelerating and rotating black holes  

E-Print Network [OSTI]

An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter $l$ and the Plebanski-Demianski parameter $n$ is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed.

J. B. Griffiths; J. Podolsky

2005-07-06T23:59:59.000Z

362

Sequentially pulsed traveling wave accelerator  

DOE Patents [OSTI]

A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

2009-08-18T23:59:59.000Z

363

Teleportation with Multiple Accelerated Partners  

E-Print Network [OSTI]

As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum chan- nels are based on accelerated multi-qubit states, where each qubit of each of these channels represent a partner. Namely, these states are the the W state, Greenberger-Horne-Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting acceler- ated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network.

Alaa Sagheer; Hala Hamdoun

2014-01-31T23:59:59.000Z

364

Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1  

E-Print Network [OSTI]

1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

Liu, Feng

365

Final technical report [ACCELERATED MOLECULAR DYNAMICS SIMULATIONS OF REACTIVE HYDROCARBON SYSTEMS  

SciTech Connect (OSTI)

The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

Stuart, Steven J.

2014-02-25T23:59:59.000Z

366

Advanced Accelerator Concepts Final Report  

SciTech Connect (OSTI)

A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

Wurtele, Jonathan S.

2014-05-13T23:59:59.000Z

367

SLAC Accelerator Test Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics Research

368

SLAC National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign In Launch the SLAC

369

Accelerator Science | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuel ProductionFor

370

ACCELERATED DESTRUCTIVE DEGRADATION TESTS: DATA, MODELS,  

E-Print Network [OSTI]

ACCELERATED DESTRUCTIVE DEGRADATION TESTS: DATA, MODELS, AND ANALYSIS Luis A. Escobar Dept are often accelerated by testing at higher than usual levels of accelerating variables like temperature. This chapter describes an important class of models for accelerated destructive degradation data. We use

371

Computational studies and optimization of wakefield accelerators  

E-Print Network [OSTI]

Computational studies and optimization of wakefield accelerators C G R Geddes1 , D L Bruhwiler2 , J-driven plasma wakefield accelerators produce accelerating fields thousands of times higher than radio-frequency accelerators, offering compactness and ultrafast bunches to extend the frontiers of high energy physics

Geddes, Cameron Guy Robinson

372

Ultra-high vacuum photoelectron linear accelerator  

DOE Patents [OSTI]

An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

Yu, David U.L.; Luo, Yan

2013-07-16T23:59:59.000Z

373

Bioremediation of the organophosphate pesticide, coumaphos, using microorganisms immobilized in calcium-alginate gel beads  

E-Print Network [OSTI]

and diethylthiophosphate (DETP), using Ca-alginate immobilized cells was the focus of this research. Consortia of indigenous microorganisms capable of degrading chlorferon and DETP were isolated separately. Since chlorferon inhibited both chlorferon-degrading and DETP-degrading...

Ha, Jiyeon

2007-04-25T23:59:59.000Z

374

Derivation of Hamiltonians for accelerators  

SciTech Connect (OSTI)

In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

Symon, K.R.

1997-09-12T23:59:59.000Z

375

E-Print Network 3.0 - advancing translational research Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mission: Advance human health by accelerating the translation... . Educate and train future translational clinicians and researchers. Provide funding support...

376

E-Print Network 3.0 - advance translational research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mission: Advance human health by accelerating the translation... . Educate and train future translational clinicians and researchers. Provide funding support...

377

The CARE accelerator R&D programme in Europe  

E-Print Network [OSTI]

CARE, an ambitious and coordinated programme of accelerator research and developments oriented towards high energy physics projects, has been launched in January 2004 by the main European laboratories and the European Commission. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. We describe the CARE R&D plans, mostly devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron or proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We highlight some results and progress obtained so far.

Napoly, Olivier; den Ouden, Andres; Devred, Arnaud; Garoby, Roland; Garvey, Terence; Ghigo, Andrea; Gschwendtner, Edda; Losito, Roberto; Mais, Helmut; Palladino, V; Proch, Dieter; Richard, F; Rinolfi, Louis; Ruggiero, Francesco; Scandale, Walter; Schulte, Daniel; Vretenar, Maurizio

2005-01-01T23:59:59.000Z

378

Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater  

DOE Patents [OSTI]

A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

Turick, Charles E. (Idaho Falls, ID); Apel, William W. (Idaho Falls, ID)

1997-10-28T23:59:59.000Z

379

Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater  

DOE Patents [OSTI]

A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed. 10 figs.

Turick, C.E.; Apel, W.W.

1997-10-28T23:59:59.000Z

380

Particle Tracking in Circular Accelerators Using the Exact Hamiltonian in SixTrack  

E-Print Network [OSTI]

Particle motion in accelerators is in general complex. Tracking codes are developed to simulate beam dynamics in accelerators. SixTrack is a long lived particle tracking code maintained at CERN, the European Organization for Nuclear Research. A particle accelerator consists of a large number of magnets and other electromagnetic devices that guide the particle through the accelerator. Each device defines its own equation of motion, which often cannot be solved exactly. For this purpose, a number of approximations are introduced in order to facilitate the solution and to speed up the computation. In a high-energy accelerator, the particle has small transverse momentum components. This is exploited in the small-angle approximation. In this approximation the equations of motion are expanded to a low order in the transverse momentum components. In low-energy particle accelerators, or in tracking with large momentum deviations, this approximation is invalid. The equations of motion of a particle passing through a f...

Fjellstrom, Mattias; Hansson, Johan

2013-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Virtual gap dielectric wall accelerator  

DOE Patents [OSTI]

A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

2013-11-05T23:59:59.000Z

382

Superconducting Magnets for Particle Accelerators  

E-Print Network [OSTI]

Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

Rossi, L

2012-01-01T23:59:59.000Z

383

Weak-Chaos Ratchet Accelerator  

E-Print Network [OSTI]

Classical Hamiltonian systems with a mixed phase space and some asymmetry may exhibit chaotic ratchet effects. The most significant such effect is a directed momentum current or acceleration. In known model systems, this effect may arise only for sufficiently strong chaos. In this paper, a Hamiltonian ratchet accelerator is introduced, featuring a momentum current for arbitrarily weak chaos. The system is a realistic, generalized kicked rotor and is exactly solvable to some extent, leading to analytical expressions for the momentum current. While this current arises also for relatively strong chaos, the maximal current is shown to occur, at least in one case, precisely in a limit of arbitrarily weak chaos.

Itzhack Dana; Vladislav B. Roitberg

2012-05-28T23:59:59.000Z

384

Centralized digital control of accelerators  

SciTech Connect (OSTI)

In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

Melen, R.E.

1983-09-01T23:59:59.000Z

385

OpenMP for Accelerators  

SciTech Connect (OSTI)

OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

2011-03-15T23:59:59.000Z

386

Electron Cloud Effects in Accelerators  

SciTech Connect (OSTI)

Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

Furman, M.A.

2012-11-30T23:59:59.000Z

387

Relativistic tunneling and accelerated transmission  

E-Print Network [OSTI]

We obtain the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation regime when the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation originated from the study based on non-relativistic dynamics of tunneling is overcome. The treatment of the problem suggests revealing insights into condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.

Alex E. Bernardini

2007-06-26T23:59:59.000Z

388

Nonlinear Acceleration Methods for Even-Parity Neutron Transport  

SciTech Connect (OSTI)

Convergence acceleration methods for even-parity transport were developed that have the potential to speed up transport calculations and provide a natural avenue for an implicitly coupled multiphysics code. An investigation was performed into the acceleration properties of the introduction of a nonlinear quasi-diffusion-like tensor in linear and nonlinear solution schemes. Using the tensor reduced matrix as a preconditioner for the conjugate gradients method proves highly efficient and effective. The results for the linear and nonlinear case serve as the basis for further research into the application in a full three-dimensional spherical-harmonics even-parity transport code. Once moved into the nonlinear solution scheme, the implicit coupling of the convergence accelerated transport method into codes for other physics can be done seamlessly, providing an efficient, fully implicitly coupled multiphysics code with high order transport.

W. J. Martin; C. R. E. De Oliveira; H. Park

2010-05-01T23:59:59.000Z

389

Accelerated BS/DPT Program Academic Policy and Procedure Manual 1 ACCELERATED HEALTH STUDIES /  

E-Print Network [OSTI]

_____________________________________________________________________________________ Accelerated BS/DPT Program Academic Policy and Procedure Manual 1 ACCELERATED HEALTH STUDIES / DOCTOR OF PHYSICAL;_____________________________________________________________________________________ Accelerated BS/DPT Program Academic Policy and Procedure Manual 2 TABLE OF CONTENTS Department Personnel

Guenther, Frank

390

Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators  

E-Print Network [OSTI]

elds in laser plasma accelerators using higher order modes,collider, in Advanced Accelerator Concepts, edited by C. B.forces in laser-plasma accelerators W. Rittershofer, 1, a)

Rittershofer, W.

2010-01-01T23:59:59.000Z

391

Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC  

ScienceCinema (OSTI)

Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators. FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.

Andrei Seryi

2010-01-08T23:59:59.000Z

392

Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research  

SciTech Connect (OSTI)

The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundations Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energys Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for Development of the Next-Generation CAVE Virtual Environment (NG-CAVE), enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

Brown, Maxine D. [Acting Director, EVL; Leigh, Jason [PI

2013-10-01T23:59:59.000Z

393

Repair of overheating linear accelerator  

SciTech Connect (OSTI)

Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; OHara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

2004-01-01T23:59:59.000Z

394

Physics Needs for Future Accelerators  

E-Print Network [OSTI]

Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

Joseph D. Lykken

2000-01-30T23:59:59.000Z

395

Thomas Jefferson National Accelerator Facility  

SciTech Connect (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

396

Physics Needs for Future Accelerators  

E-Print Network [OSTI]

Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

Lykken, J D

2000-01-01T23:59:59.000Z

397

High Performance Outdoor Lighting Accelerator  

Broader source: Energy.gov [DOE]

Hosted by the U.S. Department of Energy (DOE)s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

398

Accelerating Development in the Americas  

E-Print Network [OSTI]

for governments and as a strategic tool for development strategies; · Creating reference cases and best practices by making them feel useful, but also that of their families. OAS & MICROSOFT Accelerating Sustainable for the economic development of our countries as it is part of the process of globalisation and therefore

Narasayya, Vivek

399

Petawatt pulsed-power accelerator  

DOE Patents [OSTI]

A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

2010-03-16T23:59:59.000Z

400

E-Print Network 3.0 - accelerator system accelerator Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems Michael J... - based systems that emphasize computation on accelerators (rather than on general purpose cores) should... in these accelerator-based...

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Phase Stable Net Acceleration of Electrons From a Two-Stage Optical Accelerator  

SciTech Connect (OSTI)

In this article we demonstrate the net acceleration of relativistic electrons using a direct, in-vacuum interaction with a laser. In the experiment, an electron beam from a conventional accelerator is first energy modulated at optical frequencies in an inverse-free-electron-laser and bunched in a chicane. This is followed by a second stage optical accelerator to obtain net acceleration. The optical phase between accelerator stages is monitored and controlled in order to scan the accelerating phase and observe net acceleration and deceleration. Phase jitter measurements indicate control of the phase to {approx}13{sup o} allowing for stable net acceleration of electrons with lasers.

Sears, Christopher M.S.; /SLAC /Munich, Max Planck Inst. Quantenopt.; Colby, Eric; England, R.J.; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; /SLAC; Plettner, Tomas; Byer, Robert L.; /Stanford U., Phys. Dept.

2011-11-11T23:59:59.000Z

402

THE DEVELOPMENT OF HEAVY-ION ACCELERATORS AS DRIVERS FOR INERTIALLY CONFINED FUSION  

E-Print Network [OSTI]

HEAVY ION ACCELERATORS Principal Components . . . . .Ion Sources Pre-accelerators Low-beta Accelerators Sain Accelerators Rf Linacs . . .

Herrmannsfeldt, W.b.

2010-01-01T23:59:59.000Z

403

Cryogenic supply for accelerators and experiments at FAIR  

SciTech Connect (OSTI)

In the coming years the new international accelerator facility FAIR (Facility for Antiproton and Ion Research), one of the largest research projects worldwide, will be built at GSI. In the final construction FAIR consists of synchrotrons and storage rings with up to 1,100 meters in circumference, two linear accelerators and about 3.5 kilometers beam transfer lines. The existing GSI accelerators serve as pre-accelerators. Partly the new machines will consist of superconducting magnets and therefore require a reliable supply with liquid helium. As the requirements for the magnets is depending on the machine and have a high variety, the cooling system is different for each machine; two phase cooling, forced flow cooling and bath cooling respectively. In addition the cold mass of the individual magnets varies between less than 1t up to 80t and some magnets will cause a dynamic heat load due to ramping that is higher than the static loads. The full cryogenic system will be operated above atmospheric pressure. The refrigeration and liquefaction power will be provided by two main cryogenic plants of 8 and 25 kW at 4K and two smaller plants next to the experiments.

Kauschke, M.; Xiang, Y.; Schroeder, C. H.; Streicher, B.; Kollmus, H. [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstrae 1,64291 Darmstadt (Germany)

2014-01-29T23:59:59.000Z

404

Reactor accelerator coupling experiments: a feasability study  

E-Print Network [OSTI]

The Reactor Accelerator Coupling Experiments (RACE) are a set of neutron source driven subcritical experiments under temperature feedback conditions. These experiments will involve coupling an accelerator driven neutron source to a TRIGA reactor...

Woddi Venkat Krishna, Taraknath

2006-08-16T23:59:59.000Z

405

CRAD, Engineering - Idaho Accelerated Retrieval Project Phase...  

Broader source: Energy.gov (indexed) [DOE]

Engineering - Idaho Accelerated Retrieval Project Phase II CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

406

CRAD, Management - Idaho Accelerated Retrieval Project Phase...  

Broader source: Energy.gov (indexed) [DOE]

Management - Idaho Accelerated Retrieval Project Phase II CRAD, Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

407

CRAD, Radiological Controls - Idaho Accelerated Retrieval Project...  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Retrieval Project Phase II CRAD, Radiological Controls - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal...

408

CRAD, Emergency Management - Idaho Accelerated Retrieval Project...  

Broader source: Energy.gov (indexed) [DOE]

Idaho Accelerated Retrieval Project Phase II CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

409

HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS  

E-Print Network [OSTI]

D. C. 'Niobium-Titanium Superconducting Material s ', in S.14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.SUMAG-68 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS* C.

Taylor, C.

2011-01-01T23:59:59.000Z

410

ACCELERATORS: ENGINES FOR TRAVERSING A LARGE AND OFTEN DIFFICULT LANDSCAPE  

E-Print Network [OSTI]

of California. ACCELERATORS: ENGINES FOR TRAVERSING A LARGEand Andre Lebedev Abstract TYPES OF ACCELERATORS The manyapplications of accelerators are presented, with pictures

Sessler, Andrew M.

2014-01-01T23:59:59.000Z

411

Staging laser plasma accelerators for increased beam energy  

E-Print Network [OSTI]

Staging Laser Plasma Accelerators for Increased Beam EnergyStaging laser plasma accelerators is an efficient way ofcompact laser-plasma accelerators to generate particle

Panasenko, Dmitriy

2010-01-01T23:59:59.000Z

412

Electron Beam Charge Diagnostics for Laser Plasma Accelerators  

E-Print Network [OSTI]

the 1989 Particle Accelerator Conference (IEEE, Piscataway,the 1993 Particle Accelerator Conference (IEEE, Piscataway,Diagnostics for Laser Plasma Accelerators K. Nakamura, 1 A.

Nakamura, Kei

2012-01-01T23:59:59.000Z

413

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

essential understanding of accelerator physics to advanceof high- gradient, laser plasma particle accelerators.to conventional particle accelerators, plasmas can sustain

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

414

Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators  

E-Print Network [OSTI]

for Laser Plasma Accelerators," in this proceedings, 2010.Based Laser Wakefield Accelerator Electron Beam EnergyMotion in a Laser-Plasma Accelerator," in this proceedings,

Matlis, N. H.

2011-01-01T23:59:59.000Z

415

accelerate positional cloning: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of velocity is acceleration (i DeTurck, Dennis 2 LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?...

416

Accelerated Evolution of Conserved Noncoding Sequences in the Human Genome  

E-Print Network [OSTI]

associated with CNSs accelerated in chimpanzee. (F)associated with CNSs accelerated in mouse. (G) CNScomponent associations of accelerated CNSs (adjustment for

Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, Edward M.

2006-01-01T23:59:59.000Z

417

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

No. 894 Effects of an Accelerated Diesel Engine Replacement/2009 Effects of an Accelerated Diesel Engine Replacement/reductions occurring on an accelerated schedule compared to

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

418

Accelerated maximum likelihood parameter estimation for stochastic biochemical systems  

E-Print Network [OSTI]

as: Daigle et al. : Accelerated maximum likelihood parame-Gillespie DT: Approximate accelerated stochastic simulationARTICLE Open Access Accelerated maximum likelihood parameter

Daigle, Bernie J; Roh, Min K; Petzold, Linda R; Niemi, Jarad

2012-01-01T23:59:59.000Z

419

Accelerated New Product Development in Credit Card Industry  

E-Print Network [OSTI]

CALIFORNIA Los Angeles Accelerated New Product DevelopmentABSTRACT OF THE THESIS Accelerated New Product Developmentmodels to provide accelerated new product development

Gupta, Ravi Kumar

2012-01-01T23:59:59.000Z

420

Cell Component Accelerated Stress Test Protocols for PEM Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Accelerated Stress Test Protocols for PEM...

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS  

E-Print Network [OSTI]

LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

Schroeder, C. B.

2010-01-01T23:59:59.000Z

422

Comments on Backreaction and Cosmic Acceleration  

E-Print Network [OSTI]

In this brief WEB note we comment on recent papers related to our paper "On Acceleration Without Dark Energy".

E. W. Kolb; S. Matarrese; A. Riotto

2005-11-02T23:59:59.000Z

423

Comments on backreaction and cosmic acceleration  

SciTech Connect (OSTI)

In this brief WEB note we comment on recent papers related to our paper ''On Acceleration Without Dark Energy''.

Kolb, Edward W.; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI; Matarrese, Sabinio; /Padua U. /INFN, Padua; Riotto, Antonion; /CERN

2005-11-01T23:59:59.000Z

424

Technical Report No. 2006510 ACCELERATING MACHINES \\Lambda  

E-Print Network [OSTI]

Technical Report No. 2006­510 ACCELERATING MACHINES \\Lambda Robert Fraser and Selim G. Akl School Abstract This paper presents an overview of accelerating machines. We begin by exploring the history of the accelerating machine model and the potential power that it provides. We look at some of the problems that could

Graham, Nick

425

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

Parsons, William M. (Santa Fe, NM)

1992-01-01T23:59:59.000Z

426

RESOLVING BEAM TRANSPORT PROBLEMS IN ELECTROSTATIC ACCELERATORS  

E-Print Network [OSTI]

RESOLVING BEAM TRANSPORT PROBLEMS IN ELECTROSTATIC ACCELERATORS J. D. LARSON (*) Oak Ridge National are frequently encounte- red during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam

Boyer, Edmond

427

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

Parsons, W.M.

1992-12-29T23:59:59.000Z

428

Accelerating the transformation of power systems  

E-Print Network [OSTI]

Accelerating the transformation of power systems Ancillary Services Peer Exchange with India- to-peer consultation. The 21st Century Power Partnership aims to accelerate the global transformation consultative support Accelerating the transformation of power systems NREL/FS-6A20-61811 · May 2014 15013

429

Accelerated immunosenescence in preindustrial twin mothers  

E-Print Network [OSTI]

Accelerated immunosenescence in preindustrial twin mothers Samuli Helle* , Virpi Lummaa , and Jukka that this tradeoff is a result of reproductive costs accelerating senescence of the immune system, leading to earlier accelerated immunosenescence. immune function cost of reproduction longevity reproductive effort tuberculosis

Lummaa, Virpi

430

HASKELL ARRAYS, ACCELERATED Manuel M. T. Chakravarty  

E-Print Network [OSTI]

HASKELL ARRAYS, ACCELERATED USING GPUS Manuel M. T. Chakravarty University of New South Wales JOINT, memory-access patterns, etc. Portability... Monday, 7 September 2009 #12;OTHER COMPUTE ACCELERATOR ACCELERATOR ARCHITECTURES Goal: portable data parallelism Tesla T10 GPU Monday, 7 September 2009 #12;OTHER

Chakravarty, Manuel

431

Accelerated expansion from cosmological holography  

E-Print Network [OSTI]

It is shown that holographic cosmology implies an evolving Hubble radius $c^{-1}\\dot{R}_H = -1 + 3\\Omega_m$ in the presence of a dimensionless matter density $\\Omega_m$ scaled to the closure density $3H^2/8\\pi G$, where $c$ denotes the velocity of light and $H$ and $G$ denote the Hubble parameter and Newton's constant. It reveals a dynamical dark energy and a sixfold increase in gravitational attraction to matter on the scale of the Hubble acceleration. It reproduces the transition redshift $z_t\\simeq 0.4$ to the present epoch of accelerated expansion and is consistent with $(q_0,(dq/dz)_0)$ of the deceleration parameter $q(z)=q_0+(dq/dz)_0z$ observed in Type Ia supernovae.

van Putten, Maurice H P M

2015-01-01T23:59:59.000Z

432

Accelerated leach test development program  

SciTech Connect (OSTI)

In FY 1989, a draft accelerated leach test for solidified waste was written. Combined test conditions that accelerate leaching were validated through experimental and modeling efforts. A computer program was developed that calculates test results and models leaching mechanisms. This program allows the user to determine if diffusion controls leaching and, if this is the case, to make projections of releases. Leaching mechanisms other than diffusion (diffusion plus source term partitioning and solubility limited leaching) are included in the program is indicators of other processes that may control leaching. Leach test data are presented and modeling results are discussed for laboratory scale waste forms composed of portland cement containing sodium sulfate salt, portland cement containing incinerator ash, and vinyl ester-styrene containing sodium sulfate. 16 refs., 38 figs., 5 tabs.

Fuhrmann, M.; Pietrzak, R.F.; Heiser, J.; Franz, E.M.; Colombo, P.

1990-11-01T23:59:59.000Z

433

Transplanckian collisions at future accelerators  

E-Print Network [OSTI]

Scattering at transplanckian energies offers model independent tests of TeV scale gravity. Black-hole production is one spectacular signal, though a full calculation of the cross section is not yet available. Another signal is given by gravitational elastic scattering, which is maybe less spectacular but which can be nicely computed in the forward region using the eikonal approximation. In this talk I discuss the distinctive signatures of eikonalized scattering at future accelerators.

Riccardo Rattazzi

2002-05-23T23:59:59.000Z

434

The US muon accelerator program  

E-Print Network [OSTI]

A directed R&D program is presently underway in the U.S. to evaluate the designs and technologies required to provide muon-based high energy physics (HEP) accelerator capabilities. Such capabilities have the potential to provide unique physics reach for the HEP community. An overview of the status of the designs for the neutrino factory and muon collider applications is provided. Recent progress in the technology R&D program is summarized.

Palmer, M A

2015-01-01T23:59:59.000Z

435

Accelerating Solutions | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office AboutAccelerate

436

Acceleration-field calculation for a structure-based laser-driven linear accelerator  

E-Print Network [OSTI]

Acceleration-field calculation for a structure-based laser-driven linear accelerator Y. C. Huanga for publication 16 April 1998 A laser-driven particle accelerator, scaled to optical wavelengths, has a feature size many orders of magnitude smaller than a radio-frequency accelerator. However, similar to a radio

Byer, Robert L.

437

Accelerator and new accelerating schemes B. Heusch (1) and G. Matthieussent (2)  

E-Print Network [OSTI]

1420 Accelerator and new accelerating schemes B. Heusch (1) and G. Matthieussent (2) (1) Centre de and high energy physics, astrophysics and plasma physics had the opportunity to discuss accelerators under con- struction as well as the novel acceleration techniques which have appeared during the past few

Paris-Sud XI, Université de

438

Accelerated_Program_Application_10_31.doc | Revised: 11/4/13 Accelerated Program Application  

E-Print Network [OSTI]

Accelerated_Program_Application_10_31.doc | Revised: 11/4/13 Accelerated Program Application OFFICE://www.grad.usf.edu/ STUDENT AGREEMENT Please initial, indicating agreement: I have reviewed the Accelerated Program Requirements and information (http://www.grad.usf.edu/accelerated.php) I have met with my undergraduate

Meyers, Steven D.

439

Compensation Techniques in Accelerator Physics  

SciTech Connect (OSTI)

Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

Hisham Kamal Sayed

2011-05-31T23:59:59.000Z

440

Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011...

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Accelerator Technology Division progress report, FY 1992  

SciTech Connect (OSTI)

This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-07-01T23:59:59.000Z

442

On Dark Energy and Accelerated Reference Frames  

E-Print Network [OSTI]

The paper is devoted to an explanation of the accelerated rate of expansion of the Universe. Usually the acceleration of the Universe, which is described by FRW metric, is due to dark energy. It is shown that this effect may be considered as a manifestation of torsion tensor for a flat Universe in the realm of Teleparallel gravity. An observer with radial field velocity obey Hubble's Law. As a consequence it is established that this is radial acceleration in a flat Universe. In Eq. (\\ref{24}) the acceleration is written in terms of the deceleration parameter, the Hubble's constant and the proper distance. This may be interpreted as an acceleration of the Universe.

S. C. Ulhoa

2011-12-10T23:59:59.000Z

443

The overview and history of permanent magnet devices in accelerator technology  

SciTech Connect (OSTI)

This paper reviews the early history of accelerator development with a particular focus on the important discoveries that opened the door for the application of permanent-magnet materials to this area of science. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, that showed magnetic fields could be used to control the transverse envelope of charged-particle beams. Since that time, permanent-magnet materials have found wide application in the modern charged particle accelerator. The history of permanent-magnet use in accelerator physics and technology is outlined, general design considerations are presented, and material properties of concern for particle accelerator applications are discussed.

Kraus, R.H. Jr.

1993-10-01T23:59:59.000Z

444

ACCELERATOR DIVISION ANNUAL REPORT, JAN-DEC. 1975  

E-Print Network [OSTI]

F. Voelker H. W. Vogel ACCELERATOR THEORY A. A. Garren L. J.marked a turning point for the Accelerator Division. A majorbright indeed. VII ACCELERATOR DIVISION Contents ACCELERATOR

Lofgren, E.J.

2008-01-01T23:59:59.000Z

445

Laser Guiding for GeV Laser-Plasma Accelerators  

E-Print Network [OSTI]

Overview of plasma-based accelerator concepts. IEEE Trans.using laser wake?eld accelerators. Meas. Sci. Technol. 12,for GeV laser-plasma accelerators. In Advanced Accelerator

Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, C.B.; Toth, Csaba

2005-01-01T23:59:59.000Z

446

Fermilab | Science | Particle Accelerators | LHC and Future Accelerators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home ItDark EnergyFermilab's AcceleratorLHC and

447

Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect (OSTI)

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

2011-11-14T23:59:59.000Z

448

High Performance Computing in Accelerator Science: Past Successes. Future Challenges  

E-Print Network [OSTI]

High Performance Computing in Accelerator Science: PastAC02- 05CH11231. High Performance Computing in Accelerator

Ryne, R.

2013-01-01T23:59:59.000Z

449

Accelerated stem cell labeling with ferucarbotran and protamine  

E-Print Network [OSTI]

Heike E. Daldrup-Link Accelerated stem cell labeling withferu- carbotran can be accelerated in MSCs with protamine,

2010-01-01T23:59:59.000Z

450

ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES  

SciTech Connect (OSTI)

We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

2009-06-11T23:59:59.000Z

451

Deuterium accelerator experiments for APT.  

SciTech Connect (OSTI)

Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

2005-08-01T23:59:59.000Z

452

Soft coincidence in late acceleration  

SciTech Connect (OSTI)

We study the coincidence problem of late cosmic acceleration by assuming that the present ratio between dark matter and dark energy is a slowly varying function of the scale factor. As the dark energy component we consider two different candidates, first a quintessence scalar field, and then a tachyon field. In either case analytical solutions for the scale factor, the field, and the potential are derived. Both models show a good fit to the recent magnitude-redshift supernovae data. However, the likelihood contours disfavor the tachyon field model as it seems to prefer a excessively high value for the matter component.

Campo, Sergio del [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Casilla 4059, Valparaiso (Chile); Herrera, Ramon [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avenida Republica 273, Santiago (Chile); Pavon, Diego [Departamento de Fisica, Facultad de Ciencias, Universidad Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

2005-06-15T23:59:59.000Z

453

Domain Walls, Triples and Acceleration  

E-Print Network [OSTI]

We present a construction of domain walls in string theory. The domain walls can bridge both Minkowski and AdS string vacua. A key ingredient in the construction are novel classical Yang-Mills configurations, including instantons, which interpolate between toroidal Yang-Mills vacua. Our construction provides a concrete framework for the study of inflating metrics in string theory. In some cases, the accelerating space-time comes with a holographic description. The general form of the holographic dual is a field theory with parameters that vary over space-time.

Travis Maxfield; Savdeep Sethi

2014-04-09T23:59:59.000Z

454

Accelerator experiments contradicting general relativity  

E-Print Network [OSTI]

The deflection of gamma-rays in Earth's gravitational field is tested in laser Compton scattering at high energy accelerators. Within a formalism connecting the bending angle to the photon's momentum it follows that detected gamma-ray spectra are inconsistent with a deflection magnitude of 2.78 nrad, predicted by Einstein's gravity theory. Moreover, preliminary results for 13-28 GeV photons from two different laboratories show opposite - away from the Earth - deflection, amounting to 33.8-0.8 prad. I conclude that general relativity, which describes gravity at low energies precisely, break down at high energies.

Vahagn Gharibyan

2014-07-12T23:59:59.000Z

455

Muon Accelerator Program (MAP) | Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModificationEnzyme-Functionalized GoldMuon Accelerator

456

Accelerated Aging of Roofing Surfaces  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department ofEnergyDeployment ofAccelerated

457

Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater  

SciTech Connect (OSTI)

Field biostimulation experiments at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agency's (EPA) drinking water standard (0.126 {micro}M). During successive summer experiments - referred to as 'Winchester' (2007) and 'Big Rusty' (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal-reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM), and the extent to which iron reduction ('Winchester') or sulfate reduction ('Big Rusty') was the predominant metabolic process. In both cases, rapid removal of U(VI) from groundwater occurred at calcium concentrations (6 mM) and carbonate alkalinities (8 meq/L) where Ca-UO2-CO3 ternary complexes constitute >90% of uranyl species in groundwater. Complete consumption of acetate and increased alkalinity (>30 meq/L) accompanying the onset of sulfate reduction corresponded to temporary increases in U(VI); however, by increasing acetate concentrations in excess of available sulfate (10 mM), low U(VI) concentrations (0.1-0.05 {micro}M) were achieved for extended periods of time (>140 days). Uniform delivery of acetate during 'Big Rusty' was impeded due to decreases in injection well permeability, likely resulting from biomass accumulation and carbonate and sulfide mineral precipitation. Such decreases were not observed during the short-duration 'Winchester' experiment. Terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes demonstrated that Geobacter sp. and Geobacter-like strains dominated the groundwater community profile during iron reduction, with 13C stable isotope probing (SIP) results confirming these strains were actively utilizing acetate to replicate their genome during the period of optimal U(VI) removal. Gene transcript levels during 'Big Rusty' were quantified for Geobacter-specific citrate synthase (gltA), with ongoing transcription during sulfate reduction indicating that members of the Geobacteraceae were still active and likely contributing to U(VI) removal. The persistence of reducible Fe(III) in sediments recovered from an area of prolonged (110 day) sulfate reduction is consistent with this conclusion. These results indicate that acetate availability and its ability to sustain the activity of iron- and uranyl-respiring Geobacter strains during sulfate reduction exerts a primary control on optimized U(VI) removal from groundwater at the Rifle IFRC site over extended timescales (>50 days).

Williams, Kenneth H.; Long, Philip E.; Davis, James A.; Wilkins, Michael J.; N'Guessan, A. Lucie; Steefel, Carl I.; Yang, Li; Newcomer, Darrell R.; Spane, Frank A.; Kerkhof, L.; McGuinness, L.; Dayvault, Richard; Lovley, Derek

2011-11-01T23:59:59.000Z

458

Final Report for "Community Petascale Project for Accelerator Science and Simulations".  

SciTech Connect (OSTI)

This final report describes the work that has been accomplished over the past 5 years under the Community Petascale Project for Accelerator and Simulations (ComPASS) at Tech-X Corporation. Tech-X had been involved in the full range of ComPASS activities with simulation of laser plasma accelerator concepts, mainly in collaboration with LOASIS program at LBNL, simulation of coherent electron cooling in collaboration with BNL, modeling of electron clouds in high intensity accelerators, in collaboration with researchers at Fermilab and accurate modeling of superconducting RF cavity in collaboration with Fermilab, JLab and Cockcroft Institute in the UK.

Cary, J. R.; Bruhwiler, D. L.; Stoltz, P. H.; Cormier-Michel, E.; Cowan, B.; Schwartz, B. T.; Bell, G.; Paul, K.; Veitzer, S.

2013-04-19T23:59:59.000Z

459

Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective  

E-Print Network [OSTI]

Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective Deployment MIT · Motivation · Individual Functions/Markets · Energy Storage Technologies · Implementations to Combine) · Previously: · Energy storage and smart grid analyst at Lux Research and GTM Research · MIT SDM '08 (Graduated

de Weck, Olivier L.

460

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network [OSTI]

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Determinants of multiple measures of acceleration  

SciTech Connect (OSTI)

Statistical analyses of the acceleration capability of gasoline vehicles have focused on zero to 97 km/h acceleration rates and have concluded that peak power per kilogram is an appropriate single surrogate for acceleration capability. In this paper, statistical methods are used with data for 107 vehicles tested and reported by Consumers Union for 1986--1988 model years to estimate the determinants of contemporary gasoline vehicle acceleration capability under various conditions, adding new variables to the statistical tests reported by others. Like previous studies, this analysis determined that power and weight provide the most information about acceleration capability. Using a model formulation unlike other studies, this study found that engine displacement also provides statistically significant improvements in explanation of 0-48, 0-97, and 48-97 km/h acceleration times. The coefficients of the equations imply that the use of smaller displacement engines, holding peak power constant, diminishes start-up and 0-97 km/h acceleration capability. A separate equation is estimated to illustrate the effects of advanced engine technologies on displacement, controlling for power. This equation is used in conjunction with the acceleration equations to illustrate a method of estimating performance-equivalent engine substitutions when engine technologies change. Transmission type was important for start-up acceleration, with automatic-transmission-equipped vehicles being significantly slower than stick-shift-equipped vehicles. Fuel injection was found to significantly improve start-up acceleration. Variables proxying aerodynamic-drag effects tended to be significant determinants of acceleration in the higher-speed equations, but not for start-up acceleration. Estimated aerodynamic drag effects indicated that drag slows down 0-97, 48-97, and 72-105 km/h acceleration of pickup trucks and sport utility vehicles more than passenger cars and vans.

Santini, D.J.; Anderson, J.

1993-08-01T23:59:59.000Z

462

Do Inertial Electric Charges Radiate with Respect to Uniformly Accelerated Observers?  

E-Print Network [OSTI]

We revisit the long standing problem of analyzing an inertial electric charge from the point of view of uniformly accelerated observers in the context of semi-classical gravity. We choose a suitable set of accelerated observers with respect to which there is no photon emission coming from the inertial charge. We discuss this result against previous claims [F. Rohrlich, Ann. Phys. (N.Y.) vol: 22, 169 (1963)]. (This Essay was awarded a Honorable Mention for 1994 by the Gravity Research Foundation.)

George E. A. Matsas

1994-05-23T23:59:59.000Z

463

National Energy Research Scientific Computing Center  

E-Print Network [OSTI]

National Energy Research Scientific Computing Center (NERSC) Visualization Tools and Techniques quotas)!! · Dual IR4 graphics accelerators. · Dual GigE channels to HPSS (use hsi to move data) Alternative implementation: SGI's Vizserver · Uses escher's graphics hardware to accelerate rendering

Geddes, Cameron Guy Robinson

464

Japan Proton Accelerator Research Complex J-PARC  

E-Print Network [OSTI]

1980 KEK PS KENS KENS 3kW 5kW ¾ 17 ISIS 160kW KENS KEK #12; MW 800 1,000 ¾ 1,890 13 å J-PARC KENS J.1-0.2MW 1MW J-PARC SNS(1.4MW, ISIS 2 ( ) #12;5 400MeV MLF 1MW 0.6MW 13 2001 19 2007 20 2008 2005 2 2006 11-PARC 2006 2 300 S 6000 #12;12 ¾ 30m 40m ¾ ¾ m ¾ ¾ JRR-3 10 JRR-3 JAEA 10 JRR-3 20 5 ¾ JRR-3 ¾ ¾ HFR ISIS

Katsumoto, Shingo

465

RAMP: RESEARCH ACCELERATOR FOR MULTIPLE PROCESSORS Abstract for Hotchips 2006  

E-Print Network [OSTI]

), Derek Chiou (UT Austin), James C. Hoe (CMU), Christoforos Kozyrakis (Stanford), Shih-Lien Lu (Intel a qualitative leap in the quality and range of future computer architecture re- search. Furthermore, since

Wawrzynek, John

466

NSTX Upgrade: ST research to accelerate fusion development  

E-Print Network [OSTI]

parameter regimes to advance predictive capability - for ITER and beyond Develop ST as fusion energy-Z + Li Theme 4. Harnessing Fusion Power Leader in physics basis and design of low-A fusion systems Theme non-inductive ramp-up from ~0.4 1MA HI-start-up Te, ne too low for fast-wave, NBI coupling need

467

IARC - Illinois Accelerator Research Center | Pilot Program | Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics HydropowerI/O LibraryIACT

468

IARC - Illinois Accelerator Research Center | Pilot Program | Directions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics HydropowerI/O LibraryIACTDirections The

469

Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOS ALAMOS,TransitionRecord-Setting Cavities|

470

The Illinois Accelerator Research Center, or IARC, will  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentThe FiveD. The LawThe TheTheThe

471

The Illinois Accelerator Research Center, or IARC, will  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentThe FiveD. The LawThe

472

IARC - Illinois Accelerator Research Center | Pilot Program | Who Attends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure the ParkerTH/P8-43

473

Fermilab | Illinois Accelerator Research Center | Funding and Schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto

474

Fermilab | Illinois Accelerator Research Center | What is IARC?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphotoIARCMore

475

Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research  

SciTech Connect (OSTI)

A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

NONE

1995-06-01T23:59:59.000Z

476

Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies  

SciTech Connect (OSTI)

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

2011-10-21T23:59:59.000Z

477

Improvement of classical accelerators by lasers  

E-Print Network [OSTI]

Of the unconventional accelerator techniques those including lasers are reported. After explaining the advances by lasers for classical accelerator techniques, as FELs and other methods for 100 GHz generation of GW pulses, a survey is given of far field and near field laser acceleration. Problems of the beat-wave accelerator are discussed and schemes for particle interaction in vacuum without plasma are elaborated. One scheme is the Boreham experiment and another is the acceleration of "standing" wave fields where charged particles are trapped in the intensity minima. Another scheme uses the relativistic acceleration by half waves where the now available petawatt-picosecond laser pulses should produce GeV electron pulses of high luminosity. Increase of these electron enrgies would need very large lasers in the future.

Hora, Heinrich

1991-01-01T23:59:59.000Z

478

Particle acceleration in superluminal strong waves  

E-Print Network [OSTI]

We calculate the electron acceleration in random superluminal strong waves (SLSWs) and radiation from them by using numerical methods in the context of the termination shock of the pulsar wind nebulae. We pursue the electrons by solving the equation of motion in the analytically expressed electromagnetic turbulences. These consist of primary SLSW and isotropically distributed secondary electromagnetic waves. Under the dominance of the secondary waves, all electrons gain nearly equal energy. On the other hand, when the primary wave is dominant, selective acceleration occurs. The phase of the primary wave felt by the electrons moving nearly along the wavevector changes very slowly compared to the oscillation of the wave, which is called "phase locked", and such electrons are continuously accelerated. This acceleration by SLSWs may play a crucial role in the pre-acceleration for the shock acceleration. In general, the radiation from the phase-locked population is different from the synchro-Compton radiation. How...

Teraki, Yuto; Nagataki, Shigehiro

2015-01-01T23:59:59.000Z

479

Solar system constraints on Rindler acceleration  

E-Print Network [OSTI]

We discuss the classical tests of general relativity in the presence of Rindler acceleration. Among these tests the perihelion shifts give the tightest constraints and indicate that the Pioneer anomaly cannot be caused by a universal solar system Rindler acceleration. We address potential caveats for massive test-objects. Our tightest bound on Rindler acceleration that comes with no caveats is derived from radar echo delay and yields |a|<3nm/s^2.

Sante Carloni; Daniel Grumiller; Florian Preis

2011-05-09T23:59:59.000Z

480

Accelerator Technology Division progress report, FY 1993  

SciTech Connect (OSTI)

This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "accelerated bioremediation research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Modified Newtonian dynamics from acceleration fluctuations  

E-Print Network [OSTI]

A speculative mathematical model is used to generate the modified Newtonian dynamics called MOND from fluctuations of the number of quanta of quantized acceleration. The one new parameter can be chosen either to make the transition to modification comparable to that obtained from the functions used to fit data with MOND, or to make the modification at larger accelerations comparable in magnitude to the unexplained accelerations of Pioneer 10 and 11.

Thomas F. Jordan

2004-02-16T23:59:59.000Z

482

Fermi National Accelerator Laboratory February 2014 Particle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerators to the World Wide Web, and from medical imaging techniques to high-performance computing, the bold and innovative ideas and technologies of particle physics have...

483

Jefferson Lab accelerator upgrade completed: Initial operations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE to begin initial operations of the Continuous Electron Beam Accelerator Facility (CEBAF) as part of its ongoing 338 million upgrade. With the approval of Critical...

484

Accelerating Climate Technologies: Innovative Market Strategies...  

Open Energy Info (EERE)

proposes a similar approach to accelerate hydrokinetic marine energy technology in global energy markets. For each case study, we show the gaps to scaling up technology...

485

Accelerating CHP Deployment, United States Energy Association...  

Broader source: Energy.gov (indexed) [DOE]

as possible considering the diverse interests represented in the national combined heat and power (CHP) dialogue. This paper includes recommendations for accelerating CHP...

486

Accelerating Investments in the Geothermal Sector, Indonesia...  

Open Energy Info (EERE)

in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

487

Optimization Online - An Accelerated Proximal Coordinate Gradient ...  

E-Print Network [OSTI]

Jul 7, 2014 ... An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization. Qihang Lin(qihang-lin...

Qihang Lin

2014-07-07T23:59:59.000Z

488

New Developments in Planning Accelerated Life Tests.  

E-Print Network [OSTI]

??Accelerated life tests (ALTs) are often used to make timely assessments of the life time distribution of materials and components. The goal of many ALTs (more)

Ma, Haiming

2009-01-01T23:59:59.000Z

489

Optimization Online - Accelerated Linearized Bregman Method  

E-Print Network [OSTI]

Jun 27, 2011 ... Abstract: In this paper, we propose and analyze an accelerated linearized Bregman (ALB) method for solving the basis pursuit and related...

Bo Huang

2011-06-27T23:59:59.000Z

490

Accelerated and Inexact forward-backward algorithms  

E-Print Network [OSTI]

Aug 17, 2011 ... Accelerated and Inexact forward-backward algorithms. Silvia Villa (villa ***at*** dima.unige.it) Saverio Salzo (salzo ***at*** disi.unige.it)

Silvia Villa

2011-08-17T23:59:59.000Z

491

Inexact and accelerated proximal point algorithms  

E-Print Network [OSTI]

Aug 10, 2011 ... Abstract: We present inexact accelerated proximal point algorithms for minimizing a proper lower semicon- tinuous and convex function.

Saverio Salzo

2011-08-10T23:59:59.000Z

492

TAP Webinar: High Performance Outdoor Lighting Accelerator  

Broader source: Energy.gov [DOE]

Hosted by the Technical Assistance Program (TAP), this webinar will cover the recently announced expansion of the Better Buildings platform the High Performance Outdoor Lighting Accelerator (HPOLA).

493

New Lasers Pave Way for Tabletop Accelerators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center (NERSC). Traditional accelerators, like the Large Hadron Collider where the Higgs boson was recently discovered, rely on high-power radio-frequency waves to energize...

494

Inexact and accelerated proximal point algorithms  

E-Print Network [OSTI]

In this paper we analyze the convergence of accelerated and inexact .... Another notion of approximation is obtained by relaxing the last equation in (1) in.

2011-08-17T23:59:59.000Z

495

Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation  

SciTech Connect (OSTI)

While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination.

Fred Brokman; John Selker; Mark Rockhold

2004-01-26T23:59:59.000Z

496

Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation  

SciTech Connect (OSTI)

Executive Summary - While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination...

Brockman, Fred J.; Selker, John S.; Rockhold, Mark L.

2004-10-31T23:59:59.000Z

497

GPUs as Storage System Accelerators  

E-Print Network [OSTI]

Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detectio...

Al-Kiswany, Samer; Ripeanu, Matei

2012-01-01T23:59:59.000Z

498

Accelerated Characterization of Polymer Properties  

SciTech Connect (OSTI)

This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo

2003-07-30T23:59:59.000Z

499

Advanced Test Accelerator (ATA) injector  

SciTech Connect (OSTI)

The ATA injector, developed from experience gained from the Experimental Test Accelerator (ETA) linac, has recently been completed. The injector consists of ten 0.25 MV cells that are used to develop 2.5 MV across a single diode gap. The 10 kA beam is extracted from a 500 cm/sup 2/ plasma cathode at average rates of up to 5 Hz and burst rates to 1 kHz. Pulsed power from 20 water filled blumleins is divided and introduced symmetrically through four ports on each cell. All major insulators are fabricated from filled epoxy castings. With these improvements, the ATA injector is smaller than the ETA injector; has a faster pulse response; has lower voltage stress on insulators and higher ultimate performance. Injector characterization tests began in October 1982. These tests include beam current, energy, and emittance measurements.

Jackson, C.H.; Bubp, D.G.; Fessenden, T.J.; Hester, R.E.; Neil, V.K.; Paul, A.C.; Prono, D.S.

1983-03-09T23:59:59.000Z

500

Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater  

SciTech Connect (OSTI)

The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

Mouser, P.J.; N'Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

2009-04-01T23:59:59.000Z