National Library of Energy BETA

Sample records for accelerated bioremediation research

  1. 7212ORNL/TM-2000/269 Natural and Accelerated Bioremediation Research (NABIR)

    E-Print Network [OSTI]

    Pennycook, Steve

    7212ORNL/TM-2000/269 Natural and Accelerated Bioremediation Research (NABIR) Field Research Center/TM-2000/269 Environmental Sciences Division Natural and Accelerated Bioremediation Research (NABIR) Field............................................................................... 36 5.1 WATER LEVEL MEASUREMENTS

  2. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    SciTech Connect (OSTI)

    N /A

    2000-04-18

    The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediation under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.

  3. Method for phosphate-accelerated bioremediation

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Lombard, Kenneth H. (Augusta, GA); Hazen, Terry C. (Augusta, GA); Pfiffner, Susan M. (Knoxville, TN); Phelps, Tommy J. (Knoxville, TN); Borthen, James W. (Seattle, WA)

    1996-01-01

    An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in fluid communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

  4. Apparatus and method for phosphate-accelerated bioremediation

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Pfiffner, Susan M. (Knoxville, TN); Phelps, Tommy J. (Knoxville, TN); Lombard, Kenneth H. (Augusta, GA); Hazen, Terry C. (Augusta, GA); Borthen, James W. (Seattle, WA)

    1998-01-01

    An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site and provides for the use of a passive delivery system. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

  5. Apparatus and method for phosphate-accelerated bioremediation

    DOE Patents [OSTI]

    Looney, B.B.; Pfiffner, S.M.; Phelps, T.J.; Lombard, K.H.; Hazen, T.C.; Borthen, J.W.

    1998-05-19

    An apparatus and method are provided for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site and provides for the use of a passive delivery system. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate. 8 figs.

  6. Apparatus and method for phosphate-accelerated bioremediation

    DOE Patents [OSTI]

    Looney, B.B.; Phelps, T.J.; Hazen, T.C.; Pfiffner, S.M.; Lombard, K.H.; Borthen, J.W.

    1994-01-01

    An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in fluid communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

  7. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    Bioremediation of selenium-contaminated sediments and water.soils, sediments, water, or air. Bioremediation is not a new

  8. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  9. The Radiological Research Accelerator THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    The Radiological Research Accelerator Facility #12;84 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY Director: David J. Brenner, Ph.D., D.Sc., Manager: Stephen A. Marino, M.S. An NIH SupportedV/µm 4 He ions using the microbeam facility (Exp. 73) also continued. The transformation frequency

  10. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  11. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;115 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY An NIH-Supported Resource Center WWW.RARAF.ORG Director: David J. Brenner, Ph.D., D.Sc. Manager delighted that NIH funding for continued development of our single-particle microbeam facility was renewed

  12. Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals

    E-Print Network [OSTI]

    Hazen, Terry

    , contain, or transform to be- nign products contaminants present in soils, sedi- ments, water, or air of contaminants to which bioremediation is being applied, including solvents, explosives, poly- cyclic aromatic hydrocarbons (PAHs), and poly- chlorinated biphenyls (PCBs) (McCullough et al. 1999; NABIR 2004). Now

  13. Accelerators for research and applications

    SciTech Connect (OSTI)

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs.

  14. Radiological Research Accelerator Facility Service Request Form

    E-Print Network [OSTI]

    Radiological Research Accelerator Facility Service Request Form National Institute of Biomedical Imaging and Bioengineering Radiological Research Accelerator Facility Service request form Estimate when(s) to control for this experiment (if more than one, please prioritize): Radiological Research Accelerator

  15. In situ groundwater bioremediation

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  16. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  17. The Radiological Research Accelerator Facility

    SciTech Connect (OSTI)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  18. Accelerators for high energy physics research

    SciTech Connect (OSTI)

    Chao, A.

    1995-12-01

    A brief survey of particle accelerators as research tools for high energy physics is given. The survey includes existing accelerators, as well as those envisioned for the future.

  19. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  20. In situ groundwater bioremediation

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    on Intrinsic Bioremediation of Ground Water, August 30-on Intrinsic Bioremediation of Ground Water, August 30-on Intrinsic Bioremediation of Ground Water, August 30-

  1. 17 GHz High Gradient Accelerator Research

    SciTech Connect (OSTI)

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  2. Cometabolic bioremediation

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  3. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  4. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 117 RARAF - Table of Contents RARAF Professional RESEARCH · ANNUAL REPORT 2010 118 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE................................................................................................................................................117 Development of Facilities

  5. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents RARAF Professional Staff RESEARCH ANNUAL REPORT 2009 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE................................................................................................................................................101 Development of Facilities

  6. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 75 RARAF - Table of Contents RARAF Professional FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2005 76 The Radiological Research Accelerator Facility AN NIH .................................................................................................................................................72 Development of Facilities

  7. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 65 RARAF - Table of Contents RARAF Professional FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2006 66 The Radiological Research Accelerator Facility AN NIH..................................................................................................................................................66 Development of facilities

  8. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    SciTech Connect (OSTI)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into an insoluble salt in the sediment. In other cases, the opposite occurs--the solubility of the altered species increases, increasing the mobility of the contaminant and allowing it to be more easily flushed from the environment. Both of these kinds of transformations present opportunities for bioremediation of metals and radionuclides--either to lock them in place, or to accelerate their removal. DOE's goal is to reduce the risk and related exposure to ground water, sediment, and soil contamination at Department of Energy facilities. Subsurface bioremediation of metals and radionuclides at the site of contamination (in situ bioremediation) is not yet in widespread use. However, successful in situ applications of bioremediation to petroleum products and chlorinated solvents provide experience from which scientists can draw. Taken together, the accomplishments in these areas have led scientists and engineers to be optimistic about applying this technology to the mixtures of metals and radionuclides that are found at some of the most contaminated DOE sites. This primer examines some of the basic microbial and chemical processes that are a part of bioremediation, specifically the bioremediation of metals and radionuclides. The primer is divided into six sections, with the information in each building on that of the previous. The sections include features that highlight topics of interest and provide background information on specific biological and chemical processes and reactions. The first section briefly examines the scope of the contamination problem at DOE facilities. The second section gives a summary of some of the most commonly used bioremediation technologies, including successful in situ and ex situ techniques. The third discusses chemical and physical properties of metals and radionuclides found in contaminant mixtures at DOE sites, including solubility and the most common oxidation states in which these materials are found. The fourth section is an overview of the basic microbial processes that occur in bioremediation. The fifth section looks at specific in s

  9. The Light Ion Biomedical Research Accelerator (LIBRA)

    SciTech Connect (OSTI)

    Gough, R.A.

    1987-03-01

    LIBRA is a concept to place a light-ion, charged-particle facility in a hospital environment, and to dedicate it to applications in biology and medicine. There are two aspects of the program envisaged for LIBRA: a basic research effort coupled with a program in clinical applications of accelerated charged particles. The operational environment to be provided for LIBRA is one in which both of these components can coexist and flourish, and one that will promote the transfer of technology and knowledge from one to the other. In order to further investigate the prospects for a Light Ion Biomedical Research Accelerator (LIBRA), discussions are underway with the Merritt Peralta Medical Center (MPMC) in Oakland, California, and the University of California at San Francisco (UCSF). In this paper, a brief discussion of the technical requirements for such a facility is given, together with an outline of the accelerator technology required. While still in a preliminary stage, it is possible nevertheless to develop an adequate working description of the type, size, performance and cost of the accelerator facilities required to meet the preliminary goals for LIBRA.

  10. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 118 RARAF Table of Contents RARAF Professional ANNUAL REPORT 2008 119 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER................................................................................................................................................119 Development of Facilities

  11. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 113 RARAF - Table of Contents RARAF Professional · ANNUAL REPORT 2007 114 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER................................................................................................................................................114 Development of Facilities

  12. Outline History Basic Theory Research Future Accelerators References Brief Overview of Wakefield

    E-Print Network [OSTI]

    Budker, Dmitry

    Outline History Basic Theory Research Future Accelerators References Brief Overview of Wakefield Overview of Wakefield Acceleration #12;Outline History Basic Theory Research Future Accelerators References of Wakefield Acceleration #12;Outline History Basic Theory Research Future Accelerators References Wakefield

  13. Systems biology approach to bioremediation

    SciTech Connect (OSTI)

    Chakraborty, R.; Wu, C. H.; Hazen, T. C.

    2012-01-01

    Bioremediation has historically been approached as a ?black box? in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ?black box?.

  14. Feedbacks between hydrological heterogeneity and bioremediation induced biogeochemical transformations

    E-Print Network [OSTI]

    Englert, A.

    2009-01-01

    Water Resources Research 2008, 44, W10412, doi:10.1029/2007WR006425. Supporting Information Feedbacks Between Hydrological Heterogeneity and Bioremediation

  15. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  16. Fermilab | Illinois Accelerator Research Center | Accelerators and Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy Technologies |FeatureFellowsAccelerators and

  17. The Illinois Accelerator Research Center, or IARC,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will work side-by-side with industrial partners to develop breakthroughs in accelerator technology and new applications in energy and environment, medicine, industry, national...

  18. Accelerator & Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  19. Accelerator Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  20. Accelerator and fusion research division. 1992 Summary of activities

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  1. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  2. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    11, 1980, p. 725. MAGNETIC FUSION ENERGY Staff W. Kunkel andsupport) Accelerator and Fusion Research Division N.Abt Y.Wong J. Zatver HEAVY ION FUSION Work continued during FY80

  3. NREL: Wind Research - Market Acceleration and Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine and HydrokineticMarket Acceleration

  4. Fermilab | Illinois Accelerator Research Center | Construction Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy Technologies |FeatureFellowsAccelerators

  5. A facility for accelerator research and education at Fermilab

    SciTech Connect (OSTI)

    Church, Mike; Nagaitsev, Sergei; /Fermilab

    2009-01-01

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

  6. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  7. Accelerator Research Building - Setting up of Building Site, Excavation Work, Drainage, Reinforced Concrete Structure, Scaffolding

    E-Print Network [OSTI]

    1960-01-01

    Accelerator Research Building - Setting up of Building Site, Excavation Work, Drainage, Reinforced Concrete Structure, Scaffolding

  8. EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

    Broader source: Energy.gov [DOE]

    Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

  9. Accelerator & Fusion Research Division: 1993 Summary of activities

    SciTech Connect (OSTI)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  10. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  11. Technical Basis for Assessing Uranium Bioremediation Performance

    SciTech Connect (OSTI)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  12. Illinois Accelerator Research Center Business Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch88 SignPriceresponseIdeumIf Plenary

  13. Microbial petroleum degradation enhancement by oil spill bioremediation products 

    E-Print Network [OSTI]

    Lee, Salvador Aldrett

    1996-01-01

    Biodegradation of an artificially weathered crude oil (Alaska North Slope) was compared using 13 different oil spill bioremediation agents. All products were evaluated under identical conditions emulating a marine environment. The research...

  14. BEST PRACTICES RESEARCH 2010 Frost & Sullivan 1 "We Accelerate Growth"

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    BEST PRACTICES RESEARCH © 2010 Frost & Sullivan 1 "We Accelerate Growth" New Product Innovation & Sullivan is proud to present the 2010 EU New Product Innovation Award in Preclinical Imaging to Milabs, based in Utrecht, Netherlands. Significance of the New Product Innovation Award Key Industry Challenges

  15. Bioremediation of nanomaterials

    DOE Patents [OSTI]

    Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

    2013-05-14

    The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

  16. Accelerator and Fusion Research Division: 1984 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers.

  17. Accelerator and Fusion Research Division annual report, fiscal year 1980, October 1979-September 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Research during October 1979 to September 1980 is summarized. Areas covered include: accelerator operations; positron-electron project; stochastic beam cooling; high-field superconducting magnets; accelerator theory; neutral beam sources; and heavy ion fusion. (GHT)

  18. The Illinois Accelerator Research Center, or IARC, will

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will work side by side with industrial partners to develop breakthroughs in accelerator technology and new applications in energy and environment, medicine, industry, national...

  19. Ground Broken for New Job-Creating Accelerator Research Facility...

    Energy Savers [EERE]

    and industrial application of accelerator technology for energy and the environment, medicine, industry, national security and discovery science. IARC will also offer unique,...

  20. The Christie Proton Beam Therapy Centre! and Accelerator Research!

    E-Print Network [OSTI]

    ,000 patients a year ­ 14,000 new patients · Dedicated oncology focus · 16 networked linear accelerators to the service, with limited travel times by car or public transport! · Both sites at the centre of regional compact carbon accelerators ­ carbon-11 facility?! ­ Higher-energy, eco

  1. Vision, Robotics and Images Research Group, UFPR 1 GPU-accelerated PSF Estimation with a

    E-Print Network [OSTI]

    , Computer Vision, Artificial Intelligence Databases, Computer-Human Interface Computer Networks, EmbeddedVision, Robotics and Images Research Group, UFPR 1 GPU-accelerated PSF Estimation) Kiepenheuer Institute for Solar Physics, Freiburg, Germany #12;Vision, Robotics and Images Research Group

  2. SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research

    SciTech Connect (OSTI)

    McDonald, R.J. (ed.)

    1987-09-01

    This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

  3. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Aspects of Controlled Thermonuclear Research, Tucson,Aspects of Controlled Thermonuclear Research, Tucson,Aspects of Controlled Thermonuclear Research, Tucson,

  4. Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural Wastewater via Brine Shrimp

    E-Print Network [OSTI]

    Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural. Freeman*,,#, Department of Land, Air and Water Resources, University of California, Davis, California, Water Management Research Division, Parlier, California 93648, United States Biological Sciences

  5. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81

    E-Print Network [OSTI]

    Johnson Ed, R.K.

    2010-01-01

    Studies Neutral Beam Plasma Research Basic Plasma Theoryand tempera- NEUTRAL BEAM PLASMA RESEARCH We are conducting

  6. Taxonomy shifts up a gear: New publishing tools to accelerate biodiversity research i Taxonomy shifts up a gear

    E-Print Network [OSTI]

    Miller, Scott

    Taxonomy shifts up a gear: New publishing tools to accelerate biodiversity research i Taxonomy shifts up a gear: New publishing tools to accelerate biodiversity research Biodiversity is under severe

  7. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    iizI/-l4. Neutral team Plasma Research K. F. Schoenberg, "Studies Neutral Beam Plasma Research Neutral Beam Theory25%). Neutral Beam Plasma Research W are conducting research

  8. Laboratory method used for bioremediation

    DOE Patents [OSTI]

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  9. 13 In Situ: Groundwater Bioremediation

    E-Print Network [OSTI]

    Hazen, Terry

    attenuation. 1 Introduction A patent for in situ bioremediation of groundwater contaminated with gasoline in the last 20 years, especially by companies trying to establish themselves with a proprietary edge, has lead were nearly all done by companies trying to do the study for (1) clients, who usually wanted to remain

  10. 10 June 2003 page 1 John Byrd LHC Accelerator Research Program

    E-Print Network [OSTI]

    Large Hadron Collider Program

    edge radiation at low energy Chromaticities · Slightly vary energy and measure tunes ­ DC phase, radiation dose to electronics 10 June 2003 page 1 John Byrd LHC Accelerator Research Program Beam Instrumentation and Diagnostics

  11. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Physics and Controlled Nuclear Fusion Research. Brussels,Physics and Controlled Nuclear Fusion Research, Brussels^Metals," submitted to Nuclear Fusion. H. D. I. Abarbanel, C.

  12. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    E-Print Network [OSTI]

    Jin, Liyan

    2012-01-01

    on perchlorate bioremediation in different soils The waterbioremediation under different salinity .. 100 Figure 3.2 Waterarea and potential bioremediation zone. Water sample (mg/L)

  13. Bioremediation Synthetic Ecology

    E-Print Network [OSTI]

    Thomas, David D.

    Dimension BTI Researchers test 3-D printing technology to scale up--and down For the Record 14 BTI members

  14. USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy...

    Broader source: Energy.gov (indexed) [DOE]

    will be conducted on switchgrass, poplar, Miscanthus and Brachypodium, among other plants. The potential benefits of this research range from decreasing oil imports to...

  15. Accelerator and Fusion Research Division. Annual report, October 1978-September 1979

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project. (GHT)

  16. Testing a Stakeholder Participation Framework for Fielding Bioremediation Technologies

    SciTech Connect (OSTI)

    Anex, Robert P.; Focht, Will

    2004-03-17

    This research is investigating stakeholder attitudes about the use of bioremediation technologies with the objective of reducing conflict among stakeholders. The research protocol includes four closely related components. First, we are testing a framework for stakeholder participation that prescribes appropriate stakeholder involvement strategies based on stakeholders trust of the other parties involved in technology deployment decision-making. Second, we are assessing conflict among stakeholders regarding the acceptability of in situ bioremediation as a means to reduce risks posed by radionuclides and metals in the environment. Third, we are assessing the role that awareness of risk exposure plays in the willingness of stakeholders to engage in problem-solving and making risk tradeoffs. Fourth, we are assessing the potential of using the results of these first three components to forge consensus among stakeholders regarding the use and oversight of bioremediation technologies and stakeholder involvement in the decision process. This poster presents preliminary results of a Q methodological survey of stakeholders who are familiar with radionuclide and heavy metal contamination and DOE efforts to remediate that contamination at Los Alamos, Oak Ridge and Hanford reservations. The Q study allows the research team to diagnose conflict among stakeholders and discover opportunities for consensus.

  17. Bioremediation of contaminated sediments

    SciTech Connect (OSTI)

    Hughes, J.B.; Jee, V.; Ward, C.H. [Rice Univ., Houston, TX (United States)

    1995-10-01

    Contaminants in bottom sediments have historically been considered to have minimal environmental impact because they are buried, sorbed or electrostatically bound to clay particles, or incorporated into humus. Physical and chemical conditions such as alkalinity, pH, and redox of the sediments also play a part in sequestering contaminants. As long as the sediments are undisturbed, the contaminants are considered stabilized and not an immediate environmental problem. Resuspension of bottom sediments makes contaminants more available for dispersal into the marine environment. Events that can cause resuspension include storm surges, construction activity, and dredging. During resuspension, sediment particles move from an anaerobic to aerobic environment, changing their redox characteristics, and allowing the indigenous aerobic bacteria to grow and utilize certain classes of contaminants as energy sources. The contaminants are also more available for use because the mixing energy imparted to the particles during resuspension enhances mass transfer, allowing contaminants to enter the aqueous phase more rapidly. The contaminants targeted in this research are polynuclear aromatic hydrocarbons (PAHs), a class of contaminant commonly found in bottom sediments near highly industrialized areas. PAH sources include fossil fuel combustion and petroleum spills. Previous research has shown that PAHs can be biodegraded. Size and structure, i.e., number and configuration of condensed rings, can affect compound disappearance. The focus of this research was to examine the relationship between resuspension and biodegradation of PAHs in lab scale slurry reactors. The rate and extent of contaminant release from the sediments into an uncontaminated water column was determined. Oxygen demand of initially anaerobic sediments were investigated. Then rate and extent of phenanthrene biodegradation was examined.

  18. The Radiological Research Accelerator Facility. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect (OSTI)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  19. IARC - Illinois Accelerator Research Center | Pilot Program | Who Attends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch &ENERGYWho should attend? Are you

  20. BNL Irradiation and Characterization Studies Summary Report on HP Accelerator Material Research

    E-Print Network [OSTI]

    McDonald, Kirk

    BNL Irradiation and Characterization Studies Summary Report on HP Accelerator Material Research Reporting on (ONLY): · Irradiation and micro- macro-characterization of Beryllium · Irradiation Damage and Assessment of Graphite · Irradiation and Characterization of Ti-alloys (Ti6Al4V and Gum Metal) · Irradiation

  1. RESEARCH PAPER1 2 Accelerating the discontinuous Galerkin method for seismic wave

    E-Print Network [OSTI]

    Wang, Liqiang

    REVISED PROOF RESEARCH PAPER1 2 Accelerating the discontinuous Galerkin method for seismic wave 3 is NVIDIA Tesla C2070 Fermi, 16 and the CPU used is Intel Xeon W5660. To effectively 17 overlap inter-process codes shows favorable strong and weak scalabilities. 29 30 Keywords Seismic wave propagation Á

  2. In situ bioremediation using horizontal wells

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    In Situ Bioremediation (ISB), which is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation, remediates soils and ground water contaminated with volatile organic compounds (VOCs) both above and below the water table. ISB involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove .VOCs from the vadose zone concomitant with biodegradation of VOCs. The innovation is in the combination of 3 emerging technologies, air stripping, horizontal wells, and bioremediation via gaseous nutrient injection with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation system.

  3. Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history

    E-Print Network [OSTI]

    Atlas, R.M.

    2012-01-01

    spill water washing and bioremediation (biostimulation usingpressure water Application of fertilizer for bioremediationwaters, biodegradation of oil proceeds very rapidly. Bioremediation

  4. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particlemore »acceleration of ions and electrons.« less

  5. ORIGINAL PAPER Bioremediation of oily sludge-contaminated soil

    E-Print Network [OSTI]

    Ma, Lena

    ORIGINAL PAPER Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes In situ bioremediation of oily sludge- contaminated soil by biostimulation of indigenous microbes through with only 15.6% in the control plot. Moreover, bioremediation significantly improved the physicochemical

  6. Bioremediation of Waste in a Porous Medium Changsheng Chen

    E-Print Network [OSTI]

    Chadam, John

    .g., water and carbon dioxide). Bioremediation was first systematically studied by Borden and BedientBioremediation of Waste in a Porous Medium Changsheng Chen Yahoo! Inc., Sunnyvale, CA 94089 and their co-workers [1, 2]. A discussion of the techological and practical aspects of bioremediation can

  7. Bioremediation Journal, 8(12):4764, 2004 Copyright c 2004 Taylor and Francis Inc.

    E-Print Network [OSTI]

    Clement, Prabhakar

    Bioremediation Journal, 8(1­2):47­64, 2004 Copyright c 2004 Taylor and Francis Inc. ISSN: 1040, USA; Center for Water Research, University of Western Australia, Perth, Australia Kang Kun Lee School National Laboratory, Richland, Washington, USA Greg B. Davis CSIRO Land and Water, Perth, Australia

  8. Heavy ion fusion accelerator research (HIFAR) year-end report, April 1, 1987-September 30, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to access the suitabilty of heavy ion accelerators as iginiters for Inertial Confinement Fusion (ICF). A specific accerelator techonolgy, the induction linac, has been studied at the Lawerence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the vadidation of new accelerator strategies, to cut costs. The papers in this report that address these goals are: MBE-4 mechanical progress, alignment of MBE-4, a compact energy analyzer for MBE-4, Cs/sup +/ injector modeling with the EGUN code, an improved emittance scanning system for HIFAR, 2-MV injector, carbon arc source development, beam combining in ILSE, emittance growth due to transverse beam combining in ILSE - particle simulation results, achromatic beam combiner for ILSE, additional elements for beam merging, quadrupole magnet design for ILSE, and waveforms and longitudinal beam-parameters for ILSE.

  9. Magnet R&D for the US LHC Accelerator Research Program (LARP)

    SciTech Connect (OSTI)

    Gourlay, S.A.; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gupta, R.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Harrison, M.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmazle, J.; Stanek, R.; Turrioni, D.; Wanderer, P.; Yamada, R.; Zlobin, A.V.

    2006-06-01

    In 2004, the US DOE established the LHC Accelerator Research Program (LARP) with the goal of developing a technology base for future upgrades of the LHC. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb{sub 3}Sn superconductor. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper presents an overall view of the program with emphasis on the current quadrupole project and outlines the long-term goals of the program.

  10. In situ microbial filter used for bioremediation

    DOE Patents [OSTI]

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  11. Accelerator and Fusion Research Division annual report, October 1981-September 1982. Fiscal year 1982

    SciTech Connect (OSTI)

    Johnson, R.K.; Bouret, C. (eds.)

    1983-05-01

    This report covers the activities of LBL's Accelerator and Fusion Research Division (AFRD) during 1982. In nuclear physics, the Uranium Beams Improvement Project was concluded early in the year, and experimentation to exploit the new capabilities began in earnest. Technical improvement of the Bevalac during the year centered on a heavy-ion radiofrequency quadrupole (RFQ) as part of the local injector upgrade, and we collaborated in studies of high-energy heavy-ion collision facilities. The Division continued its collaboration with Fermilab to design a beam-cooling system for the Tevatron I proton-antiprotron collider and to engineer the needed cooling components for the antiproton. The high-field magnet program set yet another record for field strength in an accelerator-type dipole magnet (9.2 T at 1.8 K). The Division developed the design for the Advanced Light Source (ALS), a 1.3-GeV electron storage ring designed explicitly (with low beam emittance and 12 long straight sections) to generate high-brilliance synchrotron light from insertion devices. The Division's Magnetic Fusion Energy group continued to support major experiments at the Princeton Plasma Physics Laboratory, the Lawrence Livermore National Laboratory (LLNL), and General Atomic Co. by developing positive-ion-based neutral-beam injectors. Progress was made toward converting our major source-test facility into a long-pulse national facility, the Neutral Beam Engineering Test Facility, which was completed on schedule and within budget in 1983. Heavy Ion Fusion research focused on planning, theoretical studies, and beam-transport experiments leading toward a High Temperature Experiment - a major test of this promising backup approach to fusion energy.

  12. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01

    in situ bioremediation of uranium in a highly contaminatedwith bioremediation of uranium to submicromolar levels.Reoxidation of bioreduced uranium under reducing conditions.

  13. Accelerator and Fusion Research Division annual report, October 1980-September 1981. Fiscal year, 1981

    SciTech Connect (OSTI)

    Johnson, R.K.; Thomson, H.A. (eds.)

    1982-04-01

    Major accomplishments during fiscal year 1981 are presented. During the Laboratory's 50th anniversary celebrations, AFRD and the Nuclear Science Division formally dedicated the new (third) SuperHILAC injector that adds ions as heavy as uranium to the ion repertoire at LBL's national accelerator facilities. The Bevalac's new multiparticle detectors (the Heavy Ion Spectrometer System and the GSI-LBL Plastic Ball/Plastic Wall) were completed in time to take data before the mid-year shutdown to install the new vacuum liner, which passed a milestone in-place test with flying colors in September. The Bevalac biomedical program continued patient treatment with neon beams aimed at establishing a complete data base for a dedicated biomedical accelerator, the design of which NCI funded during the year. Our program to develop alternative Isabelle superconducting dipole magnets, which DOE initiated in FY80, proved the worth of a new magnet construction technique and set a world record - 7.6 Tesla at 1.8 K - with a model magnet in our upgraded test facility. Final test results at LBL were obtained by the Magnetic Fusion Energy Group on the powerful neutral beam injectors developed for Princeton's TFTR. The devices exceeded the original design requirements, thereby completing the six-year, multi-million-dollar NBSTF effort. The group also demonstrated the feasibility of efficient negative-ion-based neutral beam plasma heating for the future by generating 1 A of negative ions at 34 kV for 7 seconds using a newly developed source. Collaborations with other research centers continued, including: (1) the design of LBL/Exxon-dedicated beam lines for the Stanford Synchrotron Radiation Laboratory; (2) beam cooling tests at Fermilab and the design of a beam cooling system for a proton-antiproton facility there; and (3) the development of a high-current betatron for possible application to a free electron laser.

  14. BIODEGRADATION AND BIOREMEDIATION 3 credit hour (Web based only)

    E-Print Network [OSTI]

    Ma, Lena

    of bioremediation of contaminated soils and water. INSTRUCTORS: Dr. Kanika Sharma Inglett, Department of SoilSWS 6366 BIODEGRADATION AND BIOREMEDIATION 3 credit hour (Web based only) COURSE DESCRIPTION and Water Science PO Box 110290 University of Florida, Gainesville, FL 32611-0510 E-mail: kanika

  15. Heavy ion fusion accelerator research (HIFAR) half-year report: October 1, 1986-March 31, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-04-01

    For this report we have collected the papers presented by the HIFAR group at the IEEE Particle Accelerator Conference held in Washington, DC, on March 16-19, 1987, which essentially coincides with the end of the reporting period. In addition, we report on research to determine the cause of the failures of Re-X insulator that are used as the high-voltage feed-through for the electrostatic quadrupoles on MBE-4. This report contains papers on the following topics: LBL multiple beam experiments, pulsers for the induction linac experiment (MBE-4), HIF insulator failure, experimental measurement of emittance growth in mismatched space-charge dominated beams, the effect of nonlinear forces on coherently oscillating space-charge dominated beams, space-charge effects in a bending magnet system, transverse combining of nonrelativistic beams in a multiple beam induction linac, comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF driver. Eight individual papers have been indexed separately. (LSP)

  16. pH control with silicates minerals for in situ bioremediation of chlorinated solventsfor in situ bioremediation of chlorinated solvents

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    bioremediation of chlorinated solvents Elsa Lacroix(1,2), Alessandro Brovelli(2), D.A. Barry(2), Christof, Lausanne, Switzerland Email: elsa.lacroix@epfl.ch Problem21 Background What are chlorinated solvents? PCE (tetrachloroethylene), TCE 21 In situ bioremediation of chlorinated solvents is an acid-generating process. Acidic

  17. ANNUAL REPORT FOR ACCELERATOR & FUSION RESEARCH DIVISION. FISCAL YEAR 1979 OCTOBER 1978 - SEPTEMBER 1979

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Physics Neutral Beam Plasma Research Plasma Theory Tormac3. Neutral Bean Plasma Research 4. Basic Plasma Theory 5.1153. Neutral Beam Plasma Research Basic physics research is

  18. ORIGINAL RESEARCH PAPER Orders-of-magnitude performance increases in GPU-accelerated

    E-Print Network [OSTI]

    Schofield, Andrew

    Space Station (ISS). Our GPU code is 4,000 times faster than simple MATLAB code performing the same operations. MATLAB, for example, uses parallel processes on multiple cores to accelerate fast Fourier

  19. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1985-September 30, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    The heavy ion accelerator is profiled. Energy losses, currents, kinetic energy, beam optics, pulse models and mechanical tolerances are included in the discussion. In addition, computational efforts and an energy analyzer are described. 37 refs., 27 figs. (WRF)

  20. ENHANCING STAKEHOLDER ACCEPTANCE OF BIOREMEDIATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Focht, Will; Albright, Matt; Anex, Robert P., Jr., ed.

    2009-04-21

    This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal control over exposure as low. Slightly more than half believe that risk reduction should be balanced against cost. We also found that distrust of DOE and its contractors exists, primarily due to the perception that site managers do not share public values; hence, the public is generally unwilling to defer to DOE in its decision-making. The concomitant belief of inefficacy confounds distrust by generating frustration that DOE does not care. Moreover, the public is split with respect to trust of each other, primarily because of the belief that citizens lack technical competence. With respect to bioremediation support, we found that more than 40% of the public has no opinion. However, of those who do, 3 of 4 are favorably disposed – particularly among those who believe that risk is lower and who are more trusting of site management. We presented survey respondents with four alternative participation strategies based on the results of the Q analysis and asked their judgments of each. The public prefers strategies that shifts power to them. The least empowered strategy (feedback) was supported by 46%; support grew as public power increased, reaching 66% support for independently facilitated deliberation. More DOE distrust generates more support for high power strategies. We offer the following recommendations to enhance public acceptance. First, and perhaps most importantly, site managers should pursue robust trust-building efforts to gain public confidence in DOE risk management that meets public expectations. Public trust decreases risk perception, which increases public willingness to defer to site managers’ discretion in decision-making, which in turn increases public acceptance of the decisions that result. Second, site managers should address public concerns about bioremediation such as its effectiveness in reducing risk, performance compared to other remediation alternatives, costs compared against benefits, time required to start and complete remediation, level of risk that is currently posed by contamination, and scope of application. Third, more should be d

  1. uge particle accelerators have been at the vanguard of research in particle

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    of such machines -- for the LHC, a 27-km circum- ference and several billion euros -- are fuelling a serious effort counterparts, positrons, can then `surf' the electric field of a wave's wake. Particles have been accelerated- ting, radio-frequency electric field through long metallic cavities (around a metre long for medical

  2. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE

    E-Print Network [OSTI]

    Hazen, Terry C.

    2009-01-01

    Bioremediation of selenite in oil refinery waste-water.water in the United States (http://www.atsdr.cdc.gov/tfacts19.html). Microbial bioremediation

  3. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    SciTech Connect (OSTI)

    Mocker, Anna; Bugiel, Sebastian; Srama, Ralf [IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Auer, Siegfried [A and M Associates, PO Box 421, Basye, Virginia 22810 (United States); Baust, Guenter; Matt, Guenter; Otto, Katharina [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Colette, Andrew; Drake, Keith; Kempf, Sascha; Munsat, Tobin; Shu, Anthony; Sternovsky, Zoltan [LASP, University of Colorado, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Colorado Center for Lunar Dust and Atmospheric Studies, University of Colorado, Boulder, Colorado 80303 (United States); Fiege, Katherina; Postberg, Frank [Institut fuer Geowissenschaften, Universitaet Heidelberg, D-69120 Stuttgart (Germany); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Gruen, Eberhard [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); LASP, University of Colorado, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Heckmann, Frieder [Steinbeis-Innovationszentrum Raumfahrt, Gaeufelden (Germany); Helfert, Stefan [Helfert Informatik, Mannheim (Germany); Hillier, Jonathan [Institut fuer Geowissenschaften, Universitaet Heidelberg, D-69120 Stuttgart (Germany); Mellert, Tobias [IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

    2011-09-15

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.

  4. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  5. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1986-September 30, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    Activities are reported on MBE-4, the four-beam proof-of-principle ion induction linear accelerator with the capability of beam-current amplification. Mechanical aspects of MBE-4, quadrupole insulator performance, and pulsers are discussed. The computer code, SLID, has been used to help understand the longitudinal beam dynamics in MBE-4. A computer-controlled emittance scanning system is in use in MBE-4. A systematic effort is under way to discover and correct all the defects peculiar to the low energy part of the linac design code. (LEW)

  6. Ground Broken for New Job-Creating Accelerator Research Facility at DOE's

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMatFermi National Accelerator Laboratory in

  7. EA-1196: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

  8. Bioremediation of contaminated groundwater: A turnkey approach

    SciTech Connect (OSTI)

    Shivjiani, D.M.; Rudy, R.J.; Burns, B.; Heuler, G.

    1994-12-31

    The Silvex Corporation Site is a Florida state funded remedial action site in St. Augustine, Florida, that, prior to 1980, was a silver smelting facility that accepted waste materials from the Naval Air Station-Jacksonville. Fuels, reportedly consisting of waste paint, cold carbon removers, and solvent degreasers that were stored in a 25,000-gallon tank, spilled onto the property. The assessment concluded that the surficial aquifer in the spill area and the area hydrologically down-gradient of the spill were contaminated by elevated levels of ketones (acetone, methyl-ethyl ketone, and methyl-isobutyl ketone), phenols, and toluene. Subsequently, a risk assessment/feasibility study and groundwater bench-scale and pilot-scale studies were performed to determine the technical feasibility/cost-effectiveness of the recommended alternative, submerged fixed-film bioremediation. The on-site pilot study, which was conducted at three flow rates (0.5, 1, and 2 gallons per minute [gpm]), demonstrated a greater than 99% contaminant removal efficiency from the three-stage bioreactor. Due to the impact of site contamination on a nearby creek that flows into the St. Johns River, an interim remedial deign was developed and implemented to reduce the potential for migration of contaminated groundwater into the creek.

  9. A 12 GHZ 50 MW Klystron for Support of Accelerator Research

    SciTech Connect (OSTI)

    Sprehn, Daryl; /SLAC; Haase, Andrew; /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Vlieks, Arnold; /SLAC

    2011-05-31

    A 12 GHz 50MW X-band klystron is under development at the SLAC National Accelerator Laboratory Klystron Department. The klystron will be fabricated to support programs currently underway at three European Labs; CERN, PSI, and INFN Trieste. The choice of frequency selection was due to the CLIC RF frequency changing from 30 GHz to the European X-band frequency of 11.99 GHz in 2008. Since the Klystron Department currently builds 50MW klystrons at 11.424 GHz known collectively as the XL4 klystrons, it was deemed cost-effective to utilize many XL4 components by leaving the gun, electron beam transport, solenoid magnet and collector unchanged. To realize the rf parameters required, the rf cavities and rf output hardware were necessarily altered. Some improvements to the rf design have been made to reduce operating gradients and increase reliability. Changes in the multi-cell output structure, waveguide components, and the window will be discussed along with testing of the devices. Five klystrons known as XL5 klystrons are scheduled for production over the next two years.

  10. New Jersey Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    New Jersey Water Resources Research Institute Annual Technical Report FY 2003 Introduction The New Jersey Water Resources Research Institute continues to support a diverse program of research projects: Rhizosphere, Biodegradation, Bioremediation, Rhizoremediation, Polynuclear Aromatic Hydrocarbons, Contaminated

  11. Assessing bioremediation of crude oil in soils and sludges

    SciTech Connect (OSTI)

    McMillen, S.J.; Kerr, J.M. [Exxon Production Research Co., Houston, TX (United States); Gray, N.R. [American Chemical Society, Washington, DC (United States); Requejo, A.G.; McDonald, T.J. [Texas A and M Univ., College Station, TX (United States). Geochemical and Environmental Research Group; Douglas, G.S. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1995-12-31

    Standard bulk property analytical methods currently being employed to evaluate crude oil bioremediation efficacy in soils provide no information concerning the mechanisms by which hydrocarbon losses are occurring (e.g., biodegradation versus leaching). Site/sample heterogeneity in field bioremediation projects may make it difficult to accurately quantify hydrocarbon losses due to biodegradation. To better understand the mechanisms by which losses are occurring and to accurately evaluate biodegradation rates, the hydrocarbon analytical methods must provide both quantitative and compositional information. In this study laboratory bioremediation experiments were used to compare the results of bulk property analytical methods with those methods used by petroleum geochemists that provide both quantitative and compositional data. A tecator extraction was used to isolate the total extractable matter (TEM) from the samples. Compositional changes were monitored by (1) column chromatography to determine class distributions, (2) high resolution gas chromatography with a flame-ionization detector (GC/FID) and (3) gas chromatography/mass spectrometry (GC/MS). Illustrations of the compositional changes detected by each method and their application to validating bioremediation are provided.

  12. Enhanced In Situ Bioremediation of BTEX-Contaminated Groundwater by

    E-Print Network [OSTI]

    Bruns, Tom

    Enhanced In Situ Bioremediation of BTEX-Contaminated Groundwater by Combined Injection of Nitrate. Introduction Remediation by natural attenuation (RNA) is the preferred method (1) for addressing groundwater, at siteswherethenaturalgroundwaterflowisveryslow,intrinsic biodegradation processes can be limited by the rate at which the groundwater supplies

  13. Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report

    SciTech Connect (OSTI)

    Altman, D.J.

    2001-01-12

    The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

  14. Genome-Based Models to Optimize In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Waste Organic Matter

    SciTech Connect (OSTI)

    Lovley, Derek R

    2012-12-28

    The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.

  15. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  16. Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history

    E-Print Network [OSTI]

    Atlas, R.M.

    2012-01-01

    serves as a consultant to Exxon-Mobil on bioremediation; he2007 9,10,11 (Exxon having merged with Mobil in 1999). The

  17. In situ bioremediation using horizontal wells. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    In Situ Bioremediation (ISB) is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation. This process (ISB) involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove Volatile Organic Compounds (VOCs) from the vadose zone concomitant with biodegradation of the VOCs. This process is effective for remediation of soils and ground water contaminated with VOCs both above and below the water table. A full-scale demonstration of ISB was conducted as part of the Savannah River Integrated Demonstration: VOCs in Soils and Ground Water at Nonarid Sites. This demonstration was performed at the Savannah River Site from February 1992 to April 1993.

  18. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  19. 53 (2008) APPLICATIONS OF MATHEMATICS No. 5, 409432 MODELLING BIOREMEDIATION OF POLLUTED SOILS IN

    E-Print Network [OSTI]

    Primicerio, Mario

    2008-01-01

    53 (2008) APPLICATIONS OF MATHEMATICS No. 5, 409­432 MODELLING BIOREMEDIATION OF POLLUTED SOILS with a well-known bacterium. The biomass may distribute in water as suspension (free biomass) or attached;particular, the general topic of bioremediation has been deeply investigated in search of a good mathematical

  20. BIOREMEDIATION OF CONTAMINATED SITES* Karl J. Rockne and Krishna R. Reddy

    E-Print Network [OSTI]

    Rockne, Karl J.

    1 BIOREMEDIATION OF CONTAMINATED SITES* Karl J. Rockne and Krishna R. Reddy University of Illinois ABSTRACT Bioremediation is a process in which microorganisms metabolize contaminants either through contaminants completely into non-toxic by-products such as carbon dioxide and water or organic acids

  1. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10?? to 10²more »MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  2. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect (OSTI)

    Andreani, C. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Anderson, I. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carpenter, J. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Festa, G. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Gorini, G. [Universita' degli Studi di Milano - Bicocca, Milano (Italy); Loong, C. -K. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Senesi, R. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy)

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10?? to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  3. Bioremediation of nanomaterials (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (Technical Report) | SciTechReport)(Technical Report)cells toBioremediation of

  4. Fermilab | Illinois Accelerator Research Center | Illinois Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae model (Journal About DOE ButtonFSO Home

  5. The effect of bioremediation on microbial populations in an oil-contaminated coastal wetland 

    E-Print Network [OSTI]

    Townsend, Richard Todd

    1999-01-01

    A series of controlled, crude oil applications was carried out in a Texas coastal wetland near the Houston Ship Channel to determine the effectiveness of bioremediation in these sensitive areas. The first application, conducted in 1996...

  6. Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history

    E-Print Network [OSTI]

    Atlas, R.M.

    2012-01-01

    Costa, C. F. EPA’s Alaska oil spill bioremediation project.for the Exxon Valdez oil spill. Nature 1994, 368, 413–418.from the 1989 Exxon Valdez oil spill. Mar. Ecol. Prog. Ser.

  7. Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underly- ing a former refinery. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization

  8. Deploying in situ bioremediation at the Hanford Site

    SciTech Connect (OSTI)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1{sub 4}) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl{sub 4}. Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy`s Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process.

  9. Bioremediation: Hope/Hype for Environmental Cleanup (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Hazen, Terry [LBNL, Ecology Dept

    2011-04-28

    Summer Lecture Series 2007: Terry Hazen, Senior Staff Scientists and Head of the LBNL Ecology Department, discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention.

  10. Bioremediation: Hope/Hype for Environmental Cleanup (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Hazen, Terry [LBNL, Ecology Department

    2013-06-11

    Summer Lecture Series 2007: Terry Hazen, Senior Staff Scientists and Head of the LBNL Ecology Department, discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention.

  11. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  12. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf, United States b Center for Water Resource Cycle Research, Korea Institute of Science and Technology bioremediation. " Photocatalytic pre-treatment increased weathered oil solubility and biodegradability. g r a p h

  13. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Water Resources Research Center Annual Technical Report FY 1998 Introduction Research Program Basic Category Data Title In Situ Experimental Analysis and Modeling of Diesel Fuel Bioremediation in a Tidally Influenced Aquifer Project Number C-04 Start Date 08/01/1997 End Date 07/31/1999 Research Category Ground-water

  14. Accelerator on a Chip: How It Works

    SciTech Connect (OSTI)

    2014-06-30

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  15. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    SciTech Connect (OSTI)

    Not Available

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amended with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.

  16. In situ recycling of contaminated soil uses bioremediation

    SciTech Connect (OSTI)

    Shevlin, P.J.; Reel, D.A.

    1996-04-01

    OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties.

  17. Accelerators and the Accelerator Community

    E-Print Network [OSTI]

    Malamud, Ernest

    2009-01-01

    became the APS Division of the Physics of Beams. If oneorganizes accelerator physics sessions at APS meetings, and,creating the APS topical group on beam physics, which later

  18. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  19. Accelerator Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating theAccelerator

  20. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout UsAbout NewAccelerator Systems Accelerator

  1. Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Water Resources Research Center Annual Technical Report FY 1999 Introduction The period covered by this report has seen several changes at the University of Hawaii Water Resources Research Center. First. Robert, "In situ experimental analysis and modeling of diesel fuel bioremediation in a tidally influenced

  2. The Department of Energy's Office of Science supports Energy Frontier Research Centers (EFRCs), major collaborative research efforts to accelerate high-risk, high-reward fundamental research that will provide a strong scientific basis for transformative

    E-Print Network [OSTI]

    Subramanian, Venkat

    technologies, including: solar energy utilization, clean and efficient combustion, electrical energy storage; integrating synthesis, characterization, theory, and computation to accelerate the rate of scientific progress of Columbia 525 senior investigators and, on a full- or part-time basis, an additional estimated 900

  3. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Kirbie, Hugh C. (Los Alamos, NM)

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  4. Nitrogen and phosphorus requirements for the bioremediation of oil in saltwater 

    E-Print Network [OSTI]

    Strynar, Mark Jonathan

    1997-01-01

    Nitrogen and phosphorus are two of the limiting factors in the bioremediation of oil in sea water, Laboratory experiments were conducted to determine the maximal flux of NH4' and P and concentrations of NH4' and P required by microorganisms...

  5. Method for enhanced longevity of in situ microbial filter used for bioremediation

    DOE Patents [OSTI]

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    1999-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  6. Bioremediation and Biodegradation In Situ Reduction of Chromium(VI) in Heavily Contaminated Soils

    E-Print Network [OSTI]

    Hazen, Terry

    Bioremediation and Biodegradation In Situ Reduction of Chromium(VI) in Heavily Contaminated Soils reductants into soils and ground water is be- in the form of tryptic soy broth or lactate were diffused oxidation states having contaminated soils and ground water contain levels ofvery different behavior (Rai et

  7. System for enhanced longevity of in situ microbial filter used for bioremediation

    DOE Patents [OSTI]

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  8. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  9. Research Accelerator for Multiple Processors

    E-Print Network [OSTI]

    Asanovic, Krste

    Conventional Wisdom (CW) in Computer Architecture #12;2 3 Old CW: Power is free, Transistors expensive New CW: "Power wall" Power expensive, Xtors free (Can put more on chip than can afford to turn on) Old: Power Wall + Memory Wall + ILP Wall = Brick Wall Old CW: Uniprocessor performance 2X / 1.5 yrs New CW

  10. Accelerators and the Accelerator Community

    SciTech Connect (OSTI)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  11. Peculiar acceleration

    E-Print Network [OSTI]

    Luca Amendola; Claudia Quercellini; Amedeo Balbi

    2007-08-08

    It has been proposed recently to observe the change in cosmological redshift of distant galaxies or quasars with the next generation of large telescope and ultra-stable spectrographs (the so-called Sandage-Loeb test). Here we investigate the possibility of observing the change in peculiar velocity in nearby clusters and galaxies. This ``peculiar acceleration'' could help reconstructing the gravitational potential without assuming virialization. We show that the expected effect is of the same order of magnitude of the cosmological velocity shift. Finally, we discuss how to convert the theoretical predictions into quantities directly related to observations.

  12. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating the transfer

  13. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    E-Print Network [OSTI]

    Jin, Liyan

    2012-01-01

    flow anaerobic immobilized sludge reactor. Water Research,OF PROPIONATE BY METHANOGENIC SLUDGE AND DEFINED CULTURES.flow anaerobic immobilized sludge reactor. Water Research,

  14. EM Structure Based and Vacuum Acceleration

    SciTech Connect (OSTI)

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  15. Future HEP Accelerators: The US Perspective

    E-Print Network [OSTI]

    Bhat, Pushpalatha

    2015-01-01

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed...

  16. ACCELERATE ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to businesses and state and local governments interested in strategies for getting more economic output and lowering energy costs. Through research in more efficient energy...

  17. Method for enhanced longevity of in situ microbial filter used for bioremediation

    DOE Patents [OSTI]

    Carman, M.L.; Taylor, R.T.

    1999-03-30

    An improved method is disclosed for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method is presented for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system is also disclosed for in situ field water remediation. 31 figs.

  18. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control

    SciTech Connect (OSTI)

    Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U.; Burlage, R.

    1998-11-01

    On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

  19. Laser plasma accelerators

    SciTech Connect (OSTI)

    Malka, V. [Laboratoire d'Optique Appliquee, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2012-05-15

    This review article highlights the tremendous evolution of the research on laser plasma accelerators which has, in record time, led to the production of high quality electron beams at the GeV level, using compact laser systems. I will describe the path we followed to explore different injection schemes and I will present the most significant breakthrough which allowed us to generate stable, high peak current and high quality electron beams, with control of the charge, of the relative energy spread and of the electron energy.

  20. Chemical Accelerators The phrase "chemical accelerators"

    E-Print Network [OSTI]

    Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested by one of us for devices that produce beams of chemically interesting species at relative kinetic

  1. Searching for Cosmic Accelerators via IceCube

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris,...

  2. Annual Spring Experiments aim to accelerate the transfer of promising new concepts and tools from research to operations through intensive real-time forecasts and evaluations.

    E-Print Network [OSTI]

    Xue, Ming

    research to operations through intensive real-time forecasts and evaluations. B ackground. Each spring research to operations, while inspiring new initiatives for operationally relevant research, through a combined forecast and research area situated between the SPC and OUN operations rooms (Fig. 1

  3. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  4. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  5. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  6. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  7. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A...

  8. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    SciTech Connect (OSTI)

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  9. Opening criteria for accelerated paving techniques 

    E-Print Network [OSTI]

    Johnson, Jason Leonard

    1993-01-01

    Fast track paving or accelerated pavement design is the rapid replacement of portland cement concrete pavement, allowing for the reopening to traffic under specific time requirements. The purpose of this research is to develop opening criteria...

  10. Enhanced bioremediation of subsurface contamination: Enzyme recruitment and redesign

    SciTech Connect (OSTI)

    Brockman, F.J.; Ornstein, R.L.

    1991-12-01

    Subsurface systems containing radionuclide, heavy metal, and organic wastes must be carefully attended to avoid further impacts to the environment or exposures to human populations. It is appropriate, therefore, to invest in basic research to develop the requisite tools and methods for addressing complex cleanup problems. The rational modification of subsurface microoganisms by enzyme recruitment and enzyme design, in concert with engineered systems for delivery of microorganisms and nutrients to the contaminated zone, are potentially useful tools in the spectrum of approaches that will be required for successful remediation of deep subsurface contamination.

  11. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-07-07

    Experiments at the Department of Energy’s Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer – a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  12. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  13. Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment

    SciTech Connect (OSTI)

    Long, Philip E.; Yabusaki, Steven B.

    2006-12-29

    The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processes and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.

  14. Navy looks to bugs for cleanup task. [Bioremediation of Naval Fuel Depot

    SciTech Connect (OSTI)

    Not Available

    1993-05-03

    The US Navy is about to step into bioremediation in a big way, using the largest naval fuel depot in the continental US as a test bed for better ways to clean oil-soaked soils. Craney Island, a 900-acre peninsula near Portsmouth, Va., has been the Navy's main East Coast fueling depot since World War II. In the next few weeks, a 15-acre site on the island will be transformed into the largest bioremediation experiment on the East Coast, say officials with the Naval Facilities Engineering Command (NAVFAC), Atlantic Division, which is in charge of the cleanup for the Fleet and Industrial Supply Center at Norfolk, VA. The site is extremely contaminated with petroleum, oil and lubricants (POL), primarily ship bunker fuel, and it will be cleaned up under the Navy's Installation Restoration Program, says John Peters, a NAVFAC spokesman. Using naturally occurring bacteria, the contractor will churn and aerate the soil, add lime and fertilizers, bring the moisture level to 20% and allow the mix to [open quote]bake[close quote] for about four months.

  15. Heavy-ion Accelerators for Testing Microelectronic Components...

    Office of Science (SC) Website

    Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of...

  16. New Science on the Horizon as Upgraded Particle Accelerator Meets...

    Office of Science (SC) Website

    a new experimental area, Hall D. The Impact Researchers need very big microscopes to study the very small building blocks of matter. CEBAF's electron accelerator and...

  17. Design Study of Longitudinal Dynamics of the Drive Beam in a Relativistic Klystron Two-Beam Accelerator

    E-Print Network [OSTI]

    Li, H.

    2008-01-01

    Westenskow, "Relativistic Klystron Two-Beam Accelerator As AA. Westenskow, "Relativistic Klystron Research for Two-Beamin a Relativistic Klystron Two-Beam Accelerator", Proc. 16

  18. Compost Science and Utilization, 9(4):274-283 (2001) BIOREMEDIATION OF A PCB-CONTAMINATED SOIL VIA COMPOSTING

    E-Print Network [OSTI]

    Michel Jr., Frederick C.

    2001-01-01

    Compost Science and Utilization, 9(4):274-283 (2001) BIOREMEDIATION OF A PCB-CONTAMINATED SOIL VIA COMPOSTING Frederick C. Michel Jr.1 , John Quensen, C.A.Reddy NSF Center for Microbial Ecology, Michigan and composted in field scale piles to determine the effect of soil to amendment ratio on PCB degradation

  19. Accelerator Development @ Daresbury Laboratory

    E-Print Network [OSTI]

    -injectors ­ Superconducting RF acceleration ­ Cryogenic systems ­ Advanced diagnostics ­ Free Electron Lasers ­ Photon beam radioisotopes. 2 Treatment & Diagnostics #12;Basic Accelerator Configuration 3 Beam Source Low Energy Capture electron beam technology development. 4 Booster Compressor IR-FEL Photoinjector Laser Linac Acceleration

  20. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    wetlands are volatilized. Microalgae and bacteria were shownvaried in each system. Microalgae were harvested using DAF

  1. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    process also causes acid mine drainage from mining waste andmine in California acid mine drainage has been the sight of

  2. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    biosolids mixed with wood ash resulted in significant1 ) in combination with wood ash (220 tons ha -1 ) was ablebyproducts such as wood ash (to make soil calcareous and

  3. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    from an alkaline slag dump leachate at Kovohute Pribram leadbuffered sodium sulfate leachate, containing lead, zinc,where it reacts with leachate that has been acidified by

  4. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect (OSTI)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  5. Research

    E-Print Network [OSTI]

    My research interests. Numerical method of stochastic partial differential equations; Uncertainty Quantification; High-order numerical method; Domain ...

  6. Research

    E-Print Network [OSTI]

    author

    Research Interests. Mathematical biology: Computational modelling of biological systems, experimental design and control of cellular processes. Applied math: ...

  7. CENTER FOR RADIOLOGICAL RESEARCH ANNUAL REPORT 2004 RARAF -Table of Contents

    E-Print Network [OSTI]

    RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility AN NIHCENTER FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2004 RARAF - Table of Contents RARAF Staff ...................................................................................................................................................67 Development of Facilities

  8. Rare Kaon Decays, KEK experiment E391 and E14 at the Japan Physics and Accelerator Research Complex (J-PARC)

    SciTech Connect (OSTI)

    Wah, Yau Wai [University of Chicago

    2012-12-06

    The goal of the J-PARC neutral kaon experiment (E14/KOTO) is to discover and measure the rate of the kaon rare decay to pi-zero and two neutrinos. This flavor changing neutral current decay proceeds through second-order weak interactions. Other, as yet undiscovered particles, which can mediate the decay could provide an enhancement (or depletion) to the branching ratio which in the Standard Model is accurately predicted within a few percent to be 2.8x10-11. The experiment is designed to observe more than 100 events at the Standard Model branching. It is a follow-up of the KEK E391a experiment and has stage-2 approval by J-PARC PAC in 2007. E14/KOTO has collaborators from Japan (Kyoto, Osaka, Yamagata, Saga), US (Arizona State, Chicago, Michigan Ann Arbor), Taiwan (National Taiwan), Korea, and Russia (Dubna). The experiment exploits the 300kW 30-50 GeV proton delivery of the J-PARC accelerator with a hermetic high acceptance detector with a fine grained Cesium Iodide (CsI) crystal calorimeter, and state of the art electronic front end and data acquisition system. With the recovery of the tsunami disaster on March 11th 2011, E14 is scheduled to start collecting data in December 2012. During the detector construction phase, Chicago focuses on the front end electronics readout of the entire detector system, particularly the CsI calorimeter. The CsI crystals together with its photomultipliers were previously used at the Fermilab KTeV experiment (E832/E799), and were loaned to E14 via this Chicago DOE support. The new readout electronics includes an innovative 10-pole pulse-shaping technique coupled with high speed digitization (14-bit 125MHz and 12-bit 500MHz). This new instrument enables us to measure both energy and timing, particularly with timing resolution better than 100 psec. Besides the cost saving by elimination of the standard time to digital converters, it is now possible to measure the momenta of the final state photons for additional background suppression. Chicago also designed and built several technically difficult hardware items including the vacuum cable feed-through (for a total of 3500 channels); special 50 ohm single-ended signal to 100 ohm differential signal converters; and last but not least, the recommendations on the selection of the differential signal cables for all detector elements to eliminate ground loops while maintaining signal fidelity.

  9. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  10. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Kushal Shah; Vassili Gelfreich; Vered Rom-Kedar; Dmitry Turaev

    2015-04-03

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  11. Power Converters for Accelerators

    E-Print Network [OSTI]

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  12. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  13. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  14. From Autos to Accelerators

    Office of Energy Efficiency and Renewable Energy (EERE)

    In a town haunted by the remains of fallen automobile plants, some companies are hiring workers to put their car-manufacturing skills toward building particle accelerators.

  15. Accelerating Majorization Algorithms

    E-Print Network [OSTI]

    Jan de Leeuw

    2011-01-01

    incomplete data via the em algorithm. Journal of the RoyalACCELERATING MAJORIZATION ALGORITHMS JAN DE LEEUW Abstract.construc- tion of majorization algorithms and their rate of

  16. Accelerating Majorization Algorithms

    E-Print Network [OSTI]

    Leeuw, Jan de

    2008-01-01

    incomplete data via the em algorithm. Journal of the RoyalACCELERATING MAJORIZATION ALGORITHMS JAN DE LEEUW Abstract.construc- tion of majorization algorithms and their rate of

  17. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  18. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  19. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 3D virtualization company, enabling the use of 3D virtualization in art and cultural preservation markets. LAVA Chief Operations Officer Steve Smith said the "acceleration"...

  20. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  1. Accelerators (5/5)

    SciTech Connect (OSTI)

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  2. Accelerators (4/5)

    SciTech Connect (OSTI)

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  3. Accelerators (3/5)

    SciTech Connect (OSTI)

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  4. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  5. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  6. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  7. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  8. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  9. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  10. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  11. Accelerated Quantum Dynamics

    E-Print Network [OSTI]

    Lynch, Morgan H

    2015-01-01

    In this paper we establish a formalism for the computation of observables due to acceleration-induced particle physics processes. General expressions for the transition rate, multiplicity, power, spectra, and displacement law of particles undergoing time-dependent acceleration and transitioning into a final state of arbitrary particle number are obtained. The transition rate, power, and spectra are characterised by unique polynomials of multiplicity and thermal distributions of both bosonic and fermionic statistics. The acceleration dependent multiplicity is computed in terms of the branching fractions of the associated inertial processes. The displacement law of the spectra predicts the energy of the emitted particles are directly proportional to the accelerated temperature. These results extend our understanding of particle physics into the high acceleration sector.

  12. Fermi National Accelerator Laboratory / Kirk and Pine Street / P.O. Box 500 / Batavia, IL 60510 / 630.840.3000 / www.fnal.gov / fermilab@fnal.gov Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

    E-Print Network [OSTI]

    Quigg, Chris

    Fermi National Accelerator Laboratory / Kirk and Pine Street / P.O. Box 500 / Batavia, IL 60510 / 630.840.3000 / www.fnal.gov / fermilab@fnal.gov Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science AFFIDAVIT I (employee), _________________________, certify that my

  13. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks...

  14. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  15. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergyWindNO.RequirementsResearch Research

  16. The MESA accelerator

    SciTech Connect (OSTI)

    Aulenbacher, Kurt [Institut für Kernphysik, Johannnes-Gutenberg-Universität Mainz (Germany)

    2013-11-07

    The MESA accelerator will operate for particle and nuclear physics experiments in two different modes. A first option is conventional c.w. acceleration yielding 150-200MeV spin-polarized external beam. Second, MESA will be operated as a superconducting multi-turn energy recovery linac (ERL), opening the opportunity to perform experiments with a windowless target with beam current of up to 10 mA. The perspectives for innovative experiments with such a machine are discussed together with a sketch of the accelerator physics issues that have to be solved.

  17. Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999

    SciTech Connect (OSTI)

    Hazen, Terry

    2000-04-01

    The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess and remediate one of these lagoons. The remediation tested and evaluated a combination of U.S. and Polish-developed biological remediation technologies. Specifically, the goal of the demonstration was to reduce the environmental risk from PAH compounds in soil and to provide a green zone (grassy area) adjacent to the site boundary. The site was characterized using the DOE-developed Expedited Site Characterization (ESC) methodology. Based on the results of the ESC, a risk assessment was conducted using established U.S. procedures. Based on the results of the ESC and risk assessment, a 0.3-hectare site, the smallest of the waste lagoons, was selected for a modified aerobic biopile demonstration. This Executive Summary and the supporting report and appendices document the activities and results of this cooperative venture.

  18. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  19. About Accelerators | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser, though powered by a smaller SRF accelerator, holds power records in the production of infrared, ultraviolet and terahertz beams. The FEL has been used in a variety of...

  20. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  1. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  2. LHCb GPU Acceleration Project

    E-Print Network [OSTI]

    Badalov, Alexey; Neufeld, Niko; Vilasis Cardona, Xavier

    2015-01-01

    The LHCb detector is due to be upgraded for processing high-luminosity collisions, which will increase the load on its computation infrastructure from 100 GB/s to 4 TB/s, encouraging us to look for new ways of accelerating the Online reconstruction. The Coprocessor Manager is our new framework for integrating LHCb’s existing computation pipelines with massively parallel algorithms running on GPUs and other accelerators. This paper describes the system and analyzes its performance.

  3. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  4. National Energy Research Scientific Computing Center 2007 Annual Report

    E-Print Network [OSTI]

    Hules, John A.

    2008-01-01

    Berkeley National Laboratory National Energy ResearchNorthwest National Laboratory National Energy ResearchNational Laboratory Research Accelerator for Mul- tiple Processors UCLA NERSC National Energy Research

  5. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAboutNuclearPrincipal InvestigatorsResearch

  6. Surge Block Method for Controlling Well Clogging and Sampling Sediment during Bioremediation

    SciTech Connect (OSTI)

    Wu, Wei-min [Stanford University] [Stanford University; Watson, David B [ORNL] [ORNL; Luo, Jian [Stanford University] [Stanford University; Carley, Jack M [ORNL] [ORNL; Mehlhorn, Tonia L [ORNL] [ORNL; Kitanidis, Peter K. [Stanford University] [Stanford University; Jardine, Philip [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Criddle, Craig [Stanford University] [Stanford University

    2013-01-01

    A surge block treatment method (i.e. inserting a solid rod plunger with a flat seal that closely fits the casing interior into a well and stocking it up and down) was performed for the rehabilitation of wells clogged with biomass and for the collection of time series sediment samples during in situ bioremediation tests for U(VI) immobilization at a the U.S. Department of Energy site in Oak Ridge, TN. The clogging caused by biomass growth had been controlled by using routine surge block treatment for18 times over a nearly four year test period. The treatment frequency was dependent of the dosage of electron donor injection and microbial community developed in the subsurface. Hydraulic tests showed that the apparent aquifer transmissivity at a clogged well with an inner diameter (ID) of 10.16 cm was increased by 8 13 times after the rehabilitation, indicating the effectiveness of the rehabilitation. Simultaneously with the rehabilitation, the surge block method was successfully used for collecting time series sediment samples composed of fine particles (clay and silt) from wells with ID 1.9 10.16 cm for the analysis of mineralogical and geochemical composition and microbial community during the same period. Our results demonstrated that the surge block method provided a cost-effective approach for both well rehabilitation and frequent solid sampling at the same location.

  7. Delivery of Vegetable Oil Suspensions in a Shear Thinning Fluid for Enhanced Bioremediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin; Li, Yusong; Lea, Alan S.; Yan, Xiulan

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability, oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.

  8. Fermilab | Illinois Accelerator Research Center | Contact IARC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy Technologies

  9. Fermilab | Illinois Accelerator Research Center | Fermilab Core

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy TechnologiesCapabilities Core

  10. Fermilab | Illinois Accelerator Research Center | Fermilab Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy TechnologiesCapabilities CoreFacilities

  11. Fermilab | Illinois Accelerator Research Center | IARC Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy TechnologiesCapabilitiesIARC Facilities

  12. Fermilab | Illinois Accelerator Research Center | Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy TechnologiesCapabilitiesIARC

  13. Fermilab | Illinois Accelerator Research Center | More Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy TechnologiesCapabilitiesIARCMore

  14. IARC - Illinois Accelerator Research Center | Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumps AnAboutCoordination SitesTechnologies

  15. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  16. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  17. Advanced Accelerator Applications University Participation Program

    SciTech Connect (OSTI)

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  18. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  19. Medical heavy ion accelerator proposals

    SciTech Connect (OSTI)

    Gough, R.A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Certain special treatments of superficial melanoma, however, require that beam energies as low as 70 MeV/nucleon also be available. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. For most heavy ion treatments, this corresponds to 10/sup 7/-10/sup 9/ ions/second at the patient. Because this research is best conducted in a dedicated, hospital-based facility, and because of the clinical need for ultra-high reliability, the construction of new and dedicated facilities has been proposed. Heavy ion accelerators can provide a variety of ions and energies, permitting treatment plans that exploit the properties of the ion best suited to each individual treatment, and that employ radioactive beams (such as /sup 11/C and /sup 19/Ne) to precisely confirm the dose localization. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety. 3 refs., 8 figs.

  20. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Williams, K.H.; N'Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

    2009-11-15

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  1. Technologies for Advanced Induction Accelerators

    SciTech Connect (OSTI)

    Hernandez, M.A.; Kamin, G.; Hanks, R.; Sharp, W.; Duncan, G.; Sangster, C.; Ahle, L.; Friedman, A.; Grote, D.; Autrey, D.; Halaxa, E; Williams, C.

    2000-04-20

    To harness fusion energy is one of today's greatest technological challenges, and one well worth pursuing. Success in the development of fusion power would result in a virtually inexhaustible source of energy. The fusion reaction, the process that powers the sun and the stars, can be duplicated on Earth. However, to date these fusion processes have been the products of large-scale experimental efforts. They have yet to achieve fusion in a manner that is cost effective and efficient enough to be applied in a commercial reactor. Lawrence Livermore National Laboratory (LLNL) has been centrally involved in the Nation's inertial confinement fusion (ICF) program for over 25 years. Much of the focus of the LLNL ICF Program has been the well-known effort to develop high power, short wavelength laser drivers to create the conditions necessary for the fusion process. But the ICF Program has also been investigating, in collaboration with Lawrence Berkeley National Laboratory (LBNL), the potential of heavy-ion accelerators as possible drivers. The objectives of the Laboratory Directed Research and Development (LDRD) project described in this report have been to develop some of the enabling technologies necessary for this type of heavy-ion fusion (HIF) driver. In particular, to apply adaptive control to the problem of tailored acceleration and steering of a pulsed ion beam.

  2. Radiation Damage: Accelerator Surprises

    E-Print Network [OSTI]

    McDonald, Kirk

    of this process. · Helium gas production adds, becoming increasingly important at high energies. · Graphite as material properties including its temperature. These dependencies ­ amplified by increased helium gas production for high-energy beams - are responsible for "surprises/unknowns" learned recently at accelerators

  3. Laser-accelerated disks for EOS studies

    SciTech Connect (OSTI)

    Harrach, R.J.; Szoke, A.

    1981-09-01

    An indirect method of laser-based equation of state studies, which utilizes shock waves generated by laser-accelerated projectiles rather than ablation shocks from direct laser irradiation of the sample under investigation, is proposed and examined theoretically. We derive simple formulas for the minimum thickness and maximum speed of laser-accelerated disks, comparing them with results of Nd-laser experiments conducted by the Naval Research Laboratory. Our calculations indicate that disks can be accelerated to velocities above 10/sup 7/ cm/s using a wide choice of laser parameters (pulse duration, energy, intensity, wavelength, etc.). The use of shorter wavelengths, e.g., a KrF(0.25 ..mu..m) laser rather than Nd (1.06 ..mu..m), allows thicker disks to be accelerated and faster velocities to be attained, approximately in the ratio (lambda/sub L/(Nd)/lambda/sub L/(KrF))/sup 1/3/ approx. = 1.6. One-dimensional Lasnex computer calculations indicate that the laser-accelerated disk constitutes a useful flyer plate even while disassembling under the force of the laser ablation shock. The calculations predict that the shockwave the projectile disk generates in a second (impact) disk located a suitable distance away has a greater amplitude than the laser shock and is considerably more steady, exhibiting little decay in propagating through the second disk.

  4. National Laboratory Research and Development Funding Opportunities

    Broader source: Energy.gov [DOE]

    Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving...

  5. MnDRIVE Minnesota Discovery Research and InnoVation Economy Funding Program MnDRIVE: Advancing industry, conserving our environment

    E-Print Network [OSTI]

    Blanchette, Robert A.

    industry, conserving our environment Goal Apply research-based new technology to solve environmental impact of upcoming mining projects in northern Minnesota · Microbial bioremediation renders wastes in fracking for recovery of natural gas from shale · Microbial remediation provides solutions for currently

  6. Collective Acceleration in Solar Flares

    E-Print Network [OSTI]

    Barletta, W.

    2008-01-01

    Collective Acceleration in Solar Flares w. Barletta, S.S.COLLECTIVE ACCELERATION IN SOLAR FLARES* W. Barletta (1), S.Park, MD 20742 Abstract Solar flare data are examined with

  7. Photo of the Week: What Does a Particle Accelerator Have in Common...

    Broader source: Energy.gov (indexed) [DOE]

    could be widely used in medicine and industry -- particle accelerators are used for cancer research, processing computer chips, and even producing the shrink wrap used to keep...

  8. Accelerator Mass Spectrometry | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Accelerator Mass Spectrometry at ANL and ORNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications...

  9. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  10. Theory Challenges of the Accelerating Universe

    E-Print Network [OSTI]

    Linder, Eric V.

    2009-01-01

    of the accelerating universe. Acknowledgments I thankof the Accelerating Universe Eric V. Linder Berkeley Lab,of the Accelerating Universe Eric V. Linder Berkeley Lab,

  11. Proceedings of the Fifth International Symposium of In-situ and On-site Bioremediation, April 19-22, San Diego, ENHANCING BIOCOLLOID TRANSPORT TO IMPROVE

    E-Print Network [OSTI]

    Proceedings of the Fifth International Symposium of In-situ and On-site Bioremediation, April 19 was not as effective as using low ionic strength (IS) water or surfactants. Filtration models predict reduced bacterial) water, and that they be injected at low pumping velocities (~1 m/d) to minimize bacterial attachment

  12. October 1, 2011 15:40 Proceedings Trim Size: 9in x 6in paperBIOMATHRC-vf BIOREMEDIATION OF NATURAL WATER RESOURCES

    E-Print Network [OSTI]

    Ramírez, Héctor

    October 1, 2011 15:40 Proceedings Trim Size: 9in x 6in paperBIOMATHRC-vf BIOREMEDIATION OF NATURAL WATER RESOURCES VIA OPTIMAL CONTROL TECHNIQUES P. GAJARDO Departamento de Matem´atica, Universidad T-mail: rapaport@supagro.inra.fr We study minimal time strategies for the treatment of pollution in large water

  13. RESEARCH PERSONNEL AND ENGINEERING STAFF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wada Research Scientist VISITING SCIENTISTS Alisher Kadirov, Australia 4 V. Kolomietz, Ukraine 5 Ian Towner, Canada 6 Shuhua Zhou, China 7 ACCELERATOR PHYSICS AND RADIATION LINE...

  14. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E. (Los Alamos, NM); Jachim, Stephen P. (Los Alamos, NM); Natter, Eckard F. (Santa Fe, NM)

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  15. Advanced medical accelerator design

    SciTech Connect (OSTI)

    Alonso, J.R.; Elioff, T.; Garren, A.

    1982-11-01

    This report describes the design of an advanced medical facility dedicated to charged particle radiotherapy and other biomedical applications of relativistic heavy ions. Project status is reviewed and some technical aspects discussed. Clinical standards of reliability are regarded as essential features of this facility. Particular emphasis is therefore placed on the control system and on the use of technology which will maximize operational efficiency. The accelerator will produce a variety of heavy ion beams from helium to argon with intensities sufficient to provide delivered dose rates of several hundred rad/minute over large, uniform fields. The technical components consist of a linac injector with multiple PIG ion sources, a synchrotron and a versatile beam delivery system. An overview is given of both design philosophy and selected accelerator subsystems. Finally, a plan of the facility is described.

  16. Review of ion accelerators

    SciTech Connect (OSTI)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  17. A Vital Legacy - Biological and Environmental Research in the Atomic Age

    E-Print Network [OSTI]

    Vaughan editor, Douglas

    2010-01-01

    for low-cost bioremediation of ground water and for improvedwater contaminated with chromium. 1995 OHER conceived the Natural and Acceler- ated Bioremediation

  18. An accelerated closed universe

    E-Print Network [OSTI]

    Sergio del Campo; Mauricio Cataldo; Francisco Pena

    2004-08-03

    We study a model in which a closed universe with dust and quintessence matter components may look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshifts. Several quantities relevant to the model are expressed in terms of observed density parameters, $\\Omega_M$ and $\\Omega_{\\Lambda}$, and of the associated density parameter $\\Omega_Q$ related to the quintessence scalar field $Q$.

  19. Accelerator simulation using computers

    SciTech Connect (OSTI)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ``multi-track`` simulation and analysis code can be used for these applications.

  20. Accelerator simulation using computers

    SciTech Connect (OSTI)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a multi-track'' simulation and analysis code can be used for these applications.

  1. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  2. Accelerating QDP++ using GPUs

    E-Print Network [OSTI]

    Frank Winter

    2011-05-11

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an application example a smearing routine was accelerated to execute on a GPU. A significant speed-up compared to normal CPU execution could be measured.

  3. A multi beam proton accelerator

    E-Print Network [OSTI]

    Dolya, S N

    2015-01-01

    The article considers a proton accelerator containing seven independent beams arranged on the accelerator radius. The current in each beam is one hundred milliamps. The initial part of the accelerator consists of shielded spiral waveguides assembled in the common screen. The frequency of the acceleration: three hundred megahertz, high-frequency power twenty-five megawatts, the length of the accelerator six meters. After reaching the proton energy of six megaelektronvolts the protons using lenses with the azimuthal magnetic field are collected in one beam. Further beam acceleration is performed in the array of superconducting cavities tuned to the frequency one and three tenths gigahertz. The acceleration rate is equal to twenty megavolt per meter, the high-frequency power consumption fifteen megawatts per meter.

  4. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Materials Classification & Accelerated Property Predictions using Machine Learning Citation Details In-Document Search Title: Materials Classification & Accelerated Property...

  5. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  6. Reframing Accelerator Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReferenceReframing Accelerator

  7. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    SciTech Connect (OSTI)

    Saueressig, Daniel G.

    2013-07-01

    In 1965 and 1966, approximately 303 m{sup 3} of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  8. On-line monitoring of aerobic bioremediation with bioluminescent reporter microbes. Final report, July 1991--December 1994

    SciTech Connect (OSTI)

    Sayler, G.S.

    1995-03-01

    A critical issue in the biological characterization of contaminated sites and in the evaluation of relative bioremediation treatment efficiencies is the development of appropriate monitoring methods for the assessment of pollutant bioavailability and microbial in situ activity potential. In nature, pollutants are found dispersed among the solid, liquid and gaseous phases of the complex environments rendering the analytical estimation of their bioavailability and degradation more difficult and irrelevant. Ex situ and extractive analytical techniques have only been misrepresentative of the natural conditions and often resulted in inaccurate estimates of pollutants mass transfer. In this project, the bioluminescent bioreporter bacterium P. Fluorescens HK44 was integrated to an optical device, capable of conducting emitted light, and used as an online biosensor of naphthalene and salicylate. The physiological requirements of the bacteria and the physical limitations of the biosensor were also determined.

  9. The Sustainable Building-Accelerator 

    E-Print Network [OSTI]

    Maassen, W.H.

    2011-01-01

    , that it is necessary to accelerate innovations in the built environment, to achieve the high ambitions on sustainability in time. The ideas for the ??Sustainable Building - Accelerator?? originated from the assumptions that the required acceleration... of innovations within the built environment is not yet achieved due to: ? the small amount of innovative solutions which are generated by design teams, because (i) the design process is characterized by mono- disciplinary sequential steps and (ii) the design...

  10. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  11. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  12. Neutrino oscillations in accelerated states

    E-Print Network [OSTI]

    Ahluwalia, Dharam Vir; Torrieri, Giorgio

    2015-01-01

    We discuss the inverse $\\beta$-decay of accelerated protons in the context of neutrino oscillations. The process $p\\rightarrow n \\ell^+ \

  13. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  14. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Accelerator Hall A Hall B Hall C 12 GeV Upgrade Experimental Techniques...

  15. Challenges in Accelerator Beam Instrumentation

    SciTech Connect (OSTI)

    Wendt, M.

    2009-12-01

    The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

  16. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  17. 2012 Advanced Accelerator Concepts Workshop

    SciTech Connect (OSTI)

    Downer, Michael C.

    2015-03-23

    We report on the organization and outcome of the 2012 Advanced Accelerator Concepts Workshop, held in Austin, Texas in June 2012.

  18. Laboratory Directed Research and Development Program FY 2001

    E-Print Network [OSTI]

    Hansen, Todd; Levy, Karin

    2002-01-01

    compact, inexpensive, and safe to operate. The current options for Accelerator and Fusion Research Division neutron sources are reactors

  19. A practical target system for accelerator-based BNCT which may effectively double the dose rate

    E-Print Network [OSTI]

    Brenner, David Jonathan

    . Randers-Pehrsona) and D. J. Brenner Center for Radiological Research, Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533 Received 27 May 1997; accepted for publication 31

  20. KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

    E-Print Network [OSTI]

    McDonald, Kirk

    (EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System

  1. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect (OSTI)

    Bake, Muhammad Ali; Xie Baisong [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shan Zhang [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hong Xueren [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Hongyu [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd, Shanghai 200136 (China)

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  2. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  3. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  4. I Investigation of Pellet Acceleration

    E-Print Network [OSTI]

    I Investigation of Pellet Acceleration by an Arc heated Gas Gun An Interim Report INVESTIGATION OP PELLET ACCELERATION BY AN ARC HEATED GAS GUN* An Interim Report on the Investigations carried, and K.-V. Weisberg Abstract. Deep penetration of pellets into the JET plasma may prove to be a useful

  5. General purpose programmable accelerator board

    DOE Patents [OSTI]

    Robertson, Perry J. (Albuquerque, NM); Witzke, Edward L. (Edgewood, NM)

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  6. Particle Acceleration in Astrophysical Sources

    E-Print Network [OSTI]

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  7. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  8. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  9. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  10. Proceedings of a workshop on Applications of Accelerators

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B. [ed.] [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A.M.; Alonso, J.R. [eds.] [Lawrence Berkeley Lab., CA (United States)

    1994-01-31

    This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited.

  11. Testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration

    E-Print Network [OSTI]

    Yaakov Friedman

    2010-06-10

    An experiment for testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration is proposed.

  12. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  13. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  14. Terahertz-driven linear electron acceleration

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  15. The Pulse Line Ion Accelerator Concept

    E-Print Network [OSTI]

    Briggs, Richard J.

    2006-01-01

    field model of the pulse- line accelerator; relationship to3, 2006 LBNL-59492 The pulse line ion accelerator conceptCalifornia, 94507 The Pulse Line Ion Accelerator concept was

  16. SNEAP 80: symposium of Northeastern Accelerator personnel

    SciTech Connect (OSTI)

    Billen, J.H. (ed.) ed.

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  17. A microbeam irradiator without an accelerator G. Garty *, G.J. Ross, A. Bigelow, G. Randers-Pehrson, D.J. Brenner

    E-Print Network [OSTI]

    -Pehrson, D.J. Brenner Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway-alone; Accelerator 1. Introduction and overall design Columbia UniversityÕs Radiological Research Accelerator Facility (RARAF) currently offers its users access to a few-micron diameter single-cell/ single

  18. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Leemans, Wim [LOASIS Program, AFRD

    2011-04-28

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  19. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Leemans, Wim [LOASIS Program, AFRD

    2009-09-01

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  20. Quantum Communication with an Accelerated Partner

    E-Print Network [OSTI]

    T. G. Downes; T. C. Ralph; N. Walk

    2012-10-28

    An unsolved problem in relativistic quantum information research is how to model efficient, directional quantum communication between localised parties in a fully quantum field theoretical framework. We propose a tractable approach to this problem based on solving the Heisenberg evolution of localized field observables. We illustrate our approach by analysing, and obtaining approximate analytical solutions to, the problem of communicating coherent states between an inertial sender, Alice and an accelerated receiver, Rob. We use these results to determine the efficiency with which continuous variable quantum key distribution could be carried out over such a communication channel.

  1. Electromagnetic acceleration of permanent magnets

    E-Print Network [OSTI]

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  2. Cosmic Particle Acceleration: Basic Issues

    E-Print Network [OSTI]

    T. W. Jones

    2000-12-22

    Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

  3. Cascaded target normal sheath acceleration

    SciTech Connect (OSTI)

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  4. Accelerating DSMC data extraction.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  5. How Particle Accelerators Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    cancer patients. The vast majority of these irradiations are now performed with microwave linear accelerators producing electron beams and x-rays. Accelerator technology,...

  6. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating...

  7. American Recovery and Reinvestment Act Accelerated Milestones

    Office of Environmental Management (EM)

    RECOVERY PROJECT OR ACTIVITY ACCELERATED MILESTONE TITLE MILESTONE DUE DATE EXPECTED ACCELERATED COMPLETION DATE WITH ARRA FUNDING STATUS INL - Cleanup of Surplus Nuclear...

  8. Media Advisory: Poster Session Highlights Projects, Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from accelerator and nuclear physics science and experimental research to engineering, industrial hygiene and safety, computer programming and facilities management. Contact:...

  9. Media Advisory: Poster Session Highlights Projects, Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    topics ranged from accelerator and nuclear physics science and experimental research to engineering, industrial hygiene and safety, computer programming and facilities...

  10. Accelerated Aging of Roofing Surfaces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National Laboratory HDestaillats@LBL.gov (510) 486-5897 http:HeatIsland.LBL.gov April 4, 2013...

  11. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  12. Accelerated Expansion: Theory and Observations

    E-Print Network [OSTI]

    David Polarski

    2001-09-20

    The present paradigm in cosmology is the usual Big-Bang Cosmology in which two stages of accelerated expansion are incorporated: the inflationary phase in the very early universe which produces the classical inhomogeneities observed in the universe, and a second stage of acceleration at the present time as the latest Supernovae observations seem to imply. Both stages could be produced by a scalar field and observations will strongly constrain the microscopic lagrangian of any proposed model.

  13. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    DOE Patents [OSTI]

    Turick, C.E.; Apel, W.W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed. 10 figs.

  14. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID); Apel, William W. (Idaho Falls, ID)

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  15. High-Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  16. CENTER FOR RADIOLOGICAL RESEARCH ANNUAL REPORT 2012 Research Using RARAF

    E-Print Network [OSTI]

    at RARAF January 1 - December 31, 2012 #12;THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY Page97CENTER FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2012 Page96 Research Using RARAF For almost two Facilities continue to be utilized in various investigations of this phenomenon. Research into bystander

  17. Accelerating Science Driven System Design With RAMP

    SciTech Connect (OSTI)

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  18. Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1

    E-Print Network [OSTI]

    Liu, Feng

    1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

  19. Advanced Accelerator Concepts Final Report

    SciTech Connect (OSTI)

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

  20. Final technical report [ACCELERATED MOLECULAR DYNAMICS SIMULATIONS OF REACTIVE HYDROCARBON SYSTEMS

    SciTech Connect (OSTI)

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  1. Ultra-high vacuum photoelectron linear accelerator

    DOE Patents [OSTI]

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  2. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  3. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  4. Linear accelerator for radioisotope production

    SciTech Connect (OSTI)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  5. Heavy ion medical accelerator options

    SciTech Connect (OSTI)

    Gough, R.A.; Alonso, J.R.

    1985-01-01

    This paper briefly explores the accelerator technology available for heavy ion medical accelerators in the mass range of 1 to 40 (protons through argon). Machines that are designed to produce the required intensities of a particular design ion, such as silicon (mass 28), can satisfy the intensity requirements for all lighter ions, and can produce beams with higher mass, such as argon, at somewhat reduced, but still useful intensity levels. They can also provide beams of radioactive ions, such as carbon-11 and neon-19, which are useful in diagnostic imaging and for directly verifiable treatments. These accelerators are all based on proven technology, and can be built at predictable costs. It is the conclusion of several design studies that they can be operated reliably in a hospital-based environment. 8 refs., 22 figs.

  6. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  7. Accelerated expansion without dark energy

    E-Print Network [OSTI]

    Dominik J. Schwarz

    2002-10-03

    The fact that the LambdaCDM model fits the observations does not necessarily imply the physical existence of `dark energy'. Dropping the assumption that cold dark matter (CDM) is a perfect fluid opens the possibility to fit the data without dark energy. For imperfect CDM, negative bulk pressure is favoured by thermodynamical arguments and might drive the cosmic acceleration. The coincidence between the onset of accelerated expansion and the epoch of structure formation at large scales might suggest that the two phenomena are linked. A specific example is considered in which effective (anti-frictional) forces, which may be due to dissipative processes during the formation of inhomogeneities, give rise to accelerated expansion of a CDM universe.

  8. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  9. Weak-Chaos Ratchet Accelerator

    E-Print Network [OSTI]

    Itzhack Dana; Vladislav B. Roitberg

    2012-05-28

    Classical Hamiltonian systems with a mixed phase space and some asymmetry may exhibit chaotic ratchet effects. The most significant such effect is a directed momentum current or acceleration. In known model systems, this effect may arise only for sufficiently strong chaos. In this paper, a Hamiltonian ratchet accelerator is introduced, featuring a momentum current for arbitrarily weak chaos. The system is a realistic, generalized kicked rotor and is exactly solvable to some extent, leading to analytical expressions for the momentum current. While this current arises also for relatively strong chaos, the maximal current is shown to occur, at least in one case, precisely in a limit of arbitrarily weak chaos.

  10. Accelerator dynamics and beam aperture

    SciTech Connect (OSTI)

    Parsa, Z.

    1986-10-01

    We present an analytical method for analyzing accelerator dynamics, including higher order effects of multipoles on the beam. This formalism provides a faster alternative to particle tracking. Simplectic expressions for the emittance and phase describing the dynamical behavior of a particle in a circular accelerator are derived using second order perturbation theory (in the presence of nonlinear elements, e.g., sextupoles, octupoles). These expressions are successfully used to calculate the emittance growth, smear and linear aperture. Our findings compare well with results obtained from tracking programs. In addition perturbation to betatron tune; resonance strengths; stop bandwidth; fixed points; island width; and Chirikov criteria are calculated.

  11. Seismic response of linear accelerators

    E-Print Network [OSTI]

    Collette, C; Guinchard, M; Hauviller, C

    2010-01-01

    This paper is divided into two parts. The first part presents recent measurements of ground motion in the LHC tunnel at CERN. From these measurements, an update of the ground motion model currently used in accelerator simulations is presented. It contains new features like a model of the lateral motion and the technical noise. In the second part, it is shown how this model can be used to evaluate the seismic response of a linear accelerator in the frequency domain. Then, the approach is validated numerically on a regular lattice, taking the dynamic behavior of the machine alignment stage and the mechanical stabilization of the quadrupoles into account.

  12. Putting the Scientist in the Loop -Accelerating Scientific Progress with Interactive

    E-Print Network [OSTI]

    Brostow, Gabriel

    . The standard machine learning pipeline consists of data label- ing, feature extraction, trainingPutting the Scientist in the Loop - Accelerating Scientific Progress with Interactive Machine Science, University of Waterloo 3Center for Biodiversity and Environment Research, University College

  13. Compact laser-driven electron acceleration, bunch compression and coherent nonlinear Thomson scattering

    E-Print Network [OSTI]

    Wong, Liang Jie

    2013-01-01

    Coherent hard x-rays have many medical, commercial and academic research applications. To facilitate the design of a table-top coherent hard x-ray source, this thesis studies the linear acceleration of electrons by optical ...

  14. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  15. SPH Simulations with Reconfigurable Hardware Accelerator

    E-Print Network [OSTI]

    N. Nakasato; T. Hamada; T. Fukushige

    2006-04-13

    We present a novel approach to accelerate astrophysical hydrodynamical simulations. In astrophysical many-body simulations, GRAPE (GRAvity piPE) system has been widely used by many researchers. However, in the GRAPE systems, its function is completely fixed because specially developed LSI is used as a computing engine. Instead of using such LSI, we are developing a special purpose computing system using Field Programmable Gate Array (FPGA) chips as the computing engine. Together with our developed programming system, we have implemented computing pipelines for the Smoothed Particle Hydrodynamics (SPH) method on our PROGRAPE-3 system. The SPH pipelines running on PROGRAPE-3 system have the peak speed of 85 GFLOPS and in a realistic setup, the SPH calculation using one PROGRAPE-3 board is 5-10 times faster than the calculation on the host computer. Our results clearly shows for the first time that we can accelerate the speed of the SPH simulations of a simple astrophysical phenomena using considerable computing power offered by the hardware.

  16. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  17. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  18. Petawatt pulsed-power accelerator

    DOE Patents [OSTI]

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  19. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  20. Fresnel diffraction patterns as accelerating beams

    E-Print Network [OSTI]

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  1. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    E-Print Network [OSTI]

    Cary, J.R.

    2008-01-01

    computational accelerator physics initiative † J R Carycomputational accelerator physics initiative J R Cary 1,9 ,colliders for particle physics and nuclear science and light

  2. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    SciTech Connect (OSTI)

    Brown, Maxine D.; Leigh, Jason

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  3. Overview of CERN Technology Transfer Strategy and Accelerator-Related Activities

    E-Print Network [OSTI]

    Chesta, E; Wuensch, W; Sgobba, S; Stora, T; Chiggiato, P; Taborelli, M

    2013-01-01

    CERN, the European Organization for Nuclear Research, is actively engaged in identifying technologies developed for its accelerator complex that could be profitably used by partner research organizations or commercial companies in applications with potentially high socio-economic impact beyond pure fundamental physics research. \

  4. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect (OSTI)

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  5. Symposium report on frontier applications of accelerators

    SciTech Connect (OSTI)

    Parsa, Z.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  6. Creation mechanism of quantum accelerator modes

    E-Print Network [OSTI]

    Summy, G. S.

    We investigate the creation mechanism of quantum accelerator modes which are attributed to the existence of the stability islands in an underlying pseudoclassical phase space of the quantum delta-kicked accelerator. Quantum ...

  7. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  8. Elucidating mechanisms of accelerated neurological aging

    E-Print Network [OSTI]

    Greenhall, Jennifer Anne

    2008-01-01

    C. (2005). Mechanisms of aging in senescence- accelerated2.2 Strain-specific aging gene-expression profiles…………………..C. (2005). Mechanisms of aging in senescence-accelerated

  9. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01

    LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

  10. Advanced Computing Tools and Models for Accelerator Physics

    E-Print Network [OSTI]

    Ryne, Robert D.

    2008-01-01

    MODELS FOR ACCELERATOR PHYSICS * Robert D. Ryne, Lawrencetools for accelerator physics. Following an introduction Icomputing in accelerator physics. INTRODUCTION To begin I

  11. The final technical report of the CRADA, Medical Accelerator Technology

    E-Print Network [OSTI]

    Chu, William T.; Rawls, John M.

    2000-01-01

    the marketplace. Final Technical Report: Medical AcceleratorPTCOG XXV, 1996. Final Technical Report: Medical AcceleratorFinal Technical Report: Medical Accelerator Technology (SC-

  12. Plasma Wakefield Acceleration: How it Works

    SciTech Connect (OSTI)

    2014-11-05

    This animation explains how electrons can be efficiently accelerated to high energy using wakes created in a plasma.

  13. Comments on backreaction and cosmic acceleration

    SciTech Connect (OSTI)

    Kolb, Edward W.; Matarrese, Sabinio; Riotto, Antonion; /CERN

    2005-11-01

    In this brief WEB note we comment on recent papers related to our paper ''On Acceleration Without Dark Energy''.

  14. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    E-Print Network [OSTI]

    Hules, John A

    2009-01-01

    Chemistry Fusion Energy Materials Science Accelerating Scienti?c Discovery High Energy Physics Nuclear Physics Visualization & Analytics

  15. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  16. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, William M. (Santa Fe, NM)

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  17. 205:20130828.1126 Dust Accelerator Laboratory

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    205:20130828.1126 Dust Accelerator Laboratory Through the Dust Accelerator Laboratory, LASP, and laboratory experiments. Our goal is to address basic physical and applied exploration questions, including Laboratory is home to world-class facilities, including the largest dust accelerator in the world

  18. Naked singularities as particle accelerators

    E-Print Network [OSTI]

    Mandar Patil; Pankaj S. Joshi

    2010-11-25

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  19. Naked singularities as particle accelerators

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.

    2010-11-15

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  20. The US Muon Accelerator Program

    SciTech Connect (OSTI)

    Torun, Y.; Kirk, H.; Bross, A.; Geer, Steve; Shiltsev, Vladimir; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  1. Decoherence in an accelerated universe

    E-Print Network [OSTI]

    S. Robles-Perez; A. Alonso-Serrano; P. F. Gonzalez-Diaz

    2011-11-14

    In this paper we study the decoherence processes of the semiclassical branches of an accelerated universe due to their interaction with a scalar field with given mass. We use a third quantization formalism to analyze the decoherence between two branches of a parent universe caused by their interaction with the vaccum fluctuations of the space-time, and with other parent unverses in a multiverse scenario.

  2. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating

  3. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  4. Analytical tools in accelerator physics

    SciTech Connect (OSTI)

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  5. Accelerated learning approaches for maintenance training

    SciTech Connect (OSTI)

    Erickson, E.J.

    1991-01-01

    As a training tool, Accelerated Learning techniques have been in use since 1956. Trainers from a variety of applications and disciplines have found success in using Accelerated Learning approaches, such as training aids, positive affirmations, memory aids, room arrangement, color patterns, and music. Some have thought that maintenance training and Accelerated Learning have nothing in common. Recent training applications by industry and education of Accelerated Learning are proving very successful by several standards. This paper cites available resource examples and challenges maintenance trainers to adopt new ideas and concepts to accelerate learning in all training setting. 7 refs.

  6. High-energy cosmic-ray acceleration

    E-Print Network [OSTI]

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  7. Accelerator Technology Division progress report, FY 1992

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  8. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  9. Resource Letter: Dark Energy and the Accelerating Universe

    E-Print Network [OSTI]

    Eric V. Linder

    2007-05-28

    This Resource Letter provides a guide to the literature on dark energy and the accelerating universe. It is intended to be of use to researchers, teachers, and students at several levels. Journal articles, books, and websites are cited for the following topics: Einstein's cosmological constant, quintessence or dynamical scalar fields, modified cosmic gravity, relations to high energy physics, cosmological probes and observations, terrestrial probes, calculational tools and parameter estimation, teaching strategies and educational resources, and the fate of the universe.

  10. Research Misconduct (Research Integrity

    E-Print Network [OSTI]

    Wapstra, Erik

    Research Misconduct (Research Integrity Coordinator report) Glossary ADR Associate Dean Research ANDS Australian National Data Sharing ITS Information Technology Services NeCTAR National eResearch Collaboration Tools and Resources RSDI Research Storage Data Infrastructure input Research Integrity Advisors

  11. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    E-Print Network [OSTI]

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  12. CENTER FOR RADIOLOGICAL RESEARCH ANNUAL REPORT 2001 RARAF Staff Photo

    E-Print Network [OSTI]

    RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 77 The Radiological Research Accelerator Facility AN NIHCENTER FOR RADIOLOGICAL RESEARCH ·ANNUAL REPORT 2001 76 RARAF Staff Photo RARAF staff (l-r): Dr and the track segment facilities continue to be utilized in various investigations of this phenomenon

  13. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  14. High Performance Computing in Accelerator Science: Past Successes. Future Challenges

    E-Print Network [OSTI]

    Ryne, R.

    2013-01-01

    High Performance Computing in Accelerator Science: PastAC02- 05CH11231. High Performance Computing in Accelerator

  15. 2012 JSA Postdoctoral Research Grant Winner Takes Aim at Never...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Accelerator Facility. Phillips, a research scientist at the University of New Hampshire, was selected for the grant by the Users Group Board of Directors, the...

  16. Three Young Scientists Earn DOE Graduate Research Grants at Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accomplishments have earned three young scientists funds to conduct part of their thesis research at the U.S. Department of Energy's Thomas Jefferson National Accelerator...

  17. Water Research 38 (2004) 25292536 The use of isotopic and lipid analysis techniques linking

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    2004-01-01

    toluene degradation to specific microorganisms: applications and limitations Jiasong Fanga, *, Nanh in the subsurface. Intrinsic bioremediation refers to the action of microorganisms to degrade contaminants in situ whether bioremediation candidate bacteria degrade hydrocarbons is a pressing issue in contaminant

  18. FermilabAcceleratorCapabilities.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) | SciTechSubmitted MoreTraffic SafetyIllinois Accelerator

  19. The Stanford Mark III linear accelerator and speculations concerning the multi-Bev applications of electron linear accelerators

    E-Print Network [OSTI]

    Neal, R B

    1956-01-01

    The Stanford Mark III linear accelerator and speculations concerning the multi-Bev applications of electron linear accelerators

  20. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect (OSTI)

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  1. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    SciTech Connect (OSTI)

    Fred Brokman; John Selker; Mark Rockhold

    2004-01-26

    While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination.

  2. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    SciTech Connect (OSTI)

    Brockman, Fred J.; Selker, John S.; Rockhold, Mark L.

    2004-10-31

    Executive Summary - While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination...

  3. Final Report for "Community Petascale Project for Accelerator Science and Simulations".

    SciTech Connect (OSTI)

    Cary, J. R.; Bruhwiler, D. L.; Stoltz, P. H.; Cormier-Michel, E.; Cowan, B.; Schwartz, B. T.; Bell, G.; Paul, K.; Veitzer, S.

    2013-04-19

    This final report describes the work that has been accomplished over the past 5 years under the Community Petascale Project for Accelerator and Simulations (ComPASS) at Tech-X Corporation. Tech-X had been involved in the full range of ComPASS activities with simulation of laser plasma accelerator concepts, mainly in collaboration with LOASIS program at LBNL, simulation of coherent electron cooling in collaboration with BNL, modeling of electron clouds in high intensity accelerators, in collaboration with researchers at Fermilab and accurate modeling of superconducting RF cavity in collaboration with Fermilab, JLab and Cockcroft Institute in the UK.

  4. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  5. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  6. Testing general relativity on accelerators

    E-Print Network [OSTI]

    Tigran Kalaydzhyan

    2015-09-09

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable -- maximal energy of the scattered photons -- would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.

  7. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  8. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  9. In situ groundwater bioremediation

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    degradation of phenols in groundwater. J Contam. Hydrol.Bioimmobilization of Cr(VI) in Groundwater Using Hydrogenof bacterial activity in groundwater containing petroleum

  10. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  11. In situ groundwater bioremediation

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    vector) recalcitrant contaminants (GMO) biomass can notestablish or maintain itself (GMO) biobarrier (ultramicrobacteria, GMO) controlled environment (GMO)

  12. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Antonio Enea Romano

    2007-01-27

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  13. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Romano, A E

    2006-01-01

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  14. Molecular Autism: accelerating and integrating research into neurodevelopmental conditions

    E-Print Network [OSTI]

    Buxbaum, Joseph D.; Baron-Cohen, Simon

    2010-02-22

    AbstractWe are delighted to announce the launch of Molecular Autism - a new open-access journal published by BioMed Central....

  15. The Illinois Accelerator Research Center, or IARC, will

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. * With a strong focus on innovation and industrialization, IARC will attract high-tech companies and train Illinois citizens to develop advanced technology with...

  16. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Chemical was made of their Metglas 2605 SC in a l-in. -ribbon (the net weight of Metglas was 290 g ) . At a packingT (i.e. , 1.86 T in the Metglas itself) and a core loss of

  17. USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy...

    Broader source: Energy.gov (indexed) [DOE]

    are part of a broader effort by the Obama administration to develop domestic renewable energy and advanced biofuels, providing a more secure future for America's energy needs...

  18. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81

    E-Print Network [OSTI]

    Johnson Ed, R.K.

    2010-01-01

    Beam Diagnostic Systems Scintillator Development Electrondevelop diagnostics such as the electron-beam probe whichelectrons was also observed after the head of the ion beam struck the end wall of the diagnostic

  19. US LHC Accelerator Research Program FY 2005 Task Sheet

    E-Print Network [OSTI]

    Large Hadron Collider Program

    , mathcad and Matlab modeling, beam simulation), and Yun Luo (coupling studies). CERN liason: #12;DRAFT/TF system 7. Matlab/UAL modeling of LHC PLL/TF system 8. travel to CERN to support the above efforts

  20. NSTX Upgrade: ST research to accelerate fusion development

    E-Print Network [OSTI]

    Inst for Nucl Res, Kiev Ioffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT

  1. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    and D. Keefe, "Inertial Confinement Fusion Systems Usingpresented at the Inertial Confinement Fusion Conf. , Sanapplication to inertial confinement fusion. Betatrons

  2. US LHC Accelerator Research Program FY 2005 Task Sheet

    E-Print Network [OSTI]

    Large Hadron Collider Program

    IR optics design BNL 0.2 S. Tepikian Energy Deposition FNAL 0.4 N. Mokhov, Post-doc 2 IR design Optics and Energy Deposition We will examine basic versions of the quadrupole first and dipole first optics · Energy deposition and radiation environment in the interaction region in both designs. Also

  3. Accelerate difficult humanitarian research using idle CPU cycles

    E-Print Network [OSTI]

    Taufer, Michela

    .org Security Security is a top concern for World Community Grid to ensure the trust of our partners Community Grid assumes the burden of running the grid Security work Grid enabling new projects Importing Viktors Berstis - IBM #12;WorldCommunityGrid.org The problem World Problems: Diseases, Environment

  4. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81

    E-Print Network [OSTI]

    Johnson Ed, R.K.

    2010-01-01

    were derived from a MAGNETIC FUSION ENERGY STAFF W, Kunkel (H. 1. F. Staff, Heavy Ion Fusion Half-year Report October 1,LBL-12594 (1981). Heavy Ion Fusion Staff, Heavy Ion Fusion

  5. ANNUAL REPORT, ACCELERATOR and FUSION RESEARCH DIVISION. FISCAL YEAR 1978

    E-Print Network [OSTI]

    Lofgren, E.J.

    2010-01-01

    Beam Ion Source," APS Division of Plasma Physics Meeting,Structures," APS Division of Plasma Physics Meeting,distribution. APS DIVISION OF PLASMA PHYSICS MEETING,

  6. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81

    E-Print Network [OSTI]

    Johnson Ed, R.K.

    2010-01-01

    Meuser, J. Rechen, C. Taylor, and R. Warren, "Performance ofMeuser, J. Rechen, C. Taylor, and R. Warren, "A Novel Epoxy-Sessler Lloyd Smith Clyde E. Taylor r David Goldberg Richard

  7. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81

    E-Print Network [OSTI]

    Johnson Ed, R.K.

    2010-01-01

    derived from a MAGNETIC FUSION ENERGY STAFF W, Kunkel (groupNo. LBL-11743. MAGNETIC FUSION ENERGY K. F. Schoenberg andDivision). Office of Fusion Energy (Applied Plasma Physics

  8. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    1980, p. 725. MAGNETIC FUSION ENERGY Staff W. Kunkel and R.Beams. Magnetic Fusion Energy Neutral Beam Development andKunkel, The Prospects of Fusion Energy as a Commercial Power

  9. Fermilab | Illinois Accelerator Research Center | Funding and Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy TechnologiesCapabilities

  10. Fermilab | Illinois Accelerator Research Center | What is IARC?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy TechnologiesCapabilitiesIARCMoreWhat is

  11. IARC - Illinois Accelerator Research Center | Pilot Program | Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower, Wave and TidalChangI.Who should

  12. IARC - Illinois Accelerator Research Center | Pilot Program | Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower, Wave and TidalChangI.Who

  13. Plasma research shows promise for future compact accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day Pi Day Pi Day

  14. Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDevice UWRecord-Setting Cavities Lab|

  15. STAG RESEARCH CENTERSTAG RESEARCH

    E-Print Network [OSTI]

    Abrahams, I. David

    STAG RESEARCH CENTERSTAG RESEARCH CENTERSTAG RESEARCH CENTER Postrgraduate study in mathematical physics Marika Taylor Mathematical Sciences and STAG research centre, Southampton December 19, 2014 Marika Taylor (University of Southampton) Mathematical Physics December 19, 2014 1 / 26 #12;STAG RESEARCH

  16. Relativistic Shocks: Particle Acceleration and Magnetization

    E-Print Network [OSTI]

    Sironi, Lorenzo; Lemoine, Martin

    2015-01-01

    We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence ...

  17. High Transformer ratios in collinear wakefield accelerators.

    SciTech Connect (OSTI)

    Power, J. G.; Conde, M.; Yusof, Z.; Gai, W.; Jing, C.; Kanreykin, A.; Schoessow, P.; High Energy Physics; Euclid Techlabs, LLC

    2008-01-01

    Based on our previous experiment that successfully demonstrated wakefield transformer ratio enhancement in a 13.625 GHz dielectric-loaded collinear wakefield accelerator using the ramped bunch train technique, we present here a redesigned experimental scheme for even higher enhancement of the efficiency of this accelerator. Design of a collinear wakefield device with a transformer ratio R2, is presented. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2. To match the wavelength of the fundamental mode of the wakefield with the bunch length (sigmaz=2 mm) of the new Argonne wakefield accelerator (AWA) drive gun (where the experiment will be performed), a 26.625 GHz dielectric based accelerating structure is required. This transformer ratio enhancement technique based on our dielectric-loaded waveguide design will result in a compact, high efficiency accelerating structures for future wakefield accelerators.

  18. Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Status of Grid Scale Energy Storage and Strategies for Accelerating Cost Effective Deployment MIT · Motivation · Individual Functions/Markets · Energy Storage Technologies · Implementations to Combine) · Previously: · Energy storage and smart grid analyst at Lux Research and GTM Research · MIT SDM '08 (Graduated

  19. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    E-Print Network [OSTI]

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  20. Solar system constraints on Rindler acceleration

    E-Print Network [OSTI]

    Sante Carloni; Daniel Grumiller; Florian Preis

    2011-05-09

    We discuss the classical tests of general relativity in the presence of Rindler acceleration. Among these tests the perihelion shifts give the tightest constraints and indicate that the Pioneer anomaly cannot be caused by a universal solar system Rindler acceleration. We address potential caveats for massive test-objects. Our tightest bound on Rindler acceleration that comes with no caveats is derived from radar echo delay and yields |a|<3nm/s^2.

  1. Three-dimensional Accelerating Electromagnetic Waves

    E-Print Network [OSTI]

    Miguel A. Bandres; Miguel A. Alonso; Ido Kaminer; Mordechai Segev

    2013-03-25

    We present a general theory of three-dimensional nonparaxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.

  2. Accelerator Technology Division progress report, FY 1993

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-12-31

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

  3. Jefferson Lab accelerator upgrade completed: Initial operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    visiting scientists may continue commissioning the accelerator and dependent upon funding availability, some limited early physics running may be feasible as the capabilities of...

  4. Accelerator Modeling for Discovery | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    identified three scientific drivers that require accelerator-based experiments (using the Higgs boson as a new tool for discovery, pursuing the physics associated with neutrino...

  5. State Strategies for Accelerating Transmission Development for...

    Open Energy Info (EERE)

    State Strategies for Accelerating Transmission Development for Renewable Energy Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: State Strategies for...

  6. TAP Webinar: High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the Technical Assistance Program (TAP), this webinar will cover the recently announced expansion of the Better Buildings platform —the High Performance Outdoor Lighting Accelerator (HPOLA).

  7. Accelerating Irregular Computations with Hardware Transactional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Speaker(s): Torsten Hoefler Speaker(s) Title: ETH Zrich Host: Marc Snir We propose Atomic Active Messages (AAM), a mechanism that accelerates irregular...

  8. DERIVATION OF STOCHASTIC ACCELERATION MODEL CHARACTERISTICS FOR...

    Office of Scientific and Technical Information (OSTI)

    DERIVATION OF STOCHASTIC ACCELERATION MODEL CHARACTERISTICS FOR SOLAR FLARES FROM RHESSI HARD X-RAY OBSERVATIONS Citation Details In-Document Search Title: DERIVATION OF STOCHASTIC...

  9. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC...

    Office of Scientific and Technical Information (OSTI)

    COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Citation Details In-Document Search Title: COMBINED MODELING OF...

  10. Accelerated Climate Modeling for Energy | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit: Alan Scott and Mark Taylor, Sandia National Laboratories Accelerated Climate Modeling for Energy PI Name: Mark Taylor PI Email: mataylo@sandia.gov Institution: Sandia...

  11. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    interests represented in the national combined heat and power (CHP) dialogue. This paper includes recommendations for accelerating CHP deployment that are directed at all...

  12. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 3D virtualization company, enabling the use of 3D virtualization in art and cultural preservation markets. LAVA Chief Operations Officer Steve Smith said the "acceleration"...

  13. Cryogenic system for the MYRRHA superconducting linear accelerator

    SciTech Connect (OSTI)

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-29

    SCK?CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 ?=0.36 spoke-loaded cavities (352 MHz), 34 ?=0.47 elliptical cavities (704 MHz) and 60 ?=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  14. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    SciTech Connect (OSTI)

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  15. Sustainable Transportation: Accelerating Widespread Adoption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and thermal management of motor controllers, inverters, and traction motors. Hydrogen & Fuel Cells NREL researchers assess and validate hydrogen fueling infra- structure and fuel...

  16. Production expansion continues to accelerate

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This paper reports that Saudi Arabian Oil Co. (Saudi Aramco) is continuing its accelerated Crude Oil Expansion Program initiated in 1989 that aims at achieving a 10 million bpd productive capacity by 1995. In addition to major engineering, construction and renovation work related to production expansion, Saudi Aramco drilling and workover operations have been markedly expanded. Since January 1991, rig activity has doubled. As an indication of aging of Saudi production, projects include modernizing current injection water treatment facilities, installing a new seawater injection plant on the Persian Gulf, installing dewatering facilities in a number of locations and installing a pilot gas lift project. In addition, equipment orders indicate the new discoveries south of Riyadh may also need the assistance of water injection from inception of production.

  17. Prudent behaviour accelerates disease transmission

    E-Print Network [OSTI]

    Scarpino, Samuel V; Hebert-Dufresne, Laurent

    2015-01-01

    Infectious diseases often spread faster near their peak than would be predicted given early data on transmission. Despite the commonality of this phenomena, there are no known general mechanisms able to cause an exponentially spreading dis- ease to begin spreading faster. Indeed most features of real world social networks, e.g. clustering1,2 and community structure3, and of human behaviour, e.g. social distancing4 and increased hygiene5, will slow disease spread. Here, we consider a model where individuals with essential societal roles-e.g. teachers, first responders, health-care workers, etc.- who fall ill are replaced with healthy individuals. We refer to this process as relational exchange. Relational exchange is also a behavioural process, but one whose effect on disease transmission is less obvious. By incorporating this behaviour into a dynamic network model, we demonstrate that replacing individuals can accelerate disease transmission. Furthermore, we find that the effects of this process are trivial w...

  18. Accelerating Universe Around A Blackhole

    E-Print Network [OSTI]

    A. M. Harunar Rashid; Arshad Momen; A. L. Choudhury

    2006-08-20

    We have assumed that in a physical universe a blackhole is created some where. We conjecture that this blackhole will then separate itself from the physical universe and will build up an extra dimensional entity associated with the physical universe. The extra dimensional entity we suppose to be orthogonal to the physical universe. We further conjecture that this blackhole is a Schwartzschild blackhole. We assume that this physical universe and the blackhole span a seven dimensional space with a common time coordinate. We then generate the Einstein equation. Using the time-blackhole and the time-time component of the equation we show that the Hubble parameter is positive and time dependent if we conjecture that both scale factor and the radius of the blackhole reduces exponetially. Under the same assumption we have also calculated the deacceleration parameter and shown that under certain constrain the universe accelerates.

  19. Settlement in an Amereican landscape : a place of work amidst a particle accelerator's transformation of the Texas prarie

    E-Print Network [OSTI]

    Falliers, Christopher B. (Christopher Basil)

    1991-01-01

    This thesis considers the design of the research facility accompanying the Superconducting Super Collider, a large particle accelerator planned for central Texas. It will focus on this Pl'Qject as a form of human settlement ...

  20. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. PS-15, NO. 2, APRIL 1987 Acceleration of Electron-Positron Plasmas to High

    E-Print Network [OSTI]

    Friedland, Lazar

    IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. PS-15, NO. 2, APRIL 1987 Acceleration of Electron is with the Plasma Department, Soreq Nuclear Research Cen- ter, 70600 Yavne, Israel. IEEE Log Number 8613323. 'The

  1. Accelerating cleanup: Paths to closure

    SciTech Connect (OSTI)

    1998-06-01

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  2. Report on accelerated corrosion studies.

    SciTech Connect (OSTI)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  3. Solving NonlinearSolving Nonlinear EigenproblemsEigenproblems inin Accelerator Cavity DesignAccelerator Cavity Design

    E-Print Network [OSTI]

    California at Davis, University of

    Light Source RF-gun Accelerating cavity for International Linear Collider Summary and Future work #12 Light Source RF-gun Accelerating cavity for International Linear Collider Summary and Future work #12;RF-gun Accelerating cavity for International Linear Collider Summary and Future work #12;Quadratric

  4. Diffusive Acceleration of Ions at Interplanetary Shocks

    E-Print Network [OSTI]

    Matthew G. Baring; Errol J. Summerlin

    2005-06-08

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-convection equation. In this theory/data comparison, it is demonstrated that diffusive acceleration theory can, to first order, successfully account for both the proton distribution data near the shock, and the observation of energetic protons farther upstream of this interplanetary shock than lower energy pick-up protons, using a single turbulence parameter. The principal conclusion is that diffusive acceleration of inflowing upstream ions can model this pick-up ion-rich event without the invoking any seed pre-acceleration mechanism, though this investigation does not rule out the action of such pre-acceleration.

  5. Quantum optical device accelerating dynamic programming

    E-Print Network [OSTI]

    D. Grigoriev; A. Kazakov; S. Vakulenko

    2010-11-23

    In this paper we discuss analogue computers based on quantum optical systems accelerating dynamic programming for some computational problems. These computers, at least in principle, can be realized by actually existing devices. We estimate an acceleration in resolving of some NP-hard problems that can be obtained in such a way versus deterministic computers

  6. The Heating & Acceleration of the Solar Wind

    E-Print Network [OSTI]

    Wurtele, Jonathan

    The Heating & Acceleration of the Solar Wind Eliot Quataert (UC Berkeley) Collaborators: Steve & Slow Winds · The Puzzle of the High Frequency Cascade (or the lack thereof ....) · Possible Solutions #12;Background · Heating required to accelerate the solar wind · Early models invoked e- conduction

  7. A Survey of Hadron Therapy Accelerator Technologies.

    SciTech Connect (OSTI)

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  8. Accelerator Production Options for 99MO

    SciTech Connect (OSTI)

    Bertsche, Kirk; /SLAC

    2010-08-25

    Shortages of {sup 99}Mo, the most commonly used diagnostic medical isotope, have caused great concern and have prompted numerous suggestions for alternate production methods. A wide variety of accelerator-based approaches have been suggested. In this paper we survey and compare the various accelerator-based approaches.

  9. Variable energy constant current accelerator structure

    DOE Patents [OSTI]

    Anderson, O.A.

    1988-07-13

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90/degree/ intervals with opposing electrodes maintained at the same potential. 12 figs., 3 tabs.

  10. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect (OSTI)

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  11. Accelerating Polarized Protons to High Energy

    SciTech Connect (OSTI)

    Bai, M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Butler, J.; Cameron, P.; Connolly, R.; Delong, J.; D'Ottavio, T.; Drees, A.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.

    2007-06-13

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  12. A Method for Estimating In Situ Reaction Rates from Push-Pull Experiments for Arbitrary Solute

    E-Print Network [OSTI]

    Zhu, Chen

    at the U.S. Department of Energy's Natural and Accelerated Bioremediation Research Program's Field Research Background Concentrations CHANGBING YANG Department of Plants, Soil, and Climate, Utah State University, IN 47405-1405 Key Terms: Push-Pull Test, Reaction Rates, Numer- ical Modeling, Net Mass Transfer ABSTRACT

  13. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect (OSTI)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  14. Selected Abstracts & Bibliography of International Oil Spill Research, through 1998

    E-Print Network [OSTI]

    Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

    1998-01-01

    bioremediation of hydrocarbon-contaminated water and soil isof remediating hydrocarbon-contaminated soils and water. Thehydrocarbons migrating into ground water from contaminated

  15. Subsurface Biogeochemical Research (SBR) Contractor-Grantee Workshop--Abstracts

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    water can be viewed as a limiting case, a first-order scientific question likely to impact the success of stimulated bioremediation.

  16. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect (OSTI)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M. S.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  17. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect (OSTI)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  18. Developments in accelerators and instrumentation relevant to imaging with charged particles and positron emitters

    SciTech Connect (OSTI)

    Alonso, J.R.

    1980-11-01

    In past years particle accelerators have become increasingly important tools for the advancement of medical science. From the pace of advancing technology and current directions in medical research, it is clear that this relationship between accelerators and medicine will only grow stronger in future years. In view of this importance, this relationship is investigated in some detail, with an eye not so much towards the medical uses of the beams produced, but more towards the technology associated with these accelerators and the criteria which make for successful incorporation of these machines into the clinical environment. In order to lay the necessary groundwork, the different kinds of accelerators found in medical use today are reviewed briefly discussing salient points of each.

  19. Automatic Design Exploration Framework for Multicores with Reconfigurable Accelerators

    E-Print Network [OSTI]

    Kasahara, Hironori

    Automatic Design Exploration Framework for Multicores with Reconfigurable Accelerators Cecilia Gonz that performs au- tomatic generation of fine-grained accelerators, automatic parallelization, and testing. The automatic generation of accelerators is accomplished by an in-house developed software. Automatic

  20. Cosmic-ray acceleration in supernova shocks

    E-Print Network [OSTI]

    Vincent Tatischeff

    2008-07-25

    Galactic cosmic rays are widely believed to be accelerated in expanding shock waves initiated by supernova explosions. The theory of diffusive shock acceleration of cosmic rays is now well established, but two fundamental questions remain partly unanswered: what is the acceleration efficiency, i.e. the fraction of the total supernova energy converted to cosmic-ray energy, and what is the maximum kinetic energy achieved by particles accelerated in supernova explosions? Recent observations of supernova remnants, in X-rays with the Chandra and XMM-Newton satellites and in very-high-energy gamma rays with several ground-based atmospheric Cerenkov telescopes, have provided new pieces of information concerning these two questions. After a review of these observations and their current interpretations, I show that complementary information on the diffusive shock acceleration process can be obtained by studying the radio emission from extragalactic supernovae. As an illustration, a nonlinear model of diffusive shock acceleration is applied to the radio light curves of the supernova SN 1993J, which exploded in the nearby galaxy M81. The results of the model suggest that most of the Galactic cosmic rays may be accelerated during the early phase of interaction between the supernova ejecta and the wind lost from the progenitor star.

  1. Real-time Optical Network for Accelerator Control

    SciTech Connect (OSTI)

    Lee, Keun

    2012-06-27

    The timing requirements of a modern accelerator complex call for several features. The first is a system for high precision relative timing among accelerator components. Stabilized fiber links have already been demonstrated to achieve sub-10 femtoseconds relative timing precision. The second is a system for timing distribution of absolute time with sufficient precision to identify a specific RF bucket. The White Rabbit technology is a promising candidate to deliver the absolute time that is linked to the GPS clock. In this study we demonstrated that these two technologies can be combined in a way that the absolute time information can be delivered to the stabilized fiber link system. This was accomplished by researching the design of the stabilized fiber and White Rabbit systems and devising adaptation modules that facilitate co-existence of both systems in the same FPGA environment. We built a prototype system using off-the-shelf products and implemented a proof-of-concept version of the FPGA firmware. The test verified that the White Rabbit features operate correctly under the stabilized fiber system environment. This work demonstrates that turn-key femtosecond timing systems with absolute time information can be built cost effectively and deployed in various accelerator environments. This will lead to many new applications in chemistry, biology and surface dynamics, to name a few.

  2. Accelerator technology program. Progress report, January-December 1979

    SciTech Connect (OSTI)

    Knapp, E.A.; Jameson, R.A.

    1980-11-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the calendar year 1979 are highlighted, with references to more detailed reports. This report is organized around the major projects of the Division, reflecting a wide variety of applications and sponsors. The first section covers the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory; the second section summarizes progress on the Proton Storage Ring to be built between LAMPF and the LASL Pulsed Neutron Research facility. A new project that achieved considerable momentum during the year is described next - the free-electron laser studies; the following section discusses the status of the Pion Generator for Medical Irradiation program. Next, two more new programs, the racetrack microtron being developed jointly by AT-Division and the National Bureau of Standards and the radio-frequency (rf) accelerator development for heavy ion fusion, are outlined. Development activities on a new type of high-power, high-efficiency rf amplifier called the gyrocon are then reported, and the final sections cover development of H/sup -/ ion sources and injectors, and linear accelerator instrumentation and beam dynamics.

  3. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect (OSTI)

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  4. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-05-30

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  5. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A.; Grohmann, K.

    1992-09-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  6. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A. ); Grohmann, K. )

    1992-01-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  7. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Nitschke, J.M. [eds.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  8. Experimental measurement methods and data on irradiation of functional design materials by helium ions in linear accelerator

    E-Print Network [OSTI]

    R. A. Anokhin; V. N. Voyevodin; S. N. Dubnyuk; A. M. Egorov; B. V. Zaitsev; A. F. Kobets; O. P. Ledenyov; K. V. Pavliy; V. V. Ruzhitsky; G. D. Tolstolutskaya

    2013-09-03

    The experimental research on the irradiation of the functional design materials by the Helium ions in the linear accelerator is conducted. The experimental measurements techniques and data on the irradiation of the functional design materials by the Helium ions with the energy up to 4 MeV, including the detailed scheme of experimental measurements setup, are presented. The new design of accelerating structure of the IH-type such as POS-4, using the method of alternate-phase focusing with the step-by-step change of the synchronous phase along the focusing periods in a linear accelerator, is developed with the aim to irradiate the functional design materials by the Helium ions. The new design of the injector of the charged Helium ions with the energy of 120 KeV at the output of an accelerating tube and the accelerating structure of the type of POS-4 for the one time charged Helium ions acceleration in the linear accelerator are researched and developed. The special chamber for the irradiation of functional design materials by the Helium ions is also created. In the process of experiment, the temperature of a sample, the magnitude of current of Helium ions beam and the irradiation dose of sample are measured precisely. The experimental measurement setup and techniques are fully tested and optimized in the course of the research on the electro-physical properties of irradiated samples and the thermal-desorption of Helium ions in a wide range of temperatures

  9. Symplectic Maps and Chromatic Optics in Particle Accelerators...

    Office of Scientific and Technical Information (OSTI)

    Symplectic Maps and Chromatic Optics in Particle Accelerators Citation Details In-Document Search Title: Symplectic Maps and Chromatic Optics in Particle Accelerators You are...

  10. Symplectic Maps and Chromatic Optics in Particle Accelerators...

    Office of Scientific and Technical Information (OSTI)

    Symplectic Maps and Chromatic Optics in Particle Accelerators Citation Details In-Document Search Title: Symplectic Maps and Chromatic Optics in Particle Accelerators Authors: Cai,...

  11. Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame VayBoost.gif An image showing the "boosted frame,"...

  12. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    E-Print Network [OSTI]

    Geddes, Cameron G.R.

    2010-01-01

    of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

  13. Fuel Cell Tech Team Accelerated Stress Test and Polarization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech Team Accelerated Stress Test and Polarization Curve Protocols for PEM Fuel Cells Fuel Cell Tech Team Accelerated Stress Test and Polarization Curve Protocols for PEM Fuel...

  14. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET &...

  15. RECENT ADVANCES IN THE TECHNOLOGY OF SUPERCONDUCTING ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Taylor, C.E.

    2010-01-01

    Current Multipoles in Superconducting Accelerator Magnets."Utilization of the Superconducting Super Collider, Snowmass,Field Harmonics in Superconducting Accelerator Magnets,·

  16. Beyond Solyndra: How the Energy Department's Loans are Accelerating...

    Office of Environmental Management (EM)

    the Energy Department's Loans are Accelerating America's Transition to a Clean Energy Future Beyond Solyndra: How the Energy Department's Loans are Accelerating America's...

  17. Energy Department Announces New Investments to Accelerate Breakthrough...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Investments to Accelerate Breakthroughs in Cost-Competitive Solar Energy Energy Department Announces New Investments to Accelerate Breakthroughs in Cost-Competitive Solar...

  18. Physics of Accelerators and Related Technology for International...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics of Accelerators and Related Technology for International Students (PARTI). Physics of Accelerators and Related Technology for International Students (PARTI). December 14,...

  19. Lee Teng Undergraduate Internship in Accelerator Science and...

    Energy Savers [EERE]

    Lee Teng Undergraduate Internship in Accelerator Science and Engineering Lee Teng Undergraduate Internship in Accelerator Science and Engineering October 9, 2012 4:45PM EDT to...

  20. 2010 Annual Planning Summary for Stanford Linear Accelerator...

    Energy Savers [EERE]

    0 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) Annual...

  1. Fact Sheet: Accelerating the Development and Deployment of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles Fact Sheet: Accelerating the...

  2. SoCal Edge: Accelerating Investments in Innovative Building Technologi...

    Office of Environmental Management (EM)

    SoCal Edge: Accelerating Investments in Innovative Building Technologies SoCal Edge: Accelerating Investments in Innovative Building Technologies October 26, 2015 - 2:53pm Addthis...

  3. Energy Department Announces New Investment to Accelerate Next...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces New Investment to Accelerate Next Generation Biofuels Energy Department Announces New Investment to Accelerate Next Generation Biofuels July 1, 2013 -...

  4. Rotating Disk-Electrode Aqueous Electrolyte Accelerated Stress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rotating Disk-Electrode Aqueous Electrolyte Accelerated Stress Tests for PGM ElectrocatalystSupport Durability Evaluation Rotating Disk-Electrode Aqueous Electrolyte Accelerated...

  5. The Development of a Small Engine Based Accelerated Ash Loading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Ash Loading Protocol The Development of a Small Engine Based Accelerated Ash Loading Protocol Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

  6. Development of an Accelerated Ash-Loading Protocol for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007...

  7. Boosting the Next Wave of Accelerators: New Technique Speeds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boosting Accelerator Design Boosting the Next Wave of Accelerators New Technique Speeds Simulations by up to a Million-fold March 29, 2011 | Tags: Franklin, Nuclear Physics (NP)...

  8. Energy Department Announces $6 Million to Accelerate Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Million to Accelerate Alternative Fuel Vehicle Market Growth Energy Department Announces 6 Million to Accelerate Alternative Fuel Vehicle Market Growth March 9, 2015 - 11:20am...

  9. Carrigan, Jr., Richard A. [Fermi National Accelerator Lab. (FNAL...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Lab. (FNAL), Batavia, IL (United States) 43 PARTICLE ACCELERATORS; BEAM OPTICS; CHANNELING; ATTENUATION; BEAM EXTRACTION; BENDING; CRYSTALS; MESON BEAMS; BEAMS;...

  10. An Accelerated Aging Method for Diesel Exhaust Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems An Accelerated Aging Method for Diesel Exhaust Aftertreatment Systems Poster presented at the 16th Directions...

  11. Relativistic electron acceleration by oblique whistler waves

    SciTech Connect (OSTI)

    Yoon, Peter H.; School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 ; Pandey, Vinay S.; Lee, Dong-Hun

    2013-11-15

    Test-particle simulations of electrons interacting with finite-amplitude, obliquely propagating whistler waves are carried out in order to investigate the acceleration of relativistic electrons by these waves. According to the present findings, an efficient acceleration of relativistic electrons requires a narrow range of oblique propagation angles, close to the whistler resonance cone angle, when the wave amplitude is held constant at relatively low value. For a constant wave propagation angle, it is found that a range of oblique whistler wave amplitudes permits the acceleration of relativistic electrons to O(MeV) energies. An initial distribution of test electrons is shown to form a power-law distribution when plotted in energy space. It is also found that the acceleration is largely uniform in electron pitch-angle space.

  12. Fueling of Tokamaks With Accelerated FRC's

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Fueling of Tokamaks With Accelerated FRC's J. Grossnickle, A. Hoffman, J. Slough, P. Gurevich, & G Introduction Tokamaks require deep fuelling primarily to replenish burned fuel while maintaining high central

  13. New Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Hadron Collider where the Higgs boson was recently discovered, rely on high-power radio-frequency waves to energize electrons. The new type of accelerator, known as a...

  14. Diffusive Shock Acceleration: the Fermi Mechanism

    E-Print Network [OSTI]

    Matthew G. Baring

    1997-11-16

    The mechanism of diffusive Fermi acceleration at collisionless plasma shock waves is widely invoked in astrophysics to explain the appearance of non-thermal particle populations in a variety of environments, including sites of cosmic ray production, and is observed to operate at several sites in the heliosphere. This review outlines the principal results from the theory of diffusive shock acceleration, focusing first on how it produces power-law distributions in test-particle regimes, where the shock dynamics are dominated by the thermal populations that provide the seed particles for the acceleration process. Then the importance of non-linear modifications to the shock hydrodynamics by the accelerated particles is addressed, emphasizing how these subsequently influence non-thermal spectral formation.

  15. Sequential injection gas guns for accelerating projectiles

    DOE Patents [OSTI]

    Lacy, Jeffrey M. (Idaho Falls, ID); Chu, Henry S. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID)

    2011-11-15

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  16. Charge Diagnostics for Laser Plasma Accelerators

    E-Print Network [OSTI]

    Nakamura, K.

    2011-01-01

    electron spectrometer [24] before sending the e-beam to charge diagnostics,electron beams from the laser plasma accelerator, a comprehensive study of charge diagnosticselectron spectrom- eter was turned off to send e-beams to charge diagnostics.

  17. Data Tools: BPD, SEED & Data Accelerator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eere.energy.gov Elena Alschuler Building Technologies Program U.S. Department of Energy Data Tools BPD, SEED & Data Accelerator BTO Peer Review April 23, 2014 2:00-3:30 2 * 2...

  18. HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Taylor, C.

    2011-01-01

    D. C. 'Niobium-Titanium Superconducting Material s ', in S.Nb -Ti and Nb3Sn superconductors. , •• ,""" s. S. Clamp, Tie14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.

  19. An effective theory of accelerated expansion

    E-Print Network [OSTI]

    Raul Jimenez; P. Talavera; Licia Verde

    2012-11-16

    We work out an effective theory of accelerated expansion to describe general phenomena of inflation and acceleration (dark energy) in the Universe. Our aim is to determine from theoretical grounds, in a physically-motivated and model independent way, which and how many (free) parameters are needed to broadly capture the physics of a theory describing cosmic acceleration. Our goal is to make as much as possible transparent the physical interpretation of the parameters describing the expansion. We show that, at leading order, there are five independent parameters, of which one can be constrained via general relativity tests. The other four parameters need to be determined by observing and measuring the cosmic expansion rate only, H(z). Therefore we suggest that future cosmology surveys focus on obtaining an accurate as possible measurement of $H(z)$ to constrain the nature of accelerated expansion (dark energy and/or inflation).

  20. Accelerated solvent extraction of petroleum contaminated sediments 

    E-Print Network [OSTI]

    Bauguss, Jeffery Lynn

    1997-01-01

    Attempts have been made in recent years to find acceptable alternatives to classical soxhlet extraction of petroleum contaminated sediments. One such method that is very promising is accelerated solvent extraction also ...