Sample records for accelerate cleanup support

  1. Accelerating cleanup: Paths to closure

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  2. From Cleanup to Stewardship. A companion report to Accelerating Cleanup: Paths to Closure and background information to support the scoping process required for the 1998 PEIS Settlement Study

    SciTech Connect (OSTI)

    None

    1999-10-01T23:59:59.000Z

    Long-term stewardship is expected to be needed at more than 100 DOE sites after DOE's Environmental Management program completes disposal, stabilization, and restoration operations to address waste and contamination resulting from nuclear research and nuclear weapons production conducted over the past 50 years. From Cleanup to stewardship provides background information on the Department of Energy (DOE) long-term stewardship obligations and activities. This document begins to examine the transition from cleanup to long-term stewardship, and it fulfills the Secretary's commitment to the President in the 1999 Performance Agreement to provide a companion report to the Department's Accelerating Cleanup: Paths to Closure report. It also provides background information to support the scoping process required for a study on long-term stewardship required by a 1998 Settlement Agreement.

  3. accelerated cleanup risk: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California at Berkeley, University of 20 Guidelines for Investigation and Cleanup of MTBE and Other Ether-Based Oxygenates Overview CiteSeer Summary: (Sher-- Chapter 812,...

  4. Microsoft Word - DOE News Release-DOE Completes Cleanup at New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Completes Cleanup at New York, California Sites Recovery Act funds accelerate cleanup; support job creation and footprint reduction WASHINGTON, D.C. - Last month, the U.S....

  5. Radiation site cleanup regulations: Technical support document for the development of radionuclide cleanup levels for soil. Review draft

    SciTech Connect (OSTI)

    Wolbarst, A.B.; Mauro, J.; Anigstein, R.; Back, D.; Bartlett, J.W.

    1994-09-24T23:59:59.000Z

    This report presents EPA`s approach to assessing some of the beneficial and adverse radiation health effects associated with various possible values for an annual dose limit. In particular, it discusses the method developed to determine how the choice of cleanup criterion affects (1) the time-integrated numbers of non-fatal and fatal radiogenic cancers averted among future populations, (2) the occurrence of radiogenic cancers among remediation workers and the public caused by the cleanup process itself, and (3) the volume of contaminated soil that may require remediation.

  6. New Contract Helps Portsmouth GDP Cleanup

    Broader source: Energy.gov [DOE]

    To accelerate the Portsmouth GDP cleanup efforts left over from the Cold War, the Department of Energy made a huge step forward in our nuclear environmental cleanup efforts.

  7. NNSA Awards Additional Support to Accelerate the Development...

    National Nuclear Security Administration (NNSA)

    Additional Support to Accelerate the Development of Domestic Mo-99 in the U.S. without the Use of Highly Enriched Uranium | National Nuclear Security Administration Facebook...

  8. DOE Hanford Network Upgrades and Disaster Recovery Exercise Support the Cleanup Mission Now and into the Future

    SciTech Connect (OSTI)

    Eckman, Todd J. [Mission Support Alliance, Richland, WA (United States); Hertzel, Ali K. [Lockheed Martin Services, Inc. (United States); Lane, James J. [Lockheed Martin - Information Systems and Global Solutions (United States)

    2013-11-07T23:59:59.000Z

    In 2013, the U.S. Department of Energy's (DOE) Hanford Site, located in Washington State, funded an update to the critical network infrastructure supporting the Hanford Federal Cloud (HFC). The project, called ET-50, was the final step in a plan that was initiated five years ago called "Hanford's IT Vision, 2015 and Beyond." The ET-50 project upgraded Hanford's core data center switches and routers along with a majority of the distribution layer switches. The upgrades allowed HFC the network intelligence to provide Hanford with a more reliable and resilient network architecture. The culmination of the five year plan improved network intelligence and high performance computing as well as helped to provide 10 Gbps capable links between core backbone devices (10 times the previous bandwidth). These improvements allow Hanford the ability to further support bandwidth intense applications, such as video teleconferencing. The ET-50 switch upgrade, along with other upgrades implemented from the five year plan, have prepared Hanford's network for the next evolution of technology in voice, video, and data. Hand-in-hand with ET-50's major data center outage, Mission Support Alliance's (MSA) Information Management (IM) organization executed a disaster recovery (DR) exercise to perform a true integration test and capability study. The DR scope was planned within the constraints of ET-50's 14 hour datacenter outage window. This DR exercise tested Hanford's Continuity of Operations (COOP) capability and failover plans for safety and business critical Hanford Federal Cloud applications. The planned suite of services to be tested was identified prior to the outage and plans were prepared to test the services ability to failover from the primary Hanford data center to the backup data center. The services tested were: Core Network (backbone, firewall, load balancers); Voicemail; Voice over IP (VoIP); Emergency Notification; Virtual desktops; and, Select set of production applications and data. The primary objective of the exercise was to test COOP around the emergency operations at Hanford to provide information on capabilities and dependencies of the current system to insure improved focus of emergency, safety and security capacity in a disaster situation. The integration of the DR test into the ET-50 project allowed the testing of COOP at Hanford and allowed the lessons learned to be defined. These lessons learned have helped improve the understanding of Hanford's COOP capabilities and will be critical for future planning. With the completion of the Hanford Federal Cloud network upgrades and the disaster recovery exercise, the MSA has a clearer path forward for future technology implementations as well as network improvements to help shape the usability and reliability of the Hanford network in support of the cleanup mission.

  9. Environmental Management (EM) Cleanup Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-24T23:59:59.000Z

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and provides guidance on environmental management cleanup projects. Canceled by DOE N 251.105.

  10. Achieving Accelerated Cleanup of Cesium Contaminated Stream at the Savannah River Site; Collaboration between Stakeholders, Regulators, and the Federal Government - 13182

    SciTech Connect (OSTI)

    Bergren, Chris; Flora, Mary; Socha, Ron; Burch, Joseph [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Freeman, Candice; Hennessey, Brian [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site and is a large black water stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 36 kilometer stretch of Lower Three Runs Stream that narrows providing a limited buffer of US DOE property along the stream and flood plain. Based on data collected during 2009 and 2010 under Recover Act Funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. As efficiencies were realized within the SRS Recovery Act Program, funding was made available to design, permit and execute remediation of the LTR. This accelerated Project allowed for the remediation of 36 kilometers of LTR in only nine months from inception to completion, contributing significantly to the Foot Print Reduction of SRS. The scope consisted of excavation and disposal of more than 2064 cubic meters of contaminated soil, and installing 11 kilometers of fence and 2,000 signs at 1000 locations. Confirmatory sampling and analysis, and radiological surveying were performed demonstrating that soil concentrations met the cleanup goals. The project completed with a very good safety record considering the harsh conditions including, excessive rain in the early stages of the project, high summer temperatures, swampy terrain, snakes, wild boar, insects and dense vegetation. The regulatory approval process was compressed by over 75% and required significant efforts from SRS's stakeholders including the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), and the public including local property owners and the SRS Citizens Advisory Board. Stakeholder buy-in was critical in the up-front planning in order to achieve this challenging cleanup. (authors)

  11. Environmental Cleanup Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories community-environmentassetsimagesicon-environment.jpg Environmental Cleanup Stories Our environmental stewardship commitment: clean up the past, minimize environmental...

  12. Shell-Based Support Structures for Nb3Sn Accelerator Quadrupole Magnets

    E-Print Network [OSTI]

    Ferracin, Paolo

    2010-01-01T23:59:59.000Z

    similarly to the outer shell, they significantly increasedof Technology Quadrupole Shell (TQS) Magnet Models forSHELL-BASED SUPPORT STRUCTURES FOR NB 3 SN ACCELERATOR

  13. Better Buildings Challenge Accelerator Support - 2014 BTO Peer...

    Broader source: Energy.gov (indexed) [DOE]

    Monisha Shah, National Renewable Energy Laboratory Through the Better Buildings Energy Data Accelerator, local governments are joining forces with their utilities so that...

  14. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects.

  15. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards -- Fiscal Year 2002 Mid-Year Progress Report

    SciTech Connect (OSTI)

    Bredt, Paul R.; Ainsworth, Calvin C.; Brockman, Fred J.; Camaioni, Donald M.; Egorov, Oleg B.; Felmy, Andrew R.; Gorby, Yuri A.; Grate, Jay W.; Greenwood, Margaret S.; Hay, Benjamin P.; Hess, Nancy J.; Hubler, Timothy L.; Icenhower, Jonathan P.; Mattigod, Shas V.; McGrail, B. Peter; Meyer, Philip D.; Murray, Christopher J.; Panetta, Paul D.; Pfund, David M.; Rai, Dhanpat; Su, Yali; Sundaram, S. K.; Weber, William J.; Zachara, John M.

    2002-06-11T23:59:59.000Z

    Pacific Northwest National Laboratory has been awarded a total of 80 Environmental Management Science Program (EMSP) research grants since the inception of the program in 1996. The Laboratory has collaborated on an additional 14 EMSP awards with funding received through other institution. This report describes how each of the projects awarded in 1999, 2000, and 2001 addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in the individual project reports included in this document. Projects are under way in three main areas: Tank Waste Remediation, Decontamination and Decommissioning, and Soil and Groundwater Cleanup.

  16. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    SciTech Connect (OSTI)

    CD Carlson; SQ Bennett

    2000-07-25T23:59:59.000Z

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998, and seven in fiscal year 1999. All of the fiscal year 1996 award projects have been completed and will publish final reports, so their annual updates will not be included in this document. This section summarizes how each of the currently funded grants addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation; Decontamination and Decommissioning; Spent Nuclear Fuel and Nuclear Materials; and Soil and Groundwater Cleanup.

  17. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    SciTech Connect (OSTI)

    Carlson, Clark D.; Bennett, Sheila Q.

    2000-07-25T23:59:59.000Z

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998 and seven in fiscal year 1999.(a) All of the fiscal year 1996 awards have been completed and the Principal Investigators are writing final reports, so their summaries will not be included in this document. This section summarizes how each of the currently funded grants addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, and Soil and Groundwater Cleanup.

  18. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01T23:59:59.000Z

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  19. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    SciTech Connect (OSTI)

    Peurrung, L.M.

    1999-06-30T23:59:59.000Z

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Clean Up, and Health Effects.

  20. Idaho Cleanup Project Congressional Nuclear Cleanup Caucus

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandards forand OpportunitiesIanCleanup

  1. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20T23:59:59.000Z

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  2. River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: DWP Summary, Volume 1

    SciTech Connect (OSTI)

    Project Integration

    2005-09-26T23:59:59.000Z

    This detailed work plan provides the scope, cost, and schedule for the Fiscal Year 2006 activities required to support River Corridor cleanup objectives within the directed guidance.

  3. Upper Los Alamos Canyon Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact...

  4. Accelerating Clean-up at Savannah River

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARAManager(December 1982)SupplyContract and

  5. Accelerating Clean-up at Savannah River

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDIT REPORT:

  6. Accelerating Clean-up at Savannah River

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDIT REPORT:Patricia Davies Deputy Director

  7. Stimulus Funding Will Accelerate Cleanup In Idaho

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep Slope CalculatorSteveStewardshipSTIMULUS FUNDING

  8. Gas stream cleanup

    SciTech Connect (OSTI)

    Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

    1990-08-01T23:59:59.000Z

    This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

  9. Promising Science for Plutonium Cleanup | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Science for Plutonium Cleanup Promising Science for Plutonium Cleanup Released: July 06, 2011 New finding shows a research area to expand in EMSL Radiochemistry Annex...

  10. Central Plateau Cleanup at DOE's Hanford Site - 12504

    SciTech Connect (OSTI)

    Dowell, Jonathan [US DOE (United States)

    2012-07-01T23:59:59.000Z

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all other unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be available for other uses consistent with the Hanford Comprehensive Land-Use Plan (DOE 1999), while

  11. Superfund Cleanups and Infant Health

    E-Print Network [OSTI]

    Currie, Janet

    2011-02-23T23:59:59.000Z

    We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989 and 2003 ...

  12. DOE outlines complex cleanup options

    SciTech Connect (OSTI)

    Lobsenz, G.

    1994-02-25T23:59:59.000Z

    The Energy Department said last week it will consider four different strategies for cleanup of its nuclear weapons complex in a draft programmatic environmental impact statement due for release this summer. In an implementation plan released for public comment February 17, DOE also said the EIS would look at centralized, decentralized and regional approaches to management of six types of radioactive and hazardous wastes. Other issues to be addressed in the EIS are development of innovative cleanup technology, budgeting and prioritization, job cutbacks and worker retraining, waste minimization and community involvement in cleanup decisions. However, DOE said it had decided not to address spent nuclear fuel storage in the EIS, as had been previously planned. Instead, spent fuel storage options will be reviewed in another environmental study being done under court order for DOE's Idaho National Engineering Laboratory. Findings from the INEL study will be incorporated in the department-wide EIS for environmental restoration and waste management.

  13. The farthest known supernova: Support for an accelerating universeand a glimpse of the epoch of deceleration

    SciTech Connect (OSTI)

    Riess, Adam G.; Nugent, Peter E.; Schmidt, Brian P.; Tonry, John; Dickinson, Mark; Gilliland, Ronald L.; Thompson, Rodger I.; Budavari,Tamas; Casertano, Stefano; Evans, Aaron S.; Filippenko, Alexei V.; Livio,Mario; Sanders, David B.; Shapley, Alice E.; Spinrad, Hyron; Steidel,Charles C.; Stern, Daniel; Surace, Jason; Veilleux, Sylvain

    2001-04-01T23:59:59.000Z

    We present photometric observations of an apparent Type Iasupernova (SN Ia) at a redshift of approximately 1.7, the farthest SNobserved to date. The supernova, SN 1997, was discovered in a repeatobservation by the Hubble Space Telescope (HST) of the Hubble DeepField{North (HDF-N), and serendipitously monitored with NICMOS on HSTthroughout the Thompson et al. GTO campaign. The SN type can bedetermined from the host galaxy type: an evolved, red elliptical lackingenough recent star formation to provide a significant population ofcore-collapse supernovae. The classification is further supported bydiagnostics available from the observed colors and temporal behavior ofthe SN, both of which match a typical SN Ia. The photometric record ofthe SN includes a dozen flux measurements in the I, J, and H bandsspanning 35 days in the observed frame. The redshift derived from the SNphotometry, z = 1:7 plus or minus 0:1, is in excellent agreement with theredshift estimate of z = 1:65 plus or minus 0:15 derived from the U_300B_450 V_-606 I_814 J_110 J_125 H_160 H_165 K_s photometry of the galaxy.Optical and near-infrared spectra of the host provide a very tentativespectroscopic redshift of 1.755. Fits to observations of the SN provideconstraints for the redshift-distance relation of SNe Ia and a powerfultest of the current accelerating Universe hypothesis. The apparent SNbrightness is consistent with that expected in the decelerating phase ofthe preferred cosmological model, Omega_M approximately equal to 1/3;Omega_Lambda approximately equal to 2/3. It is inconsistent with greydust or simple luminosity evolution, candidate astrophysical effectswhich could mimic previous evidence for an accelerating Universe from SNeIa at z approximately equal to 0:5. We consider several sources ofpotential systematic error including gravitational lensing, supernovamisclassification, sample selection bias, and luminosity calibrationerrors. Currently, none of these effects alone appears likely tochallenge our conclusions. Additional SNe Ia at z>1 will be requiredto test more exotic alternatives to the accelerating Universe hypothesisand to probe the nature of dark energy.

  14. Celebrating DOE'sCleanup

    E-Print Network [OSTI]

    .S. Department of Energy (DOE) and Brookhaven National Laboratory management (the Lab) will celebrate a momentousCelebrating DOE'sCleanup Accomplishments then,now,andtomorrow U.S. Department of Energy Brookhaven-by-shovel, system-by-system, and project-by-project, incremental but progressive achievements were made

  15. Superfund Cleanups and Infant Health

    E-Print Network [OSTI]

    Currie, Janet

    We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989-2003 in ...

  16. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect (OSTI)

    Dennis, R.A.

    1995-12-01T23:59:59.000Z

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  17. Cleanup Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy Efficiency and Renewable Energy |Sites Cleanup

  18. Actions to Support Employees of Accelerated Closure Sites, 5/19/2000

    Broader source: Energy.gov [DOE]

    At present, there are approximately 400 employees assigned to accelerated closure sites. These sites are among our former nuclear production sites that are now being managed for clean up and...

  19. German engineers study UMTRA cleanup programs

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Two environmental engineers from Germany's WISMUT, the organization responsible for uranium tailings cleanup in that country, recently completed extensive training as part of a technology transfer program at the US DOE. For six weeks the two engineers studied the practices employed in the cleanup of the DOE's UMTRA (Uranium Mill Tailings Remedial Action) sites, hoping to gain insight into how Germany's own cleanup program should proceed.

  20. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    SciTech Connect (OSTI)

    BERGMAN TB

    2011-01-14T23:59:59.000Z

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.

  1. Sandia National Laboratories: radiation waste cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  2. Sandia National Laboratories: radioactive waste solution cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solution cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  3. Site Cleanup | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagement | Department of EnergyShaneShawnCleanup

  4. Development of EPA radiation site cleanup regulations

    SciTech Connect (OSTI)

    Burnett, J.

    1994-12-31T23:59:59.000Z

    This paper summarizes the EPA program to develop radiation site cleanup and identifies many of the issues related to that effort. The material is drawn from portions of the Agency`s Issues Paper on Radiation Site Cleanup Regulations (EPA 402-R-93-084). The site cleanup regulations will be designed to protect human health and the environment and to facilitate the cleanup of sites. EPA believes that developing specific cleanup standards for radionuclides will ensure consistent, protective, and cost-effective site remediation. They will apply to all Federal facilities such as those operated by the US Department of Energy (DOE), the US Department of Defense (DoD), and sites licensed by the US Nuclear Regulatory Commission (NRC) and its Agreement States.

  5. Environmental Remediation program to perform slope-side cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perform slope-side cleanup Environmental Remediation program to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory is performing a high-angle...

  6. DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development...

    Energy Savers [EERE]

    DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development Milestone DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development Milestone February 19, 2015...

  7. DOE Selects 8(a) Small Business for Technical Support Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Articles DOE Awards Small Business Contract to Support Cleanup of New York West Valley Demonstration Project DOE Awards Support Service Contract DOE Awards Small Business...

  8. Shell-Based Support Structures for Nb3Sn Accelerator Quadrupole Magnets

    SciTech Connect (OSTI)

    Ferracin, Paolo

    2008-05-19T23:59:59.000Z

    Shell-based support structures are being fabricated and tested as part of the development of large-aperture Nb{sub 3}Sn superconducting quadrupoles for future upgrades of the LHC Interaction Regions. These structures utilize water pressurized bladders for room-temperature pre-load control, and rely on a pre-tensioned aluminum shell to deliver a substantial part of the coil pre-stress during cool-down. The coil final pre-load is therefore monotonically approached from below, without overstressing the strain-sensitive conductor. This method has been adopted by the US LARP collaboration to test subscale racetrack coils (SQ series), 1 m long cos-theta coils (TQS series), and 4 m long magnets (LRS and LQS series). We present recent progress in the development of shell-based support structures, with a description of the principles of operations and the future plans.

  9. Experimental activities supporting commercial U.S. accelerator production of 99-Mo

    SciTech Connect (OSTI)

    Dale, Gregory E [Los Alamos National Laboratory; Chemerisov, Sergey D [ANL; Vandegrift, George F [ANL

    2010-01-01T23:59:59.000Z

    {sup 99m}Tc, the daughter product of {sup 99}Mo, is the most commonly used radioisotope for nuclear medicine in the U.S. Experiments are being performed at Los Alamos National Laboratory and Argonne National Laboratory to demonstrate production of {sup 99}Mo using accelerators. The {sup 100}Mo({gamma},n){sup 99}Mo reaction in an enriched {sup 100}Mo target is currently under investigation. Three scaled low-power production experiments using a 20-MeV electron linac at Argonne have been performed to date. Two of these experiments used natural Mo targets and produced a total of 613 {mu}C of {sup 99}Mo. The third experiment used an enriched {sup 100}Mo target and produced 10.5 mCi of {sup 99}Mo. Following irradiation the targets were dissolved and the low specific activity solution was processed through an ARSII generator from NorthStar Medical Radioisotopes. Yields of {sup 99m}Tc >95% have been observed.

  10. Hot-gas cleanup system model development. Volume I. Final report

    SciTech Connect (OSTI)

    Ushimaru, K.; Bennett, A.; Bekowies, P.J.

    1982-11-01T23:59:59.000Z

    This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

  11. Money crunch looms for Federal cleanup effort

    SciTech Connect (OSTI)

    Lobsenz, G.

    1992-12-03T23:59:59.000Z

    In an unprecedented acknowledgement that federal facility cleanup activities face a money crunch, a federal-state advisory panel is preparing a new strategy to avert enforcement showdowns when funding cuts prevent federal agencies from meeting legally required cleanup schedules set by states. In a draft report the panel said states must recognize that some cleanup [open quotes]milestones[close quotes] will have to be delayed due to budget pressures - a concession that will be politically difficult in some states. At the same time, the panel said federal agencies must be more forthcoming in working with states and local groups to determine how increasingly scarce resources will be distributed. As a general rule, the report recommended that federal agencies and state environmental officials agree on a [open quotes]fair share[close quotes] allocation method under which the pain of a budget cutback would be spread equally among all cleanup sites within an affected federal agency. That fair share approach would be altered only if the federal agency reached agreement with states that a funding cutback could be absorbed at selected sites without affecting any cleanup milestone.

  12. Accelerated cleanup at the 618-9 Burial Ground

    SciTech Connect (OSTI)

    Frain, J.M.

    1991-09-01T23:59:59.000Z

    This paper describes the time-critical expedited response action taken at a potentially uranium-contaminated solvent waste disposal trench on the Hanford Site, in southeastern Washington state. An expedited response was initiated to remove solvents, still contained in their original containers, to prevent them from leaching into the groundwater. Actions at the site were initiated in February and completed in May of 1991.

  13. accelerated cleanup program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. T. Chakravarty 96 The New Jersey Institute of Technology Technical Assistance for Brownfield Communities (NJIT TAB) Program for USEPA Regions 1, 2 and 3 is proud to be a...

  14. WIMAX TECHNOLOGY AT HANFORD: UPDATING INFRASTRUCTURE, ACCELERATING CLEANUP

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director of Transmission PlanningWICF Testing,|

  15. Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy Recovery Act Creates Jobs,

  16. Accelerating Cleanup focus on 2006 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARAManager(December 1982)SupplyContract

  17. Accelerating Clean-up at Savannah River | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDIT REPORT:Patricia Davies Deputy

  18. Recovery Act Investment Accelerates Cleanup Work at DOE's Paducah Site |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In additionEnergy

  19. The Use of the Hanford Onsite Packaging and Transportation Safety Program to Meet Cleanup Milestones Under the Hanford Site Cleanup 2015 Vision and the American Recovery and Reinvestment Act of 2009 - 12403

    SciTech Connect (OSTI)

    Lavender, John C. [CH2M HILL Plateau Remediation Company, Richland, WA 99354 (United States); Edwards, W. Scott [Areva Federal Services, Richland, WA 99354 (United States); Macbeth, Paul J.; Self, Richard J. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); West, Lori D. [Materials and Energy Corporation, Richland, WA 99354 (United States)

    2012-07-01T23:59:59.000Z

    The Hanford Site presents unique challenges in meeting the U.S. Department of Energy Richland Operations Office (DOE-RL) 2015 Cleanup Vision. CH2M Hill Plateau Remediation Company (CHPRC), its subcontractors, and DOE-RL were challenged to retrieve, transport and remediate a wide range of waste materials. Through a collaborative effort by all Hanford Onsite Central Plateau Cleanup Team Members, disposition pathways for diverse and seemingly impossible to ship wastes were developed under a DOE Order 460.1C-compliant Hanford Onsite Transportation Safety Program. The team determined an effective method for transporting oversized compliant waste payloads to processing and disposition facilities. The use of the onsite TSD packaging authorizations proved to be vital to safely transporting these materials for processing and eventual final disposition. The American Recovery and Reinvestment Act of 2009 (ARRA) provided additional resources to expedite planning and execution of these important cleanup milestones. Through the innovative and creative use of the TSD, the Hanford Onsite Central Plateau Cleanup Team Members have developed and are executing an integrated project plan that enables the safe and compliant transport of a wide variety of difficult-to-transport waste items, accelerating previous cleanup schedules to meet cleanup milestones. (authors)

  20. Upton bill offers clean-up incentives

    SciTech Connect (OSTI)

    Black, B. [Weinberg & Green, Baltimore, MD (United States)

    1994-07-01T23:59:59.000Z

    Like castor oil, the Superfund law can be difficult medicine to swallow, and no one wants to volunteer for a dose. Indeed, the law`s harsh and unbending liability scheme sometimes hinders the cleanup of contaminated property. Confronted with the choice of redeveloping an old {open_quotes}brownfield{close_quotes} urban industrial site or building at a pristine new {open_quotes}greenfield{close_quotes} location, most companies opt for the latter. The brownfield problem is especially troubling because the law often prevents voluntary cleanups at relatively low priority sites that usually don`t get caught up in the Superfund program. This paper describes the Upton Bill which would require the US EPA to establish cleanup standards for hazrdous substances, allow for public comment on a proposed response plan, and require a voluntary party to submit detailed annual reports and maintain records.

  1. Issues paper on radiation site cleanup regulations

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    EPA prepared the document to present issues, approaches, and preliminary analyses related to its development of radiation site cleanup regulations. It focuses exclusively on issues and approaches related to developing cleanup regulations; it does not address issues specific to waste management regulations, which will be addressed in a separate document. The first three chapters discuss Significant Issues, Regulatory Approaches, and Summary and Next Steps. Appendix A presents background information on radioactive waste and provides additional details of EPA coordination of its rulemaking effort. Appendix B discusses statutory authorities upon which EPA may base its cleanup regulations. Appendix C is a copy of the EPA/NRC MOU. Appendix D discusses the issues raised in NRC's Enhanced Participatory Rulemaking on Radiological Criteria for Decommissioning, in which EPA participated. Appendix E is a list of acronyms, and Appendix F is a glossary of terms used throughout the document.

  2. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    SciTech Connect (OSTI)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-02-01T23:59:59.000Z

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

  3. Recovery Act funds advance cleanup efforts at Cold War site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup efforts at Cold War site Recovery Act funds advance cleanup efforts at Cold War site A local small business, ARSEC Environmental, LLC, of White Rock, NM, won a 2 million...

  4. Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

  5. Voluntary Protection Program Onsite Review, Idaho Cleanup Project- October 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Idaho Cleanup Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  6. Studies of Plutonium Aerosol Resuspension at the Time of the Maralinga Cleanup

    SciTech Connect (OSTI)

    Shinn, J

    2003-08-01T23:59:59.000Z

    At the former nuclear test site at Maralinga, South Australia, soil cleanup began in October 1996 with the objective to remove the potential for residual plutonium (Pu) exposures to the public. In this case the cleanup was to restore access to the closed test site. The proposed long-term land use was primarily to be a hunting area for Pitjantjatjara (Aboriginal) people, but also presumably to be available to the public who might have an interest in the history of the site. The long-term management objective for the site was to allow casual use, but to prohibit habitation. The goal of this study is to provide an evaluation of the Maralinga soil cleanup in terms of potential long-term public inhalation exposures to particulate Pu, and in terms of a contribution to planning and conducting any such soil Pu-cleanup. Such cleanups might be carried out for example, on the Nevada Test Site in the United States. For Pu that has been deposited on the soil by atmospheric sources of finely divided particles, the dominant exposure pathway to humans is by inhalation. Other exposure pathways are less important because the Pu particles become oxidized into a nearly insoluble form, do not easily enter into the food chain, nor are they significantly transferred through the intestine to the bloodstream should Pu become ingested. The purpose of this report is to provide results of the Pu resuspension measurements made before, during, and after the Pu cleanup at Maralinga, to compare these against similar measurements made elsewhere, and to interpret the results as they relate to potential long-term public exposures. (Exposures to Pu in dust plumes produced by mechanical disturbance during cleanup are considered short-term, unlikely to be significant for purposes of this report, and are not included). A considerable amount of research had been conducted at Maralinga by the Australian Radiation Laboratory, now the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), prior to the cleanup (Johnston et al, 1992, Williams 1993, Johnston et al 1993, Burns et al 1994, Burns et al 1995). ARPANSA staff made major contributions to delineate the areas with Pu in the soil, to determine the degree of secondary soil contamination by fission products from nuclear testing, to measure Pu resuspension by wind erosion of the undisturbed soil, and to prepare assessments of the human health risk from residual soil Pu. In addition, ARPANSA supported the Maralinga cleanup to assure compliance with criteria set by an independent technical advisory committee. During the cleanup ARPANSA monitored the residual Pu in the soil and certified that the cleanup was complete according to the criteria. It was not the reduction in potential inhalation exposure that usually was the main driver of the cleanup, but the requirement to also remove individual hot particles and fragments. It is the residual microscopic particles of Pu in the soil, however, that have the potential for long-term human exposure. The resuspension of respirable-size Pu particles has been studied with specialized equipment at the Nevada Test Site (Gilbert et al 1988a, Gilbert et al 1988b, Shinn et al 1989, and Shinn 1992), and at Bikini and Enewetak in the Marshall Islands (Shinn et al 1997). These efforts were in large part contributed by the Health and Ecological Assessment Division, University of California, Lawrence Livermore National Laboratory (LLNL). The study reported here is a collaboration between ARPANSA and LLNL, and was jointly supported by the United States Department of Energy, and the Commonwealth of Australia Department of Primary Industry and Energy.

  7. DOE Awards Small Business Contract to Support Cleanup of New...

    Broader source: Energy.gov (indexed) [DOE]

    activities being performed at the West Valley Demonstration Project in western New York. The contract is an Indefinite DeliveryIndefinite Quantity (IDIQ) with a 4 million...

  8. EM Leads Successful Workshop Supporting Fukushima Cleanup | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM Highlights AdvisoryLeaders Visit

  9. ORISE: Supporting ARRA funded cleanup activities in Oak Ridge, Tenn.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOENurseResources EnvironmentalStatistical

  10. Report for EM-Initiated Program Supporting Cleanup is Available |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthern Supplement

  11. Nevada National Security Site Cleanup Information Is Just a Click...

    Office of Environmental Management (EM)

    National Security Site Cleanup Information Is Just a Click Away with Computer Map, Database - New Interactive Map Makes NNSS Data More Accessible to the Public Nevada National...

  12. Site Transition Process upon Completion of the Cleanup Mission...

    Office of Environmental Management (EM)

    218: Develop a Fact Sheet on Site Transition at On-going Mission Sites Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy...

  13. Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

  14. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30T23:59:59.000Z

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  15. Paducah Cleanup Milestones | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5 Accretion-of-DutiesPROPERTY3-0127 - In-Cleanup Milestones

  16. Cleanup Progress Report - 2010 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of0 Cleanup

  17. Cleanup Progress Report - 2012 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of02 Cleanup

  18. Cleanup Progress Report - 2013 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of02 Cleanup3

  19. Cleanup Progress Report - 2014 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of02 Cleanup34

  20. Los Alamos National Laboratory names cleanup subcontractors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwards Pollution Prevention AwardeesEnvironmentalCleanup

  1. Flue gas cleanup with hydroxyl radical reactions

    SciTech Connect (OSTI)

    Lee, Y.J.; Pennline, H.W.; Markussen, J.M.

    1990-02-01T23:59:59.000Z

    Electric discharge processes have been intensively tested for application to flue gas cleanup. Among the several means of OH- radical generation grouped as electric discharge, E-Beam irradiation is the one that has been most thoroughly studied. Corona glow discharge, especially pulsed corona glow discharge, on the other hand, has attracted attention recently, and several active research projects are being conducted in the United States, Japan, West Germany, and Italy. Other promising approaches for generating OH radicals efficiently are based on thermal or catalytic decomposition of OH-radical precursors. If mixing problems can be overcome to achieve homogeneous distribution of OH radicals in the flue gas stream, these methods may be applicable to flue gas cleanup. Because of their high OH-radical generation rates and potentially low capital costs, the following three approaches are recommended to be tested for their potential capability to remove SO{sub 2}/NO{sub x}: (1) H{sub 2}/O{sub 2} combustion in a hydrogen torch, (2) thermal decomposition of H{sub 2}O{sub 2}, and (3) catalytic decomposition of H{sub 2}O. Ideally, the OH radicals will convert SO{sub 2} and NO{sub x} to sulfuric acid and nitric acid. These acids or acid precursors would easily be removed from the flue gas by conventional technology, such as spray drying and wet limestone scrubbing. 67 refs., 2 tabs.

  2. FPGA Implementation of a Maze Routing Accelerator John A. Nestor

    E-Print Network [OSTI]

    Nestor, John A.

    . This has motivated several proposals for hardware accelerators. Direct grid accelerators (e.g., [2]) map a shortest-path connection if one exists. The algorithm represents the routing surface as a rectangular grid ) for a connection of distance d, and cleanup is O(N2 ) for an N X N grid. Multilayer routing is even more costly

  3. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  4. Architecture synthesis basis for the Hanford Cleanup system: First issue

    SciTech Connect (OSTI)

    Holmes, J.J. [comp.

    1994-06-01T23:59:59.000Z

    This document describes a set of candidate alternatives proposed to accomplish the Hanford Cleanup system functions defined in a previous work. Development of alternatives is part of a sequence of system engineering activities which lead to definition of all the products which, when completed, accomplish the cleanup mission. The alternative set is developed to functional level four or higher depending on need.

  5. Risk management: Reducing brownfield cleanup costs

    SciTech Connect (OSTI)

    Graves, N.

    1997-08-01T23:59:59.000Z

    Balancing environmental protection with economic vitality is crucial to maintaining competitiveness in world markets. One key initiative that has been identified as important to both environmental protection and the economy is the redevelopment of brownfields. Brownfield redevelopment can stimulate local economies that have been devastated by lost jobs and can recycle industrial land use, thereby preserving undeveloped lands. Many existing brownfield sites appear on the US Environmental Protection Agency`s (EPA) National Priority List (NPL), which designates over 1200 sites and is expected to grow to more than 2000 by the end of the decade. EPA estimates the cost of remediating the sites on the current list will approach $30 billion, with the average cost of remediating a site close to $25 million. Thousands of additional brownfield sites that do not appear on the NPL are listed under state cleanup programs.

  6. Building organizational technical capabilities: a new approach to address the office of environmental management cleanup challenges in the 21. century

    SciTech Connect (OSTI)

    Fiore, J.J.; Rizkalla, E.I. [Office of Environmental Management, The United States Dept. of Energy, Washington, D.C. (United States)

    2007-07-01T23:59:59.000Z

    The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the nations nuclear weapons program legacy wastes cleanup. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term, and a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. Several cleanup projects continued to experience schedule delays and cost growth. The schedule delays and cost growth have been attributed to several factors such as changes in technical scope, regulatory and safety considerations, inadequacy of acquisition approach and project management. This article will briefly review the background and schools of thought on strategic management and organizational change practiced in the United States over the last few decades to improve an organisation's competitive edge and cost performance. The article will briefly review examples such as the change at General Electric, and the recent experience obtained from the nuclear industry, namely the long-term response to the 1986 Chernobyl accident. The long-term response to Chernobyl, though not a case of organizational change, could provide some insight in the strategic management approaches used to address people issues. The article will discuss briefly EM attempts to accelerate cleanup over the past few years, and the subsequent paradigm shift. The paradigm shift targets enhancing and/or creating organizational capabilities to achieve cost savings. To improve its ability to address the 21. century environmental cleanup challenges and achieve cost savings, EM has initiated new corporate changes to develop new and enhance existing capabilities. These new and enhanced organizational capabilities include a renewed emphasis on basics, especially technical capabilities including safety, project management, acquisition management and people. The new enhanced organizational capabilities coupled with more effective communications; oversight and decision-making processes are expected to help EM meet the 21. century challenges. This article will focus on some of the initiatives to develop and enhance organizational technical capabilities. Some of these development initiatives are a part of DOE corporate actions to respond to the Defense Nuclear Facilities Safety Board (DNFSB) recommendations 93-3 and 2004-1. Other development initiatives have been tailored to meet EM specific needs for organizational capabilities such as case studies analysis and cost estimating. (authors)

  7. Basic Electropolishing Process Research and Development in Support of Improved Reliable Performance SRF Cavities for the Future Accelerator

    SciTech Connect (OSTI)

    H. Tian, C.E. Reece,M.J. Kelley

    2009-05-01T23:59:59.000Z

    Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nanosmoothness. Electropolishing is the technique of choice to be developed for high-field superconducting radiofrequency cavities. Electrochemical impedance spectroscopy (EIS) and related techniques point to the electropolishing mechanism of Nb in a sulfuric and hydrofluoric acid electrolyte of controlled by a compact surface salt film under F- diffusion-limited mass transport control. These and other findings are currently guiding a systematic characterization to form the basis for cavity process optimization, such as flowrate, electrolyte composition and temperature. This integrated analysis is expected to provide optimum EP parameter sets for a controlled, reproducible and uniform surface leveling for Nb SRF cavities.

  8. Headquarters Training Supports EM Field Sites

    Broader source: Energy.gov [DOE]

    GERMANTOWN, Md. – EM’s Office of Safety, Security and Quality Programs sponsored training for headquarters staff for nine days this month to help them better support the Cold War program’s cleanup sites around the complex.

  9. Tritium research laboratory cleanup and transition project final report

    SciTech Connect (OSTI)

    Johnson, A.J.

    1997-02-01T23:59:59.000Z

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

  10. Update of lessons learned from cleanup projects at Oak Ridge

    SciTech Connect (OSTI)

    Sleeman, R.C. [USDOE Oak Ridge Operations, TN (United States)

    1993-12-31T23:59:59.000Z

    The Oak Ridge Operations (ORO) of the US Department of Energy (DOE) has been actively pursuing environmental cleanup of chemically and radioactively contaminated sites for about 7 years. These cleanup projects are carried out under the regulatory requirements of the US Environmental Protection Agency and the various states in which the remedial sites are located. This paper updates and re-examines some of the successes and failures of Oak Ridge cleanup activities, with the intent of encouraging improvements in the areas of safety, project planning, quality assurance, training, and regulatory interactions in future remedial projects.

  11. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect (OSTI)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD; Schutz, Dustin [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD

    2013-11-01T23:59:59.000Z

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  12. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal...

    Office of Environmental Management (EM)

    June 21, 2011 Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin AIKEN, S.C. - American Recovery and Reinvestment Act workers re- cently cleaned up a second...

  13. PPPL's Earth Week features Colloquium on NYC green plan, cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL's Earth Week features Colloquium on NYC green plan, cleanup and awards By Jeanne Jackson DeVoe April 28, 2014 Tweet Widget Google Plus One Share on Facebook Volunteers clean...

  14. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment

    Broader source: Energy.gov [DOE]

    For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment...

  15. Radiation site cleanup regulation: An interim progress report

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    On October 18 and 19, 1993, the 13 members of the National Advisory Council on Environmental Policy and Technology (NACEPT) Subcommittee on Radiation Site Cleanup Regulations met in Washington D.C. at the invitation of EPA. The Subcommittee discussed a variety of topics relevant to the cleanup of sites contaminated with radiation, and to the regulations which EPA will promulgate to establish cleanup levels for radioactive sites. This Interim Progress Report: condenses and summarizes the major themes, issues, and concerns brought up during the NACEPT Subcommittee meeting in October; Provides a brief description of current Agency thinking regarding each of the major topic areas discussed by the NACEPT Subcommittee; and Serves as a discussion guide for NACEPT Subcommittee members. Four major topics were discussed by the NACEPT Subcommittee members during their first meeting in October 1993: Common Themes; Risk (or Cleanup Levels and Risk Levels); Future Land Use and Local Statutes; and Site-Specific Public Involvement.

  16. Cleanup Verification Package for the118-F-2 Burial Ground

    SciTech Connect (OSTI)

    J. M. Capron and K. A. Anselm

    2008-02-21T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-2 Burial Ground. This burial ground, formerly called Solid Waste Burial Ground No. 1, was the original solid waste disposal site for the 100-F Area. Eight trenches contained miscellaneous solid waste from the 105-F Reactor and one trench contained solid waste from the biology facilities.

  17. Composite filter aids for cleanup of additives

    SciTech Connect (OSTI)

    Rudenko, L.I.; Sklyar, V.Y.

    1984-03-01T23:59:59.000Z

    This article examines the properties of composite filter aids in additive cleanup using two- and three-component filter aid composites based on perlite, kieselguhr, diatomite, asbestos, and wood flour. Filtration tests were run on naphtha solutions of the additive zinc dialkyldithiophosphate. The laboratory studies indicate that composites of perlite and kieselguhr with fibrous materials (wood flour or asbestos) show great promise for the removal of solid contaminants from the zinc disalkydithiophosphate additive. The advantages of the filter aid composite based on perlite, kieselguhr, and wood flour in comparison with the two-component composites are the higher filtration rate (by 26%) and the smaller losses of additive (by a factor of 2.1) and isobutyl alcohol (by a factor of 1.6). It is demonstrated that the filtration rate with the three components is 50-60% higher than with the composite of perlite with kieselguhr. The filtration of the zinc dialkyldithiophosphate additive using the composite filter aid based on perlite, kieselguhr, and wood flour, has been adopted at the Volgograd Petroleum Refinery. Includes 2 tables.

  18. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  19. EM Recovery Act Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 1, 2011 DOE Completes Cleanup at New York, California Sites - Recovery Act funds accelerate cleanup; support job creation and footprint reduction WASHINGTON, D.C. - Last...

  20. Neutrino physics at accelerators

    E-Print Network [OSTI]

    Enrique Fernandez

    2006-07-16T23:59:59.000Z

    Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.

  1. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01T23:59:59.000Z

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

  2. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    SciTech Connect (OSTI)

    Zhu, Ming; Moorer, Richard [U.S. Department of Energy, Washington, DC 20585 (United States)] [U.S. Department of Energy, Washington, DC 20585 (United States)

    2013-07-01T23:59:59.000Z

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in integrated risk assessment that could assist in the EM prioritization efforts. (authors)

  3. Clean-up standards and pathways analysis methods

    SciTech Connect (OSTI)

    Devgun, J.S. [Argonne National Lab., IL (United States). Office of Waste Management Programs

    1993-12-31T23:59:59.000Z

    Remediation of a radioactively contaminated site requires that certain regulatory criteria be met before the site can be released for unrestricted future use. Since the ultimate objective of remediation is to protect the public health and safety, residual radioactivity levels remaining at a site after cleanup must be below certain preset limits or meet acceptable dose or risk criteria. This paper discusses cleanup standards for radioactively contaminated soils and describes the use of pathways analysis methods for deriving site-specific residual radioactivity guidelines. An example is provided in which a pathways analysis code (RESRAD) was used to establish such guidelines.

  4. Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory to perform slope-side cleanup near Smith's Marketplace The Lab is performing a...

  5. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01T23:59:59.000Z

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  6. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; The 118-H-6:3 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    SciTech Connect (OSTI)

    M. J. Appel

    2006-06-29T23:59:59.000Z

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).

  7. Cleanup Verification Package for the 618-2 Burial Ground

    SciTech Connect (OSTI)

    W. S. Thompson

    2006-12-28T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  8. Cleanup Verification Package for the 118-F-6 Burial Ground

    SciTech Connect (OSTI)

    H. M. Sulloway

    2008-10-02T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car.

  9. Idaho Cleanup Contractor Surpasses Significant Safety Milestones

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury.

  10. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    SciTech Connect (OSTI)

    GERBER, M.S.

    2007-05-24T23:59:59.000Z

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford has dramatically improved safety records, and cost effectively maintained and streamlined infrastructure and equipment that is impossibly old and in many cases ''extinct'' in terms of spare parts and vendor support. The story of Fluor's achievements at the Hanford Site - the oldest and most productive plutonium site in the world - is both inspiring and instructive.

  11. Accelerators and the Accelerator Community

    E-Print Network [OSTI]

    Malamud, Ernest

    2009-01-01T23:59:59.000Z

    for a PhD in accelerator physics was by E.O. Lawrence.of Beams) organizes accelerator physics sessions at APSstudents specializing in accelerator physics are not being “

  12. Combining innovative technology demonstrations with dense nonaqueous phase liquids cleanup

    SciTech Connect (OSTI)

    Hagood, M.C.; Koegler, K.J.; Rohay, V.J.; Trent, S.J. [Westinghouse Hanford Co., Richland, WA (United States); Stein, S.L.; Brouns, T.M.; McCabe, G.H.; Tomich, S. [Pacific Northwest Lab., Richland, WA (United States)

    1993-05-01T23:59:59.000Z

    Radioactively contaminated acidic aqueous wastes and organic liquids were discharged to the soil column at three disposal sites within the 200 West Area of the Hanford Site, Washington. As a result, a portion of the underlying groundwater is contaminated with carbon tetrachloride several orders of magnitude above the maximum contaminant level accepted for a drinking water supply. Treatability testing and cleanup actions have been initiated to remove the contamination from both the unsaturated soils to minimize further groundwater contamination and the groundwater itself. To expedite cleanup, innovative technologies for (1) drilling, (2) site characterization, (3) monitoring, (4) well field development, and (5) contaminant treatment are being demonstrated and subsequently used where possible to improve the rates and cost savings associated with the removal of carbon tetrachloride from the soils and groundwater.

  13. Site Cleanup Report for Sites PBF-33 and PBF-34

    SciTech Connect (OSTI)

    W. L. Jolley

    2007-01-16T23:59:59.000Z

    This document summaries the actions taken to remove asbestos-reinforced-concrete (transite) pipe and miscellaneous debris from Power Purst Facility (PBF)-33 and PBF-34 sites. Removal of pipe and debris were performed in November 2006 in accordance with the requirements discussed in notice of soil disturbance NSD-PBF-07-01. Debris at these two sites were classified as industrial waste that could be disposed at the Central Facilities Area (CFA) landfill at the Idaho National Laboratory. Asbestos removal was performed as Class IV asbestos cleanup work. All transite pipe was double bagged and dispositioned in the INL Landfill Complex at CFA. The remaining miscellaneous debris was loaded into dump trucks and taken to the INL Landfill Complex at CFA for final disposition. Cleanup actions are complete for both sites, and no debris or hazardous constituents remain. Therefore, both sites will be classified as No action sites.

  14. Cleanup Verification Package for the 618-8 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-08-10T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.

  15. Cleanup Verification Package for the 618-3 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-09-12T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-3 Solid Waste Burial Ground, also referred to as Burial Ground Number 3 and the Dry Waste Burial Ground Number 3. During its period of operation, the 618-3 site was used to dispose of uranium-contaminated construction debris from the 311 Building and construction/demolition debris from remodeling of the 313, 303-J and 303-K Buildings.

  16. Polarization Losses under Accelerated Stress Test Using Multiwalled...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells. Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon...

  17. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    SciTech Connect (OSTI)

    Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when it is required for hot operations. - Ensure immobilized waste and waste recycle streams can be recei

  18. Recovery Act Helps Y-12 Exceed Cleanup Goal at Manhattan Project...

    National Nuclear Security Administration (NNSA)

    Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era Building | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  19. Recovery Cleanup Project at Y-12 Leaves Alpha 5 with an Empty...

    National Nuclear Security Administration (NNSA)

    Cleanup Project at Y-12 Leaves Alpha 5 with an Empty Feeling | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  20. Richland Operations Office Completes Cleanup in Hanford’s 300 Area North Section

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM met a Tri-Party Agreement milestone by completing cleanup of the north portion of Hanford’s 300 Area.

  1. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  2. Environmental Cleanup of the Idaho National Laboratory Status Report

    SciTech Connect (OSTI)

    Schubert, A.L. [CH2M.WG Idaho, LLC, Idaho Falls, Idaho (United States)

    2008-07-01T23:59:59.000Z

    This paper describes the status of the cleanup of the U.S. Department of Energy's Idaho National Laboratory site (INL). On May 1, 2005 CH2M.WG Idaho, LLC (CWI) began its 7-year, $2.4 billion cleanup of the INL. When the work is completed, 3,406,871 liters (900,000 gallons) of sodium-bearing waste will have been treated; 15 high-level waste tanks will have been grouted and Resource Conservation and Recovery Act (RCRA)- closed; more than 200 facilities will have been demolished or disposed of, including three reactors, several spent fuel basins, and hot cells; thousands of containers of buried transuranic waste will have been retrieved; more than 8,000 cubic meters (10,464 cubic yards) of contact-handled transuranic waste and more than 500 cubic meters (654 cubic yards) of remote-handled transuranic waste will have been characterized, packaged, and shipped offsite; almost 200 release sites and voluntary consent order tank systems will have been remediated; and 3,178 units of spent fuel will have been moved from wet to dry storage. In 2007, CWI began the construction of the Integrated Waste Treatment Unit that will treat the sodium-bearing waste for eventual disposal; removed and disposed the 112-ton Engineering Test Reactor vessel; demolished all significant radiological facilities at Test Area North; continued the exhumation of buried transuranic wastes from the Subsurface Disposal Area at the Radioactive Waste Management Complex; shipped the first of hundreds of containers of remote-handled transuranic waste to the Waste Isolation Pilot Plant; disposed of thousands of cubic meters of low-level and low-level mixed radioactive wastes both onsite and offsite while meeting all regulatory cleanup objectives. (author)

  3. Cleanup Verification Package for the 116-K-2 Effluent Trench

    SciTech Connect (OSTI)

    J. M. Capron

    2006-04-04T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.

  4. Cleanup Verification Package for the 118-F-1 Burial Ground

    SciTech Connect (OSTI)

    E. J. Farris and H. M. Sulloway

    2008-01-10T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  5. DOE Completes TRU Waste Cleanup at Bettis | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at Bettis DOE Completes TRU Waste

  6. EM Tackles Cleanup at Tonopah Test Range | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM Recovery Act PressEMTackles Cleanup at

  7. Groundwater Cleanup Progresses at Paducah Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 BudgetGoals andSenate | DepartmentGroundwater Cleanup

  8. Final Rocky Flats Cleanup Agreement, July 19, 1996 Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Departmentof Ohio Environmental Protection AgencyFinalRocky Flats Cleanup

  9. Recovery Act funds advance cleanup efforts at Cold War site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved Justification MemorandaRecords Management TheCleanup

  10. Mercury cleanup efforts intensify | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRod EggertMercury cleanup efforts ... Mercury

  11. Accelerated cleanup of mixed waste units on the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Patterson, J.K.; Johnson, W.L.; Downey, H.D.

    1993-09-01T23:59:59.000Z

    This report provides a status of the expedited response action (ERA) projects currently being implemented at the Hanford Site. A detailed review of the accomplishments to date, the technologies employed, the problems encountered, and an analysis of the lessons learned are included. A total of nine ERAs have been initiated at the Hanford Site and are presented in a case study format with emphasis on the progress being made and the challenges ahead.

  12. Recovery Act funding accelerates cleanup of Idaho Site, Creates jobs in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting MicroscopyJune 2011 $322.6M $259M as

  13. The Radiological Research Accelerator THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    The Radiological Research Accelerator Facility #12;84 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY Director: David J. Brenner, Ph.D., D.Sc., Manager: Stephen A. Marino, M.S. An NIH SupportedV/µm 4 He ions using the microbeam facility (Exp. 73) also continued. The transformation frequency

  14. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09T23:59:59.000Z

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  15. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    SciTech Connect (OSTI)

    Pennline, Henry W.; Hoffman, James S.

    2013-10-01T23:59:59.000Z

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  16. Remediation cleanup options for the Hoe Creek UCG site

    SciTech Connect (OSTI)

    Nordin, J.; Griffin, W.; Chatwin, T.; Lindblom, S.; Crader, S.

    1990-03-01T23:59:59.000Z

    The US Department of Energy must restore groundwater quality at the Hoe Creek, Wyoming, underground coal gasification site using the best proven practicable technology. Six alternative remediation methods are evaluated in this project: (1) excavation, (2) three variations of groundwater plume containment, (3) in situ vacuum extraction, (4) pump and treat using a defined pattern of pumping wells to obtain an effective matrix sweep, (5) in situ flushing using a surfactant, and (6) in situ bioremediation. Available site characterization data is insufficient to accurately project the cost of remediation. Several alternative hypothetical examples and associated costs are described in the text and in the appendices. However, not enough information is available to use these examples as a basis for comparison purposes. Before a cleanup method is selected, core borings should be taken to define the areal extent and depth of contaminated matrix material. Segments of these core borings should be analyzed for organic contaminants in the soil (e.g., benzene) and their relationship to the groundwater contamination. These analyses and subsequent treatability studies will show whether or not the contaminants can be effectively removed by surface on in situ volatilization, leached from the matrix using washing solutions, or removed by bioremediation. After this information is obtained, each technology should be evaluated with respect to cost and probability of success. A decision tree for implementing remediation cleanup at the Hoe Creek site is presented in this report. 26 refs., 11 figs., 3 tabs.

  17. The Sustainable Building-Accelerator 

    E-Print Network [OSTI]

    Maassen, W.H.

    2011-01-01T23:59:59.000Z

    stages to generate optimal design solutions. The ''Sustainable Building - Accelerator'' supports stakeholders to decide on sustainable solutions by giving them cost and benefit information of design solutions. This information provides them...

  18. Development of a risk-based approach to Hanford Site cleanup

    SciTech Connect (OSTI)

    Hesser, W.A.; Daling, P.M. [Pacific Northwest Lab., Richland, WA (United States); Baynes, P.A. [Westinghouse Hanford Co., Richland, WA (United States)] [and others

    1995-06-01T23:59:59.000Z

    In response to a request from Mr. Thomas Grumbly, Assistant Secretary of Energy for Environmental Management, the Hanford Site contractors developed a conceptual set of risk-based cleanup strategies that (1) protect the public, workers, and environment from unacceptable risks; (2) are executable technically; and (3) fit within an expected annual funding profile of 1.05 billion dollars. These strategies were developed because (1) the US Department of Energy and Hanford Site budgets are being reduced, (2) stakeholders are dissatisfied with the perceived rate of cleanup, (3) the US Congress and the US Department of Energy are increasingly focusing on risk and riskreduction activities, (4) the present strategy is not integrated across the Site and is inconsistent in its treatment of similar hazards, (5) the present cleanup strategy is not cost-effective from a risk-reduction or future land use perspective, and (6) the milestones and activities in the Tri-Party Agreement cannot be achieved with an anticipated funding of 1.05 billion dollars annually. The risk-based strategies described herein were developed through a systems analysis approach that (1) analyzed the cleanup mission; (2) identified cleanup objectives, including risk reduction, land use, and mortgage reduction; (3) analyzed the existing baseline cleanup strategy from a cost and risk perspective; (4) developed alternatives for accomplishing the cleanup mission; (5) compared those alternatives against cleanup objectives; and (6) produced conclusions and recommendations regarding the current strategy and potential risk-based strategies.

  19. Micellar/Polymer PhysicalProperty Models for Contaminant Cleanup Problems and

    E-Print Network [OSTI]

    Trangenstein, John A.

    /polymer phase behavior have been highly successful in simulating enhanced oil recovery processes using for contaminant cleanup [26] and for enhanced oil recovery [14]. Surfactants can be injected as dilute aqueousMicellar/Polymer Physical­Property Models for Contaminant Cleanup Problems and Enhanced Oil

  20. Waste Cleanup: Status and Implications of Compliance Agreements Between DOE and Its Regulators

    SciTech Connect (OSTI)

    Jones, G. L.; Swick, W. R.; Perry, T. C.; Kintner-Meyer, N.K.; Abraham, C. R.; Pollack, I. M.

    2003-02-26T23:59:59.000Z

    This paper discusses compliance agreements that affect the Department of Energy's (DOE) cleanup program. Compliance agreements are legally enforceable documents between DOE and its regulators, specifying cleanup activities and milestones that DOE has agreed to achieve. Over the years, these compliance agreements have been used to implement much of the cleanup activity at DOE sites, which is carried our primarily under two federal laws - the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended (CERCLA) and the Resource Conservation and Recovery Act of 0f 1976, as amended (RCRA). Our objectives were to determine the types of compliance agreements in effect at DOE cleanup sites, DOE's progress in achieving the milestones contained in the agreements, whether the agreements allowed DOE to prioritize work across sites according to relative risk, and possible implications the agreements have on DOE's efforts to improve the cleanup program.

  1. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04T23:59:59.000Z

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  2. Advanced environmental control technology for flue gas cleanup

    SciTech Connect (OSTI)

    Pennline, H.W.; Drummond, C.J.

    1987-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) oversees a substantial research and development effort to develop advanced environmental control technology for coal-fired sources. This Flue Gas Cleanup Program is currently divided into five areas: combined SO/sub 2//NO/sub x/ control, SO/sub 2/ control, particulate control, NO/sub x/ control, and small-scale boiler emission control. Projects in these areas range from basic research studies to proof-of-concept-scale evaluations. Projects in the DOE program are conducted by universities, national laboratories, industrial organizations, and in-house research at the Pittsburgh Energy Technology Center. An overview of the program, together with brief descriptions of the status of individual projects are given.

  3. RCRA corrective action: Action levels and media cleanup standards

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This Information Brief describes how action levels (ALs), which are used to determine if it is necessary to perform a Corrective Measures Study (CMS), and media cleanup standards (MCSs), which are used to set the standards for remediation performed in conjunction with Corrective Measures Implementation (CMI) are set. It is one of a series of Information Briefs on RCRA Corrective Action. ALs are health-and-environmentally-based levels of hazardous constituents in ground water, surface water, soil, or air, determined to be indicators for protection of human health and the environment. In the corrective action process, the regulator uses ALs to determine if the owner/operator of a treatment, storage, or disposal facility is required to perform a CMS.

  4. Accelerate Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Energy Productivity 2030 Over the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake...

  5. Development of a Calicum-Based Sorbent for Hot Gas Cleanup.

    SciTech Connect (OSTI)

    Wheelock, T.W.; Constant, K.; Doraiswamy, L.K.; Akiti, T.; Zhu, J.; Amanda, A.; Roe, R.

    1997-09-01T23:59:59.000Z

    Further review of the technical literature has provided additional information which will support the development of a superior calcium-based sorbent for hot gas cleanup in IGCC systems. Two general methods of sorbent preparation are being investigated. One method involves impregnating a porous refractory substrate with calcium while another method involves pelletizing lime or other calcium containing materials with a suitable binder. Several potential substrates, which are made of alumina and are commercially available, have been characterized by various methods. The surface area and apparent density of the materials have been measured, and it has been shown that some of the high surface area materials (i.e., 200-400 m{sub 2}/g) undergo a large decrease in surface area when heated to higher temperatures. Some of the lower surface area materials (i.e., 1-30 m{sub 2}/g) have been successfully impregnated with calcium by soaking them in a calcium nitrate solution and then heat treating them to decompose the nitrate. Potentially useful sorbents have also been prepared by pelletizing type I Portland cement and mixtures of cement and lime.

  6. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOE Patents [OSTI]

    Zeren, J.D.

    1993-12-28T23:59:59.000Z

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet. 5 figures.

  7. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOE Patents [OSTI]

    Zeren, Joseph D. (390 Forest Ave., Boulder, CO 80304)

    1993-12-28T23:59:59.000Z

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet.

  8. Investigation of the moving-bed copper oxide process for flue gas cleanup

    SciTech Connect (OSTI)

    Pennline, H.W.; Hoffman, J.S.; Yeh, J.T. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Resnik, K.P.; Vore, P.A. [Parsons Power Group, Inc., Pittsburgh, PA (United States)

    1996-12-31T23:59:59.000Z

    The Moving-Bed Copper Oxide Process is a dry, regenerable sorbent technique that uses supported copper oxide sorbent to simultaneously remove SO{sub 2} and NO{sub x} emissions from flue gas generated by coal combustion. The process can be integrated into the design of advanced power systems, such as the Low-Emission Boiler System (LEBS) or the High-Performance Power System (HIPPS). This flue gas cleanup technique is currently being evaluated in a life-cycle test system (LCTS) with a moving-bed flue gas contactor at DOE`s Pittsburgh Energy Technology Center. An experimental data base being established will be used to verify reported technical and economic advantages, optimize process conditions, provide scaleup information, and validate absorber and regenerator mathematical models. In this communication, the results from several process parametric test series with the LCTS are discussed. The effects of various absorber and regenerator parameters on sorbent performance (e.g., SO{sub 2} removal) were investigated. Sorbent spheres of 1/8-in diameter were used as compared to 1/16-in sized sorbent of a previous study. Also discussed are modifications to the absorber to improve the operability of the LCTS when fly ash is present during coal combustion.

  9. EM’s December Newsletter Recaps Cold War Cleanup Accomplishments in 2013

    Broader source: Energy.gov [DOE]

    On Dec. 19, EM completed demolition of the 4.8 million-square-foot Building K-25 at Oak Ridge, a milestone that capped a busy and successful 2013 for the Cold War cleanup program.

  10. EA-1345: Cleanup and Closure of the Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    DOE prepared an EA and finding of no significant impact (FONSI) for cleanup and closure of DOE’s Energy Technology Engineering Center at the Santa Susana Field Laboratory in 2003. However, DOE’s...

  11. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACME - AcceleratedAccelerating

  12. Active-to-Passive Environmental Cleanup Transition Strategies - 13220

    SciTech Connect (OSTI)

    Gaughan, Thomas F. [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States); Aylward, Robert S.; Denham, Miles E.; Looney, Brian B. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Whitaker, Wade C. [Department of Energy - Savannah River, Savannah River Site, Aiken, SC 29808 (United States)] [Department of Energy - Savannah River, Savannah River Site, Aiken, SC 29808 (United States); Mills, Gary L. [Savannah River Ecology Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Ecology Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site uses a graded approach to environmental cleanup. The selection of groundwater and vadose zone remediation technologies for a specific contamination area is based on the size, contaminant type, contaminant concentration, and configuration of the plume. These attributes are the result of the nature and mass of the source of contamination and the subsurface characteristics in the area of the plume. Many large plumes consist of several zones that are most efficiently addressed with separate complementary corrective action/remedial technologies. The highest concentrations of contaminants are found in the source zone. The most robust, high mass removal technologies are often best suited for remediation of the source zone. In the primary plume zone, active remedies, such as pump-and-treat, may be necessary to remove contaminants and exert hydraulic control of the plume. In the dilute fringe zone, contaminants are generally lower in concentration and can often be treated with passive techniques. A key determination in achieving an acceptable and cost-effective end state for a given waste unit is when to transition from an active treatment system to a more passive or natural approach (e.g., monitored natural attenuation or enhanced attenuation). This paper will discuss the considerations for such a transition as well as provide examples of successful transitions at the Savannah River Site. (authors)

  13. Alternative formulations of regenerable flue gas cleanup catalysts

    SciTech Connect (OSTI)

    Mitchell, M.B.; White, M.G.

    1991-01-01T23:59:59.000Z

    The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

  14. SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014 OBJECTIVES: The SUNY Technology Accelerator Fund ("TAF") provides funding to support the advancement of SUNY technologies from the lab to the marketplace. In many cases, SUNY technology developed

  15. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  16. DOE Awards Small Business Contract to Support Cleanup of New York West

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshoreDepartment ofHandling Services

  17. DOE Awards Small Business Contract to Support Cleanup of New York West

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTP DOE AwardsDepartment

  18. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui (Los Alamos, NM); Barnes, Cris W. (Santa Fe, NM)

    2002-01-01T23:59:59.000Z

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  19. Deuterium accelerator experiments for APT.

    SciTech Connect (OSTI)

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01T23:59:59.000Z

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  20. Accelerating deactivation

    SciTech Connect (OSTI)

    FISHBACK, K.M.

    1999-02-01T23:59:59.000Z

    In recent years, the focus of the U.S. Department of Energy (DOE) complex has shifted from defense production to facility stabilization, decommissioning, and environmental restoration. This shift from production to cleanup requires a parallel shift from operations-focused management to project-focused management for an efficient facility deactivation. In the operation-focused management organization, activities are planned and executed based on production goals and are typically repetitive and cyclic. In the project-focused management environment, activities are based on a defined scope/end objective, start date, and completion date. Since the workforce used to perform production operations is also usually relied onto perform facility deactivation, it is important to shift from an operations management approach to a project management approach. It is best if the transition is accomplished quickly so the project can move forward and workers don't spend a lot of energy anticipating change. Therefore, it is essential that managers, planners, and other workers understand the key elements associated with planning a deactivation project. This paper describes a planning approach that has been used successfully to plan deactivation projects consistent with the requirements provided in DOE Order 430.1A Life Cycle Asset Management and the companion Deactivation Implementation Guide, G430. 1A-3, while exceeding schedule expectations and reducing costs. Although the planning of a deactivation project closely mirrors the classic project planning for construction projects, there are unique variations associated with facility deactivation. The key elements of planning a deactivation project are discussed relative to scope, schedule, and cost. Management tools such as project metrics and histograms are discussed as desired outputs from the planning process. In addition, lessons learned from planning deactivation projects across the DOE complex are discussed relative to making the transition from operations management to project management and the implications for deactivation project planning.

  1. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    SciTech Connect (OSTI)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23T23:59:59.000Z

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to treat these wastes as transuranic waste (TRU) for disposal at the Waste Isolation Pilot Plant (WIPP), which will reduce the WTP system processing time by three years. We are also developing and testing bulk vitrification as a technology to supplement the WTP LAW vitrification facility for immobilizing the massive volume of LAW. We will conduct a full-scale demonstration of the Demonstration Bulk Vitrification System by immobilizing up to 1,100 m{sup 3} (300,000 gallons) of tank S-109 low-curie soluble waste from which Cs-137 had previously been removed. This past year has been marked by both progress and new challenges. The focus of our tank farm work has been retrieving waste from the old single-shell tanks (SSTs). We have completed waste retrieval from three SSTs and are conducting retrieval operations on an additional three SSTs. While most waste retrievals have gone about as expected, we have faced challenges with some recalcitrant tank heel wastes that required enhanced approaches. Those enhanced approaches ranged from oxalic acid additions to deploying a remote high-pressure water lance. As with all large, long-term projects that employ first of a kind technologies, we continue to be challenged to control costs and maintain schedule. However, it is most important to work safely and to provide facilities that will do the job they are intended to do.

  2. ACCELERATE ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    will stimulate innovation, optimize domestic industry practices, support domestic energy production and bolster job creation. 1 Doubling energy productivity means powering more...

  3. MUON ACCELERATION

    SciTech Connect (OSTI)

    BERG,S.J.

    2003-11-18T23:59:59.000Z

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  4. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 113 RARAF - Table of Contents RARAF Professional · ANNUAL REPORT 2007 114 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER................................................................................................................................................114 Development of Facilities

  5. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents RARAF Professional Staff RESEARCH ANNUAL REPORT 2009 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE................................................................................................................................................101 Development of Facilities

  6. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 118 RARAF Table of Contents RARAF Professional ANNUAL REPORT 2008 119 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER................................................................................................................................................119 Development of Facilities

  7. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 117 RARAF - Table of Contents RARAF Professional RESEARCH · ANNUAL REPORT 2010 118 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE................................................................................................................................................117 Development of Facilities

  8. An Act Relative to Environmental Cleanup and Promoting the Redevelopment of Contaminated Property- The “Brownfields” Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The Commonwealth of Massachusetts provides liability relief and financial incentives aimed to encourage cleanup and redevelopment of contaminated sites. Financial incentives include encouraging...

  9. EM Risk and Cleanup Decision Making Presentation by Mark Gilbertson...

    Office of Environmental Management (EM)

    * Actual and anticipated funding www.em.doe.gov 7 * Actual and anticipated funding * Ecological impacts * "Mortgage" reduction * Support to other agency missions * Technology...

  10. Accelerators and the Accelerator Community

    SciTech Connect (OSTI)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01T23:59:59.000Z

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  11. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final [report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards.

  12. Application of Diagnostic/Prognostic Methods to Critical Equipment for the Spent Nuclear Fuel Cleanup Program

    SciTech Connect (OSTI)

    Casazza, Lawrence O.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Wallace, Dale E.

    2002-02-28T23:59:59.000Z

    The management of the Spent Nuclear Fuel (SNF) project at the Hanford K-Basin in the 100 N Area has successfully restructured the preventive maintenance, spare parts inventory requirements, and the operator rounds data requirements. In this investigation, they continue to examine the different facets of the operations and maintenance (O&M) of the K-Basin cleanup project in search of additional reliability and cost savings. This report focuses on the initial findings of a team of PNNL engineers engaged to identify potential opportunities for reducing the cost of O&M through the application of advanced diagnostics (fault determination) and prognostics (residual life/reliability determination). The objective is to introduce predictive technologies to eliminate or reduce high impact equipment failures. The PNNL team in conjunction with the SNF engineers found the following major opportunities for cost reduction and/or enhancing reliability: (1) Provide data routing and automated analysis from existing detection systems to a display center that will engage the operations and engineering team. This display will be operator intuitive with system alarms and integrated diagnostic capability. (2) Change operating methods to reduce major transients induced in critical equipment. This would reduce stress levels on critical equipment. (3) Install a limited sensor set on failure prone critical equipment to allow degradation or stressor levels to be monitored and alarmed. This would provide operators and engineers with advance guidance and warning of failure events. Specific methods for implementation of the above improvement opportunities are provided in the recommendations. They include an Integrated Water Treatment System (IWTS) decision support system, introduction of variable frequency drives on certain pump motors, and the addition of limited diagnostic instrumentation on specified critical equipment.

  13. Peculiar acceleration

    E-Print Network [OSTI]

    Luca Amendola; Claudia Quercellini; Amedeo Balbi

    2007-08-08T23:59:59.000Z

    It has been proposed recently to observe the change in cosmological redshift of distant galaxies or quasars with the next generation of large telescope and ultra-stable spectrographs (the so-called Sandage-Loeb test). Here we investigate the possibility of observing the change in peculiar velocity in nearby clusters and galaxies. This ``peculiar acceleration'' could help reconstructing the gravitational potential without assuming virialization. We show that the expected effect is of the same order of magnitude of the cosmological velocity shift. Finally, we discuss how to convert the theoretical predictions into quantities directly related to observations.

  14. ACCELERATE ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy ThisThistheSummaryACCELERATE ENERGY

  15. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) -Choices toLeeLinear Accelerator

  16. Integration of a high efficiency flue gas cleanup process into advanced power systems

    SciTech Connect (OSTI)

    Hoffman, J.S.; Pennline, H.W.; Yeh, J.T.; Ratafia-Brown, J.A.; Gorokhov, V.A.

    1994-12-31T23:59:59.000Z

    The Moving-Bed Copper Oxide Process, a dry, regenerable flue gas cleanup technology, can simultaneously remove sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emissions from the flue gases generated by coal combustion. While this advanced air pollution abatement process technology has only been previously considered for conventional utility system applications, its unique design characteristics make it quite advantageous for use in advanced power systems, such as those pulverized-coal-fired systems defined in the US Department of Energy`s Combustion 2000 Initiative. Integration of this flue gas cleanup process into the advanced power systems is technically and economically assessed and compared with several commercially available flue gas cleanup processes. An update on the status of the Moving-Bed Copper oxide Process development is also presented.

  17. SLAC National Accelerator Laboratory Persis Drell, Director

    E-Print Network [OSTI]

    Quake, Stephen R.

    . Reichanadter, Acting ALD L. Dardzinski Interim Assistant Director LCLS Directorate J. Stöhr, ALD U. Bergmann, Facilities LCLS-II John Galayda Mechanical Engineering and Technical Support Division K. Fant Accelerator Research Division E. Colby LCLS Accelerator Systems Division A. Brachmann Instrumentation & Controls

  18. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11T23:59:59.000Z

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  19. New Groundwater Treatment Facility Begins Operation: Boost in Cleanup

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment of EnergyAccelerated by Recovery Act Funding

  20. Accelerating QDP++ using GPUs

    E-Print Network [OSTI]

    Frank Winter

    2011-05-11T23:59:59.000Z

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an application example a smearing routine was accelerated to execute on a GPU. A significant speed-up compared to normal CPU execution could be measured.

  1. Twisted waveguides for particle accelerator applications

    E-Print Network [OSTI]

    Wilson, Joshua L.

    A novel microwave device for accelerating charged particles based on twisted waveguide is presented. Twisted guides support slow-wave TM modes whose phase velocity could reach the speed of light c. The axial electric field ...

  2. ``How clean is clean`` in the United States federal and Washington State cleanup regulations

    SciTech Connect (OSTI)

    Landau, H.G. [Landau Associates, Inc., Edmonds, WA (United States)

    1993-12-31T23:59:59.000Z

    The enactment of legislation and promulgation of implementing regulations generally involves the resolution of conflicting goals. Defining ``How Clean is Clean?`` in federal and state cleanup laws, regulations, and policies is no exception. Answering the ``How Clean is Clean?`` question has resulted in the identification of some important and sometimes conflicting goals. Continuing resolution of the following conflicting goals is the key to effect cleanup of hazardous waste sites: Expediency vs. Fairness; Flexibility vs. Consistency; Risk Reduction vs. Risk Causation; and Permanence vs. Cost Effectiveness.

  3. ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP

    SciTech Connect (OSTI)

    T.D. Wheelock; L.K. Doraiswamy; K.P. Constant

    2003-09-01T23:59:59.000Z

    The overall purpose of this project was to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas with the sorbent being in the form of small pellets made with a layered structure such that each pellet consists of a highly reactive lime core enclosed within a porous protective shell of strong but relatively inert material. The sorbent can be very useful for hot gas cleanup in advanced power generation systems where problems have been encountered with presently available materials. An economical method of preparing the desired material was demonstrated with a laboratory-scale revolving drum pelletizer. Core-in-shell pellets were produced by first pelletizing powdered limestone or other calcium-bearing material to make the pellet cores, and then the cores were coated with a mixture of powdered alumina and limestone to make the shells. The core-in-shell pellets were subsequently calcined at 1373 K (1100 C) to sinter the shell material and convert CaCO{sub 3} to CaO. The resulting product was shown to be highly reactive and a very good sorbent for H{sub 2}S at temperatures in the range of 1113 to 1193 K (840 to 920 C) which corresponds well with the outlet temperatures of some coal gasifiers. The product was also shown to be both strong and attrition resistant, and that it can be regenerated by a cyclic oxidation and reduction process. A preliminary evaluation of the material showed that while it was capable of withstanding repeated sulfidation and regeneration, the reactivity of the sorbent tended to decline with usage due to CaO sintering. Also it was found that the compressive strength of the shell material depends on the relative proportions of alumina and limestone as well as their particle size distributions. Therefore, an extensive study of formulation and preparation conditions was conducted to improve the performance of both the core and shell materials. It was subsequently determined that MgO tends to stabilize the high-temperature reactivity of CaO. Therefore, a sorbent prepared from dolomite withstands the effects of repeated sulfidation and regeneration better than one prepared from limestone. It was also determined that both the compressive strength and attrition resistance of core-in-shell pellets depend on shell thickness and that the compressive strength can be improved by reducing both the particle size and amount of limestone in the shell preparation mixture. A semiempirical model was also found which seems to adequately represent the absorption process. This model can be used for analyzing and predicting sorbent performance, and, therefore, it can provide guidance for any additional development which may be required. In conclusion, the overall objective of developing an economical, reusable, and practical material was largely achieved. The material appears suitable for removing CO{sub 2} from fuel combustion products as well as for desulfurizing hot coal gas.

  4. DECOMMISSIONING AND ENVRIONMENTAL CLEANUP OF SMALL ARMS TRAINING FACILITY

    SciTech Connect (OSTI)

    Kmetz, T.

    2012-12-04T23:59:59.000Z

    USDOE performed a (CERCLA) non-time critical removal (NTCR) action at the Small Arms Training Area (SATA) Site Evaluation Area (SEA) located at the Savannah River Site (SRS), in Aiken, South Carolina. From 1951 to May 2010, the SATA was used as a small weapons practice and qualifying firing range. The SATA consisted of 870.1 ha (2,150 ac) of woodlands and open field, of which approximately 2.9 ha (7.3 ac) were used as a firing range. The SATA facility was comprised of three small arms ranges (one static and two interactive), storage buildings for supplies, a weapons cleaning building, and a control building. Additionally, a 113- m (370-ft) long earthen berm was used as a target backstop during live-fire exercises. The berm soils accumulated a large amount of spent lead bullets in the berm face during the facilities 59- years of operation. The accumulation of lead was such that soil concentrations exceeded the U.S. Environmental Protection Agency (USEPA) residential and industrial worker regional screening levels (RSLs). The RSL threshold values are based on standardized exposure scenarios that estimate contaminant concentrations in soil that the USEPA considers protective of humans over a lifetime. For the SATA facility, lead was present in soil at concentrations that exceed both the current residential (400 mg/kg) and industrial (800 mg/kg) RSLs. In addition, the concentration of lead in the soil exceeded the Toxicity Characteristic Leaching Procedure (TCLP) (40 Code of Federal Regulations [CFR] 261.24) regulatory limit. The TCLP analysis simulates landfill conditions and is designed to determine the mobility of contaminants in waste. In addition, a principal threat source material (PTSM) evaluation, human health risk assessment (HHRA), and contaminant migration (CM) analysis were conducted to evaluate soil contamination at the SATA SEA. This evaluation determined that there were no contaminants present that constitute PTSM and the CM analysis revealed that no constituents posed a migration risk to groundwater. The NTCR action involved removal of approximately 12,092 m3 (15,816 yd3) of spent bullets and lead-impacted soil and off-site disposal. The removal action included soils from the berm area, a fill area that received scraped soils from the berm, and soil from a drainage ditch located on the edge of the berm area. Also included in the removal action was a mixture of soil, concrete, and asphalt from the other three range areas. Under this action, 11,796 m3 (15,429 yd3) of hazardous waste and impacted soil were removed from the SATA and transported to a permitted hazardous waste disposal facility (Lone Mountain Facility in Oklahoma) and 296 m3 (387 yd3) of nonhazardous waste (primarily concrete debris) were removed and transported to a local solid waste landfill for disposal. During the excavation process, the extent was continuously assessed through the use of a hand-held, field-portable X-ray fluorescence unit with results verified using confirmation sampling with certified laboratory analysis. Following the completion of the excavation and confirmation sampling, final contouring, grading, and establishment of vegetative cover was performed to stabilize the affected areas. The NTCR action began on August 17, 2010, and mechanical completion was achieved on April 27, 2011. The selected removal action met the removal action objectives (RAOs), is protective of human health and the environment both in the short- and long-term, was successful in removing potential ecological risks, and is protective of surface water and groundwater. Furthermore, the selected NTCR action met residential cleanup goals and resulted in the release of the SEA from restricted use contributing to the overall footprint reduction at SRS.

  5. DOE Cell Component Accelerated Stress Test Protocols for PEM...

    Broader source: Energy.gov (indexed) [DOE]

    CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies) March 2007 Fuel cells, especially for...

  6. Cell Component Accelerated Stress Test Protocols for PEM Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies) Revised May...

  7. Guardian Unlimited | The Guardian | Scientists see big role for uranium clean-up bug Sign in Register

    E-Print Network [OSTI]

    Lovley, Derek

    The Guardian Scientists have sequenced the DNA of a bacterium which can help to remove uranium fromGuardian Unlimited | The Guardian | Scientists see big role for uranium clean-up bug Sign big role for uranium clean-up bug Alok Jha, science correspondent Friday December 12, 2003

  8. Idaho Site’s Cold War Cleanup Takes Center Stage in Publication

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An association with more than 29,000 members featured an in-depth article on EM’s extensive Cold War legacy cleanup at the Idaho site in the current issue of its publication, The Military Engineer.

  9. CHEAP CLEAN-UP PROTOCOL To clean BigDye reactions

    E-Print Network [OSTI]

    Russell, Amy L.

    CHEAP CLEAN-UP PROTOCOL To clean BigDye reactions: 1. Combine and mix MgCl2/ethanol cocktail. 2. Air dry on a Kimwipe or pulse spin upside down. MgCl2/ethanol 1 µL 0.5M MgCl2 1000 µL 70% ethanol

  10. Cleanup Verification Package for the 100-F-20, Pacific Northwest Laboratory Parallel Pits

    SciTech Connect (OSTI)

    M. J. Appel

    2007-01-22T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 100-F-20, Pacific Northwest Laboratory Parallel Pits waste site. This waste site consisted of two earthen trenches thought to have received both radioactive and nonradioactive material related to the 100-F Experimental Animal Farm.

  11. BulletinVol. 64 -No. 4 February 5, 2010 Cleanup has begun in the stor-

    E-Print Network [OSTI]

    Ohta, Shigemi

    , based on the next prioritized building, and the next cleanup project will begin. -- Joe Gettler New technology programs with applications in energy efficiency, meteorologi- cal science, and national secu- rity. These research programs respond to DOE's mission to study the transport and fate of energy-related pollutants

  12. EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide cost-shared funding to RTI International (RTI) for its proposed project to demonstrate the precommercial scale-up of RTI’s high-temperature syngas cleanup and carbon capture and sequestration technologies.

  13. Roundtable on Long-Term Management In The Cleanup of Contaminated Sites

    SciTech Connect (OSTI)

    Aimee Houghton

    2002-06-28T23:59:59.000Z

    The Center for Public Environmental Oversight (CPEO) convened a roundtable in Washington, DC on June 28, 2002 to discuss innovative approaches to long-term management in the cleanup of contaminated property. Twenty participants attended the meeting, including representatives of federal agencies, local government, state regulatory agencies, environmental organizations, and thinking tanks, as well as private consultants with experience in site remediation and redevelopment.

  14. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect (OSTI)

    S. W. Clark and H. M Sulloway

    2007-10-31T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  15. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect (OSTI)

    S. W. Clark and H. M. Sulloway

    2007-09-26T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  16. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel and J. M. Capron

    2007-07-25T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  17. accident clean-up workers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident clean-up workers First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 COLUMBIA UNIVERSITY...

  18. Centralized digital control of accelerators

    SciTech Connect (OSTI)

    Melen, R.E.

    1983-09-01T23:59:59.000Z

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  19. for sequence accelerators

    E-Print Network [OSTI]

    Zakharov, Vladimir

    Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona April 17, 2012 #12;Wynn's -algorithm for sequence accelerators using high

  20. Multiorbit induction accelerators

    SciTech Connect (OSTI)

    Zvontsov, A.A.; Kas'yanov, V.A.; Chakhlov, V.L.

    1985-09-01T23:59:59.000Z

    Large numbers of particles accelerated per cycle are made possible by accelerating simultaneously in several equilibrium orbits in a single betatron structure. (AIP)

  1. ACCELERATOR TEST FACILITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY PHYSICS DEPARTMENT Effective: 04012004 Page 1 of 2 Subject: Accelerator Test Facility - Linear Accelerator General Systems Guide Prepared by: Michael Zarcone...

  2. Accelerator target

    DOE Patents [OSTI]

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29T23:59:59.000Z

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  3. Accelerator target

    DOE Patents [OSTI]

    Schlyer, David J. (Bellport, NY); Ferrieri, Richard A. (Patchogue, NY); Koehler, Conrad (Miller Place, NY)

    1999-01-01T23:59:59.000Z

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  4. Accelerated Decontamination and Decommissioning at the Hanford Site

    SciTech Connect (OSTI)

    Hughes, M.C.; Douglas, L.M.; Marske, S.G.

    1994-01-01T23:59:59.000Z

    The Hanford Site has over 100 facilities that have been declared surplus and are scheduled to be decommissioned. In addition to these surplus facilities, there is a significant number of facilities that are currently being shut down, deactivated, and transferred to the Decontamination and Decommissioning (D&D) program. In the last year, Westinghouse Hanford Company and the US Department of Energy, Richland Operations Office, have developed and implemented an initiative to accelerate the D&D work at the Hanford Site. The strategy associated with accelerated D&D is to reduce the number of surplus facilities, eliminate potential safety hazards, demonstrate meaningful cleanup progress, and recycle materials for other uses. This initiative has been extremely successful and has resulted in the safe demolition of 13 facilities in fiscal year (FY) 1993. In addition, four facilities have been completed in FY 1994 and demolition of several other facilities is currently underway.

  5. Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey

    SciTech Connect (OSTI)

    Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

    2002-02-27T23:59:59.000Z

    Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a vertical gradient reversal did not result in cross-contamination. The plan was executed through a hydrogeologic investigation culminating with the design and implementation of a complex, multi-phased dual-aquifer dewatering system equipped with a state of the art monitoring network.

  6. SLAC National Accelerator Laboratory Accelerator Physics Faculty Search

    E-Print Network [OSTI]

    Ford, James

    SLAC National Accelerator Laboratory Accelerator Physics Faculty Search The SLAC National Accelerator Laboratory invites applications for a faculty appointment in Accelerator Physics (LCLS), LCLS-II, SPEAR-3, NLC Test Accelerator (NLCTA), Cathode Test Facility (CTF), the proposed

  7. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  8. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22T23:59:59.000Z

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  9. Air pathway analysis for cleanup at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Chang, Y.S.

    1994-01-01T23:59:59.000Z

    The Weldon Spring site is a mixed waste site located in St. Charles County, Missouri. Cleanup of the site is in the planning and design stage, and various engineering activities were considered for remedial action, including excavating soils, dredging sludge, treating various contaminated media in temporary facilities, transporting and staging supplies and contaminated material, and placing waste in an engineered disposal cell. Both contaminated and uncontaminated emissions from these activities were evaluated to assess air quality impacts and potential health effects for workers and the general public during the cleanup period. A site-specific air quality modeling approach was developed to address several complex issues, such as a variety of emission sources, an array of source/receptor configurations, and complicated sequencing/scheduling. This approach can be readily adapted to reflect changes in the expected activities as engineering plans are finalized.

  10. Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel

    2007-01-01T23:59:59.000Z

    and Squillace, P. J. (2005). MTBE and gasoline hydrocarbonsP. J. (2004). The risk of MTBE relative to other VOCs inEPA to Settle Santa Monica MTBE Cleanup Costs, Press release

  11. Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs

    E-Print Network [OSTI]

    Wang, Yilin

    2009-05-15T23:59:59.000Z

    fluid cleanup is a complex problem, that can be influenced by many parameters such as the fluid system used, treatment design, flowback procedures, production strategy, and reservoir conditions. Residual polymer in the fracture can reduce the effective...

  12. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    for biomas-derived syngas. National Renewable EnergyM. Lesemann. RTI/Eastman warm syngas clean-up technology:v the composition of syngas from steam hydrogasification

  13. Status of Environmental Management Initiatives to Accelerate the Reduction of Environmental Risks and Challenges Posed by the Legacy of the Cold War

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    Fifty years of nuclear weapons production and energy research in the United States during the Cold War generated large amounts of radioactive wastes, spent nuclear fuel (SNF), excess plutonium and uranium, thousands of contaminated facilities, and contaminated soil and groundwater. During most of that half century, the Nation did not have the environmental regulatory structure or nuclear waste cleanup technologies that exist today. The result was a legacy of nuclear waste that was stored and disposed of in ways now considered unacceptable. Cleaning up and ultimately disposing of these wastes is the responsibility of the U.S. Department of Energy (DOE). In 1989, DOE established the Office of Environmental Management (EM) to solve the large scale and technically challenging risks posed by the world's largest nuclear cleanup. This required EM to build a new nuclear cleanup infrastructure, assemble and train a technically specialized workforce, and develop the technologies and tools required to safely decontaminate, disassemble, stabilize, disposition, and remediate unique radiation hazards. The sites where nuclear activities produced legacy waste and contamination include the original Manhattan Project sites--Los Alamos, New Mexico; Hanford, Washington; and Oak Ridge, Tennessee--as well as major Cold War sites, such as Savannah River Site, South Carolina; the Idaho National Laboratory, Idaho; Rocky Flats Plant, Colorado; and Fernald, Ohio. Today EM has responsibility for nuclear cleanup activities at 21 sites covering more than two million acres in 13 states, and employs more than 30,000 Federal and contractor employees, including scientists, engineers and hazardous waste technicians. This cleanup poses unique, technically complex problems, which must be solved under the most hazardous of conditions, and which will require billions of dollars a year for several more decades. The EM program focus during its first 10 years was on managing the most urgent risks and maintaining safety at each site while negotiating state and Federal environmental compliance agreements. The program also concentrated on characterizing waste and nuclear materials and assessing the magnitude and extent of environmental contamination. By the late 1990s, EM had made significant progress in identifying and characterizing the extent of contamination and cleanup required and began transitioning from primarily a characterization and stabilization program to an active cleanup and closure program. During that time, EM formulated multi-year cleanup and closure plans, which contributed to cleanup progress; however, reducing the overall environmental risk associated with the cleanup program remained a challenge. In response, the Secretary of Energy directed a review of the EM program be undertaken. The resulting 'Top-to Bottom Review' re-directed the program focus from managing risks to accelerating the reduction of these risks.

  14. Systems engineering product description report for the Hanford Cleanup Mission: First issue

    SciTech Connect (OSTI)

    Holmes, J.J.; Bailey, K.B. [Westinghouse Hanford Co., Richland, WA (United States); Collings, J.L.; Hubbard, A.B.; Niepke, T.M. [Science Applications International Corp. (United States)

    1994-06-01T23:59:59.000Z

    This document describes the upper level physical and administrative (nonphysical) products that, when delivered, complete the Hanford Cleanup Mission. Development of product descriptions is a continuation of the Sitewide Systems Engineering work described in the Sitewide functional analysis, the architecture synthesis, and is consistent with guidance contained in the mission plan. This document provides a bridge between all three documents and the products required to complete the mission of cleaning up the Hanford Site.

  15. Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground

    SciTech Connect (OSTI)

    J. M. Capron

    2008-01-21T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris.

  16. Cleanup Verification Package for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils

    SciTech Connect (OSTI)

    L. D. Habel

    2008-03-18T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils. The rectangular-shaped concrete basin on the south side of the 105-F Reactor building served as an underwater collection, storage, and transfer facility for irradiated fuel elements discharged from the reactor.

  17. The effects of fracture fluid cleanup upon the analysis of pressure buildup tests in tight gas reservoirs

    E-Print Network [OSTI]

    Johansen, Atle Thomas

    1988-01-01T23:59:59.000Z

    THE EFFECTS OF FRACTURE FLUID CLEANUP UPON THE ANALYSIS OF PRESSURE BUILDUP TESTS IN TIGHT GAS RESERVOIRS A Thesis by ATLE THOMAS JOHANSEN Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1988 Major Subject: Petroleum Engineering THE EFFECTS OF FRACTURE FLUID CLEANUP UPON THE ANALYSIS OF PRESSURE BUILDUP TESTS IN TIGHT GAS RESERVOIRS A Thesis by ATLE THOMAS JOHANSEN Approved...

  18. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site: Final. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Thorium 230 (Th-230) at the Gunnison, Colorado processing site will require remediation, however, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Therefore, to effectively remediate the site with respect to Radium 226 (Ra-226) and Th-230, the following supplemental standard is proposed: In situ Ra-26 will be remediated to the EPA soil cleanup standards independent of groundwater considerations. In situ Th-230 concentrations will be remediated in the region above the encountered water table so the 1000-year projected Ra-226 concentration complies with the EPA soil cleanup concentration limits. If elevated Th-230 persists to the water table, an additional foot of excavation will be performed and the grid will be backfilled. Excavated grids will be backfilled to the final remedial action grade with clean cobbly soil. Final grid verification that is required below the water table will be performed by extracting and analyzing a single bulk soil sample with the bucket of a backhoe. Modeled surface radon flux values will be estimated and documented. A recommendation will be made that land records should be annotated to identify the presence of residual Th-230.

  19. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)

    SciTech Connect (OSTI)

    Quimby, J.M.; Kumar, K.S.

    1992-01-01T23:59:59.000Z

    The objective of this contract was to investigate the removal of SO[sub x] and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO[sub x] removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800[degrees] and 2500[degrees]F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

  20. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1

    SciTech Connect (OSTI)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01T23:59:59.000Z

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

  1. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    SciTech Connect (OSTI)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01T23:59:59.000Z

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  2. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect (OSTI)

    Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Hughes, Thomas [Los Alamos National Laboratory; Anaya, Richard [LLNL; Caporaso, George [LLNL; Chambers, Frank [LLNL; Chen, Yu - Jiuan [LLNL; Falabella, Steve [LLNL; Guethlein, Gary [LLNL; Raymond, Brett [LLNL; Richardson, Roger [LLNL; Trainham, C [NSTEC/STL; Watson, Jim [LLNL; Weir, John [LLNL; Genoni, Thomas [VOSS; Toma, Carsten [VOSS

    2009-01-01T23:59:59.000Z

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  3. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOE Patents [OSTI]

    Grisham, Larry R

    2013-12-17T23:59:59.000Z

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  4. Some Frontiers of Accelerator Physics

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    Some Frontiers of Accelerator Physics A.M. Sessler OctoberSOME FRONTIERS OF ACCELERATOR PHYSICS* Andrew M. Sessleris Some Frontiers of Accelerator Physics and it is most

  5. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05T23:59:59.000Z

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  6. Acceleration of trapped particles and beams

    E-Print Network [OSTI]

    Er'el Granot; Boris Malomed

    2011-07-30T23:59:59.000Z

    The dynamics of a quantum particle bound by an accelerating delta-functional potential is investigated. Three cases are considered, using the reference frame moving along with the {\\delta}-function, in which the acceleration is converted into the additional linear potential. (i) A stationary regime, which corresponds to a resonance state, with a minimum degree of delocalization, supported by the accelerating potential trap. (ii) A pulling scenario: an initially bound particle follows the accelerating delta-functional trap, within a finite time. (iii) The pushing scenario: the particle, which was initially localized to the right of the repulsive delta-function, is shoved to the right by the accelerating potential. For the two latter scenarios, the life time of the trapped particle, and the largest velocity to which it can be accelerated while staying trapped, are found. Analytical approximations are developed for the cases of small and large accelerations in the pulling regime, and also for a small acceleration in the stationary situation, and in the regime of pushing. The same regimes may be realized by Airy-like planar optical beams guided by a narrow bending potential channel or crest. Physical estimates are given for an atom steered by a stylus of a scanning tunneling microscope (STM), and for the optical beam guided by a bending stripe.

  7. Muon Collider Progress: Accelerators

    E-Print Network [OSTI]

    Michael S. Zisman

    2011-09-14T23:59:59.000Z

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance ("cooling"). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  8. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  9. Entanglement of Accelerating Particles

    E-Print Network [OSTI]

    W. L. Ku; M. -C. Chu

    2007-09-03T23:59:59.000Z

    We study how the entanglement of a maximally entangled pair of particles is affected when one or both of the pair are uniformly accelerated, while the detector remains in an inertial frame. We find that the entanglement is unchanged if all degrees of freedom are considered. However, particle pairs are produced, and the entanglements of different bipartite systems may change with the acceleration. In particular, the entanglement between accelerating fermions is transferred preferentially to the produced antiparticles when the acceleration is large, and the entanglement transfer is complete when the acceleration approaches infinity. However, for scalar particles, no entanglement transfer to the antiparticles is observed.

  10. Environmental Cleanup of the East Tennessee Technology Park Year One - Execution with Certainty SM - 13120

    SciTech Connect (OSTI)

    Schubert, A.L. [URS - CH2M Oak Ridge LLC, P.O. Box 4699, Oak Ridge, TN 37831-7294 (United States)] [URS - CH2M Oak Ridge LLC, P.O. Box 4699, Oak Ridge, TN 37831-7294 (United States)

    2013-07-01T23:59:59.000Z

    On August 1, 2011, URS - CH2M Oak Ridge LLC (UCOR) began its five-year, $1.4 billion cleanup of the East Tennessee Technology Park (ETTP), located on the U.S. Department of Energy's (DOE) Oak Ridge Reservation in Tennessee. UCOR will close out cleanup operations that began in 1998 under a previous contract. When the Contract Base scope of work [1] is completed in 2016, the K-25 gaseous diffusion building will have been demolished and all waste dispositioned, demolition will have started on the K-27 gaseous diffusion building, all contact-handled and remote-handled transuranic waste in inventory (approximately 500 cubic meters) will have been transferred to the Transuranic Waste Processing Center, previously designated 'No-Path-To-Disposition Waste' will have been dispositioned to the extent possible, and UCOR will have managed DOE Office of Environmental Management (EM)- owned facilities at ETTP, Oak Ridge National Laboratory (ORNL), and the Y-12 National Security Complex in a safe and cost-effective manner. Since assuming its responsibilities as the ETTP cleanup contractor, UCOR has completed its life-cycle Performance Measurement Baseline; received its Earned Value Management System (EVMS) certification; advanced the deactivation and demolition (D and D) of the K-25 gaseous diffusion building; recovered and completed the Tank W-1A and K-1070-B Burial Ground remediation projects; characterized, packaged, and shipped contact-handled transuranic waste to the Transuranic Waste Processing Center; disposed of more than 90,000 cubic yards of cleanup waste while managing the Environmental Management Waste Management Facility (EMWMF); and provided operations, surveillance, and maintenance activities at DOE EM facilities at ETTP, ORNL, and the Y-12 National Security Complex. Project performance as of December 31, 2012 has been excellent: - Cost Performance Index - 1.06; - Schedule Performance Index - 1.02. At the same time, since safety is the foundation of all cleanup work, UCOR's safety record goes hand in hand with its excellent project performance. Through calendar year 2012, UCOR's recordable injury rate was 0.33, and the company has worked close to 4 million hours without a lost work day injury. UCOR's safety record is one of the best in the DOE EM Complex. This performance was due, in large part, to the people and processes URS and CH2M HILL, the parent companies of UCOR, brought to the project. Key approaches included: - Selected and deployed experienced staff in key leadership positions throughout the organization; - Approached 'Transition' as the 'true' beginning of the cleanup project - kicking off a number of project initiatives such as Partnering, PMB development, D and D Plan execution, etc. - Established a project baseline for performance measurement and obtained EVMS certification in record time; - Determined material differences and changed conditions that warranted contract change - then quickly addressed these changes with the DOE client; - Aligned the project and the contract within one year - also done in record time; - Implemented Safety Trained Supervisor and Safety Conscious Work Environment Programs, and kicked off the pursuit of certification under DOE's Voluntary Protection Program. (authors)

  11. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L. (Los Alamos, NM); Carlsten, Bruce E. (Los Alamos, NM); Young, Lloyd M. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  12. Coordinating NRC License Closure/Termination and Army Corps of Engineers FUSRAP Cleanups

    SciTech Connect (OSTI)

    Walter, N. [MACTEC, 511 Congress Street, Portland, ME 04101 (United States); Greene, D. R. [LeBoeuf, Lamb, Greene and MacRae LLP, 225 Asylum Street, Hartford, CT 06103 (United States); Knauerhase, R. K. [Combustion Engineering, 2000 Day Hill Road, CEP 5580-2207, Windsor, CT 06095 (United States)

    2006-07-01T23:59:59.000Z

    Overlapping regulatory cleanup programs present a significant challenge for business entities seeking to close and redevelop properties in an environmentally-appropriate but cost-effective manner. In the nuclear decontamination context, this challenge has been recognized in Memoranda of Understanding ('MOUs') between regulators with overlapping responsibilities seeking to minimize duplicative efforts/costs while fulfilling their respective regulatory obligations. For instance, an MOU between the Army Corps of Engineers (the 'Corps') and the Nuclear Regulatory Commission ('NRC') for coordinating Corps' cleanups under the Formerly Utilized Sites Remedial Action Program ('FUSRAP') and NRC D and D to close and terminate an NRC license was reached in July 2001. Similarly, U.S. Environmental Protection Agency ('EPA') and NRC entered into an MOU in October 2002 addressing the interaction between NRC decontamination and decommissioning ('D and D') oversight and EPA's authority under the Comprehensive Environmental Response, Compensation and Liability Act ('CERCLA') at NRC-licensed sites. Yet, despite these MOU agreements, the simultaneous application of different regulatory programs, differing perspectives on their respective objectives and limited experience in addressing such circumstances often can lead to issues that demand creative solutions. This paper examines the interplay of these regulatory programs, the MOU of the agencies seeking to address their responsibilities under them and the coordination of the cleanups and license closure/termination process under the programs. It also offers technical and practical suggestions and insight to cost-effectively manage such efforts based on experiences with these programs and the regulators and stakeholders involved (at the federal, state and local levels). (authors)

  13. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly report, April--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This quarterly technical progress report summarizes the work completed during the first quarter, April 1 through June 30, 1995. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasificafion and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel continued at a good pace during the quarter.

  14. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  15. High-energy lattice for first-beam operation of the SRF test accelerator at NML

    SciTech Connect (OSTI)

    Prokop, C.; /NICADD, DeKalb; Piot, P.; /NICADD, DeKalb /Fermilab; Church, M.; /Fermilab

    2011-09-01T23:59:59.000Z

    The Superconducting Radio Frequency Test Accelerator, a linear electron accelerator currently in construction at Fermilab's New Muon Laboratory, will eventually reach energies of {approx} 900 MeV using four ILC-type superconducting accelerating cryomodules. The accelerator's construction is staged according to cryomodules availability. The first phase that will support first beam operation incorporates one cryomodule. In this Note, we summarize a possible design for the first-beam accelerator configuration.

  16. Continuing Clean-up at Oak Ridge, Portsmouth and Paducah-Successes and Near-Term Plans

    SciTech Connect (OSTI)

    Fritz, L. L.; Houser, S. M.; Starling, D. A.

    2002-02-26T23:59:59.000Z

    This paper describes the complexities and challenges associated with the Oak Ridge Environmental Management (EM) cleanup program and the steps that DOE and Bechtel Jacobs Company LLC (the Oak Ridge EM team) have collaboratively taken to make significant physical progress and get the job done. Maintaining significant environmental cleanup progress is a daunting challenge for the Oak Ridge EM Team. The scale and span of the Oak Ridge Operations (ORO) cleanup is immense-five major half-century-old installations in three states (three installations are complete gaseous diffusion plants), with concurrent cleanup at the fully operational Oak Ridge National Laboratory and Y-12 National Security Complex, and with regulatory oversight from three states and two United States (US) Environmental Protection Agency (EPA) Regions. Potential distractions arising from funding fluctuations and color-of-money constraints, regulatory negotiations, stakeholder issues, or any one of a number of other potential delay phenomena can not reduce the focus on safely achieving project objectives to maintain cleanup momentum.

  17. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    A. B. Culp

    2007-01-26T23:59:59.000Z

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  18. Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    S. L. Reno

    2006-10-26T23:59:59.000Z

    This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

  19. The impact of alternative oil spill cleanup responses on Spartina alterniflora 

    E-Print Network [OSTI]

    Kiesling, Russell Wayne

    1987-01-01T23:59:59.000Z

    THE IMPACT OF AL~VrE OIL SPILL CLEANUP BESPCVSES OH SPAHI INR. ALTERNIFLORA A Thesis RUSSELL ~ KIESLING Submits to the Graduat College of Twas ASM University in Partial fulfill of the reguixemts for the degv of FASTER OF SCIENCE August 1987... Pbjor Subject: azoology THE INPACT OF ALTERNATIVE OIL SPILL ~ RESPONSES ON SPARTINA ALTERNIFIgRA A Th sis by RIJSSELL WAYNE KIESLING Approved as to style and content by: Steve K. Al~w r -chairman of ' ttee) No?rrill H. Sweet (Co...

  20. The impact of alternative oil spill cleanup responses on Spartina alterniflora

    E-Print Network [OSTI]

    Kiesling, Russell Wayne

    1987-01-01T23:59:59.000Z

    followed by sorbM pad application on substrate; and ~g of oiled vegetation. Control plots which were neither oiled nor cleaned as well as plots which w~ oiled but not cleaned were also established. Sediment samples were ~ imnediately after cleanup... and chanical dispersant and to 3M Ccaqmy for supplying oil sorbwt pads. Valuable assistance in both field and laboratory was provided by Denial Avery, Carlos Vanoye-Trevino, Cecilia Miles, and Chiara Jones. The author would also like to express his sincere...

  1. Laboratory evaluation of filtercake cleanup techniques and metallic-screens plugging mechanisms in horizontal wells 

    E-Print Network [OSTI]

    Garcia Orrego, Gloria Stella

    1999-01-01T23:59:59.000Z

    . Unconsolidated Sand Core Set up 4. 3. 2. Metallic Screen Loading . 4. 3. 3. Cell Assembly 4. 3. 4. Base Permeability Determination. . 4. 3. 5. Filtercake Buildup . . 26 . . . . 26 27 29 29 29 29 4. 3. 6. Regained Permeability Study after Filtercake... Cleanup Phase . . . . , . . . . . , . . . 31 4. 3. 7. Screen Permeabilities . 4. 4. DIF Characterization 4. 4. 1. Density. 4. 4. 2. Viscosity . . 4. 4. 3. Plastic Viscosity. 4. 4. 4. Yield point. 4. 4. 5. Gel Strength. . 4. 4. 6. Fluid-Loss Control...

  2. A preliminary evaluation of the economic risk for cleanup of nuclear material licensee contamination incidents

    SciTech Connect (OSTI)

    Ostmeyer, R.M.; Skinner, D.J.

    1987-03-01T23:59:59.000Z

    This report documents an analysis of the economic risks from nuclear material licensee contamination incidents. The results of the analyses are intended to provide a technical basis for an NRC rulemaking which would require nuclear material licensees to demonstrate adequate financial means to cover the cleanup costs for accidental or inadvertant release of radioactive materials. The important products of this effort include (1) a method for categorizing licensees according to the potential cost and frequency of contamination incidents, (2) a model for ranking the categories of licensees according to potential incident costs, and (3) estimates of contamination risk for the licensee categories.

  3. Summary of proposed approach for deriving cleanup guidelines for radionuclides in soil at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1996-11-01T23:59:59.000Z

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory, carried out under an Interagency Agreement (IAG) with the United States Department of Energy (DOE), the United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC). The objective of this paper is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL.

  4. EM Takes on Next Environmental Cleanup Challenge at SRS: Coal-Fired Ash |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM Recovery Act PressEMTackles Cleanup

  5. DOE Completes Cleanup at New York, California Sites | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of Energy SafetyDOE CompetencyCleanup at

  6. Recovery Act Funded Environmental Cleanup Begins at Y-12 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In additionEnergy Environmental cleanup

  7. Environmental Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment,682 DOE hasU.S.Environmental

  8. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect (OSTI)

    Cowan, Benjamin M.

    2007-08-22T23:59:59.000Z

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  9. A New Control Room for SLAC Accelerators

    SciTech Connect (OSTI)

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04T23:59:59.000Z

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  10. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final report: Revision 1

    SciTech Connect (OSTI)

    Gonzales, D.

    1993-12-01T23:59:59.000Z

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing site are summarized as follows: In accordance with EPA-promulgated land cleanup standards, in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 clean up protocol has been developed. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR Part 192 relative to supplemental standards.

  11. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01T23:59:59.000Z

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  12. THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Chen, Y; Sampayan, S E

    2009-08-17T23:59:59.000Z

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  13. Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems

    SciTech Connect (OSTI)

    Jost Wendt; Sung Jun Lee; Paul Blowers

    2008-09-30T23:59:59.000Z

    The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

  14. Effect of radon dose on cleanup criteria and using RESRAD for chemical risk assessment

    SciTech Connect (OSTI)

    Yu, C.; Cheng, J.-J. (Argonne National Lab., IL (United States)); Wallo, A. III (USDOE, Washington, DC (United States))

    1991-01-01T23:59:59.000Z

    The US Department of Energy has used RESRAD, a pathway analysis program developed at Argonne National Laboratory, in conjunction with the as low as reasonably achievable (ALARA) principle to develop site-specific residual radioactive material guidelines (cleanup criteria) for many sites. This study examines the effects of the radon pathway, recently added to the RESRAD program, on the calculation of uranium, radium, and thorium cleanup criteria. The results show that the derived uranium guidelines will not be affected by the radon ingrowth considerations. The effect of radon on radium and thorium generic guidelines is more significant, but the model does indicate that at the generic soil limits used for radium and thorium the indoor radon decay product concentrations would be below the 0.02 working level standard. This study also examines the feasibility of applying RESRAD to chemical risk assessment. The results show that RESRAD can perform risk assessment of toxic chemicals after simple modifications. Expansion of the RESRAD database to include chemical compounds will increase its capability to handle chemical risk assessments. 11 refs., 3 tabs.

  15. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    SciTech Connect (OSTI)

    Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States)] [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France)] [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)] [CEA DEN/DPAD, Marcoule (France)

    2013-07-01T23:59:59.000Z

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  16. Phase 1 of the North Site cleanup: Definition of product streams. Volume 1

    SciTech Connect (OSTI)

    Sorini, S.; Merriam, N.

    1994-03-01T23:59:59.000Z

    Various materials and equipment have accumulated at the Western Research Institute (WRI) North Site Facility since its commissioning in 1968. This facility was built by the US Bureau of Mines, transferred to the US Energy Research Development Administration (ERDA) in 1976, and transferred once again to the US Department of Energy (DOE) shortly thereafter. In 1983, the North Site Facility became part of WRI. The materials that have accumulated over the years at the site have been stored in drums, tanks, and open piles. They vary from oil shale, tar sand, and coal feedstocks to products and materials associated with in situ simulation and surface process developments associated with these feedstocks. The majority of these materials have been associated with DOE North Site activities and work performed at the North Site under DOE-WRI cooperative agreement contracts. In phase I of the North Site Facility cleanup project, these materials were sampled and evaluated to determine their chemical characteristics for proper disposal or use in accordance with current local, state, and federal regulations. Phase I of the North Site Facility cleanup project involved dividing the stored materials into product streams and dividing each product stream into composite groups. Composite groups contain materials known to be similar in composition, source, and process exposure. For each composite group, materials, which are representative of the composite, were selected for sampling, compositing, and analysis.

  17. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  18. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  19. Advanced Accelerator Concepts Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on high energy ion generation Levi Schachter Active Media Accelerators Benjamin Bowes Ultrafast 2-D radiative transport in a micron-scale aluminum plasma excited at...

  20. Accelerator Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility Vitaly Yakimenko October 6-7, 2010 ATF User meeting DOE HE, S. Vigdor, ALD - (Contact) T. Ludlam Chair, Physics Department V. Yakimenko Director ATF, Accelerator...

  1. Accelerator Concepts Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colliders to Synchrotron Radiation Sources. The wide scope of the workshop includes new methods of particle acceleration to high energies, techniques for production of...

  2. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting RF Module with a PBG Coupler Cell, 2013 North American Particle Accelerator Conference, Pasadena, CA, September 29 - October 4th, 2013. Evgenya I. Simakov,...

  3. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  4. Bugs boost Cold War clean-up: Bacteria could scrub uranium from sites contaminated decades ago. updated at midnight GMTtoday is friday, november 14

    E-Print Network [OSTI]

    Lovley, Derek

    2003 · Fungus catches radioactive fallout 8 May 2002 · Depleted uranium soils battlefields 12 MarchBugs boost Cold War clean-up: Bacteria could scrub uranium from sites contaminated decades ago boost Cold War clean-up Bacteria could scrub uranium from sites contaminated decades ago. 13 October

  5. Physics of laser-driven plasma-based electron accelerators E. Esarey, C. B. Schroeder, and W. P. Leemans

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Physics of laser-driven plasma-based electron accelerators E. Esarey, C. B. Schroeder, and W. P Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self

  6. Sustainability Support

    Broader source: Energy.gov [DOE]

    Sustainability Support serves as a corporate technical assistance, coordination, and integration resource to support line organizations in the resolution of sustainability issues and management concerns.

  7. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    E-Print Network [OSTI]

    Spentzouris, Panagiotis

    2008-01-01T23:59:59.000Z

    program for computational accelerator physics development isof computational accelerator physics applications, withof computational accelerator physics. Under ComPASS, the

  8. A Strategy for Skills to meet the demands of Nuclear Decommissioning and Clean-up in the UK

    SciTech Connect (OSTI)

    Brownridge, M.; Ensor, B. [Nigel Couzens and Ian Hudson, Nuclear Decommissioning Authority, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA (United Kingdom)

    2008-07-01T23:59:59.000Z

    The NDA remit as set out within the Energy Act includes - 'to ensure the availability of skills required to deliver the overall decommissioning and nuclear clean-up mission'. The NDA approach to meeting their statutory obligation is by: - finding the best ways of re-training, re-skilling or re-deploying people in a way that encourages a more flexible workforce; - identifying and communicating the skills and workforce requirements to deliver the mission; and - developing the infrastructure and capability initiatives in line with long term needs, for example, a National Skills Academy for Nuclear, Nuclear Institute, National Graduate Scheme, and - developing locally specific provision. Firstly, NDA has set the requirement for nuclear sites to write down within the Life Time Plans (LTP), at a high level, their Site Skills Strategies; furthermore, a National Skills Working Group has been established to develop tactical cross sector solutions to support the NDA's Skills Strategy. In support of the short, medium and long term needs to meet demands of the NDA sites and the nuclear decommissioning sector, as well as being aware of the broader nuclear sector, investments have been made in infrastructure and skills programmes such as: - A National Skills Academy for Nuclear - including UK wide representation of the whole nuclear sector; - A Nuclear Institute in partnership with the University of Manchester focussing on world class research and skills in Radiation Sciences and Decommissioning Engineering; - Post Graduate sponsorship for decommissioning related projects; - A National Graduate Scheme partnership with nuclear related employers; - Vocational qualifications and Apprenticeship Schemes - Engaging 14-19 year old students to encourage the take up of Science related subjects; and - A sector wide 'Skills Passport'. In conclusion: The skills challenge has many dimensions but requires addressing due to the clear link to improved business performance and the availability of key resources in a diminishing and competitive environment. The diminishing skill base is due to reasons such as demographics and competition from other industries such as the oil industry. Getting the balance between meeting regional and national requirements will prove critical to success. The lack of clarity on the long term needs will also drive the strategy. NDA recognises that the work to date is the beginning of a long term approach and programme. We have developed a skills strategy that is consistent across all 20 sites and examples of key developments in infrastructure are in progress. Looking forward NDA will seek benchmarking opportunities and ways to make tangible links between skills and performance. (authors)

  9. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  10. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  11. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  12. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  13. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21T23:59:59.000Z

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

  15. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  16. Accelerated Quantum Dynamics

    E-Print Network [OSTI]

    Lynch, Morgan H

    2015-01-01T23:59:59.000Z

    In this paper we establish a formalism for the computation of observables due to acceleration-induced particle physics processes. General expressions for the transition rate, multiplicity, power, spectra, and displacement law of particles undergoing time-dependent acceleration and transitioning into a final state of arbitrary particle number are obtained. The transition rate, power, and spectra are characterised by unique polynomials of multiplicity and thermal distributions of both bosonic and fermionic statistics. The acceleration dependent multiplicity is computed in terms of the branching fractions of the associated inertial processes. The displacement law of the spectra predicts the energy of the emitted particles are directly proportional to the accelerated temperature. These results extend our understanding of particle physics into the high acceleration sector.

  17. Radio frequency focused interdigital linear accelerator

    DOE Patents [OSTI]

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29T23:59:59.000Z

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  18. Ground test accelerator control system software

    SciTech Connect (OSTI)

    Burczyk, L.; Dalesio, R.; Dingler, R.; Hill, J.; Howell, J.A.; Kerstiens, D.; King, R.; Kozubal, A.; Little, C.; Martz, V.; Rothrock, R.; Sutton, J.

    1988-01-01T23:59:59.000Z

    The GTA control system provides an environment in which the automation of a state-of-the-art accelerator can be developed. It makes use of commercially available computers, workstations, computer networks, industrial I/O equipment, and software. This system has built-in supervisory control (like most accelerator control systems), tools to support continuous control (like the process control industry), and sequential control for automatic startup and fault recovery (like few other accelerator control systems). Several software tools support these levels of control: a real-time operating system (VxWorks) with a real-time kernel (VRTX), a configuration database, a sequencer, and a graphics editor. VxWorks supports multitasking, fast context-switching, and preemptive scheduling. VxWorks/VRTX is a network-based development environment specifically designed to work in partnership with the UNIX operating system. A database provides the interface to the accelerator components. It consists of a run time library and a database configuration and editing tool. A sequencer initiates and controls the operation of all sequence programs (expressed as state programs). A graphics editor gives the user the ability to create color graphic displays showing the state of the machine in either text or graphics form. 11 refs., 2 figs.

  19. Z .The Science of the Total Environment 260 2000 1 9 Assessing water quality impacts and cleanup

    E-Print Network [OSTI]

    Kirchner, James W.

    Z .The Science of the Total Environment 260 2000 1 9 Assessing water quality impacts and cleanup of the Total En¨ironment 260 2000 1 92 quality trends can be more accurately measured by changes a California Regional Water Quality Control Board, 1515 Clay St., Suite 1400, Oakland, CA 94612, USA b

  20. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  1. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    SciTech Connect (OSTI)

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1993-12-08T23:59:59.000Z

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh- Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0. 6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g{sub o}, where g{sub o} is accelerated due to gravity.

  2. From Pushing Paper to Pushing Dirt - Canada's Largest LLRW Cleanup Gets Underway - 13111

    SciTech Connect (OSTI)

    Veen, Walter van [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada)] [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Lawrence, Dave [Public Works and Government Services Canada, Port Hope, Ontario (Canada)] [Public Works and Government Services Canada, Port Hope, Ontario (Canada)

    2013-07-01T23:59:59.000Z

    The Port Hope Project is the larger of the two projects in the Port Hope Area Initiative (PHAI), Canada's largest low level radioactive waste (LLRW) cleanup. With a budget of approximately $1 billion, the Port Hope Project includes a broad and complex range of remedial elements from a state of the art water treatment plant, an engineered waste management facility, municipal solid waste removal, remediation of 18 major sites within the Municipality of Port Hope (MPH), sediment dredging and dewatering, an investigation of 4,800 properties (many of these homes) to identify LLRW and remediation of approximately 450 of these properties. This paper discusses the status of the Port Hope Project in terms of designs completed and regulatory approvals received, and sets out the scope and schedule for the remaining studies, engineering designs and remediation contracts. (authors)

  3. Environmental cleanup privatization, products and services directory, January 1997. Second edition

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The US Department of Energy has undertaken an ambitious ``Ten Year Plan`` for the Weapons Complex, an initiative to complete cleanup at most nuclear sites within a decade. This Second Edition of the Directory is designed to facilitate privatization which is key to the success of the Plan. The Directory is patterned after the telephone Yellow Pages. Like the Yellow Pages, it provides the user with points of contact for inquiring further into the capabilities of the listed companies. This edition retains the original format of three major sections under the broad headings: Treatment, Characterization, and Extraction/Deliver/Materials Handling. Within each section, companies are listed alphabetically. Also, ``company name`` and ``process type`` indices are provided at the beginning of each section to allow the user quick access to listings of particular interest.

  4. Turning the Corner on Hanford Tank Waste Cleanup-From Safe Storage to Closure

    SciTech Connect (OSTI)

    Boston, H. L.; Cruz, E. J.; Coleman, S. J.

    2002-02-25T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the corners tone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup.

  5. Jar mechanism accelerator

    SciTech Connect (OSTI)

    Anderson, E.A.; Webb, D.D.

    1989-07-11T23:59:59.000Z

    This patent describes an accelerator for use with a jar mechanism in a well pipe string to enhance the jarring impact delivered to a stuck object wherein the jar mechanism includes inner and outer members for connection, respectively, between the well pipe string the stuck object. The jar mechanism members are constructed to (1) restrict relative longitudinal movement therebetween to build up energy in the well pipe string and accelerator and then (2) to release the jar mechanism members for unrestrained, free relative longitudinal movement therebetween to engage jarring surfaces on the jar mechanism members for delivering a jarring impact to the stuck object. The accelerator includes: inner and outer telescopically connected members relatively movable longitudinally to accumulate energy in the accelerator; the inner and outer accelerator members each having means for connecting the accelerator in the well pipe string; means associated with the inner and outer members for initially accomodating a predetermined minimum length of unrestrained, free relative longitudinal movement between the inner and outer accelerator members.

  6. [Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  7. Surface and subsurface cleanup protocol for radionuclides Gunnison, Colorado, UMTRA Project Processing Site. Revision 3, Final report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The supplemental standards provisions of Title 40, Code of Federal Regulations, Part 192 (40 CFR Part 192) require the cleanup of radionuclides other than radium-226 (Ra-226) to levels ``as low as reasonably achievable`` (ALARA), taking into account site-specific conditions, if sufficient quantities and concentrations are present to constitute a significant radiation hazard. In this context, thorium-230 (Th-230) at the Gunnison, Colorado, processing site will require remediation. However, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Characterization data indicate that in the offpile areas, the removal of residual in situ bulk Ra-226 and Th-230 such that the 1000-year projected Ra-226 concentration (Ra-226 concentration in 1000 years due to the decay of in situ Ra-226 and the in-growth of Ra-226 from in situ Th-230) complies with the US Environmental Protection Agency (EPA) cleanup standard for in situ Ra-226 and the cleanup protocol for in situ Th-230 can be readily achieved using conventional excavation techniques for bulk contamination without encountering significant impacts due to groundwater. The EPA cleanup standard and criterion for Ra-226 and the 1000-year projected Ra-226 are 5 and 15 picocuries per gram (pCi/g) above background, respectively, averaged over 15-centimeter (cm) deep surface and subsurface intervals and 100-square-meter (m{sup 2}) grid areas. Significant differential migration of Th-230 relative to Ra-226 has occurred over 40 percent of the subpile area. To effectively remediate the site with respect to Ra-226 and Th-230, supplemental standard is proposed and discussed in this report.

  8. THE ROLE OF LAND USE IN ENVIRONMENTAL DECISION MAKING AT THREE DOE MEGA-CLEANUP SITES FERNALD & ROCKY FLATS & MOUND

    SciTech Connect (OSTI)

    JEWETT MA

    2011-01-14T23:59:59.000Z

    This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

  9. Site Support Program Plan Infrastructure Program

    SciTech Connect (OSTI)

    NONE

    1995-09-26T23:59:59.000Z

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  10. GeV electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    E-Print Network [OSTI]

    P. E. Masson-Laborde; M. Z. Mo; A. Ali; S. Fourmaux; P. Lassonde; J. C. Kieffer; W. Rozmus; D. Teychenne; R. Fedosejevs

    2014-08-06T23:59:59.000Z

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional (3D) particle-in-cell (PIC) simulations support this analysis, and confirm the scenario.

  11. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16T23:59:59.000Z

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  12. BNL | Accelerator Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and new approaches to particle acceleration and x-ray generation. A next-generation ultra-fast CO2 laser based on chirped pulse amplification in isotopic gas mixtures is...

  13. CEBAF accelerator achievements

    SciTech Connect (OSTI)

    Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

    2011-06-01T23:59:59.000Z

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  14. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12T23:59:59.000Z

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  15. APT accelerator technology

    SciTech Connect (OSTI)

    Schneider, J.D.

    1996-09-01T23:59:59.000Z

    Proposed accelerator production of tritium (APT) project requires an accelerator providing a cw proton beam of 100 mA at 1300 MeV. Since most of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operaional reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA`s proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7-KeV, 8-m long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. Detailed design and technology experiments are underway on medium-beta superconducting cavities to assess feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities.

  16. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  17. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation Technology Project

    SciTech Connect (OSTI)

    Bowman, C.D.

    1995-02-01T23:59:59.000Z

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the US and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives.

  18. 5/10/10 7:04 AMCaution urged in oil spill cleanup -UPI.com Page 1 of 1http://www.upi.com/Science_News/2010/05/05/Caution-urged-in-oil-spill-cleanup/UPI-48201273087918/print/

    E-Print Network [OSTI]

    Hazen, Terry

    Horizon oil spill. Terry Hazen, a microbial ecologist at the Lawrence Berkeley National Laboratory, said5/10/10 7:04 AMCaution urged in oil spill cleanup - UPI.com Page 1 of 1http://www.upi.com/Science_News/2010/05/05/Caution-urged-in-oil-spill-cleanup/UPI-48201273087918/print/ Caution urged in oil spill

  19. Plasma-based accelerator structures

    SciTech Connect (OSTI)

    Schroeder, Carl B.

    1999-12-01T23:59:59.000Z

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  20. Physically Based Rendering Intersection Acceleration

    E-Print Network [OSTI]

    Kazhdan, Michael

    Physically Based Rendering (600.657) Intersection Acceleration #12;Intersection Testing Accelerated partitions: Group objects into clusters Cluster volumes may overlap #12;Uniform (Voxel) Grid Acceleration Acceleration · Trace rays through grid cells ­ Fast ­ Incremental A B C D E F Only check primitives

  1. EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON

    SciTech Connect (OSTI)

    AMBALAM, T.

    2004-12-01T23:59:59.000Z

    K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel, sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project.

  2. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab's Accelerator Complex photo

  3. Fermilab | Science | Particle Accelerators | Leading Accelerator Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab's Accelerator ComplexLeading

  4. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12T23:59:59.000Z

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  5. Developments in flue gas cleanup research at the Federal Energy Technology Center

    SciTech Connect (OSTI)

    Pennline, H.W.; Hargis, R.A.; Hedges, S.W.; Hoffman, J.S.; O`Dowd, W.J.; Warzinski, R.P.; Yeh, J.T.; Scierka, S.J.; Granite, E.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

    1997-12-31T23:59:59.000Z

    A major research effort in the cleanup of flue gas, which is produced by the combustion of fossil fuels, is being conducted by the in-house research program at the Federal Energy Technology Center (FETC) of the US Department of Energy (DOE). Novel technologies being developed can abate sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), hazardous air pollutants (also referred to as air toxics), and carbon dioxide (CO{sub 2}) from flue gas. Laws within the US mandate the control of some of these pollutants and the initial characterization of others, while potential new regulations impact the status of others. Techniques that can control one or more of the targeted pollutants in an environmentally and economically acceptable manner are of prime interest. Past efforts have included low-temperature dry scrubbing SO{sub 2} removal techniques that typically use a calcium or sodium-based disposable sorbent either in a spray drying mode or in a duct injection mode of operation; novel techniques for enhancing sorbent utilization in conventional wet or dry scrubbing processes; and control of emissions produced from small-scale combustors (residential or commercial-size) that burn coal or coal/sorbent briquettes. Recent research at FETC has focused on investigations of air toxics produced by burning various coals, with a particular emphasis on the speciation of mercury and the control of the various mercury species; dry, regenerable sorbent processes that use a metal oxide sorbent to simultaneously remove SO{sub 2} and NO{sub x}; catalysts for selective catalytic reduction (SCR)-type NO{sub x} control; and the utilization and sequestering of CO{sub 2} removed from flue gas produced by fossil fuel combustion. The research projects range from laboratory-scale work to testing with the combustion products of coal at a scale equivalent to about 0.75 megawatt of electric power generation. An overview and status of the in-house flue gas cleanup projects at FETC are reported.

  6. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    SciTech Connect (OSTI)

    None,

    2003-09-30T23:59:59.000Z

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  7. Infrastructure to support ultra high throughput biodosimetry screening after a radiological event

    E-Print Network [OSTI]

    Brenner, David Jonathan

    GUY GARTY1 , ANDREW KARAM2 , & DAVID J. BRENNER3 1 Radiological Research Accelerator Facility, Radiological Research Accelerator Facility, Nevis Laboratories, Columbia UniverInfrastructure to support ultra high throughput biodosimetry screening after a radiological event

  8. Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices

    E-Print Network [OSTI]

    Serrano, Gerardo Enrique

    2000-01-01T23:59:59.000Z

    Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper cleanup treatments for reservoir conditions analyzed...

  9. Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices

    E-Print Network [OSTI]

    Lacewell, Jason Lawrence

    1999-01-01T23:59:59.000Z

    of well planning, completion and cleanup operations. Our objectives are to present a complete examination of the openhole horizontal well construction/completion process using a new drill-in fluid (DIF). Further, we will establish data critical...

  10. Perturbations for transient acceleration

    SciTech Connect (OSTI)

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried [Universidade Federal do Espírito Santo, Departamento de Física, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitória, Espírito Santo (Brazil); Hipólito-Ricaldi, Wiliam S., E-mail: win_unac@hotmail.com, E-mail: hipolito@ceunes.ufes.br, E-mail: winfried.zimdahl@pq.cnpq.br [Universidade Federal do Espírito Santo, Departamento de Ciências Naturais, Grupo de Física Teórica, Rodovia BR 101 Norte, km 60, Campus de São Mateus, CEP 29932-540, São Mateus, Espírito Santo (Brazil)

    2012-04-01T23:59:59.000Z

    According to the standard ?CDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  11. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

  12. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect (OSTI)

    Harruff, L.G.; Bushkuhl, S.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  13. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01T23:59:59.000Z

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  14. Alternative formulations of regenerable flue gas cleanup catalysts. Progress report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Mitchell, M.B.; White, M.G.

    1991-12-31T23:59:59.000Z

    The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

  15. Development of the Ultra-Clean Dry Cleanup Process for Coal-Based Syngases

    SciTech Connect (OSTI)

    Newby, R.A.; Slimane, R.B.; Lau, F.S.; Jain, S.C.

    2002-09-20T23:59:59.000Z

    The Siemens Westinghouse Power Corporation (SWPC) has proposed a novel scheme for polishing sulfur species, halides, and particulate from syngas to meet stringent cleaning requirements, the ''Ultra-Clean syngas polishing process.'' The overall development objective for this syngas polishing process is to economically achieve the most stringent cleanup requirements for sulfur species, halide species and particulate expected for chemical and fuel synthesis applications (total sulfur species < 60 ppbv, halides < 10 ppbv, and particulate < 0.1 ppmw). A Base Program was conducted to produce ground-work, laboratory test data and process evaluations for a conceptual feasibility assessment of this novel syngas cleaning process. Laboratory testing focused on the identification of suitable sulfur and halide sorbents and operating temperatures for the process. This small-scale laboratory testing was also performed to provide evidence of the capability of the process to reach its stringent syngas cleaning goals. Process evaluations were performed in the Base Program to identify process alternatives, to devise process flow schemes, and to estimate process material & energy balances, process performance, and process costs. While the work has focused on sulfur, halide, and particulate control, considerations of ammonia, and mercury control have also been included.

  16. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect (OSTI)

    Steinfield, G.; Sanderson, R.

    1998-02-01T23:59:59.000Z

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  17. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21T23:59:59.000Z

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  18. Hanford Cleanup... Restore the Columbia River Corridor Transition the Central Plateau Prepare and Plan for the End State

    SciTech Connect (OSTI)

    Klein, Keith A. [U.S. Department of Energy Richland Operations Office (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington State was established during World War II to produce plutonium for nuclear weapons as part of the top-secret Manhattan Project. In 1989, Hanford's mission changed to cleanup and closure; today the site is engaged in one of the world's largest and most aggressive programs to clean up radioactive and hazardous wastes. The size and complexity of Hanford's environmental problems are made even more challenging by the overlapping technical, political, regulatory, financial and cultural issues associated with the cleanup. The physical challenges at the Hanford Site are daunting. More than 50 million gallons of liquid radioactive waste in 177 underground storage tanks; 2,300 tons of spent nuclear fuel;12 tons of plutonium in various forms; 25 million cubic feet of buried or stored solid waste; 270 billion gallons of groundwater contaminated above drinking-water standards spread out over about 80 square miles; more than 1,700 waste sites; and approximately 500 contaminated facilities. With a workforce of approximately 7,000 and a budget of about $1.8 billion dollars this fiscal year, Hanford cleanup operations are expected to be complete by 2035, at a cost of $60 billion dollars. (authors)

  19. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration). Draft final technical report

    SciTech Connect (OSTI)

    Quimby, J.M.; Kumar, K.S.

    1992-12-31T23:59:59.000Z

    The objective of this contract was to investigate the removal of SO{sub x} and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO{sub x} removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800{degrees} and 2500{degrees}F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

  20. Audit Report on "Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site"

    SciTech Connect (OSTI)

    None

    2010-05-01T23:59:59.000Z

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million by processing Hanford TRU-waste on-site rather than at AMWTP. Further, under the newly adopted alternative approach, the Department would fail to achieve the previously anticipated reductions in volume associated with the use of existing AMWTP waste compaction capabilities.

  1. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 15, September 1, 1994--November 30, 1994

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The objective of the NOXSO Demonstration Project (NDP), with cost-shared funding support from DOE, is to design, construct, and operate a commercial-scale flue gas cleanup system utilizing the NOXSO process. The NDP consists of the NOXSO plant and sulfur recovery unit, designed to remove SO{sub 2} and NO{sub x} from flue gas and produce elemental sulfur by-product, and the liquid SO{sub 2} plant and air separation unit, designed to process the elemental sulfur into liquid SO{sub 2}. The NOXSO plant and sulfur recovery unit will be constructed at ALCOA Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana, and will treat all of the flue gas from the 150-MW Unit 2 boiler. The elemental sulfur produced will be shipped to the Olin Charleston Plant in Charleston, Tennessee, for conversion into liquid SO{sub 2}.

  2. Beam Physics of Integrable Optics Test Accelerator at Fermilab

    SciTech Connect (OSTI)

    Nagaitsev, S.; Valishev, A.; /Fermilab; Danilov, V.V.; /Oak Ridge; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01T23:59:59.000Z

    Fermilab's Integrable Optics Test Accelerator (IOTA) is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on numerical simulations setting the requirements on the design and supporting the choice of machine parameters.

  3. TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    their whole lives to accelerator physics. As high energysome appreciation of accelerator physics. We cannot, nor dolectures on basic accelerator physics; then you will hear

  4. Accelerate program supports students as they establish careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In the

  5. Better Buildings Challenge Accelerator Support - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergy CommitteeDepartment ofDepartment of Energy Challenge

  6. Advanced cleanup device performance design report (Task 4. 3). Volume A. Cyclone theory and data correlation

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The 100-year-old cyclone is perhaps the best known and least expensive method of gas particulate cleaning. The theory and practice of cyclone operation has been extensively documented. The body of experience indicates that small cyclones operated at high swirl velocity give better separative efficiency although consideration must also be given to coarse particle bouncing and limitations associated with system pressure losses and cyclone erosion. Hence, multicyclones (i.e., many small cyclones operating in parallel), and staging have been employed in situations where unusually clean gas is mandated. Despite the extensive body of literature on the subject, predicting the performance of cyclones in actual service remains an art. The inadequacies in the existing cyclone theories quickly became evident in the course of several experimental programs at GE using various cyclone designs. The most significant finding of this work has been the observation that electrostatic forces could enhance, or, in fact, dominate the separation process. Cyclone separative efficiencies, with natural electrostatic effects present, were found to be independent of flowrate or even to improve at low flowrates, completely contrary to any of the existing cyclone literature. By implication, it is also possible that such electrostatic forces could influence cyclone scaling so that large cyclones employed in the cleanup train may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. Much of the GE work has therefore been oriented toward understanding and augmenting these electrostatic effects. This report is a collection of the most significant papers and memos on cyclone performance generated during the past three years by General Electric under the CFCC program.

  7. Development of site-specific soil cleanup criteria: New Brunswick Laboratory, New Jersey site

    SciTech Connect (OSTI)

    Veluri, V.R.; Moe, H.J.; Robinet, M.J.; Wynveen, R.A.

    1983-03-01T23:59:59.000Z

    The potential human exposure which results from the residual soil radioactivity at a decommissioned site is a prime concern during D and D projects. To estimate this exposure, a pathway analysis approach is often used to arrive at the residual soil radioactivity criteria. The development of such a criteria for the decommissioning of the New Brunswick Laboratory, New Jersey site is discussed. Contamination on this site was spotty and located in small soil pockets spread throughout the site area. Less than 1% of the relevant site area was contaminated. The major contaminants encountered at the site were /sup 239/Pu, /sup 241/Am, normal and natural uranium, and natural thorium. During the development of the pathway analysis to determine the site cleanup criteria, corrections for the inhomogeneity of the contamination were made. These correction factors and their effect upon the relevant pathway parameters are presented. Major pathways by which radioactive material may reach an individual are identified and patterns of use are specified (scenario). Each pathway is modeled to estimate the transfer parameters along the given pathway, such as soil to air to man, etc. The transfer parameters are then combined with dose rate conversion factors (ICRP 30 methodology) to obtain soil concentration to dose rate conversion factors (pCi/g/mrem/yr). For an appropriate choice of annual dose equivalent rate, one can then arrive at a value for the residual soil concentration. Pathway modeling, transfer parameters, and dose rate factors for the three major pathways; inhalation, ingestion and external exposure, which are important for the NBL site, are discussed.

  8. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  9. Progress on laser plasma accelerators

    SciTech Connect (OSTI)

    Chen, P.

    1986-04-01T23:59:59.000Z

    Several laser plasma accelerator schemes are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA). Theory indicates that a very high acceleration gradient, of order 1 GeV/m, can exist in the plasma wave driven by the beating lasers. Experimental results obtained on the PBWA experiment at UCLA confirms this. Parameters related to the PBWA as an accelerator system are derived, among them issues concerning the efficiency and the laser power and energy requirements are discussed.

  10. Particle Acceleration at Relativistic Shocks

    E-Print Network [OSTI]

    Yves A. Gallant

    2002-01-15T23:59:59.000Z

    I review the current status of Fermi acceleration theory at relativistic shocks. I first discuss the relativistic shock jump conditions, then describe the non-relativistic Fermi mechanism and the differences introduced by relativistic flows. I present numerical calculations of the accelerated particle spectrum, and examine the maximum energy attainable by this process. I briefly consider the minimum energy for Fermi acceleration, and a possible electron pre-acceleration mechanism.

  11. Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)

    E-Print Network [OSTI]

    Berwald, D H; Myers, T J; Paulson, C C; Peacock, M A; Piaszczyk, C M; Rathke, J W; Piechowiak, E M

    1996-01-01T23:59:59.000Z

    Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)

  12. Radiation from Accelerated Branes

    E-Print Network [OSTI]

    Mohab Abou-Zeid; Miguel S. Costa

    2000-01-29T23:59:59.000Z

    The radiation emitted by accelerated fundamental strings and D-branes is studied within the linear approximation to the supergravity limit of string theory. We show that scalar, gauge field and gravitational radiation is generically emitted by such branes. In the case where an external scalar field accelerates the branes, we derive a Larmor-type formula for the emitted scalar radiation and study the angular distribution of the outgoing energy flux. The classical radii of the branes are calculated by means of the corresponding Thompson scattering cross sections. Within the linear approximation, the interaction of the external scalar field with the velocity fields of the branes gives a contribution to the observed gauge field and gravitational radiation.

  13. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E. (Los Alamos, NM); Jachim, Stephen P. (Los Alamos, NM); Natter, Eckard F. (Santa Fe, NM)

    1991-01-01T23:59:59.000Z

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  14. Accelerator research studies

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  15. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21T23:59:59.000Z

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  16. CESR Test Accelerator

    E-Print Network [OSTI]

    Rubin, David L

    2013-01-01T23:59:59.000Z

    The Cornell Electron Storage Ring (CESR) was reconfigured in 2008 as a test accelerator to investigate the physics of ultra-low emittance damping rings. During the approximately 40 days/year available for dedicated operation as a test accelerator, specialized instrumentation is used to measure growth and mitigation of the electron cloud, emittance growth due to electron cloud, intra-beam scattering, and ions, and single and multi-bunch instabilities generated by collective effects. The flexibility of the CESR guide field optics and the integration of accelerator modeling codes with the control system have made possible an extraordinary range of experiments. Findings at CesrTA with respect to electron cloud effects, emittance tuning techniques, and beam instrumentation for measuring electron cloud, beam sizes, and beam positions are the basis for much of the design of the ILC damping rings as documented in the ILC-Technical Design Report. The program has allowed the Cornell group to cultivate the kind of talen...

  17. Cryomodule Design for the Rare Isotope Accelerator

    SciTech Connect (OSTI)

    Grimm, Terry; Hartung, Walter; Johnson, M.; York, Richard; Kneisel, Peter; Turlington, Larry

    2003-05-01T23:59:59.000Z

    The Rare Isotope Accelerator (RIA) driver linac will produce >400 MeV/u proton through uranium beams using many types of superconducting accelerating cavities such as quarter wave, spoke, and elliptical cavities. A cryomodule design that can accommodate all of the superconducting cavity and magnet types is presented. Alignment of the cold mass uses a titanium rail system, which minimizes cryomodule size, and decreases both the tunnel cross-section and length. The titanium rail is supported from the top vacuum plate by an adjustable trilink, which is similar to existing Michigan State University magnet technology. A prototype cryomodule is under construction for testing 805 MHz, v/c=0.47, sixcell niobium cavities in realistic operating conditions. Details of the design and progress to date are presented.

  18. Recent Advances in Plasma Acceleration

    SciTech Connect (OSTI)

    Hogan, Mark

    2007-03-19T23:59:59.000Z

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  19. Muon Acceleration - RLA and FFAG

    SciTech Connect (OSTI)

    Alex Bogacz

    2011-10-01T23:59:59.000Z

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  20. Flame acceleration studies in the MINIFLAME facility

    SciTech Connect (OSTI)

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

    1989-07-01T23:59:59.000Z

    Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.

  1. Development and validation of a cleanup method for hydrocarbon containing samples for the analysis of semivolatile organic compounds

    SciTech Connect (OSTI)

    Hoppe, E.W.; Stromatt, R.W.; Campbell, J.A.; Steele, M.J.; Jones, J.E.

    1992-04-01T23:59:59.000Z

    Samples obtained from the Hanford single shell tanks (SSTs) are contaminated with normal paraffin hydrocarbon (NPH) as hydrostatic fluid from the sampling process or can be native to the tank waste. The contamination is usually high enough that a dilution of up to several orders of magnitude may be required before the sample can be analyzed by the conventional gas chromatography/mass spectrometry methodology. This can prevent detection and measurement of organic constituents that are present at lower concentration levels. To eliminate or minimize the problem, a sample cleanup method has been developed and validated and is presented in this document.

  2. K-311-1/K-310-3 Purge Cascade Process Description, Oak Ridge Environmental Management Accelerated Cleanup Project, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Shoemaker J.E.

    2009-05-13T23:59:59.000Z

    K-311-1 was constructed along with the rest of the K-25 Building in the 1943-1945 timeframe. K-311-1 was equipped with Size 3 converters and Size 38 Allis Chalmers{trademark} single-stage centrifugal compressors driven by 3600 rpm electric motors, and the unit operated as the 'bottom' unit flow-wise in K-25. The depleted flow from the bottom stage in K-311-1 passed through booster compressors and flowed to the K-601 Building where the depleted or 'tails' material was removed. In 1948, after the K-27 Building was completed, the decision was made to operate K-27 and K-25 in series rather than operate the two buildings as separate entities. To facilitate this operation, concrete bases were poured and two sets of booster compressors were installed in the extreme West end of the K-311-1 cell floor. These compressors were enclosed in heated housings and consisted of Size 38 compressors. One pair was to boost the 'B' flow between K-25 and K-27, and one pair was to boost the 'A' flow between the buildings. Each station operated with one compressor on-stream and the other in standby. (Reference 9) Each station also was equipped with a Size 2 after-cooler located in the discharge stream downstream of the junction of the onstream and standby compressors. Additional gaseous diffusion capacity was added at Oak Ridge as K-29, K-31, and K-33 were constructed and placed in service in the early 1950s. As a result of the additional process equipment added by these buildings, in-leakage of light gases to the cascade including light gases introduced into the cascade as a result of purging operations threatened to exceed the capacity of the existing K-312 Purge Cascade facilities in the K-25 Building. As a result, in 1954 K-311-1 was converted to a side purge cascade to remove light gases from the process gas stream as the stream entered K-25 from K-27. Low molecular weight gas in-leakage in K-33, K-31, K-29, and K-27 was removed by the K-311-1 Side Purge Facility and a relatively pure stream of UF6 then passed from K-311-1 into the upstream cells in K-25. In-leakage of light gases in the K-25 Building continued to be removed by the K-312 Purge Facilities. K-311-1 operated as a Side Purge Cascade from 1954 until the K-25 Building was shut down in 1964; at that time K-311-1 became the Oak Ridge Gaseous Diffusion Plant (ORGDP) Top (and only) Purge Cascade. The adjacent K-310-3 Unit was operated along with K-311-1 as the top purge cascade and K-310-2 was also operated at times to supplement cells in the K311-1/K-310-3 Purge Cascade. K-311-1 was shut down on February 14, 1977, after the newer, larger capacity K-402-9 Purge Cascade was placed in operation. K-310-3 continued to operate until the K-402-8 Coolant Removal Unit was placed in service, and K-310-3 was shut down on March 14, 1978. Since the K-311-1 and K-310-3 units continued to operate after K-25 shutdown, removal of equipment such as valves and piping for other projects did not occur in this area. As a result, these two units have not been exposed to atmospheric wet air over the years as much of the remainder of K-25 has been exposed. Any deposits or residual gases contained in K-311-1 or K-310-3 are not likely to be fully hydrolyzed.

  3. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect (OSTI)

    Croson, D.V.; Davis, R.H.; Cooper, W.B. [CH2M-WG Idaho, LLC, Idaho Cleanup Project, Idaho National Laboratory, Idaho Falls, ID (United States)

    2007-07-01T23:59:59.000Z

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM). The NTCRA is an interim action that reduces the risks to human health and the environment by minimizing the potential for release of hazardous substances. The interim action does not prejudice the final end-state alternative. (authors)

  4. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    SciTech Connect (OSTI)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01T23:59:59.000Z

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites. Objectives of the research included: (1) defining the range of concerns of the public toward different bioremediation strategies and long-term stewardship; (2) creating materials and delivery methods that address bioremediation issues; and (3) assessing the effectiveness of the consensus workshop in identifying concerns about bioremediation and involving the public in a dialogue about their use. After a brief description of the Idaho workshop, we discuss the range of concerns articulated by the participants about bioremediation, discuss the materials and delivery methods used to communicate information about bioremediation, and assess the effectiveness of the consensus workshop. In summary we found that panel members in general: understood complex technical issues, especially when given enough time in a facilitated discussion with experts; are generally accepting of in situ bioremediation, but concerned about costs, safety, and effectiveness of the technology; are concerned equally about technology and decision processes; and liked the consensus workshop approach to learning about bioremediation.

  5. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01T23:59:59.000Z

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  6. A new tool for accelerator system modeling and analysis

    SciTech Connect (OSTI)

    Gillespie, G.H.; Hill, B.W. [G.H. Gillespie Associates, Inc., Del Mar, CA (United States); Jameson, R.A. [Los Alamos National Lab., NM (United States)

    1994-09-01T23:59:59.000Z

    A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators. The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in assessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were sued to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Codes (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version (1.1) of ASM is briefly described and an example of the modeling and analysis capabilities is illustrated.

  7. Particle Acceleration by MHD Turbulence

    E-Print Network [OSTI]

    Jungyeon Cho; A. Lazarian

    2005-10-21T23:59:59.000Z

    Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure (low-$\\beta$) and gaseous pressure (high-$\\beta$) dominated plasmas. We consider the acceleration by large scale compressions in both slow and fast particle diffusion limits. We compare the results with the acceleration rate that arises from resonance scattering and Transit-Time Damping (TTD). We establish that fast modes accelerate particles more efficiently than slow modes. We find that particle acceleration by pitch-angle scattering and TTD dominates acceleration by slow or fast modes when the spatial diffusion rate is small. When the rate of spatial diffusion of particles is high, we establish an enhancement of the efficiency of particle acceleration by slow and fast modes in weak turbulence. We show that highly supersonic turbulence is an efficient agent for particle acceleration. We find that even incompressible turbulence can accelerate particles on the scales comparable with the particle mean free path.

  8. Accelerators AND Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACME -Toggle FermilabAccelerators

  9. Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems

    SciTech Connect (OSTI)

    Doolen, G.D.; Venneri, F.; Li, N.; Williamson, M.A.; Houts, M.; Lawrence, G.

    1998-06-27T23:59:59.000Z

    ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes an intense source-driven neutron flux for transmutation in a heterogeneous (solid fuel) core. The concept is the result of many years of development at LANL as well as other major international research centers. Once demonstrated and developed, ATW could be an essential part of a global non-proliferation strategy for countries that could build up large quantities of plutonium from their commercial reactor waste. ATW technology, initially proposed in the US, has received wide and rapidly increasing attention abroad, especially in Europe and the Far East with major programs now being planned, organized and tided. Substantial convergence presently exists on the technology choices among the programs, opening the possibility of a strong and effective international collaboration on the phased development of the ATW technology.

  10. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    SciTech Connect (OSTI)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    2011-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. evegetation work is scheduled to commence during the first quarter of FY 2011 to minimize the amount of time that sites are unvegetated and more susceptible to invasion by non-native weedy annual species.

  11. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

  12. Technical and economic evaluation of ten high temperature, high pressure particulate cleanup systems for pressurized fluidized bed combustion

    SciTech Connect (OSTI)

    Rubow, L.N.; Borden, M.; Buchanan, T.L.; Cramp, J.A.C.; Fischer, W.H.; Klett, M.G.; Maruvada, S.M.; Nelson, E.T.; Weinstein, R.E.; Zaharchuk, R.

    1984-07-01T23:59:59.000Z

    The objective of this analysis was to provide a technical and economic evaluation of the ten high temperature, high pressure (HTHP) systems for the purpose of prioritizing them according to performance, cost, and general viability of achieving commercial status. The scope primarily included reviewing/normalizing test experience to date, normalizing commercial designs, developing normalized capital and operating costs for each system, performing trade-off studies, and performing an evaluation utilizing in-house and outside inputs. The HTHP particulate cleanup system must be capable of the same stringent operating requirements as a conventional system, except it must do so at HTHP conditions. Utilities will demand nearly the same reliability as found in conventional equipment. Regarding particulate cleanup, the system must meet NSPS requirements at the stack, and also meet turbine inlet requirements. The ten devices evaluated were: Electrostatic Precipitator - Cottrell Environmental Sciences (CES); Ceramic Felt Filter - Acurex Corporation; Ceramic Cross Flow Filter - Westinghouse; Shallow Static Granular Bed Filter - Ducon/Westinghouse; Electrostatic Granular Bed Filter - General Electric (GE); Moving Granular Bed Filter - Combustion Power Company (CPC); Dry Plate Scrubber - Air Pollution Technology (APT); Magnetic Granular Bed Filter - Exxon; Electrocyclone - General Electric; and Acoustic Agglomerator - Aerojet/Pennsylvania State University (PSU). The test data for the ten devices were normalized to standard conditions with a reference inlet particle loading and size distribution. The purpose of system design normalization is to provide, for each of the HTHP concepts, a scaled-up commercial design which reflects a consistent design approach. 104 figures, 136 tables.

  13. An Electric Propulsion Concept Based on Direct Ion Acceleration with

    E-Print Network [OSTI]

    Choueiri, Edgar

    of demonstrating its validity and feasibility as a potential plasma thruster concept. It is hoped that this acceleration mechanism will form the basis of a new Beating Wave Thruster (BWT) that is electrodeless of my life. I thank you for introducing me to plasmas, for your support, and for your friendship

  14. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10T23:59:59.000Z

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  15. Thomas Precession by Uniform Acceleration

    E-Print Network [OSTI]

    Miroslav Pardy

    2014-12-09T23:59:59.000Z

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  16. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Accelerator Hall A Hall B Hall C 12 GeV Upgrade Experimental Techniques...

  17. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, J.A.; Greenwald, S.

    1989-05-30T23:59:59.000Z

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  18. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

    1989-01-01T23:59:59.000Z

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  19. Thomas Precession by Uniform Acceleration

    E-Print Network [OSTI]

    Pardy, Miroslav

    2015-01-01T23:59:59.000Z

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  20. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  1. Testing a combined vibration and acceleration environment.

    SciTech Connect (OSTI)

    Jepsen, Richard Alan; Romero, Edward F.

    2005-01-01T23:59:59.000Z

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  2. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    E-Print Network [OSTI]

    Cary, J.R.

    2008-01-01T23:59:59.000Z

    a broad computational accelerator physics initiative † J Rbroad computational accelerator physics initiative J R Caryand future to the accelerator physics community of the

  3. Decommissioning and Environmental Cleanup of a Small Arms Training Facility - 13225

    SciTech Connect (OSTI)

    Adams, Karen M. [United States Department of Energy - Savannah River Operations Office (United States)] [United States Department of Energy - Savannah River Operations Office (United States); Kmetz, Thomas F.; Smith, Sandra B.; Blount, Gerald C. [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01T23:59:59.000Z

    US DOE performed a (CERCLA) non-time critical removal (NTCR) action at the Small Arms Training Area (SATA) Site Evaluation Area (SEA) located at the Savannah River Site (SRS), in Aiken, South Carolina. From 1951 to May 2010, the SATA was used as a small weapons practice and qualifying firing range. The SATA consisted of 870.1 ha (2,150 ac) of woodlands and open field, of which approximately 2.9 ha (7.3 ac) were used as a firing range. The SATA facility was comprised of three small arms ranges (one static and two interactive), storage buildings for supplies, a weapons cleaning building, and a control building. Additionally, a 113- m (370-ft) long earthen berm was used as a target backstop during live-fire exercises. The berm soils accumulated a large amount of spent lead bullets in the berm face during the facilities 59- years of operation. The accumulation of lead was such that soil concentrations exceeded the U.S. Environmental Protection Agency (USEPA) residential and industrial worker regional screening levels (RSLs). The RSL threshold values are based on standardized exposure scenarios that estimate contaminant concentrations in soil that the USEPA considers protective of humans over a lifetime. For the SATA facility, lead was present in soil at concentrations that exceed both the current residential (400 mg/kg) and industrial (800 mg/kg) RSLs. In addition, the concentration of lead in the soil exceeded the Toxicity Characteristic Leaching Procedure (TCLP) (40 Code of Federal Regulations [CFR] 261.24) regulatory limit. The TCLP analysis simulates landfill conditions and is designed to determine the mobility of contaminants in waste. In addition, a principal threat source material (PTSM) evaluation, human health risk assessment (HHRA), and contaminant migration (CM) analysis were conducted to evaluate soil contamination at the SATA SEA. This evaluation determined that there were no contaminants present that constitute PTSM and the CM analysis revealed that no constituents posed a migration risk to groundwater. The NTCR action involved removal of approximately 12,092 m{sup 3} (15,816 yd{sup 3}) of spent bullets and lead-impacted soil and off-site disposal. The removal action included soils from the berm area, a fill area that received scraped soils from the berm, and soil from a drainage ditch located on the edge of the berm area. Also included in the removal action was a mixture of soil, concrete, and asphalt from the other three range areas. Under this action, 11,796 m{sup 3} (15,429 yd{sup 3}) of hazardous waste and impacted soil were removed from the SATA and transported to a permitted hazardous waste disposal facility (Lone Mountain Facility in Oklahoma) and 296 m{sup 3} (387 yd{sup 3}) of nonhazardous waste (primarily concrete debris) were removed and transported to a local solid waste landfill for disposal. During the excavation process, the extent was continuously assessed through the use of a hand-held, field-portable X-ray fluorescence unit with results verified using confirmation sampling with certified laboratory analysis. Following the completion of the excavation and confirmation sampling, final contouring, grading, and establishment of vegetative cover was performed to stabilize the affected areas. The NTCR action began on August 17, 2010, and mechanical completion was achieved on April 27, 2011. The selected removal action met the removal action objectives (RAOs), is protective of human health and the environment both in the short- and long-term, was successful in removing potential ecological risks, and is protective of surface water and groundwater. Furthermore, the selected NTCR action met residential cleanup goals and resulted in the release of the SEA from restricted use contributing to the overall footprint reduction at SRS. (authors)

  4. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  5. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  6. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01T23:59:59.000Z

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  7. I Investigation of Pellet Acceleration

    E-Print Network [OSTI]

    I Investigation of Pellet Acceleration by an Arc heated Gas Gun An Interim Report INVESTIGATION OP PELLET ACCELERATION BY AN ARC HEATED GAS GUN* An Interim Report on the Investigations carried, and K.-V. Weisberg Abstract. Deep penetration of pellets into the JET plasma may prove to be a useful

  8. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  9. Investing in International Information Exchange Activities to Improve the Safety, Cost Effectiveness and Schedule of Cleanup - 13281

    SciTech Connect (OSTI)

    Seed, Ian; James, Paula [Cogentus Consulting (United States)] [Cogentus Consulting (United States); Mathieson, John [NDA United Kingdom (United Kingdom)] [NDA United Kingdom (United Kingdom); Judd, Laurie [NuVision Engineering, Inc. (United States)] [NuVision Engineering, Inc. (United States); Elmetti-Ramirez, Rosa; Han, Ana [US DOE (United States)] [US DOE (United States)

    2013-07-01T23:59:59.000Z

    With decreasing budgets and increasing pressure on completing cleanup missions as quickly, safely and cost-effectively as possible, there is significant benefit to be gained from collaboration and joint efforts between organizations facing similar issues. With this in mind, the US Department of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) have formally agreed to share information on lessons learned on the development and application of new technologies and approaches to improve the safety, cost effectiveness and schedule of the cleanup legacy wastes. To facilitate information exchange a range of tools and methodologies were established. These included tacit knowledge exchange through facilitated meetings, conference calls and Site visits as well as explicit knowledge exchange through document sharing and newsletters. A DOE web-based portal has been established to capture these exchanges and add to them via discussion boards. The information exchange is operating at the Government-to-Government strategic level as well as at the Site Contractor level to address both technical and managerial topic areas. This effort has resulted in opening a dialogue and building working relationships. In some areas joint programs of work have been initiated thus saving resource and enabling the parties to leverage off one another activities. The potential benefits of high quality information exchange are significant, ranging from cost avoidance through identification of an approach to a problem that has been proven elsewhere to cost sharing and joint development of a new technology to address a common problem. The benefits in outcomes significantly outweigh the costs of the process. The applicability of the tools and methods along with the lessons learned regarding some key issues is of use to any organization that wants to improve value for money. In the waste management marketplace, there are a multitude of challenges being addressed by multiple organizations and the effective pooling and exchange of knowledge and experience can only be of benefit to all participants to help complete the cleanup mission more quickly and more cost effectively. This paper examines in detail the tools and processes used to promote information exchange and the progress made to date. It also discusses the challenges and issues involved and proposes recommendations to others who are involved in similar activities. (authors)

  10. Plasmonic Meta-Surface for Efficient Ultra-Short Pulse Laser-Driven Particle Acceleration

    E-Print Network [OSTI]

    Bar-Lev, Doron

    2014-01-01T23:59:59.000Z

    A laser-driven particle accelerator based on plasmonic nano-antennas is proposed and analyzed. The concept utilizes the enhancement and localization of the electric field by nano-antennas to maximize the acceleration gradient and to overcome potential metallic losses. The structure is optimized for accelerating relativistic particles using a femto-second laser source operating at 800nm, and is shown to support the bandwidth of ultra-short laser pulses (up to 16fsec) while providing a high acceleration gradient potentially reaching 11.6GV/m.

  11. Particle Acceleration in Astrophysical Sources

    E-Print Network [OSTI]

    Amato, Elena

    2015-01-01T23:59:59.000Z

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  12. Computational accelerator science needs towards laser-plasma accelerators for future colliders

    E-Print Network [OSTI]

    Geddes, C G R; Schroeder, C B; Esarey, E; Leemans, W P

    2013-01-01T23:59:59.000Z

    Laser plasma accelerators have the potential to reduce the size of future linacs for high energy physics by more than an order of magnitude, due to their high gradient. Research is in progress at current facilities, including the BELLA PetaWatt laser at LBNL, towards high quality 10 GeV beams and staging of multiple modules, as well as control of injection and beam quality. The path towards high-energy physics applications will likely involve hundreds of such stages, with beam transport, conditioning and focusing. Current research focuses on addressing physics and R&D challenges required for a detailed conceptual design of a future collider. Here, the tools used to model these accelerators and their resource requirements are summarized, both for current work and to support R&D addressing issues related to collider concepts.

  13. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    DOE Patents [OSTI]

    Ayala, Raul E. (Clifton Park, NY)

    1993-01-01T23:59:59.000Z

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  14. Decision support software technology demonstration plan

    SciTech Connect (OSTI)

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01T23:59:59.000Z

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  15. Velocity bunching in travelling wave accelerator with low acceleration gradient

    E-Print Network [OSTI]

    Huang, Rui-Xuan; Li, Wei-Wei; Jia, Qi-Ka

    2013-01-01T23:59:59.000Z

    We present the analytical and simulated results concerning the influences of the acceleration gradient in the velocity bunching process, which is a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. Our study shows that the bunch compression application with low acceleration gradient is more tolerant to phase jitter and more successful to obtain compressed electron beam with symmetrical longitudinal distribution and low energy spread. We also present a transverse emittance compensation scheme to compensate the emittance growth caused by the increasing of the space charge force in the compressing process that is easy to be adjusted for different compressing factors.

  16. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22T23:59:59.000Z

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  17. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C. [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States)] [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States); Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)] [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  18. Radiological Research Accelerator Facility Service Request Form

    E-Print Network [OSTI]

    Radiological Research Accelerator Facility Service Request Form National Institute of Biomedical Imaging and Bioengineering Radiological Research Accelerator Facility Service request form Estimate when(s) to control for this experiment (if more than one, please prioritize): Radiological Research Accelerator

  19. FPGA Acceleration of Discrete Molecular Dynamics Simulation

    E-Print Network [OSTI]

    Herbordt, Martin

    ' & $ % FPGA Acceleration of Discrete Molecular Dynamics Simulation Joshua Model Thesis submitted UNIVERSITY COLLEGE OF ENGINEERING Thesis FPGA Acceleration of Discrete Molecular Dynamics Simulation Acceleration of Discrete Molecular Dynamics Simulation Joshua Model ABSTRACT Molecular dynamics simulation

  20. TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    IN THE PHYSICS OF PARTICLE ACCELERATORS A.M. Sessler TWO-IN THE PHYSICS OF PARTICLE ACCELERATORS Andrew M. SesslerBruck, "Circular Particle Accelerators," PUF, Paris (1966).

  1. Cleanup protocols when encountering thorium-230 at U.S. DOE Uranium Mill Tailings Remedial Action (UMTRA) Project sites

    SciTech Connect (OSTI)

    Miller, M.L.; Hylko, J.M.; Cornish, R.E.

    1995-12-31T23:59:59.000Z

    The passage of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, established the regulatory framework, under which the US EPA charged with developing standards for the cleanup and disposal of tailings at 24 designated inactive uranium processing sites located in 10 states. 40 CFR 192.12 requires that the concentration of Ra-226 in land averaged over any area of 100 square meters shall not exceed the background level by more than 5 pCi/g, averaged over the first 15 cm of soil below the surface, 15 pCi/g, averaged over 15-cm-thick layers of soils more than 15 cm below the surface. However, Th-230 is not specifically addressed by the EPA in 40 CFR 192.12, which naturally decays with a half-life of 77,000 years to form Ra-226. Consequently, the cleanup of the initial Ra-226 contamination according to the standards will not necessarily mitigate against the eventual ingrowth of residual Ra-226 with time, due to the radioactive decay of residual Th-230. Therefore, to direct the excavation of residual Th-230, four generic protocols are being used at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, as follows: Determining the allowable remaining concentration of Th-230 in surface and subsurface soils; Encountering Th-230 contamination in the unsaturated subsurface soil; Encountering Th-230 contamination in the saturated zone; and Verification sampling. The four generic protocols, developed in conjunction with the supplemental standards provision, ensure protection of the general public by reducing exposures to levels that are As Low As Reasonably Achievable, while considering practical measures necessary to excavate Th-230 under conditions encountered at the UMTRA Project site.

  2. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  3. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, V.W.

    1990-07-03T23:59:59.000Z

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  4. Experimental test accelerator (ETA) II

    SciTech Connect (OSTI)

    Fessenden, T.J.; Atchison, W.L.; Birx, D.L.

    1981-03-06T23:59:59.000Z

    The Experimental Test Accelerator (ETA) is designed to produce a 10 kAmp electron beam at an energy of 4.5 MeV in 40 nsec pulses at an average rate of 2 pps. The accelerator also operates in bursts of 5 pulses spaced by as little as one millisec at an average rate of 5 pps. The machine is currently operating near 80% of its design values and has accumulated over 2.5 million pulses - mostly at a rate of one pps. The plasma cathode electron source, the remainder of the accelerator, and the operating characteristics of the machine are discussed.

  5. Cosmic Particle Acceleration: Basic Issues

    E-Print Network [OSTI]

    T. W. Jones

    2000-12-22T23:59:59.000Z

    Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

  6. Terahertz radiation from laser accelerated electron bunches

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    NUMBER 5 MAY 2004 Terahertz radiation from laser acceleratedand millimeter wave radiation from laser acceleratedNo. 5, May 2004 Terahertz radiation from laser accelerated

  7. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01T23:59:59.000Z

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  8. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United...

  9. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Particle Accelerator Sets World Record Berkeley Lab Particle Accelerator Sets World Record Simulations at NERSC Help Validate Experimental Laser-Plasma Design December...

  10. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31T23:59:59.000Z

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  11. Accelerating DSMC data extraction.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01T23:59:59.000Z

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  12. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01T23:59:59.000Z

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  13. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26T23:59:59.000Z

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  14. Linear Accelerator | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photo below). Selective phasing of the electric field accelerates the electrons to 450 million volts (MeV). At 450 MeV, the electrons are relativistic: they are traveling at...

  15. Israel Careers ACCELERATE YOUR FUTURE

    E-Print Network [OSTI]

    Rimon, Elon

    Lithography Control products within the product lifecycle process including defining requirements, settingIsrael Careers ACCELERATE YOUR FUTURE Product Marketing Manager Job Description: Product Marketing Manager at the Optical Metrology Division is responsible for product strategy and customer interface

  16. Stable laser–plasma accelerators at low densities

    SciTech Connect (OSTI)

    Li, Song; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Mirzaie, Mohammad; Ge, Xulei; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-07-28T23:59:59.000Z

    We report stable laser wakefield acceleration using 17–50 TW laser pulses interacting with 4?mm-long helium gas jet. The initial laser spot size was relatively large (28??m) and the plasma densities were 0.48–2.0?×?10{sup 19?}cm{sup ?3}. High-quality 100–MeV electron beams were generated at the plasma density of 7.5?×?10{sup 18?}cm{sup ?3}, at which the beam parameters (pointing angle, energy spectrum, charge, and divergence angle) were measured and stabilized. At higher densities, filamentation instability of the laser-plasma interaction was observed and it has led to multiple wakefield accelerated electron beams. The experimental results are supported by 2D particle-in-cell simulations. The achievement presented here is an important step toward the use of laser-driven accelerators in real applications.

  17. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18T23:59:59.000Z

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  18. BRIEF HISTORY OF FFAG ACCELERATORS.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2006-12-04T23:59:59.000Z

    Colleagues of mine have asked me few times why we have today so much interest in Fixed-Field Alternating-Gradient (FFAG) accelerators when these were invented a long time ago, and have always been ignored since then. I try here to give a reply with a short history of FFAG accelerators, at least as I know it. I take also the opportunity to clarify few definitions.

  19. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    SciTech Connect (OSTI)

    Fox, K.; Marra, J.

    2014-08-14T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values

  20. Hanford Site Cleanup Before Cleanup Began

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soil Hanford Traffic Safety10 Revision

  1. High Gradient Two-Beam Electron Accelerator

    SciTech Connect (OSTI)

    Jiang, Y. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Kazakov, S. Yu. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kuzikov, S. V. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Institute of Applied Physics, Nizhny Novgorod, 603600 (Russian Federation); Hirshfield, J. L. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States)

    2010-11-04T23:59:59.000Z

    A high-gradient two-beam electron accelerator structure using detuned cavities is described. A self-consistent theory based on a circuit model is presented to calculate idealized acceleration gradient, transformer ratio, and efficiency for energy transfer from the drive beam to the accelerated beam. Experimental efforts are being carried out to demonstrate this acceleration concept.

  2. RADIO EMISSION OF SOLAR FLARE PARTICLE ACCELERATION

    E-Print Network [OSTI]

    RADIO EMISSION OF SOLAR FLARE PARTICLE ACCELERATION A. O. Benz Abstract The solar corona is a very be considered as a particle accelerator. The free mobility of charged particles in a dilute plasma to accelerate particles in resonance. From a plasma physics point of view, acceleration is not surprising

  3. Accelerator-driven transmutation of spent fuel elements

    DOE Patents [OSTI]

    Venneri, Francesco (Los Alamos, NM); Williamson, Mark A. (Los Alamos, NM); Li, Ning (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  4. Ultra-high vacuum photoelectron linear accelerator

    DOE Patents [OSTI]

    Yu, David U.L.; Luo, Yan

    2013-07-16T23:59:59.000Z

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  5. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  6. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect (OSTI)

    Brown, Michael R.

    2006-11-16T23:59:59.000Z

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  7. Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC

    E-Print Network [OSTI]

    Wechsler, Risa H.

    #12;Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC is continually improving accelerators, both here and at other laboratories, and paving the way for a new generation of particle acceleration technology. SLAC's famous linear accelerator

  8. GTA (ground test accelerator) Phase 1: Baseline design report

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The national Neutral Particle Beam (NPB) program has two objectives: to provide the necessary basis for a discriminator/weapon decision by 1992, and to develop the technology in stages that lead ultimately to a neutral particle beam weapon. The ground test accelerator (GTA) is the test bed that permits the advancement of the state-of-the-art under experimental conditions in an integrated automated system mode. An intermediate goal of the GTA program is to support the Integrated Space Experiments, while the ultimate goal is to support the 1992 decision. The GTA system and each of its major subsystems are described, and project schedules and resource requirements are provided. (LEW)

  9. Superconducting Magnets for Particle Accelerators

    E-Print Network [OSTI]

    Rossi, L

    2012-01-01T23:59:59.000Z

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  10. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05T23:59:59.000Z

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  11. Symposium on accelerator mass spectrometry

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  12. Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

  13. Initial test results from the Department of Energy`s pressurized fluidized bed combustion Hot Gas Cleanup Program

    SciTech Connect (OSTI)

    Dennis, R.A. [USDOE Morgantown Energy Technology Center, WV (United States); Lippert, T.E.; Bruck, G.J.; Alvin, M.A. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Mudd, M.J. [Ohio Power Co., Columbus, OH (United States)]|[American Electric Power Service Corp., Columbus, OH (United States)

    1993-06-01T23:59:59.000Z

    In August 1989 a cooperative agreement was signed between Ohio Power Company, through its agent the American Electric Power Service Corporation, and the United States Department of Energy to assess the readiness and economic viability of high-temperature and high-pressure (HTHP) particulate filter systems for pressurized fluidized bed combustion (PFBC) applications. In this agreement, known as the PFBC Hot Gas Cleanup (HGCU) Program, two HTHP particulate filtration systems are to be tested with one seventh of the flow from the Tidd 70-MWe PFBC Clean Coal Demonstration Plant. This paper describes the initial results from the first PFBC HGCU test and an additional proof-of-concept, pilot-scale test used to validate a ceramic candle filter element, which may be used in the second test of the PFBC HGCU Program. The first test consisted of a three-cluster filter system, incorporating 384, 1.5-meter long silicon carbide candle filters. This system utilized a one-seventh flow slipstream, approximately 7360 actual cubic feet per minute, from the Tidd 70-MWe PFBC. The proof-of-concept test is being used to qualify mullite candle filters as a potential candidate for the second test at the Tidd 70-MWe PFBC. Both filter systems were designed and fabricated by the Westinghouse Science and Technology Center.

  14. Development of novel copper-based sorbents for hot-gas cleanup. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Bo, L.; Patel, C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-10-01T23:59:59.000Z

    The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degrees} to 850{degrees}C. During this quarter cyclic sulfidation/regeneration tests of the sorbents Cu{sub 2}Cr-O and Cu-Ce-0 were conducted using different compositions of the feed gases to investigate the effects of H{sub 2}0, H{sub 2} and CO. These tests were conducted in a packed-bed microreactor at 850{degrees}C. The results of these tests showed that H{sub 2} and CO (along with C02) had a significant effect on the H{sub 2}S pre-breakthrough levels, whereas H{sub 2}0 did not have an effect. The physical properties of the fresh and reacted samples of the Cu-2Cr-O and Cu-Ce-0 sorbents prepared in this program and used in the cyclic sulfidation/regeneration tests were also measured. In addition, sulfidation/regeneration tests were conducted using two commercial copper chromite sorbents (G-13 and G-89, United Catalyst, Inc.) and a zinc titanate sorbent (L-3014) in a one-inch fluidized-bed reactor at 650{degrees}C. The G-13 sorbent appears to have a much higher sulfur capacity than the G-89 sorbent.

  15. Design, construction, and operation of a life-cycle test system for the evaluation of flue gas cleanup processes

    SciTech Connect (OSTI)

    Pennline, H.W.; Yeh, James T.; Hoffman, J.S. [USDOE Pittsburgh Energy Technology Center, PA (United States); Longton, E.J.; Vore, P.A.; Resnik, K.P.; Gromicko, F.N. [Gilbert/Commonwealth, Inc., Library, PA (United States)

    1995-12-01T23:59:59.000Z

    The Pittsburgh Energy Technology Center of the US Department of Energy has designed, constructed, and operated a Life-Cycle Test Systems (LCTS) that will be used primarily for the investigation of dry, regenerable sorbent flue gas cleanup processes. Sorbent continuously cycles from an absorber reactor where the pollutants are removed from the flue gas, to a regenerator reactor where the activity of the spent sorbent is restored and a usable by-product stream of gas is produced. The LCTS will initially be used to evaluate the Moving-Bed Copper Oxide Process by determining the effects of various process parameters on SO{sub 2} and NO{sub x} removals. The purpose of this paper is to document the design rationale and details, the reactor/component/instrument installation, and the initial performance of the system. Although the Moving-Bed Copper Oxide Process will be investigated initially, the design of the LCTS evolved to make the system a multipurpose, versatile research facility. Thus, the unit can be used to investigate various other processes for pollution abatement of SO{sub 2}, NO{sub x}, particulates, air toxics, and/or other pollutants.

  16. Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process

    SciTech Connect (OSTI)

    Grimes, R.W.

    1992-12-01T23:59:59.000Z

    This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

  17. Gas stream clean-up filter and method for forming same

    DOE Patents [OSTI]

    Mei, Joseph S. (Morgantown, WV); DeVault, James (Fairmont, WV); Halow, John S. (Waynesburg, PA)

    1993-01-01T23:59:59.000Z

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

  18. Efficient control of accelerator maps

    E-Print Network [OSTI]

    Jehan Boreux; Timoteo Carletti; Charalampos Skokos; Yannis Papaphilippou; Michel Vittot

    2011-09-21T23:59:59.000Z

    Recently, the Hamiltonian Control Theory was used in [Boreux et al.] to increase the dynamic aperture of a ring particle accelerator having a localized thin sextupole magnet. In this letter, these results are extended by proving that a simplified version of the obtained general control term leads to significant improvements of the dynamic aperture of the uncontrolled model. In addition, the dynamics of flat beams based on the same accelerator model can be significantly improved by a reduced controlled term applied in only 1 degree of freedom.

  19. Accelerated dynamics simulations of nanotubes.

    SciTech Connect (OSTI)

    Uberuaga, B. P. (Blas Pedro); Stuart, S. J. (Steve J.); Voter, A. F.

    2002-01-01T23:59:59.000Z

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  20. Weak-Chaos Ratchet Accelerator

    E-Print Network [OSTI]

    Itzhack Dana; Vladislav B. Roitberg

    2012-05-28T23:59:59.000Z

    Classical Hamiltonian systems with a mixed phase space and some asymmetry may exhibit chaotic ratchet effects. The most significant such effect is a directed momentum current or acceleration. In known model systems, this effect may arise only for sufficiently strong chaos. In this paper, a Hamiltonian ratchet accelerator is introduced, featuring a momentum current for arbitrarily weak chaos. The system is a realistic, generalized kicked rotor and is exactly solvable to some extent, leading to analytical expressions for the momentum current. While this current arises also for relatively strong chaos, the maximal current is shown to occur, at least in one case, precisely in a limit of arbitrarily weak chaos.

  1. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30T23:59:59.000Z

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  2. Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions

    E-Print Network [OSTI]

    Hemker, Roy G

    2015-01-01T23:59:59.000Z

    In this dissertation, a fully object-oriented, fully relativistic, multi-dimensional Particle-In-Cell code was developed and applied to answer key questions in plasma-based accelerator research. The simulations increase the understanding of the processes in laser plasma and beam-plasma interaction, allow for comparison with experiments, and motivate the development of theoretical models. The simulations support the idea that the injection of electrons in a plasma wave by using a transversely propagating laser pulse is possible. The beam parameters of the injected electrons found in the simulations compare reasonably with beams produced by conventional methods and therefore laser injection is an interesting concept for future plasma-based accelerators. Simulations of the optical guiding of a laser wakefield driver in a parabolic plasma channel support the idea that electrons can be accelerated over distances much longer than the Rayleigh length in a channel. Simulations of plasma wakefield acceleration in the ...

  3. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a broad computational accelerator physics

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a broad at Lawrence Livermore National Laboratory. #12;COMPASS, the COMmunity Petascale project for Accelerator for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation

  4. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08T23:59:59.000Z

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  5. Phase Stable Net Acceleration of Electrons From a Two-Stage Optical Accelerator

    SciTech Connect (OSTI)

    Sears, Christopher M.S.; /SLAC /Munich, Max Planck Inst. Quantenopt.; Colby, Eric; England, R.J.; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; /SLAC; Plettner, Tomas; Byer, Robert L.; /Stanford U., Phys. Dept.

    2011-11-11T23:59:59.000Z

    In this article we demonstrate the net acceleration of relativistic electrons using a direct, in-vacuum interaction with a laser. In the experiment, an electron beam from a conventional accelerator is first energy modulated at optical frequencies in an inverse-free-electron-laser and bunched in a chicane. This is followed by a second stage optical accelerator to obtain net acceleration. The optical phase between accelerator stages is monitored and controlled in order to scan the accelerating phase and observe net acceleration and deceleration. Phase jitter measurements indicate control of the phase to {approx}13{sup o} allowing for stable net acceleration of electrons with lasers.

  6. Fresnel diffraction patterns as accelerating beams

    E-Print Network [OSTI]

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01T23:59:59.000Z

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  7. Physics Needs for Future Accelerators

    E-Print Network [OSTI]

    Lykken, J D

    2000-01-01T23:59:59.000Z

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  8. Petawatt pulsed-power accelerator

    DOE Patents [OSTI]

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16T23:59:59.000Z

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  9. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  10. Accelerating Multimedia with Enhanced Microprocessors

    E-Print Network [OSTI]

    Lee, Ruby B.

    Accelerating Multimedia with Enhanced Microprocessors A minimalistic set of multimedia instructions introduced into PA-RISC microprocessors implements SIMD-MIMD parallelism with insignificant changes to the underlying microprocessor. Thus, a software video decoder attains MPEG video and audio decom- pression

  11. Physics Needs for Future Accelerators

    E-Print Network [OSTI]

    Joseph D. Lykken

    2000-01-30T23:59:59.000Z

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontier

  12. Thomas Jefferson National Accelerator Facility

    SciTech Connect (OSTI)

    Joseph Grames, Douglas Higinbotham, Hugh Montgomery

    2010-09-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  13. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  14. THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION

    SciTech Connect (OSTI)

    Wilmarth, B; Sheryl Bush, S

    2008-10-31T23:59:59.000Z

    The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the transition metal hydroxides that precipitate when the spent acidic process solutions are rendered alkaline with sodium hydroxide. The sludges contain Sr-90 and transuranic elements. The wastes stored at each site have been generated and stored for over fifty years. Although the majority of the wastes were generated to support nuclear weapons production and reprocessing, the wastes differ substantially between the sites. Table 5 shows the volumes and total radioactivity (including decay daughters) of the waste phases stored in tanks at each site. At Hanford, there are 177 tanks that contain 56.5 Mgal of waste. SRS has 51 larger tanks, of which 2 are closed, that contain 36.5 Mgal. Mainly due to recovery operations, the waste stored at Hanford has less total curies than that stored at Savannah River. The total radioactivity of the Hanford wastes contains approximately 190 MCi, and the total radioactivity of the Savannah River wastes contains 400 MCi.

  15. Advanced Accelerator Concepts Final Report

    SciTech Connect (OSTI)

    Wurtele, Jonathan S.

    2014-05-13T23:59:59.000Z

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

  16. A Software System for Modeling and Controlling Accelerator Physics Parameters at the Advanced Light Source

    E-Print Network [OSTI]

    Schachinger, L.C.

    2011-01-01T23:59:59.000Z

    and Controlling Accelerator Physics Parameters at theLight Source for accelerator physics studies and accelerator

  17. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect (OSTI)

    Lowry, N.

    2010-11-05T23:59:59.000Z

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

  18. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    SciTech Connect (OSTI)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30T23:59:59.000Z

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

  19. accelerator driven radioactive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T. Sasa; K. Tsujimoto; H. Takano 3 Developments in laser-driven plasma accelerators CERN Preprints Summary: Laser-driven plasma accelerators provide acceleration gradients...

  20. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

  1. Cell Component Accelerated Stress Test Protocols for PEM Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Accelerated Stress Test Protocols for PEM...

  2. Advanced Computing Tools and Models for Accelerator Physics

    E-Print Network [OSTI]

    Ryne, Robert D.

    2008-01-01T23:59:59.000Z

    TOOLS AND MODELS FOR ACCELERATOR PHYSICS * Robert D. Ryne,computing tools for accelerator physics. Following anscale computing in accelerator physics. INTRODUCTION To

  3. accelerate positional cloning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of velocity is acceleration (i DeTurck, Dennis 2 LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?...

  4. CAS - CERN Accelerator School: Advanced Accelerator Physics Course

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    This report presents the proceedings of the Course on Advanced Accelerator Physics organized by the CERN Accelerator School. The course was held in Trondheim, Norway from 18 to 29 August 2013, in collaboration with the Norwegian University of Science and Technology. Its syllabus was based on previous courses and in particular on the course held in Berlin 2003 whose proceedings were published as CERN Yellow Report CERN- 2006-002. The field has seen significant advances in recent years and some topics were presented in a new way and other topics were added. The lectures were supplemented with tutorials on key topics and 14 hours of hands on courses on Optics Design and Corrections, RF Measurement Techniques and Beam Instrumentation and Diagnostics. These courses are a key element of the Advanced Level Course.

  5. Accelerator on a Chip: How It Works

    SciTech Connect (OSTI)

    None

    2014-06-30T23:59:59.000Z

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  6. FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS

    E-Print Network [OSTI]

    Herbordt, Martin

    ' & $ % FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS YONGFENG GU Dissertation submitted;BOSTON UNIVERSITY COLLEGE OF ENGINEERING Dissertation FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS DYNAMICS SIMULATIONS (Order No. ) YONGFENG GU Boston University, College of Engineering, 2008 Major

  7. MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS

    E-Print Network [OSTI]

    Magee, Joseph W.

    MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

  8. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  9. CRAD, Engineering - Idaho Accelerated Retrieval Project Phase...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Idaho Accelerated Retrieval Project Phase II CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2...

  10. HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Taylor, C.

    2011-01-01T23:59:59.000Z

    D. C. 'Niobium-Titanium Superconducting Material s ', in S.14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.SUMAG-68 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS* C.

  11. An Application Specific Memory Characterization Technique for Co-processor Accelerators

    SciTech Connect (OSTI)

    Alam, Sadaf R [ORNL; Smith, Melissa C [ORNL; Vetter, Jeffrey S [ORNL

    2007-01-01T23:59:59.000Z

    Commodity accelerator technologies including reconfigurable devices and graphical processing units (GPUs) provide an order of magnitude performance improvement compared to mainstream microprocessor systems. A number of compute-intensive, scientific applications, therefore, can potentially benefit from commodity computing devices available in the form of co-processor accelerators. However, there has been little progress in accelerating production-level scientific applications using these technologies due to several programming and performance challenges. One of the key performance challenges is performance sustainability. While computation is often accelerated substantially by accelerator devices, the achievable performance is significantly lower once the data transfer costs and overheads are incorporated. We present an application-specific memory characterization technique for an FPGA-accelerated system that enabled us to reduce data transfer overhead for a scientific application by a factor of 5. We classify large data structures in the application according to their read and write characteristics and access patterns. This classification in turn enabled us to sustain a speedup of over three for a full-scale scientific application. Our proposed technique extends to applications that exhibit similar memory behavior and to co-processor accelerator systems that support data streaming and pipelining, and allow overlapped execution between the host and the accelerator device.

  12. Plasma Wakefield Acceleration: How it Works

    SciTech Connect (OSTI)

    None

    2014-11-05T23:59:59.000Z

    This animation explains how electrons can be efficiently accelerated to high energy using wakes created in a plasma.

  13. Physics 321 Accelerating Reference Frames II

    E-Print Network [OSTI]

    Hart, Gus

    Physics 321 Hour 25 Accelerating Reference Frames II Consider an accelerating train car Proof 0 and S is a frame rotating with angular velocity . Examples Handout rotation.nb #12;Physics 321 Hour 26 Accelerating Reference Frames III Velocities in Rotating Frames in S0 basis in S' basis In S' basis in S0 basis

  14. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, William M. (Santa Fe, NM)

    1992-01-01T23:59:59.000Z

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  15. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, W.M.

    1992-12-29T23:59:59.000Z

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  16. US LHC Accelerator Research Program For the BNL-FNAL-LBNL LHC Accelerator Collaboration

    E-Print Network [OSTI]

    Large Hadron Collider Program

    instruments that will improve the operation of the LHC and help us perform accelerator physics experiments science. · Perform accelerator physics studies and advanced magnet R&D that will result in the IR designsUS LHC Accelerator Research Program Jim Strait For the BNL-FNAL-LBNL LHC Accelerator Collaboration

  17. Tomography of a laser wakefield accelerator Tomography of a laser wakefield accelerator

    E-Print Network [OSTI]

    history of laser-plasma accelerators is reviewed. The excitation of plasma waves by ultra-short laser Tomography of a laser wakefield accelerator Tomography of a laser wakefield accelerator 692220024 #12; Tomography of a laser wakefield accelerator i #12; Tomography of a laser

  18. Industrial applications of electron accelerators

    E-Print Network [OSTI]

    Cleland, M R

    2006-01-01T23:59:59.000Z

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  19. Accelerated expansion from cosmological holography

    E-Print Network [OSTI]

    van Putten, Maurice H P M

    2015-01-01T23:59:59.000Z

    It is shown that holographic cosmology implies an evolving Hubble radius $c^{-1}\\dot{R}_H = -1 + 3\\Omega_m$ in the presence of a dimensionless matter density $\\Omega_m$ scaled to the closure density $3H^2/8\\pi G$, where $c$ denotes the velocity of light and $H$ and $G$ denote the Hubble parameter and Newton's constant. It reveals a dynamical dark energy and a sixfold increase in gravitational attraction to matter on the scale of the Hubble acceleration. It reproduces the transition redshift $z_t\\simeq 0.4$ to the present epoch of accelerated expansion and is consistent with $(q_0,(dq/dz)_0)$ of the deceleration parameter $q(z)=q_0+(dq/dz)_0z$ observed in Type Ia supernovae.

  20. Voltage holding study of 1 MeV accelerator for ITER neutral beam injector

    SciTech Connect (OSTI)

    Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Dairaku, M.; Takemoto, J.; Tobari, H.; Tsuchida, K.; Yamanaka, H.; Watanabe, K.; Kojima, A.; Hanada, M.; Sakamoto, K.; Inoue, T. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2012-02-15T23:59:59.000Z

    Voltage holding test on MeV accelerator indicated that sustainable voltage was a half of that of ideal quasi-Rogowski electrode. It was suggested that the emission of the clumps is enhanced by a local electric field concentration, which leads to discharge initiation at lower voltage. To reduce the electric field concentration in the MeV accelerator, gaps between the grid supports were expanded and curvature radii at the support corners were increased. After the modifications, the accelerator succeeded in sustaining -1 MV in vacuum without beam acceleration. However, the beam energy was still limited at a level of 900 keV with a beam current density of 150 A/m{sup 2} (346 mA) where the 3 x 5 apertures were used. Measurement of the beam profile revealed that deflection of the H{sup -} ions was large and a part of the H{sup -} ions was intercepted at the acceleration grid. This causes high heat load on the grids and the breakdowns during beam acceleration. To suppress the direct interception, new grid system was designed with proper aperture displacement based on a 3D beam trajectory analysis. As the result, the beam deflection was compensated and the voltage holding during the beam acceleration was improved. Beam parameter of the MeV accelerator was increased to 980 keV, 185 A/m{sup 2} (427 mA), which is close to the requirement of ITER accelerator (1 MeV, 200 A/m{sup 2}).

  1. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31T23:59:59.000Z

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  2. Analytical tools in accelerator physics

    SciTech Connect (OSTI)

    Litvinenko, V.N.

    2010-09-01T23:59:59.000Z

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  3. Accelerator Technology Division progress report, FY 1992

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01T23:59:59.000Z

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  4. Linear particle accelerator with seal structure between electrodes and insulators

    DOE Patents [OSTI]

    Broadhurst, John H. (Golden Valley, MN)

    1989-01-01T23:59:59.000Z

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  5. Focus Research Areas 1. Fundamental Accelerator Physics: Theory

    E-Print Network [OSTI]

    Kemner, Ken

    Focus Research Areas 1. Fundamental Accelerator Physics: Theory Importance Accelerator physics aspects. Pursuit of fundamental accelerator physics in this sense has contributed significantly to the advance of the accelerator physics knowledgebase during the last several decades, clarifying

  6. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21T23:59:59.000Z

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  7. Muon Acceleration in Cosmic-ray Sources

    E-Print Network [OSTI]

    Spencer R. Klein; Rune Mikkelsen; Julia K. Becker Tjus

    2012-08-09T23:59:59.000Z

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in Gamma-Ray Bursts magnetars, or other sources. These source models require very high accelerating gradients, $10^{13}$ keV/cm, with the minimum gradient set by the length of the source. At gradients above 1.6 keV/cm, muons produced by hadronic interactions undergo significant acceleration before they decay. This acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. We rule out many models of linear acceleration, setting strong constraints on plasma wakefield accelerators and on models for sources like Gamma Ray Bursts and magnetars.

  8. Particle acceleration efficiencies in astrophysical shear flows

    E-Print Network [OSTI]

    F. M. Rieger; P. Duffy

    2005-02-04T23:59:59.000Z

    The acceleration of energetic particles in astrophysical shear flows is analyzed. We show that in the presence of a non-relativistic gradual velocity shear, power law particle momentum distributions $f(p) \\propto p^{-(3+\\alpha)}$ may be generated, assuming a momentum-dependent scattering time $\\tau \\propto p^{\\alpha}$, with $\\alpha > 0$. We consider possible acceleration sites in astrophysical jets and study the conditions for efficient acceleration. It is shown, for example, that in the presence of a gradual shear flow and a gyro-dependent particle mean free path, synchrotron radiation losses no longer stop the acceleration once it has started to work efficiently. This suggests that shear acceleration may naturally account for a second, non-thermal population of energetic particles in addition to a shock-accelerated one. The possible relevance of shear acceleration is briefly discussed with reference to the relativistic jet in the quasar 3C 273.

  9. High Performance Computing in Accelerator Science: Past Successes. Future Challenges

    E-Print Network [OSTI]

    Ryne, R.

    2013-01-01T23:59:59.000Z

    High Performance Computing in Accelerator Science: PastAC02- 05CH11231. High Performance Computing in Accelerator

  10. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14T23:59:59.000Z

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  11. Fermilab | Science | Particle Accelerators | LHC and Future Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A ThisFermilab's Accelerator Complex

  12. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect (OSTI)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01T23:59:59.000Z

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  13. HANDBOOK FOR CONDUCTING ORAL HISTORY INTERVIEWS RELATED TO TRIBAL AND INDIAN PARTICIPATION IN THE CONSTRUCTION, OPERATION AND CLEANUP OF THE NUCLEAR WEAPONS COMPLEX

    SciTech Connect (OSTI)

    Cristann Gibson; Mervyn L. Tano; Albert Wing

    1999-08-31T23:59:59.000Z

    There were three major projects undertaken at the outset of the DOE/EM 22 Cooperative Agreement back in September 1995. There was a project relating to Tribal oral histories. Another project of the Cooperative Agreement related to technology and Tribal values and needs. This project by analogy could apply to issues of technology, environmental cleanup and other indigenous peoples internationally. How can Indian Tribes participate in defining the need for technology development rather than merely learning to adapt themselves and their situations and values to technology developed by others with differing needs, values and economic resources? And the third project was the placement of a Tribal intern in EM-22.

  14. Relative risk-relative ranking in Defense and Energy Department cleanup programs: Comparison of methods, results, and role in priority setting

    SciTech Connect (OSTI)

    Turkeltaub, R. [Office of the Deputy Under Secretary of Defense, Washington, DC (United States); Treichel, L.C. [Dept. of Energy, Germantown, MD (United States). Office of Environmental Restoration; Rowe, W.D. Jr.; Strohl, A.R. [Booz Allen and Hamilton, McLean, VA (United States)

    1996-12-31T23:59:59.000Z

    This paper demonstrates how the Department of Energy (DOE) enhanced their Environmental Restoration Program by modifying the Department of Defense (DoD) Cleanup Program`s Relative Risk Site Evaluation Primer in order to create their own framework, the Relative Ranking Evaluation Framework for EM-40 Release Sites, Facilities and Buildings. In addition, this paper discusses and compares the two frameworks and presents the results of relative risk/relative ranking site evaluations for both agencies through July 1996. The status of agency efforts to implement their respective frameworks also is discussed along with plans for strengthening these initiatives in the coming year.

  15. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies. Revision 1

    SciTech Connect (OSTI)

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1994-03-01T23:59:59.000Z

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. Key features of the design include: (1) independent control of acceleration, deceleration and augmentation currents to provide a variety of acceleration-time profiles, (2) a robust support structure to minimized deflection and dampen vibration which could create artifacts in the data interfering with the intended study and (3) a compliant, non-arcing solid armature allowing optimum electrical contact. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Design of the driving armature and the dynamic electromagnetic braking system is based on results of contemporary studies for non-arcing sliding contact of solid armatures. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM and armature design which will accelerate masses of up to 3kg to a maximum of about 3000g{sub o}, where g{sub o} is acceleration due to gravity.

  16. HANFORD TANK CLEANUP UPDATE

    SciTech Connect (OSTI)

    BERRIOCHOA MV

    2011-04-07T23:59:59.000Z

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  17. Environmental Cleanup and Remediation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches EnergyActive for Life"Environment

  18. Hanford Cleanup - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged In You| BlandineGulfHAB

  19. Weldon Spring Quarry Cleanup.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj:'I,\ W C -hSince dewatering

  20. 2014 Cleanup Progress

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department of EnergyOffice |

  1. Cleanup at Rocky Flats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness2 P

  2. Hanford Tank Cleanup Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soil Hanford Traffic Department of144TDR

  3. Idaho Cleanup Project Contract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | National NuclearIWTUBoF: IXPUG

  4. Environmental Cleanup Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) / Environmental Impact Statements (EIS) SafetyStories

  5. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect (OSTI)

    M. L. Adamic; J. E. Olson; D. D. Jenson; J. G. Eisenmenger; M. G. Watrous

    2012-09-01T23:59:59.000Z

    This NA 22 funded research project investigated the transition of iodine isotopic analyses from thermal ionization mass spectrometry (TIMS) to an accelerator mass spectrometry (AMS) system. Previous work (Fiscal Year 2010) had demonstrated comparable data from TIMS and AMS. With AMS providing comparable data with improved background levels and vastly superior sample throughput, improvement in the sample extraction from environmental sample matrices was needed to bring sample preparation throughput closer to the operation level of the instrument. Previous research used an extraction chemistry that was not optimized for yield or refined for reduced labor to prove the principle. This research was done to find an extraction with better yield using less labor per sample to produce a sample ready for the AMS instrument. An extraction method using tetramethyl ammonium hydroxide (TMAH) was developed for removal of iodine species from high volume air filters. The TMAH with gentle heating was superior to the following three extraction methods: ammonium hydroxide aided by sonication, acidic and basic extraction aided by microwave, and ethanol mixed with sodium hydroxide. Taking the iodine from the extraction solvent to being ready for AMS analysis was accomplished by a direct precipitation, as well as, using silver wool to harvest the iodine from the TMAH. Portions of the same filters processed in FY 2010 were processed again with the improved extraction scheme followed by successful analysis by AMS at the Swiss Federal Institute of Technology. The data favorably matched the data obtained in 2010. The time required for analysis has been reduced over the aqueous extraction/AMS approach developed in FY 2010. For a hypothetical batch of 30 samples, the AMS methodology is about 10 times faster than the traditional gas phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than TIMS. This results from the fundamental mechanisms of ionization in the AMS system and which produces a beneficial cleanup of molecular interferences. Continued clean operation of the extraction process was demonstrated through blank analysis included with all sample sets analyzed. INL work showed improvement on the first year’s demonstration of AMS vs. TIMS. An improved extraction of high volume air filters followed by isotopic analysis by AMS, can be used successfully to make iodine measurements with results comparable to those obtained by filter combustion and TIMS analysis. More progress on the conversion from an extract solution to an AMS sample ready for analysis is still needed. Although the preparation scheme through AMS is already at a higher performing thoughput than TIMS, the chemical preparation cannot match the instrument capability for number of samples per day without further development.

  6. Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2

    SciTech Connect (OSTI)

    Good, D.E.

    1995-09-01T23:59:59.000Z

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline.

  7. Fire protection program fiscal year 1997 site support program plan - Hanford fire department

    SciTech Connect (OSTI)

    Good, D.E., Westinghouse Hanford

    1996-07-01T23:59:59.000Z

    The mission of the Hanford Fires Department (HFD) is to support the safe and timely cleanup of the Hanford Site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. this includes response to surrounding fire department districts under mutual aids agreements and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site. the fire department also provides site fire marshal overview authority, fire system testing, and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention and education.

  8. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    E-Print Network [OSTI]

    Lemery, Francois

    2015-01-01T23:59:59.000Z

    Collinear high-gradient ${\\cal O} (GV/m)$ beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios $>2$, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting "drive" bunch to an accelerated "witness" bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative current profiles which are smooth which also lead to enhanced transformer ratios. We especially explore a laser-shaping method capable of generating one the suggested distributions directly out of a photoinjector and discuss a linac concept that could possible drive a dielectric ...

  9. Fermilab's SC Accelerator Magnet Program for Future U.S. HEP Facilities

    SciTech Connect (OSTI)

    Lamm, Michael; Zlobin, Alexander; /Fermilab

    2010-01-01T23:59:59.000Z

    The invention of SC accelerator magnets in the 1970s opened wide the possibilities for advancing the energy frontier of particle accelerators, while limiting the machine circumference and reducing their energy consumption. The successful development of SC accelerator magnets based on NbTi superconductor have made possible a proton-antiproton collider (Tevatron) at Fermilab, an electron-proton collider (HERA) at DESY, a relativistic heavy ion collider (RHIC) at BNL and recently a proton-proton collider (LHC) at CERN. Further technological innovations and inventions are required as the US HEP looks forward towards the post-LHC energy or/and intensity frontiers. A strong, goal oriented national SC accelerator magnet program must take on this challenge to provide a strong base for the future of HEP in the U.S. The results and experience obtained by Fermilab during the past 30 years will allow us to play a leadership role in the SC accelerator magnet development in the U.S., in particular, focusing on magnets for a Muon Collider/Neutrino Factory [1]-[2]. In this paper, we summarize the required Muon Collider magnet needs and challenges, summarize the technology advances in the Fermilab accelerator magnet development over the past few years, and present and discuss our vision and long-term plans for these Fermilab-supported accelerator initiatives.

  10. Determinants of multiple measures of acceleration

    SciTech Connect (OSTI)

    Santini, D.J.; Anderson, J.

    1993-08-01T23:59:59.000Z

    Statistical analyses of the acceleration capability of gasoline vehicles have focused on zero to 97 km/h acceleration rates and have concluded that peak power per kilogram is an appropriate single surrogate for acceleration capability. In this paper, statistical methods are used with data for 107 vehicles tested and reported by Consumers Union for 1986--1988 model years to estimate the determinants of contemporary gasoline vehicle acceleration capability under various conditions, adding new variables to the statistical tests reported by others. Like previous studies, this analysis determined that power and weight provide the most information about acceleration capability. Using a model formulation unlike other studies, this study found that engine displacement also provides statistically significant improvements in explanation of 0-48, 0-97, and 48-97 km/h acceleration times. The coefficients of the equations imply that the use of smaller displacement engines, holding peak power constant, diminishes start-up and 0-97 km/h acceleration capability. A separate equation is estimated to illustrate the effects of advanced engine technologies on displacement, controlling for power. This equation is used in conjunction with the acceleration equations to illustrate a method of estimating performance-equivalent engine substitutions when engine technologies change. Transmission type was important for start-up acceleration, with automatic-transmission-equipped vehicles being significantly slower than stick-shift-equipped vehicles. Fuel injection was found to significantly improve start-up acceleration. Variables proxying aerodynamic-drag effects tended to be significant determinants of acceleration in the higher-speed equations, but not for start-up acceleration. Estimated aerodynamic drag effects indicated that drag slows down 0-97, 48-97, and 72-105 km/h acceleration of pickup trucks and sport utility vehicles more than passenger cars and vans.

  11. Soft coincidence in late acceleration

    SciTech Connect (OSTI)

    Campo, Sergio del [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Casilla 4059, Valparaiso (Chile); Herrera, Ramon [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avenida Republica 273, Santiago (Chile); Pavon, Diego [Departamento de Fisica, Facultad de Ciencias, Universidad Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2005-06-15T23:59:59.000Z

    We study the coincidence problem of late cosmic acceleration by assuming that the present ratio between dark matter and dark energy is a slowly varying function of the scale factor. As the dark energy component we consider two different candidates, first a quintessence scalar field, and then a tachyon field. In either case analytical solutions for the scale factor, the field, and the potential are derived. Both models show a good fit to the recent magnitude-redshift supernovae data. However, the likelihood contours disfavor the tachyon field model as it seems to prefer a excessively high value for the matter component.

  12. Fermilab | Directorate | Fermilab Accelerator Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:JobTimothy Meyer ChiefAccelerator

  13. Accelerating Solutions | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACME - Accelerated

  14. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

    1982-01-01T23:59:59.000Z

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  15. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Antonio Enea Romano

    2007-01-27T23:59:59.000Z

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  16. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Romano, A E

    2006-01-01T23:59:59.000Z

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  17. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and high out-year cost environmental management project descriptions. Volume 3 of 3 -- Appendix C

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix C provides details about each of the Department`s 82 high cost projects and lists the EMSP research awards with potential to impact each of these projects. The high cost projects listed are those having costs greater than $50 million in constant 1998 dollars from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and having costs of quantities of material associated with an environmental management problem area. The high cost project information is grouped by operations office and organized by site and project code. Each operations office section begins with a list of research needs associated with that operations office. Potentially related research awards are listed by problem area in the Index of Research Awards by Environmental Management Problem Area, which can be found at the end of appendices B and C. For projects that address high risks to the public, workers, or the environment, refer also the Health/Ecology/Risk problem area awards. Research needs are programmatic or technical challenges that may benefit from knowledge gained through basic research.

  18. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01T23:59:59.000Z

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  19. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21T23:59:59.000Z

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  20. Consortium Support (Fixed Support) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergyEnergyConsortium Support (Fixed Support)