Powered by Deep Web Technologies
Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

SIMULATION OF A SOLAR ABSORPTION COOLING SYSTEM  

E-Print Network (OSTI)

This paper describes the dynamic modeling of a solar absorption cooling plant that will be built for both research and demonstration purposes by the end of 2007. The synchronizing of cooling loads with solar radiation intensity is an important advantage when utilizing solar energy in air conditioning in buildings. The first part of this work deals with the dynamic modeling of an evacuated tube collector. A field of these collectors feed a single-effect absorption chiller of 35 kW nominal cooling capacity. The simulation model has been done in a modular way under TRNSYS16. In a second part, simulation and optimization of the system has been investigated in order to determine the effect of several parameters (collector area, tank volume...) on chiller performance.

J. P. Praene; D. Morau; F. Lucas; F. Garde; H. Boyer; J. P. Praene

2007-01-01T23:59:59.000Z

2

Performance comparison of absorption and desiccant solar cooling systems  

DOE Green Energy (OSTI)

Cooling systems are required to operate over a wide range of outdoor and load conditions; however, the performance of solar cooling components is often specified and compared at a typical design point such as ARI conditions. A method is presented to directly compare the performance of different desiccant and absorption cooling systems by using psychrometric analysis of air distribution cycles under a range of outdoor conditions that systems encounter over a year. Using analysis of cooling load distributions for a small commercial office building in Miami and Phoenix a seasonal COP is calculated for each system. The heat input can be provided by solar or by an auxiliary heat source, such as natural gas.

Warren, M.L.; Wahlig, M.

1986-01-01T23:59:59.000Z

3

Simulation study for an absorption solar cooling system operated under Taiwan climate.  

E-Print Network (OSTI)

??In this thesis, solar energy is utilized as the driving energy for an absorption cooling system, and a TRNSYS computer code is employed to simulate… (more)

Chiu, Yi-ying

2008-01-01T23:59:59.000Z

4

Energy Basics: Absorption Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption...

5

All Green Residential Solar Energy to Heat Absorption Cooling / Heating Systems  

Science Conference Proceedings (OSTI)

An all-green residential solar to heat absorption cooling / heating system system is designed. It describes the components of the system and working principle, and analyze the prospects of the system and academic value. Finally, To Changsha, for example, ... Keywords: solar, ground-source heat pump, absorption, heat tube

Xu Feng

2013-01-01T23:59:59.000Z

6

Analysis and comparison of active solar desiccant and absorption cooling systems. Part 1; Model description  

DOE Green Energy (OSTI)

A comparative analysis has been performed to compare the cooling and dehumidification performance of future ventilation-mode desiccant systems, proposed advanced absorption systems, and conventional vapor compression systems. A common framework has been developed for direct comparison of these different cooling technologies; this method is described in this paper.

Warren, M.L. (ASI Controls, San Ramon, CA (US)); Wahlig, M. (Lawrence Berkeley Lab., CA (USA). Applied Science Div.)

1991-02-01T23:59:59.000Z

7

Analysis and comparison of active solar desiccant and absorption cooling systems. Part 2; Annual simulation results  

DOE Green Energy (OSTI)

A comparative analysis has been performed to compare the cooling and dehumidification performance of future ventilation mode desiccant systems, proposed advanced absorption systems, and conventional vapor compression systems. A common framework has been developed for direct comparison of these different cooling technologies; this method is described in a companion paper. This paper presents the application of this method to annual simulations of cooling system performance in five cities.

Warren, M.L. (ASI Controls, San Ramon, CA (US)); Wahlig, M. (Lawrence Berkeley Lab., CA (USA). Applied Science Div.)

1991-02-01T23:59:59.000Z

8

SIMULATION OF A SOLAR ABSORPTION COOLING SYSTEM J.P. Praene*, D. Morau, F. Lucas, F. Garde, H. Boyer  

E-Print Network (OSTI)

SIMULATION OF A SOLAR ABSORPTION COOLING SYSTEM J.P. Praene*, D. Morau, F. Lucas, F. Garde, H; accepted: 15 Oct 2007 This paper describes the dynamic modeling of a solar absorption cooling plant collector. A field of these collectors feed a single-effect absorption chiller of 35 kW nominal cooling

9

Effect of adding flash tank on the evaporator's thermal load of the combined ejector-absorption cooling system  

Science Conference Proceedings (OSTI)

A modified combined absorption-ejector cooling system using aqua-ammonia (NH3-H2O) refrigerant has been investigated. Removable flash tank was added between the condenser and the evaporator. The modified cycle brings the advantage of improving in the ... Keywords: absorption system, combined absorption cooling system, ejectors, evaporators

Ranj Sirwan; Yusoff Ali; A. Zaharim; K. Sopian

2011-10-01T23:59:59.000Z

10

Use of an open-cycle absorption system for heating and cooling  

DOE Green Energy (OSTI)

Solar cooling for commercial applications using open-cycle absorption refrigeration systems has been investigated and found to be feasible. If an open-cycle absorption system can be operated as a chemical heat pump for winter heating operation, the system would offer year-round operation that could make the system economically viable for many regions of the US. An analysis of heating operation for the open-cycle system is presented using a computer program that simulates heat and mass transfer processes for any environmental condition. The open-cycle absorption refrigeration system can be operated as a chemical heat pump. Simulations for winter heating operation were run for five US cities, with solar COP's in the range of .06 to .16. At these levels, the OCAR system can provide full heating and cooling operation for office buildings in many southern US cities.

Schlepp, D. R.; Collier, R. K.

1981-03-01T23:59:59.000Z

11

Solar Energy to Drive Absorption Cooling Systems Suitable for Small Building Applications  

E-Print Network (OSTI)

Air conditioning systems have a major impact on energy demand. With fossil fuels fast depleting, it is imperative to look for cooling systems that require less high-grade energy for their operation. In this context, absorption cooling systems have become increasingly popular in recent years from the viewpoints of energy and environment. Two types of the absorption chillers, the single effect and the half-effect systems, can operate using low temperature hot water. This paper presents the simulation results and an overview of the performance of low capacity single stage and half-effect absorption cooling systems, suitable for residential and small building applications. The primary heat source is solar energy supplied from flat plate collectors. The complete systems (solar collectors and absorption cooling system) were simulated using a developed software program. The energy and exergy analysis is carried out for each component of the two systems. When evaporator temperature is maintained constant at 5 C and the condenser temperature is fixed at 28 C, 32 C and 36 C respectively the percentage of the used energy covered by solar collectors and the percentage of auxiliary heating load were calculated versus time of day.

Gomri, R.

2010-01-01T23:59:59.000Z

12

Oxygen Absorption in Cooling Flows  

E-Print Network (OSTI)

The inhomogeneous cooling flow scenario predicts the existence of large quantities of gas in massive elliptical galaxies, groups, and clusters that have cooled and dropped out of the flow. Using spatially resolved, deprojected X-ray spectra from the ROSAT PSPC we have detected strong absorption over energies ~0.4-0.8 keV intrinsic to the central ~1 arcmin of the galaxy, NGC 1399, the group, NGC 5044, and the cluster, A1795. These systems have amongst the largest nearby cooling flows in their respective classes and low Galactic columns. Since no excess absorption is indicated for energies below ~0.4 keV the most reasonable model for the absorber is warm, collisionally ionized gas with T=10^{5-6} K where ionized states of oxygen provide most of the absorption. Attributing the absorption only to ionized gas reconciles the large columns of cold H and He inferred from Einstein and ASCA with the lack of such columns inferred from ROSAT, and also is consistent with the negligible atomic and molecular H inferred from HI, and CO observations of cooling flows. The prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified by Chandra, XMM, and ASTRO-E.

David A. Buote

2000-01-19T23:59:59.000Z

13

Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat  

Science Conference Proceedings (OSTI)

BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

None

2010-09-01T23:59:59.000Z

14

A comparison of eight solar-driven absorption cooling systems in the National Solar Data Network  

Science Conference Proceedings (OSTI)

Large solar driven cooling systems of the absorption chiller type offer opportunities to apply solar energy to the air conditioning of buildings with the attendant savings in conventional energy resources. Many complex design problems are encountered in the attempt to implement this technology. For instance, the range of readily available solar installation operating temperatures is at the low end of the required range for effective operation of the chillers. A study has been made of eight such systems which were operated in a variety of climates during the 1980 cooling season and instrumented within the National Solar Data Network (NSDN). Presented here are summary results of this study. Considerably more detail on the performance of these systems is contained in the reference along with a brief discussion of absorption chillers and their application in solar designs. The performance of the monitored installations was not very good. Only two systems showed energy savings and they were insignificant considering the size of the buildings. Nevertheless valuable lessons were learned from the study. Each system had some desirable design features. Taking these features together, a projected composite system was posited which would have performed fairly well. Suggestions are presented which should lead to more effective designs for this type of renewable energy application.

Kelly, C.J.; Logee, T.L.

1982-01-01T23:59:59.000Z

15

Performance Modeling of a Solar Driven Absorption Cooling System for Carnegie Mellon University's Intelligent Workplace  

E-Print Network (OSTI)

The Robert L. Preger Intelligent Workplace (IW) is a 650 m2 (7,000 ft2) living laboratory of office space at Carnegie Mellon University (Pittsburgh, PA). The IW is involved in a project to develop, install, and test an effective solar thermal system for space heating and cooling. The proposed energy supply system configuration includes integrated compound parabolic concentrator (ICPC), a hot storage tank, a gas fired auxiliary heater, a steam generator, a steam driven absorption chiller and fan coils. A TRNSYS predictive model has been programmed and used to evaluate the performance of the system throughout a summer season. The effects on performance and on costs have been explored for various design variables and operating conditions. The performance calculations indicate that: - the 16.17 kW (55.2 kBtu/hr, 4.5 tons) absorption chiller is adequate to meet the IW south cooling requirements - 30-40m2 collectors can supply from 55 to 65% of the heat required to drive the chiller - estimated heat losses from the system can reach about 20-30% of the total heat collected.

Masson, S. V.; Qu, M.; Archer, D. H.

2006-01-01T23:59:59.000Z

16

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network (OSTI)

In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present worth cost (PWC) method, which covers the initial costs, operating costs, maintenance costs, replacement costs and salvage values is the useful tool to merit various cooling and power generation systems for building applications. A life cycle of 23 years was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller is estimated to be US $ 1.5 million which is about 71.5 % low compared to electric powered conventional vapour compression chiller. From the analysis it was found that the initial cost of VARS system was 125 % higher than that of VCRS, while the PWC of operating cost of VARS was 78.2 % lower compared to VCRS. The result shows that the waste heat operated VARS would be preferable from the view point of operating cost and green house gas emission reduction.

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

17

SOLERAS - Solar Cooling Engineering Field Tests Project: Carrier Corporation. Fabrication, testing and installation report: 53 kW solar absorption cooling system  

DOE Green Energy (OSTI)

A 53 kW water cooled packaged solar absorption chiller was fabricated and tested. The generator shell and absorber shell had sight glasses added as a diagnostic device. The unit was modified so that a base suitable for mounting pumps, valves and associated piping was cantilevered from one end of the unit. The installation and start-up of the cooling system is outlined.

Not Available

1985-01-01T23:59:59.000Z

18

Survey of absorption cooling technology in solar applications  

DOE Green Energy (OSTI)

A comprehensive survey of the current state of the absorption cooling technology has been conducted. This survey discusses the basic and applied absorption cooling/heating technology, analyses the current state of the art including the discussion of limitations and possible solutions, identifies areas where promising developments are indicated, lists the current products and activities of the absorption industry, and presents the current RD and D efforts of the U.S. government. The main subjects covered in the survey are as follows: Principles of absorption cooling technology (NH/sub 3/-H/sub 2/O cycle and H/sub 2/O-LiBr Cycle), Adaptation of absorption cooling technology for solar cooling applications, Thermal performance of absorption cooling units, Comparison of NH/sub 3/-H/sub 2/O absorption with H/sub 2/O-LiBr absorption, Commercially available solar absorption units, General trends of the absorption cooling industry toward solar application, Absorption cooling system performance in actual installations, Limitations of absorption cooling technology, Solar-powered absorption heat pumps, and U.S. ERDA activities relating to solar absorption cooling. The treatment of the subjects is intended to be basic and comprehensive in order that the general readers may understand the current aspects of absorption technology in solar cooling applications. 36 references.

Auh, P C

1977-07-01T23:59:59.000Z

19

Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report  

DOE Green Energy (OSTI)

During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

1984-02-01T23:59:59.000Z

20

Overview on absorption cooling technology in solar applications  

DOE Green Energy (OSTI)

The following topics are reviewed briefly: chiller performance, commercial availability, system performance, internal energy storage, water-cooling limitation, COP limitation, absorption heat pump, and DOE activities. (MHR)

Auh, P.C.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Absorption Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Basics Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes. How Absorption Cooling Works An absorption cooling cycle relies on three basic principles: When a liquid is heated it boils (vaporizes) and when a gas is cooled it condenses Lowering the pressure above a liquid reduces its boiling point Heat flows from warmer to cooler surfaces.

22

Simulation and analysis of high efficiency absorption systems for solar cooling  

DOE Green Energy (OSTI)

A flexible modular computer code was developed for simulation of absorption systems. The code is capable to investigate, on a comparable basis, various cycles configurations with a variety of working fluids. In Phase 1 of the program, two open cycle absorption systems for solar energy were successfully simulated. Modifications which were applied to the code in Phase 2, allowed the analysis of systems with volatile absorbents, as used in advanced, high COP, absorption systems such as the GAX cycle. Ammonia-water database was developed into equation form and introduced to the code. That eliminated discontinuities in evaluating differentials used in the solver. Properties calculated with these equations fit well the tabulated data. This and other modifications allowed to model absorption cycles using ammonia-water. Single effect cycles converged in most ranges. Direct analysis of the code to advanced cycles, such as GAX, still encountered some convergence problems. It was, however, possible to analyze the GAX cycle in groups. The results show that high COP's are obtainable and are compatible with those reached by LBL. The properties of two additional pairs, that were developed in BG Univ., are reported. 27 refs., 13 figs., 13 tabs.

Shavit, A.; Haim, I. (Technion-Israel Inst. of Tech., Haifa (Israel). Faculty of Mechanical Engineering); Borde, I.; Jelinek, M. (Ben-Gurion Univ. of the Negev, Beersheba (Israel). Applied Research Inst.)

1989-05-31T23:59:59.000Z

23

Development of a single-family absorption chiller for use in a solar heating and cooling system. Phase III, final report. Volume II  

DOE Green Energy (OSTI)

The appendices provide supporting information on: properties of a chemical system for solar fired, air-cooled absorption equipment, air-side performance of a one-inch tube, absorber plate-fin coil, listings of the programs used for simulation and data reduction, and evaluation of the Carrier 3-ton chiller in an integrated heating and cooling system. (LEW)

Reimann, R.C.; Biermann, W.J.

1984-10-01T23:59:59.000Z

24

Solar absorption cooling plant in Seville  

SciTech Connect

A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe [Departamento de Ingenieria Energetica, Universidad de Sevilla, Camino de los Descubrimiento s/n, 41092 Sevilla (Spain)

2010-08-15T23:59:59.000Z

25

Overview-absorption/Rankine solar cooling program  

DOE Green Energy (OSTI)

The tasks being performed in the absorption and Rankine program areas run the gamut from basic work on fluids to development of chillers and chiller components, to field and reliability testing of complete cooling systems. In the absorption program, there are six current and five essentially completed projects. In the Rankine program, there are five current projects directly supported by DOE, and three projects funded through and managed by NASA/MSFC (Manned Space Flight Center, Huntsville, Alabama). The basic features of these projects are discussed. The systems under development in five of these current projects have been selected for field testing in the new SOLERAS program, a joint US-Saudi Arabian enterprise. Some technical highlights of the program are presented.

Wahlig, M.; Heitz, A.; Boyce, B.

1980-03-01T23:59:59.000Z

26

Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation  

E-Print Network (OSTI)

In this paper, a parametric study of a PEM fuel cell integrated with a double effect absorption system is carried out in order to study the effect of different operating conditions on the efficiency of the PEM fuel cell, utilization factor of the over all system, COPs of the double effect cooling and heating system, and power and heat output of the PEM fuel cell. It is found that the efficiency of the cell decreases, ranging from 46.2% to 24.4% with increase in membrane thickness and current density, and at the same time the COP increases ranging from 0.65 to 1.52. The heat and power output of the fuel cell decreases from 10.54 kW to 5.12 kW, and 9.12 kW to 6.99 kW, respectively for the increase in membrane thickness. However, when the temperature of the cell is increased the heat and power output increases from 5.12 kW to 10.54 kW, and 6.9 kW to 7.02 kW, respectively. The COP is found to be decreasing ranging from 1.53 to 0.33 with the increase in temperature of the cell and heat input to the HTG. As for the utilization factor, it increases ranging from 17% to 87% with increase in the temperature of the cell and heat input to the HTG. This study reveals that an integrated PEM fuel cell with a double effect absorption cooling systems has a very high potential to be an economical and environmental solution as compared with conventional systems of high electricity and natural gas prices which emit lots of harmful gasses and are not that efficient.

Gadalla, M.; Ratlamwala, T.; Dincer, I.

2010-01-01T23:59:59.000Z

27

Modeling of Solar-Powered Single-Effect Absorption Cooling System and Supermarket Refrigeration/HVAC System.  

E-Print Network (OSTI)

??This thesis consists of two different research problems. In the first one, the aim is to model and simulate a solar-powered, single-effect, absorption refrigeration system… (more)

Bahman, Ammar

2011-01-01T23:59:59.000Z

28

Absorption Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial...

29

Thermodynamic Optimization of a Solar System for Cogeneration of Water Heating/Purification and Absorption Cooling.  

E-Print Network (OSTI)

?? This dissertation presents a contribution to understanding the behavior of solar powered air conditioning and refrigeration systems with a view to determining the manner… (more)

Hovsapian, Zohrob O.

2009-01-01T23:59:59.000Z

30

Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these...

31

Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store  

Science Conference Proceedings (OSTI)

A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

Agyenim, Francis; Knight, Ian; Rhodes, Michael [The Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff University, Cardiff, CF10 3NB Wales (United Kingdom)

2010-05-15T23:59:59.000Z

32

Absorption cooling in district heating network: Temperature difference examination in hot water circuit.  

E-Print Network (OSTI)

?? Absorption cooling system driven by district heating network is relized as a smart strategy in Sweden. During summer time when the heating demand is… (more)

Yuwardi, Yuwardi

2013-01-01T23:59:59.000Z

33

Modeling of Solar-Powered Single-Effect Absorption Cooling System and Supermarket Refrigeration/HVAC System.  

E-Print Network (OSTI)

?? This thesis consists of two different research problems. In the first one, the aim is to model and simulate a solar-powered, single-effect, absorption refrigeration… (more)

Bahman, Ammar Mohammad Khalil

2011-01-01T23:59:59.000Z

34

Candidate chemical systems for air cooled solar powered, absorption air conditioner design. Part I. Organic absorbent systems  

DOE Green Energy (OSTI)

All the available experimental evidence suggests that the optimum ''organic'' absorbent/refrigerant combination would be a methane derivative with a single hydrogen atom with chlorine and fluorine atoms in the other sites, as refrigerant. This would be hydrogen bonded to an absorbent molecule containing the group =NC/sup -/O, with the substituent groups being such that no steric hindrance took place. Cycle analyses showed that the ratio of internal heat transfer to cooling would be large, probably impractically so in view of the high coefficient of performance needed for solar driven cooling and the additional handicap of heat rejection to the atmosphere. A more promising approach would be to reduce the internal heat transfer per unit of space cooling by selecting a refrigerant with a high latent heat of vaporization and selecting an absorbent with suitable properties.

Biermann, W.J.

35

Hybrid Cooling Systems  

Science Conference Proceedings (OSTI)

Water consumption by power plants has become an increasingly contentious siting issue. In nearly all fossil-fired and nuclear plants, water for plant cooling is by far the greatest water requirement. Therefore, the use of water-conserving cooling systems such as dry or hybrid cooling is receiving increasing attention. This technology overview from the Electric Power Research Institute (EPRI) provides a brief introduction to hybrid cooling systems. As defined in the report, the term "hybrid cooling" refer...

2011-11-23T23:59:59.000Z

36

Candidate chemical systems for air cooled, solar powered, absorption air conditioner design. Part II. Solid absorbents, high latent heat refrigerants  

DOE Green Energy (OSTI)

Work done in attempting to qualify absorption refrigeration systems based on refrigerants with intermediate latent heats of vaporization is summarized. In practice, these comprise methanol, ammonia, and methylamine. A wide variety of organic substances, salts, and mixtures were evaluated in as systematic a manner as possible. Several systems of interest are described. The system, LiClO/sub 3/--LiBr--H/sub 2/O, is a good back up system to our first choice of an antifreeze additive system, and thermodynamically promising but subject to some inconvenient materials limitations. The system, LiBr/ZnBr/sub 2/--methanol, is thermodynamically promising but requires additional kinetic qualification. Chemical stability of the system, LiCNS--ammonia/methylamine with various other third components, does not appear to be adequate for a long-lived system.

Biermann, W. J.

1978-04-01T23:59:59.000Z

37

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

38

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

39

Proprties of the Carrol system and a machine design for solar-powered, air-cooled, absorption space cooling. Phase I and Phase II. Final report, September 1977-March 1979  

DOE Green Energy (OSTI)

The name Carrol has been selected as a convenient short-hand designation for a prime candidate chemical system comprising ethylene glycol-lithium bromide as an absorbent mixture with water as a refrigerant. The instrumentation, methods of handling data and numerical results from a systematic determination of Carrol property data required to design an air cooled absorption machine based on this chemical system are described. These data include saturation temperature, relative enthalpy, density, specific heat capacity, thermal conductivity, viscosity and absorber film heat transfer coefficient as functions of solution temperature and Carrol concentration over applicable ranges. For each of the major components of the absorption chiller, i.e., generator, chiller, absorber, condenser, heat exchanger, purge and controls, the report contains an assembly drawing and the principal operating characteristics of that component.

Biermann, W.J.

1981-05-01T23:59:59.000Z

40

Cooling Water System Optimization  

E-Print Network (OSTI)

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower performance. To understand the importance of the optimization techniques, cooling tower theory will be discussed first.

Aegerter, R.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Development of a single-family absorption chiller for use in a solar heating and cooling system. Phase III, final report. Volume I  

DOE Green Energy (OSTI)

This is a hardware oriented project to demonstrate the feasibility of the solar fired, air cooled, absorption cooling of residential and commercial buildings. Beginning with design accuracy property data on a new chemical system applicable to air cooled absorption equipment, a breadboard machine was constructed in order to gain experience with system dynamics, chemical stability and overall performance. Employing heat transfer data and operating characteristics obtained from the breadboard an attempt was made to design and build a first generation prototype. A problem with the first heat transfer additive used caused the absorber to operate unsatisfactorily. A second, more refined, prototype was designed, constructed and tested incorporating the previous experience and heat transfer data as well as a new heat transfer additive. Although this prototype did not quite meet design capacity (85%), it surpassed design COP (0.75 vs 0.72) and performed stably without the signs of chemical degradation present in the previous prototype. Two more identical machines are being operated during field test in actual solar systems. After the successful operation of the 10 kW machine, it was decided to design and construct a larger scaled-up prototype for use in commercial applications. An appropriate size seemed to be about 70 kW. After considerable design effort a satisfactory size and design was achieved and constructed. In general, the 70 kW machine behaved much like the 10 kW, again producing about 80% of capacity but with varying COP's (probably due to the transient nature of the testing).

Reimann, R.C.; Biermann, W.J.

1984-10-01T23:59:59.000Z

42

Cooling water distribution system  

DOE Patents (OSTI)

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

Orr, Richard (Pittsburgh, PA)

1994-01-01T23:59:59.000Z

43

Passive containment cooling system  

DOE Patents (OSTI)

A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

1991-01-01T23:59:59.000Z

44

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

45

Proceedings: Cooling Tower and Advanced Cooling Systems Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affects availability and heat rate in fossil and nuclear power plants. Papers presented at EPRI's 1994 Cooling Tower and Advanced Cooling Systems Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions. Specific topics include cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid cooling systems.

1995-03-09T23:59:59.000Z

46

Hydronic Radiant Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hydronic Radiant Cooling Systems Cooling nonresidential buildings in the U.S. contributes significantly to electrical power consumption and peak power demand. Part of the electrical energy used to cool buildings is drawn by fans transporting cool air through the ducts. The typical thermal cooling peak load component for California office buildings can be divided as follows: 31% for lighting, 13% for people, 14% for air transport, and 6% for equipment (in the graph below, these account for 62.5% of the electrical peak load, labeled "chiller"). Approximately 37% of the electrical peak power is required for air transport, and the remainder is necessary to operate the compressor. DOE-2 simulations for different California climates using the California

47

Hydronic rooftop cooling systems  

DOE Patents (OSTI)

A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

2008-01-29T23:59:59.000Z

48

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

49

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

50

Performance of active solar space-cooling systems: 1980 cooling season  

DOE Green Energy (OSTI)

A detailed analysis of the solar absorption cooling process as represented by the NSDN system is presented. There is comprehensive data on eight solar cooling systems in the NSDN. Among these eight systems solar cooling by an absorption chiller is not a cost effective method to use solar heat. This statement is substantiated by careful analysis of each subsystem and equipment component. Good designs and operating procedures are identified. The problems which reduce cost effectiveness are pointed out. There are specific suggestions for improvements. Finally, there is a comparison of solar cooling by absorption chilling and using photovoltaic cells.

Blum, D.; Frock, S.; Logee, T.; Missal, D.; Wetzel, P.

1980-01-01T23:59:59.000Z

51

Absorption Cooling Optimizes Thermal Design for Cogeneration  

E-Print Network (OSTI)

Contrary to popular concept, in most cases, thermal energy is the real VALUE in cogeneration and not the electricity. The proper consideration of the thermal demands is equal to or more important than the electrical demands. High efficiency two-stage absorption chillers of the type used at Rice University Cogen Plant offer the most attractive utilization of recoverable thermal energy. With a coefficient of performance (COP) up to 1.25, the two-stage, parallel flow absorption chiller can offer over fifty (50) percent more useful thermal energy from the same waste heat source--gas turbine exhaust, I.C. engine exhaust and jacketwater, incinerator exhaust, or steam turbine extraction.

Hufford, P. E.

1986-01-01T23:59:59.000Z

52

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

1994-01-01T23:59:59.000Z

53

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

Billig, P.F.; Cooke, F.E.; Fitch, J.R.

1994-01-25T23:59:59.000Z

54

Water-lithium bromide double-effect absorption cooling analysis  

SciTech Connect

A numerical model was developed for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very-important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy.

Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

1980-12-01T23:59:59.000Z

55

Optical absorption measurement system  

DOE Patents (OSTI)

The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

1986-09-17T23:59:59.000Z

56

Optical absorption measurement system  

DOE Patents (OSTI)

The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

Draggoo, Vaughn G. (Livermore, CA); Morton, Richard G. (San Diego, CA); Sawicki, Richard H. (Pleasanton, CA); Bissinger, Horst D. (Livermore, CA)

1989-01-01T23:59:59.000Z

57

Absorption heat pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

58

Comparative report: performance of active-solar space-cooling systems, 1981 cooling season  

DOE Green Energy (OSTI)

This report provides a detailed analysis of solar absorption cooling and solar Rankine cooling processes as represented by the National Solar Data Network (NSDN) systems. There is comprehensive data on four absorption chiller cooling systems and one Rankine cooling system. Three of these systems, including the Rankine system, demonstrated that solar cooling can be operated efficiently and provide energy savings. Good designs and operating procedures are discussed. Problems which reduce savings are identified. There is also a comparison of solar cooling by absorption, Rankine, and photovoltaic processes. Parameters and performance indices presented include overall system delivered loads, solar fraction of the load, coefficient of performance, energy collected and stored, and various subsystem efficiencies. The comparison of these factors has allowed evaluation of the relative performance of various systems. Analyses performed for which comparative data are provided include: energy savings and operating costs in terms of Btu; energy savings in terms of dollars; overall solar cooling efficiency and coefficient of performance; hourly building cooling loads; actual and long-term weather conditions; collector performance; collector area to tons of chiller cooling capacity; chiller performance; normalized building cooling loads per cooling degree-day and building area; and cooling solar fractions, design and measured.

Wetzel, P.; Pakkala, P.

1981-01-01T23:59:59.000Z

59

SCINTILLATION DETECTOR COOLING SYSTEM  

SciTech Connect

A well logging apparatus for irradiating earth formations with neutrons and recording the gamma rays emitted therefrom is designed which hss a scintillation decay time of less than 3 x 10/sup -8/ sec and hence may be used with more intense neutron sources. The scintillation crystal is an unactivated NaI crystal maintained at liquid N/sub 2/ temperature. The apparatus with the cooling system is described in detail. (D.L.C.)

George, W.D.; Jones, S.B.; Yule, H.P.

1962-08-14T23:59:59.000Z

60

Liquid metal cooled nuclear reactors with passive cooling system  

SciTech Connect

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Optimizing the Low Temperature Cooling Energy Supply: Experimental Performance of an Absorption Chiller, a Compression Refrigeration Machine and Direct Cooling - a Comparison  

E-Print Network (OSTI)

A strategy to optimize the low temperature cooling energy supply of a newly build office building is discussed against the background of a changing energy system. It is focused on, what production way - Direct Cooling, the Compression Refrigeration Machine or the Absorption Chiller provided with heat from Combined Heat and Power Plants - has the lowest primary energy consumption at what load level. For low levels this is direct cooling. If demand exceeds the capacity of direct cooling, the absorption chiller is the option to choose. However, in future the compression refrigeration machine is more efficient at providing high load levels than the Absorption Chiller. The operation analysis shows that flow rates are often held constant and the re-cooling temperatures are often above the ambient temperature. By the integration of automatic flow rate control and lowering the re-cooling temperature of the chillers, electricity consumption of pumps can be reduced and energy efficiency enhanced.

Uhrhan, S.; Gerber, A.

2012-01-01T23:59:59.000Z

62

Emergency core cooling system  

DOE Patents (OSTI)

A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

1983-01-01T23:59:59.000Z

63

Cooling System Functions  

Science Conference Proceedings (OSTI)

...size Flow restrictions Heat exchanger size and design All of these factors must be considered. Every component in the cooling

64

WATER-LITHIUM BROMIDE DOUBLE-EFFECT ABSORPTION COOLING ANALYSIS  

Office of Scientific and Technical Information (OSTI)

WATER-LITHIUM BROMIDE DOUBLE-EFFECT WATER-LITHIUM BROMIDE DOUBLE-EFFECT ABSORPTION COOLING ANALYSIS Gary C . V l i e t , Michael B . Lawson, and Rudolf0 A . Lithgow Center f o r Energy Studies The University of Texas a t Austin December 1980 Final Report f o r Contract: DE AC03-79SF10540 (Mu1 tiple-Effect Absorption Cycle Solar Cooling) with the U.S. Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

65

Multi-Phase Galaxy Formation and Quasar Absorption Systems  

E-Print Network (OSTI)

Abstract. The central problem of galaxy formation is understanding the cooling and condensation of gas in dark matter halos. It is now clear that to match observations this requires further physics than the simple assumptions of single phase gas cooling. A model of multi-phase cooling (Maller & Bullock 2004) can successfully account for the upper cutoff in the masses of galaxies and provides a natural explanation of many types of absorption systems (Mo & Miralda-Escude 1996). Absorption systems are our best probes of the gaseous content of galaxy halos and therefore provide important constraints on models for gas cooling into galaxies. All physical processes that effect gas cooling redistribute gas and therefore are detectable in absorption systems. Detailed studies of the nature of gas in galaxy halos using absorption systems are crucial for building a correct theory of galaxy formation.

P. R. Williams; C. Shu; B. Ménard; Ariyeh H. Maller

2005-01-01T23:59:59.000Z

66

Multi-Phase Galaxy Formation and Quasar Absorption Systems  

E-Print Network (OSTI)

The central problem of galaxy formation is understanding the cooling and condensation of gas in dark matter halos. It is now clear that to match observations this requires further physics than the simple assumptions of single phase gas cooling. A model of multi-phase cooling (Maller & Bullock 2004) can successfully account for the upper cutoff in the masses of galaxies and provides a natural explanation of many types of absorption systems (Mo & Miralda-Escude 1996). Absorption systems are our best probes of the gaseous content of galaxy halos and therefore provide important constraints on models for gas cooling into galaxies. All physical processes that effect gas cooling redistribute gas and therefore are detectable in absorption systems. Detailed studies of the nature of gas in galaxy halos using absorption systems are crucial for building a correct theory of galaxy formation.

Ariyeh H. Maller

2005-05-06T23:59:59.000Z

67

Multi-Phase Galaxy Formation and Quasar Absorption Systems  

E-Print Network (OSTI)

The central problem of galaxy formation is understanding the cooling and condensation of gas in dark matter halos. It is now clear that to match observations this requires further physics than the simple assumptions of single phase gas cooling. A model of multi-phase cooling (Maller & Bullock 2004) can successfully account for the upper cutoff in the masses of galaxies and provides a natural explanation of many types of absorption systems (Mo & Miralda-Escude 1996). Absorption systems are our best probes of the gaseous content of galaxy halos and therefore provide important constraints on models for gas cooling into galaxies. All physical processes that effect gas cooling redistribute gas and therefore are detectable in absorption systems. Detailed studies of the nature of gas in galaxy halos using absorption systems are crucial for building a correct theory of galaxy formation.

Maller, A H

2005-01-01T23:59:59.000Z

68

Thermally activated miniaturized cooling system.  

E-Print Network (OSTI)

??A comprehensive study of a miniaturized thermally activated cooling system was conducted. This study represents the first work to conceptualize, design, fabricate and successfully test… (more)

Determan, Matthew Delos

2008-01-01T23:59:59.000Z

69

Energy Basics: Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the...

70

Process Cooling Systems  

E-Print Network (OSTI)

Cooling towers have been on the scene for more than 50 years. It is because they have proven to be an economic choice for waste heat dissipation. But it seems, for some reason, that after installation very little attention is paid to the cooling-tower and its effect on plant operating efficiency and production. This paper will describe the value of working with a cooling tower specialist to establish the physical and thermal potential of an existing cooling tower. It also demonstrates that a repair and thermal upgrade project to improve efficiency will have a better than average return on investment.

McCann, C. J.

1983-01-01T23:59:59.000Z

71

Temperature initiated passive cooling system  

DOE Patents (OSTI)

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

Forsberg, Charles W. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

72

Temperature initiated passive cooling system  

DOE Patents (OSTI)

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

Forsberg, C.W.

1994-11-01T23:59:59.000Z

73

Hybrid refrigeration/sorption solar-cooling systems  

DOE Green Energy (OSTI)

The hybrid refrigeration/sorption concept is a technically feasible approach to solar cooling which has not yet been systematically evaluated. Various system configurations are possible, each with advantages and disadvantages relative to the others, and with respect to solar cooling systems based on the individual absorption, Rankine, and desiccant technologies. Conventional cooling and dehumidification, sorption dehumidification, and the effects on the refrigeration unit of adding a dehumidifier are discussed.

Curran, H.M.

1981-08-01T23:59:59.000Z

74

Comparative report: performance of active solar space cooling systems, 1982 cooling season  

DOE Green Energy (OSTI)

This report provides a detailed analysis of solar absorption cooling and solar Rankine cooling processes as represented by the National Solar Data Network (NSDN) systems. Five solar cooling systems were monitored in 1982; four of these have absorption chillers and one has a Rankine engine. Of the four absorption chillers, two are directly solar fired and two are boiler fired using solar energy as the preheat to the boiler. The composite data for the five sites covers the period from September 1981 through December 1982. There are 36 site months of data covered in the report. These are all commercial systems with buildings ranging in size from 5000 to 84,000 square feet. There are three evacuated-tube, one flat-plate, and one linear concentrating collector systems. Analyses performed for which comparative data is provided include: Energy savings and operating costs in terms of Btu; Overall solar cooling efficiency and coefficient of performance; Hourly building cooling loads; Actual and long-term weather conditions; Collector performance; Chiller performance; Normalized building cooling loads per cooling degree-day and building area; and Cooling solar fractions, design and measured. Conclusions and lessons learned from the comparative analysis are presented.

Logee, T.; Kendall, P.

1982-01-01T23:59:59.000Z

75

Numerical investigations on the pressure wave absorption and the gas cooling interacting in a  

E-Print Network (OSTI)

1 Numerical investigations on the pressure wave absorption and the gas cooling interacting understanding of the physical phenomena involved, as for example the cooling and the shock wave absorption volume method, variable porosity, arc cooling I. INTRODUCTION Medium voltage cells have to be designed

Sart, Remi

76

Lyman-alpha wing absorption in cool white dwarf stars  

E-Print Network (OSTI)

Kowalski & Saumon (2006) identified the missing absorption mechanism in the observed spectra of cool white dwarf stars as the Ly-alpha red wing formed by the collisions between atomic and molecular hydrogen and successfully explained entire spectra of many cool DA-type white dwarfs. Owing to the important astrophysical implications of this issue, we present here an independent assessment of the process. For this purpose, we compute free-free quasi-molecular absorption in Lyman-alpha due to collisions with H and H2 within the one-perturber, quasi-static approximation. Line cross-sections are obtained using theoretical molecular potentials to describe the interaction between the radiating atom and the perturber. The variation of the electric-dipole transition moment with the interparticle distance is also considered. Six and two allowed electric dipole transitions due to H-H and H-H2 collisions, respectively, are taken into account. The new theoretical Lyman-alpha line profiles are then incorporated in our ...

Rohrmann, R D; Kepler, S O

2010-01-01T23:59:59.000Z

77

Performance of an air-cooled ammonia-water absorption air conditioner at low generator temperatures  

DOE Green Energy (OSTI)

An ammonia--water absorption air conditioning system has been tested to investigate the stability of operation near the cut-off conditions. Circulation ratios were from 8 to 30. Relations for the estimation of the coefficient of performance and for the prediction of operating temperatures were derived and verified experimentally. Possible operating conditions for an air-cooled ammonia--water air conditioning system were concluded.

Dao, K.; Simmons, M.; Wolgast, R.; Wahlig, M.

1976-08-01T23:59:59.000Z

78

Overview of active solar absorption/Rankine cooling program  

DOE Green Energy (OSTI)

The individual absorption and Rankine projects are identified, along with the main features and accomplishments/status of each and future plans. Included are four projects funded by SOLERAS, a joint US/Saudi Arabian effort. In the absorption program, there are three active component development projects, four systems field test projects, one advanced fluid study project and one advanced cycle study project currently funded by DOE. In the Rankine program, there are five active component development projects, two system field test projects, and one advanced study project. (LEW)

Wahlig, M.; Heitz, A.; Angerman, H.; Glas, R.; Warren, M.

1981-07-01T23:59:59.000Z

79

Desiccant Cooling Systems - A Review  

E-Print Network (OSTI)

Desiccant cooling systems have been investigated extensively during the past decade as alternatives to electrically driven vapor compression systems because regeneration temperatures of the desiccant - about 160°F, can be achieved using natural gas or by solar systems. Comfort is achieved by reducing the moisture content of air by a solid or liquid desiccant and then reducing the temperature in an evaporative cooler (direct or indirect). Another system is one where the dehumidifier removes enough moisture to meet the latent portion of the load while the sensible portion is met by a vapor compression cooling system; desiccant regeneration is achieved by using the heat rejected from the condenser together with other thermal sources. At present, residential desiccant cooling systems are in actual operation but are more costly than vapor compression systems, resulting in relatively long payback periods. Component efficiencies need to be improved, particularly the efficiency of the dehumidifier.

Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

1986-01-01T23:59:59.000Z

80

Superconducting magnet cooling system  

DOE Patents (OSTI)

A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

Vander Arend, Peter C. (Center Valley, PA); Fowler, William B. (St. Charles, IL)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Non-intrusive cooling system  

DOE Patents (OSTI)

A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

Morrison, Edward F. (Burnt Hills, NY); Bergman, John W. (Barrington, NH)

2001-05-22T23:59:59.000Z

82

Optimum hot water temperature for absorption solar cooling  

SciTech Connect

The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

2009-10-15T23:59:59.000Z

83

ROSAT Evidence for Intrinsic Oxygen Absorption in Cooling Flow Galaxies and Groups  

E-Print Network (OSTI)

Using spatially resolved, deprojected ROSAT PSPC spectra of 10 of the brightest cooling flow galaxies and groups with low Galactic column densities we have detected intrinsic absorption over energies ~0.4-0.8 keV in half of the sample. Since no intrinsic absorption is indicated for energies below ~0.4 keV, the most reasonable model for the absorber is collisionally ionized gas at temperatures T=10^{5-6} K with most of the absorption arising from ionized states of oxygen but with a significant contribution from carbon and nitrogen. The soft X-ray emission of this warm gas can explain the sub-Galactic column densities of cold gas inferred within the central regions of most of the systems. Attributing the absorption to ionized gas reconciles the large columns of cold H and He inferred from EINSTEIN and ASCA with the lack of such columns inferred from ROSAT. Within the central ~10-20 kpc, where the constraints are most secure, the estimated mass of the ionized absorber is consistent with most (perhaps all) of the matter deposited by a cooling flow over the lifetime of the flow. Since the warm absorber produces no significant H or He absorption the large absorber masses are consistent with the negligible atomic and molecular H inferred from HI and CO observations of cooling flows. It is also found that if T > ~2x10^5 K then the optical and UV emission implied by the warm gas does not violate published constraints. Finally, we discuss how the prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified with new CHANDRA and XMM observations. (Abridged)

David A. Buote

2000-01-19T23:59:59.000Z

84

Options for thermal energy storage in solar-cooling systems. Final report  

DOE Green Energy (OSTI)

The current effort concentrates on design requirements of thermal storage subsystems for active solar cooling systems. The use of thermal storage with respect to absorption, Rankine, and desiccant cooling technologies is examined.

Curran, H.M.; DeVries, J.

1981-05-01T23:59:59.000Z

85

Potential of solar cooling systems for peak demand reduction  

DOE Green Energy (OSTI)

We investigated the technical feasibility of solar cooling for peak demand reduction using a building energy simulation program (DOE2.1D). The system studied was an absorption cooling system with a thermal coefficient of performance of 0.8 driven by a solar collector system with an efficiency of 50% with no thermal storage. The analysis for three different climates showed that, on the day with peak cooling load, about 17% of the peak load could be met satisfactorily with the solar-assisted cooling system without any thermal storage. A performance availability analysis indicated that the solar cooling system should be designed for lower amounts of available solar resources that coincide with the hours during which peak demand reduction is required. The analysis indicated that in dry climates, direct-normal concentrating collectors work well for solar cooling; however, in humid climates, collectors that absorb diffuse radiation work better.

Pesaran, A.A. [National Renewable Energy Lab., Golden, CO (United States); Neymark, J. [Neymark (Joel), Golden, CO (United States)

1994-11-01T23:59:59.000Z

86

Solar-powered cooling system  

SciTech Connect

A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

Farmer, Joseph C

2013-12-24T23:59:59.000Z

87

The Study of Heat and Mass Transfer In The Generator For an Absorption Air Conditioning System.  

E-Print Network (OSTI)

??This thesis is aimed to study the heat and mass transfer performance of a generator for the absorption cooling system. Both aqueous lithium bromide (LiBr)… (more)

Hsu, Yu-lien

2012-01-01T23:59:59.000Z

88

Vehicle Cooling Systems - Energy Innovation Portal  

Hydrogen and Fuel Cell; Hydropower, Wave and ... The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a ...

89

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

l U CONTROL SYSTEM FOR SOLAR HEATING AND COOLING* M.Wahlig,be capable of operating solar heating and cooling systemsand now transferred to ERDA, on solar heating and cooling of

Dols, C.

2010-01-01T23:59:59.000Z

90

Passive cooling system for top entry liquid metal cooled nuclear reactors  

SciTech Connect

This patent describes a passive cooling system for liquid metal cooled, top entry loop nuclear fission reactors. It comprises: a liquid metal cooled nuclear reactor plant; a passive cooling system; and a secondary passive cooling system.

Boardman, C.E.; Hunsbedt, A.; Hui, M.M.

1992-10-27T23:59:59.000Z

91

X-ray Absorption Due to Cold Gas in Cluster Cooling Cores  

E-Print Network (OSTI)

We have calculated the emergent X-ray properties for models of cluster cooling flows including the effects of accumulated cooled material. The opacity of this cooled gas can reduce the overall X-ray luminosity of the cooling flow, and values of Mdot based on these luminosities can underestimate the true value by factors of ~2. We find that accumulated cooled material can produce emergent surface brightness profiles much like those observed even for nearly homogeneous gas distributions. Consequently, much more of the gas may be cooling below X-ray emitting temperatures in the central regions of cooling flows (r cooling flows may have been underestimated. We show that distributed absorption in cooling flows produces a number of observable effects in the spectrum which may allow it to be differentiated from absorption due to gas in our Galaxy. Th...

Wise, M W; Wise, Michael W.; Sarazin, Craig L.

1999-01-01T23:59:59.000Z

92

Evaluation of geothermal cooling systems for Arizona  

DOE Green Energy (OSTI)

Arizona consumes nearly 50 percent more electricity during the peak summer season of May through part of October, due to the high cooling load met by electrical-driven air conditioning units. This study evaluates two geothermal-driven cooling systems that consume less electricity, namely, absorption cooling and heat pumps. Adsorption cooling requires a geothermal resource above 105{sup 0}C (220{sup 0}F) in order to operate at a reasonable efficiency and capacity. Geothermal resources at these temperatures or above are believed existing in the Phoenix and Tucson areas, but at such depths that geothermal-driven absorption systems have high capital investments. Such capital investments are uneconomical when paid out over only five months of operation each year, but become economical when cascaded with other geothermal uses. There may be other regions of the state, where geothermal resources exist at 105{sup 0}C (220{sup 0}F) or higher at much less depth, such as the Casa Grande/Coolidge or Hyder areas, which might be attractive locations for future plants of the high-technology industries. Geothermal assisted heat pumps have been shown in this study to be economical for nearly all areas of Arizona. They are more economical and reliable than air-to-air heat pumps. Such systems in Arizona depend upon a low-temperature geothermal resource in the narrow range of 15.5 to 26.6{sup 0}C (60 to 80{sup 0}F), and are widely available in Arizona. The state has over 3000 known (existing) thermal wells, out of a total of about 30,000 irrigation wells.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

93

Passive cooling safety system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

1991-01-01T23:59:59.000Z

94

Indirect passive cooling system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

95

Indirect passive cooling system for liquid metal cooled nuclear reactors  

SciTech Connect

This patent describes a passive cooling system. It is for liquid metal cooled nuclear reactors having a pool of liquid metal coolant with the heat generating fissionable fuel core substantially immersed in the pool of liquid metal coolant. The passive cooling system including a combination of spaced apart side-by-side partitions in generally concentric arrangement and providing for intermediate fluid circulation and heat transfer therebetween.

Hunsbedt, A.; Boardman, C.E.

1990-09-25T23:59:59.000Z

96

Candidate chemical systems for air cooled, solar powered, absorption air conditioner design. Part III. Lithium salts with anti-freeze additives  

DOE Green Energy (OSTI)

The two most promising anti-solidification additives which have been identified are ethanolamine and ethylene glycol. Considerations of viscosity, corrosion, crystallization temperature and vapor pressure have led to a selection of lithium bromide - ethylene glycol - water as the basis of a prototype air-cooled machine, with the lithium bromide; ethylene glycol ratio being 4.5. Using what appear to be reasonable heat exchanger approach temperatures, cycle thermal COP's of 0.7/sup +/ appear possible at the specified design point, based on solution properties which were determined with qualification accuracy. The prototype, delivering 10,000 watts of cooling, has a calculated parasitical electrical load of about 175 watts (theoretical) to drive the internal fans and pumps, equivalent to about a 0.5 horsepower motor.

Biermann, W.J.

1978-06-01T23:59:59.000Z

97

Modelling Alkali Line Absorption and Molecular Bands in Cool DAZs  

E-Print Network (OSTI)

Two peculiar stars showing an apparent extremely broadened and strong NaI D absorption have been discovered in surveys for cool white dwarfs by Oppenheimer et al. (2001) and Harris et al. (SDSS, 2003). We discuss the nature of these objects using PHOENIX atmosphere models for metal-poor brown dwarfs/very low mass stars, and new white dwarf LTE and NLTE models for hydrogen- and helium-dominated atmospheres with metals. These include complete molecular formation in chemical equilibrium and a model for the alkali resonance line broadening based on the damping profiles of Allard et al. (2003), as well as new molecular line opacities for metal hydrides. First results of our calculations indicate good agreement with a hydrogen-dominated WD atmosphere with a Na abundance roughly consistent with a state of high accretion. We analyse deviations of the abundances of Na, K, Mg and Ca from the cosmic pattern and comment on implications of these results for standard accretion scenarios.

Derek Homeier; Nicole F. Allard; France Allard; Peter H. Hauschildt; Andreas Schweitzer; Phillip C. Stancil; Philippe F. Weck

2005-01-05T23:59:59.000Z

98

Lamination cooling system formation method  

SciTech Connect

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E. (Altadena, CA); Kobayashi, Daryl M. (Monrovia, CA)

2012-06-19T23:59:59.000Z

99

Lamination cooling system formation method  

Science Conference Proceedings (OSTI)

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

2009-05-12T23:59:59.000Z

100

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of hardware simulators for tests of solar cooling/heating subsystems and systems. Phase II. Unsteady state hardware simulation of residential absorption chiller  

DOE Green Energy (OSTI)

The main work involves the experimental study to determine transient and cycling performance characteristics of an advanced solar absorption chiller. Laboratory tests of the second generation Arkla chiller (Solaire 36, model WF36), using the BNL simulator, have been performed. Chiller performance has also been measured against fast and slow cycling periods under both the conventional and modified control modes. The degree of performance improvement under the modified control mode, as a function of the cycle period and such effects on the integrated chiller performance, have been thoroughly investigated.

Auh, P.C.

1979-09-01T23:59:59.000Z

102

Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller  

SciTech Connect

The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

Borst, R.R.; Wood, B.D.

1985-05-01T23:59:59.000Z

103

Absorption-heat-pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, G.; Perez-Blanco, H.

1983-06-16T23:59:59.000Z

104

X-ray Absorption Due to Cold Gas in Cluster Cooling Cores  

E-Print Network (OSTI)

We have calculated the emergent X-ray properties for models of cluster cooling flows including the effects of accumulated cooled material. The opacity of this cooled gas can reduce the overall X-ray luminosity of the cooling flow, and values of Mdot based on these luminosities can underestimate the true value by factors of ~2. We find that accumulated cooled material can produce emergent surface brightness profiles much like those observed even for nearly homogeneous gas distributions. Consequently, much more of the gas may be cooling below X-ray emitting temperatures in the central regions of cooling flows (r cooling flows may have been underestimated. We show that distributed absorption in cooling flows produces a number of observable effects in the spectrum which may allow it to be differentiated from absorption due to gas in our Galaxy. These include a characteristic suppression of the continuum below ~2 keV, absorption features such as a redshifted O K-edge, and diminished intensity of resonance emission lines. Spectra including the effects of intrinsic absorption are not well fit by foreground absorbing models. Attempting to fit such models to the spatially resolved spectra can lead to underestimates of the true absorbing column by factors of 3-20. Fits to integrated spectra of the entire cooling flow region can either underestimate or overestimate the mass of the absorbing gas depending on the specifics of the model. We discuss the potential detection of these effects with AXAF, XMM, and Astro-E.

Michael W. Wise; Craig L. Sarazin

1999-03-09T23:59:59.000Z

105

Cooling system for superconducting magnet  

DOE Patents (OSTI)

A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

Gamble, B.B.; Sidi-Yekhlef, A.

1998-12-15T23:59:59.000Z

106

Cooling system for superconducting magnet  

DOE Patents (OSTI)

A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

Gamble, Bruce B. (Wellesley, MA); Sidi-Yekhlef, Ahmed (Framingham, MA)

1998-01-01T23:59:59.000Z

107

Underground-desiccant cooling system  

DOE Green Energy (OSTI)

The Underground-Desiccant Cooling System relies on the successful coordination of various components. The central feature of the system is a bed of silica gel which will absorb moisture from house air until the gel has become saturated. When this point has been reached, the silica gel must be regenerated by passing hot air through it. For this project, the hot air is produced by air-type solar collectors mounted on the roof and connected with the main air-handling system by means of ducts attached to the outside of the house. As the air is dehumidified its temperature is raised somewhat by the change of state. The dried but somewhat heated air, after leaving the silica gel bed, passes through a rock bin storage area and then past a water coil chiller before being circulated through the house by means of the previously existing ductwork. The cooling medium for both the rock bin and the chiller coil is water which circulates through underground pipes buried beneath the back yard at a depth of about 10 to 12 ft. When the silica gel is being regenerated by the solar collectors, house air bypasses the desiccant bed but still passes through the rock bin and the chiller coil and is cooled continuously. The system is designed for maximum flexibility so that full use can be made of the solar collectors. Ducting is arranged so that the collectors provide heat for the house in the winter and there is also a hot-water capability year-round.

Finney, O.

1982-10-01T23:59:59.000Z

108

Cooling laser system for quantum computing with barium-137 ions Tom Chartrand  

E-Print Network (OSTI)

, there is still a limit to the cooling possi- ble. With every absorption, an ion subsequently spon- taneouslyCooling laser system for quantum computing with barium-137 ions Tom Chartrand Department of Physics of a powerful 493 nm laser source for cooling, by the resonant frequency doubling of a 986 nm external cavity

Blinov, Boris

109

Evaporative cooling enhanced cold storage system  

DOE Patents (OSTI)

The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

Carr, P.

1991-10-15T23:59:59.000Z

110

Heat exchanger with auxiliary cooling system  

DOE Patents (OSTI)

A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

Coleman, John H. (Salem Township, Westmoreland County, PA)

1980-01-01T23:59:59.000Z

111

Radiant vessel auxiliary cooling system  

DOE Patents (OSTI)

In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

Germer, John H. (San Jose, CA)

1987-01-01T23:59:59.000Z

112

Passive cooling program element. [Skytherm system  

DOE Green Energy (OSTI)

An outline of the Passive Cooling R and D program element is presented with significant technical achievements obtained during FY 1978. Passive cooling mechanisms are enumerated and a survey of ongoing projects is made in the areas of cooling resource assessment and system development. Results anticipated within the next fiscal year are discussed and the direction of the R and D effort is indicated. Passive cooling system development has centered primarily about the Skytherm system. Two projects are underway to construct such systems in regions having a higher cooling load than the original Skytherm site at Atascadero, California. Component development and commercialization studies are major goals of these two projects and a third project at Atascadero. A two-story passive cooling test module has been built to study radiative, evaporative and convective cooling effects in a structure making use of the thermosiphon principle, but not equipped with a roof pond.

Wahlig, M.; Martin, M.

1978-09-01T23:59:59.000Z

113

Open-cycle absorption cooling using packed-bed absorbent reconcentration  

DOE Green Energy (OSTI)

The technical feasibility of a lithium chloride open-cycle absorption air conditioner using solar-heated air for reconcentration of the absorbent solution is examined. In contrast to a successfully operating Soviet design (in which absorbent reconcentration is accomplished by trickling the solution across a sloping black roof exposed to the sun), this study involves a packed-bed concentrator. Solar-heated air reconcentrates the solution by vaporizing water (the refrigerant) from the solution in the packed bed, enabling the system to be incorporated into a conventional solar air heating system and avoiding numerous problems associated with the roof concentrator. A thermodynamic analysis provides the criteria for the design of the packed bed. Heat and mass transfer processes occurring simultaneously in the bed are modeled using an iterative technique with the aid of a digital computer. The size of the packed-bed required to reconcentrate the absorbent solution at a rate corresponding to 10,550 W of cooling is determined, using flow rates, temperatures, and humidities typical of residential solar air-heating systems. Based on these results, the system air conditioning capability with solar energy input is predicted over the course of a clear summer day for Fort Collins, Colorado, and St. Louis, Missouri. Sufficient cooling capacity to meet a 10,550 W peak load using a 70 m/sup 2/ flatplate collector array is predicted by the model for both locations.

Leboeuf, C. M.; Loef, G. O.G.

1980-05-01T23:59:59.000Z

114

Reactor core isolation cooling system  

DOE Patents (OSTI)

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

Cooke, F.E.

1992-12-08T23:59:59.000Z

115

Reactor core isolation cooling system  

DOE Patents (OSTI)

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

Cooke, Franklin E. (San Jose, CA)

1992-01-01T23:59:59.000Z

116

Water-lithium bromide double-effect absorption cooling analysis. Final report  

DOE Green Energy (OSTI)

This investigation involved the development of a numerical model for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy. The dynamic model should be valuable as a design tool for developing new absorption machines or modifying current machines to make them optimal based on current and future energy costs.

Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

1980-12-01T23:59:59.000Z

117

Emergency cooling system and method  

DOE Patents (OSTI)

An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

Oosterkamp, W.J.; Cheung, Y.K.

1994-01-04T23:59:59.000Z

118

Cooling flows, central galaxy--cluster alignments, X-ray absorption and dust  

E-Print Network (OSTI)

We present the analysis of pointed ROSAT PSPC observations of five of the most luminous, intermediate redshift ($0.1 cooling flows. The alignment between CCGs and their host clusters has been investigated. For those clusters with cooling flows, the position angles of the X-ray emission from the clusters and the optical emission from the CCGs agrees within 5 degrees. For the one probable non-cooling flow cluster in the sample, Abell 2208, the alignment is significantly poorer. We examine the evidence for intrinsic X-ray absorption in the clusters. The X-ray spectra for Abell 1068 and Abell 1664 show that the cooling flows in these clusters are intrinsically absorbed by equivalent hydrogen column densities $\\geq 10^{21} atom cm$^{-2}$. The optical spectra of the CCGs in these clusters exhibit substantial intrinsic reddening, at levels consistent with the X-ray absorption results if standard dust to gas ratios are assumed.

S. W. Allen; A. C. Fabian; A. C. Edge; H. Bohringer; D. A. White

1995-03-28T23:59:59.000Z

119

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network (OSTI)

of the chillers and cooling towers, the thermal storage tankthe chillers and cooling towers, the thermal storage tank,of thermal energy storage in building cooling systems.

Ma, Yudong

2010-01-01T23:59:59.000Z

120

Liquid metal cooled nuclear reactor plant system  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A review of desiccant cooling systems  

SciTech Connect

This paper describes recent published design advances that have been made in desiccant cooling systems. In desiccant cooling cycles, the desiccant reduces the humidity of the air by removing moisture from the air. Then the temperature is reduced by other components such as heat exchangers, evaporative coolers, or conventional cooling coils. The main advantage that desiccant cooling systems offer is the capability of using low-grade thermal energy. Desiccant cooling systems for residential and commercial applications are now being used to reduce energy-operating costs. However, the initial costs are comparatively high. The focus of research for the past decade has been to develop desiccant systems with a high coefficient of performance. Recent studies have emphasized computer modeling and hybrid systems that combine desiccant dehumidifiers with conventional systems.

Waugaman, D.G.; Kini, A.; Kettleborough, C.F. (Texas A and M Univ., College Station (United States))

1993-03-01T23:59:59.000Z

122

Backscatter absorption gas imaging system  

DOE Patents (OSTI)

A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

McRae, Jr., Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

123

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network (OSTI)

consideration of solar absorption cooling systems becomesStorage (80%) Solar Absorption Cooling (.31) Parabolicgeneration. For absorption cooling, the summer energy

Balderston, F.

2010-01-01T23:59:59.000Z

124

Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and...

125

Control system for solar heating and cooling  

DOE Green Energy (OSTI)

A control system is being developed that will be capable of operating solar heating and cooling systems covering a wide range of configurations, and using different operating strategies that may be optimal for different climatic regions. To insure widespread applicability of the control system, it is being designed to allow for modification for operating with essentially all practical heating and cooling system configurations and control algorithms simply by interchange of replaceable modules in the circuitry. An experimental heating and cooling system, the main purpose of which is to allow testing and exercise of the controller, was designed so that it could be operated in these various configurations.

Wahlig, M.; Binnall, E.; Dols, C.; Graven, R.; Selph, F.; Shaw, R.; Simmons, M.

1975-08-01T23:59:59.000Z

126

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

127

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

128

Cooling system for a nuclear reactor  

DOE Patents (OSTI)

A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

Amtmann, Hans H. (Rancho Santa Fe, CA)

1982-01-01T23:59:59.000Z

129

Performance analysis of hybrid liquid desiccant solar cooling system.  

E-Print Network (OSTI)

??This thesis investigates the coefficient of performance (COP) of a hybrid liquid desiccant solar cooling system. This hybrid cooling system includes three sections: 1) conventional… (more)

Zhou, Zhipeng (Joe Zoe)

2009-01-01T23:59:59.000Z

130

Active Solar Heating and Cooling Systems Exemption | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating and Cooling Systems Exemption Active Solar Heating and Cooling Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Heating...

131

Active solar heating-and-cooling system-development projects  

DOE Green Energy (OSTI)

The Department of Energy (DOE) projects with industry and academic institutions directed toward the development of cost effective, reliable, and publically acceptable active solar heating and cooling systems are presented. A major emphasis of the program is to insure that the information derived from these projects is made available to all members of the solar community who will benefit from such knowledge. The purpose of this document is to provide a brief summary of each of the 214 projects that were active during Fiscal Year 1980, and to provide sufficient information to allow the reader to acquire further details on specific projects. For clarity and convenience, projects are organized by either the program element or technology group as follows: (1) Program elements - Rankine Solar Cooling Systems; Absorption Solar Cooling Systems; Desiccant Solar Cooling Systems; Solar Space Heating Systems; Solar Hot Water Systems; Special Projects; and (2) Technology Groups - Solar Collector Technology; Solar Storage Technology; Solar Controls Technology; Solar Analysis Technology; and Solar Materials Technology. For further convenience, this book contains three indices of contracts, with listings by (1) organization, (2) contract number and (3) state where the project is performed. A brief glossary of terms used is also included at the end of the book.

Not Available

1980-10-01T23:59:59.000Z

132

Passive cooling system for top entry liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

1992-01-01T23:59:59.000Z

133

Flow Stability of Supercritical Water Cooled Systems  

SciTech Connect

Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior and flow stability of supercritical water cooled systems. Although extensive thermal-hydraulic research activities have been carried out worldwide, studies on flow stability of SC water cooled systems are scarce. The present study deals with the flow behavior of SC water cooled systems. For this purpose the computer code SASC was developed, which is applied to a simplified cooling system. The effect of various parameters on the flow behavior is investigated. The first results achieved up to now reveals a complicated dynamic performance of a system cooled by supercritical water. (authors)

Cheng, X.; Kuang, B.; Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China)

2006-07-01T23:59:59.000Z

134

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

have higher cooling capacity because the thermal resistancethe thermal comfort requirement unless the cooling capacitysurface cooling system and TABS systems THERMAL COMFORT

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

135

Overview: Home Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than earlier models. Dehumidifying heat pipes can help an air conditioner remove humidity and more efficiently cool the air. Radiant Cooling Radiant cooling cools a floor or...

136

Cooling system for continuous metal casting machines  

DOE Patents (OSTI)

A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles against the inner surface of rim at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers through return pipes distributed interstitially among the nozzles. 9 figs.

Draper, R.; Sumpman, W.C.; Baker, R.J.; Williams, R.S.

1988-06-07T23:59:59.000Z

137

Cooling system for continuous metal casting machines  

DOE Patents (OSTI)

A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles 19 against the inner surface of rim 13 at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers 30 through return pipes 25 distributed interstitially among the nozzles.

Draper, Robert (Churchill Boro, PA); Sumpman, Wayne C. (North Huntingdon, PA); Baker, Robert J. (Wilkins Township, Allegheny County, PA); Williams, Robert S. (Plum Borough, PA)

1988-01-01T23:59:59.000Z

138

Prototype solar heating and cooling systems  

DOE Green Energy (OSTI)

A collection of quarterly reports from the AiResearch Manufacturing Company covering the period July 12, 1976, through December 31, 1977, is presented. AiResearch Manufacturing Company is developing eight prototype solar heating and cooling systems. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25 and 75-ton size units.

Not Available

1978-03-01T23:59:59.000Z

139

Optimization of a solar cooling system with interior energy storage  

Science Conference Proceedings (OSTI)

This paper focuses on the optimization of the performance of a solar absorption cooling system composed by four units with interior energy storage. A full dynamic simulation model that includes the solar collector field, the absorption heat pump system and the building load calculation has been developed. It has been applied to optimize the coupling of a system based on this new technology of solar powered absorption heat pump, to a bioclimatic building recently constructed in the Plataforma Solar de Almeria (PSA) in Spain. The absorption heat pump system considered is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. Each heat pump is composed of two separate barrels that can charge (store energy from the solar field) and discharge (deliver heat or cold to the building) independently. Different configurations of the four units have been analysed taking into account the storage possibilities of the system and its capacity to respond to the building loads. It has been shown how strong the influence of the control strategies in the overall performance is, and the importance of using hourly simulations models when looking for highly efficient buildings. (author)

Sanjuan, C.; Soutullo, S.; Heras, M.R. [Department of Energy, Energy Efficiency in Buildings Unit, CIEMAT, Madrid E-28040 (Spain)

2010-07-15T23:59:59.000Z

140

Passive Cooling System for a Vehicle  

DOE Patents (OSTI)

A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

Hendricks, T. J.; Thoensen, T.

2005-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path  

DOE Patents (OSTI)

A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

142

Thermal Storage with Conventional Cooling Systems  

E-Print Network (OSTI)

The newly opened Pennsylvania Convention Center in Philadelphia, PA; Exxon's Computer Facility at Florham Park, NJ; The Center Square Building in Philadelphia, are success stories for demand shifting through thermal storage. These buildings employ a simple thermal energy storage system that already exists in almost every structure - concrete. Thermal storage calculations simulate sub-cooling of a building's structure during unoccupied times. During occupied times, the sub-cooled concrete reduces peak cooling demand, thereby lowering demand and saving money. In addition, significant savings are possible in the first cost of chilled water equipment, and the smaller chillers run at peak capacity and efficiency during a greater portion of their run time. The building, controlled by an Energy Management and Control System (EMCS), "learns" from past experience how to run the building efficiently. The result is an optimized balance between energy cost and comfort.

Kieninger, R. T.

1994-01-01T23:59:59.000Z

143

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology: Evaporative Pre-Cooling Systems Technology: Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

144

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Pre-Cooling Systems Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

145

Triple loop heat exchanger for an absorption refrigeration system  

DOE Patents (OSTI)

A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

Reimann, Robert C. (Lafayette, NY)

1984-01-01T23:59:59.000Z

146

Advanced Open-Cycle Desiccant Cooling System  

E-Print Network (OSTI)

The concept of staged regeneration as means of improving the desiccant cooling system performance is the subject of investigation in this study. In the staged regeneration, the regeneration section of desiccant dehumidifier is divided into two parts and only the latter fraction is subjected to the desorption air stream which has been heated to the desired regeneration temperature. In the present work, the mathematical model describing the heat and mass transfer processes that occur during sorption of moisture in the desiccnnt dehumidifier includes both the gas-side (film) and solid-side resistances for heat and mass transports. The moisture diffusion in the desiccant material is expressed by gas-phase diffusion and surface diffusion. Effects of several parameters on the performance of desiccant cooling system with staged regeneration are investigated and the results of present model are compared with those of the lumped-resistance model. Results of this study show that coefficient of perfomnnce of the desiccant cooling system can be substantially improved by using the staged regeneration concept. There is an optimum stage fraction and optimum cycle time for given system parmeters and operating conditions. The results also indicate that the cooling system performance is higher than that predicted by the lumped-resistance model.

Ko, Y. J.; Charoensupaya, D.; Lavan, Z.

1989-01-01T23:59:59.000Z

147

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

72 5.1.2 Memory thermal and cooling model . . . . . . . . 75Energy, Thermal and Cooling Management . . . . . . . .Conclusion . . Chapter 4 Thermal and Cooling Management in

Ayoub, Raid

2011-01-01T23:59:59.000Z

148

Thermal performance of space-cooling solar-energy systems in the National Solar Data Network  

DOE Green Energy (OSTI)

Results derived from analysis of data obtained from monitoring the operation of four solar energy cooling installations in the National Solar Data Network are presented. It is shown that chiller coefficients of performance (COP) on the order of 0.65 can be easily obtained with existing technology, provided the designer adequately matches the solar energy system to the absorption chiller. It is also shown that flat-plate, concentrating, and evacuated tube collectors may each be used successfully to operate absorption chillers in space cooling systems. The results show that appreciation for the systems engineering aspects of solar energy is extremely important to the development of a viable industry.

Bartlett, J.C.

1979-07-01T23:59:59.000Z

149

Desiccant contamination in desiccant cooling systems  

SciTech Connect

This paper presents the results of a desiccant contamination experiment and the impact of the obtained silica gel degradation data on the performance of a desiccant cooling system. A test apparatus was used to thermally cycle several desiccant samples and expose them to ambient'' humid air or contaminated'' humid air. The source of contamination was cigarette smoke. The exposed desiccant samples were removed after 0.5, 1, 2, or 4 months of exposure and their moisture capacities were measured. The silica get samples thermally cycled with ambient air showed a 5% to 30% to 70% of their moisture capacity. Using the obtained degradation data in a system, the impact of desiccant degradation on the performance of a desiccant cooling cycle was estimated. Depending on the degree of desiccant degradation, the decrease in thermal coefficient of performance (COP) and cooling capacity of the system was 10% to 35%. It was found that the COP and the cooling capacity of a system after desiccant degradation can be improved by increasing the rotational speed of the dehumidifier. This indicates that a simple engineering solution may exist to alleviate some type of degradations. 9 refs., 6 figs., 2 tabs.

Pesaran, A.A.

1990-08-01T23:59:59.000Z

150

Solar evacuated tube collector: absorption chiller systems simulation  

DOE Green Energy (OSTI)

A residential air conditioning system incorporating an Arkla Solaire absorption chiller and Corning Glass Works evacuated tube collectors is simulated and the design parameters studied. Mathematical models of the evacuated tube collector and Arkla absorption chiller based on experimental results of the components have been created and incorporated into a complete system simulation. The chiller model includes transient start-up effects and the evacuated tube collector model includes numerous optical effects. A standard Arkla chiller in a humid climate (Washington, D.C.) and an Arkla unit with a modified charge for dry climates (Fort Collins, Colorado) are studied. Design parameters considered include the use of chilled water storage to reduce transient start-up effects of the absorption unit, the effects of removing heat from the solar system for preheating service hot water, the use of a tempering valve to prevent over-firing of the absorption unit in dry climates, and solar storage sizing considerations. The study results and conclusions are used to specify a cooling system design.

Leflar, J.A.; Duff, W.S.

1977-12-01T23:59:59.000Z

151

Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report  

DOE Green Energy (OSTI)

Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

Not Available

1981-03-01T23:59:59.000Z

152

Cooling system for a gas turbine  

DOE Patents (OSTI)

A plurality of arcuate circumferentially spaced supply and return manifold segments are arranged on the rim of a rotor for respectively receiving and distributing cooling steam through exit ports for distribution to first and second-stage buckets and receiving spent cooling steam from the first and second-stage buckets through inlet ports for transmission to axially extending return passages. Each of the supply and return manifold segments has a retention system for precluding substantial axial, radial and circumferential displacement relative to the rotor. The segments also include guide vanes for minimizing pressure losses in the supply and return of the cooling steam. The segments lie substantially equal distances from the centerline of the rotor and crossover tubes extend through each of the segments for communicating steam between the axially adjacent buckets of the first and second stages, respectively.

Wilson, Ian David (Mauldin, SC); Salamah, Samir Armando (Niskayuna, NY); Bylina, Noel Jacob (Niskayuna, NY)

2003-01-01T23:59:59.000Z

153

Comparative study of different solar cooling systems for buildings in subtropical city  

SciTech Connect

In recent years, more and more attention has been paid on the application potential of solar cooling for buildings. Due to the fact that the efficiency of solar collectors is generally low at the time being, the effectiveness of solar cooling would be closely related to the availability of solar irradiation, climatic conditions and geographical location of a place. In this paper, five types of solar cooling systems were involved in a comparative study for subtropical city, which is commonly featured with long hot and humid summer. The solar cooling systems included the solar electric compression refrigeration, solar mechanical compression refrigeration, solar absorption refrigeration, solar adsorption refrigeration and solar solid desiccant cooling. Component-based simulation models of these systems were developed, and their performances were evaluated throughout a year. The key performance indicators are solar fraction, coefficient of performance, solar thermal gain, and primary energy consumption. In addition, different installation strategies and types of solar collectors were compared for each kind of solar cooling system. Through this comparative study, it was found that solar electric compression refrigeration and solar absorption refrigeration had the highest energy saving potential in the subtropical Hong Kong. The former is to make use of the solar electric gain, while the latter is to adopt the solar thermal gain. These two solar cooling systems would have even better performances through the continual advancement of the solar collectors. It will provide a promising application potential of solar cooling for buildings in the subtropical region. (author)

Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S. [Division of Building Science and Technology, College of Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China)

2010-02-15T23:59:59.000Z

154

Techno-Economic Assessment of Solar PV/Thermal System for Power and Cooling Generation in Antalya, Turkey.  

E-Print Network (OSTI)

?? In this study a roof-top PVT/absorption chiller system is modeled for a hotel building in Antalya, Turkey to cover the cooling demand of the… (more)

Kumbasar, Serdar

2013-01-01T23:59:59.000Z

155

Method for passive cooling liquid metal cooled nuclear reactors, and system thereof  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

1991-01-01T23:59:59.000Z

156

Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems  

E-Print Network (OSTI)

With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam single-effect absorption refrigeration, flue gas absorption refrigeration and hot water absorption refrigeration, etc. As a universal criterion, the COP coefficient cannot reflect the difference in availability of driving energy for different chillers. Exergy efficiency of optional chillers in CCHP system was analyzed and compared, which can be regarded as an important reference criterion in comparison of energy efficiency. Furthermore, a new index, relative electricity saving ratio, was put forward for evaluating end energy efficiency of all kinds of chillers in a CCHP system, which indicates actual energy or electricity saving ratio for different absorption chillers with various parameters in contrast to the reference electricity-driven refrigeration scheme.

Zuo, Z.; Hu, W.

2006-01-01T23:59:59.000Z

157

Analysis of an improved solar-powered cooling system utilizing open-cycle absorbent regeneration  

DOE Green Energy (OSTI)

A solar-powered cooling system which promises high system C.O.P.'s and low collector costs is analyzed. It consists of a desiccant and an absorption cooling system operating in series to both dry and cool the air. A common solution of lithium chloride is used as the absorbant. The lithium chloride solution is regenerated by evaporating the excess water to the atmosphere in an ''open'' collector. This collector consists merely of a blackened flat surface. The weak solution of lithium chloride is introduced at the top of the collector and then flows by gravity over the entire collector surface where it is subsequently heated and dried. The daily performance of this combined system is compared by computer simulation to that of either an absorption or desiccant system alone using actual weather data for five typical U.S. cities. The performance improvement of the combined system ranged from 25% to 95%, the greatest improvement being for humid, windy conditions.

Collier, R.K.

1978-01-01T23:59:59.000Z

158

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

159

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

coil (G) of the absorption chiller (or boiler of a Rankineor heat input to the absorption chiller of approximately

Dols, C.

2010-01-01T23:59:59.000Z

160

User's Guide to Cooling Systems Data Base  

Science Conference Proceedings (OSTI)

A bibliographical computerized data base related to cooling system impacts on aquatic environments were compiled by the Information Center Complex at Oak Ridge National Laboratory (ORNL) and the Atomic Industrial Forum, Inc. (AIF). The data base covers four major subject areas: thermal effects, chemical effects, impingement, and entrainment. The ORNL portion of the project covers published literature, including government and university reports, conference proceedings, and trade journals. The AIF portion...

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems  

E-Print Network (OSTI)

change the cooling load profile for the mechanical systems.and the resulting cooling load profile has been reported inimplications for cooling load profile and peak cooling load

Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

162

Parametric Analysis of a Solar Desiccant Cooling System using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parametric Analysis of a Solar Desiccant Cooling System using the SimSPARK Environment Title Parametric Analysis of a Solar Desiccant Cooling System using the SimSPARK Environment...

163

Configuration of a Laminar Cooling System Using a Branch and ...  

Science Conference Proceedings (OSTI)

Symposium, Recent Developments in High Strength Steels for Energy Applications ... Cooling System Using a Branch and Bound Optimization Methodology.

164

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

78 5.2 Combined Energy, Thermal and CoolingOne reason for thermal and energy variations betweenWe propose a combined energy, thermal and cooling management

Ayoub, Raid

2011-01-01T23:59:59.000Z

165

Potassium emission absorption system. Topical report 12  

DOE Green Energy (OSTI)

The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

Bauman, L.E.

1995-04-01T23:59:59.000Z

166

Diurnal ice storage cooling systems for Army facilities  

DOE Green Energy (OSTI)

The US Army's experience with diurnal ice storage (DIS) cooling systems for one of its facilities is discussed in this paper. A few favorable characteristics of an Army post for the application of storage cooling systems are identified. A nominal 900 ton-hour (t-h) ice-in-tank DIS cooling system was installed at Ft. Stewart, GA, and has been in operation since March 1987 to demonstrate the applicability of DIS cooling systems to Army facilities. Information on the design, construction, operation, and performance of the Ft. Stewart DIS cooling system is presented. 7 refs., 9 figs., 3 tabs.

Sohn, C.W.; Tomlinson, J.J.

1989-01-01T23:59:59.000Z

167

Corrosion inhibitor for aqueous ammonia absorption system  

DOE Patents (OSTI)

A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

Phillips, Benjamin A. (Benton Harbor, MI); Whitlow, Eugene P. (St. Joseph, MI)

1998-09-22T23:59:59.000Z

168

Corrosion inhibitor for aqueous ammonia absorption system  

DOE Patents (OSTI)

A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

Phillips, B.A.; Whitlow, E.P.

1998-09-22T23:59:59.000Z

169

Integrated exhaust gas recirculation and charge cooling system  

SciTech Connect

An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

Wu, Ko-Jen

2013-12-10T23:59:59.000Z

170

Lyman ? Absorption as a Sensitive Probe of the H I Column in Cooling Flows  

E-Print Network (OSTI)

Abstract. X-ray spectra of a significant fraction of cooling flow (CF) clusters of galaxies indicate the presence of large columns of “cold ” absorbing gas. The physical nature of the absorbing medium remains a mystery. Searches for H I absorption using the 21 cm hyperfine structure line yielded null results in most cases. The purpose of this contribution is to point out that the Lyman ? absorption cross section is ? 10 7 times larger than for the 21 cm line, it can therefore be used as a very sensitive probe of the H I column in clusters, and can thus place stringent constraints on the nature of the X-ray absorber. This method is applied to the Perseus CF cluster where a medium resolution ( ? 250 km s ?1) UV spectrum is available. The upper limit on the H I column obtained using Lyman ? is at least ? 50 times smaller than the 21 cm detection, and ? 5,000 smaller than implied by X-ray spectra, indicating that the X-ray absorber is exceedingly devoid of H I. Higher resolution UV spectra with HST may improve the H I column limits by an additional factor of ? 4,000. This method can be applied to strongly constrain the nature of the X-ray absorbing medium in a significant fraction of CF clusters.

A. Laor

1996-01-01T23:59:59.000Z

171

Lyman $?$ Absorption as a Sensitive Probe of the H I Column in Cooling Flows  

E-Print Network (OSTI)

X-ray spectra of a significant fraction of cooling flow (CF) clusters of galaxies indicate the presence of a large column of ``cold'' absorbing gas. The physical nature of the absorbing medium remains a mystery. Searches for H I absorption using the 21 cm hyperfine structure line yielded null results in most cases. The purpose of this contribution is to point out that the Lyman $\\alpha$ absorption cross section is ~10^7 times larger than for the 21 cm line, it can therefore be used as a very sensitive probe of the H I column in clusters, and can thus place stringent constraints on the nature of the X-ray absorber. This method is applied to the Perseus CF cluster where a medium resolution (~250 km/s) UV spectrum is available. The upper limit on the H I column obtained using Lyman $\\alpha$ is at least ~50 times smaller than the 21 cm detection, and ~5,000 smaller than implied by X-ray spectra, indicating that the X-ray absorber is exceedingly devoid of H I. Higher resolution UV spectra with HST may improve the H I column limits by an additional factor of ~4,000. This method can be applied to strongly constrain the nature of the X-ray absorbing medium in a significant fraction of CF clusters .

Ari Laor

1996-09-24T23:59:59.000Z

172

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

173

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

174

SOLERAS - Solar Cooling Engineering Field Tests Project: Arizona State University. Prototype carrier 10 ton air-cooled solar absorption chiller. Final evaluation report  

DOE Green Energy (OSTI)

A prototype air-cooled 10 ton solar absorption chiller was disassembled and inspected after having been field-tested for three consecutive cooling seasons. Included in the inspection were some flow visualization experiments which revealed some problems in the absorber header design. The objectives of this evaluation project were to determine possible causes for the frequent crystallization and generally below-design performance of the chiller during the testing period. The major conclusions reached were that a combination of leaks and of poor (50%) flow distribution in the absorber could account for most of the chiller's poor performance.

Not Available

1982-01-01T23:59:59.000Z

175

Microelectronic chip cooling: an experimental assessment of a liquid-passing heat sink, a microchannel heat rejection module, and a microchannel-based recirculating-liquid cooling system  

Science Conference Proceedings (OSTI)

Results of heat transfer testing of heat absorption modules (HAM), heat rejection modules (HRM), and a recirculating-liquid cooling system are reported. Low-profile, Cu-based, microchannel heat exchangers (MHEs) were fabricated and used as the HAM as ...

Bin Lu; W. J. Meng; Fanghua Mei

2012-03-01T23:59:59.000Z

176

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

allows the use of alternative cooling sources, for example,allows the use of alternative cooling sources, for example,system, and alternative radiant cooling technology, i.e.

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

177

The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone  

SciTech Connect

The possibility of using solar ponds as low-cost solar collectors combined with commercial absorption chillers in large scale solar cooling design is investigated. The analysis is based on the combination of a steady-state solar pond mathematical model with the operational characteristics of a commercial absorption chiller, assuming condenser heat rejection in the upper convecting zone (U.C.Z.). The numerical solution of the nonlinear equations involved leads to results which relate the chiller capacity with pond design and environmental parameters, which are also employed for the investigation of the optimum pond size for a minimum capital cost. The derived cost per cooling kW for a 350 kW chiller ranges from about 300 to 500 $/kW cooling. This is almost an order of magnitude lower than using a solar collector field of evacuated tube type.

Tsilingiris, P.T. (Commercial Bank of Greece, Athens (Greece))

1992-07-01T23:59:59.000Z

178

Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit  

Science Conference Proceedings (OSTI)

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

2007-01-01T23:59:59.000Z

179

Dilution cycle control for an absorption refrigeration system  

DOE Patents (OSTI)

A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

Reimann, Robert C. (Lafayette, NY)

1984-01-01T23:59:59.000Z

180

Special Property Assessment for Renewable Heating and Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Property Assessment for Renewable Heating and Cooling Special Property Assessment for Renewable Heating and Cooling Systems Special Property Assessment for Renewable Heating and Cooling Systems < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Program Info State Maryland Program Type Property Tax Incentive Rebate Amount Eligible property is assessed at no more than the value of a conventional system Provider Department of Assessments and Taxation Title 8 of Maryland's property tax code includes a state-wide special assessment for solar and geothermal heating and cooling systems. Under this provision, such systems are to be assessed at not more than the value of a conventional system for property tax purposes if no conventional system

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural circulating passive cooling system for nuclear reactor containment structure  

DOE Patents (OSTI)

A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

182

Passive cooling system for nuclear reactor containment structure  

DOE Patents (OSTI)

A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

1989-01-01T23:59:59.000Z

183

CCHP System with Interconnecting Cooling and Heating Network  

E-Print Network (OSTI)

The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity not supplied to the grid is analyzed in detail. Further, the new concept of CCHP system with cooling and heating network interconnecting is developed. Then, the Olympic Park energy system is presented to illustrate the advantage and improvement both in economy performance and energy efficiency.

Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

2006-01-01T23:59:59.000Z

184

Cedarville School District Retrofit of Heating and Cooling Systems...  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on...

185

Alternative Coolants and Cooling System Designs for Safer Freeze ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Ni-Co 2013. Presentation Title, Alternative Coolants and Cooling System ...

186

Energy Basics: Supporting Equipment for Heating and Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Heating and Cooling Systems Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat...

187

Water-side Economizer for Non-Fan Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

changes to the commercial provisions of the 2012 IECC: Water-side Economizer for Non-Fan Cooling Systems R Hart Pacific Northwest National Laboratory January 2013 Proposal...

188

Passive cooling system for a vehicle - Energy Innovation Portal  

The passive cooling system includes one or more heat pipes (112) having an evaporator section ... Building Energy Efficiency; ... Solar Thermal; Startup America;

189

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network (OSTI)

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates annual dynamic load of a real project to calculate the first investments, annual operation cost and LCC (life cycle cost) of the four schemes, which are electric chillers, electric chillers with ice-storage system, absorption refrigerating machines using excess heat from power plant and absorption refrigerating machines using excess heat from power plant along with ice-storage system. On the basis of the results, the paper analyzes the prospect of the absorption refrigeration using municipal excess heat, as well as the reasonable heat price, which provides a theoretical basis for municipal heating and cooling co-generation development.

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

190

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network (OSTI)

chilled water plant or cooling tower plant. This study hastemperature (e.g. , cooling tower system, or chilled wateravailable from the plant (cooling tower or chiller), the

Xu, TengFang

2009-01-01T23:59:59.000Z

191

Restaurateur designs and installs passive solar heating/cooling system  

SciTech Connect

An example of the use of passive solar heating and cooling systems by a Wisconsin restaurateur is discussed. The greenhouse effect is used on three sides of the restaurant's exterior walls. A dozen water-to-air electric heat pumps handle the restaurant's heating and cooling chores. The system doesn't require any fossil fuel for heating or cooling.

1983-04-01T23:59:59.000Z

192

Summary of EPRI Cooling System Effects Research 1975-1993  

Science Conference Proceedings (OSTI)

Twenty years of EPRI-sponsored research on cooling system effects have led to substantial cost savings by reducing utility data collection requirements and, in some cases, showing that cooling towers were unnecessary. This document highlights past and current EPRI projects that address environmental concerns related to power plant cooling systems. It will be particularly useful to utility environmental managers responsible for compliance with the Clean Water Act.

1994-11-16T23:59:59.000Z

193

Debris trap in a turbine cooling system  

SciTech Connect

In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

194

Nuclear reactor cooling system decontamination reagent regeneration  

DOE Patents (OSTI)

An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

Anstine, Larry D. (San Jose, CA); James, Dean B. (Saratoga, CA); Melaika, Edward A. (Berkeley, CA); Peterson, Jr., John P. (Livermore, CA)

1985-01-01T23:59:59.000Z

195

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

196

Optimized Design of a Furnace Cooling System  

E-Print Network (OSTI)

This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling for 12 hours. Pressurized argon and process water are used to expedite cooling. The proposed modifications aim to minimize cycling by reducing cooling time; they are grouped into three fundamental mechanisms. The first is a recommendation to modify current operating procedures. This entails opening the furnace doors at higher than normal temperatures. A furnace temperature model based on current parameters is used to show the reduction in cooling time in response to opening the furnace doors at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat from the furnace envelope. Heat transfer models based on convective Nusselt correlations are used to determine the increase in heat transfer rate. The last mechanism considers a modification to the current heat exchanger. By decreasing the temperature of the water jacket and increasing heat exchanger efficiency, heat transfer from the furnace is increased and cooling time is shortened. This analysis is done using the Effectiveness-NTU method.

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

197

Solar absorption aqua-ammonia absorption system simulation base on climate of Malaysia  

Science Conference Proceedings (OSTI)

Solar energy is one of the most well known green sources of energy. This research presents a feasibility study of evacuated solar thermal collector by aqua-ammonia ejector absorption systems as a small scale air conditioning unit. The modeling has been ... Keywords: ejector, evacuated tubes, solar assisted absorption system

Poorya Ooshaksaraei; Sohif Mat; M. Yahya; Ahmad Mahir Razali; Azami Zaharim; K. Sopian

2010-01-01T23:59:59.000Z

198

Desiccant degradation in desiccant cooling systems: A system study  

Science Conference Proceedings (OSTI)

The authors predict the impact of desiccant degradation on the performance of an open-cycle desiccant cooling system in ventilation mode using the degradation data on silica gel obtained from a previous study. The degradation data were based on thermal cycling desiccant samples and exposing them to ambient or contaminated air. Depending on the degree of desiccant degradation, the decrease in the thermal coefficient of performance (COP) and the cooling capacity of the system for low-temperature regeneration was 10 percent to 35 percent. The 35 percent loss occurred based on the worst-case desiccant degradation scenario. Under more realistic conditions the loss in system performance is expected to be lower.

Pesaran, A.A. [National Renewable Energy Lab., Golden, CO (United States)

1993-11-01T23:59:59.000Z

199

Integrated Modeling of Building Energy Requirements Incorporating Solar Assisted Cooling  

E-Print Network (OSTI)

heat recovery and absorption cooling are selected in allself- generated and absorption cooling displaces a further

Firestone, Ryan; Marnay, Chris; Wang, Juan

2005-01-01T23:59:59.000Z

200

Testing of a solar powered cooling system using cross-cooled desiccant dehumidifiers  

DOE Green Energy (OSTI)

A solar powered desiccant cooling system using two fixed bed silica gel dehumidifiers has been designed, built and is being tested. The dehumidifiers, 0.6 x 0.6 x 0.6 m each, are constructed of 80 channels lined with 64 m/sup 2/ of 1.5 mm thick silica gel sheets. The bed is cooled by air flowing in an equal number of perpendicular channels. Both sets of channels are two mm wide, the dehumidifiers undergo adsorption, preheating, desorption and precooling in a cyclic fashion. The cooling capacity of the experimental system is one ton at ARI design conditions. The system has a high cooling capacity, high COP, low parasitic power consumption and requires low regeneration temperatures.

Monnier, J.B.; Worek, W.M.; Lavan, Z.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers  

E-Print Network (OSTI)

provisions of alternative cooling solutions to either theirmodular cooling system, in BTU/hr. An alternative metric,

Xu, TengFang

2009-01-01T23:59:59.000Z

202

Chromate Substitutes for Corrosion Inhibitors in Cooling Systems  

Science Conference Proceedings (OSTI)

Some nuclear power plants currently use substances other than potassium chromate to inhibit corrosion in closed cooling-water systems. Three alternative compounds have exhibited satisfactory performance. Nevertheless, additional qualification tests would ensure that they also adequately protect the cooling-water systems, the environment, and plant personnel and have no negative impact if leaked into the reactor coolant.

1988-01-06T23:59:59.000Z

203

Cooling system for an automobile engine  

SciTech Connect

This patent describes a cooling system for an automobile engine having a water jacket, a radiator, a water pump, and a thermostat housing, comprising: a first passage communicating an upper outlet of the water jacket with an inlet of the radiator provided at a lower portion, a second passage communicating an upper outlet of the radiator with an inlet of the water pump and having the thermostat housing at the upstream of the pump; an outlet of the pump communicated with a lower inlet of the water jacket; a bypass connected between the first passage and the thermostat housing; a thermostat comprising a thermo-sensitive device, a first valve and a second valve disposed in the thermostat housing both the valves operatively connect to the thermo-sensitive device, so that the first valve closes the second passage and the second valve opens the bypass; the thermo-sensitive device disposes in the bypass and the first and second valves operate by the operation of the thermo-sensitive device.

Kuze, Y.

1987-07-14T23:59:59.000Z

204

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

205

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

206

Thermally Activated Cooling: A Regional Approach for Estimating Building Adoption  

E-Print Network (OSTI)

Distributed Generation, Absorption Cooling, Space Cooling,use heat to drive an absorption cooling cycle, and the heatlargest drivers for absorption cooling technology adoption

Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

207

Spray generators for absorption refrigeration systems  

DOE Patents (OSTI)

A spray generator for an absorption refrigeration system that includes a heat exchanger comprised of a multiplicity of variably spaced heat exchange tubes. The tubes are spaced close together near the top of the heat exchanger and spaced more widely apart near the bottom of the heat exchanger. Dilute absorbent solution is sprayed down through the heat exchanger. The close nesting of the tubes in the top portion of the heat exchanger retards liquid flow and aids heating of the solution. The wide spacing of the tubes in the lower section of the heat exchanger facilitate vapor flow out of the heat exchanger and eliminates liquid "blow-off". The top tubes are covered by a baffle to prevent the liquid solution from splashing out of the heat exchanger off of these top tubes.

Sibley, Howard W. (Baldwinsville, NY)

1979-06-19T23:59:59.000Z

208

Special Property Assessment for Renewable Heating & Cooling Systems  

Energy.gov (U.S. Department of Energy (DOE))

Title 8 of Maryland’s property tax code includes a state-wide special assessment for solar and geothermal heating and cooling systems. Under this provision, such systems are to be assessed at not...

209

Extracting interstellar diffuse absorption bands from cool star spectra: Application to bulge clump giants in Baade's window  

E-Print Network (OSTI)

Interstellar diffuse bands are usually extracted from hot star spectra because they are characterized by smooth continua. It introduces a strong limitation on the number of available targets, and reduces potential studies of the IS matter and the use of absorptions for cloud mapping. We have developed a new automatic fitting method appropriate to interstellar absorptions in spectra of cool stars that possess stellar atmospheric parameters. We applied this method to the extraction of three DIBs in high resolution VLT FLAMES/GIRAFFE spectra of red clump stars from the bulge. By combining all stellar synthetic spectra, HITRAN-LBLRTM atmospheric transmission spectra and diffuse band empirical absorption profiles, we determine the 6196, 6204, and 6284 A DIB strength toward the 219 target stars and discuss the sources of uncertainties. In order to test the sensitivity of the DIB extraction, we intercompare the three results and compare the DIB equivalent widths with the reddening derived from an independent extinct...

Chen, Hui-Chen; Babusiaux, Carine; Puspitarini, Lucky; Bonifacio, Piercarlo; Hill, Vanessa

2012-01-01T23:59:59.000Z

210

Designing a 'Near Optimum' Cooling-Water System  

E-Print Network (OSTI)

Cooling water is expensive to circulate. Reducing its flow - i.e., hiking exchanger outlet temperatures - can cut tower, pump and piping investment as much as one-third and operating cost almost in half. Heat-exchanger-network optimization has been accomplished in large integrated plants, such as petroleum refineries. In many of the chemical process industries, however, a plant contains several individual processes, and network optimization, except on a limited basis, is not feasible. So far, no one has developed similar procedures for designing and optimizing a cooling-water once through-exchanger system. This article attempts to fill the void by presenting a design basis that will produce a 'near optimum' system. A cooling-water system consists of four major components: heat exchangers, cooling towers, circulation piping and pumps. To optimize such a system, one must define the system interactions and apply these relationships to the simultaneous design of the aforementioned equipment. This article develops criteria that for most applications allow one to ignore system interactions, and still design a 'near optimum' system. Cooling-water systems have long been designed by 'rules of thumb' that call for fixing the cool ant temperature-rise across all heat exchangers (usually 20 F) and setting the coolant inlet temperature to the heat exchanger at the site's wet-bulb temperature plus 8 F. These rules produce a workable cooling system; but, by taking the same coolant rise across all exchangers, regardless of the individual process outlet-temperatures, this cannot result in an optimized design. The design method presented in this article replaces the 'rules of thumb' with criteria that are easy to apply and that take into account the effect that the individual exchanger process outlet- temperatures have on cooling-system economics. Economic analyses of actual process have shown that cooling-system investment can be reduced by one third, and cooling-system operating cost by one half, If the proposed design criteria are used instead of the 'rules of thumb.' It has been found that the controlling economic factor for a cooling system is the quantity of water being circulated. Reducing the flow (raising the coolant outlet temperature of heat exchangers) significantly reduces cooling tower, pump and piping investment, and operating cost, and only moderately increases the heat-exchanger investment. The overriding conclusion to be drawn is that cooling water is very expensive, and its conservation can result in significant savings.

Crozier, R. A., Jr.

1981-01-01T23:59:59.000Z

211

Interaction of lighting, heating, and cooling systems in buildings  

SciTech Connect

The interaction of building lighting and HVAC systems, and the effects on cooling load and lighting system performance, are being evaluated using a full-scale test facility at the National Institute of Standards and Technology. The results from a number of test configurations are described, including lighting system efficiency and cooling load due to lighting. The effect of lighting and HVAC system design and operation on performance is evaluated. Design considerations are discussed.

Treado, S.J.; Bean, J.W.

1992-03-01T23:59:59.000Z

212

Cavity Cooling of a Mechanical Resonator in Amorphous Systems  

E-Print Network (OSTI)

Cavity cooling via quantum back-action force can extract thermal fluctuations from a mechanical resonator to reach the quantum ground state. The two-level system (TLS) defects in the surface of a mechanical resonator couple to the mechanical mode via deformation potential and can affect the cooling process significantly. Here, we develop a theory to study the cavity cooling of a mechanical mode in the presence of a TLS defect using the adiabatic elimination technique. Our result shows that the cooling process depends strongly on the resonance and damping rate of the TLS.

Tian, L

2010-01-01T23:59:59.000Z

213

Closed loop air cooling system for combustion turbines  

DOE Patents (OSTI)

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

Huber, D.J.; Briesch, M.S.

1998-07-21T23:59:59.000Z

214

Closed loop air cooling system for combustion turbines  

DOE Patents (OSTI)

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

215

Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module  

SciTech Connect

BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

None

2010-10-01T23:59:59.000Z

216

Heat exchanger bypass system for an absorption refrigeration system  

DOE Patents (OSTI)

A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

Reimann, Robert C. (Lafayette, NY)

1984-01-01T23:59:59.000Z

217

Solar heating and cooling systems design and development: quarterly report  

DOE Green Energy (OSTI)

This program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for single-family residences, multiple-family residences and commercial applications. This document describes the progress of the program during the fifth program quarter, 1 July 1977 to 30 September 1977.

Not Available

1977-11-11T23:59:59.000Z

218

Solar heating and cooling systems design and development: quarterly report  

DOE Green Energy (OSTI)

The progress of the program for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test is described for the period, 1 January 1978 through 31 March 1978. Two heating and six heating and cooling units will be delivered for single-family residences, multiple-family residences, and commercial applications.

Not Available

1978-07-01T23:59:59.000Z

219

Heat and Mass transfer in an absorption process with mixed absorbent solution.  

E-Print Network (OSTI)

??Falling film absorption process is studied for the simulation of the absorber of the absorption solar cooling system. In this study, we use different absorbents… (more)

Chi, Ten-yen

2011-01-01T23:59:59.000Z

220

Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle  

SciTech Connect

BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

None

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Optimization of environmentally friendly solar assisted absorption cooling systems.  

E-Print Network (OSTI)

??La optimización de los sistemas de conversión de energía gana cada vez más importancia debido a su impacto ambiental y los limitados recursos de combustibles… (more)

Gebreslassie, Berhane Hagos

2010-01-01T23:59:59.000Z

222

HEATING AND COOLING SYSTEM FOR CALUTRON  

DOE Patents (OSTI)

An apparatus is invented for heating or cooling the electrostatic liner conventionally disposed in a calutron tank. The apparatus is additionally arranged to mount the liner in its intended position in a readily detachable manner so as to facilitate disassembly of the calutron.

Starr, A.M.

1960-06-28T23:59:59.000Z

223

Onsite Wastewater Treatment Systems: Septic Tank/Soil Absorption Field  

E-Print Network (OSTI)

For septic tank and soil absorption systems to work properly, homeowners must choose the right kind of system for their household size and soil type, and they must maintain them regularly. This publication explains the treatment, design, operation, and maintenance of septic tank and soil absorption systems.

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

224

Absorption Chillers and Heat Pumps - Technology, Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

applications. The last decade saw intensive research and development efforts of gas-fired absorption systems for both heating and cooling applications in the USA, Europe and Japan....

225

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

DOE Green Energy (OSTI)

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

Not Available

1980-11-01T23:59:59.000Z

226

Turbine-Generator Auxiliary Systems, Volume 4: Generator Stator Cooling System  

Science Conference Proceedings (OSTI)

While there is a wealth of specific instructions, guidelines, experiences, and publications associated with water-cooled generators, the industry needs a comprehensive document that provides an unbiased overview of all technologies and related issues. This report deals with the specific features of water-cooled generators and the attached generator cooling water system. Though the primary focus is water-cooled stators, other possible components associated with rotor water cooling or attached systems, suc...

2008-12-22T23:59:59.000Z

227

The Thermodynamic and Cost Benefits of Floating Cooling Systems  

E-Print Network (OSTI)

Historically, a fixed cooling concept is used in the design of evaporative heat rejection systems for process and power plants. In the fixed cooling mode, a plant is designed for maximum output at the design summer wet bulb temperature. The application of a floating cooling concept to evaporative heat rejection systems can have significant impact on improving plant performance. The floating cooling concept refers to the optimization of yearly plant output and energy consumption by taking advantage of seasonal wet bulb temperature fluctuations. The maximum plant output occurs at the average winter wet bulb temperature. Floating cooling is especially suited to base load power plants located in regions with large daily and seasonal wet bulb temperature variations. An example for a geothermal power plant is included in this paper.

Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

1983-01-01T23:59:59.000Z

228

Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands. Final report  

SciTech Connect

The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

Harber, H.

1981-09-01T23:59:59.000Z

229

Cavity cooling of an ensemble spin system  

E-Print Network (OSTI)

We describe how sideband cooling techniques, prevalent in quantum optics, may be applied to large spin ensembles in magnetic resonance. Using the Tavis-Cummings model in the presence of a Rabi drive, we solve a Markovian master equation describing the joint spin-cavity dynamics to derive cooling rates as a function of ensemble size. Our calculations indicate that a spin ensemble containing roughly $10^{11}$ electron spins may be polarized to a non-thermal equilibrium state in a time many orders of magnitude shorter than the typical thermal relaxation time. The described techniques permit the efficient removal of entropy for spin-based quantum information processors and fast polarization of spin samples. The proposed application of a standard technique in quantum optics to magnetic resonance also serves to reinforce the connection between the two fields, which has only recently begun to be explored in detail due to the development of hybrid designs for manufacturing noise-resilient quantum devices.

Christopher J. Wood; Troy W. Borneman; David G. Cory

2013-05-05T23:59:59.000Z

230

Validation of the RVACS (Reactor Vessel Auxiliary Cooling System)/RACS (Reactor Air Cooling System) model in SASSYS-1  

SciTech Connect

The SASSYS-1 LMR systems analysis code contains a model for transient analysis of heat removal by a RVACS (Reactor Vessel Auxiliary Cooling System) or a RACS (Reactor Air Cooling System) in an LMR (Liquid Metal Reactor). This model has been validated by comparisons of model predictions with experimental data from a large scale RVACS/RACS simulation experiment performed at Argonne National Laboratory. 4 refs., 1 fig.

Dunn, F.E.

1987-01-01T23:59:59.000Z

231

A Semi-Passive Containment Cooling System Conceptual Design  

E-Print Network (OSTI)

The objective of this project was to investigate a passive containment cooling system (PCCS) for the double concrete containment of the Korean Next Generation Reactor (KNGR). Two conceptual PCCS designs: the thermosyphon ...

Liu, H.

232

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

LLC. Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL...

233

Preliminary design package for prototype solar heating and cooling systems  

DOE Green Energy (OSTI)

A summary is presented of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multiple-Family Residences (MFR), and commerical applications.

Not Available

1978-12-01T23:59:59.000Z

234

Systems simulation and economic analysis for active solar cooling  

DOE Green Energy (OSTI)

A consistent methodology has been developed by which general solar cooling market capture goals have been translated into specific cost and performance goals for solar cooling systems and subsystems. Preliminary results indicate that realistic cost/performance goals can be established for active solar cooling systems and that, with aggressive development, these goals can be reached by the year 2000. As the technology develops, tax incentives will be required to bridge the gap between the actual costs and the cost goals, so that the scenario of an ever increasing share of market penetration can be maintained over the 1986 to 2000 time period.

Warren, M.; Wahlig, M.

1981-07-01T23:59:59.000Z

235

Developing, testing, evaluating and optimizing solar heating and cooling systems  

DOE Green Energy (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

Not Available

1992-01-24T23:59:59.000Z

236

Transient analysis and energy optimization of solar heating and cooling systems in various configurations  

Science Conference Proceedings (OSTI)

In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H{sub 2}O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used as the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation. The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis. The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is notoriously true for the great majority of renewable energy systems. (author)

Calise, F.; Dentice d'Accadia, M.; Palombo, A. [DETEC - University of Naples Federico II, P.le Tecchio 80, 80125 Naples (Italy)

2010-03-15T23:59:59.000Z

237

Solar heating and cooling system installed at Columbus, Ohio. Final report  

DOE Green Energy (OSTI)

The Solar Energy System installed at Columbus Technical Institute, Columbus, Ohio was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5000 gallon steel tank below ground storage system, hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building. Extracts from the site files specification references, drawings, installation, operation and maintenance instructions are included.

Coy, R.G.; Braden, R.P.

1980-09-01T23:59:59.000Z

238

Cooling Water Systems - Energy Savings/Lower Costs By Reusing Cooling Tower Blowdown  

E-Print Network (OSTI)

Reuse of cooling tower blow down cannot only provide energy conservation, but can provide water conservation and chemical conservation. To be effective, it is critical that the water treatment program be coordinated with the treatment of the blow down for reuse into the cooling tower system. Several plants have been built and operated with considerable difficulty regarding effective operation of the softener due to improper chemical selection. However, other plants have utilized the proper chemicals which not only improve the softener's performance and operation, but also effectively reduces the size of the softener. Thus, initial capital and operating savings are obtained. Detailed information is provided on guidelines and case histories of operating units.

Puckorius, P. R.

1981-01-01T23:59:59.000Z

239

Steam cooling system for a gas turbine  

SciTech Connect

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

2002-01-01T23:59:59.000Z

240

A Free Cooling Based Chilled Water System at Kingston  

E-Print Network (OSTI)

In efforts to reduce operating costs, the IBM site at Kingston, New York incorporated the energy saving concept of 'free cooling' (direct cooling of chilled water with condenser water) with the expansion of the site chilled water system. Free cooling was employed to satisfy the winter chilled water load of approximately 3000 tons resulting in electrical savings of up to 70% in the winter with wet bulb temperatures below 38 oF. Other energy efficient features included variable speed pumping, high efficiency motors and chillers with reduced entering condenser water limits. This paper will describe the various possible operating modes and their associated savings using computer simulation techniques.

Jansen, P. R.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Understanding and reducing energy and costs in industrial cooling systems  

E-Print Network (OSTI)

Industrial cooling remains one of the largest potential areas for electrical energy savings in industrial plants today. This is in spite of a relatively small amount of attention paid to it by energy auditors and rebate program designers. US DOE tool suites, for example, have long focused on combustion related systems and motor systems with a focus on pumps and compressors. A chilled water tool designed by UMass was available for some time but is no longer being supported by its designers or included in the government tool website. Even with the focus on motor systems, auditing programs like the DOE's Industrial Assessment Center program show dramatically less energy savings for electrical based systems than fossil fueled ones. This paper demonstrates the large amount of increased saving from a critical review of plant chilled water systems with both hardware and operational improvements. After showing several reasons why cooling systems are often ignored during plant energy surveys (their complexity, lack of data on operations etc.), three specific upgrades are considered which have become more reliable and cost effective in the recent past. These include chiller changeouts, right sizing of systems with load matching, and floating head pressures as a retrofit. Considerations of free cooling and improved cooling tower operations are shown as additional "big hitters”. It is made clear that with appropriate measurements and an understanding of the cooling system, significant savings can be obtained with reasonable paybacks and low risk.

Muller, M.R.; Muller, M.B.

2012-01-01T23:59:59.000Z

242

Assessment of dehumidifier geometries for desiccant cooling systems  

DOE Green Energy (OSTI)

Five dehumidifier designs are evaluated in this report - three from existing prototype cooling systems (from AiResearch, IGT, and IIT) and two (from UCLA and SERI) that have not yet been tested in a complete cooling system. The basic principles of heat and mass regenerators and the requirements of the solar cooling application have been combined to generate a list of desirable characteristics for dehumidifiers. The five designs are described and compared quantitatively; compared characteristics are related directly to the list of desirable characteristics. System performance is considered as well as isolated dehumidifier parameters. Preliminary simulations indicate that a system using the SERI dehumidifier design could achieve a design-point COP greater than unity without causing significant increases in parasitic power, system size, or system cost, compared with existing prototypes. Because of the high potential of the wound-ribbon design, it is recommended that a research program be carried out to fully characterize this type of dehumidifier.

Barlow, R.S.

1983-06-01T23:59:59.000Z

243

Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint  

DOE Green Energy (OSTI)

Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

Bharathan, D.; Nix, G.

2001-08-06T23:59:59.000Z

244

Desiccant dehumidification and cooling systems assessment and analysis  

SciTech Connect

The objective of this report is to provide a preliminary analysis of the principles, sensitivities, and potential for national energy savings of desiccant cooling and dehumidification systems. The report is divided into four sections. Section I deals with the maximum theoretical performance of ideal desiccant cooling systems. Section II looks at the performance effects of non-ideal behavior of system components. Section III examines the effects of outdoor air properties on desiccant cooling system performance. Section IV analyzes the applicability of desiccant cooling systems to reduce primary energy requirements for providing space conditioning in buildings. A basic desiccation process performs no useful work (cooling). That is, a desiccant material drying air is close to an isenthalpic process. Latent energy is merely converted to sensible energy. Only when heat exchange is applied to the desiccated air is any cooling accomplished. This characteristic is generic to all desiccant cycles and critical to understanding their operation. The analyses of Section I show that desiccant cooling cycles can theoretically achieve extremely high thermal CoP`s (>2). The general conclusion from Section II is that ventilation air processing is the most viable application for the solid desiccant equipment analyzed. The results from the seasonal simulations performed in Section III indicate that, generally, the seasonal performance of the desiccant system does not change significantly from that predicted for outdoor conditions. Results from Section IV show that all of the candidate desiccant systems can save energy relative to standard vapor-compression systems. The largest energy savings are achieved by the enthalpy exchange devise.

Collier, R.K. Jr. [Collier Engineering, Reno, NV (United States)

1997-09-01T23:59:59.000Z

245

Development of a simplified cooling load design tool for underfloor air distribution (UFAD) systems.  

E-Print Network (OSTI)

in design day cooling load profiles for OH and UFAD systems;in design day cooling load profiles for OH and UFAD systems;showed that the cooling load profiles for UFAD and OH are

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

246

Closed-loop air cooling system for a turbine engine  

DOE Patents (OSTI)

Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

North, William Edward (Winter Springs, FL)

2000-01-01T23:59:59.000Z

247

Solar heating and cooling systems design and development quarterly report  

DOE Green Energy (OSTI)

The program calls for the development and delivery of eight (was 12) prototype solar heating and cooling systems for installation and operational test. Two (was 6) heating and six heating and cooling units will be delivered for single-family residences (SFR), multiple-family residences (MFR) and commercial applications. This document describes the progress of the program during the eighth program quarter, 1 April 1978 to 30 June 1978.

Not Available

1978-07-01T23:59:59.000Z

248

Testing of Crystallization Temperature of a New Working Fluid for Absorption Heat Pump Systems  

SciTech Connect

Lithium bromide/water (LiBr/water) absorption systems are potential candidates for absorption heat pump water heating applications since they have been widely commercialized for cooling applications. One drawback to LiBr/water absorption water heater systems is that they are unable to operate at typical water heating temperatures due to solution crystallization hazards. Binary or ternary mixtures, serving as working fluids, were reported (Ally, 1988; Herold et al., 1991; Iyoki and Uemura, 1981; Yasuhide Nemoto et al., 2010; Zogg et al., 2005) to help improve the absorption performance or avoid crystallization of absorption heat pump systems. A recent development (De Lucas et al., 2007) investigated the use of a ternary mixture of aqueous mixture of lithium bromide and sodium formate (CHO2Na). The new working fluid composition maintains a ratio of LiBr/CHO2Na of 2 by weight. This new working fluid is a potential competitor to aqueous LiBr solution in absorption system due to higher water vapor absorption rates and lower generation temperature needed (De Lucas et al., 2004). There exists data on equilibrium performance and other physical properties of this new working fluid. However, there is no available data on crystallization behavior. Crystallization temperature is crucial for the design of absorption heat pump water heater in order to avoid crystallization hazards during operation. We have therefore conducted a systematic study to explore the crystallization temperature of LiBr/CHO2Na water solution and compared it against aqueous LiBr solutions. These results were then used to evaluate the feasibility of using the new working fluid in water heating applications showing limited potential.

Wang, Kai [ORNL; Kisari, Padmaja [ORNL; Abdelaziz, Omar [ORNL; Vineyard, Edward Allan [ORNL

2010-01-01T23:59:59.000Z

249

Prototype solar heating and cooling systems. Monthly progress reports  

DOE Green Energy (OSTI)

This report is a collection of monthly status reports from the AiResearch Manufacturing Company, who is developing eight prototype solar heating and cooling systems under NASA Contract NAS8-32091. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

Not Available

1978-10-01T23:59:59.000Z

250

Analysis of the seasonal performance of hybrid desiccant cooling systems  

DOE Green Energy (OSTI)

A simulation model for the liquid desiccant component of a hybrid system was developed. An analysis of experimental test data was conducted. The liquid desiccant component was examined and the sensitivity of its seasonal performance to changes in principal component variables was identified. Seasonal simulations were performed on different operation modes of a hybrid liquid desiccant cooling system. The results were analyzed in terms of estimated operational costs and compared to the equivalent cost estimation of a conventional cooling system. The study showed that the investigated liquid desiccant configuration usually will not lower the costs of operation. A suggestion of an improved system is made.

Sick, F.

1987-04-01T23:59:59.000Z

251

Complex Absorption and Reflection of a Multi-temperature Cyclotron-Bremsstrahlung X-ray Cooling Shock in BY Cam  

E-Print Network (OSTI)

We re-analyse the ASCA and GINGA X-ray data from BY Cam, a slightly asynchronous magnetic accreting white dwarf. The spectra are strongly affected by complex absorption, which we model as a continuous (power law) distribution of covering fraction and column of neutral material. This absorption causes a smooth hardening of the spectrum below 3 keV, and is probably produced by material in the preshock column which overlies the X-ray emission region. The ASCA data show that the intrinsic emission from the shock is not consistent with a single temperature plasma. Significant iron L emission co-existing with iron K shell lines from H and He-like iron clearly shows that there is a wide range of temperatures present, as expected from a cooling shock structure. The GINGA data give the best constraints on the maximum temperature emission in the shocked plasma, with kT(max)=21(+18,-4) keV. Cyclotron cooling should also be important, which supresses the highest temperature bremsstrahlung components, so the X-ray data on...

Done, C

1997-01-01T23:59:59.000Z

252

Complex Absorption and Reflection of a Multi-temperature Cyclotron-Bremsstrahlung X-ray Cooling Shock in BY Cam  

E-Print Network (OSTI)

We re-analyse the ASCA and GINGA X-ray data from BY Cam, a slightly asynchronous magnetic accreting white dwarf. The spectra are strongly affected by complex absorption, which we model as a continuous (power law) distribution of covering fraction and column of neutral material. This absorption causes a smooth hardening of the spectrum below 3 keV, and is probably produced by material in the preshock column which overlies the X-ray emission region. The ASCA data show that the intrinsic emission from the shock is not consistent with a single temperature plasma. Significant iron L emission co-existing with iron K shell lines from H and He-like iron clearly shows that there is a wide range of temperatures present, as expected from a cooling shock structure. The GINGA data give the best constraints on the maximum temperature emission in the shocked plasma, with kT(max)=21(+18,-4) keV. Cyclotron cooling should also be important, which supresses the highest temperature bremsstrahlung components, so the X-ray data only give a lower limit on the mass of the white dwarf of M> 0.5 solar masses. Reflection of the multi-temperature bremsstrahlung emission from the white dwarf surface is also significantly detected. We stress the importance of modelling ALL these effects in order to gain a physically self-consistent picture of the X-ray spectra from polars in general and BY Cam in particular.

C. Done; P. Magdziarz

1997-12-17T23:59:59.000Z

253

Modeling and Simulation of a Solar Assisted Desiccant Cooling System  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and Simulation of a Solar Assisted Desiccant Cooling System Modeling and Simulation of a Solar Assisted Desiccant Cooling System Speaker(s): Chadi Maalouf Date: December 2, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Peng Xu Increased living standards and high occupants comfort demands lead to a growth in air conditioning market. This results in high energy consumption and high CO2 emissions. For these reasons, the solar desiccant cooling system is proposed as an alternative to traditional air conditioning systems. This system comprises a desiccant wheel containing Lithium Chloride in tandem with a rotating heat exchanger and two humidifiers on both supply and return air. The required regeneration temperature for the desiccant wheel varies between 40oC and 70oC which makes possible the use

254

Heating and Cooling System Support Equipment Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

255

Solar absorption refrigeration system using new working fluid pairs  

Science Conference Proceedings (OSTI)

Absorption refrigeration systems powered by solar energy increasingly attract research interests in the last years. In this study, thermodynamic analyses for different working fluid pairs are performed. A computer simulation model has been developed ... Keywords: NH3-LiNO3, absorption, crystallization, generator, performance, refrigeration, solar energy

Jasim M. Abdulateef; Kamaruzzaman Sopian; M. A. Alghoul; Mohd Yusof Sulaiman; Azami Zaharim; Ibrahim Ahmad

2008-02-01T23:59:59.000Z

256

Heat and mass transfer in a falling film absorber of ammonia-water absorption systems  

SciTech Connect

For ammonia-water generator-absorber heat exchanger (GAX) systems to work at high coefficient of performance, the heat and mass transfer components have to operate at optimum performance within a narrow range of conditions for the recovery of internal energy. In the present work, an analysis is performed to study the absorption process of an ammonia-water vapor mixture by an aqueous solution of ammonia in a falling film absorber. The combined heat and mass transfer processes involved are analyzed through an integral formulation of the continuity, momentum, energy, and diffusion equations. The effects of vapor flow direction relative to the solution, cooling ability, ammonia concentration of solution and vapor, and interfacial momentum and heat transfer rate on absorption processes are investigated. The characteristics of the absorption process are found to be governed by the relative significance of the mass transfer resistance and the driving forces between the solution film and the vapor mixture.

Kim, B. [Hongik Univ., Seoul (Korea, Republic of). Dept. of Mechanical Engineering

1998-07-01T23:59:59.000Z

257

Cedarville School District Retrofit of Heating and Cooling Systems with  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description - Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School, Middle School and Elementary School. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this rural region during a period of economic recession. - The new Heat Pumps will be targeted to perform at very high efficiency with EER (energy efficiency ratios) of 22+/-. System capacity is planned at 610 tons. - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+/-. - Monitor for 3 years the performance of the new systems compared to benchmarks from the existing system, and provide data to the public to promote adoption of Geothermal technology. - The Geothermal installation contractor is able to provide financing for a significant portion of project funding with payments that fall within the energy savings resulting from the new high efficiency heating and cooling systems.

258

Simulations and economic analyses of desiccant cooling systems  

DOE Green Energy (OSTI)

The progress to date in the development and analysis of computer simulations of solar-powered desiccant cooling using an axial-flow disc-type dehumidifier wheel, solar-powered space heating, and electrically driven, standard vapor-compression air-conditioning systems for residential use is documented. Computer simulations for both solar and conventional heating and cooling systems were performed for 12-month heating and cooling seasons. Annual thermal performance and the resulting life cycle costs for both types of systems were analyzed and compared. The heating/cooling season simulations were run for five U.S. cities representing a wide range of climatic conditions and insolation. With the informaion resulting from these simulations, the optimum air-conditioning system was chosen to maximize the conservation of fossil fuels and minimize operating costs. Because of the increasing use of residential air conditioning employing electrically driven vapor-compression coolers, the five locations were studied to determine if it would be beneficial (in terms of both economics and fossil fuel displacement) to displace fossil-fuel-powered vapor-compression coolers and natural gas space heaters with solar-powered heating and desiccant cooling systems.

Shelpuk, B. C.; Hooker, D. W.; Jorgensen, G. J.; Bingham, C. E.

1979-06-01T23:59:59.000Z

259

District cooling: Phase 2, Direct freeze ice slurry system testing  

DOE Green Energy (OSTI)

The objectives of this research are to: extend the range of pressure drop data for ice-water slurry flows, and design and build a prototypical ice slurry distribution system which demonstrates ice slurry handling at an end user's heat exchanger, without sending ice slurry directly through the heat exchanger. The results of Phase 1 work demonstrated a 40% reduction in pump power required to move an ice-water slurry versus the same mass flow of water only. In addition to lower pressure drop, pumping ice slurries is advantageous because of the large latent and sensible heat cooling capacity stored in the ice compared to only sensible heat in chilled water. For example, an ice-water slurry with a 20% ice fraction (by mass) has a mass flow rate that is 70% less than the mass flow rate required for a chilled water system cooling and equivalent load. The greatly reduced mass flow combined with the friction reducing effects of ice-water slurries results in a total savings of 83% in pumping power. Therefore, a substantial savings potential exists for capital costs and system operating costs in ice-water slurry district cooling systems. One potential disadvantage of an ice-slurry district cooling system is the introduction of ice into equipment not so designed, such as air handlers at end user locations. A prototypic ice slurry distribution loop will demonstrate a cooling network which will provide ice slurry to an end user but sends ice free water into the actual heat transfer.

Winters, P.J.

1991-01-02T23:59:59.000Z

260

Improving the Water Efficiency of Cooling Production System  

E-Print Network (OSTI)

For most of the time, cooling towers (CTs) of cooling systems operate under partial load conditions and by regulating the air circulation with a variable frequency drive (VFD), significant reduction in the fan power can be achieved. In Kuwait and other counties of Arabian Peninsula, reduced airflow can lead to reduction in water consumption as well, since during the summer season, the dry bulb temperature of the ambient air is higher than the incoming hot water temperature, and the air undergoes sensible cooling. This paper presents the findings of a study conducted in the Avenues mall, Kuwait. Initially, the CTs operated only at high speed, and on a typical summer day nearly one fourth of the make-up water was used for self cooling of air. The study based on measured data revealed that the use of VFD can reduce the water wastage for self-cooling of air by as much as 75% and overall water consumption by 18.6% while keeping the cooling system performance at design level.

Maheshwari, G.; Al-Hadban, Y.; Al-Taqi, H. H.; Alasseri, R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY  

E-Print Network (OSTI)

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY Hamid Daiyan Islamic Azad University - Semnan in dray land, and only uses wind energy for conditioning. It technologies date back over 1000 years. Wind system, Wind energy, Temperature Fig.1 Wind tower of Doulat-Abad garden of Yazd with it's altitude is 33

262

Feasibility of a solar panel-powered liquid desiccant cooling system for greenhouses.  

E-Print Network (OSTI)

??To investigate the technical feasibility of a novel cooling system for commercial greenhouses, knowledge of the state of the art in greenhouse cooling is required.… (more)

Lychnos, Georgios

2010-01-01T23:59:59.000Z

263

Laser system for secondary cooling of {sup 87}Sr atoms  

SciTech Connect

A laser system with a narrow generation line for secondary laser cooling of {sup 87}Sr atoms has been developed and investigated. It is planned to use ultracold {sup 87}Sr atoms loaded in an optical lattice in an optical frequency standard. To this end, a 689-nm semiconductor laser has been stabilised using an external reference ultrastable cavity with vibrational and temperature compensation near the critical point. The lasing spectral width was 80 Hz (averaging time 40 ms), and the frequency drift was at a level of 0.3 Hz s{sup -1}. Comparison of two independent laser systems yielded a minimum Allan deviation: 2 Multiplication-Sign 10{sup -14} for 300-s averaging. It is shown that this system satisfies all requirements necessary for secondary cooling of 87Sr atoms using the spectrally narrow {sup 1}S{sub 0} - {sup 3}P{sub 1} transition ({lambda} = 689 nm). (cooling of atoms)

Khabarova, K Yu; Slyusarev, S N; Strelkin, S A; Belotelov, G S; Kostin, A S; Pal'chikov, Vitaly G; Kolachevsky, Nikolai N

2012-11-30T23:59:59.000Z

264

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

Meeting, Los Angeles, California, July 28 - August 1, 1975),Lawrence Berkeley Laboratory University of CaliforniaBerkeley, California 94720 August 1975 A control system is

Dols, C.

2010-01-01T23:59:59.000Z

265

A computer simulation appraisal of non-residential low energy cooling systems in California  

E-Print Network (OSTI)

greater direct use of cooling towers to reduce the use ofcoil, chiller and cooling tower in the baseline system wereoption is to use cooling tower water directly, without the

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-01-01T23:59:59.000Z

266

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

cooling (TABS) with a cooling tower providing chilled waterevaporative cooling (cooling tower) for radiant ceiling slabradiant cooling with a cooling tower providing chilled water

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

267

Floating power optimization studies for the cooling system of a geothermal power plant  

DOE Green Energy (OSTI)

The floating power concept was studied for a geothermal power plant as a method of increasing the plant efficiency and decreasing the cost of geothermal power. The stored cooling concept was studied as a method of reducing the power fluctuations of the floating power concept. The studies include parametric and optimization studies for a variety of different types of cooling systems including wet and dry cooling towers, direct and indirect cooling systems, forced and natural draft cooling towers, and cooling ponds. The studies use an indirect forced draft wet cooling tower cooling system as a base case design for comparison purposes.

Shaffer, C.J.

1977-08-01T23:59:59.000Z

268

Wind turbine generators having wind assisted cooling systems and cooling methods  

DOE Patents (OSTI)

A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

2008-09-23T23:59:59.000Z

269

Impact of desiccant degradation on desiccant cooling system performance  

Science Conference Proceedings (OSTI)

The performance of open-cycle desiccant cooling systems depends on several factors, some of which can change beyond manufacturers' specifications. For example, the desiccant sorption process may degrade with time on exposure to airborne contaminants and thermal cycling. Desiccant degradation can reduce the performance of a dehumidifier and thus the performance of desiccant cooling systems. Using computer simulations and recent experimental data on silica gel, the impact of degradation was evaluated. Hypothetical degradations of desiccants with Type 1 moderate isotherms were also simulated. Depending on the degree and type of desiccant degradation, the decrease in thermal coefficient of performance (COP) and cooling capacity of the system was 10% to 35%. The 35% loss in system performance occurs when desiccant degradation is considered worst case. The simulations showed that the COP, and to a lesser degree the cooling capacity of these degraded systems, could be improved by increasing the rotational speed of the dehumidifier. It is shown that easy engineering solutions might be available for some types of degradations. 9 refs., 6 figs., 1 tab.

Pesaran, A.A.; Penney, T.R.

1990-09-01T23:59:59.000Z

270

Cooling load differences between radiant and air systems  

E-Print Network (OSTI)

the effect of thermal mass on cooling loads, and thereforelift radiant cooling using building thermal mass, Departmentlevel thermal modelling are recommended for design cooling

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

271

Performance of residential solar heating and cooling system with flat-plate and evacuated tubular collectors: CSU Solar House I  

DOE Green Energy (OSTI)

Measurements in Solar House I at Colorado State University have provided comparison data on space heating, water heating, and cooling by systems in which flat-plate collectors and evacuated tube collectors were used. Data were procured on 47 days during operation of the flat-plate collector and on 112 days when the house was heated or cooled by the evacuated tube collector system. It was concluded that the system comprising an evacuated tubular collector, lithium bromide absorption water chiller, and associated equipment is highly effective in providing space heating and cooling to a small building, that it can supply up to twice the space heating and several times the cooling obtainable from an equal occupied area of good quality flat-plate collectors, and that a greater fraction of the domestic hot water can be obtained by supplying its heat from main storage. The cost-effectiveness of the system, in comparison with one employing a good flat-plate collector, can be determined when commercial pricing data are made available. A summary of monthly and annual energy use for space heating, domestic hot water (DHW) heating, and space cooling is presented. The collector performance is presented. The first two months of data were obtained with the system employing flat-plate collectors, whereas heating and cooling during the following nine months were supplied by the evacuated tube collector system.

Duff, W.S.; Conway, T.M.; Loef, G.O.G.; Meredith, D.B.; Pratt, R.B.

1978-01-01T23:59:59.000Z

272

Simple Models of Metal-Line Absorption and Emission from Cool Gas Outflows  

E-Print Network (OSTI)

Because the FeII lines are connected by optically-thin transitions to fine-structure levels, their profiles more closely reproduce the intrinsic opacity of the wind. Together these results naturally explain the absorption and emission-line characteristics observed for star-forming galaxies at zabsorption-line profiles, the surface brightness profiles offer a unique means of assessing the morphology and size of galactic-scale winds. Furthermore, the kinematics and line-ratios offer powerful diagnostics of outflows, motivating deep, spatially-extended spectroscopic observations.

Prochaska, J Xavier; Rubin, Kate

2011-01-01T23:59:59.000Z

273

Performance Assessment of an Integrated Cooling/Dehumidification System  

Science Conference Proceedings (OSTI)

This report reviews dehumidification technologies appropriate for residential and commercial building applications with a focus on technologies and system configurations that allow dedicated dehumidification to complement other air conditioning systems, such as direct expansion. One such new technology was tested and is reported on here, the Munters DryCool HD, a small to medium central dehumidifier designed for integration into a ducted air conditioning system. This unit uses both Direct Expansion (DX) ...

2010-11-16T23:59:59.000Z

274

BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.  

SciTech Connect

This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

ANDREWS,J.

2001-01-01T23:59:59.000Z

275

SOLERAS solar cooling project  

Science Conference Proceedings (OSTI)

In view of the increasing demand for cooling in both the United States and Saudi Arabia, solar cooling systems are being considered as serious alternatives to the energy intensive conventional systems, especially when confronted with rising fossil fuel costs. Saudi Arabia and the hot, southern regions of the United States, having abundant sunshine and high cooling demand, are obvious candidates for solar active cooling systems and passive cooling design. Solar active cooling has yet to be shown to be either technologically mature or economically feasible, but efforts have been, and are presently being made within the United States National Solar Cooling Program to develop reliable systems which can compete economically with conventional cooling systems. Currently, the program is funding research and development projects in the areas of absorption, Rankine, dessicant, and advanced technologies. Saudi Arabia has a long and successful tradition of building cooling using passive architectural designs. Combining these past achievements with a program of research and development in both active and passive solar cooling should permit an early economical introduction of entirely solar cooled buildings to Saudi Arabia and the southern United States.

Corcoleotes, G.; Williamson, J.S.

1982-01-01T23:59:59.000Z

276

Air conditioning system with supplemental ice storing and cooling capacity  

DOE Patents (OSTI)

The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

Weng, Kuo-Lianq (Taichung, TW); Weng, Kuo-Liang (Taichung, TW)

1998-01-01T23:59:59.000Z

277

Use of Treated Municipal Wastewater as Power Plant Cooling System...  

NLE Websites -- All DOE Office Websites (Extended Search)

PA 15213-3890 412-268-2946 dzombak@cmu.edu Use of TreaTed MUnicipal WasTeWaTer as poWer planT cooling sysTeM MakeUp WaTer: TerTiary TreaTMenT VersUs expanded cheMical regiMen...

278

Energy Efficient Free Cooling System for Data Centers  

Science Conference Proceedings (OSTI)

A data center is a facility used to keep computer related equipments. It is estimated that heat production rate of the data center is doubled in every two years and hence the inevitability of the cooling system gets increased. In due course power consumption ... Keywords: Performance ratio, Water Economizer, Air Economizer, Energy Consumption, Data Center

Christy Sujatha D.; Satheesh Abimannan

2011-11-01T23:59:59.000Z

279

Solar heating/cooling and domestic hot-water systems  

Science Conference Proceedings (OSTI)

Increasing awareness of global warming forces policy makers and industries to face two challenges: reducing greenhouse gas emissions and securing stable energy supply against ever-increasing world energy consumption, which is projected to increase by ... Keywords: buildings heating, domestic hot-water, energetical analysis, renewable energy sources, solar cooling technologies, solar energy collection, solar thermal systems

Ioan Sârbu; Marius Adam

2011-02-01T23:59:59.000Z

280

Potential of Evaporative Cooling Systems for Buildings in India  

E-Print Network (OSTI)

Evaporative cooling potential for building in various climatic zones in India is investigated. Maintainable indoor conditions are obtained from the load - capacity analysis for the prevailing ambient conditions. For the assumed activity level, clothing and air velocity, the predicted mean vote (PMV), predicted percentage dissatisfied (PPD), and cumulative dissatisfaction levels for each month are estimated. Time - air condition contours of ambient, supply air and indoor air are plotted on a psychrometric chart for different cities in India like Ahmadabad, Jodhpur, Nagpur and New Delhi representing different climatic conditions of India. While satisfactorily comfort can be achieved at cool and dry weather conditions by evaporative cooling system throughout the year, some discomfort prevailed for few months around July at hot and dry/humid weather conditions. The results are also quantified in terms of PMV, PPD and their cumulative factors; PMV-hour and PPD-hour.

Maiya, M. P.; Vijay, S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Developing, testing, evaluating and optimizing solar heating and cooling systems  

DOE Green Energy (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well a previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--1992 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space hearing systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report. 6 figs., 2 tabs.

Not Available

1991-11-01T23:59:59.000Z

282

Feasibility of a hybrid cooling system in a thermal power plant  

Science Conference Proceedings (OSTI)

The feasibility of introducing a hybrid cooling system in a thermal power plant is investigated with an aim to reduce water use with a minimum impact on plant performance. A number of cooling systems have been modelled including existing evaporative ... Keywords: cooling, hybrid cooling, power station, sustainable water consumption

C. R. Williams; M. G. Rasul

2008-02-01T23:59:59.000Z

283

Prototype solar heating and cooling systems. Monthly progress reports  

DOE Green Energy (OSTI)

This report is a combination of monthly progress reports submitted by AiResearch Manufacturing Company. It contains a summary of activities and progress made from November 1, 1978, to February 28, 1979. AiResearch Manufacturing Company is developing prototype solar heating/cooling systems under NASA Contract NAS8-32091. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation.

Not Available

1979-04-01T23:59:59.000Z

284

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

DOE Green Energy (OSTI)

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

285

Construction and initial operation of a seasonal solar cooling system  

DOE Green Energy (OSTI)

A solar ice-making system based on an Argonne National Laboratory design is considered for home cooling. The water-based storage system, which is a plain concrete tank, was integrated into the foundation of the house. Freon-12 is the working fluid used in the ice-making system. Several modifications were made in the system and brief discussions about these changes are presented. An itemized cost report of the project is included along with drawings for the layout of the system. (BCS)

Harkness, J.B.L.

1985-02-01T23:59:59.000Z

286

Simulation and analysis of district-heating and -cooling systems  

DOE Green Energy (OSTI)

A computer simulation model, GEOCITY, was developed to study the design and economics of district heating and cooling systems. GEOCITY calculates the cost of district heating based on climate, population, energy source, and financing conditions. The principal input variables are minimum temperature, heating degree-days, population size and density, energy supply temperature and distance from load center, and the interest rate. For district cooling, maximum temperature and cooling degree-hours are required. From this input data the model designs the fluid transport and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system. GEOCITY was originally developed to simulate geothermal district heating systems and thus, in addition to the fluid transport and distribution models, it includes a reservoir model to simulate the production of geothermal energy from geothermal reservoirs. The reservoir model can be adapted to simulate the supply of hot water from any other energy source. GEOCITY has been used extensively and has been validated against other design and cost studies. GEOCITY designs the fluid transport and distribution facilities and then calculates the capital and operating costs for the entire system. GEOCITY can simulate nearly any financial and tax structure through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. Both private and municipal utility systems can be simulated.

Bloomster, C.H.; Fassbender, L.L.

1983-03-01T23:59:59.000Z

287

High-performance dehumidifier for solar desiccant cooling systems  

DOE Green Energy (OSTI)

An advanced-design, one-tenth-scale dehumidifier for use in residential solar desiccant-cooling systems has been built and tested. The new dehumidifier was designed using a parallel-passage geometry, where air flows through channels formed by walls coated with fine-ground silica gel desiccant. This concept has a high heat and mass transfer effectiveness and promises to double the coefficient of performance of the desiccant cooling system to 1.1 kW cooling output/kW thermal input. The parallel-passage design was found to have very low pressure drop, typically 20 Pa (.08 in. water) at design conditions. The low fan power required to drive such low pressure drop components indicates that electrical COP's in the range of 8.0 to 8.2 kW cooling output/kW electrical input are possible. Results presented include parametric studies of the effect of conditions such as temperature and humidity and design parameters such as desiccant particle size and channel spacing on dehumidifier performance.

Schlepp, D.

1983-05-01T23:59:59.000Z

288

Solar-cooling-system performance, Frenchman's Reef Hotel, St. Thomas, US Virgin Islands. Final report  

DOE Green Energy (OSTI)

The Solar Cooling System installed in the Frenchman's Reef Resort Hotel Test Site, St. Thomas, US Virgin Islands, used 956 Sunmaster Corporation evacuated glass tube collector modules which provide an effective solar collector aperture of 13,384 square feet. The system consists of the collectors, two 2500 gallon tanks, pumps, an Andover Controls Corporation computerized controller, a large solar optimized Carrier Corporation industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat. The system, its operation sequence, and performance are described.

Harber, H.

1981-09-25T23:59:59.000Z

289

Drainable evacuated tubular solar cooling system at Frenchman's Reef Hotel  

SciTech Connect

The Frenchman's Reef Hotel in the Virgin Islands operates its own total energy plant which has the capacity to satisfy the entire requirements of the 510-room hotel for electricity, desalinated drinking water and sewage treatment. The solar energy system consists of a 13,384 square foot array of drainable evacuated tube collectors arranged on three wings of the hotel. Solar heated water is supplied to a 200 ton absorption chiller which cools public rooms in the hotel. A programmable microprocessor controller oversees all functions of the solar energy system and monitors and records data which can be subsequently recovered locally or over the telephone, either as hard copy printout or on tape. The construction and startup of the array and system operating results are discussed. System heat losses are assessed. (LEW)

Platt, D.M.

1981-05-01T23:59:59.000Z

290

A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design  

Science Conference Proceedings (OSTI)

A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

Qu, Ming [School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Yin, Hongxi [School of Engineering Education, Purdue University, 701 W. Stadium Ave., West Lafayette, IN 47907-2061 (United States); Archer, David H. [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States)

2010-02-15T23:59:59.000Z

291

District cooling: Phase 2, Direct freeze ice slurry system testing  

DOE Green Energy (OSTI)

The objectives of this research are to: extend the range of pressure drop data for ice-water slurry flows; and design and build a prototypical ice slurry distribution system which demonstrates ice slurry handling at an end user's heat exchanger, without sending ice slurry directly through the heat exchanger. Previous research (Phase 1) conducted by CBI under DOE Contract FG01-86CE26564 has shown a friction reducing effect of ice crystals in water flow. The results of this work demonstrated a 40% reduction in pump power required to move an ice-water slurry versus the same mass flow of water only. In addition to lower pressure drop, pumping ice slurries is advantageous because of the large latent and sensible heat cooling capacity stored in the ice compared to only sensible heat in chilled water. For example, an ice-water slurry with a 20% ice fraction (by mass) has a mass flow rate that is 70% less than the mass flow rate required for a chilled water system cooling and equivalent load. The greatly reduced mass flow combined with the friction reducing effects of ice-water slurries results in a total savings of 83% in pumping power. Therefore, a substantial savings potential exists for capital costs and system operating costs in ice-water slurry district cooling systems.

Winters, P.J.

1990-01-01T23:59:59.000Z

292

Integrated reactor-containment hyperbolic-cooling-tower system  

Science Conference Proceedings (OSTI)

A preliminary feasibility analysis has been conducted to evaluate placing a nuclear reactor containment building inside a large hyperbolic cooling tower, a concept previously suggested for fossil-fired units but for reasons other than those that motivate this evaluation. The geometry of the design, the amount of water available, and the shielding provided by the cooling tower are beneficial to the safety characteristics of the containment under accident conditions. Three means of decay heat management are employed: an initial water spray on the containment exterior, long-term air convection on side of the containment, and creation of a water pool inside the containment. A continuously spraying water tank on top of the containment allows for a completely passive decay heat removal system. An annular air chimney around the containment is effective in long-term removal of {approximately} 1O MW (thermal) through air convection. Five percent of the water inventory in the cooling-tower pond surrounding the containment is sufficient to flood the containment interior to a depth of 14.6 ft, thereby providing an internal containment heat sink. The packing and the height of the tower provide major scrubbing and dispersing sources for any uncontrolled radioactive leak. The cooling tower veil also protects the containment from external events such as lane crashes.

Patel, A.R.; Todreas, N.E.; Driscoll, M.J. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1994-12-31T23:59:59.000Z

293

Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report  

DOE Green Energy (OSTI)

Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

Not Available

1979-06-01T23:59:59.000Z

294

Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant  

DOE Patents (OSTI)

A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

2006-02-07T23:59:59.000Z

295

Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate  

E-Print Network (OSTI)

. Additional energy savings could be achieved by installing cooling towers in order to obtain free cooling to the chilled water loop for much of the year. However, cooling towers are generally not used in the U1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild

Chen, Qingyan "Yan"

296

Incremental cooling load determination for passive direct gain heating systems  

DOE Green Energy (OSTI)

This paper examines the applicability of the National Association of Home Builders (NAHB) full load compressor hour method for predicting the cooling load increase in a residence, attributable to direct gain passive heating systems. The NAHB method predictions are compared with the results of 200 hour-by-hour simulations using BLAST and the two methods show reasonable agreement. The degree of agreement and the limitations of the NAHB method are discussed.

Sullivan, P.W.; Mahone, D.; Fuller, W.; Gruber, J.; Kammerud, R.; Place, W.; Andersson, B.

1981-05-01T23:59:59.000Z

297

Desiccant degradation in desiccant cooling systems: An experimental study  

SciTech Connect

The authors conducted experiments to quantify the effects of thermal cycling and exposure to contamination on solid desiccant materials that may be used in desiccant cooling systems. The source of contamination was cigarette smoke, which is considered one of the worst pollutants in building cooling applications. The authors exposed five different solid desiccants to ``ambient`` and ``contaminated`` humid air: silica gel, activated alumina, activated carbon, molecular sieves, and lithium chloride. They obtained the moisture capacity of samples as a function of exposure time. Compared to virgin desiccant samples, the capacity loss caused by thermal cycling with humid ambient air was 10 percent to 30 percent for all desiccants. The capacity loss because of combined effect of thermal cycling with ``smoke-filled`` humid air was between 30 percent to 70 percent. The higher losses occurred after four months of experiment time, which is equivalent to four to eight years of field operation. Using a system model and smoke degradation data on silica gel, the authors predicted that, for low-temperature regeneration, the loss in performance of a ventilation-cycle desiccant cooling system would be between 10 percent to 35 percent, in about eight years, with higher value under worst conditions.

Pesaran, A.A. [National Renewable Energy Lab., Golden, CO (United States)

1993-11-01T23:59:59.000Z

298

CFD Simulation and Analysis of the Combined Evaporative Cooling and Radiant Ceiling Air-conditioning System  

E-Print Network (OSTI)

Due to such disadvantages as large air duct and high energy consumption of the current all- outdoor air evaporative cooling systems used in the dry region of Northwest China, as well as the superiority of the ceiling cooling system in improving thermal comfort and saving energy, a combined system is presented in this paper. It combines an evaporative cooling system with ceiling cooling, in which the evaporative cooling system handles the entire latent load and one part of the sensible loads, and the ceiling cooling system deals with the other part of sensible loads in the air-conditioned zone, so that the condensation on radiant panels and the insufficiency of cooling capacity can be avoided. The cooling water at 18? used in the cooling coils of ceiling cooling system can be ground water, tap water or the cooled water from cooling towers in the summer. This new air-conditioning system and existing all- outdoor air evaporative cooling system are applied to a project in the city of Lanzhou. Energy consumption analysis of the building is carried out using the energy consumption code. Velocity and temperature distribution in the air-conditioned zone is computed using CFD. According to the results, the energy consumption and indoor human thermal comfort of both systems are then compared. It is concluded that the new system occupies less building space, reduces energy consumption, improves indoor human thermal comfort and saves initial investment.

Xiang, H.; Yinming, L.; Junmei, W.

2006-01-01T23:59:59.000Z

299

Waste heat driven absorption refrigeration process and system  

DOE Patents (OSTI)

Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

Wilkinson, William H. (Columbus, OH)

1982-01-01T23:59:59.000Z

300

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network (OSTI)

of the chillers and cooling towers, the thermal storage tankin parallel), an array of cooling towers, a 7000 m 3 chilledthe chillers and cooling towers, the thermal storage tank,

Ma, Yudong

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Cold Mass Support System and the Helium Cooling System for theMICE Focusing Solenoid  

DOE Green Energy (OSTI)

The heart of the absorber focus coil (AFC) module for the muon ionization cooling experiment (MICE) is the two-coil superconducting solenoid that surrounds the muon absorber. The superconducting magnet focuses the muons that are cooled using ionization cooling, in order to improve the efficiency of cooling. The coils of the magnet may either be run in the solenoid mode (both coils operate at the same polarity) or the gradient (the coils operate at opposite polarity). The AFC magnet cold mass support system is designed to carry a longitudinal force up to 700 kN. The AFC module will be cooled using three pulse tube coolers that produce 1.5 W of cooling at 4.2 K. One of the coolers will be used to cool the liquid (hydrogen or helium) absorber used for ionization cooling. The other two coolers will cool the superconducting solenoid. This report will describe the MICE AFC magnet. The cold mass supports will be discussed. The reasons for using a pulsed tube cooler to cool this superconducting magnet will also be discussed.

Yang, Stephanie Q.; Green, Michael A.; Lau, Wing W.; Senanayake,Rohan S.; Witte, Holger

2006-08-10T23:59:59.000Z

302

System design package for solar heating and cooling system installed at Akron, Ohio  

DOE Green Energy (OSTI)

This package contains information used to evaluate the design of Solaron's solar heating, cooling, and domestic hot water system. A conventional heat pump provides summer cooling and back-up heating (when solar energy is not available). Included in the package are such items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A Solaron solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

Not Available

1979-04-01T23:59:59.000Z

303

Overview of Open-Cycle Desiccant Cooling Systems and Materials  

DOE Green Energy (OSTI)

This paper has presented a review of the thermodynamics of three desiccant cooling cycles: the ventilation cycle, the recirculation cycle, and the Dunkle cycle. For the ventilation cycle the qualitative effects of changes in the effectiveness of individual components were analyzed. There are two possible paths to improved dehumidifier performance: changing the design of dehumidifiers using currently available desiccants so as to increase effectiveness without increasing parasitic losses, or developing new desiccants specifically tailored for solar cooling applications. The later part of this paper has considered the second option. A list of desirable desiccant properties was defined, properties of currently used solid and liquid desiccants were compared to this list, and a hypothetical desiccant type that would give improved system performance was discussed.

Collier, R.; Arnold, F.; Barlow, R.

1981-09-01T23:59:59.000Z

304

A computer simulation appraisal of non-residential low energy cooling systems in California  

E-Print Network (OSTI)

evaporative pre-cool on a vapor compression system. H eatingventilation with vapor compression system. Heating Coilschematic of the baseline vapor compression built-up system.

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-01-01T23:59:59.000Z

305

Active cooling for downhole instrumentation: Preliminary analysis and system selection  

DOE Green Energy (OSTI)

A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

Bennett, G.A.

1988-03-01T23:59:59.000Z

306

Liquid-desiccant systems for cooling/drying applications  

SciTech Connect

Thermally-driven desiccant cooling systems have been investigated extensively during the past decade as economically competitive alternatives to vapor-compression cooling systems. A differential formulation is used to model the commercial Kathabar System to describe the heat and mass transfer for a control volume in both the conditioner and the generator. These differential equations depend on parameters, depending on the flow rate of the fluids (water, air and solution), the physical properties of these fluids, the geometry of the transfer surfaces and the heat and mass transfer coefficients. The flat-plate solar collector does not give a satisfactory results if it is used to heat the generator outlet water, because the water coming out from the generator is at about 80 C which is too high to be heated again by a flat-plate collector. The air coming from the conditioner is used for drying corn. The use of the Kathabar System for drying applications is infeasible. The Kathabar system mathematical model was modified by running the conditioner adiabatically. The governing equations became 4 first-order partial differential equations instead of 6 equations. The same numerical scheme is used to solve these equations. The air coming from the new system conditioner is used for drying corn.

Mahmoud, K.G.

1987-01-01T23:59:59.000Z

307

Passive-solar directional-radiating cooling system  

DOE Patents (OSTI)

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, J.R.; Schertz, W.W.

1985-06-27T23:59:59.000Z

308

Passive-solar directional-radiating cooling system  

DOE Patents (OSTI)

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

1986-01-01T23:59:59.000Z

309

Improving the Efficiency of Your Process Cooling System  

E-Print Network (OSTI)

Many industries require process cooling to achieve desired outcomes of specific processes. This cooling may come from cooling towers, once-through water, mechanical refrigeration, or cryogenic sources such as liquid nitrogen or dry ice. This paper deals primarily with mechanically-based process cooling. Based on the author's experiences, this category provides the greatest opportunity for energy efficiency improvement.

Baker, R.

2005-01-01T23:59:59.000Z

310

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal...  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled...

311

Application of upspray type water distribution systems in cooling towers  

SciTech Connect

The efficient and uniform distribution of the warm circulating water on to the filling of cooling towers has been the continuing goal of the tower designer. The final element in the water distribution system, the sprayer, plays an important role in achieving this objective. This paper discusses the performance and operational characteristics of a sprayer utilized in counterflow towers that directs the water leaving the sprayer nozzle in an upward direction and briefly compares its performance with that of downward sprayers. The discussion also covers relative tower economics and application data of the sprayer.

Fay, H.P.; Hesse, G.

1985-01-01T23:59:59.000Z

312

System and method for cooling a superconducting rotary machine  

Science Conference Proceedings (OSTI)

A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

Ackermann, Robert Adolf (Schenectady, NY); Laskaris, Evangelos Trifon (Schenectady, NY); Huang, Xianrui (Clifton Park, NY); Bray, James William (Niskayuna, NY)

2011-08-09T23:59:59.000Z

313

Testing and design of solar cooling systems employing liquid dessicants  

DOE Green Energy (OSTI)

An open cycle liquid desiccant cooling system with cooling capacity of 3 tons (10.5 kW) a subject of research at Colorado State University. The system comprises two main units: the dehumidifier and the regenerator. Lithium bromide is the desiccant solution that dehumidifies the air stream during a counter-current, liquid-gas contacting in the packed tower. The regenerator concentrates the lithium bromide solution during a similar gas-liquid contacting using solar heated air with the only difference being that the direction of heat and mass transfer are reversed in this unit. The earlier studies conducted on the dehumidifier revealed significant departures from an energy balance closure. An attempt has been made to provide a realistic energy balance closure to the dehumidifier side. This has resulted in substantial re-calibration of the major instruments involved. Performance data of the entire system with the regenerator and dehumidifier operated in coupled mode have been presented. An optimization scheme to predict operating conditions suited for best performance of the two units, for varying ambient temperature and humidity to the dehumidifier, has been devised. 15 refs., 20 figs., 8 tabs.

Lenz, T.; Loef, G.O.G.; Flaherty, M.; Misra, S.; Patnaik, S.

1989-05-01T23:59:59.000Z

314

A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS  

E-Print Network (OSTI)

EXAMPLES OF PASSIVE SOLAR HEATING SYSTEMS {CONVECTIVE SPACEbeen supported by the Solar Heating and Cooling Research andinteraction. Passive solar heating systems use elements of

Holtz, Michael J.

2011-01-01T23:59:59.000Z

315

Cooling a quantum circuit via coupling to a multiqubit system  

E-Print Network (OSTI)

The cooling effects of a quantum LC circuit coupled inductively with an ensemble of artificial qubits are investigated. The particles may decay independently or collectively through their interaction with the environmental vacuum electromagnetic field reservoir. For appropriate bath temperatures and the resonator's quality factors, we demonstrate an effective cooling well below the thermal background. In particular, we found that for larger samples the cooling efficiency is better for independent qubits. However, the cooling process can be faster for collectively interacting particles.

Macovei, Mihai A

2010-01-01T23:59:59.000Z

316

Cooling a quantum circuit via coupling to a multiqubit system  

E-Print Network (OSTI)

The cooling effects of a quantum LC circuit coupled inductively with an ensemble of artificial qubits are investigated. The particles may decay independently or collectively through their interaction with the environmental vacuum electromagnetic field reservoir. For appropriate bath temperatures and the resonator's quality factors, we demonstrate an effective cooling well below the thermal background. In particular, we found that for larger samples the cooling efficiency is better for independent qubits. However, the cooling process can be faster for collectively interacting particles.

Mihai A. Macovei

2010-04-19T23:59:59.000Z

317

Performance of residential solar heating and cooling system with flat-plate and evacuated tubular collectors: CSU Solar House I  

SciTech Connect

Measurements in Solar House I at Colorado State University have provided comparison data on space heating, water heating, and cooling by systems in which flat-plate collectors and evacuated tube collectors were used. Data were procured on 47 days during operation of the flat-plate collector and on 112 days when the house was heated or cooled by the evacuated tube collector system. It was concluded that the system comprising an evacuated tubular collector, lithium bromide absorption water chiller, and associated equipment is highly effective in providing solar heating and cooling to a small building, that it can supply up to twice the space heating and several times the cooling obtainable from an equal occupied area of good quality flat-plate collectors, and that a greater fraction of the domestic hot water can be obtained by supplying its heat from main storage. The cost-effectiveness of the system, in comparison with one employing a good flat-plate collector, can be determined when commercial pricing data are made available.

Duff, W.S.; Conway, T.M.; Loef, G.O.G.; Meredith, D.B.; Pratt, R.B.

1978-01-01T23:59:59.000Z

318

Thermoelectric generator cooling system and method of control  

DOE Patents (OSTI)

An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

2012-10-16T23:59:59.000Z

319

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.  

E-Print Network (OSTI)

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system Coal Storage Building 39 NA Cooke Hall 56 Donhowe Building 044 East Gateway District Steam Distr. 199

Webb, Peter

320

ABSORPTION HEAT PUMP SYSTEM AND METHOD OF USING THE SAME - Energy ...  

An absorption heat pump system that can include a first assembly, ... Building Energy Efficiency; ... Solar Thermal; Startup America;

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Comparative Study Between Air-Cooled and Water-Cooled Condensers of the Air-Conditioning Systems  

E-Print Network (OSTI)

The weather in Kuwait is very dry where the dry-bulb temperature exceeds the wet-bulb temperature more than 20oC in most of the summer months. Thus, the air-conditioning (A/C) system with the water-cooled (WC) condensers is expected to perform more efficiently than with the air-cooled (AC) condensers. This fact was behind the idea of a field study conducted in one of the major hospital in Kuwait during a summer season to investigate the performance of WC and AC systems in terms of peak power and energy consumptions. The cooling capacities for WC and AC systems were 373 and 278 tons-of- refrigeration, respectively. It was found that for the same cooling production, the peak power demand and the daily energy consumption of the WC system were 45 and 32% less than that of the AC system, respectively. The maximum reduction in the power demand coincided with the peak power demand period of the utilities i.e. between 14:00 and 17:00 hr, thereby offering a maximum advantage of peak power saving.

Maheshwari, G. P.; Mulla Ali, A. A.

2004-01-01T23:59:59.000Z

322

Open cycle lithium chloride cooling system. Final report, March 1, 1982-May 28, 1983  

DOE Green Energy (OSTI)

A lithium chloride open cycle absorption chiller has been designed, built and tested. Solution reconcentration takes place in a small counter-current packed column supplied with solar heated air. Removal of non-condensable gases that enter the chiller dissolved in the strong solution and the make-up refrigerant streams is accomplished by a liquid-jet ejector and a small vacuum pump. Cooling capacities approaching 1.4 tons and COP levels of 0.58 have been achieved at non-optimum operating conditions. Test results from preliminary system operation suggest that mass transfer processes in both the packed column reconcentrator and the absorber are controlled by concentration gradients in the lithium chloride solution. Liquid phase controlled mass transfer dictates an operating strategy different from the previously assumed gas phase controlled process to obtain maximum rates of evaporation in the packed column. Determination of optimal operating conditions leading to decreased electrical power consumption and improved cooling capacity and coefficient of performance will require further analysis and testing.

Lenz, T. G.; Loef, G. O.G.; Iyer, R.; Wenger, J.

1983-05-01T23:59:59.000Z

323

The evaluation of a solar-driven aqua-ammonia diffusion absorption heating and cooling cycle / M.C. Potgieter.  

E-Print Network (OSTI)

??Several steps are followed in order to evaluate the cycle as the title suggests. The diffusion absorption refrigerator (DAR) cycle performance is evaluated when using… (more)

Potgieter, Marthinus Christiaan

2013-01-01T23:59:59.000Z

324

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

325

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

326

Sealed Battery Block Provided With A Cooling System  

SciTech Connect

The present invention relates to a sealed battery block operating at a pressure of at least 1 bar relative, the battery including a container made of a plastics material and made up of a lid and of a case subdivided into wells by at least one partition, said battery being provided with a cooling system including two cheek plates made of a plastics material and co-operating with the outside faces of respective ones of two opposite walls of said case, each cheek plate co-operating with the corresponding wall to define a compartment provided with a plurality of ribs forming baffles for fluid flow purposes, and with an inlet orifice and an outlet orifice for the fluid, said battery being characterized in that each of said ribs extends in a direction that forms an angle relative to the plane of said partition lying in the range 60.degree. to 90.degree..

Verhoog, Roelof (Bordeaux, FR); Barbotin, Jean-Loup (Pompignac, FR)

1999-11-16T23:59:59.000Z

327

[Gas cooled fuel cell systems technology development program  

DOE Green Energy (OSTI)

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

328

SOLERAS - Saudi University Solar Cooling Laboratories Project: University of Petroleum and Minerals. Solar cooling system. Final report  

Science Conference Proceedings (OSTI)

This report provides details of the proposed solar cooling laboratory, including descriptions of the building and design conditions; the collector/storage subsystem; the Rankine cycle engine subsystem; instrumentation and data acquisition; and an implementation plan. Appendices of relevant data including computer programs for building load and engine system calculations and descriptions of equipment are included.

Not Available

1986-01-01T23:59:59.000Z

329

SOLERAS - Saudi University Solar Cooling Laboratories Project: King Abdulaziz University. Solar cooling systems design report. Phase 1 report  

SciTech Connect

An assessment of the performance and adaptability of solar cooling systems to the Saudi Arabian environment was studied at King Abdulaziz University. Development of a solar research laboratory and the hardware and software available for installation are considered. The university's facilities for solar energy research are briefly described. A budget for the research project is proposed. (BCS)

Not Available

1986-01-01T23:59:59.000Z

330

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

DOE Green Energy (OSTI)

This paper is a progress report for the period of July 1, 1990 to 31 August 1990 on activities at Colorado State University in a program for developing, testing, evaluating and optimizing solar heating and cooling systems. Topics covered are: solar heating with isothermal collectors; solid cooling with solid desiccant; liquid desiccant cooling systems; solar heating systems; solar water heaters; fields tests; and program management. 6 figs., 2 tabs. (FSD)

Not Available

1990-09-07T23:59:59.000Z

331

Cooling system for a bearing of a turbine rotor  

SciTech Connect

In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

Schmidt, Mark Christopher (Niskayuna, NY)

2002-01-01T23:59:59.000Z

332

Standards applicable to performance measurement of solar heating and cooling systems  

DOE Green Energy (OSTI)

The advantage of the utilization of existing standards in the performance monitoring of solar heating and cooling systems is discussed. Existing applicable measurement standards and practices are listed.

Lior, N.

1978-01-01T23:59:59.000Z

333

Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers  

E-Print Network (OSTI)

system is essentially a heat exchanger utilizing water at acooling from the heat exchanger. The passive cooling systemsystem (air-to- water heat exchanger) attached to rear door

Xu, TengFang

2009-01-01T23:59:59.000Z

334

Design and evaluation of heat transfer fluids for direct immersion cooling of electronic systems .  

E-Print Network (OSTI)

??Comprehensive molecular design was used to identify new heat transfer fluids for direct immersion phase change cooling of electronic systems. Four group contribution methods for… (more)

Harikumar Warrier, Pramod Kumar Warrier

2012-01-01T23:59:59.000Z

335

Design of a Solar Thermal Powered Cooling System.  

E-Print Network (OSTI)

??Abstract The main objective of the thesis was to design a mechanical structure for a desiccant evaporative cooling, to apply solar thermal powered air conditioning… (more)

Hurri, Olli

2011-01-01T23:59:59.000Z

336

Cooling load differences between radiant and air systems  

E-Print Network (OSTI)

M. Filippi, B.W. Olesen, Solar radiation and cooling loaddependant upon solar radiation, ASHRAE Transactions, (2006)heat gains also included solar radiation through windows. G3

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

337

THERMAL STRESS CALCULATIONS FOR HEATPIPE-COOLED REACTOR POWER SYSTEMS.  

DOE Green Energy (OSTI)

A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module comprises a single heatpipe surrounded by 3-6 clad fuel pins. As part of the design development and performance assessment activities for these reactors, specialized methods and models have been developed to perform thermal and stress analyses of the core modules. The methods have been automated so that trade studies can be readily performed, looking at design options such as module size, heatpipe and clad thickness, use of sleeves to contain the fuel, material type, etc. This paper describes the methods and models that have been developed, and presents thermal and stress analysis results for a Mars surface power system and a NEP power source.

Kapernick, R. J. (Richard J.); Guffee, R. M. (Ray M.)

2001-01-01T23:59:59.000Z

338

Photovoltaic-electrodialysis regeneration method for liquid desiccant cooling system  

Science Conference Proceedings (OSTI)

Liquid desiccant cooling system (LDCS) is an (a novel) air-conditioning system with good energy saving potential. Regenerator is the power centre for LDCS. Currently, the regeneration process is always fuelled by thermal energy. Nevertheless, this regeneration pattern has some disadvantages in that its performance will become poor when the surrounding atmosphere is of high humidity, and the heat provided for regeneration will be unfavourable to the following dehumidification process. To ameliorate that, a new regeneration method is proposed in this paper: a membrane regenerator is employed to regenerate the liquid desiccant in an electrodialysis way; while solar photovoltaic generator is adopted to supply electric power for this process. Analysis has been made about this new regeneration method and the result reveals: this new manner achieves good stability with the immunity against the adverse impact from the outside high humidity; its performance is much higher than that of the thermal regeneration manner while putting aside the low efficiency of the photovoltaic system. Besides, purified water can be obtained in company with the regeneration process. (author)

Li, Xiu-Wei [College of Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhang, Xiao-Song [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

2009-12-15T23:59:59.000Z

339

Gas-cooled reactor for space power systems  

Science Conference Proceedings (OSTI)

Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors.

Walter, C.E.; Pearson, J.S.

1987-05-01T23:59:59.000Z

340

Effects of Enhanced Shortwave Absorption on Coupled Simulations of the Tropical Climate System  

Science Conference Proceedings (OSTI)

The effects of enhanced shortwave absorption on coupled simulations of the tropical climate have been tested using the National Center for Atmospheric Research Climate System Model. The enhancement in cloudy-sky shortwave absorption is consistent ...

William D. Collins

2001-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network (OSTI)

Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy costs during the cooling season as well as the heating season. To achieve air conditioning savings, the system separates dehumidification from sensible cooling; dehumidifies by desiccant absorption, using heat from storage to dry the desiccant; and then cools at an elevated temperature improving overall system efficiency. Efficient heat for desiccant regeneration is provided by a selective-energy system coupled with thermal storage. The selective-energy system incorporates diesel cogeneration, solar energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility energy for refrigeration; 10 to 20% in refrigeration equipment; and space savings due to smaller ductwork and equipment.

Meckler, G.

1985-01-01T23:59:59.000Z

342

Stochastic Cooling  

Science Conference Proceedings (OSTI)

Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

Blaskiewicz, M.

2011-01-01T23:59:59.000Z

343

Solar heating and cooling system design and development. Status summary, April--June 1978  

DOE Green Energy (OSTI)

Information is provided on the development of eight prototype solar heating and combined heating and cooling systems. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and monitoring the operation of prototype systems. The program currently consists of development of heating and cooling equipment for single-family residential and commercial applications and eight operational test sites (four heating and four heating and cooling). Four are single-family residences and four are commercial buildings.

Not Available

1978-07-01T23:59:59.000Z

344

Maintaining Electrical System Reliability Under a Closed-Cycle Cooling Retrofit Requirement  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is investigating the implications of a potential U.S. Environmental Protection Agency (EPA) Clean Water Act 316(b) rulemaking that would establish "best technology available" (BTA) based on closed-cycle cooling retrofits for facilities with once-through cooling. This report focuses on the transmission system impacts that can potentially result from a requirement for use of closed-cycle cooling systems.

2011-07-20T23:59:59.000Z

345

Air cooled turbine component having an internal filtration system  

DOE Patents (OSTI)

A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

Beeck, Alexander R. (Orlando, FL)

2012-05-15T23:59:59.000Z

346

COOLING FAN AND SYSTEM PERFORMANCE AND EFFICIENCY IMPROVEMENTS  

Science Conference Proceedings (OSTI)

Upcoming emissions regulations (Tiers 3, 4a and 4b) are imposing significantly higher heat loads on the cooling system than lesser regulated machines. This work was a suite of tasks aimed at reducing the parasitic losses of the cooling system, or improving the design process through six distinct tasks: 1. Develop an axial fan that will provide more airflow, with less input power and less noise. The initial plan was to use Genetic Algorithms to do an automated fan design, incorporating forward sweep for low noise. First and second generation concepts could not meet either performance or sound goals. An experienced turbomachinery designer, using a specialized CFD analysis program has taken over the design and has been able to demonstrate a 5% flow improvement (vs 10% goal) and 10% efficiency improvement (vs 10% goal) using blade twist only. 2. Fan shroud developments, using an 'aeroshroud' concept developed at Michigan State University. Performance testing at Michigan State University showed the design is capable of meeting the goal of a 10% increase in flow, but over a very narrow operating range of fan performance. The goal of 10% increase in fan efficiency was not met. Fan noise was reduced from 0 to 2dB, vs. a goal of 5dB at constant airflow. The narrow range of fan operating conditions affected by the aeroshroud makes this concept unattractive for further development at this time 3. Improved axial fan system modeling is needed to accommodate the numbers of cooling systems to be redesigned to meet lower emissions requirements. A CFD fan system modeling guide has been completed and transferred to design engineers. Current, uncontrolled modeling practices produce flow estimates in some cases within 5% of measured values, and in some cases within 25% of measured values. The techniques in the modeling guide reduced variability to the goal of + 5% for the case under study. 4. Demonstrate the performance and design versatility of a high performance fan. A 'swept blade mixed flow' fan was rapid prototyped from cast aluminum for a performance demonstration on a small construction machine. The fan was mounted directly in place of the conventional fan (relatively close to the engine). The goal was to provide equal airflow at constant fan speed, with 75% of the input power and 5 dB quieter than the conventional fan. The result was a significant loss in flow with the prototype due to its sensitivity to downstream blockage. This sensitivity to downstream blockage affects flow, efficiency, and noise all negatively, and further development was terminated. 5. Develop a high efficiency variable speed fan drive to replace existing slipping clutch style fan drives. The goal for this task was to provide a continuously variable speed fan drive with an efficiency of 95%+ at max speed, and losses no greater than at max speed as the fan speed would vary throughout its entire speed range. The process developed to quantify the fuel savings potential of a variable speed fan drive has produced a simple tool to predict the fuel savings of a variable speed drive, and has sparked significant interest in the use of variable speed fan drive for Tier 3 emissions compliant machines. The proposed dual ratio slipping clutch variable speed fan drive can provide a more efficient system than a conventional single ratio slipping clutch fan drive, but could not meet the established performance goals of this task, so this task was halted in a gate review prior to the start of detailed design. 6. Develop a cooling system air filtration device to allow the use of automotive style high performance heat exchangers currently in off road machines. The goal of this task was to provide a radiator air filtration system that could allow high fin density, louvered radiators to operate in a find dust application with the same resistance to fouling as a current production off-road radiator design. Initial sensitivity testing demonstrated that fan speed has a significant impact on the fouling of radiator cores due to fine dusts, so machines equipped with continuously variabl

Ronald Dupree

2005-07-31T23:59:59.000Z

347

The effects of aging on BWR core isolation cooling systems  

Science Conference Proceedings (OSTI)

A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling (RCIC) system in commercial Boiling Water Reactors (BWRs). This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The failure data from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failures causes. Current inspection, surveillance, and monitoring practices were also reviewed.

Lee, B.S. [Brookhaven National Lab., Upton, NY (United States)

1994-10-01T23:59:59.000Z

348

Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR  

DOE Patents (OSTI)

An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

1980-06-06T23:59:59.000Z

349

Description and cost analysis of a deluge dry/wet cooling system.  

SciTech Connect

The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heat exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)

Wiles, L.E.; Bamberger, J.A.; Braun, D.J.; Braun, D.J.; Faletti, D.W.; Willingham, C.E.

1978-06-01T23:59:59.000Z

350

Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993  

DOE Green Energy (OSTI)

This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

Nimmo, B.G.; Thornbloom, M.D.

1995-04-01T23:59:59.000Z

351

Study of Operating Control Strategies for Hybrid Ground Source Heat Pump System with Supplemental Cooling Tower  

Science Conference Proceedings (OSTI)

Ground source heat pump for cooling-dominated commercial buildings may utilize supplemental cooling towers to reduce system first cost and to improve system performance. The use of hybrid ground source heat pump (HGSP) can reduce the size of the ground-loop ... Keywords: hybrid ground source heat pump, supplement heat rejection, control strategies, operating performance

Wang Jinggang; Gao Xiaoxia; Yin Zhenjiang; Li Fang

2009-07-01T23:59:59.000Z

352

Fuzzy incremental control algorithm of loop heat pipe cooling system for spacecraft applications  

Science Conference Proceedings (OSTI)

Reliable and high precision thermal control technologies are essential for the safe flight of advanced spacecraft. A fuzzy incremental control strategy is proposed for control of an LHP space cooling system comprising a loop heat pipe and a variable ... Keywords: Fuzzy incremental control, Loop heat pipe, Modeling and simulation, Space cooling system

Su-Jun Dong; Yun-Ze Li; Jin Wang; Jun Wang

2012-09-01T23:59:59.000Z

353

Quantum limit of photothermal cooling  

E-Print Network (OSTI)

We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

De Liberato, Simone; Nori, Franco

2010-01-01T23:59:59.000Z

354

Monitoring system for a liquid-cooled nuclear fission reactor  

SciTech Connect

A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

DeVolpi, Alexander (Bolingbrook, IL)

1987-01-01T23:59:59.000Z

355

Solar cooling R and D overview  

DOE Green Energy (OSTI)

The status of the principal solar energy conversion processes for cooling is reviewed; applications ready for demonstrations are identified; and directions for near term R and D efforts needed to bring other potentially successful cooling systems to the point of demonstration are recommended. The principal solar cooling methods are classified as: absorption, heat engine/vapor compression, desiccant, solar assisted heat pump, photovoltaic heat pump, and passive and others.

Auh, P.C.

1978-09-01T23:59:59.000Z

356

System identification and optimal control for mixed-mode cooling  

E-Print Network (OSTI)

The majority of commercial buildings today are designed to be mechanically cooled. To make the task of air conditioning buildings simpler, and in some cases more energy efficient, windows are sealed shut, eliminating ...

Spindler, Henry C. (Henry Carlton), 1970-

2004-01-01T23:59:59.000Z

357

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

DOE Green Energy (OSTI)

This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

Ashwood, A.; Bharathan, D.

2011-03-01T23:59:59.000Z

358

Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine  

DOE Green Energy (OSTI)

Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

2005-04-01T23:59:59.000Z

359

NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)  

SciTech Connect

National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

Not Available

2011-02-01T23:59:59.000Z

360

ABSIM. Simulation of Absorption Systems in Flexible and Modular Form  

Science Conference Proceedings (OSTI)

The computer code has been developed for simulation of absorption systems at steady-state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system`s components. When all the equations have been established, a mathematical solver routine is employed to solve them simultaneously. Property subroutines contained in a separate data base serve to provide thermodynamic properties of the working fluids. The code is user-oriented and requires a relatively simple input containing the given operating conditions and the working fluid at each state point. the user conveys to the computer an image of the cycle by specifying the different components and their interconnections. Based on this information, the program calculates the temperature, flowrate, concentration, pressure and vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. A graphical user-interface is provided to facilitate interactive input and study of the output.

Grossman, G. [Israel Institute of Thechnology, Haifa, (Israel)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Cost analysis of an ammonia dry cooling system with a Chicago Bridge and Iron peak shaving system  

SciTech Connect

A study was performed to determine the potential for reducing the cost associated with dry cooling by using an ammonia dry cooling system augmented with the Chicago Bridge and Iron (CP and I) peak shaving system. The cost analysis of an all-dry ammonia cooling system operating in conjunction with a peak shaving system is documented. The peak shaving system utilizes the excess cooling capability available at night to cool water to be used for supplemental cooling during the following day. The analysis consisted of determining the incremental cost of cooling for the CB and I system and comparing this cost to the incremental cost of cooling for both dry and wet/dry systems for a consistent set of design conditions and assumptions. The wet/dry systems were analyzed over a range of water usages. The basis of the comparisons was a cooling system designed for installations with a 650 mWe (gross) coal-fired power plant. From results of the study it was concluded that: the CB and I system shows a substantial economic advantage when compared with an all-dry cooling system; the CB and I system appears to be competitive with wet/dry cooling systems using about 2 to 3% water; and the CB and I system demonstrates a clear economic advantage when compared to both dry and wet/dry concepts for a winter peaking utility where the excess generation is assumed to displace both base-loaded coal-fired power generation and oil-fired gas turbine peaking units.

Drost, M.K.; Johnson, B.M.

1980-12-01T23:59:59.000Z

362

Spatial Diffusion of X-ray Emission Lines in the M87 Cooling Flow; Evidence for Absorption  

E-Print Network (OSTI)

Recent XMM-Newton observations of the cooling flow gas in M87 indicate sharply decreasing oxygen, iron and silicon abundances within $\\sim 5$ kpc of the galactic center. This result is unexpected since stellar mass loss and Type Ia supernovae are expected to produce pronounced central abundance maxima for all three elements. However, it has been suggested that many of the strong X-ray lines are optically thick and diffuse to larger radii in the cooling flow before escaping, falsifying the central abundances. We verify with radiation transfer calculations that this effect does indeed occur in the M87 cooling flow, but that it is insufficient to account for the M87 observations. We suggest that some source of continuous opacity is required to reduce the central X-ray line emission, perhaps by warm gas at $T \\sim 10^5 - 10^6$ K. The radial surface brightness profiles of X-ray resonance lines are also sensitive to turbulence in cooling flows which reduces the line center optical depths considerably. Turbulence may provide sufficient energy to continuously heat the warm absorbing gas.

William G. Mathews; David A. Buote; Fabrizio Brighenti

2001-01-30T23:59:59.000Z

363

Ground state cooling is not possible given initial system-thermal bath factorization  

E-Print Network (OSTI)

In this paper we prove that a fundamental constraint on the cooling dynamic implies that it is impossible to cool, via a unitary system-bath quantum evolution, a system that is embedded in a thermal environment down to its ground state, if the initial state is a factorized product of system and bath states. The latter is a crucial but artificial assumption often included in many descriptions of system-bath dynamics. The analogous conclusion holds for 'cooling' to any pure state of the system.

Lian-Ao Wu; Dvira Segal; Paul Brumer

2012-10-16T23:59:59.000Z

364

Solar heating and cooling system design and development (status summay through December 1977)  

DOE Green Energy (OSTI)

The program scope is to develop, fabricate, install, and monitor the operation of prototype solar heating and cooling systems. Application studies have been completed for three application categories: single-family residential, multi-family residential, and commercial. The program currently consists of development of heating and cooling euipment for single-family residential and commercial applications and eight operational test sites (four heating and four heating and cooling). Four are single-family residences and four are commercial buildings.

Not Available

1978-04-06T23:59:59.000Z

365

The Formation and Fate of Trihalomethanes in Power Plant Cooling Water Systems  

Science Conference Proceedings (OSTI)

Trihalomethanes (THMs) are semi-volatile compounds that form in water when chlorine or bromine reacts with dissolved organic carbon. This report investigates the formation and fate of THM compounds in power plant cooling water systems, THM health risks, a generalized mechanism of THM formation, and the applicability of existing THM research to power plant cooling. The report presents results of a two-site sampling and analytical program designed to identify THM formation potential in cooling towers using...

2004-03-16T23:59:59.000Z

366

Cooling-load implications for residential passive-solar-heating systems  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described, along with the computer simulation model used for calculating cooling loads. A sample of interim results is also presented. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy requirement of a given building.

Jones, R.W.; McFarland, R.D.

1983-01-01T23:59:59.000Z

367

Solar-cooling-system performance, Frenchman's Reef Hotel, St. Thomas, US Virgin Islands. Final report  

SciTech Connect

The Solar Cooling System installed in the Frenchman's Reef Resort Hotel Test Site, St. Thomas, US Virgin Islands, used 956 Sunmaster Corporation evacuated glass tube collector modules which provide an effective solar collector aperture of 13,384 square feet. The system consists of the collectors, two 2500 gallon tanks, pumps, an Andover Controls Corporation computerized controller, a large solar optimized Carrier Corporation industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat. The system, its operation sequence, and performance are described.

Harber, H.

1981-09-25T23:59:59.000Z

368

Quantum noise in photothermal cooling  

SciTech Connect

We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. We achieve this by developing a Langevin formalism for the motion of the cantilever, valid in the bad-cavity limit, which includes both photon absorption shot noise and the noise due to radiation pressure. This allows us to tackle the cooling problem down to the noise-dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

De Liberato, Simone [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Lambert, Neill [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2011-03-15T23:59:59.000Z

369

ABSIM. Simulation of Absorption Systems in Flexible and Modular Form  

Science Conference Proceedings (OSTI)

The computer code has been developed for simulation of absorption systems at steady-state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components. When all the equations have been established, a mathematical solver routine is employed to solve them simultaneously. Property subroutines contained in a separate data base serve to provide thermodynamic properties of the working fluids. The code is user-oriented and requires a relatively simple input containing the given operating conditions and the working fluid at each state point. the user conveys to the computer an imagev of the cycle by specifying the different components and their interconnections. Based on this information, the program calculates the temperature, flowrate, concentration, pressure and vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. A graphical user-interface is provided to fcilitate interactive input and study of the output.

Grossman, G. (Israel Institute of Thechnology, Haifa, (Israel))

1994-06-01T23:59:59.000Z

370

IMPACTS OF REFRIGERANTLINE LENGTH ON SYSTEM EFFICIENCY IN RESIDENTIAL HEATING AND COOLING SYSTEMS USING REFRIGERANT DISTRIBUTION.  

Science Conference Proceedings (OSTI)

The effects on system efficiency of excess refrigerant line length are calculated for an idealized residential heating and cooling system. By excess line length is meant refrigerant tubing in excess of the 25 R provided for in standard equipment efficiency test methods. The purpose of the calculation is to provide input for a proposed method for evaluating refrigerant distribution system efficiency. A refrigerant distribution system uses refrigerant (instead of ducts or pipes) to carry heat and/or cooling effect from the equipment to the spaces in the building in which it is used. Such systems would include so-called mini-splits as well as more conventional split systems that for one reason or another have the indoor and outdoor coils separated by more than 25 ft. This report performs first-order calculations of the effects on system efficiency, in both the heating and cooling modes, of pressure drops within the refrigerant lines and of heat transfer between the refrigerant lines and the space surrounding them.

ANDREWS, J.W.

2001-04-01T23:59:59.000Z

371

Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries  

DOE Green Energy (OSTI)

Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

None,

1981-09-01T23:59:59.000Z

372

Modeling and performance of the MHTGR (Modular High-Temperature Gas-Cooled Reactor) reactor cavity cooling system  

SciTech Connect

The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab.

Conklin, J.C. (Oak Ridge National Lab., TN (USA))

1990-04-01T23:59:59.000Z

373

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

SciTech Connect

This report discusses the following tasks; solar heating with isothermal collector operation and advanced control strategy; solar cooling with solid desiccant; liquid desiccant cooling system development; solar house III -- development and improvement of solar heating systems employing boiling liquid collectors; generic solar domestic water heating systems; advanced residential solar domestic hot water (DHW) systems; management and coordination of Colorado State/DOE program; and field monitoring workshop.

1991-01-07T23:59:59.000Z

374

A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING AND COOLING  

E-Print Network (OSTI)

Tex. , 3rd Ann. Solar Heating & Cooling R&D Contractors'Proceedings, Passive Solar Heating & Cooling~'-~&-l~orkshop,Solar Jubilee, Phoenix, AZ, June 2-6, 1980 A SIMULATION MODEL FOR THE PERFORMANCE ANALYSIS OF ROOF POND SYSTEMS FOR HEATING

Tavana, Medhi

2011-01-01T23:59:59.000Z

375

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

DOE Green Energy (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

376

Liquid Nitrogen-Cooled Fourier Transform Spectrometer System for Measuring Atmospheric Emission at High Altitudes  

Science Conference Proceedings (OSTI)

A cryogenically cooled FTS system capable of a spectral resolution of 0.06 cm?1 is described. The entire interferometer is operated at LN2 temperature with the exception of the Ge:Cu detector, which is cooled to below 10 K. In order to maintain ...

Frank H. Murcray; Frank J. Murcray; David G. Murcray; James Pritchard; George Vanasse; Hajime Sakai

1984-12-01T23:59:59.000Z

377

System and method of active vibration control for an electro-mechanically cooled device  

SciTech Connect

A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

Lavietes, Anthony D. (Hayward, CA); Mauger, Joseph (Livermore, CA); Anderson, Eric H. (Mountain View, CA)

2000-01-01T23:59:59.000Z

378

Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979  

DOE Green Energy (OSTI)

Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

Duff, W.S.; Loef, G.O.G.

1981-03-01T23:59:59.000Z

379

Legionnaires' Disease Bacteria in Power Plant Cooling Systems: Phase 2  

Science Conference Proceedings (OSTI)

Water temperature and quality, along with other aquatic organisms, affect the existence of infectious Legionella in power plant cooling water. However, the interaction of these factors is so complex that scientists are far from being able to predict the growth and infectivity of these bacteria.

1985-04-26T23:59:59.000Z

380

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text  

DOE Green Energy (OSTI)

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Proposal for the Award of a Contract for Maintenance, Operation and Minor Installation Work for CERN Cooling and HVAC Systems  

E-Print Network (OSTI)

Proposal for the Award of a Contract for Maintenance, Operation and Minor Installation Work for CERN Cooling and HVAC Systems

1996-01-01T23:59:59.000Z

382

Repair and Replacement Applications Center: Stress Corrosion Cracking in Closed Cooling Water Systems  

Science Conference Proceedings (OSTI)

The results of a recent EPRI project "Stress Corrosion Cracking in PWR and BWR Closed Cooling Water Systems," (EPRI Report 1009721, October 2004) indicated that approximately 10 of 143 light water reactor (LWR) plants surveyed had through-wall leaks in carbon steel piping in their closed cooling water (CCW) systems. The root cause of this leakage was intergranular stress corrosion cracking. Since there has not been extensive non-destructive testing in these systems, it is likely that the incidence rate o...

2006-09-28T23:59:59.000Z

383

Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting  

SciTech Connect

Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

2010-06-01T23:59:59.000Z

384

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

385

Microsoft Word - DOE-ID-11-002 DOE Direct cooling system [1].doc  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 SECTION A. Project Title: Cooling System for Substation Bldg CPP-613 SECTION B. Project Description The scope of work includes the purchase and installation of an Energy Star compliant 208V three phase staged cooling system capable of maintaining CPP-613 at a temperature below 85 degrees F. The system shall be designed to operate at an elevation of 5000 feet with outside environmental temperatures ranging from -20°F to 100°F. The cooling system shall be pad mounted on the east side of the building between the two cable feeds. The concrete pad will be provided by DOE. The scope of work includes purchasing an appropriately sized cooling system, placing the unit on the concrete pad, making all necessary wall penetrations into the building, installing ductwork and air handlers inside the building, and installing a

386

Mechanically Cooled Large-Volume Germanium Detector Systems for Neclear Explosion Monitoring DOENA27323-2  

Science Conference Proceedings (OSTI)

Compact maintenance free mechanical cooling systems are being developed to operate large volume high-resolution gamma-ray detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The maintenance-free operating lifetime of these detector systems will exceed 5 years. Three important factors affect the operation of mechanically cooled germanium detectors: temperature, vacuum, and vibration. These factors will be studied in the laboratory at the most fundamental levels to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system. Using this knowledge, mechanically cooled germanium detector prototype systems will be designed and fabricated.

Hull, E.L.

2006-10-30T23:59:59.000Z

387

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network (OSTI)

Radiant cooling is credited with improving energy efficiency and enhancing the comfort level as an alternative method of space cooling in mild and dry climates, according to recent research. Since radiant cooling panels lack the capability to remove latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies the dehumidification processes of solid desiccant systems and investigates the factors that affect the humidity levels of a radiantly cooled space. Hourly indoor humidity is simulated at eight different operating conditions in a radiantly cooled test-bed office. The simulation results show that infiltration and ventilation flow rates are the main factors affecting indoor humidity level and energy consumption in a radiantly cooled space with relatively constant occupancy. It is found that condensation is hard to control in a leaky office operated with the required ventilation rate. Slightly pressurizing the space is recommended for radiant cooling. The energy consumption simulation shows that a passive desiccant wheel can recover about 50% of the ventilation load.

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

388

Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting  

Science Conference Proceedings (OSTI)

Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

2013-03-01T23:59:59.000Z

389

A computer simulation appraisal of non-residential low energy cooling systems in California  

SciTech Connect

An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit.

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-05-17T23:59:59.000Z

390

NH3- H2O absorption systems used for research and student activities  

Science Conference Proceedings (OSTI)

In the context of the sustainable development and of the future environment and energy concerns, a new laboratory was developed based on absorption systems (a chiller-heater and a heat pump). The installation together with the proposed experimental activity ... Keywords: absorption systems, education and research activity, environment, heat pump

Ioan Boian; Alexandru Serban; Stan Fota; Florea Chiriac

2009-10-01T23:59:59.000Z

391

MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor  

E-Print Network (OSTI)

In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

Meenen, Jordan N

2010-01-01T23:59:59.000Z

392

A novel personal cooling system for use by soldiers in hot climates  

E-Print Network (OSTI)

This report focuses on the design, testing and fabrication of a lightweight personal, portable cooling system for use by soldiers beneath their Interceptor body armor. An alpha prototype was constructed and was used to ...

Gentile, Margaret H

2006-01-01T23:59:59.000Z

393

Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space  

E-Print Network (OSTI)

This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used. Temperature sensors are located at different locations inside the conditioned space in order to sense dry bulb temperatures, relative humidity to compare it with standard ASHRAE comfort values. The present investigation indicates that the radiant cooling system not only improves the indoor air quality but also reduces the building energy consumption in the conditioned space.

Mohamed, E.; Abdalla, K. N.

2010-01-01T23:59:59.000Z

394

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled Condensers in Next-Generation Conversion Systems Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description As the geothermal industry moves to use geothermal resources that are more expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of more efficient plants will likely need to reject heat sensibly to the ambient (air-cooling). This will be especially true in western states having higher grade Enhanced Geothermal Systems (EGS) resources, as well as most hydrothermal resources. If one had a choice, an evaporative heat rejection system would be selected because it would provide both cost and performance advantages. The evaporative system, however, consumes a significant amount of water during heat rejection that would require makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher parasitics (fan power), and greater variability in power output (because of large variation in the dry-bulb temperature).

395

Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers  

Science Conference Proceedings (OSTI)

Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

Xu, TengFang T.

2009-05-01T23:59:59.000Z

396

Geothermal district heating and cooling system for the city of Calistoga, California  

DOE Green Energy (OSTI)

Calistoga has long been known for having moderate (270/sup 0/F maximum) hydrothermal deposits. The economic feasibility of a geothermal heating and cooling district for a portion of the downtown commercial area and city-owned building was studied. Descriptions of existing and proposed systems for each building in the block are presented. Heating and cooling loads for each building, retrofit costs, detailed cost estimates, system schematics, and energy consumption data for each building are included. (MHR)

Frederick, J.

1982-01-01T23:59:59.000Z

397

Design, construction, and testing of a residential solar heating and cooling system  

DOE Green Energy (OSTI)

The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

Ward, D.S.; Loef, G.O.G.

1976-06-01T23:59:59.000Z

398

Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers  

Science Conference Proceedings (OSTI)

Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected passive, modular localized cooling solution provided by vendor 4. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a passive, modular, scalable liquid cooling system in this study. The scope is to quantify energy performance of the modular cooling unit corresponding to various server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

Xu, TengFang

2009-05-01T23:59:59.000Z

399

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

SciTech Connect

Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 3. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable liquid-rack cooling system in this study. The scope is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

Xu, TengFang

2009-05-01T23:59:59.000Z

400

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

DOE Green Energy (OSTI)

The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems, (2) a project to build and test several generic solar water heaters, (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems, (4) a liquid desiccant cooling system development project, (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research, and (6) a management task. The objectives and progress in each task are described in this report.

Not Available

1992-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers  

Science Conference Proceedings (OSTI)

Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 2. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable pair of chilled water cooling modules that were tested in a hot/cold aisle environment with hot aisle containment. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

Adams, Barbara J

2009-05-01T23:59:59.000Z

402

Method and system for simulating heat and mass transfer in cooling towers  

DOE Patents (OSTI)

The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

1997-01-01T23:59:59.000Z

403

Superconducting cable cooling system by helium gas at two pressures  

DOE Patents (OSTI)

Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle that changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T.sub.2 to T.sub.3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T.sub.4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T.sub.4 to T.sub.5, while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T.sub.2 in a closed cycle, where T.sub.2 >T.sub.3 and T.sub.5 >T.sub.4, the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg.

Dean, John W. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

404

Colorado State University program for developing, testing, evaluating and optimizing solar heating and cooling systems  

DOE Green Energy (OSTI)

This program includes six tasks, including (1) a project measuring the performance of unique solar system components, (2) a project to develop a methodology for determining annual performance ratings of solar domestic hot water systems, (3) a project that will identify, analyze, design, build, and experimentally evaluate SDHW systems incorporating advanced concepts and components, (4) a liquid desiccant cooling system development project, (5) a project that will perform TRNSYS simulations to determine potential energy savings for desiccant cooling systems, especially in humid climates, and (6) a management task. The objectives and progress in each task are described.

Not Available

1993-01-07T23:59:59.000Z

405

Heat pipe cooling system for underground, radioactive waste storage tanks  

SciTech Connect

An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70/sup 0/F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle.

Cooper, K.C.; Prenger, F.C.

1980-02-01T23:59:59.000Z

406

Thermal analysis of a piston cooling system with reciprocating heat pipes  

SciTech Connect

The reciprocating heat pipe is a very promising technology in engine piston cooling, especially for heavy-duty diesel engines. The concept of the reciprocating heat pipe is verified through the experimental observation of a transparent heat pipe and by thermal testing of a copper/water reciprocating heat pipe. A comparative thermal analysis on the reciprocating heat pipe and gallery cooling systems is performed. The approximate analytical results show that the piston ring groove temperature can be significantly reduced using heat pipe cooling technology, which could contribute to an increase in engine thermal efficiency and a reduction in environmental pollution.

Cao, Y.; Wang, Q. [Florida International Univ., Miami, FL (United States). Dept. of Mechanical Engineering

1995-04-01T23:59:59.000Z

407

Technical and Economic Analysis of Solar Cooling Systems in a Hot and Humid Climate  

E-Print Network (OSTI)

The aim of this paper is to promote efficient and cost effective implementation of advanced solar cooling systems and techniques for the hot and humid climates cities in the United States. After an introduction of basic principles, the development history and recent progress in solar cooling technologies are reported. Nevertheless, the economics of solar energy systems are particularly complex with much inevitable uncertainty due to several factors. In this paper, a simplified comprehensive economic optimization model is developed to determine whether a particular solar system is economically advantageous for a particular project. This model explains and illustrates with simple, but realistic examples the use of life-cycle cost analysis and benefit-cost analysis to evaluate and compare the economic efficiency of the solar cooling system. Consequently, under appropriate conditions, solar or solar-assisted air conditioning systems may be reasonable alternatives to conventional air-conditioning systems in a hot and humid climate.

Moaveni, H.

2010-08-01T23:59:59.000Z

408

Ice slurry hydraulic characterization testing of a direct freeze district cooling system  

DOE Green Energy (OSTI)

The work described in this report was performed by Chicago Bridge Iron Technical Services Company (CBITS) for the US Department of Energy (DOE). The scope of the current effort (Phase 2) is divided into three separate areas: (1) Ice Slurry Hydraulic Characterization Testing -- The objective of this effort is to fully characterize the flow characteristics of an ice slurry system in 3 different pipe sizes and across a wide range of velocities and ice fractions. This work is a direct continuation of the Phase 1 effort, with the inclusion of equipment upgrades and a wider range of test conditions. (2) Ice Slurry District Cooling Feasibility Testing -- The objective of this effort is to simulate the real-time operation of a prototype Direct Freeze district cooling system. This work includes the design, construction and operation of a pilot-scale Direct Freeze district cooling system. Variable cooling loads and ice storage capability will combine to simulate a dynamic district cooling network with thermal energy storage for peak-shifting. (3) Final Report With Economic Analysis -- The objective of this effort is to document and analyze the technical results obtained and also to discuss the economic impact of these results on a commercial Direct Freeze district cooling system. This report briefly presents the results obtained in the Ice Slurry Hydraulic Characterization Testing. A detailed discussion of these results will be provided in the project final report. 8 figs., 1 tab.

Winters, P.J.

1990-08-01T23:59:59.000Z

409

Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India  

E-Print Network (OSTI)

For detached residential buildings located in the tropics, it is more challenging and difficult to deal with the space cooling load due to hot and humid climates. In this paper, daily and monthly computer simulations of solar heat gain and cooling load for a detached residential building are carried out using Design Builder software. Different glazing systems ranging from single glazed clear glass to double glaze with electro chromic reflective colored have been analyzed in terms of their impact on solar heat gain and cooling load. The simulation results show reductions in solar heat gain, cooling load and better thermal comfort can be achieved using proper glazing systems for a specific orientation of the building. The significance of these results stems from the fact that they are obtained under local weather conditions, a matter of importance to building architects, designers, contractors, and builders as well as air conditioning equipment manufacturers.

Sahoo, P. K.; Sahoo, R.

2010-01-01T23:59:59.000Z

410

Unitary solar heating/cooling system package development. Progress report, June 1, 1977--January 31, 1978  

DOE Green Energy (OSTI)

During this period, a 3 ton residential system hardware package has been developed and is operating in an Arkla owned solar house in Evansville. The Arkla tower-cooled WF36 chiller has been substituted for the evaporatively cooled chiller under development in the package. The residential software and manufacturing programs are underway. Only preliminary thinking has been done on the commercial 25 ton program which will soon be getting major attention.

Merrick, R.H.

1978-01-01T23:59:59.000Z

411

Impact of cool storage air-conditioning in commercial sector on power system operation in Thailand  

SciTech Connect

The results are presented from an investigation into the potential application for cool storage air-conditioning, and the resultant beneficial impact on power system operation in Thailand is discussed. Field assessment through interviews with decision makers in the identified customer groups produces results that show good potential for cool storage application. Results from a computer program used to calculate power production cost and other characteristics show that substantial benefits would also accrue to the generating utility.

Surapong, C.; Bundit, L. [Asian Inst. of Tech., Bangkok (Thailand)

1997-05-01T23:59:59.000Z

412

Structural Oil Pan With Integrated Oil Filtration And Cooling System  

DOE Patents (OSTI)

An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

Freese, V, Charles Edwin (Westland, MI)

2000-05-09T23:59:59.000Z

413

EBR-II argon cooling system restricted fuel handling I and C upgrade  

SciTech Connect

The instrumentation and control of the Argon Cooling System (ACS) restricted fuel handling control system at Experimental Breeder Reactor II (EBR-II) is being upgraded from a system comprised of many discrete components and controllers to a computerized system with a graphical user interface (GUI). This paper describes the aspects of the upgrade including reasons for the upgrade, the old control system, upgrade goals, design decisions, philosophies and rationale, and the new control system hardware and software.

Start, S.E.; Carlson, R.B.; Gehrman, R.L. [Argonne National Lab., Idaho Falls, ID (United States). Engineering Div.

1995-06-01T23:59:59.000Z

414

Engineering and cost analysis of a dry cooling system augmented with a thermal storage pond  

DOE Green Energy (OSTI)

An engineering and cost study of the capacitive thermal storage pond added to a state-of-the-art dry cooling system is described. The purpose of the study was to assess the potential for reducing the cost of all-dry cooling for thermal electric power plants using a dry cooling system that includes a thermal storage pond. Using the modified BNW-I computer code, the effect of varying significant design parameters was investigated. The parametric study included studying the effects of varying turbine type, pond size, replacement energy costing, capacity penalty methodology, pond location with respect to the dry cooling tower, design temperature, and site location (meteorology). Incremental power production costs for dry cooling (i.e., the portion of the cost of bus-bar electricity from the plant which is attributable to the cost of building and operating the heat rejection system) with a thermal storage pond system were determined for meteorologies of both Wyodak, Wyoming and Phoenix, Arizona. For Wyodak the incremental cost of dry cooling with a thermal storage pond was 2.81 mills/kWh as compared to 2.55 mills/kWh for a system without a thermal storage pond. For Phoenix the incremental cost of dry cooling with a thermal storage pond was 3.66 mills/kWh as compared to 4.31 mills/kWh for a system without a thermal storage pond. If the use of a modified conventional turbine with the dry-cooled system is stipulated in order to stay with proven technology for large turbines, then results of this study show that in extremely hot climates the thermal storage pond can reduce the cost of dry cooling. If no cost penalty is assigned to high back pressure turbines and it can be used, then the thermal storage pond has no advantage in hot climates. However, collateral use of the pond for makeup or emergency cooling water storage may decreae the cost. (LCL)

Drost, M.K.; Allemann, R.T.

1978-09-01T23:59:59.000Z

415

Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads  

E-Print Network (OSTI)

The temperature differential of chilled water is an important factor used for evaluating the performance of a chilled water system. A low delta-T may increase the pumping energy consumption and increase the chiller energy consumption. The system studied in this thesis is the chilled water system at the Dallas/Fort Worth International Airport (DFW Airport). This system has the problem of low delta-T under low cooling loads. When the chilled water flow is much lower than the design conditions at low cooling loads, it may lead to the laminar flow of the chilled water in the cooling coils. The main objective of this thesis is to explain the heat transfer performance of the cooling coils under low cooling loads. The water side and air side heat transfer coefficients at different water and air flow rates are calculated. The coefficients are used to analyze the heat transfer performance of the cooling coils at conditions ranging from very low loads to design conditions. The effectiveness-number of transfer units (NTU) method is utilized to analyze the cooling coil performance under different flow conditions, which also helps to obtain the cooling coil chilled water temperature differential under full load and partial load conditions. When the water flow rate drops to 1ft/s, laminar flow occurs; this further decreases the heat transfer rate on the water side. However, the cooling coil effectiveness increases with the drop of water flow rate, which compensates for the influence of the heat transfer performance under laminar flow conditions. Consequently, the delta-T in the cooling coil decreases in the transitional flow regime but increases in the laminar flow regime. Results of this thesis show that the laminar flow for the chilled water at low flow rate is not the main cause of the low delta-T syndrome in the chilled water system. Possible causes for the piping strategy of the low delta-T syndrome existing in the chilled water system under low flow conditions are studied in this thesis: (1) use of two way control valves; and (2) improper tertiary pump piping strategy.

Li, Nanxi 1986-

2012-12-01T23:59:59.000Z

416

"Self Cooled Recirculating Liquid Metal Plasma Facing Wall System"  

NLE Websites -- All DOE Office Websites (Extended Search)

Self Cooled Recirculating Liquid Metal Plasma Facing Wall System" Self Cooled Recirculating Liquid Metal Plasma Facing Wall System" Inventor ..--.. Richard P. Majeski Disclosed is a design for a fully axisymmetric, fast flowing liquid lithium plasma facing "wall" or surface which, in its present form, is intended for implementation in a tokamak. The design employs JxB forces to form a free-surface flow along a guide wall at the outer boundary of the plasma. The implementation of the disclosure design includes a system for recirculating the liquid metal within the volume of the toroidal field coils using inductive pumping, an approach wich allows independent energizing of the wall-forming and recirculating pumping systems, cooling of the recirculating liquid using fluid heat exchange with a molten salt,

417

SOLERAS Program: engineering field test of a solar cooling system. Phase I and II  

Science Conference Proceedings (OSTI)

The rationale for selecting the engineering field test site and the building cooling requirements are described. Descriptions of the Phase I activities are presented and descriptions of the overall cooling system and its major subsystems and components are provided. The preliminary design analyses conducted to select collector/storage, chiller module and thermal distribution components; operating features and estimated system performance are included. Economic analyses and the results obtained are described including an assessment of the commercialization potential for the solar cooling system. Phase II activities are presented and detailed design, construction and installation features of the solar system at the test site are described. Testing documentation is provided by the checkout and acceptance tests and their results are described.

Not Available

1982-06-01T23:59:59.000Z

418

Prototype solar heating and cooling systems, including potable hot water. Quarterly report  

DOE Green Energy (OSTI)

The progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. Included is a comparison of the proposed Solaron-Heat Pump and Solaron-Desiccant Heating and Cooling Systems, Installation Drawings, data on the Akron House at Akron, Ohio, and other program activities from July 1, 1977 through November 9, 1977.

Not Available

1977-12-01T23:59:59.000Z

419

Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign  

DOE Green Energy (OSTI)

This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

Not Available

1978-12-01T23:59:59.000Z

420

Compact intermediate heat transport system for sodium cooled reactor  

SciTech Connect

This patent describes a combination with a sodium cooled reactor having an intermediate heat exchanger for extracting heat in a nonradioactive secondary sodium loop from the sodium rector. It comprises: first and second upstanding closed cylindrical vessels, one of the cylindrical vessels being exterior of the other of the cylindrical vessels; the other of the cylindrical vessels being interior, smaller, and concentric of the larger cylindrical vessel so as to define between the inside of the larger vessel and the outside of the smaller vessel an interstitial annular volume; at least one feedwater inlet plenums at the bottom of the larger vessel communicated to the interstitial annular volume; at least one feedwater outlet plenums at the top of the larger and outer vessel communicated to the interstitial annular volume; tubes communicated to the feedwater inlet plenum at the bottom of the vessels and to the steam outlet plenum at the top of the vessel; a first conduit; a large submersible electromagnetic pump; and a jet pump having an inlet, a venturi, and a diffusing outlet.

Boardman, C.E.; Maurer, J.P.

1990-03-06T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Computing the Atmospheric Absorption for the DMSP Operational Linescan System Infrared Channel  

Science Conference Proceedings (OSTI)

An accurate and rapid means is presented for computing the atmospheric absorption for the infrared channel (10.2–12.7 ?m) on the Defense Meteorological Satellite Program operational linescan system (OLS) for use in remote sensing studies of ...

Thomas J. Greenwald; Charles J. Drummond

1999-12-01T23:59:59.000Z

422

High performance solar desiccant cooling system: performance evaluations and research recommendations  

DOE Green Energy (OSTI)

This report presents an assessment of the current status of solar desiccant cooling and makes recommendations for continued research to develop high performance systems competitive with conventional cooling systems. Solid desiccant, liquid desiccant, and hybrid systems combining desiccant dehumidifiers with vapor compressor units are considered. Currently, all desiccant systems fall somewhat short of being competitive with conventional systems. Hybrid systems appear to have the greatest potential in the short term. Solid systems are close to meeting performance goals. Development of high performance solid desiccant dehumidifiers based on parallel passage designs should be pursued. Liquid system collector/generators and efficient absorbers should receive attention. Model development is also indicated. Continued development by hybrid systems is directly tied to the above work.

Schlepp, D.R.; Schultz, K.J.

1984-09-01T23:59:59.000Z

423

Prototype solar heating and cooling systems including potable hot water. Quarterly reports  

DOE Green Energy (OSTI)

The activities conducted by Solaron Corporation from November 1977 through September 1978 are summarized and the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water is covered. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

Williamson, R.

1978-10-01T23:59:59.000Z

424

Prototype solar heating and cooling systems. Monthly progress reports, April 1, 1978--June 30, 1978  

DOE Green Energy (OSTI)

This report is a collection of monthly status reports from the AiResearch Manufacturing Company, who is developing eight prototype solar heating and cooling sytems under NASA Contract NAS8-32091. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

Not Available

1978-07-01T23:59:59.000Z

425

Prototype solar heating and cooling systems including potable hot water. Quarterly reports, November 1976--June 1977  

DOE Green Energy (OSTI)

This report covers the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

Not Available

1978-12-01T23:59:59.000Z

426

SOLERAS program. Engineering field test of a solar cooling system. Final report  

Science Conference Proceedings (OSTI)

A solar-powered air conditioning system was designed, constructed, and installed at a Phoenix, Arizona site whose climatic conditions approximate those of Saudi Arabia. The nominal 18 ton capacity Rankine cycle chiller system with hot and cold storage and conventional fan/coil delivery units was operated for two cooling seasons and met its design objectives.

Not Available

1983-05-01T23:59:59.000Z

427

Design, fabrication and testing of a model heating and cooling system for a vacuum vessel  

SciTech Connect

A full-size model of a typical cooling and heating system for a vacuum vessel was manufactured and examined in order to clarify and enhance the efficiency and reliability of the designed system. The model consisted of two parts; one of which had the same structure as the other and was located facing each other to simulate the adiabatic condition of the vacuum-side of a vacuum vessel. Its components were rectangular plates, eletric heater units, cooling pipes inside of which water and air flew as cooling fluid. A lot of kinds of tests and measurements were performed to evaluate efficiency and reliability on the model. The numerical and theoretical analyses on the system were also carried out using the dimensional finite difference technique. The analytical results agreed pretty well with the experimental.

Shimizu, M.; Miyauchi, Y.; Nakamura, H.; Kajiura, S.; Koizumi, M.; Hata, M.

1981-01-01T23:59:59.000Z

428

Thermodynamic modeling and optimization of a screw compressor chiller and cooling tower system  

E-Print Network (OSTI)

This thesis presents a thermodynamic model for a screw chiller and cooling tower system for the purpose of developing an optimized control algorithm for the chiller plant. The thermodynamic chiller model is drawn from the thermodynamic models developed by Gordon and Ng (1996). However, the entropy production in the compressor is empirically related to the pressure difference measured across the compressor. The thermodynamic cooling tower model is the Baker & Shryock cooling tower model that is presented in ASHRAE Handbook - HVAC Systems and Equipment (1992). The models are coupled to form a chiller plant model which can be used to determine the optimal performance. Two correlations are then required to optimize the system: a wet-bulb/setpoint correlation and a fan speed/pump speed correlation. Using these correlations, a "quasi-optimal" operation can be achieved which will save 17% of the energy consumed by the chiller plant.

Graves, Rhett David

2003-12-01T23:59:59.000Z

429

Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2  

SciTech Connect

The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

2006-10-01T23:59:59.000Z

430

Design, construction, and testing of a residential solar heating and cooling system  

SciTech Connect

The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

Ward, D.S.; Loef, G.O.G.

1976-06-01T23:59:59.000Z

431

A comparative assessment of alternative combustion turbine inlet air cooling system  

SciTech Connect

Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

1996-02-01T23:59:59.000Z

432

Theoretical and Experimental Analysis of a Single Stage Ammonia-Water Absorption Chiller Performance  

Science Conference Proceedings (OSTI)

The ammonia-water absorption chillers are thermally driven devices producing a cooling effect. It can be operated without any use of electrical or mechanical energy. The advantage of absorption chillers is precisely that they can utilize low grade energy. ... Keywords: absorption system, performance, ammonia-water, thermodynamic model

Kong Dingfeng; Liu Jianhua; Zhang Liang; Zheng Guangping; Fang Zhiyun

2009-10-01T23:59:59.000Z

433

Experimental testing of control strategies for solar-cooling systems  

DOE Green Energy (OSTI)

Environmental control of a building is considered with respect to: the structural shell, HVAC distribution system, HVAC energy conversion equipment, HVAC control systems, and human factors. Modeling and computer simulation of solar HVAC systems is briefly discussed along with experimental testing by two methods--experimental operation of a solar HVAC system with a simulated collector, and experimental operation of a complete system under real weather and load conditions. Prior experimental test projects are discussed briefly and tabulated. Finally, a test program is recommended that consists of: development of a complete computer simulation model, development of control strategies to be tested, development of computer simulation sub-routines for control strategies, testing of control strategies by computer simulation, experimental testing, and data analysis. Each of these tasks is described individually. (LEW)

Curran, H.M.

1981-02-01T23:59:59.000Z

434

Heat-activated cooling devices: A guidebook for general audiences  

DOE Green Energy (OSTI)

Heat-activated cooling is refrigeration or air conditioning driven by heat instead of electricity. A mill or processing facility can us its waste fuel to air condition its offices or plant; using waste fuel in this way can save money. The four basic types of heat-activated cooling systems available today are absorption cycle, desiccant system, steam jet ejector, and steam turbine drive. Each is discussed, along with cool storage and biomass boilers. Steps in determining the feasibility of heat-activated cooling are discussed, as are biomass conversion, system cost and integration, permits, and contractor selection. Case studies are given.

Wiltsee, G.

1994-02-01T23:59:59.000Z

435

Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling  

E-Print Network (OSTI)

For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating and cooling were set up, which is responsible for the space heating and cooling and domestic hot water for a residential block. Through hourly simulation, the performance and the economics of such systems were analyzed, for the different tank volumes, operating modes and weather conditions. The results show that 1) for most areas of China, the solar systems with seasonal storage can save energy; 2) for areas with cold winter and hot summer, it is suitable to store heat from summer to winter and store cold energy from winter to summer, but for chilly areas, it is suitable to only store heat from summer to winter; 3) when the ratio of volume of seasonal storage tank to collector areas is 2~3, the system performance is optimal and the payback period is shortest for most areas of north China; and 4) if cooling storage is needed, the seasonal storage coupled with short-term storage may raise the solar fraction largely.

Yu, G.; Chen, P.; Dalenback, J.

2006-01-01T23:59:59.000Z

436

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

As a comfortable and energy-efficient air conditioning system, the application of floor radiant heating system is used increasingly greatly in the north of China. As a result, the feasibility of floor radiant cooling has gained more attention. To examine the thermodynamic performance of the floor radiant cooling system, we measured the operational conditions including the minimum floor surface temperature, the cooling capacity, and the indoor temperature field distribution under different outdoor temperatures in Beijing. Because the ground temperature changes with the mean temperature of the supplied and returned water and room temperature, the mean temperature of the supplied and retuned water was obtained. Finally, we analyzed the phenomenon of dewing and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement ventilation system, the heat transfer effect between floor and space is enhanced. Our analysis pointed out that floor radiant cooling system combined with displacement ventilation ensures good comfort and energy efficiency.

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

437

Potential use of dry cooling in support of advanced energy generation systems  

SciTech Connect

Advanced energy technologies were investigated for filling the energy supply and demand gap, including fuel cells, thermionic converters, and fusion. Technologies that have the potential for supplying energy in the future are solar, geothermal, coal gasification and liquefaction, clean solid fuel from coal, and oil shale. Results are presented of an analysis of the advanced energy generation systems, the potential for using dry cooling, and the waste heat generation characteristics of the advanced technologies. The magnitude of the waste heat expected to be generated indicates the following percentages of total cooling requirements would be needed by advanced energy technologies: (a) 1% to 2% in 1985, (b) 17% to 40% in 2000, and (c) 24% to 76% in 2025. Dry cooling could be required for flashed steam and dry steam geothermal plants if balancing withdrawal and reinjection of the geothermal fluid becomes a requirement. Binary cycle geothermal plants and plants using the hot dry rocks geothermmal resource are even more likely to require dry cooling since these plants will need an outside source of water. Solar central tower plants have a high potential for the use of dry cooling since they are likely to be located in the Southwest where water availability problems are already apparent. The high water consumption associated with the projected synthetic fuel production levels indicates that dry cooling will be desirable, perhaps even mandatory, to achieve a high level of synthetic fuel production. In the year 2000, between 2.5 and 13 GW of electrical energy produced by advanced power generation systems may require dry cooling. In the year 2025, this requirement may increase to between 4.5 and 81 GW/sub e/.

Mayer, D.W.; Arnold, E.M.; Allemann, R.T.

1979-09-01T23:59:59.000Z

438

Compact Absorption Chiller - Energy Innovation Portal  

The Compact Absorption Chiller uses microchannel technologies in an absorption heat pump which produces cooling using heat as the primary energy source.

439

An investigation of solar powered absorption cooling systems for South Africa.  

E-Print Network (OSTI)

??Increased standards of living and indoor comfort demands have led to an increase in the demand for air-conditioning in buildings in South Africa. Conventional vapor… (more)

Bvumbe, Tatenda Joseph.

2012-01-01T23:59:59.000Z

440

A simulation study for single and double effect absorption solar cooling systems operated under Taiwan climate.  

E-Print Network (OSTI)

??Abstract There is much rich solar energy in Taiwan situated at the subtropics;Therefore itâs suitable for solar energy is utilized as the driving energy for… (more)

Shen, Jyun-long

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorption cooling system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Design and Analysis of a Solar Assisted Absorption Cooling System Integrated with Latent Heat Storage.  

E-Print Network (OSTI)

??Air conditioning is one of the major consumers of electrical energy in many parts of the world. The demand can be expected to increase because… (more)

Hosseini, L.

2011-01-01T23:59:59.000Z

442

Cogeneration Systems for Powering and Cooling Data Centers: The Green Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Cogeneration Systems for Powering and Cooling Data Centers: The Green Data Cogeneration Systems for Powering and Cooling Data Centers: The Green Data Center at Syracuse University Speaker(s): Dustin W. Demetriou Date: October 28, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: William Tschudi In the near future, nearly 30 percent of data centers will run out of space, power or cooling capacity. The demand for these resources has brought energy efficiency to the forefront and driven creative thinking when considering data center construction. Syracuse University, IBM and GEM Energy opened a state-of-the-art data center composed of several innovative features that promised to reduce primary energy consumption by as much as 50 percent compared to a conventional utility-powered data center. Much of the advantage stems from the use of an on-site natural gas

443

Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms  

SciTech Connect

We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

Nonaka, T.; Dohmae, K.; Araki, T.; Hayashi, Y.; Hirose, Y. [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Uruga, T.; Yamazaki, H.; Tanida, H.; Goto, S. [JASRI/Spring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Mochizuki, T. [JASRI/Spring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Toyama Corp., Zama, Kanagawa 228-0003 (Japan)

2012-08-15T23:59:59.000Z