National Library of Energy BETA

Sample records for absorption chiller research

  1. The rediscovery of absorption chillers

    SciTech Connect (OSTI)

    Katzel, J.

    1992-04-23

    Absorption chillers are back - and for two very good reasons: they are environmentally sound and, in many cases, economically attractive. One factor fueling this resurgence is the outlook for natural gas, the energy source of most absorption systems. Deregulation has spurred exploration, and forecasts indicate an abundant supply and relatively low prices through 2050. Threats of global warming and depletion of the ozone layer also are forces driving the absorption chiller market. Being a good corporate citizen today means minimizing or eliminating the use of chlorofluorocarbons (CFCs), the basis of many refrigerants used in mechanical chillers. Even as chemical and chiller manufacturers alike work to develop substitute refrigerants, the perfect alternative has yet to be found. Absorption units are free of these problems, a benefit that appeals to many people.

  2. Residential solar-absorption chiller thermal dynamics

    SciTech Connect (OSTI)

    Guertin, J.M.; Wood, B.D.; McNeill, B.W.

    1981-03-01

    Research is reported on the transient performance of a commercial residential 3 ton lithium bromide-water absorption chiller designed for solar firing. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Tests run to ascertain computer algorithms which simulate system isolated chiller performance, revealed processes hitherto undocumented. Transient operation is simulated by three distinct algorithms associated with the three phases of chiller operation. The first phase is start up time. It was revealed during testing that the time required to reach steady state performance values, when the chiller was turned on, was a linear function of steady state water supply temperatures. The second phase is quasi steady state performance. Test facility's performance compared favorably with the manufacturer's published data. The third phase is the extra capacity produced during spin down. Spin down occurs when the hot water supply pump is turned off while the other system pumps remain operating for a few minutes, thus allowing extra chiller capacity to be realized. The computer algorithms were used to generate plots which show the operational surface of an isolated absorption chiller subjected to off design and transient operation.

  3. Purge needs in absorption chillers

    SciTech Connect (OSTI)

    Murray, J.G. )

    1993-10-01

    Absorption chillers are regaining a significant share of large tonnage chiller sales, such as they had 20 years ago. Gas-fired chillers are now available that have a base energy (ultimate fuel usage) consumption rate per ton comparable to that in electric units. Effective purging in an absorption chiller is an absolute necessity to achieve the low chilled water temperature needed for dehumidification and to fully benefit from the energy savings offered by double-effect cycles. Although the purge system is usually not shown on the typical cycle schematic, its proper functioning is a key requirement for satisfactory machine operation. This article discusses the effect of noncondensible (N/C) gases on the absorption cooling process and the basics of purge systems. In addition, the article discusses the rationale for the important design step of selecting the location of the N/C probe, and discusses purge systems applicable to the direct-fired, double-effect machines now entering the marketplace.

  4. Absorption chillers: Technology for the future

    SciTech Connect (OSTI)

    Garland, P.W.; Garland, R.W.

    1997-12-31

    In an era of heightened awareness of energy efficiency and the associated environmental impacts, many industries worldwide are exploring ``environmentally friendly`` technologies that provide equivalent or improved performance while reducing or eliminating harmful side-effects. The refrigeration and air-conditioning industry, due to its reliance on CFCs and HCFCs, has invested in research in alternatives to the industry standard vapor compression machines. One alternative technology with great promise is chemical absorption. Absorption chillers offer comparable refrigeration output with reduced SO{sub 2}, CO{sub 2}, and NO{sub x} emissions. Absorption chillers do not use CFCs or HCFCs, refrigerants that contribute to ozone depletion and global warming. Additionally, gas-fired absorption chillers can save significant amounts in energy costs when used in combination with a vapor compression chiller in a hybrid system. The hybrid system can take advantage of the comparatively low price of natural gas (per unit ton) and rely on the high performance of vapor compression when electricity prices are lower. The purpose of this article is to provide an introduction for those new to absorption technology as well as a discussion of selected high efficiency cycles, a discussion on the technology of coupling absorption with vapor compression systems to form a hybrid system, and the environmental impacts of absorption.

  5. Compact Absorption Chiller - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Compact Absorption Chiller Pacific Northwest National Laboratory Contact PNNL About This...

  6. Advanced Low Temperature Absorption Chiller Module Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - ...

  7. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C. ); Grossman, G. )

    1992-01-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the triple effect.'' A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  8. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C.; Grossman, G.

    1992-06-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the ``triple effect.`` A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  9. Absorption chillers: Part of the solution

    SciTech Connect (OSTI)

    Occhionero, A.J. ); Hughes, P.J. ); Reid, E.A. )

    1991-01-01

    Acid rain, ozone depletion, global warming, and implementation economics are considered as they relate to the advisability of expanding the application of absorption chillers. Introductory and background information are provided to put the discussion in the proper context. Then all four issues are discussed separately as they relate to absorption chillers. Acid rain and ozone depletion concerns, and implementation economics, are found to support the expanded use of absorption chillers. The global warming concern is found to be more of a gray area, but the areas of benefit correspond well with the conditions of greatest economic advantage. All things considered, absorption chillers are believed to be part of the environmental and economic solution. It is further believed that integrated resource planning (IRP) processes that consider electric and gas technologies on an equal footing would come to the same conclusion for many regions of the United States. 9 refs., 3 tabs.

  10. Simulating a 4-effect absorption chiller

    SciTech Connect (OSTI)

    Grossman, G.; Zaltash, A.; Adcock, P.W.; DeVault, R.C.

    1995-06-01

    Absorption chillers are heat-operated refrigeration machines that operate on one of the earliest known principles of refrigeration. Current absorption chillers typically use either steam or a gas-fired burner as the energy source. All current gas-fired absorption cooling systems are based on the well known single-effect or double-effect cycles. To further improve utilization of the high temperature heat available from natural gas, a variety of triple-effect cycles have been proposed and are being developed that are capable of substantial performance improvement over equivalent double-effect cycles. This article describes a study that investigated the possibility of even further improving utilization of the high temperature heat available from natural gas combustion. During the study, performance simulation was conducted for a 4-effect lithium bromide/water cycle. From an environmental perspective, absorption chillers provide several benefits. They use absorption pairs (such as lithium bromide/water) as the working fluids, rather than chlorofluorocarbons or hydrochlorofluorocarbons, which contribute to ozone depletion and global warming.

  11. Cost reduction in absorption chillers: Phase 2

    SciTech Connect (OSTI)

    Leigh, R.W.

    1989-02-01

    A research program at Brookhaven National Laboratory (BNL) has addressed the possibility of dramatically lowering the first costs of absorption chillers through lowered material intensity and the use of lower cost materials, primarily in the heat exchangers which make up the bulk of the operating components of these systems. This must be done while retaining the best performance characteristics available today, a gross design point coefficient of performance (COP) of 1.3 and a net design (seasonal) average COP of 1.0 (0.90) in a directly fired, double effect unit. We have investigated several possible routes to these goals, and here report on these findings, focusing on the areas that appear most promising. The candidate technologies include the use of polymer film heat exchangers in several applications, the use of thin strips of new, corrosion resistant alloys to replace thicker, less impervious metals in applications exposed to gas flames, and copper or cupro-nickel foils in contact with system water. The use of such materials is only possible in the context of new heat exchanger and system designs, which are also discussed. To lend focus, we have concentrated on a directly fired double effect system providing capacity only. If successful, these techniques will also find wide applicability in heat pumps, cogeneration systems, solar cooling, heat recovery and chemical process heat transfer. 46 refs., 24 figs., 22 tabs.

  12. Use Low-Grade Waste Steam to Power Absorption Chillers

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on waste steam to power absorption chillers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  13. Advanced Low Temperature Absorption Chiller Module Integrated with a CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 | Department of Energy Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Presentation on Develop & Demonstrate an Advanced Low Temp Heat

  14. Advantages and disadvantages of using absorption chillers to lower utility bills

    SciTech Connect (OSTI)

    Kistler, P.

    1997-04-01

    Absorption chillers have a proven history of providing low-cost reliable cooling and should continue to do so in the future. Absorption chiller systems can provide significant energy savings for a particular application. To maximize savings, the various system arrangements should be evaluated; for example, single effect versus double effect, chiller versus chiller/heater, straight absorption chiller or the electric/absorption hybrid.

  15. Commercial absorption chiller models for evaluation of control strategies

    SciTech Connect (OSTI)

    Koeppel, E.A.; Klein, S.A.; Mitchell, J.W.

    1995-08-01

    A steady-state computer simulation model of a direct fired double-effect water-lithium bromide absorption chiller in the parallel-flow configuration was developed from first principles. Unknown model parameters such as heat transfer coefficients were determined by matching the model`s calculated state points and coefficient of performance (COP) against nominal full-load operating data and COPs obtained from a manufacturer`s catalog. The model compares favorably with the manufacturer`s performance ratings for varying water circuit (chilled and cooling) temperatures at full load conditions and for chiller part-load performance. The model was used (1) to investigate the effect of varying the water circuit flow rates with the chiller load and (2) to optimize chiller part-load performance with respect to the distribution and flow of the weak solution.

  16. Triple effect absorption chiller utilizing two refrigeration circuits

    SciTech Connect (OSTI)

    DeVault, R.C.

    1988-03-22

    This patent describes a heat absorption method for an absorption chiller. It comprises: providing a firs absorption system circuit for operation within a first temperature range, providing a second absorption system circuit for operation within a second temperature range; heat exchanging refrigerant and absorber solution; thermal communication with an external heat load. This patent describes a heat absorption apparatus for use as an absorption chiller. It includes: a first absorption system circuit for operation within a first temperature range; a second absorption system circuit for operation within a second temperature range which has a lower maximum temperature relative to the first temperature range; the first circuit having generator means, condenser means, evaporator means, and absorber means operatively connected together; the second circuit having generator means condenser means, evaporator means, and absorber means operative connected together; and the first circuit condenser means and the first circuit absorber means being in heat exchange communication with the second circuit generator means.

  17. Use Low-Grade Waste Steam to Power Absorption Chillers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Low-Grade Waste Steam to Power Absorption Chillers Use Low-Grade Waste Steam to Power Absorption Chillers This tip sheet on waste steam to power absorption chillers provides how-to advice for improving steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #14 Use Low-Grade Waste Steam to Power Absorption Chillers (January 2012) (431.31 KB) More Documents & Publications Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications,

  18. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect (OSTI)

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  19. Heavy absorption chillers: The Tortoise technology that can win

    SciTech Connect (OSTI)

    Irwin, F.E.

    1995-06-01

    Why has Absorption taken over 200 years to become a viable technology and secondarily what is the long term potential for heavy absorption technology? A third interesting question may be as some knowledgeable people in the North America industry have professed, is there a Window of Opportunity which was presented by the electric vapor compressor refrigerant issue which will be the last chance for absorption? Of course we know that absorption is not a new technology in 1994. It is however being rediscovered in many parts of the world by specifiers and engineers who are otherwise totally familiar with HVAC systems technology. As has been well documented in Japan, absorption heavy systems have been dominant for some time to the point that over 90% of the new units installed in the heavy systems category are absorption. Further by now 50% of the installed heavy systems tonnage in the country are absorption chillers. It did not take the electric vapor compressor refrigerant issue to make this huge market for absorption and there aren`t too many people in the HVAC business in Japan that view absorption as the {open_quotes}Tortoise technology.{close_quotes} If we only understood what the drivers were in Japan to create this absorption market then perhaps we could understand and possibly predict the long term potential for the technology in other markets of the world. We could actually go to work and look for markets that mirror the prevailing conditions in Japan. There will be those amongst us who will tell you that Japan is a unique market in almost every product category and most certainly with respect to heavy chiller systems.

  20. Transient effects on the performance of a residential solar absorption chiller

    SciTech Connect (OSTI)

    Guertin, J.M.; Wood, B.D.

    1980-01-01

    The transient performance of a commercial residential 3 ton lithium-bromide/water absorption chiller is studied. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Isolation of the absorption chiller from system effects showed time to steady state performance to be a linear function of steady state water supply temperatures. These findings summarized in computer algorithms were used to map the integrated performance of a 3 ton absorption chiller.

  1. Lithium bromide absorption chiller passes gas conditioning field test

    SciTech Connect (OSTI)

    Lane, M.J.; Huey, M.A.

    1995-07-31

    A lithium bromide absorption chiller has been successfully used to provide refrigeration for field conditioning of natural gas. The intent of the study was to identify a process that could provide a moderate level of refrigeration necessary to meet the quality restrictions required by natural-gas transmission companies, minimize the initial investment risk, and reduce operating expenses. The technology in the test proved comparatively less expensive to operate than a propane refrigeration plant. Volatile product prices and changes in natural-gas transmission requirements have created the need for an alternative to conventional methods of natural-gas processing. The paper describes the problems with the accumulation of condensed liquids in pipelines, gas conditioning, the lithium bromide absorption cycle, economics, performance, and operating and maintenance costs.

  2. Cost reductions in absorption chillers. Final report, June 1984-May 1985

    SciTech Connect (OSTI)

    Leigh, R.W.

    1986-05-01

    Absorption chillers have great difficulty competing with the electric-driven compression alternative, due in part to modest operating efficiencies and largely to high first costs. This project is an assessment of the possibility of lowering the costs of absorption chillers dramatically by the use of low material intensity in the design of a new generation of these machines. Breakeven costs for absorption chillers, their heat exchangers and heat exchanger materials were established which will allow commercial success. Polymeric and metallic materials appropriate to particular components and which meet the cost goals were identified. A subset of these materials were tested and ordered by success in tolerating conditions and materials found in absorption chiller applications. Conceptual designs which indicate the practicality of the low material intensity approach were developed. The work reported here indicates that there is a high probability that this apporach will be successful.

  3. Use Low-Grade Waste Steam to Power Absorption Chillers - Steam Tip Sheet #14

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on waste steam to power absorption chillers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  4. United States Department of Energy large commercial absorption chiller development program

    SciTech Connect (OSTI)

    Garland, P.W.; DeVault, R.C.; Zaltash, A.

    1998-11-01

    The US Department of Energy (DOE) is working with partners from the gas cooling industry to improve energy efficiency and US competitiveness by using advanced absorption technologies that eliminate the use of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), refrigerants that contribute to ozone depletion and global warming. Absorption cooling uses natural gas as the heat source, which produces much lower NO{sub x} emissions than oil- or coal-generated electricity. Gas-fired chillers also have the advantage of helping reduce peak electrical usage during summer months. To assist industry in developing advanced absorption cooling technologies, DOE sponsors the Large Commercial Chiller Development Program. The goal of the program is to improve chiller cooling efficiency by 30--50% compared with the best currently available absorption systems.

  5. Investigation of the part-load performance of an absorption chiller

    SciTech Connect (OSTI)

    Radermacher, R.; Didion, D.A.; Klein, S.A.

    1983-01-01

    An experimental investigation designed to determine the part-load performance of an ammonia-water absorption water chiller is described. The steady-state and cyclic performance of the chiller were measured under controlled conditions in an environmental chamber. Two valves were installed in the chiller to separate high- and low-pressure regions during off times, and insulation was applied to the chiller components. By these measures, losses due to cyclic operation were reduced by over 50%, resulting in a 6% to 7% increase in the calculated seasonal performance factor for typical northern and southern climates in the United States. The use of the valves eliminated the need of the ''spindown'' period, thereby reducing the consumption of parasitic electrical energy.

  6. Enhanced heat transfer tubes for film absorbers of absorption chiller/heater

    SciTech Connect (OSTI)

    Sasaki, Naoe; Nosetani, Tadashi; Furukawa, Masahiro; Kaneko, Toshiyuki

    1995-12-31

    Absorption chiller/heaters using non-CFC refrigerants are attracting attention as environmentally friendly energy systems. As the refrigerant/absorbent pair, the water/lithium bromide aqueous solution pair is preferably used for most absorption chiller/heaters in Japan. Absorption chiller/heaters, mainly used as water chillers and air-conditioners, are commercially available at least for unit cooling capacities above 60 kW. In absorption chiller/heaters, the absorber must be made compact, because the absorber has the largest heat transfer area of the four primary heat exchangers in the system: the evaporator, absorber, regenerator and condenser. Although a great amount of information is available on the evaporator and condenser, the same type of information concerning the absorber is lacking. This paper introduces two kinds of double fluted tubes called Arm tubs and Floral tubes for film absorbers. Arm tubes are manufactured using a two-pass drawbench process, while Floral tubes are made using a single pass drawbench process. The experiments using a lithium bromide aqueous solution with the addition of 250 ppm n-octyl alcohol as the surfactant showed that Arm tubes and Floral tubes had about 40% higher heat transfer performance than plain tubes. Therefore, Floral tubes are expected to realize a high performance at low cost. Furthermore, the optimization of the number of grooves on the outside of the tubes is also described here.

  7. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  8. Institutional project summary University of Redlands direct fired gas absorption chiller system

    SciTech Connect (OSTI)

    Tanner, G.R.

    1996-05-01

    The University of Redlands, located in the California Inland Empire City of Redlands supplies six campus building with chilled and hot water for cooling and space heating from a centrally located Mechanical Center. The University was interested in lowering chilled water production costs and eliminating Ozone depleting chloroflourocarbon (CFC) refrigerants in addition to adding chiller capacity for future building to be added to the central plant piping {open_quotes}loop{close_quotes}. After initially providing a feasibility study of chiller addition alternatives and annual hourly load models, GRT & Associates, Inc. (GRT) provided design engineering for the installation of a 500 Ton direct gas fired absorption chiller addition to the University of Redland`s mechanical center. Based on the feasibility study and energy consumption tests done after the new absorption chiller was added, the university estimates annual energy cost saving versus the existing electric chiller is approximately $65,000 per year. Using actual construction costs, the simple before tax payback period for the project is six years.

  9. Cycle simulation of the low-temperature triple-effect absorption chiller with vapor compression unit

    SciTech Connect (OSTI)

    Kim, J.S.; Lee, H.

    1999-07-01

    The construction of a triple-effect absorption chiller machine using the lithium bromide-water solution as a working fluid is strongly limited by corrosion problems caused by the high generator temperature. In this work, three new cycles having the additional vapor compression units were suggested in order to lower the generator temperature of a triple-effect absorption chiller. Each new cycle has one compressor located at the different position which was used to elevate the pressure of the refrigerant vapor. Computer simulations were carried out in order to examine both the basic triple-effect cycle and three new cycles. All types of triple-effect absorption chiller cycles were found to be able to lower the temperature of high-temperature generator to the more favorable operation range. The COPs of three cycles calculated by considering the additional compressor works showed a small level of decrease or increase compared with that of the basic triple-effect cycle. Consequently, a low-temperature triple-effect absorption chiller can be possibly constructed by adapting one of three new cycles. A great advantage of these new cycles over the basic one is that the conventionally used lithium bromide-water solution can be successfully used as a working fluid without the danger of corrosion.

  10. Performance of a double-effect absorption chiller driven by ICPC solar collectors

    SciTech Connect (OSTI)

    Bergquam, J.B.; Duff, W.S.; Brezner, J.M.; Henkel, E.T.; Winston, R.; O'Gallagher, J.; Sethi, P.

    1999-07-01

    This paper presents experimental data and analytical results describing the performance of a 70 kW (20 ton), water-fired, double-effect absorption chiller. The chiller is driven by a 106 m{sup 2} array of integrated compound parabolic concentrator (ICPC) solar collectors. For this project, an existing gas-fired chiller was modified to operate on hot water. The water was heated by an array of 336 evacuated ICPC tubes. Each tube has an effective area of 0.317 m{sup 2}. The chiller and collector array are part of a complete solar HVAC system that provides air conditioning and space heating for a 743 m{sup 2} (8,000 ft{sup 2}) commercial building in Sacramento, CA. The other components of the HVAC system are a high temperature storage tank, a cooling tower, a gas-fired back-up boiler and five 14 kW (4 ton) cooling/heating fan coil units. The experimental data are used to determine; (1) the efficiency of the collectors; (2) the coefficient of performance of the chiller; and (3) the overall energy balance on the system. Computer models have also been developed to predict the performance and to optimize the design and operating characteristics of the HVAC system.

  11. Triple effect absorption chiller utilizing two refrigeration circuits

    DOE Patents [OSTI]

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  12. Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network

    SciTech Connect (OSTI)

    Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F.

    1998-10-01

    The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

  13. The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone

    SciTech Connect (OSTI)

    Tsilingiris, P.T. )

    1992-07-01

    The possibility of using solar ponds as low-cost solar collectors combined with commercial absorption chillers in large scale solar cooling design is investigated. The analysis is based on the combination of a steady-state solar pond mathematical model with the operational characteristics of a commercial absorption chiller, assuming condenser heat rejection in the upper convecting zone (U.C.Z.). The numerical solution of the nonlinear equations involved leads to results which relate the chiller capacity with pond design and environmental parameters, which are also employed for the investigation of the optimum pond size for a minimum capital cost. The derived cost per cooling kW for a 350 kW chiller ranges from about 300 to 500 $/kW cooling. This is almost an order of magnitude lower than using a solar collector field of evacuated tube type.

  14. Absorption chiller optimization and integration for cogeneration and engine-chiller systems. Phase 1 - design. Topical report, April 1985-July 1986

    SciTech Connect (OSTI)

    Kubasco, A.J.

    1986-07-01

    A market study indicates a significant market potential for small commercial cogeneration (50-500 kW) over the next 20 years. The potential exists for 1500 installations per year, 80% of those would be a system composed of Engine-Generator and Heat Recovery Unit with the remainder requiring the addition of an Absorption Chiller. A preliminary design for an advanced Heat Recovery Unit (HRU) was completed. The unit incorporates the capability of supplementary firing of the exhaust gas from the new generation of natural gas fired lean burn reciprocating engines being developed for cogeneration applications. This gives the Heat Recovery Unit greater flexibility in following the thermal load requirements of the building. An applications and design criteria analysis indicated that this was a significant feature for the HRU as it can replace a standard auxiliary boiler thus affording significant savings to the building owner. A design for an advanced absorption chiller was reached which is 15% lower in cost yet 9% more efficient than current off-the-shelf units. A packaged cogeneration system cost and design analysis indicates that a nominal 254 kW cogeneration system incorporating advanced components and packaging concepts can achieve a selling price of less than $880/kW and $700/kW with and without an absorption chiller.

  15. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    SciTech Connect (OSTI)

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

    1996-04-01

    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  16. Chapter 14: Chiller Evaluation Protocol

    SciTech Connect (OSTI)

    Tiessen, A.

    2014-09-01

    This protocol defines a chiller measure as a project that directly impacts equipment within the boundary of a chiller plant. A chiller plant encompasses a chiller--or multiple chillers--and associated auxiliary equipment. This protocol primarily covers electric-driven chillers and chiller plants. It does not include thermal energy storage and absorption chillers fired by natural gas or steam, although a similar methodology may be applicable to these chilled water system components. Chillers provide mechanical cooling for commercial, institutional, multiunit residential, and industrial facilities. Cooling may be required for facility heating, ventilation, and air conditioning systems or for process cooling loads (e.g., data centers, manufacturing process cooling). The vapor compression cycle, or refrigeration cycle, cools water in the chilled water loop by absorbing heat and rejecting it to either a condensing water loop (water cooled chillers) or to the ambient air (air-cooled chillers).

  17. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    SciTech Connect (OSTI)

    Urata, Tatsuo

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  18. Modeling the performance of small capacity lithium bromide-water absorption chiller operated by solar energy

    SciTech Connect (OSTI)

    Saman, N.F.; Sa`id, W.A.D.K.

    1996-12-31

    An analysis of the performance of a solar operated small capacity (two-ton) Lithium Bromide-Water (LiBr-H{sub 2}O) absorption system is conducted. The analysis is based on the first law of thermodynamics with lithium bromide as the absorbent and water as the refrigerant. The effect of various parameters affecting the machine coefficient of performance under various operating conditions is reported. Coefficient of performance of up to 0.8 can be obtained using flat plate solar collectors with generator temperatures in the range of 80--95 C (176--203 F). Liquid heat exchangers with effectiveness based on an NTU of the order of one would be a good design choice. The chiller can save approximately 3,456 kWh/yr per a two-ton unit, and it will reduce emissions by 19 lb of NO{sub x}, 5,870 lb of CO{sub 2}, and 16 lb of SO{sub x} per year per machine.

  19. Simulation and performance analysis of a 4-effect lithium bromide-water absorption chiller

    SciTech Connect (OSTI)

    Grossman, G.; Zaltash, A.; DeVault, R.C.

    1995-02-01

    Performance simulation has been conducted for a 4-effect lithium bromide-water chiller, capable of substantial performance improvement over state-of-the-art double-effect cycles. The system investigated includes four condensers and four desorbers coupled together, forming an extension of the conventional double-effect cycle; based on prior analytical studies, a parallel flow system was preferred over series flow, and double-condenser coupling was employed, to further improve performance. A modular computer code for simulation of absorption systems (ABSIM) was used to investigate the performances of the cycle. The simulation was carried out to investigate the influence of some major design parameters. A coefficient of performance around 2.0 (cooling) was calculated at the design point, with a heat supply temperature of 600{degrees}F (315{degrees}C) at the solution outlet from the high temperature desorber. With some optimization of the weak (pumped) solution flowrate and of the solution split among the four desorbers, this COP may be raised above 2.2.

  20. A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat

    SciTech Connect (OSTI)

    Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G.

    1996-11-01

    Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

  1. Low-cost thin-film absorber/evaporator for an absorption chiller. Final report, May 1992-April 1993

    SciTech Connect (OSTI)

    Lowenstein, A.; Sibilia, M.

    1993-04-01

    The feasibility of making the absorber and evaporator of a small lithium-bromide absorption chiller from thin plastic films was studied. Tests were performed to measure (1) pressure limitations for a plastic thin-film heat exchanger, (2) flow pressure-drop characteristics, (3) air permeation rates across the plastic films, and (4) creep characteristics of the plastic films. Initial tests were performed on heat exchangers made of either low-density polyethylene (LDPE), high-density polyethylene (HDPE), or a LDPE/HDPE blend. While initial designs for the heat exchanger failed at internal pressures of only 5 to 6 psi, the final design could withstand pressures of 34 psi.

  2. Automated Centrifugal Chiller Diagnostician - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search Automated Centrifugal Chiller Diagnostician Pacific Northwest National Laboratory Contact PNNL About This Technology Centrifugal chiller display Centrifugal chiller display Typical diagnostic display Typical diagnostic display Technology Marketing Summary Researchers and engineers at PNNL have developed an automated, sophisticated, multi-level, real-time centrifugal chiller diagnostician with diagnostics available under partial

  3. Lithium bromide chiller technology in gas processing

    SciTech Connect (OSTI)

    Huey, M.A.; Leppin, D.

    1995-12-31

    Lithium Bromide (LiBr) Absorption Chillers have been in use for more than half a century, mainly in the commercial air conditioning industry. The Gas Research Institute and EnMark Natural Gas Company co-funded a field test to determine the viability of this commercial air conditioning technology in the gas industry. In 1991, a 10 MMCFC natural gas conditioning plant was constructed in Sherman, Texas. The plant was designed to use a standard, off-the-shelf chiller from Trane with a modified control scheme to maintain tight operating temperature parameters. The main objective was to obtain a 40 F dewpoint natural gas stream to meet pipeline sales specifications. Various testing performed over the past three years has proven that the chiller can be operated economically and on a continuous basis in an oilfield environment with minimal operation and maintenance costs. This paper will discuss how a LiBr absorption chiller operates, how the conditioning plant performed during testing, and what potential applications are available for LiBr chiller technology.

  4. Gas engine driven chiller development and economics

    SciTech Connect (OSTI)

    Koplow, M.D.; Searight, E.F.; Panora, R.

    1986-03-01

    The TECOGEN Division of Thermo Electron Corporation has developed a nominal 150 ton engine driven chiller system under the sponsorship of the Gas Research Institute. The system incorporates an engine directly driving a screw compressor to produce about 130 tons of cooling capacity and a single effect absorption chiller driven by hot water recovered from engine heat to produce another 30 tons of cooling capacity. An economic analysis shows that it will be possible to recover the cost premium of engine driven chiller systems in most US cities in 3 years or less with the O and M savings of these systems when this cost premium is $30 per ton. 4 references, 13 figures, 5 tables.

  5. Use Low-Grade Waste Steam to Power Absorption Chillers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LiBr) Absorption for CHP Applications, April 2005 Improving Steam System Performance: A Sourcebook for Industry, Second Edition Flash High-Pressure Condensate to Regenerate Low

  6. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report

    SciTech Connect (OSTI)

    Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

  7. Chiller-heater unit nets building 2-yr payback

    SciTech Connect (OSTI)

    Duffy, J.

    1983-05-09

    A 500-ton double-absorption Hitachi Paraflow chiller-heater that switches from purchased steam to natural gas will reduce a Manhattan office building's energy costs by 55% and achieve a two-year payback. The new system replaces a steam-powered, single-stage absorption chiller. By reusing heat in a second-stage generator, the Hitachi unit uses only half as many Btus per ton as a conventional chiller. (DCK)

  8. Demonstration of a new ICPC design with a double-effect absorption chiller in an office building in Sacramento, California[Integrated Compound Parabolic Concentrator

    SciTech Connect (OSTI)

    Duff, W.S.; Winston, R.; O'Gallagher, J.J.; Henkel, T.; Muschaweck, J.; Christiansen, R.; Bergquam, J.

    1999-07-01

    In 1998 two new technologies, a new ICPC solar collector and the solar operation of a double effect chiller, have been demonstrated for the first in an office building in Sacramento, California. This paper describes the demonstration project and reports on component and system performance.

  9. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  10. Electric chiller handbook. Final report

    SciTech Connect (OSTI)

    1998-02-01

    Electric chillers have dominated the market for large commercial cooling systems due to their history of reliable, economical operation. The phaseout of CFCs and deregulation of the utility industry are two factors that significantly impact the chiller market. The CFC phaseout is resulting in the upgrading or replacement of thousands of electric chillers nationwide. In a deregulated environment, utilities are finding increasing need to provide services that can win and retain new customers. Utility representatives need current information on applying and selecting cost-effective chiller systems. The objective of this report was to develop a comprehensive handbook that helps utility technical and marketing staff, their customers, and design professionals evaluate and select the best options for chilled-water systems in commercial buildings. Investigators used a variety of industry data sources to develop market-share information for electric and gas chiller systems and to determine applications according to building age, type, and region. Discussions with chiller manufacturers provided information on product availability, performance, and ownership cost. Using EPRI`s COMTECH software, investigators performed comprehensive cost analyses for placement of large and small chillers in three representative cities. Case studies of actual installations support these analyses. Electric Chiller Handbook provides a single source of current information on all major issues associated with chiller selection and application. Key issues include chiller availability and markets, rated performance, future viability of various refrigerant options, the cost-effectiveness of alternative chillers, and chilled-water system optimization. The Handbook also describes available hardware, outlines the features and costs of gas-fired competitive systems, and provides methods and comparisons of life-cycle costing of various chiller system options. Analyses of chiller features and economics show

  11. Truck Thermoacoustic Generator and Chiller

    SciTech Connect (OSTI)

    Keolian, Robert

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

  12. Nanolubricants to Improve Chiller Performance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanolubricants to Improve Chiller Performance Nanolubricants to Improve Chiller Performance Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer ...

  13. Radiance Research Particle Soot/Absorption Photometer Instrument...

    Office of Scientific and Technical Information (OSTI)

    Radiance Research Particle SootAbsorption Photometer Instrument Handbook Citation Details In-Document Search Title: Radiance Research Particle SootAbsorption Photometer ...

  14. Report on field experiment program lithium bromide absorption chiller: Field gas conditioning project, Grayson County, Texas. Topical report, May 1991-December 1994

    SciTech Connect (OSTI)

    Lane, M.J.; Kilbourn, R.A.; Huey, M.A.

    1995-12-01

    The primary objective of the project was to determine the applicability of using commercial absorption air conditioning technology in an oil and gas field environment to condition natural gas to meet contractual limitations. Operational and maintenance requirements were documented throughout the test period of 1992 through 1994.

  15. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect (OSTI)

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  16. SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER

    SciTech Connect (OSTI)

    Randy C. Gee

    2004-11-15

    This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

  17. Gas-fired chiller-heaters as a central plant alternative for small office buildings

    SciTech Connect (OSTI)

    Thies, R.M.; Bahnfleth, W.

    1998-01-01

    Gas absorption chillers-heaters have been applied successfully in large projects where use of multiple chillers is feasible. Large facilities typically have a substantial base cooling load. If the base load is greater than 30% of the minimum capacity of the smallest chiller, chiller-heaters alone can be used as the building central plant. However, this study shows that a small office building presents part-load design difficulties that tend to favor the use of other technologies. The engineer can overcome these application problems by a variety of means, as has been illustrated. Manufacturers, too, are addressing the problems associated with low-load operation of direct-fired chiller heaters. A new generation of chiller-heaters that can unload down to 10% of design load will soon be available. If these new machines are capital-cost-competitive and perform up to expectations, the routine application of chiller-heaters in small commercial buildings may be just around the corner.

  18. The Correlation of Coupled Heat and Mass Transfer Experimental Data for Vertical Falling Film Absorption

    SciTech Connect (OSTI)

    Keyhani, M; Miller, W A

    1999-11-14

    Absorption chillers are gaining global acceptance as quality comfort cooling systems. These machines are the central chilling plants and the supply for cotnfort cooling for many large commercial buildings. Virtually all absorption chillers use lithium bromide (LiBr) and water as the absorption fluids. Water is the refrigerant. Research has shown LiBr to he one of the best absorption working fluids because it has a high affinity for water, releases water vapor at relatively low temperatures, and has a boiling point much higher than that of water. The heart of the chiller is the absorber, where a process of simultaneous heat and mass transfer occurs as the refrigerant water vapor is absorbed into a falling film of aqueous LiBr. The more water vapor absorbed into the falling film, the larger the chiller's capacity for supporting comfort cooling. Improving the performance of the absorber leads directly to efficiency gains for the chiller. The design of an absorber is very empirical and requires experimental data. Yet design data and correlations are sparse in the open literature. The experimental data available to date have been derived at LiBr concentrations ranging from 0.30 to 0.60 mass fraction. No literature data are readily available for the design operating conditions of 0.62 and 0.64 mass fraction of LiBr and absorber pressures of 0.7 and 1.0 kPa.

  19. Covered Product Category: Air-Cooled Electric Chillers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Air-Cooled Electric Chillers Covered Product Category: Air-Cooled ... chillers (i.e., none with remote condensers) are covered. b Performance ...

  20. ITP Industrial Distributed Energy: The Future of Absorption Technology...

    Broader source: Energy.gov (indexed) [DOE]

    1 Ferdinand Carr Several factors have influenced absorption chiller sales since then. Natural gas prices, as well as, fuel availability concerns and governmental policies...

  1. Chiller Controls-related Energy Saving Opportunities in FederalFacilities

    SciTech Connect (OSTI)

    Webster, Tom

    2003-01-01

    occurs in large buildings, we have focused on water-cooled screw and centrifugal chillers of 100 ton capacity and greater. However, the role of reciprocating and gas chillers (absorption and engine driven) is discussed briefly. Understanding the demographics of chiller deployment in the federal sector, state of practice of energy savings strategies and control features availability will help federal energy managers and program implementers to make informed decisions in support of energy saving performance contracting (ESPC) and other programs.

  2. Healthcare Energy: Spotlight on Chiller Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chiller Plants Healthcare Energy: Spotlight on Chiller Plants The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. See below for a few highlights from monitoring chiller plant energy. Image of a chiller plant. Chiller Energy Annual site energy use intensities (EUIs) for chiller energy were estimated to be 27.7 kBtu/ft2-yr for the the Massachusetts General Hospital (MGH) Gray Building and 26.8 kBtu/ft2-yr for the State

  3. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development status of air-cooled lithium bromide (LiBr)-water absorption chillers for cooling, heating, and power (CHP) system applications in light-commercial buildings.

  4. Covered Product Category: Water-Cooled Electric Chillers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Category: Water-Cooled Electric Chillers Covered Product Category: Water-Cooled Electric Chillers The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency

  5. Magnetic-Bearing Chiller Compressors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment » Magnetic-Bearing Chiller Compressors Magnetic-Bearing Chiller Compressors Centrifugal, two-stage, magnetic-bearing chiller compressors equipped with variable-speed drives are a relatively new technology that operates at a high efficiency. Based on this case study, independent analysis by the U.S. Department of the Navy has verified that magnetic bearing compressors operate more efficiently than reciprocating and screw compressors, especially during partial load

  6. Global climate change: Mitigation opportunities high efficiency large chiller technology

    SciTech Connect (OSTI)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  7. Covered Product Category: Water-Cooled Electric Chillers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Water-Cooled Electric Chillers The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for water-co...

  8. Promising Technology: Magnetic Bearing Variable-Speed Centrifugal Chillers

    Broader source: Energy.gov [DOE]

    Magnetic bearing variable speed centrifugal chillers save energy compared to conventional chillers by eliminating friction with the magnetic bearings and by improving efficiency at partial loads with the variable speed drive. In addition to saving energy, the magnetic bearings eliminate the maintenance costs associated with lubricating conventional metal bearings.

  9. Energy savings potential in air conditioners and chiller systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  10. Energy savings potential in air conditioners and chiller systems

    SciTech Connect (OSTI)

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  11. Final TEchnical REport Two 175 ton geothermal chiller heat pumps...

    Office of Scientific and Technical Information (OSTI)

    ... was generated by coal-fired plants, producing approximately 900 grams of C02 per kWh. ... Exposure to the working chiller plant (see images 1, 4, and 5) provided valuable ...

  12. Transient simulation of absorption machines

    SciTech Connect (OSTI)

    Anand, D.K.; Allen, R.W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steady-state value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  13. Transient simulation of absorption machines

    SciTech Connect (OSTI)

    Anand, D.K.; Allen, R.W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steadystate value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  14. QuikChill software for efficient chiller upgrade assessment

    SciTech Connect (OSTI)

    Rose, R.J.; Anderson, D.

    1998-07-01

    Chiller upgrades, required by recent CFC legislation, have not occurred in most large US facilities. Opportunities for compliance via efficient, correctly-sized chillers is significant, but there is little industry infrastructure encouraging downsizing and maximum efficiency, nor are changeouts approached as investments. Upgrade performance analysis is either too simplistic (missing integration and downsizing opportunities) or too difficult, detailed, and expensive. A niche exists for dedicated tools that can be used for both early screening and more detailed final design analysis, including downsizing, system integration, and staging. QuickChill, a chiller upgrade analysis software tool, as developed by EPA's ENERGY STAR Buildings Program to address these issues. It performs economic and energy analyses of potential centrifugal chiller upgrades using minimal information, and performs more accurate calculations as the quality and detail or inputs are increased. QuikChill assesses the consolidation of existing chillers, integration/staging of new chillers, and refrigerant conversion retrofits. QuikChill was designed for facility managers and consulting engineers facing CFC phaseouts. Rather than require time-consuming, detailed building shell and operational inputs, QuikChill estimates loads using DOE2-generated curves which plot the relationship between cooling load and outdoor temperature. Surprisingly, these curves reasonably predict annual cooling system operating requirements when used with local hourly temperatures and the peak load met by the existing system. Hourly temperature data is available for over 240 locations and users can easily supply peak information. QuikChill's combination of simplified inputs, investment-orientation, and unique approach to hourly cooling load estimation help fill an analytical void for the post-CFC chiller industry.

  15. Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume II: Chiller test data

    SciTech Connect (OSTI)

    Keuper, E.F.

    1996-03-01

    The data presented here were taken under Trane Laboratory Test Order 23127 between May and October 1995. The chiller was a 200 nominal ton three stage direct drive centrifugal chiller with two economizers. Three sets of impellers, three refrigerants and two oils were tested in the chiller according to the following matrix. Trane 22 is a mineral oil and Solest 68 is a polyolester oil. Runs 1 through 6 were to optimize the refrigerant charge using CFC-11. This was determined to be 360 lbm (163.3 Kg) and this value was used for all three refrigerants. The chiller takes a charge of six gallons of oil (22.7 liters). These data which follow are divided into Large Impeller, Medium Impeller and Small Impeller sets further subdivided by Imperial and Metric presentation. The data were taken in Imperial Units. These data are presented in four-page sets. Page 1 shows the reduced chiller test data. Page 2 shows some supporting calculations by curve fit, such as motor efficiency and motor speed. Pages 3 and 4 show the raw data as delivered by the laboratory. All following four-page sets are repetition of the form but for successive test runs.

  16. Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

  17. Optimum hot water temperature for absorption solar cooling

    SciTech Connect (OSTI)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  18. An improved absorption generator for solar-thermal powered heat pumps. Part 2: Energy and economics

    SciTech Connect (OSTI)

    Fineblum, S.

    1997-12-31

    Solar heated absorption chiller installations have been very expensive for their rating. To enhance collector thermal efficiency the liquid flowing within the collectors must be kept as cool as possible. However, there is also a need to operate the absorption reported earlier. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and more efficient. As noted in Part 1, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures. Therefore, a smaller, less expensive chiller is required. The reduced investment in solar arrays and absorption chillers is estimated along with a range of paybacks.

  19. An approach for assessing the economics of sorption chillers

    SciTech Connect (OSTI)

    Summerer, F.; Ziegler, F.F.

    1998-10-01

    Two methods are presented to optimize sorption chillers with respect to economics. To this end, the investment that is necessary for the heat exchangers is balanced with the achievable COP. The numerical tools available today allow for an exact calculation of thermodynamic processes. However, the thermophysical property data these calculations are based on are often not reliable. Moreover, the economic data that have to be taken into account are very rough guesses in most cases. Consequently, a detailed thermodynamic calculation often is too much effort if quick economic decisions have to be made. This paper shows how, based on the main irreversibilities of the process, quite strong economic statements can be made with limited effort. For detailed engineering and optimization, however, a sound cycle calculation is required. In this respect, an economic optimization can only be performed when all relevant parameters determining the process (e.g., pump flow rates and heat exchanger areas) are varied simultaneously while keeping constant the external temperatures of heat sources and sinks. The result of this parameter variation is the chiller COP, which is dependent on the overall heat exchanger area invested in the chiller. This result can be translated into running cost vs. first cost. Consequently, an economic optimum can be found. In most cases, only chillers that perform near the optimum are economically competitive.

  20. Covered Product Category: Water-Cooled Electric Chillers

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  1. Covered Product Category: Air-Cooled Electric Chillers

    Office of Energy Efficiency and Renewable Energy (EERE)

    FEMP provides acquisition guidance and Federal efficiency requirements for electric chillers, which are a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  2. An improved absorption generator for solar-thermal powered heat pumps. Part 1: Feasibility

    SciTech Connect (OSTI)

    Fineblum, S.

    1997-12-31

    Solar heated absorption chiller installations have been, typically, very expensive for their rating. The need to keep the liquid flowing within the collectors as cool as possible to enhance collector thermal efficiency, conflicts with the need to operate the absorption chiller at a higher temperature. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and much more efficient. In addition, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures and, therefore, a smaller chiller is required. The economic consequences of these benefits will be presented in Part 2.

  3. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect (OSTI)

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  4. Chiller condition monitoring using topological case-based modeling

    SciTech Connect (OSTI)

    Tsutsui, Hiroaki; Kamimura, Kazuyuki

    1996-11-01

    To increase energy efficiency and economy, commercial building projects now often utilize centralized, shared sources of heat such as district heating and cooling (DHC) systems. To maintain efficiency, precise monitoring and scheduling of maintenance for chillers and heat pumps is essential. Low-performance operation results in energy loss, while unnecessary maintenance is expensive and wasteful. Plant supervisors are responsible for scheduling and supervising maintenance. Modeling systems that assist in analyzing system deterioration are of great benefit for these tasks. Topological case-based modeling (TCBM) (Tsutsui et al. 1993; Tsutsui 1995) is an effective tool for chiller performance deterioration monitoring. This paper describes TCBM and its application to this task using recorded historical performance data.

  5. Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commissioned LEED Platinum Building | Department of Energy Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently commissioned LEED Platinum Building Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently commissioned LEED Platinum Building This project will operate; collect data; and market the energy savings and capital costs of a recently commissioned chiller geothermal heat pump project to promote the wide-spread adoption of this mature

  6. Aging assessment of essential HVAC chillers used in nuclear power plants

    SciTech Connect (OSTI)

    Blahnik, D.E.; Camp, T.W.

    1996-09-01

    The Pacific Northwest Laboratory conducted a comprehensive aging assessment of chillers used in the essential safety air-conditioning systems in nuclear power plants (NPPs). The chillers used, and air-conditioning systems served, vary in design from plant to plant. The review of operating experience indicated that chillers experience aging degradation and failures. The primary aging factors of concern for chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. The evaluation of Licensee Event Reports (LERs) indicated that about 38% of the failures were primarily related to aging, 55% were partially aging related, and 7% of the failures were unassignable. About 25% of the failures were primarily caused by human, design, procedure, and other errors. The large number of errors is probably directly related to the complexity of chillers and their interfacing systems. Nearly all of the LERs were the result of entering plant Technical Specification Limiting Condition for Operation (LCO) that initiated remedial actions like plant shutdown procedures. The trend for chiller-related LERs has stabilized at about 0.13 LERs per plant year since 1988. Carefully following the vendor procedures and monitoring the equipment can help to minimize and/or eliminate most of the premature failures. Recording equipment performance can be useful for trending analysis. Periodic operation for a few hours on a weekly or monthly basis is useful to remove moisture and non-condensable gases that gradually build up inside the chiller. Chiller pressurization kits are available that will help minimize the amount of moisture and air ingress to low-pressure chillers during standby periods. The assessment of service life condition monitoring of chillers indicated there are many simple to sophisticated methods available that can help in chiller surveillance and monitoring.

  7. Aging assessment of essential HVAC chillers used in nuclear power plants. Phase 1, Volume 1

    SciTech Connect (OSTI)

    Blahnik, D.E.; Klein, R.F.

    1993-09-01

    The Pacific Northwest Laboratory conducted a Phase I aging assessment of chillers used in the essential safety air-conditioning systems of nuclear power plants. Centrifugal chillers in the 75- to 750-ton refrigeration capacity range are the predominant type used. The chillers used, and air-conditioning systems served, vary in design from plant-to-plant. It is crucial to keep chiller internals very clean and to prevent the leakage of water, air, and other contaminants into the refrigerant containment system. Periodic operation on a weekly or monthly basis is necessary to remove moisture and noncondensable gases that gradually build up inside the chiller. This is especially desirable if a chiller is required to operate only as an emergency standby unit. The primary stressors and aging mechanisms that affect chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. Aging is accelerated by moisture, non-condensable gases (e.g., air), dirt, and other contamination within the refrigerant containment system, excessive start/stop cycling, and operating below the rated capacity. Aging is also accelerated by corrosion and fouling of the condenser and evaporator tubes. The principal cause of chiller failures is lack of adequate monitoring. Lack of performing scheduled maintenance and human errors also contribute to failures.

  8. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    SciTech Connect (OSTI)

    Zaltash, Abdolreza

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, and Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.

  9. GAX absorption cycle design process

    SciTech Connect (OSTI)

    Priedeman, D.K.; Christensen, R.N.

    1999-07-01

    This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

  10. Development of a gas engine-driven chiller. Annual report, January 1988-November 1988

    SciTech Connect (OSTI)

    Koplow, M.; Morgan, J.

    1989-10-01

    The report covers the third and final year of activity in a program to develop a natural gas engine-driven chiller with a nominal capacity of 150 tons. During the period covered by the report the field testing of six chillers continued, and a seventh and the final field test chiller was installed and started (April 1988). Field test hours for the period totalled 17,299, bringing the total field test hours to 24,247. The reliability and serviceability of the chiller have met expectations and have proven to be within the bounds of acceptability for this type of equipment. A ton-hour weighted coefficient of performance of 1.26 was obtained for the year.

  11. In-situ gamma-PHA measurements to support unconditional release of 235-F chiller units

    SciTech Connect (OSTI)

    Salaymeh, S.R.

    2000-02-17

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facility Decommission Division (FDD) to conduct in-situ gamma-ray pulse height analysis measurements to support the unconditional release of 235-F chiller units. The chiller units were used to cool process water in the 235-F facility. The measurements' main goal is to confirm that there is no process-related contaminants present on the chillers. For each of the two F-area clean water chillers, the authors have acquired ten gamma-ray pulse height analysis spectra. This report will discuss the purpose of the measurements, the experimental setup, data acquisition, calculations and results, and a conclusion of the study.

  12. Two 175 ton geothermal chiller heat pumps for leed platinum building

    Office of Scientific and Technical Information (OSTI)

    technology demonstration project. Operation data, data collection and marketing (Technical Report) | SciTech Connect Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing Citation Details In-Document Search Title: Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing The activities funded by this grant

  13. Comparison of chiller models for use in model-based fault detection

    SciTech Connect (OSTI)

    Sreedharan, Priya; Haves, Philip

    2001-06-07

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Factors that are considered in evaluating a model include accuracy, training data requirements, calibration effort, generality, and computational requirements. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression chillers. Three different models were studied: the Gordon and Ng Universal Chiller model (2nd generation) and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles, and the DOE-2 chiller model, as implemented in CoolTools{trademark}, which is empirical. The models were compared in terms of their ability to reproduce the observed performance of an older, centrifugal chiller operating in a commercial office building and a newer centrifugal chiller in a laboratory. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.

  14. Solar absorption cooling plant in Seville

    SciTech Connect (OSTI)

    Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe

    2010-08-15

    A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

  15. Use Low-Grade Waste Steam to Power Absorption Chillers, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The refrigerant vapor from the evaporator is absorbed by a solution mixture in the absorber. This solution is then pumped to the generator where the refrigerant is revaporized ...

  16. Model-based chiller energy tracking for performance assurance at a university building

    SciTech Connect (OSTI)

    Piette, M.A.; Carter, G.; Meyers, S.; Sezgen, O.; Selkowoitz, S.

    1997-09-01

    Buildings and their various subsystems often do not perform as well as intended at the design stage. Building energy performance suffers from insufficient documentation of design intent, inadequate building commissioning, and a lack of robust methods for short term and continuous performance tracking. This paper discusses how calibrated models can be used to track building systems and component performance from design, through commissioning, and into operations. Models of the chillers energy use and efficiency were developed and used to evaluate energy performance and control changes to minimize energy use. The example discussed is based on an actual university building. A detailed discussion of the extrapolation and associated uncertainty of using six months of data to develop annual energy use scenarios from various chiller models is included. An important lesson concerning the design is that there was significant oversizing of the chillers resulting in poor part load performance and over $3,000 year of annual energy cost increases. The oversizing is related to extremely high estimates of office equipment loads. The oversizing also causes frequent cycling of chillers, which shortens chiller life. Due to the lack of careful start-up procedures, it appears construction debris fouled one of the new chillers, resulting in about $5,200 year in energy increases. Additional comments on design and commissioning issues are included. The monitoring, modeling, and software development efforts were developed to demonstrate the value of collecting and organizing information regarding design, commissioning, and ongoing performance. This case study is part of a larger effort to examine methods and technologies to improve buildings performance and develop interoperable Building Life-Cycle Information Systems (BLISS).

  17. Evaluation of chiller modeling approaches and their usability for fault detection

    SciTech Connect (OSTI)

    Sreedharan, Priya

    2001-05-01

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves for a variety of different chillers, and was used to calibrate the building chiller to the DOE-2 model. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as

  18. Aqueous absorption fluids. Annual report, July 1989-October 1990

    SciTech Connect (OSTI)

    Langeliers, J.; Chandler, T.; Rockenfeller, U.

    1990-11-01

    The report describes the third year of study of aqueous-based working fluids that will allow air-cooled absorption chiller operation. The successful development of such fluids will eliminate the need for cooling towers in gas-fired chiller equipment for residential and unitary markets and possibly allow for building heating with absorber heat. The thermophysical property measurements were completed and the vapor pressure and specific heat data were used to compute the enthalpy of LB621-H2O solutions. Solution film heat transfer coefficients were measured in the test sorber apparatus and a dramatic increase in film heat transfer was observed in the presence of heat transfer additives. Measured equilibrium and film heat transfer data were used in the single-stage absorption cycle computer model to analyze the potential performance of LB621-H2O; the analysis confirmed the superiority of LB621-H2O as a single-stage working fluid. In addition, thermal stability and corrosion rate tests demonstrated that LB621-H2O is stable and non-corrosive in a single-stage absorption chiller environment.

  19. Thermal model of solar absorption HVAC systems

    SciTech Connect (OSTI)

    Bergquam, J.B.; Brezner, J.M.

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  20. Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume I

    SciTech Connect (OSTI)

    Keuper, E.F.

    1996-03-01

    Federal regulations banned the production of CFC-11 on January 1, 1996. HCFC-123, the only commercial alternative, will be limited to service applications after January 1, 2020 and will be eliminated from production on January 1, 2030. HFC-245ca has been identified as a potential replacement for CFC-11 in retrofit applications and for HCFC-123 in new chillers, but the marginal flammability of HFC-245ca is a major obstacle to its commercial use as a refrigerant in the United States. This report assesses the commercial viability of HFC-245ca based on its experimental performance in a direct drive low pressure centrifugal chiller exclusive of its flammability characteristics. Three different impeller diameters were tested in the chiller, with all impellers having identical discharge blade angles. Experimental work included tests in a 200 ton 3 stage direct drive chiller with 3 impeller sets properly sized for each of three refrigerants, CFC-11, HCFC-123, and HFC-245ca. The commercial viability assessment focused on both retrofit and new product performance and cost.

  1. Model-based performance monitoring: Review of diagnostic methods and chiller case study

    SciTech Connect (OSTI)

    Haves, Phil; Khalsa, Sat Kartar

    2000-05-01

    The paper commences by reviewing the variety of technical approaches to the problem of detecting and diagnosing faulty operation in order to improve the actual performance of buildings. The review covers manual and automated methods, active testing and passive monitoring, the different classes of models used in fault detection, and methods of diagnosis. The process of model-based fault detection is then illustrated by describing the use of relatively simple empirical models of chiller energy performance to monitor equipment degradation and control problems. The CoolTools(trademark) chiller model identification package is used to fit the DOE-2 chiller model to on-site measurements from a building instrumented with high quality sensors. The need for simple algorithms to reject transient data, detect power surges and identify control problems is discussed, as is the use of energy balance checks to detect sensor problems. The accuracy with which the chiller model can be expected! to predict performance is assessed from the goodness of fit obtained and the implications for fault detection sensitivity and sensor accuracy requirements are discussed. A case study is described in which the model was applied retroactively to high-quality data collected in a San Francisco office building as part of a related project (Piette et al. 1999).

  2. Status of the direct absorption receiver panel research experiment: Salt flow and solar test requirements and plans

    SciTech Connect (OSTI)

    Tyner, C.E.

    1989-03-01

    The Panel Research Experiment (PRE) is the first large-scale solar test of the molten nitrate salt direct absorption receiver (DAR) concept. The purpose of the PRE is to demonstrate the engineering feasibility and practicality of the DAR. We will conduct the test at the Central Receiver Test Facility in Albuquerque in two phases: salt flow testing and solar testing. This is a working document to define PRE test objectives and requirements, document the test hardware design, and define test plans. 13 refs., 12 figs., 1 tab.

  3. Hydroxide absorption heat pumps with spray absorber

    SciTech Connect (OSTI)

    Summerer, F.; Alefeld, G.; Zeigler, F.; Riesch, P.

    1996-11-01

    The absorber is one of the most expensive components of an absorption heat pump or chiller, respectively. In order to reduce the cost of a heat exchanger, much effort is invested into searching for additives for heat transfer enhancement. Another way to reduce heat exchanger cost, especially for machines with low capacities, is to use an adiabatic spray absorber. The basic principles of the spray absorber is to perform heat and mass transfer separated from each other in two different components. In this way the heat can be rejected effectively in a liquid-liquid heat exchanger, whereas the mass transfer occurs subsequently in a simple vessel. The spray technique can not only save heat exchanger cost in conventional absorption systems working with water and lithium bromide, it also allows the use of quite different working fluids such as hydroxides, which have lower heat transfer coefficients in falling films. Moreover, the separated heat transfer can easily be performed in a liquid-to-air heat exchanger. Hence it is obvious to use hydroxides that allow for a high temperature lift for building an air-cooled chiller with spray absorber. In this presentation theoretical and experimental investigations of the spray absorber as well as the setup will be described. Finally, possible applications will be outlined.

  4. Development of a Low-Lift Chiller Controller and Simplified Precooling Control Algorithm - Final Report

    SciTech Connect (OSTI)

    Gayeski, N.; Armstrong, Peter; Alvira, M.; Gagne, J.; Katipamula, Srinivas

    2011-11-30

    KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report for that project.

  5. Natural gas powered rotary water chiller development. Phase 1. Final report, September 1991-June 1993

    SciTech Connect (OSTI)

    Sanborn, D.F.; Lakowske, R.L.; Byars, M.

    1993-06-01

    Objectives of the project were to evaluate performance and marketability of a rotary engine driven screw compressor for water chiller applications. Choice of a rotary engine was aimed at rotary compressor. Initial testing done with modified stock 13B rotary engine and experimental open compressor. Engine torque not sufficient for 70 ton compressor. Analysis concluded 50 ton best match for air cooled applications and 60 ton best for water cooled to get highest gas COP. Market analysis covered total water chiller market assuming relative costs of power would lead to gas cooling sales. Allowable cost premium for 3 yr payback determined for areas of country. Premium cost of 100 ton air cooled unit estimated and compared to market allowable premiums. Concluded product acceptance will be primarily in niche markets with high local electric power demand charges.

  6. Evaluation of potential performance additives for the advanced lithium bromide chiller

    SciTech Connect (OSTI)

    Reiner, R.H.; Del Cul, W.; Perez-Blanco, H.; Ally, M.R.; Zaltash, A.

    1991-04-01

    The effectiveness and stability of potential heat-and-mass transfer (performance) additives for an advanced lithium bromide (LiBr) chiller were evaluated in a series of experimental studies. These studies of additive effectiveness and stability were necessary because many currently used performance additives decompose at the high generator temperatures (220{degrees}C to 260{degrees}C) desired for this particular advanced LiBr chiller. For example, one common performance additive, 2-ethyl-l-hexanol (2EH), reacts with the corrosion inhibitor, lithium chromate (Li{sub 2}CrO{sub 4}), even at moderate generator temperatures ({ge}180{degrees}C). These stability problems can be mitigated by using less reactive corrosion inhibitors such as lithium molybdate (Li{sub 2}MoO{sub 4}) and by using more stable performance additives such as 1-heptanol (HEP) or 1H,1H,7H-dodecafluoro-1-heptanol (DFH). There seems to be a trade-off between additive stability and effectiveness: the most effective performance additives are not the most stable additives. These studies indicate that HEP or DFH may be effective additives in the advanced LiBr chiller if Li{sub 2}MoO{sub 4} is used as a corrosion inhibitor.

  7. Calculation tool for transported geothermal energy using two-step absorption process

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kyle Gluesenkamp

    2016-02-01

    This spreadsheet allows the user to calculate parameters relevant to techno-economic performance of a two-step absorption process to transport low temperature geothermal heat some distance (1-20 miles) for use in building air conditioning. The parameters included are (1) energy density of aqueous LiBr and LiCl solutions, (2) transportation cost of trucking solution, and (3) equipment cost for the required chillers and cooling towers in the two-step absorption approach. More information is available in the included public report: "A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings"

  8. Assessment and economic analysis of the MOD III Stirling-engine driven chiller system. Final report, October 1989-July 1990

    SciTech Connect (OSTI)

    Moryl, J.

    1990-07-01

    The Stirling engine is an inherently clean and efficient engine. With the requirements for environmentally benign emissions and high energy efficiency, the Stirling engine is an attractive alternative to both internal combustion (IC) engines and electric motors. The study evaluated a Stirling-engine-driven chiller package. Technically, the Stirling engine is a good selection as a compressor drive, with inherently low vibrations, quiet operation, long life, and low maintenance. Exhaust emissions are below the projected 1995 stringent California standards. Economically, the Stirling-engine-driven chiller is a viable alternative to both IV-engine and electric-driven chillers, trading off slightly higher installed cost against lower total operating expenses. The penetration of a small portion of the projected near-term stationary engine market opportunity will provide the volume production basis to achieve competitively priced engines.

  9. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOE Patents [OSTI]

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  10. Analysis of IECC2003 Chiller Heat Recovery for Service Water Heating Requirement for New York State

    SciTech Connect (OSTI)

    Winiarski, David W.

    2004-08-15

    The state of New York asked the U.S. Department of Energy to evaluate the cost-effectiveness of the requirement for Heat Recovery for Service Water Heating that exists in the 2003 International Energy Conservation Code to determine whether this requirement should be adopted into the New York State Energy Code. A typical hotel application that would trigger this requirement was examined using whole building simulation software to generate baseline annual chiller and service hot water loads, and a spreadsheet was used to examine the energy savings potential for heat recovery using hourly load files from the simulation. An example application meeting the code requirement was developed, and the energy savings, energy cost savings, and first costs for the heat recovery installation were developed. The calculated payback for this application was 6.3 years using 2002 New York state average energy costs. This payback met the minimum requirements for cost effectiveness established for the state of New York for updating the commercial energy conservation code.

  11. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  12. Effects of backlight structure on absorption experiments (Journal...

    Office of Scientific and Technical Information (OSTI)

    Quantitative Spectroscopy and Radiative Transfer; Journal Volume: 99 Research Org: ... Language: English Subject: 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ABSORPTION; ABSORPTION ...

  13. ABSORPTION ANALYZER

    DOE Patents [OSTI]

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  14. Direct and quantitative broadband absorptance spectroscopy with...

    Office of Scientific and Technical Information (OSTI)

    Patent: Direct and quantitative broadband absorptance spectroscopy with multilayer ... DOE Contract Number: FG02-02ER45977 Resource Type: Patent Research Org: Massachusetts ...

  15. A research needs assessment: Energy efficient alternatives to chlorofluorocarbons (CFCs). Final reprot

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum -- based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are present. The potential benefits, research, general approach, and probability of success are addressed.

  16. Chapter 14: Chiller Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … May 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Chiller Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Alex Tiessen, Posterity Group Ottawa, Ontario NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-62431 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance

  17. Absorption Cooling Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling.

  18. Development of a Packaged and Integrated Microturbine/ Chiller Combined Heat and Power (CHP) System

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a research project whose goal is to define, develop, integrate, and validate at full scale the technology for a 1 MWe, microturbine-driven CHP packaged system for industrial or large commercial applications.

  19. Posters Long-Pathlength Infrared Absorption Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Long-Pathlength Infrared Absorption Measurements in the 8- to 14-µm Atmospheric Window: Self-Broadening Coefficient Data T. J. Kulp (a) and J. Shinn Geophysics and Environmental Research Program Lawrence Livermore National Laboratory Livermore, California Introduction The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and

  20. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle ... Target MarketAudience: Residential gas water heating Key Partners: GE CRADA partner SRA ...

  1. Solar absorption surface panel

    DOE Patents [OSTI]

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  2. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect (OSTI)

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  3. Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions

    SciTech Connect (OSTI)

    Al-Alili, A.; Hwang, Y.; Radermacher, R.; Kubo, I.

    2010-12-15

    In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

  4. Light Absorption of Primary Organic Aerosol Paper Named ACS Editors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absorption of Primary Organic Aerosol Paper Named ACS Editors' Choice For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights...

  5. An Analysis of Cloud Absorption During

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Cloud Absorption During ARESE II (Spring 2000) D. M. Powell, R. T. Marchand, and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction In early spring 2000, Atmospheric Radiation Measurement (ARM) Program researchers held an intensive operational period (IOP) at the ARM Southern Great Plains (SGP) site. This IOP had several objectives, one of which was to was to re-evaluate (with redundant measurements wherever possible) absorption by low-level

  6. Chillers | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  7. Soliton absorption spectroscopy

    SciTech Connect (OSTI)

    Kalashnikov, V. L.; Sorokin, E.

    2010-03-15

    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width by using a perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires a spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively mode-locked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurements in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improvement in the sensitivity and spectroscopic accuracy, which makes soliton absorption spectroscopy a promising measurement technique.

  8. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  9. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  10. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  11. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  12. Optical absorption measurement system

    DOE Patents [OSTI]

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  13. Seven-effect absorption refrigeration

    DOE Patents [OSTI]

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  14. Seven-effect absorption refrigeration

    DOE Patents [OSTI]

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Which Absorption Model Should Be Used for Supercooled Liquid Water in the Microwave? Download a printable PDF Submitter: Kneifel, S., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Kneifel S, S Redl, E Orlandi, U Löhnert, MP Cadeddu, DD Turner, and M Chen. 2014. "Absorption properties of supercooled liquid water between 31 and 225 GHz: evaluation of absorption models using ground-based observations." Journal of Applied

  16. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  17. New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source

    SciTech Connect (OSTI)

    Park, Changyong Popov, Dmitry; Ikuta, Daijo; Lin, Chuanlong; Kenney-Benson, Curtis; Rod, Eric; Bommannavar, Arunkumar; Shen, Guoyin

    2015-07-15

    The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 μm × 5 μm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 10{sup 8} photons/s at 30 keV. The instrumental resolution, Δq/q{sub max}, reaches to 2 × 10{sup −3} and is tunable through adjustments of the detector distance and X-ray energy. The setup is stable and reproducible, which allows versatile application to various types of experiments including resistive heating and cryogenic cooling as well as ambient temperature compression. Transmission XANES is readily combined with micro-XRD utilizing the fixed-exit feature of the monochromator, which allows combined XRD-XANES measurements at a given sample condition.

  18. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  19. A New Model for Liquid Water Absorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model for Liquid Water Absorption For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Liquid water path (LWP) is a critical measurement for a wide range of atmospheric studies, as the amount of liquid in a cloud is critical to understanding many cloud processes. For example, the radiative impact of the cloud (in both the longwave and shortwave portions of the spectrum) depends heavily on the LWP. Thus, the Atmospheric

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimal Shortwave Anomalous Absorption Found over ACRF Sites Download a printable PDF Submitter: Dong, X., University of Arizona Minnis, P., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Dong, X, BA Wielicki, B Xi, Y Hu, GG Mace, S Benson, F Rose, S Kato, T Charlock, and P Minnis. 2008. "Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Magnitude of Anomalous Solar Absorption Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1 Spurred by a series of articles published in 1995 claiming solar absorption in cloudy atmospheres far exceeded model predictions, Atmospheric Radiation Measurement (ARM) Program researchers at the Southern Great Plains (SGP) site in Oklahoma

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Overambitious Other Carbon Submitter: Church, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Song C, M Gyawali, RA Zaveri, JE Shilling, and WP Arnott. 2013. "Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50767. Time-dependent Mass Absorption

  4. Research

    SciTech Connect (OSTI)

    1999-10-01

    Subjects covered in this section are: (1) PCAST panel promotes energy research cooperation; (2) Letter issued by ANS urges funding balance in FFTF restart consideration and (3) FESAC panel releases report on priorities and balance.

  5. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The LANL Isotope Program's R&D strategy is focused on four main areas (see article list below for recent efforts in these areas): Medical Applications are a key focus for research ...

  6. Ultraviolet absorption hygrometer

    DOE Patents [OSTI]

    Gersh, Michael E.; Bien, Fritz; Bernstein, Lawrence S.

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  7. Ultraviolet absorption hygrometer

    DOE Patents [OSTI]

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  8. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absorption Spectroscopy X-ray Absorption Spectroscopy X-ray absorption spectroscopy (XAS) is a well-established technique for simultaneous local geometric and electronic structure...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shortwave Absorption in Tropical Clouds Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Mather, J. H., Pacific Northwest National Laboratory Ackerman, T. P., University of Washington Liu, Z., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, SA, JH Mather, TP Ackerman, and Z Liu. 2008. "Effect of clouds on the vertical distribution of SW absorption in the

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biases in Column Absorption for Fractal Clouds Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, Alexander; Davis, Anthony; Wiscombe, Warren; Ridgway, William; Cahalan, Robert; 1998: "Biases in Shortwave Column Absorption in the Presence of Fractal Clouds," J. Climate 11(3):431-446. Figure 1: Water vapor transmission spectra for solar zenith angle of 60 degree. From the top:

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Absorption of Primary Organic Aerosol Paper Named ACS Editors' Choice Download a printable PDF Submitter: Lu, Z., Argonne National Laboratory Streets, D. ., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Lu Z, DG Streets, E Winijkul, F Yan, Y Chen, TC Bond, Y Feng, MK Dubey, S Liu, JP Pinto, and GR Carmichael. 2015. "Light absorption properties and radiative effects of primary organic aerosol emissions."

  12. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments [OSTI]

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  13. Gas-absorption process

    DOE Patents [OSTI]

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  14. Absorption Heat Pumps | Department of Energy

    Energy Savers [EERE]

    Heat Pump Systems Absorption Heat Pumps Absorption Heat Pumps Absorption heat pumps are ... As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one ...

  15. Mechanical properties and energy absorption characteristics of...

    Office of Scientific and Technical Information (OSTI)

    Mechanical properties and energy absorption characteristics of a polyurethane foam Citation Details In-Document Search Title: Mechanical properties and energy absorption ...

  16. Nanolubricants to Improve Chiller Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office eere.energy.gov Approach * Pool-boiling rig used to measure heat transfer performance of R134ananolubricant mixtures with nanoparticle of varied ...

  17. Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store

    SciTech Connect (OSTI)

    Agyenim, Francis; Knight, Ian; Rhodes, Michael

    2010-05-15

    A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

  18. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  19. Transient absorption spectroscopy of laser shocked explosives

    SciTech Connect (OSTI)

    Mcgrane, Shawn D; Dang, Nhan C; Whitley, Von H; Bolome, Cindy A; Moore, D S

    2010-01-01

    Transient absorption spectra from 390-890 nm of laser shocked RDX, PETN, sapphire, and polyvinylnitrate (PVN) at sub-nanosecond time scales are reported. RDX shows a nearly linear increase in absorption with time after shock at {approx}23 GPa. PETN is similar, but with smaller total absorption. A broad visible absorption in sapphire begins nearly immediately upon shock loading but does not build over time. PVN exhibits thin film interference in the absorption spectra along with increased absorption with time. The absorptions in RDX and PETN are suggested to originate in chemical reactions happening on picosecond time scales at these shock stresses, although further diagnostics are required to prove this interpretation.

  20. Demand Response Research Center and Open Automated Demand Response

    Broader source: Energy.gov (indexed) [DOE]

    ... Capacity Bidding Real- Dme Pricing Demand Response Opportunities: Advance Notice and Duration of Response End Use Type Modulate OnOff Max. Response Time HVAC Chiller ...

  1. 44th Annual Anomalous Absorption Conference

    SciTech Connect (OSTI)

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded

  2. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  3. Absorption Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Systems » Absorption Heat Pumps Absorption Heat Pumps Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat

  4. Photodetector with enhanced light absorption

    DOE Patents [OSTI]

    Kane, James

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  5. Absorption Cooling Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as...

  6. Advanced regenerative absorption refrigeration cycles

    DOE Patents [OSTI]

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at the Full Spectrum for Water Vapor Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Experiment Results Featured in Technical Journal Submitter: Sheridan, P., U.S. Department of Commerce/NOAA Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sheridan, P, W Arnott, J Ogren, E Andrews, D Atkinson, D Covert, H Moosmuller, A Petzold, B Schmid, A Strawa, R Varma, and A Virkkula. 2005. "The Reno Aerosol Optics Study: An evaluation of aerosol absorption measurement methods." Aerosol Science and Technology 39(1):1-16. This magnification

  9. NEUTRON ABSORPTION AND SHIELDING DEVICE

    DOE Patents [OSTI]

    Axelrad, I.R.

    1960-06-21

    A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.

  10. CX-002713: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Low Temperature Heat Recovery Absorption Chiller Research, Development, and Demonstration (RD&D) ModuleCX(s) Applied: A1, A9Date: 06/11/2010Location(s): Charlotte, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  11. CX-002716: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Low Temperature Heat Recovery Absorption Chiller Research, Development, and Demonstration (RD&D) ModuleCX(s) Applied: A1, A9Date: 06/11/2010Location(s): East Hartford, ConnecticutOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  12. CX-006451: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Research and Development of an Advanced Low Temperature Heat Recovery Absorption ChillerCX(s) Applied: B3.6Date: 08/03/2011Location(s): Park Forest, IllinoisOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  13. CX-002718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Low Temperature Heat Recovery Absorption Chiller Research, Development, and Demonstration (RD&D) ModuleCX(s) Applied: A1, A9Date: 06/11/2010Location(s): Princeton Junction, New JerseyOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  14. CX-002720: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Low Temperature Heat Recovery Absorption Chiller Research, Development, and Demonstration (RD&D) ModuleCX(s) Applied: A1, A2, A9Date: 06/11/2010Location(s): Herndon, VirginiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  15. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  16. Backscatter absorption gas imaging system

    DOE Patents [OSTI]

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  17. Backscatter absorption gas imaging system

    DOE Patents [OSTI]

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  18. Neutron scattering and absorption properties

    SciTech Connect (OSTI)

    Holden, N.E.

    1993-12-01

    The Table in this report presents an evaluated set of values for the experimental quantities, which characterize the properties for scattering and absorption of neutrons. The neutron cross section is given for room temperature neutrons, 20.43{degree}C, corresponds to a thermal neutron energy of 0.0253 electron volts (eV) or a neutron velocity of 2200 meters/second. The neutron resonance integral is defined over the energy range from 0.5 eV to 0.1 {times} 10{sup 6} eV, or 0.1 MeV. A list of the major references used is given below. The literature cutoff data is October 1993. Uncertainties are given in parentheses. Parentheses with two or more numbers indicate values to the excited states(s) and to the ground state of the product nucleus.

  19. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption...

    Office of Scientific and Technical Information (OSTI)

    in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. ...

  20. Cavity-Enhanced Transient Absorption Spectroscopy: Ultrafast...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cavity-Enhanced Transient Absorption Spectroscopy: Ultrafast Spectroscopy goes Ultra-Sensitive Wednesday, November 11, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A...

  1. Absorption Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and

  2. Combining Feedback Absorption Spectroscopy, Amplified Resonance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Emissions Combining Feedback Absorption Spectroscopy, Amplified Resonance and Low Pressure Sampling for the Measurement of Nitrogen-Containing Compounds in Automotive ...

  3. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption...

    Office of Scientific and Technical Information (OSTI)

    Hexanitrostilbene Raman electronic absorption spectra to validate DFT EOS. Citation Details In-Document Search Title: Pressure dependence of Hexanitrostilbene Raman electronic ...

  4. Commercial Absorption Heat Pump Water Heater

    Broader source: Energy.gov (indexed) [DOE]

    Absorption Heat Pump Water Heater 2016 Building Technologies Office Peer Review Patrick ... The target market is the hospital, hotel and full service restaurant gas hot water heating ...

  5. Gas-fueled absorption heat pump

    SciTech Connect (OSTI)

    Florette, M.; Peuportier, B.

    1982-01-01

    To determine the feasibility of using an absorption heat pump for residential space heating, French investigators are studying both theoretically and experimentally, the performance of the absorption cycle in terms of its efficiency and suitability to space-heating conditions. A 10-kW pilot unit is supplying data on design criteria, heat-exchange fluid selection, and heat and mass balances.

  6. Absorption of carbonyl sulfide in aqueous methyldiethanolamine

    SciTech Connect (OSTI)

    Al-Ghawas, H.A.; Ruiz-Ibanez, G.; Sandall, O.C. (Dept. of Chemical and Nuclear Engineering, Univ. of California, Santa Barbara, CA (US))

    1988-01-01

    The absorption of carbonyl sulfide in aqueous methyldiethanolamine (MDEA) was studied over a range of temperatures and MDEA concentrations. MDEA is commonly used for selective absorption of hydrogen sulfide in the presence of carbon dioxide. However, sulfur in the form of COS may also be present and it is necessary that estimates of absorption rates of this compound be made. The objective of this study is to determine the physiochemical properties needed to predict COS absorption rates in aqueous MDEA. Free gas solubility and the diffusivity of COS in MDEA solutions were measured over the temperature range 15 to 40{sup 0}C for MDEA concentrations up to 30 weight per cent using the nitrous oxide analogy method. Solubilities were measured volumetrically in an equilibrium cell and diffusivities were measured using a laminar liquid jet absorber. The kinetics of the reaction between COS and MDEA were studied by measuring absorption rates in a single wetted-sphere absorber.

  7. Absorption Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its...

  8. Variable effect desorber-resorber absorption cycle

    DOE Patents [OSTI]

    Biermann, Wendell J.

    1985-01-01

    An absorption refrigeration system has an intermediate temperature desorber-resorber pair. A valve between the desorber-resorber pair is modulated to control the capacity for load matching.

  9. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s):

  10. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    CO2 Capture by Absorption with Potassium Carbonate Citation Details In-Document Search Title: CO2 Capture by Absorption with Potassium Carbonate You are accessing a document ...

  11. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: CO2 Capture by Absorption with Potassium Carbonate Citation Details In-Document Search Title: CO2 Capture by Absorption with Potassium Carbonate You are ...

  12. Origins of optical absorption characteristics of Cu2+ complexes...

    Office of Scientific and Technical Information (OSTI)

    Origins of optical absorption characteristics of Cu2+ complexes in solutions Citation Details In-Document Search Title: Origins of optical absorption characteristics of Cu2+ ...

  13. Absorption Spectra and Plotting Exciton Wavefunctions BerkeleyGW...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hands on Session 5: Converging Absorption Spectra and Plotting Exciton Wavefunctions BerkeleyGW Workshop 11232013 Diana Qiu Converging Absorption General Parameters: K-grid...

  14. High resolution absorption spectroscopy of exploding wire plasmas...

    Office of Scientific and Technical Information (OSTI)

    Published Article: High resolution absorption spectroscopy of exploding wire plasmas using an x-pinch x-ray source and spherically bent crystal Title: High resolution absorption ...

  15. Integrated vacuum absorption steam cycle gas separation (Patent...

    Office of Scientific and Technical Information (OSTI)

    vacuum absorption steam cycle gas separation Citation Details In-Document Search Title: Integrated vacuum absorption steam cycle gas separation Methods and systems for separating ...

  16. Water-lithium bromide double-effect absorption cooling analysis...

    Office of Scientific and Technical Information (OSTI)

    Water-lithium bromide double-effect absorption cooling analysis Citation Details In-Document Search Title: Water-lithium bromide double-effect absorption cooling analysis You ...

  17. Effects of hydrogen/deuterium absorption on the magnetic properties...

    Office of Scientific and Technical Information (OSTI)

    Effects of hydrogendeuterium absorption on the magnetic properties of CoPd multilayers Citation Details In-Document Search Title: Effects of hydrogendeuterium absorption on the...

  18. Absorption and emission properties of photonic crystals and metamateri...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Absorption and emission properties of photonic crystals and metamaterials Citation Details In-Document Search Title: Absorption and emission properties of ...

  19. Dataset used to improve liquid water absorption models in the...

    Office of Scientific and Technical Information (OSTI)

    Dataset used to improve liquid water absorption models in the microwave Title: Dataset used to improve liquid water absorption models in the microwave Two datasets, one a ...

  20. XUV Absorption by Solid Density Aluminum (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...

  1. Enhanced Absorption in 2D Materials Via Fano- Resonant Photonic...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Absorption in 2D Materials Via Fano- Resonant Photonic Crystals Citation Details In-Document Search Title: Enhanced Absorption in 2D Materials Via Fano- Resonant Photonic ...

  2. Absorption Heat Pump Water Heater - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Absorption Heat Pump Water Heater - 2013 Peer Review Absorption Heat Pump Water Heater - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's ...

  3. Spectroscopic study of low-temperature hydrogen absorption in...

    Office of Scientific and Technical Information (OSTI)

    Spectroscopic study of low-temperature hydrogen absorption in palladium Citation Details In-Document Search Title: Spectroscopic study of low-temperature hydrogen absorption in...

  4. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect (OSTI)

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  5. Desiccant contamination research: Report on the desiccant contamination test facility

    SciTech Connect (OSTI)

    Pesaran, A.A.; Bingham, C.E.

    1991-07-01

    The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

  6. Plasmon absorption modulator systems and methods

    DOE Patents [OSTI]

    Kekatpure, Rohan Deodatta; Davids, Paul

    2014-07-15

    Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.

  7. Nanofibrous membrane-based absorption refrigeration system

    SciTech Connect (OSTI)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature, and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.

  8. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  9. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  10. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  11. Direct fired absorption machine flue gas recuperator

    DOE Patents [OSTI]

    Reimann, Robert C.; Root, Richard A.

    1985-01-01

    A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

  12. Coupled dual loop absorption heat pump

    DOE Patents [OSTI]

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  13. Absorption machine with desorber-resorber

    DOE Patents [OSTI]

    Biermann, Wendell J.

    1985-01-01

    An absorption refrigeration system utilizing a low temperature desorber and intermediate temperature resorber. The system operates at three temperatures and three pressures to increase the efficiency of the system and is capable of utilizing a lower generator temperature than previously used.

  14. Corrosion inhibitor for aqueous ammonia absorption system

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  15. Corrosion inhibitor for aqueous ammonia absorption system

    DOE Patents [OSTI]

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  16. Rotartica | Open Energy Information

    Open Energy Info (EERE)

    (Bizkaia), Spain Zip: 48970 Product: Spain-based, manufacturer of compact LiBr absorption chillers (suitable for detached houses). References: Rotartica1 This article is a...

  17. A Case for Commissioning of CHP Systems - Presentation, April...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hospital in Austin, Texas, was retrofitted with a combustion turbine, heat recovery steam generator, absorption and electric chillers, and thermal storage. ...

  18. BROAD USA Inc | Open Energy Information

    Open Energy Info (EERE)

    BROAD USA Inc Jump to: navigation, search Name: BROAD USA, Inc Place: Hackensack, New Jersey Zip: 7601 Product: BROAD manufactures absorption chillers powered by clean and...

  19. List of Chillers Incentives | Open Energy Information

    Open Energy Info (EERE)

    Municipal Solid Waste Renewable Fuels Small Hydroelectric Wind Fuel Cells using Renewable Fuels Yes Alternative and Clean Energy State Grant Program (Pennsylvania) State Grant...

  20. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  1. Integrated vacuum absorption steam cycle gas separation

    SciTech Connect (OSTI)

    Chen, Shiaguo; Lu, Yonggi; Rostam-Abadi, Massoud

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  2. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments [OSTI]

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  3. Polaron absorption in amorphous tungsten oxide films

    SciTech Connect (OSTI)

    Berggren, Lars; Azens, Andris; Niklasson, Gunnar A.

    2001-08-15

    Amorphous thin films of tungsten oxide were deposited by sputtering onto glass substrates covered by conductive indium--tin oxide. The density and stoichiometry were determined by Rutherford backscattering spectrometry. Lithium ions were intercalated electrochemically into the films. The optical reflectance and transmittance were measured in the wavelength range from 0.3 to 2.5 {mu}m, at a number of intercalation levels. The polaron absorption peak becomes more symmetric and shifts to higher energies until an intercalation level of 0.25 to 0.3 Li{sup +}/W, where a saturation occurs. The shape of the polaron peak is in very good agreement with the theory of Bryksin [Fiz. Tverd. Tela 24, 1110 (1982)]. Within this model, the shift of the absorption peak is interpreted as an increase in the Fermi level of the material as more Li ions are inserted. {copyright} 2001 American Institute of Physics.

  4. Radiation absorption properties of different plaster samples

    SciTech Connect (OSTI)

    Akkurt, Iskender; Guenoglu, Kadir; Mavi, Betuel; K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I ncarslan, Semsettin; Seven, Aysun

    2012-09-06

    Although the plaster is one of the oldest known synthetic building materials, nowadays, it is used as interior coating of walls and ceilings of buildings. Thus measuring its radiation shielding properties is vital. For this purpose, radiation absorption properties of different plaster samples in this study. The measurements have been performed using gamma spectrometer system which connected to 3'' Multiplication-Sign 3''NaI (TI) detector.

  5. Particle Soot Absorption Photometer Instrument Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Particle Soot Absorption Photometer Handbook SR Springston March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

  6. WATER-LITHIUM BROMIDE DOUBLE-EFFECT ABSORPTION COOLING ANALYSIS

    Office of Scientific and Technical Information (OSTI)

    WATER-LITHIUM BROMIDE DOUBLE-EFFECT ABSORPTION COOLING ANALYSIS Gary C . V l i e t , ... i e n t simulation of the double-effect, water-1 ithium bromide absorption cooling ...

  7. Effect of Various Impurities on the Hydrogen Absorption on SAES...

    Office of Environmental Management (EM)

    Effect of Various Impurities on the Hydrogen Absorption on SAES ST198 Effect of Various Impurities on the Hydrogen Absorption on SAES ST198 Presentation from the 36th Tritium Focus ...

  8. Attosecond Electron Wave-Packet Interference Observed by Transient Absorption

    SciTech Connect (OSTI)

    Holler, M.; Schapper, F.; Gallmann, L.; Keller, U.

    2011-03-25

    We perform attosecond time-resolved transient absorption spectroscopy around the first ionization threshold of helium and observe rapid oscillations of the absorption of the individual harmonics as a function of time delay with respect to a superimposed, moderately strong infrared laser field. The phase relation between the absorption modulation of individual harmonics gives direct evidence for the interference of transiently bound electronic wave packets as the mechanism behind the absorption modulation.

  9. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; CARBON DIOXIDE; ABSORPTION; SORPTIVE PROPERTIES; POTASSIUM CARBONATES; THERMODYNAMIC MODEL; VAPOR PRESSURE; AIR POLLUTION CONTROL Word Cloud ...

  10. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 54 ENVIRONMENTAL SCIENCES; CARBON DIOXIDE; ABSORPTION; POTASSIUM CARBONATES; SORPTIVE PROPERTIES; AMINES; MATERIALS RECOVERY; AIR POLLUTION CONTROL; MATHEMATICAL MODELS ...

  11. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; ABSORPTION; HEAT EXCHANGERS; PILOT PLANTS; POTASSIUM CARBONATES; THERMODYNAMICS; VAPOR PRESSURE; CARBON DIOXIDE; AIR POLLUTION CONTROL; SORPTIVE ...

  12. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    SciTech Connect (OSTI)

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  13. Split-flow regeneration in absorptive air separation

    DOE Patents [OSTI]

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  14. Split-flow regeneration in absorptive air separation

    DOE Patents [OSTI]

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  15. Using laser absorption spectroscopy to monitor composition and physical properties of metal vapors

    SciTech Connect (OSTI)

    Berzins, L.V.

    1993-09-03

    The Atomic Vapor Laser Isotope Separation (AVLIS) program has been using laser absorption spectroscopy to monitor vapor densities for over 15 years. Laser absorption spectroscopy has proven itself to be an accurate and reliable method to monitor both density and composition. During this time the diagnostic has moved from a research tool toward a robust component of a process control system. The hardware used for this diagnostic is discussed elsewhere at this symposium. This paper describes how the laser absorption spectroscopy diagnostic is used as a component of a process control system as well as supplying detailed measurements on vapor densities, composition, flow velocity, internal and kinetic temperatures, and constituent distributions. Examples will be drawn from the uranium AVLIS program. In addition potential applications such as composition control in the production of metal matrix composites or aircraft alloys will be discussed.

  16. Distributed Bragg Reflectors With Reduced Optical Absorption

    DOE Patents [OSTI]

    Klem, John F.

    2005-08-16

    A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

  17. Laser dynamics with excited-state absorption

    SciTech Connect (OSTI)

    Sanchez, F.; Kellou, A.

    1997-01-01

    The dynamics of a laser with excited-state absorption at the lasing wavelength is theoretically studied. The model is based on the rate equations for a four-level system. The stationary state is analytically calculated, permitting both the investigation of the laser characteristics and linear stability analysis. The latter shows that, in some conditions, the steady state is not stable in a particular range of pumping rates. However, a stable solution is restored for sufficiently high pumping rates. Stable self-pulsing solutions are obtained by numerical integration of the coupled equations. Also, the transient regimes are numerically analyzed. {copyright} 1997 Optical Society of America.

  18. Improved self-absorption correction for extended x-ray absorption fine-structure measurements

    SciTech Connect (OSTI)

    Booth, C.H.; Bridges, F.

    2003-06-04

    Extended x-ray absorption fine-structure (EXAFS) data collected in the fluorescence mode are susceptible to an apparent amplitude reduction due to the self-absorption of the fluorescing photon by the sample before it reaches a detector. Previous treatments have made the simplifying assumption that the effect of the EXAFS on the correction term is negligible, and that the samples are in the thick limit. We present a nearly exact treatment that can be applied for any sample thickness or concentration, and retains the EXAFS oscillations in the correction term.

  19. Dilution cycle control for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C.

    1984-01-01

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  20. Absorption of solar radiation in broken clouds

    SciTech Connect (OSTI)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B.

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  1. Gas separation using ultrasound and light absorption

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  2. Counterflow absorber for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  3. Spray generators for absorption refrigeration systems

    DOE Patents [OSTI]

    Sibley, Howard W.

    1979-06-19

    A spray generator for an absorption refrigeration system that includes a heat exchanger comprised of a multiplicity of variably spaced heat exchange tubes. The tubes are spaced close together near the top of the heat exchanger and spaced more widely apart near the bottom of the heat exchanger. Dilute absorbent solution is sprayed down through the heat exchanger. The close nesting of the tubes in the top portion of the heat exchanger retards liquid flow and aids heating of the solution. The wide spacing of the tubes in the lower section of the heat exchanger facilitate vapor flow out of the heat exchanger and eliminates liquid "blow-off". The top tubes are covered by a baffle to prevent the liquid solution from splashing out of the heat exchanger off of these top tubes.

  4. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOE Patents [OSTI]

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  5. Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption

    Office of Environmental Management (EM)

    Process (TCAP) | Department of Energy Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) (1.74 MB) More Documents & Publications A New Hydrogen Processing Demonstration System Initial

  6. Continuous Light Absorption Photometer (CLAP) Final Campaign Report

    SciTech Connect (OSTI)

    Jefferson, Anne

    2014-05-01

    The Continuous Light Absorption Photometer (CLAP) measures the aerosol absorption of radiation at three visible wavelengths; 461, 522, and 653 nanometers (nm). Data from this measurement is used in radiative forcing calculations, atmospheric heating rates, and as a prediction of the amount of equivalent black carbon in atmospheric aerosol and in models of aerosol semi-direct forcing. Aerosol absorption measurements are essential to modeling the energy balance of the atmosphere.

  7. Commercial Absorption Heat Pump Water Heater | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Absorption Heat Pump Water Heater Commercial Absorption Heat Pump Water Heater Credit: Oak Ridge National Laboratory Credit: Oak Ridge National Laboratory Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partner: A.O. Smith Inc. - Milwaukee, WI DOE Funding: $2,000,000 Cost Share: Provided by CRADA partners Project Term: October 1, 2013 - September 30, 2016 Project Objective The objective of this project is to develop a gas-fired absorption heat pump water heater for the commercial

  8. Research | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gene Odum forest sampling marked tortoise geochemical sampling quantifying radionuclide absorption collcting microbes microsatellite development R E S E A R C H A R E A S * Aquatic and terrestrial ecology * Biogeochemistry & soil science * Environmental microbiology * Herpetology * Hydrology * Molecular genetics * Physiological ecology * Conservation biology * Radiation ecology * Ecotoxicology and risk assessment * Remediation and restoration SREL scientists pursue a wide variety of

  9. Measuring fast electron spectra and laser absorption in relativistic...

    Office of Scientific and Technical Information (OSTI)

    Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors Citation Details In-Document Search ...

  10. Quantitative infrared absorption cross sections of isoprene for...

    Office of Scientific and Technical Information (OSTI)

    Quantitative infrared absorption cross sections of isoprene for atmospheric measurements ... and other oxygenated organics, yet little quantitative IR data exists for isoprene. ...