Powered by Deep Web Technologies
Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

SciTech Connect (OSTI)

This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

Yu, Y.; Li, Y.

2011-10-01T23:59:59.000Z

2

Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint  

SciTech Connect (OSTI)

During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

Li, Y.; Yu, Y. H.

2012-05-01T23:59:59.000Z

3

An energy absorbing far-field boundary condition for the elastic wave equation  

SciTech Connect (OSTI)

The authors present an energy absorbing non-reflecting boundary condition of Clayton-Engquist type for the elastic wave equation together with a discretization which is stable for any ratio of compressional to shear wave speed. They prove stability for a second order accurate finite-difference discretization of the elastic wave equation in three space dimensions together with a discretization of the proposed non-reflecting boundary condition. The stability proof is based on a discrete energy estimate and is valid for heterogeneous materials. The proof includes all six boundaries of the computational domain where special discretizations are needed at the edges and corners. The stability proof holds also when a free surface boundary condition is imposed on some sides of the computational domain.

Petersson, N A; Sjogreen, B

2008-07-15T23:59:59.000Z

4

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

SciTech Connect (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

5

Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project  

SciTech Connect (OSTI)

The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

2015-01-01T23:59:59.000Z

6

MHK Technologies/Multi Absorbing Wave Energy Converter MAWEC | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWECHelixInformation Absorbing Wave

7

Shock wave absorber having a deformable liner  

DOE Patents [OSTI]

This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

1983-08-26T23:59:59.000Z

8

Shock wave absorber having apertured plate  

DOE Patents [OSTI]

The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

Shin, Yong W. (Western Springs, IL); Wiedermann, Arne H. (Chicago Heights, IL); Ockert, Carl E. (Vienna, VA)

1985-01-01T23:59:59.000Z

9

Shock wave absorber having apertured plate  

DOE Patents [OSTI]

The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

1983-08-26T23:59:59.000Z

10

Multiple reflection solar energy absorber  

SciTech Connect (OSTI)

A method of converting solar energy into heat energy thereby generating power is described comprising the steps: (a) focusing said solar energy by means of a primary concentrator, (b) concentrating said solar energy from said primary concentrator by means of a secondary concentrator located at the focal point of said primary concentrator, (c) slowing the flux of said solar energy from said secondary concentrator by means of a multiple reflection chamber attached to the rear aperture of the secondary concentrator, (d) circulating a working fluid by means of a working fluid delivery tube into said secondary concentrator and said multiple reflection chamber, (e) absorbing said solar energy into said working fluid by means of an ultra high concentration of said solar energy in said multiple reflection chamber, (f) insulating said working fluid by means of a surrounding thermal barrier, (g) exhausting the heat working fluid by means as of a nozzle joined to said multiple reflection chamber, (h) replacing said working fluid by means of a working fluid delivery tube, thereby completing a cycle for generating power.

Cooley, W.L.

1993-06-01T23:59:59.000Z

11

Stars as resonant absorbers of gravitational waves  

E-Print Network [OSTI]

Quadrupole oscillation modes in stars can resonate with incident gravitational waves (GWs), and grow non-linear at the expense of GW energy. Stars near massive black hole binaries (MBHB) can act as GW-charged batteries, cooling radiatively. Mass-loss from these stars can prompt MBHB accretion at near-Eddington rates. GW opacity is independent of amplitude, so distant resonating stars can eclipse GW sources. Absorption by the Sun of GWs from Galactic white dwarf binaries may be detectable with second-generation space-based GW detectors as a shadow within a complex diffraction pattern.

B. McKernan; K. E. S. Ford; B. Kocsis; Z. Haiman

2014-08-28T23:59:59.000Z

12

Moving core beam energy absorber and converter  

DOE Patents [OSTI]

A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

Degtiarenko, Pavel V.

2012-12-18T23:59:59.000Z

13

Development of a crash energy absorber  

E-Print Network [OSTI]

A new energy absorbing cartridge, named the "Z-tube" was developed for use in a new conceptualized highway safety appurtenance. The Z-tube was developed to provide a low cost method of dissipating the kinetic energy of errant motor vehicles. The Z...

Bullard, Delbert Lance

1995-01-01T23:59:59.000Z

14

Design and Manufacture of Energy Absorbing Materials  

SciTech Connect (OSTI)

Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-05-28T23:59:59.000Z

15

Tech Transfer Webinar: Energy Absorbing Materials  

ScienceCinema (OSTI)

A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-07-15T23:59:59.000Z

16

Design and Manufacture of Energy Absorbing Materials  

ScienceCinema (OSTI)

Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-05-30T23:59:59.000Z

17

Tech Transfer Webinar: Energy Absorbing Materials  

SciTech Connect (OSTI)

A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-06-17T23:59:59.000Z

18

Energy Absorbing Material - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage ofDefects on .HeatAdvanced Materials

19

Continued Fraction Absorbing Boundary Conditions for Transient Elastic Wave Propagation Modeling  

E-Print Network [OSTI]

Continued Fraction Absorbing Boundary Conditions for Transient Elastic Wave Propagation Modeling Md of the truncated exterior. Development of an accurate ABC for transient elastic wave propagation problems are obtained by factoring the wave equation into outward and inward propagating operators and permitting only

Guddati, Murthy N.

20

Guidelines in Wave Energy Conversion System Design  

E-Print Network [OSTI]

absorber systems are used in arrays, where multiple devices are attached in series or parallel to capture more energy. Point absorbers can be used offshore in various depths of water. Submerged Pressure Differentials SPDs are completely submerged... that they can capture the most effective bending motion. Most attenuators are used near shore, but there are some designs that could be used further offshore. Attenuators need to be positioned parallel with the wave direction of travel in order to capture...

Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber: Preprint  

SciTech Connect (OSTI)

A preliminary study on a two-body floating wave absorbers is presented in this paper. A Reynolds-Averaged Navier-Stokes computational method is applied for analyzing the hydrodynamic heave response of the absorber in operational wave conditions. The two-body floating wave absorber contains a float section and a submerged reaction section. For validation purposes, our model is first assumed to be locked. The two sections are forced to move together with each other. The locked single body model is used in a heave decay test, where the RANS result is validated with the experimental measurement. For the two-body floating point absorber simulation, the two sections are connected through a mass-spring-damper system, which is applied to simulate the power take-off mechanism under design wave conditions. Overall, the details of the flow around the absorber and its nonlinear interaction with waves are investigated, and the power absorption efficiency of the two-body floating wave absorber in waves with a constant value spring-damper system is examined.

Yu, Y.; Li, Y.

2011-03-01T23:59:59.000Z

22

A theoretical/experimental study of the design of a porous wave absorber system  

E-Print Network [OSTI]

for the reflection coefficient is determined based on the approach of Fugazza and Natale (1992). The effects of both wave and absorber characteristics on the theoretical model are studied. Experiments are conducted in a wave tank to measure the reflection coefficient...

Hagan, Christine L.

1994-01-01T23:59:59.000Z

23

On the configuration of arrays of floating wave energy converters  

E-Print Network [OSTI]

In this thesis, certain issues relating to a number of wave energy absorbers operating in the same vicinity are investigated. Specifically, arrangements of the devices within such an array are sought, such that beneficial ...

Child, Benjamin Frederick Martin

2011-11-22T23:59:59.000Z

24

The atmosphere absorbs part of the outgoing longwave energy  

E-Print Network [OSTI]

intersecting Earth is S0 R2 · The global surface area of Earth is 4R2 · Divide the total energy rate, where R is the radius of the Earth Solar Radiation · The total energy rate for solar radiation7/20/10 1 The atmosphere absorbs part of the outgoing longwave energy Incoming solar radiation

Russell, Lynn

25

Cycloidal Wave Energy Converter  

SciTech Connect (OSTI)

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

26

Energy deposition studies for the LBNE beam absorber  

E-Print Network [OSTI]

Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system -- all with corresponding radiation shielding -- was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

Rakhno, Igor L; Tropin, Igor S

2015-01-01T23:59:59.000Z

27

Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter...  

Broader source: Energy.gov (indexed) [DOE]

Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave Energy Converter Atargis Energy (TRL 4 System) - Cycloidal Wave...

28

Wave Energy challenges and possibilities  

E-Print Network [OSTI]

into a reservoir, with low head turbines as power take off. Articulating tubes with hydraulic power take off. Point or fixed coastal installation. Air based Wells turbines as power take off. Over topping waves absorber, with either water pumps, linear generators or hydraulic power take off systems. Multi point

29

absorbed energy avaliacao: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

45 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

30

Analysis and Development of a Three Body Heaving Wave Energy Scott J. Beatty  

E-Print Network [OSTI]

Analysis and Development of a Three Body Heaving Wave Energy Converter by Scott J. Beatty BASc Body Heaving Wave Energy Converter by Scott J. Beatty BASc, University of British Columbia, 2003 A relative motion based heaving point absorber wave energy converter is being co- developed by researchers

Victoria, University of

31

Performance Assessment of the Wave Dragon Wave Energy Converter  

E-Print Network [OSTI]

Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

Hansen, René Rydhof

32

Wide band cryogenic ultra-high vacuum microwave absorber  

DOE Patents [OSTI]

An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

Campisi, Isidoro E. (Newport News, VA)

1992-01-01T23:59:59.000Z

33

MHK Technologies/WEGA wave energy gravitational absorber | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWECSailsOWC.pngflowPOWER

34

Effect of a nonlinear power take off on a wave energy converter  

E-Print Network [OSTI]

This thesis is titled The influence of a nonlinear Power Take Off on a Wave Energy Converter. It looks at the effect that having a nonlinear Power Take Off (PTO) has on an inertial referenced, slack moored, point absorber, ...

Bailey, Helen Louise

2011-11-22T23:59:59.000Z

35

Electrostatic-plasma-wave energy flux  

E-Print Network [OSTI]

would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

Amendt, P.; Rostoker, N.

1984-01-01T23:59:59.000Z

36

California Small Hydropower and Ocean Wave Energy  

E-Print Network [OSTI]

California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy................................................................. 21 #12;ii List of Tables Table 1 California Small Hydropower And Ocean Wave Energy Resources Table 2

37

Direct Drive Wave Energy Buoy  

SciTech Connect (OSTI)

The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

38

An investigation of the effects of progressive waves on an oil slick retained by an absorber beach  

E-Print Network [OSTI]

AN INVESTIGAT10N OF THE EFFECTS OF PROGRESSIVE HAVES ON AN OIL SI. ICE RETAINED BY AN ABSORBER BEACH A Thesis by t)'l l' YAU-MING HUANG Submitted to the Graduate Colleg of Texas A&M Uniuersity in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1973 Major Subject: C''oil Engineering AN INVESTIGATION OF THE EFFECTS OF PROGRESSIVE WAVES ON AN OIL SLICK RETAINED BY AN ABSORBER BEACH A Thesis by YAU-MING HUANG Approved as to style and content by...

Huang, Yau-Ming Kennith

1973-01-01T23:59:59.000Z

39

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...  

Broader source: Energy.gov (indexed) [DOE]

WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project WaveBob (TRL 5 6 System) - Advanced Wave...

40

Wave refraction and wave energy on Cayo Arenas  

E-Print Network [OSTI]

WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis By Donald E. Welsh Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1962 Major Subject: Physical Oceanography WAVE REFRACTION AND WAVE ENERGY ON CAYO ARENAS A Thesis Donald E. Walsh Approved as to style and content by: Chairman of the Committee ead of Department ' / January 1962 ACKNOWLEDGMENTS...

Walsh, Donald Eugene

1962-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Seminario de Matemtica Aplicada "Renowable wave energy  

E-Print Network [OSTI]

Abstract: Among the various renewable energy sources, ocean wave energy has been only recently investigaSeminario de Matemática Aplicada "Renowable wave energy: potencial and technical challenges will be at first to introduce the potential of wave energy, as a significant, and often neglected, contributor

Tradacete, Pedro

42

Wave Energy Resource Analysis for Use in Wave Energy Conversion  

E-Print Network [OSTI]

spectra for that given region from a selected deep-water calibration station. METHODOLOGY FOR ESTIMATING THE AVAILABLE WAVE ENERGY RESOURCE This section will describe the methodology for estimating the naturally available and technically recoverable... resource in a given region. In a recent study done by the EPRI, data was gathered from U.S. coastal waters for a 51- month Wavewatch III hindcast database that was developed specifically for the EPRI by NOAAs National Centers for Environmental...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

43

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

44

Identifying two steps in the internal wave energy cascade  

E-Print Network [OSTI]

1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

Sun, Oliver Ming-Teh

2010-01-01T23:59:59.000Z

45

European Wave and Tidal Energy Conference  

Broader source: Energy.gov [DOE]

The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

46

Wave Energy Resource Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTankless Electric - v1.0.xlsxMarchPower1See linkWave

47

Arnold Schwarzenegger DEVELOPING WAVE ENERGY IN  

E-Print Network [OSTI]

-Related Environmental Research Neal Fishman Ocean Program Manager Mike Gravely Office Manager Drew Bohan Energy Systems Energy Commission, PIER Energy-Related Environmental Research Program & California Ocean ProtectionArnold Schwarzenegger Governor DEVELOPING WAVE ENERGY IN COASTAL CALIFORNIA: POTENTIAL SOCIO

48

Wide band cryogenic ultra-high vacuum microwave absorber  

DOE Patents [OSTI]

An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

Campisi, I.E.

1992-05-12T23:59:59.000Z

49

Wind Wave Float | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(TRL 1 2 3 Component) Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project WaveBob (TRL 5 6 System) - Advanced Wave Energy Conversion Project...

50

An experimental investigation of aluminum honeycomb as an energy absorber  

E-Print Network [OSTI]

Thickness of specimen Mass PE Potential energy Summation Stroke Lead distance Time t tr V VI W t Trigger time Initial velocity Impact velocity Final velocity Trigger velocity Weight viii CHAPTER I INTRODUCTION Various types of systems...: V = V + 2g(h ? 4) 2 2 I o V2 = 0 0 V = 2g(h ? 4) 2 I v = J2g (h-l) I To determine the time of the crushing stroke: V = V ? ? F I V = 0 F at = V I t =V I a =V gG To determine the lead distance for the triggering circuit: S V + 1 2 tr tr...

Bland, William Joseph

1964-01-01T23:59:59.000Z

51

Absorbent Protein Meal Based Hydrogels - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office About theofAbout SHARE AboutN

52

The energy absorbing characteristics of plain concrete subjected to dynamic and static loadings  

E-Print Network [OSTI]

ARRANGEMENT STRAIN GAGE IN CYLINDER MOLD 13 13 17 6B STRAIN GAGE IN RUPTURED CYLINDER 17 STATIC STRESS VS. STRAIN (4200 PSI) 25 STATIC STRESS VS. STRAIN (3200 PSI) 26 DEFINITION OF SECANT MODULUS 27 10 DEFINITION OF INPUT ENERGY 27 TYPICAL...'d) FIGURE NO. PAGE 16 MEASURED VS. THEORETICAL ENERGY (16Z LB. HAMMER) 41 17 18 MEASUR ED VS . THEOR ET ICAL ENERGY (107 LB, HAMMER) ABSORBED ENERGY PER BLOW 19 VELOCITY VS, INPUT ENERGY (4200 PSI - 107 LB. HAMMER) 48 VELOCITY VS. INPUT ENERGY...

Toole, Irvin

1966-01-01T23:59:59.000Z

53

Renewable Energy Wave Pumps | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREII Jump to: navigation,Renewable EnergyWave

54

WEC up! Energy Department Announces Wave Energy Conversion Prize...  

Broader source: Energy.gov (indexed) [DOE]

Buren Township, Michigan for the development and execution of the Energy Department's Wave Energy Conversion (WEC) Prize Competition. The WEC Prize aims to attract innovative...

55

Real-time determination of free energy and losses in optical absorbing media  

E-Print Network [OSTI]

We introduce notions of free energy and loss in linear, absorbing dielectric media which are relevant to the regime in which the macroscopic Maxwell equations are themselves relevant. As such we solve a problem eluded to by Landau and Lifshitz in 1958, and later considered explicitly by Barash and Ginzburg, and Oughtsun and Sherman. As such we provide physically-relevant real-time notions of "energy" and "loss" in all analogous linear dissipative systems.

C. Broadbent; G. Hovhannisyan; J. Peatross; M. Clayton; S. Glasgow

2002-07-30T23:59:59.000Z

56

Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels  

DOE Patents [OSTI]

Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures. 22 figs.

Glazer, A.N.; Mathies, R.A.; Hung, S.C.; Ju, J.

1998-12-29T23:59:59.000Z

57

Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels  

DOE Patents [OSTI]

Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

Glazer, Alexander N. (Orinda, CA); Mathies, Richard A. (Moraga, CA); Hung, Su-Chun (Richmond, CA); Ju, Jingyue (Redwood City, CA)

1998-01-01T23:59:59.000Z

58

Application of wave generator theory to the development of a Wave Energy Converter  

E-Print Network [OSTI]

Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri approve the attached thesis Application of wave generator theory to the development of a Wave Energy Application of wave generator theory to the development of a Wave Energy Converter by Maila Sepri Principal

Wood, Stephen L.

59

On the Energy of Rotating Gravitational Waves  

E-Print Network [OSTI]

A class of solutions of the gravitational field equations describing vacuum spacetimes outside rotating cylindrical sources is presented. A subclass of these solutions corresponds to the exterior gravitational fields of rotating cylindrical systems that emit gravitational radiation. The properties of these rotating gravitational wave spacetimes are investigated. In particular, we discuss the energy density of these waves using the gravitational stress-energy tensor.

Bahram Mashhoon; James C. McClune; Enrique Chavez; Hernando Quevedo

1996-09-06T23:59:59.000Z

60

A universal electromagnetic energy conversion adapter based on a metamaterial absorber  

E-Print Network [OSTI]

On the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhancement can further empower UEECA in many critical applications such as energy harvesting, solar cell, and nonlinear optics. The principle of UEECA is understood with a transmission line model, which further provides a design strategy that can incorporate a variety of energy conversion devices. The concept is experimentally validated at a microwave frequency with a signal transfer ratio of 96% by choosing an RF diode as the energy converting sensor.

Xie, Yunsong; Wilson, Jeffrey D; Simons, Rainee N; Chen, Yunpeng; Xiao, John Q

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wave spectral energy variability in the northeast Peter D. Bromirski  

E-Print Network [OSTI]

Wave spectral energy variability in the northeast Pacific Peter D. Bromirski Integrative January 2005; published 8 March 2005. [1] The dominant characteristics of wave energy variability] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses

Bromirski, Peter D.

62

Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere  

E-Print Network [OSTI]

Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

D. Kuridze; T. V. Zaqarashvili

2007-03-19T23:59:59.000Z

63

Counting energy packets in the electromagnetic wave  

E-Print Network [OSTI]

We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

Stefan Popescu; Bernhard Rothenstein

2007-05-18T23:59:59.000Z

64

The Effects of Wave Energy Converters on a Monochromatic Wave Climate  

E-Print Network [OSTI]

available from the National Oceanic and Atmospheric Administration (NOAA). Wave energy converters were converters as well as the availability of energy in the ocean. This study will examine the effects of a wave and mean wave period of wave energy fields. There is tremendous energy potential in the ocean. Solar energy

Fox-Kemper, Baylor

65

Proceedings of the Hydrokinetic and Wave Energy Technologies...  

Office of Environmental Management (EM)

Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and...

66

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

67

Binding Energy of d Transition Metals to Alkenes By Wave...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy of d Transition Metals to Alkenes By Wave Function Theory and Density Functional Theory. Binding Energy of d Transition Metals to Alkenes By Wave Function Theory...

68

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

69

Mapping and Assessment of the United States Ocean Wave Energy...  

Office of Environmental Management (EM)

States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and results of a rigorous assessment of...

70

Energy-momentum relation for solitary waves of relativistic wave equations  

E-Print Network [OSTI]

Solitary waves of relativistic invariant nonlinear wave equation with symmetry group U(1) are considered. We prove that the energy-momentum relation for spherically symmetric solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova; A. I. Komech; H. Spohn

2005-08-23T23:59:59.000Z

71

New Perspectives on Wave Energy Converter Control  

E-Print Network [OSTI]

This work examines some of the fundamental problems behind the control of wave energy converters (WECs). Several new perspectives are presented to aid the understanding of the problem and the interpretation of the ...

Price, Alexandra A E

2009-01-01T23:59:59.000Z

72

Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide  

E-Print Network [OSTI]

the Department of Chemistry, The PennsylVania State UniVersity, UniVersity Park, PennsylVania 16802, Central, American UniVersity of Beirut, Beirut 110236, Lebanon, and National Renewable Energy Laboratory, Golden have attracted much attention as inexpensive and relatively efficient solar photovol- taic devices

73

MATHEMATICAL ANALYSIS OF A WAVE ENERGY CONVERTER ARNAUD ROUGIREL  

E-Print Network [OSTI]

for buoy-type ocean wave energy converter. The simplest model for this scheme is a non autonomous piecewise impact on the environment. In this respect, ocean waves provides a important source of renewable energy. Me- chanical devices that harvest energy stored in ocean waves are called wave energy converter (WEC

Paris-Sud XI, Université de

74

Measured performances of curved inverted-vee, absorber compound parabolic concentrating solar-energy collectors  

SciTech Connect (OSTI)

The design and thermal performance of modified compound parabolic concentrating (CPC) solar-energy collectors are described. The designs incorporate a curved inverted-Vee absorber fin, which allows a reflector of simple geometry to be used. This CPC collector, has exhibited a superior performance to that of a conventional cusp-reflector CPC design, owing to the enhancement of the optical efficiency obtained by eliminating gap optical losses and an enhanced heat removal factor. The consequence upon the performance of a further design refinement, which inhibited the convective heat losses, is also reported.

Norton, B. (Univ. of Ulster at Jordanstown (Ireland)); Prapas, D.E. (Aristotle Univ. of Thessaloniki (Greece)); Eames, P.C.; Probert, S.D. (Cranfield Institute of Technology, Bedford (England))

1989-01-01T23:59:59.000Z

75

Assessment of U.S. Energy Wave Resources: Cooperative Research and Development Final Report, CRADA Number CRD-09-328  

SciTech Connect (OSTI)

In terms of extractable wave energy resource for our preliminary assessment, the EPRI/National Renewable Energy Laboratory (NREL) assumed that 15% of the available resource could be extracted based on societal constraints of a 30% coverage of the coastline with a 50% efficient wave energy absorbing device. EPRI recognizes that much work needs to be done to better define the extractable resource and we have outlined a comprehensive approach to doing this in our proposed scope of work, along with specific steps for refining our estimate of the available wave energy resources.

Scott, G.

2012-06-01T23:59:59.000Z

76

Soft Capacitors for Wave Energy Harvesting  

E-Print Network [OSTI]

Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jrgen Jrgensen; Guggi Kofod

2011-10-14T23:59:59.000Z

77

Wave equations with energy dependent potentials  

E-Print Network [OSTI]

We study wave equations with energy dependent potentials. Simple analytical models are found useful to illustrate difficulties encountered with the calculation and interpretation of observables. A formal analysis shows under which conditions such equations can be handled as evolution equation of quantum theory with an energy dependent potential. Once these conditions are met, such theory can be transformed into ordinary quantum theory.

J. Formanek; R. J. Lombard; J. Mares

2003-09-22T23:59:59.000Z

78

WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA  

E-Print Network [OSTI]

case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,

Cary, John R.

2012-01-01T23:59:59.000Z

79

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland  

E-Print Network [OSTI]

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms gradient technologies. This paper is focused on Ocean Wave Energy Converters (OWECs) and the need

Haller, Merrick

80

Wave Energy Ecological Effects Workshop page 1 of 4 Ecological Effects of Wave Energy Development in the Pacific Northwest  

E-Print Network [OSTI]

Wave Energy Ecological Effects Workshop page 1 of 4 Ecological Effects of Wave Energy Development the capacity to harvest wave energy off its coast as a clean, renewable resource. An important part of moving this agenda forward must include understanding the potential effects of wave energy technology

Wright, Dawn Jeannine

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project  

Broader source: Energy.gov [DOE]

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

82

Elgen Wave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and RocksElement Power Name:Elgen Wave

83

Energy-momentum Density of Gravitational Waves  

E-Print Network [OSTI]

In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetrou prescriptions.

Amir M. Abbassi; Saeed Mirshekari

2014-11-29T23:59:59.000Z

84

Sensitivity of the absorbed energy into a ROPS during a rollover situation: Comparison to the security level  

E-Print Network [OSTI]

Sensitivity of the absorbed energy into a ROPS during a rollover situation: Comparison Co-operation and Development (OECD), such a model (designed using the simulation software Adams) allows the simulations of hazardous situations for impact energy calculation. Based on this material

Paris-Sud XI, Université de

85

Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH)  

E-Print Network [OSTI]

Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH) Alexandra DeVisser, NAVFAC-EXWC Brian June 10, 2013 #12;Wave Energy Test Site (WETS) Objective: Provide location for year-long in WETS? Year-round data collection in a wide range of wave conditions is possible. #12;4 Daily Wave Power

86

Externally tuned vibration absorber  

DOE Patents [OSTI]

A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

Vincent, Ronald J. (Latham, NY)

1987-09-22T23:59:59.000Z

87

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood,GreenFalls, Colorado:United

88

Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /  

E-Print Network [OSTI]

Power Maximization in Wave-Energy Converters Using Sampled-design optimization of wave energy converters con- sistingN. Sahinkaya. A review of wave energy converter technology.

Chen, Tianjia

2013-01-01T23:59:59.000Z

89

Anomalous electron-ion energy coupling in electron drift wave turbulence  

E-Print Network [OSTI]

annulus arises due to a wave energy flux differential acrossprincipal collisionless wave energy dissipation channel inOn the other hand, wave energy can be dissipated by ion

Zhao, Lei

90

Enhancing the Dynamic Range of Targeted Energy Transfer in Acoustics Using Several Nonlinear Membrane Absorbers  

E-Print Network [OSTI]

Membrane Absorbers R. Belleta , B. Cochelinb, , R. C^otec , P.-O. Matteia a CNRS-LMA, UPR 7051, F-13402

Paris-Sud XI, Université de

91

E-Print Network 3.0 - absorbed light energy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composite Technologies Research Group Collection: Materials Science 15 The Greenhouse Effect Temperature Equilibrium Summary: the heat absorbed from the Sun with the heat...

92

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry  

E-Print Network [OSTI]

Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean waveOn the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

Victoria, University of

93

Ecological Effects of Wave Energy Development in the Pacific Northwest  

E-Print Network [OSTI]

Ecological Effects of Wave Energy Development in the Pacific Northwest A Scientific Workshop Technical Memorandum NMFS-F/SPO-92 #12;#12;Ecological Effects of Wave Energy Development in the Pacific Service; Justin Klure, Oregon Wave Energy Trust; Greg McMurray, Oregon Department of Land Conservation

94

Peculiarities in the energy transfer by waves on strained strings  

E-Print Network [OSTI]

Peculiarities in the energy transfer by waves on strained strings Eugene I. Butikov St. Petersburg of elastic potential energy associated with waves in a stretched string is discussed. The influence of nonlinear coupling between transverse and longitudinal waves on the density of energy is investigated

Butikov, Eugene

95

Energy of tsunami waves generated by bottom motion  

E-Print Network [OSTI]

Energy of tsunami waves generated by bottom motion By Denys Dutykh, Fr´ed´eric Dias CMLA, ENS investigation on the energy of waves generated by bottom motion is performed here. We start with the full for the linearized water wave equations. Exchanges between potential and kinetic energies are clearly revealed

Boyer, Edmond

96

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network [OSTI]

E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

97

Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena  

E-Print Network [OSTI]

Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

Fominov, Yakov

98

Leancon Wave Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill,5. ItLea Hill,Leake

99

Dartmouth Wave Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, searchIllinois: Energy Resources JumpDarrel Dammen

100

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | OpenCarboPur84.3202194°Carnation, Washington:

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EEREs support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy TechnologyNew Zealand (WET-NZ) device.

102

Regulation of Tidal and Wave Energy Projects (Maine)  

Broader source: Energy.gov [DOE]

State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements regulation by the Federal Energy Regulation...

103

WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA  

E-Print Network [OSTI]

case, the electrons have negative wave energy for 2w ne w wave energy for 2w . > w > 0 nlw/k to the negative wave energy of the electrons. positive

Cary, John R.

2012-01-01T23:59:59.000Z

104

Energy Department Announces $10 Million for Full-Scale Wave Energy...  

Office of Environmental Management (EM)

10 Million for Full-Scale Wave Energy Device Testing Energy Department Announces 10 Million for Full-Scale Wave Energy Device Testing October 29, 2014 - 2:55pm Addthis The Energy...

105

absorbing boundary condition: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Absorbing Boundary Condition, Domain Decomposition and Hydrodynamic Wave Model O. Wilk Introduction. appli. (wave equation) Num. appli. (hydro. wave model)...

106

absorbing boundary conditions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Absorbing Boundary Condition, Domain Decomposition and Hydrodynamic Wave Model O. Wilk Introduction. appli. (wave equation) Num. appli. (hydro. wave model)...

107

Wave Energy Resources Representative Sites Around the Hawaiian Islands  

E-Print Network [OSTI]

Wave Energy Resources for Representative Sites Around the Hawaiian Islands Prepared by: Luis A. Vega Ph.D October 11, 2010 #12;Wave Power Resources off the Hawaiian Islands October 11, 2010 1 Foreword This report provides wave energy resource information required to select coastal segments

108

Internal energy relaxation in shock wave structure  

SciTech Connect (OSTI)

The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, Solution of the Boltzmann kinetic equation for high-speed flows, Comput. Math. Math. Phys. 46, 315329 (2006); F. Cheremisin, Solution of the Wang Chang-Uhlenbeck equation, Dokl. Phys. 47, 487490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

Josyula, Eswar, E-mail: Eswar.Josyula@us.af.mil; Suchyta, Casimir J. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)] [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Boyd, Iain D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Vedula, Prakash [University of Oklahoma, Norman, Oklahoma 73019 (United States)] [University of Oklahoma, Norman, Oklahoma 73019 (United States)

2013-12-15T23:59:59.000Z

109

Energy-absorbent Material and Method of Making - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer ProgramEnergy-WaterEmerging Issues

110

Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint  

SciTech Connect (OSTI)

To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

2014-03-01T23:59:59.000Z

111

Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere  

E-Print Network [OSTI]

spectral density comparison Wave polarization and energywind to various sinks of wave energy in the magnetosphere.magnetosphere (where wave energy can exit the magnetosphere

Hartinger, Michael David

2012-01-01T23:59:59.000Z

112

Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere  

E-Print Network [OSTI]

spectral density comparison Wave polarization and energywind to various sinks of wave energy in the magnetosphere.a source or sink of wave energy (Southwood et al. , 1969).

Hartinger, Michael David

2012-01-01T23:59:59.000Z

113

Research and Technology in Wave Energy for Electric Mobility  

E-Print Network [OSTI]

generated by ocean current and energy extraction through ocean thermal conversion (OTEC). For wave energy renewable energy in the oceans, the utilization of such power has been far from full or even effectiveResearch and Technology in Wave Energy for Electric Mobility Reza Ghorbani Assistant Professor

Frandsen, Jannette B.

114

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarListLiveFuels Inc JumpLoessEnergyLong-Wave

115

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to:County,1143807°,Hilltop,Hinsdale Wave Basin 1

116

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to:County,1143807°,Hilltop,Hinsdale Wave Basin 1

117

absorber rod measurements: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Domain: Absorbing Boundary Condition, Domain Decomposition and Hydrodynamic Wave Model M2NIMathCnam 12;Absorbing Mancini, Simona 30 Dynamic Loading of Polycrystalline...

118

Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting  

E-Print Network [OSTI]

In this work, a metamaterial selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 90% in the UV, visible and, near infrared (IR) regime, while the mid-IR emittance is around 20%. The high broadband absorption in the solar spectrum is realized by the excitation of surface plasmon and magnetic polariton resonances, while the low mid-IR emittance is due to the highly reflective nature of the metallic components. Further directional and polarized reflectance measurements show wide-angle and polarization-insensitive high absorption within solar spectrum. Temperature-dependent spectroscopic characterization indicates that the optical properties barely change at elevated temperatures up to 350{\\deg}C. The solar-to-heat conversion efficiency with the fabricated metamaterial solar absorber is predicted to be 78%...

Wang, Hao; Mitchell, Arnan; Rosengarten, Gary; Phelan, Patrick; Wang, Liping

2014-01-01T23:59:59.000Z

119

Sandia National Laboratories: Sandia, NREL Release Wave Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for International Smart Grid Action Network 2014 Award of Excellence Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim On July 29, 2014, in...

120

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Energy Savers [EERE]

proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Ocean Energy Projects Developing On and Off America's Shores Establishing a Testing Center...

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Acceleration of low energy charged particles by gravitational waves  

E-Print Network [OSTI]

The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

G. Voyatzis; L. Vlahos; S. Ichtiaroglou; D. Papadopoulos

2005-12-07T23:59:59.000Z

122

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industrys development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

123

Wave turbulence revisited: Where does the energy flow?  

E-Print Network [OSTI]

Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.

L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov

2014-04-03T23:59:59.000Z

124

Fluctuations of energy flux in wave turbulence Eric Falcon,1  

E-Print Network [OSTI]

Fluctuations of energy flux in wave turbulence ´Eric Falcon,1 S´ebastien Auma^itre,2 Claudio Falc gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much interactions transfer kinetic energy toward small scales where viscous dissipation takes place

Falcon, Eric

125

Wave-Packet Revivals for Quantum Systems with Nondegenerate Energies  

E-Print Network [OSTI]

The revival structure of wave packets is examined for quantum systems having energies that depend on two nondegenerate quantum numbers. For such systems, the evolution of the wave packet is controlled by two classical periods and three revival times. These wave packets exhibit quantum beats in the initial motion as well as new types of long-term revivals. The issue of whether fractional revivals can form is addressed. We present an analytical proof showing that at certain times equal to rational fractions of the revival times the wave packet can reform as a sum of subsidiary waves and that both conventional and new types of fractional revivals can occur.

Robert Bluhm; Alan Kostelecky; Bogdan Tudose

1996-09-26T23:59:59.000Z

126

MHK Projects/Oregon Coastal Wave Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Projects JumpInformationWave Energy

127

MHK Projects/Santona Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project CitySantona Wave Energy Park

128

MHK Technologies/Wave Energy Propulsion | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png Technology ProfileWave Energy

129

SyncWave Energy Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummersideJump to:JumpaSwinertonSyncWave Energy

130

Energy dissipation in wave propagation in general relativistic plasma  

E-Print Network [OSTI]

Based on a recent communication by the present authors the question of energy dissipation in magneto hydrodynamical waves in an inflating background in general relativity is examined. It is found that the expanding background introduces a sort of dragging force on the propagating wave such that unlike the Newtonnian case energy gets dissipated as it progresses. This loss in energy having no special relativistic analogue is, however, not mechanical in nature as in elastic wave. It is also found that the energy loss is model dependent and also depends on the number of dimensions.

Ajanta Das; S. Chatterjee

2009-11-03T23:59:59.000Z

131

Dark energy from quantum wave function collapse of dark matter  

E-Print Network [OSTI]

Dynamical wave function collapse models entail the continuous liberation of a specified rate of energy arising from the interaction of a fluctuating scalar field with the matter wave function. We consider the wave function collapse process for the constituents of dark matter in our universe. Beginning from a particular early era of the universe chosen from physical considerations, the rate of the associated energy liberation is integrated to yield the requisite magnitude of dark energy around the era of galaxy formation. Further, the equation of state for the liberated energy approaches $w \\to -1$ asymptotically, providing a mechanism to generate the present acceleration of the universe.

A. S. Majumdar; D. Home; S. Sinha

2009-09-03T23:59:59.000Z

132

Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli***  

E-Print Network [OSTI]

Wave EnergyFocusing in aThree-dimensional Numerical WaveTank C. Fochesato*, F. Dias**, S. Grilli Department (University of Rhode Island), Narragansett, RI, U.S.A. ABSTRACT Directional wave energy focusing in space is one of the mechanisms that may contribute to the generation of a rogue wave in the ocean

Grilli, Stphan T.

133

A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical Parameters  

E-Print Network [OSTI]

A New Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Methodology for Frequency Domain Analysis of Wave Energy Converters with Periodically Varying Physical of Mechanical Engineering) ABSTRACT Within a wave energy converter's operational bandwidth, device operation

Victoria, University of

134

Energy Dispersed Large Data Wave Maps in 2+1 Dimensions  

E-Print Network [OSTI]

of Finite S Norm Wave-Maps and Energy Dispersion 10.1renormalization of large energy wave maps. In: Journes of Finite S Norm Wave-Maps and Energy Dispersion In this

Sterbenz, Jacob; Tataru, Daniel

2010-01-01T23:59:59.000Z

135

Summary of PIER-Funded Wave Energy Research  

E-Print Network [OSTI]

, Consultant--Ocean Energy Systems. The outcomes presented herein represent an aggregation of originalCALIFORNIA ENERGY COMMISSION Summary of PIER-Funded Wave Energy Research STAFFREPORT MARCH 2008 CEC-500-2007-083 Arnold Schwarzenegger, Governor #12; #12; CALIFORNIA ENERGY COMMISSION Mike Kane

136

ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES  

SciTech Connect (OSTI)

Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

2013-05-10T23:59:59.000Z

137

Energy Contents of Gravitational Waves in Teleparallel Gravity  

E-Print Network [OSTI]

The conserved quantities, that are, gravitational energy-momentum and its relevant quantities are investigated for cylindrical and spherical gravitational waves in the framework of teleparallel equivalent of General Relativity using the Hamiltonian approach. For both cylindrical and spherical gravitational waves, we obtain definite energy and constant momentum. The constant momentum shows consistency with the results available in General Relativity and teleparallel gravity. The angular momentum for cylindrical and spherical gravitational waves also turn out to be constant. Further, we evaluate their gravitational energy-momentum fluxes and gravitational pressure.

M. Sharif; Sumaira Taj

2009-10-02T23:59:59.000Z

138

Interaction of two walkers: Wave-mediated energy and force  

E-Print Network [OSTI]

A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here, we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound, and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

Borghesi, Christian; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves

2014-01-01T23:59:59.000Z

139

Energy and Momentum of a Class of Rotating Gravitational Waves  

E-Print Network [OSTI]

We calculate energy and momentum for a class of cylindrical rotating gravitational waves using Einstein and Papapetrou's prescriptions. It is shown that the results obtained are reduced to the special case of the cylindrical gravitational waves already available in the literature.

M. Sharif

2001-02-09T23:59:59.000Z

140

Energy Content of Colliding Plane Waves using Approximate Noether Symmetries  

E-Print Network [OSTI]

This paper is devoted to study the energy content of colliding plane waves using approximate Noether symmetries. For this purpose, we use approximate Lie symmetry method of Lagrangian for differential equations. We formulate the first-order perturbed Lagrangian for colliding plane electromagnetic and gravitational waves. It is shown that in both cases, there does not exist

M. Sharif; Saira Waheed

2011-09-19T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wave Function Properties in a High Energy Process  

E-Print Network [OSTI]

A model example is given of how properties of the hadronic light-cone wave function are revealed in a particular high energy process. The meson wave function is derived in scalar quark QCD. We apply it to compute the form of the cross section for lossless diffractive jet-production, an upcoming possiblity at HERA.

Arjun Berera

1994-11-14T23:59:59.000Z

142

Extended Xray Absorption Fine Structure Spectroscopy (EXAFS) Provides details on how x rays are absorbed by an atom at energies near X18A,B,X19A Provides details on how xrays are absorbed by an atom at energies near  

E-Print Network [OSTI]

's xray absorption probability due to the chemical and physical state of the atom · Especially sensitiveExtended Xray Absorption Fine Structure Spectroscopy (EXAFS) · Provides details on how x rays are absorbed by an atom at energies near X18A,B,X19A· Provides details on how xrays are absorbed by an atom

Ohta, Shigemi

143

Energy storage and generation from thermopower waves  

E-Print Network [OSTI]

The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the ...

Abrahamson, Joel T. (Joel Theodore)

2012-01-01T23:59:59.000Z

144

Sandia National Laboratories: Advanced Controls of Wave Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Facility Tool at SWiFT Makes Rotor Work More Efficient Advanced Controls of Wave Energy Converters May Increase Power Capture Up to 330% On January 21, 2014, in...

145

DOE Announces Webinars on the Wave Energy Converter Prize, the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Best of the Clean Cities Tools and Resources, and More DOE Announces Webinars on the Wave Energy Converter Prize, the Best of the Clean Cities Tools and Resources, and More March...

146

Sandia National Laboratories: WEC-Sim (Wave Energy Converter...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Y. Yu, "Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool," in Proceedings of OMAE 2014, San Francisco, CA, 2014. 2...

147

Internal wave energy radiated from a turbulent mixed layer  

SciTech Connect (OSTI)

We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%3% of the turbulent kinetic energy density of the turbulent layer.

Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

2014-09-15T23:59:59.000Z

148

The Energy Flux of Internal Gravity Waves in the Lower Solar Thomas Straus1  

E-Print Network [OSTI]

The Energy Flux of Internal Gravity Waves in the Lower Solar Atmosphere Thomas Straus1 , Bernhard waves as a key mediator of energy into the solar atmosphere. Subject headings: hydrodynamics ­ waves, can support and propagate gravity waves. On Earth these waves, which can transport energy and momentum

149

Author's personal copy Wave energy resources along the Hawaiian Island chain  

E-Print Network [OSTI]

model Wave atlas Wave energy Wave power a b s t r a c t Hawaii's access to the ocean and remoteness from in these activities are the wave energy resources and the research opportunities to understand the ocean environmentAuthor's personal copy Wave energy resources along the Hawaiian Island chain Justin E. Stopa

150

Wave energy attenuation and shoreline alteration characteristics of submerged breakwaters  

E-Print Network [OSTI]

WAVE ENERGY ATTENUATION AND SHORELINE ALTERATION CHARACTERISTICS OF SUBMERGED BREAKWATERS A Thesis by KATHERINE MARGARET KRAFFT Submitted to the Office of Graduate Studies of Texas AIM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1993 Major Subject: Ocean Engineering WAVE ENERGY ATTENUATION AND SHORELINE ALTERATION CHARACTERISTICS OF SUBMERGED BREAKWATERS A Thesis by KATHERINE MARGARET KRAFFT Approved as to style and content by: John...

Krafft, Katherine Margaret

1993-01-01T23:59:59.000Z

151

How to Estimate Energy Lost to Gravitational Waves (revised)  

E-Print Network [OSTI]

The energy--momentum radiated in gravitational waves by an isolated source is given by a formula of Bondi. This formula is highly non--local: the energy--momentum is not given as the integral of a well--defined local density. It has therefore been unclear whether the Bondi formula can be used to get information from gravity--wave measurements. In this note, we obtain, from local knowledge of the radiation field, a lower bound on the Bondi flux.

Adam D. Helfer

1993-07-19T23:59:59.000Z

152

Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose  

SciTech Connect (OSTI)

In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah [Malaysian Nuclear Agency (Nuclear Malaysia), Bangi 43000 Kajang Selangor (Malaysia); Ahmad, Pauzi [Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor (Malaysia)

2014-09-03T23:59:59.000Z

153

Overview of Ocean Wave and Tidal Energy Lingchuan Mei  

E-Print Network [OSTI]

resources such as solar and wind energy, waves and tides have the advantages of having much higher power stronger energy conversion devices lower in capital cost than for other renewable technologies and creating more job opportunities. For these major benefits the marine energy can provide us with, a great

Lavaei, Javad

154

Energy flux of timeharmonic waves in anisotropic dissipative media  

E-Print Network [OSTI]

Energy flux of time­harmonic waves in anisotropic dissipative media Vlastislav Ÿ Cerven 2, Czech Republic. E­mail vcerveny@seis.karlov.m#.cuni.cz Summary The energy flux of time to consider the average energy flux, which is real­valued and time­independent. An extension

Cerveny, Vlastislav

155

Gauge Invariant Effective Stress-Energy Tensors for Gravitational Waves  

E-Print Network [OSTI]

It is shown that if a generalized definition of gauge invariance is used, gauge invariant effective stress-energy tensors for gravitational waves and other gravitational perturbations can be defined in a much larger variety of circumstances than has previously been possible. In particular it is no longer necessary to average the stress-energy tensor over a region of spacetime which is larger in scale than the wavelengths of the waves and it is no longer necessary to restrict attention to high frequency gravitational waves.

Paul R. Anderson

1996-09-09T23:59:59.000Z

156

PHYSICAL REVIEW E 89, 023003 (2014) Energy flux measurement from the dissipated energy in capillary wave turbulence  

E-Print Network [OSTI]

energy flux are in good agreement with wave turbulence theory. The Kolmogorov-Zakharov constant waves interact with each other, they can develop a regime of wave turbulence where the wave energyPHYSICAL REVIEW E 89, 023003 (2014) Energy flux measurement from the dissipated energy in capillary

Falcon, Eric

157

Energy Harvesting Shock Absorbers Lei Zuo, State University of New York at Stony Brook (lei.zuo@stonybrook.edu, 631-632-9327)  

E-Print Network [OSTI]

Energy Harvesting Shock Absorbers Lei Zuo, State University of New York at Stony Brook (lei support from New York State Energy Research and Development Authority (NYSERDA). We expect 1-2 yearsOrg, IOPscience, New York Times, and MIT Technology Review. We won the prestigious R&D 100 Award by the R

Zuo, Lei

158

Quantum Monte Carlo: Direct calculation of corrections to trial wave functions and their energies  

E-Print Network [OSTI]

. The wave functions and energies for these systems are corrected to the fixed-node values desirable features of: good wave function in/better wave function out ... good energy in/better energy out wave function, and Eref is a reference energy. Making use of the difference 0 and defining another

Anderson, James B.

159

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH  

E-Print Network [OSTI]

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic FE u p cgE is a fundamental quan- tity in internal wave energetics to identify energy sources, wave propagation, and energy sinks. Internal wave radiation transports energy from the boundaries

Kurapov, Alexander

160

SPECTRAL ENERGY METHODS AND THE STABILITY OF SHOCK WAVES  

E-Print Network [OSTI]

SPECTRAL ENERGY METHODS AND THE STABILITY OF SHOCK WAVES Jeffrey Humpherys Submitted to the faculty Robert Glassey, David Hoff, and Peter Sternberg for their good counsel and service. I am grateful use energy methods, extending the work of Goodman, Kawashima, Matsumura, and Nishihara, to prove

Humpherys, Jeffrey

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

QCD traveling waves at non-asymptotic energies  

E-Print Network [OSTI]

Using consistent truncations of the BFKL kernel, we derive analytical traveling-wave solutions of the Balitsky-Kovchegov saturation equation for both fixed and running coupling. A universal parametrization of the ``interior'' of the wave front is obtained and compares well with numerical simulations of the original Balitsky-Kovchegov equation, even at non-asymptotic energies. Using this universal parametrization, we find evidence for a traveling-wave pattern of the dipole amplitude determined from the gluon distribution extracted from deep inelastic scattering data.

C. Marquet; R. Peschanski; G. Soyez

2005-10-03T23:59:59.000Z

162

Zero Energy of Plane-Waves for ELKOs  

E-Print Network [OSTI]

We consider the ELKO field in interaction through contorsion with its own spin density, and we investigate the form of the consequent autointeractions; to do so we take into account the high-density limit and find plane wave solutions: such plane waves give rise to contorsional autointeractions for which the Ricci metric curvature vanishes and therefore the energy density is equal to zero identically. Consequences are discussed.

Luca Fabbri

2011-02-23T23:59:59.000Z

163

Perfectly Reflectionless Omnidirectional Electromagnetic Absorber  

E-Print Network [OSTI]

We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives, we introduce two new OEMA blueprints. While these two blueprints do not correspond to reflectionless media, they are effective in absorbing incident waves in a manner robust to incident wave diversity.

Sainath, Kamalesh

2014-01-01T23:59:59.000Z

164

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa|Wattner andWauseon,Dragon ApSSandyWave

165

Triton Sea Wave Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo AluminiumCity LightHills JumpSea Wave

166

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren,ShanghaiSheets Wave Basin Jump to:

167

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay, OR) JumpPhoto from Alstom 2010,Waves and Sun

168

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network [OSTI]

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M. KLYMAK2. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes important

169

Nonequilibrium Statistics of a Reduced Model for Energy Transfer in Waves  

E-Print Network [OSTI]

Nonequilibrium Statistics of a Reduced Model for Energy Transfer in Waves R. E. LEE DEVILLE Courant, with the subsequent dynamics transferring the energy to longer scales. The main dissipation mechanism is wave breaking, which usually acts on much longer (gravity) waves that intermittently remove energy from the wave system

Milewski, Paul

170

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network [OSTI]

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M of coastline. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes

171

ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM GUILLAUME BAL  

E-Print Network [OSTI]

ON THE SELF-AVERAGING OF WAVE ENERGY IN RANDOM MEDIA GUILLAUME BAL Abstract. We consider the stabilization (self-averaging) and destabilization of the energy of waves propagating in random media transport equations for arbitrary statistical moments of the wave field is used to show that wave energy

Bal, Guillaume

172

LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY CONVERTERS  

E-Print Network [OSTI]

1 LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments absorption is a reasonable predictor of the effect of WECs on the far field. Keywords: wave- energy; spectral

Haller, Merrick

173

Wave Energy Machine Louise Butler, Bilal Demir, Caleb Lee, Joe Meiners, Christian Rodin  

E-Print Network [OSTI]

Wave Energy Machine Louise Butler, Bilal Demir, Caleb Lee, Joe Meiners, Christian Rodin Advisor: Dr. Introduction Design Kinematic Model Testing Current wave energy technology harvests the vertical motion. Project Statement: Design a wave energy machine that harnesses underwater wave motion and converts

Provancher, William

174

Neutron Detection Using an Embedded Sol-Gel Neutron Absorber - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeamN u FNeutron

175

Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.  

SciTech Connect (OSTI)

The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

Roberts, Jesse D.; Jones, Craig; Magalen, Jason

2014-09-01T23:59:59.000Z

176

EA-1917: Wave Energy Test Facility Project, Newport, OR  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE.

177

Title of Document: LONGITUDINAL SPACE-CHARGE WAVES INDUCED BY ENERGY MODULATIONS  

E-Print Network [OSTI]

ABSTRACT Title of Document: LONGITUDINAL SPACE-CHARGE WAVES INDUCED BY ENERGY MODULATIONS Brian L. Modulations in energy or density can induce space-charge waves at low energies which could be problematic at higher energies. This thesis is a study of longitudinal space-charge waves induced by energy modulations

Anlage, Steven

178

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys  

E-Print Network [OSTI]

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys Douglas A. Gemme1 are presented for numerical simulations and field experiments using point absorption ocean wave energy and experimental data. Index Terms ­ energy conversion, wave energy harvesting, linear generator, ocean energy

Grilli, Stéphan T.

179

Potential of Development and Application of Wave Energy Conversion Technology in the Gulf of Mexico  

E-Print Network [OSTI]

This paper focuses on the potential and application of developing wave energy technology in the Gulf of Mexico (GOM). The conditions (weather, wave climate, activity of the oil industry, etc.) in the GOM are assessed and the attributes of wave...

Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

2014-01-01T23:59:59.000Z

180

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska:Nutley,EnergyOHmOpenand FeesOTB USA

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridor |InformationNevada: EnergyHayden,A&M

182

Clean Wave Ventures | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:CleanCleanVita

183

Energy flux measurement from the dissipated energy in capillary wave turbulence Luc Deike, Michael Berhanu, and Eric Falcon  

E-Print Network [OSTI]

Energy flux measurement from the dissipated energy in capillary wave turbulence Luc Deike, Michael the dissipation is increased. The energy dissipated by capillary waves is also measured and found to increase with the frequency and the newly defined mean energy flux are in good agreement with wave turbulence theory

Paris-Sud XI, Université de

184

Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.  

SciTech Connect (OSTI)

The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

Roberts, Jesse D.; Chang, Grace; Jones, Craig

2014-09-01T23:59:59.000Z

185

The study of waves is clearly an important subject in acoustics because sound energy is transmitted by waves traveling though air. Furthermore, it turns out that the  

E-Print Network [OSTI]

Waves The study of waves is clearly an important subject in acoustics because sound energy energy without any net movement of mass. In other words the energy in the wave moves from point A to point B without moving any material from A to B. After transmission of wave energy the medium is left

Robertson, William

186

An alternative method for calculating the energy of gravitational waves  

E-Print Network [OSTI]

In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

Miroslav Sukenik; Jozef Sima

1999-09-21T23:59:59.000Z

187

Physics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String  

E-Print Network [OSTI]

, Vibrations and Waves (W.W. Norton and Company, New York, 1971). First, we compute the kinetic energyPhysics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String Consider the kinetic energy and the potential energy of this string segment due to the passage of a traveling wave

California at Santa Cruz, University of

188

Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System  

E-Print Network [OSTI]

Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System Mark, alternative energy system to convert the circular motion of ocean waves as they propagate through the sea and feasible alternative, renewable, electrical energy producing subsea system. Index Terms--ocean energy, wave

Wood, Stephen L.

189

Liu UCD Phy9B 07 22 15-5. Energy in Wave Motion  

E-Print Network [OSTI]

Liu UCD Phy9B 07 22 15-5. Energy in Wave Motion x txy FtxFy -= ),( ),( t txy x txy FtxvtxFtxP yy -== ),(),( ),(),(),( For any wave on a string, instantaneous rate of energy transfer 1 dimensional: wave on a string #12;Liu UCD Phy9B 07 23 Energy Transferred by Sinusoidal Wave )cos(),( tkxAtxy -= For a sinusoidal wave )(sin

Yoo, S. J. Ben

190

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose,Stanley CapitalNorthMoscow isMotleyVFDs

191

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri

192

Property:Wave Direction | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to:USGSMeanReservoirTemp Jump to: navigation,Volume

193

Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters  

E-Print Network [OSTI]

energy resource plan. An extremely abundant and promising source of energy exists in oceans of the following categories: wave energy, marine and tidal current energy, ocean thermal energy, energy fromPredictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters M.S. Lagoun1

Paris-Sud XI, Université de

194

Langlee Wave Power AS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJumpElectric Coop IncAS Jump to:

195

The Sandia Wave Reflector - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe Road toCatalysts:Sandia

196

Sandia National Laboratories: wave energy converter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Wind Farmoutputwater scarcitywave

197

Sandia National Laboratories: wave energy converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Wind Farmoutputwater

198

Riding the Clean Energy Wave: New Projects Aim to Improve Water...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices April 16, 2014 - 1:56pm...

199

Wave-Energy Company Looks to Test Prototypes in Maine Waters...  

Broader source: Energy.gov (indexed) [DOE]

Wave-Energy Company Looks to Test Prototypes in Maine Waters Wave-Energy Company Looks to Test Prototypes in Maine Waters April 9, 2010 - 4:19pm Addthis Lindsay Gsell Resolute...

200

Quantification of the influence of directional sea state parameters over the performances of wave energy converters  

E-Print Network [OSTI]

Accurate predictions of the annual energy yield from wave energy converters are essential to the development of the wave industry. The current method based on power matrices uses only a small part of the data available ...

Pascal, Remy Claude Rene

2012-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy-momentum relation for solitary waves of nonlinear Dirac equations  

E-Print Network [OSTI]

Solitary waves of nonlinear Dirac, Maxwell-Dirac and Klein-Gordon-Dirac equations are considered. We prove that the energy-momentum relation for solitary waves coincides with the Einstein energy-momentum relation for point particles.

T. V. Dudnikova

2014-04-28T23:59:59.000Z

202

Interaction of Gravitational Waves with Charged Particles  

E-Print Network [OSTI]

It is shown here that a cloud of charged particles could in principle absorb energy from gravitational waves (GWs) incident upon it, resulting in wave attenuation. This could in turn have implications for the interpretation of future data from early universe GWs.

Thulsi Wickramasinghe; Will Rhodes; Mitchell Revalski

2015-02-03T23:59:59.000Z

203

Interaction of Gravitational Waves with Charged Particles  

E-Print Network [OSTI]

It is shown here that a cloud of charged particles could in principle absorb energy from gravitational waves (GWs) incident upon it, resulting in wave attenuation. This could in turn have implications for the interpretation of future data from early universe GWs.

Wickramasinghe, Thulsi; Revalski, Mitchell

2015-01-01T23:59:59.000Z

204

Does a dynamical system lose energy by emitting gravitational waves?  

E-Print Network [OSTI]

We note that Eddington's radiation damping calculation of a spinning rod fails to account for the complete mass integral as given by Tolman. The missing stress contributions precisely cancel the standard rate given by the 'quadrupole formula'. This indicates that while the usual 'kinetic' term can properly account for dynamical changes in the source, the actual mass is conserved. Hence gravity waves are not carriers of energy in vacuum. This supports the hypothesis that energy including the gravitational contribution is confined to regions of non-vanishing energy-momentum tensor $T_{ik}$. PACS numbers: 04.20.Cv, 04.30.-w

F. I. Cooperstock

1999-09-30T23:59:59.000Z

205

Direct Drive Wave Energy Buoy 33rd scale experiment  

SciTech Connect (OSTI)

Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Powers Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe [Columbia Power Technologies, Inc.

2013-07-29T23:59:59.000Z

206

Detection of high energy cosmic rays with the resonant gravitational wave detector NAUTILUS and EXPLORER  

E-Print Network [OSTI]

The cryogenic resonant gravitational wave detectors NAUTILUS and EXPLORER, made of an aluminum alloy bar, can detect cosmic ray showers. At temperatures above 1 K, when the material is in the normal conducting state, the measured signals are in good agreement with the values expected based on the cosmic rays data and on the thermo-acoustic model. When NAUTILUS was operated at the temperature of 0.14 K, in superconductive state, large signals produced by cosmic ray interactions, more energetic than expected, were recorded. The NAUTILUS data in this case are in agreement with the measurements done by a dedicated experiment on a particle beam. The biggest recorded event was in EXPLORER and excited the first longitudinal mode to a vibrational energy of about 670 K, corresponding to about 360 TeV absorbed in the bar. Cosmic rays can be an important background in future acoustic detectors of improved sensitivity. At present, they represent a useful tool to verify the gravitational wave antenna performance.

P. Astone; D. Babusci; M. Bassan; P. Bonifazi; G. Cavallari; E. Coccia; S. D'Antonio; V. Fafone; G. Giordano; C. Ligi; A. Marini; G. Mazzitelli; Y. Minenkov; I. Modena; G. Modestino; A. Moleti; G. V. Pallottino; G. Pizzella; L. Quintieri; A. Rocchi; F. Ronga; R. Terenzi; M. Visco

2008-06-14T23:59:59.000Z

207

Optimization of quantum Monte Carlo wave functions using analytical energy derivatives  

E-Print Network [OSTI]

Optimization of quantum Monte Carlo wave functions using analytical energy derivatives Xi Lin of the local energy, H^ / .5 If the wave function were the exact ground eigenstate, the local energy would November 1999 An algorithm is proposed to optimize quantum Monte Carlo QMC wave functions based on Newton

Lin, Xi

208

Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves  

E-Print Network [OSTI]

Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves S waves. Our results show that the contributions to the total energy flux from these additional terms as well as non- linearity. The partitioning of the incident internal wave energy over the course

Fringer, Oliver B.

209

Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1  

E-Print Network [OSTI]

Surface current effects on the fetch-limited growth of wave energy Brian K. Haus1 Received 5 the fetch-limited growth of wind wave energy over a region with significant lateral shear of the current. Both the near-surface currents and wave energy and period were mapped over the highly sheared inshore

Miami, University of

210

Numerical modeling of extreme rogue waves generated by directional energy focusing  

E-Print Network [OSTI]

Numerical modeling of extreme rogue waves generated by directional energy focusing Christophe angle of directional energy focusing. We find that an over- turning rogue wave can have different are characterized by their brief occurrence in space and time, resulting from a local focusing of wave energy

Grilli, Stéphan T.

211

Loops of Energy Bands for Bloch Waves in Optical Lattices By Matt Coles and Dmitry Pelinovsky  

E-Print Network [OSTI]

Loops of Energy Bands for Bloch Waves in Optical Lattices By Matt Coles and Dmitry Pelinovsky We the energy bands for Bloch waves in optically trapped Bose­Einstein condensates. The comparison between in this context. These bifurcations generate loops in the energy bands of the Bloch waves near the ends

Pelinovsky, Dmitry

212

MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png Technology ProfileWave

213

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformation Kumasi Institute of TechnologyL-Shaped Flume Wave

214

Novel control of a permanent magnet linear generator for ocean wave energy applications.  

E-Print Network [OSTI]

??Wave energy conversion devices are a rapidly growing interest worldwide for the potential to harness a sustainable and renewable energy source. Due to the oscillatory (more)

VanderMeulen, Aaron H.

2007-01-01T23:59:59.000Z

215

Sandia National Laboratories: Wave Energy Resource Characterization at US  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinks Water Power

216

Abstract--Wave energy will have a key role in meeting re-newable energy targets en route to a low carbon economy. How-  

E-Print Network [OSTI]

1 Abstract--Wave energy will have a key role in meeting re- newable energy targets en route will impact on wave energy conversion. Where the resource is restricted there may be reductions in energy the sensitivity of wave energy production and econom- ics to changes in climate. Index Terms--Wave energy

Harrison, Gareth

217

Wave equations for determining energy-level gaps of quantum systems  

E-Print Network [OSTI]

An differential equation for wave functions is proposed, which is equivalent to Schr\\"{o}dinger's wave equation and can be used to determine energy-level gaps of quantum systems. Contrary to Schr\\"{o}dinger's wave equation, this equation is on `bipartite' wave functions. It is shown that those `bipartite' wave functions satisfy all the basic properties of Schr\\"{o}dinger's wave functions. Further, it is argued that `bipartite' wave functions can present a mathematical expression of wave-particle duality. This provides an alternative approach to the mathematical formalism of quantum mechanics.

Zeqian Chen

2006-09-10T23:59:59.000Z

218

A Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter  

E-Print Network [OSTI]

's excessive energy demand. An extremely abundant and promising source of energy exists in oceans. Currently be included in one of the following categories: wave energy, marine and tidal current energy, ocean thermalA Predictive power control of Doubly Fed Induction Generator for Wave Energy Converter in Irregular

Brest, Université de

219

WEC up! Energy Department Announces Wave Energy Conversion Prize  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear

220

Energy Department Announces $10 million for Wave Energy Demonstration at  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETING OFCalifornia Concentrating Solar Power

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Track 2: Sustainable Energy I. Renewable Energy: Wind and Wave  

E-Print Network [OSTI]

. Pulse uses an oscillating hydrofoil for energy capture: horizontal wing-shaped blades move up and down in the water column, much like a whale's tail. This oscillating motion is converted to electricity through

222

Energy Department Announces $10 million for Wave Energy Demonstration...  

Energy Savers [EERE]

plans to test two WEC devices at depths of 60 and 80 meters at the open-water site offshore from Marine Corps Base Hawaii in Kaneohe Bay. These projects will enable the Energy...

223

Open Ocean Aquaculture & Wave Energy Site | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine:OmOnley,OntarioOpTICOpelen)

224

Oregon Wave Energy Trust OWET | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarterVirginia.Land orFacilitiesOregonOSUWave

225

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network [OSTI]

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II structures that dominate wave momentum and energy transport. When the interior of a typical midlatitude jet and energy at jet interior critical levels. Longer waves transport momentum and energy away from the jet

Farrell, Brian F.

226

Wave Energy Conversion Overview and it's Renewable Energy Potential for the Oil and Gas Industry  

E-Print Network [OSTI]

Ocean energy conversion has been of interest for many years. Recent developments such as concern over global warming have renewed interest in the topic. Part II provides an overview of the energy density found in ocean waves and how it is calculated...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

227

ccsd00001869, Multi-ion-species e ects on magnetosonic waves and energy  

E-Print Network [OSTI]

ccsd­00001869, version 1 ­ 22 Oct 2004 Multi-ion-species e#11;ects on magnetosonic waves and energy, wave damping, energy transport 1. Introduction The presence of multiple ion species introduces many Magnetosonic waves propagating perpendicular to an external magnetic #12;eld are studied with attention

228

Internal wave energy radiated from a turbulent mixed layer James R. Munroe1, a)  

E-Print Network [OSTI]

Internal wave energy radiated from a turbulent mixed layer James R. Munroe1, a) and Bruce R of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from

Sutherland, Bruce

229

Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations  

E-Print Network [OSTI]

Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations Leonid millimeter-wave data yielded the precise location of 33 new energy levels of A+ symmetry and 20 levels of A extensive millimeter-wave measurements of the 12C16O dimer have been made, and more than 300 new spectral

230

Equal energy phase space trajectories in resonant wave interactions O. Yaakobia  

E-Print Network [OSTI]

Equal energy phase space trajectories in resonant wave interactions O. Yaakobia and L. Friedlandb interacting wave systems with nonlinear frequency/ wave vector shifts is discussed. The corresponding these parameters vary in time or space. It is shown that the oscillation periods of two equal energy trajectories

Friedland, Lazar

231

Energy deposition by Alfven waves into the dayside auroral oval: Cluster and FAST observations  

E-Print Network [OSTI]

Energy deposition by Alfve´n waves into the dayside auroral oval: Cluster and FAST observations C observations from the Cluster and FAST spacecraft showing the deposition of energy into the auroral ionosphere from broadband ULF waves in the cusp and low-latitude boundary layer. A comparison of the wave Poynting

California at Berkeley, University of

232

Nonlinear shear wave interaction at a frictional interface: Energy dissipation and generation of harmonics  

E-Print Network [OSTI]

Nonlinear shear wave interaction at a frictional interface: Energy dissipation and generation solids, brought into frictional contact by remote normal compression. A shear wave, either time har the partition of energy resulting from a time harmonic obliquely incident plane SH wave reflected and refracted

Norris, Andrew

233

On the energy transported by exact plane gravitational-wave solutions  

E-Print Network [OSTI]

The energy and momentum transported by exact plane gravitational-wave solutions of Einstein equations are computed using the teleparallel equivalent formulation of Einstein's theory. It is shown that these waves transport neither energy nor momentum. A comparison with the usual linear plane gravitational-waves solution of the linearized Einstein equation is presented.

Yuri N. Obukhov; J. G. Pereira; Guillermo F. Rubilar

2009-09-24T23:59:59.000Z

234

Electrostatic electron cyclotron waves generated by low-energy electron beams  

E-Print Network [OSTI]

Electrostatic electron cyclotron waves generated by low-energy electron beams J. D. Menietti, O the role of electron beams with E ] 1 keV in the generation of these waves. Observed plasma parameters these waves are an indicator of the presence of low-energy electron beams and a cold electron component (E ] 0

Santolik, Ondrej

235

Reference Model 6 (RM6): Oscillating Wave Energy Converter.  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

2014-10-01T23:59:59.000Z

236

The concept of waves is an integral part of our scientif-ic culture and has nourished physicists, pure and  

E-Print Network [OSTI]

, oscillations of diffusing energy or particles. They have complex wave vectors and do not exhibit square), or an oscillating charge carrier density (such as a har- monically-photoexcited carrier plasma wave in a semicon it is absorbed by the medium. For thermal waves, there is usually no delay in the energy conversion process, so F

Mandelis, Andreas

237

An evaluation of the potential of coastal wetlands for hurricane surge and wave energy reduction  

E-Print Network [OSTI]

potential, a segmented marsh may offer comparable surge protection to that of a continuous marsh. Wave heights are generally increased within the marsh due to the transmission of wave energy through marsh channels. Results presented in this thesis may assist...

Loder, Nicholas Mason

2009-05-15T23:59:59.000Z

238

Experimental studies of the hydrodynamic characteristics of a sloped wave energy device  

E-Print Network [OSTI]

Many wave energy convertors are designed to use either vertical (heave) or horizontal (surge) movements of waves. But the frequency response of small heaving buoys and oscillating water column devices shows that they are ...

Lin, Chia-Po

2000-07-19T23:59:59.000Z

239

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLCWashington:

240

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLCWashington:OWWE

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

California Wave Energy Partners LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: CrystallineOpenPermit

242

Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.  

SciTech Connect (OSTI)

A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

2014-09-01T23:59:59.000Z

243

Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.  

SciTech Connect (OSTI)

A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

2014-08-01T23:59:59.000Z

244

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect (OSTI)

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

245

Asymptotic Stability and Completeness in the Energy Space for Nonlinear Schrdinger Equations with Small Solitary Waves  

E-Print Network [OSTI]

In this paper we study a class of nonlinear Schr\\"odinger equations which admit families of small solitary wave solutions. We consider solutions which are small in the energy space $H^1$, and decompose them into solitary wave and dispersive wave components. The goal is to establish the asymptotic stability of the solitary wave and the asymptotic completeness of the dispersive wave. That is, we show that as $t \\to \\infty$, the solitary wave component converges to a fixed solitary wave, and the dispersive component converges to a solution of the free Schr\\"odinger equation.

Stephen Gustafson; Kenji Nakanishi; Tai-Peng Tsai

2003-08-06T23:59:59.000Z

246

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics ContentHydropower, Wave

247

Negative energy waves and MHD stability of rotating plasmas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007 (nextNauruNeenergy waves and MHD

248

BlueWave Capital LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE ISJumpSphere Corp JumpBlueWave Capital LLC

249

Energy flux of Alfven waves in weakly ionized plasma  

E-Print Network [OSTI]

The overshooting convective motions in the solar photosphere are frequently proposed as the source for the excitation of Alfv\\'en waves. However, the photosphere is a) very weakly ionized, and, b) the dynamics of the plasma particles in this region is heavily influenced by the plasma-neutral collisions. The purpose of this work is to check the consequences of these two facts on the above scenario and their effects on the electromagnetic waves. It is shown that the ions and electrons in the photosphere are both un-magnetized; their collision frequency with neutrals is much larger than the gyro-frequency. This implies that eventual Alfv\\'en-type electromagnetic perturbations must involve the neutrals as well. This has the following serious consequences: i) in the presence of perturbations, the whole fluid (plasma + neutrals) moves; ii) the Alfv\\'en velocity includes the total (plasma + neutrals) density and is thus considerably smaller compared to the collision-less case; iii) the perturbed velocity of a unit volume, which now includes both plasma and neutrals, becomes much smaller compared to the ideal (collision-less) case; and iv) the corresponding wave energy flux for the given parameters becomes much smaller compared to the ideal case.

J. Vranjes; S. Poedts; B. P. Pandey; B. De Pontieu

2008-05-29T23:59:59.000Z

250

European Wave and Tidal Energy Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy Environmental RestorationErik HyrkasMarketsSeeking

251

Green Wave Energy Corp GWEC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place: Golden, COIndianaLondon,Wind FarmEnergy Corp GWEC

252

Semiclassical wave functions and energy spectra in polygon billiards  

E-Print Network [OSTI]

A consistent scheme of semiclassical quantization in polygon billiards by wave function formalism is presented. It is argued that it is in the spirit of the semiclassical wave function formalism to make necessary rationalization of respective quantities accompanied the procedure of the semiclassical quantization in polygon billiards. Unfolding rational polygon billiards (RPB) into corresponding Riemann surfaces (RS) periodic structures of the latter are demonstrated with 2g independent periods on the respective multitori with g as their genuses. However it is the two dimensional real space of the real linear combinations of these periods which is used for quantizing RPB. A class of doubly rational polygon billiards (DRPB) is distinguished for which these real linear relations are rational and their semiclassical quantization by wave function formalism is presented. It is shown that semiclassical quantization of both the classical momenta and the energy spectra are determined completely by periodic structure of the corresponding RS. Each RS is then reduced to elementary polygon patterns (EPP) as its basic periodic elements. Each such EPP can be glued to a torus of genus g. Semiclassical wave functions (SWF) are then constructed on EPP. The SWF for DRPB appear to be exact. They satisfy the Dirichlet, the Neumannn or the mixed boundary conditions. Not every mixing is allowed however and a respective incompleteness of SWF is discussed. Dens families of DRPB are used for approximate semiclassical quantization of RPB. General rational polygons are quantized by approximating them by DRPB. An extension of the formalism to irrational polygons is described as well. The semiclassical approximations constructed in the paper are controlled by general criteria of the eigenvalue theory. A relation between the superscar solutions and SWF constructed in the paper is also discussed.

Stefan Giller

2014-12-01T23:59:59.000Z

253

Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

2015-01-01T23:59:59.000Z

254

Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays  

SciTech Connect (OSTI)

This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys??????? that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

2013-01-26T23:59:59.000Z

255

Sea ice floes dissipate the energy of steep ocean waves  

E-Print Network [OSTI]

Wave attenuation by ice floes is an important parameter for modelling the Arctic Oceans. At present, attenuation coefficients are extracted from linear models as a function of the incident wave period and floe thickness. Recent explorations in the Antarctic Mixed Ice Zone (MIZ) revealed a further dependence on wave amplitude, suggesting that nonlinear contributions are non-negligible. An experimental model for wave attenuation by a single ice floe in a wave flume is here presented. Observations are compared with linear predictions based on wave scattering. Results indicate that linear models perform well under the effect of gently sloping waves. For more energetic wave fields, however, transmitted wave height is normally over predicted. Deviations from linearity appear to be related to an enhancement of wave dissipation induced by unaccounted wave-ice interaction processes, including the floe over wash.

Toffoli, Alessandro; Meylan, Michael H; Cavaliere, Claudio; Alberello, Alberto; Elsnab, John; Monty, Jason P

2015-01-01T23:59:59.000Z

256

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish  

E-Print Network [OSTI]

Free energy in plasmas under wave-induced diffusion Nathaniel J. Fish Princeton Plasma Physics, the "Gardner free energy." Here, the plasma is rearranged incompressibly in the six- dimensional phase space of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma

257

Shell-instability generated waves by low energy electrons on converging magnetic field lines  

E-Print Network [OSTI]

Shell-instability generated waves by low energy electrons on converging magnetic field lines D of observations of such shell type distributions having positive slope in velocity space at low energies, about 10´cre´au (2006), Shell-instability generated waves by low energy electrons on converging magnetic field lines

California at Berkeley, University of

258

Model-predicted distribution of wind-induced internal wave energy in the world's oceans  

E-Print Network [OSTI]

Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

Miami, University of

259

Non-existence of Global Energy-Minimisers in Stokes Wave Problems  

E-Print Network [OSTI]

Non-existence of Global Energy-Minimisers in Stokes Wave Problems J. F. Toland Abstract Recently it was shown that a wave profile which minimises total energy, elastic plus hydrodynamic, subject theories of existence. The purpose here is to show that, without surface energy, global minimisers do

260

1. We can hear around corners, but we cannot see around corners. The reason is that a) Sound waves carry more energy than do light waves  

E-Print Network [OSTI]

1. We can hear around corners, but we cannot see around corners. The reason is that a) Sound waves carry more energy than do light waves b) The frequency of sound is much greater than that of light c) The wavelength of sound is much greater than that of light d) Sound waves are longitudinal, while light waves

Coleman, Piers

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Investigating the impact of wave energy in the electric power system - A case study of southern Sweden.  

E-Print Network [OSTI]

??The aim of this thesis has been to investigate the impact of wave energy in the electric power system of southern Sweden. How does wave (more)

von Sydow, Tyra

2014-01-01T23:59:59.000Z

262

Heteroclinic standing waves in defocussing DNLS equations -- Variational approach via energy minimization  

E-Print Network [OSTI]

We study heteroclinic standing waves (dark solitons) in discrete nonlinear Schr\\"{o}dinger equations with defocussing nonlinearity. Our main result is a quite elementary existence proof for waves with monotone and odd profile, and relies on minimizing an appropriately defined energy functional. We also study the continuum limit and the numerical approximation of standing waves.

Michael Herrmann

2010-02-08T23:59:59.000Z

263

Coda wave interferometry and the equilibration of energy in elastic media Roel Snieder  

E-Print Network [OSTI]

Coda wave interferometry and the equilibration of energy in elastic media Roel Snieder Department of Geophysics and Center for Wave Phenomena, Colorado School of Mines, Golden, Colorado 80401 Received 14 May 2002; published 21 October 2002 Multiple-scattered waves usually are not useful for creating

Snieder, Roel

264

One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home  

E-Print Network [OSTI]

One-Way Wave Propagation Through Smoothly Varying Media Controlling the Energy Production at Home propagation through the earth, governed by the acoustic wave equation. Downward continuation is a technique, Citadel T100 As part of the application called migration or reflection seismic imaging, we model wave

Al Hanbali, Ahmad

265

Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia Nemat-Nasser  

E-Print Network [OSTI]

Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia that if this axis initially coincides with the stress-wave vector, then the energy of the plane waves would closely the required anisotropy, and to experimentally demonstrate the management of stress-wave energy in a desired

Nemat-Nasser, Sia

266

How upgoing and downgoing energy fluxes contribute to the establishment of lamb waves in an immersed elastic  

E-Print Network [OSTI]

How upgoing and downgoing energy fluxes contribute to the establishment of lamb waves inhomogeneous waves does not transfer energy through the plate. Thus, nonstandard upgoing and downgoing waves pair "angle of incidence/frequency": the quasi-energy brought by the incident harmonic plane wave

Boyer, Edmond

267

THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO RENZI, DENYS DUTYKH,  

E-Print Network [OSTI]

THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO in the open ocean but as the wave approaches the shore its energy is com­ pressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand

268

THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO RENZI, DENYS DUTYKH,  

E-Print Network [OSTI]

THE FORCE OF A TSUNAMI ON A WAVE ENERGY CONVERTER LAURA O'BRIEN, PAUL CHRISTODOULIDES, EMILIANO in the open ocean but as the wave approaches the shore its energy is com- pressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand

Boyer, Edmond

269

Composition for absorbing hydrogen  

DOE Patents [OSTI]

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

270

Liquid Hydrogen Absorber for MICE  

E-Print Network [OSTI]

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

271

Waves  

E-Print Network [OSTI]

Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

LaCure, Mari Mae

2010-04-29T23:59:59.000Z

272

Loss of purity by wave packet scattering at low energies  

E-Print Network [OSTI]

We study the quantum entanglement produced by a head-on collision between two gaussian wave packets in three-dimensional space. By deriving the two-particle wave function modified by s-wave scattering amplitudes, we obtain an approximate analytic expression of the purity of an individual particle. The loss of purity provides an indicator of the degree of entanglement. In the case the wave packets are narrow in momentum space, we show that the loss of purity is solely controlled by the ratio of the scattering cross section to the transverse area of the wave packets.

Jia Wang; C. K. Law; M. -C. Chu

2006-01-06T23:59:59.000Z

273

Methods for absorbing neutrons  

DOE Patents [OSTI]

A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

2012-07-24T23:59:59.000Z

274

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Broader source: Energy.gov [DOE]

Presentation covers the topic of wave power at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

275

Manta Wings: Wave Energy Testing Floats to Puget Sound | Department...  

Broader source: Energy.gov (indexed) [DOE]

approximately 11 feet tall. "Puget Sound has the appropriate scale waves for these test models. It's mimicking a real ocean environment," says Reenst Lesemann, VP of Business...

276

9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy -Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/  

E-Print Network [OSTI]

9/18/09 2:09 PM'Big Wave' Theory Offers Alternative to Dark Energy - Physical Science Page 1 of 3http://scienceblips.dailyradar.com/story/big_wave_theory_offers_alternative_to_dark_energy/ Gadget.com - 30 days ago 'Big Wave' Theory Offers Alternative to Dark Energy -- Mathematicians have proposed

Temple, Blake

277

The unexpected role of D waves in low-energy neutral pion photoproduction  

E-Print Network [OSTI]

It has been commonly assumed that low-energy neutral pion photoproduction from the proton can be described accounting only for S and P waves, and that higher partial waves are irrelevant. We have found that this assumption is not correct and that the inclusion of D waves is necessary to obtain a reliable extraction of the $E_{0+}$ multipole from experimental data. This is due in large measure to the spontaneous breaking of chiral symmetry in QCD which leads to very small S-wave contributions. This makes the usual partial wave expansion less accurate and although D waves are small, their contribution is enhanced through the interference with P waves, which compromises the S-wave extraction from data if D waves are not taken into account. In our work we have used Heavy Baryon Chiral Perturbation Theory to one loop, and up to ${\\cal O}(q^4)$, to account for the S and P waves, while D waves are added in an almost model-independent way using standard Born terms and vector mesons. We also show that higher partial waves do not play an important role.

C. Fernandez-Ramirez

2009-12-21T23:59:59.000Z

278

Carbon monoxide absorbing liquid  

SciTech Connect (OSTI)

The present disclosure is directed to a carbon monoxide absorbing liquid containing a cuprous ion, hydrochloric acid and titanum trichloride. Titanium trichloride is effective in increasing the carbon monoxide absorption quantity. Furthermore, titanium trichloride remarkably increases the oxygen resistance. Therefore, this absorbing liquid can be used continuously and for a long time.

Arikawa, Y.; Horigome, S.; Kanehori, K.; Katsumoto, M.

1981-07-07T23:59:59.000Z

279

Advanced neutron absorber materials  

DOE Patents [OSTI]

A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

280

Dissipation of Modified Entropic Gravitational Energy Through Gravitational Waves  

E-Print Network [OSTI]

The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde's entropic approach to gravitation in combination with Sorkin's definition of Universe's quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature $\\tau=15/16 \\frac{\\Lambda^{1/2}\\hbar G}{c^4}\\sim9.27\\times10^{-105}$ seconds, which is much smaller than the Planck time $t_{P}=(\\hbar G/c^5)^{1/2}\\sim 5.38\\times10^{-44}$ seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter $F_g=32/30\\frac{c^7}{\\Lambda \\hbar G^2}\\sim 3.84\\times 10^{165}$ Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length $F_{gP}=c^4/G\\sim1.21\\times10^{44}$ Newtons.

Clovis Jacinto de Matos

2011-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

15.1 Preliminaries: Wave Motion and Light 15.2 Experimental Basis of Energy Quantization  

E-Print Network [OSTI]

#12;15.1 Preliminaries: Wave Motion and Light #12;#12;#12;15.2 Experimental Basis of Energy the radical concept of energy quantization to explain two of these results. #12;Blackbody Radiation · Every object emits energy through thermal radiation from its surface. · This energy is carried

Ihee, Hyotcherl

282

Third-order Coulomb corrections to the S-wave Green function, energy levels and wave functions at the origin  

E-Print Network [OSTI]

We obtain analytic expressions for the third-order corrections due to the strong interaction Coulomb potential to the S-wave Green function, energy levels and wave functions at the origin for arbitrary principal quantum number n. Together with the known non-Coulomb correction this results in the complete spectrum of S-states up to order alpha_s^5. The numerical impact of these corrections on the Upsilon spectrum and the top quark pair production cross section near threshold is estimated.

M. Beneke; Y. Kiyo; K. Schuller

2007-05-30T23:59:59.000Z

283

Energy Transport by Nonlinear Internal Waves College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon  

E-Print Network [OSTI]

Energy Transport by Nonlinear Internal Waves J. N. MOUM College of Oceanic and Atmospheric Sciences in the bottom bound- ary layer. In the nonlinear internal waves that were observed, the kinetic energy. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear

Kurapov, Alexander

284

Introduction Counterpropagating interactions Numerical methods Co-propagating interactions A result on energy transfer Solitary water wave interactions  

E-Print Network [OSTI]

on energy transfer Solitary water wave interactions Walter Craig Department of Mathematics & Statistics (energy loss) and S (amplitude change). Walter Craig McMaster University Solitary wave interactions #12 (energy loss) and S (amplitude change). Walter Craig McMaster University Solitary wave interactions #12

Craig, Walter

285

Design Methodology for a SEAREV Wave Energy Marie Ruellan, Hamid BenAhmed, Bernard Multon, Christophe Josset, Aurelien Babarit,  

E-Print Network [OSTI]

1 Design Methodology for a SEAREV Wave Energy Converter Marie Ruellan, Hamid BenAhmed, Bernard by presenting two power take-off (PTO) technologies for the SEAREV wave energy converter (WEC) followed technologies in- tended to transform wave energy into electricity. The types of systems are twofold

Boyer, Edmond

286

Energy-Harvesting Shock Absorber with a Mechanical Motion Zhongjie Li, Lei Zuo*, Jian Kuang, and George Luhrs  

E-Print Network [OSTI]

Kuang, and George Luhrs Department of Mechanical Engineering, State University of New York at Stony energy harvesting such as from tall buildings or long bridges. 1. Introduction The transportation counts for 70% of fuel consumption in the United States and over three quarters of which is for road vehicles [1

Zuo, Lei

287

Dynamical Energy Analysis - determining wave energy distributions in complex vibro-acoustical structures  

E-Print Network [OSTI]

We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.

Gregor Tanner

2008-03-12T23:59:59.000Z

288

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion  

E-Print Network [OSTI]

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid the water wave motion into a bi-directional air flow, which in turn drives an air turbine. The Wells turbine the environmental impact of an in situ Wells turbine in more detail requires an in depth understanding

Frandsen, Jannette B.

289

Wave run-up on a high-energy dissipative beach Peter Ruggiero  

E-Print Network [OSTI]

Wave run-up on a high-energy dissipative beach Peter Ruggiero Coastal and Marine Geology Program, U in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting

290

Internal absorber solar collector  

DOE Patents [OSTI]

Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

Sletten, Carlyle J. (106 Nagog Hill Rd., Acton, MA 01720); Herskovitz, Sheldon B. (88 Hammond St., Acton, MA 01720); Holt, F. S. (46 Emerson Rd., Winchester, MA 01890); Sletten, E. J. (Chestnut Hill Rd. R.F.D. Rte. #4, Amherst, NH 03031)

1981-01-01T23:59:59.000Z

291

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

have recovered by 5 cm when DSPR 30, but only by 1-2 cm when DSPR 10. Source: Smith et al. (2007). ... 2-14 Figure 2-9 Wave height reduction for a 90%...

292

Balancing the Energy Budget of Short-Period Giant Planets: Evidence for Reflective Clouds and Optical Absorbers  

E-Print Network [OSTI]

We consider fifty transiting short-period giant planets for which eclipse depths have been measured at multiple infrared wavelengths. The aggregate dayside emission spectrum of these planets exhibits no molecular features, nor is brightness temperature greater in the near-infrared. We combine brightness temperatures at various infrared wavelengths to estimate the dayside effective temperature of each planet. We find that dayside temperatures are proportional to irradiation temperatures, indicating modest Bond albedo and no internal energy sources, plus weak evidence that dayside temperatures of the hottest planets are disproportionately high. We place joint constraints on Bond albedo, $A_{B}$, and day-to-night transport efficiency, $\\varepsilon$, for six planets by combining thermal eclipse and phase variation measurements (HD 149026b, HD 189733b, HD 209458b, WASP-12b, WASP-18b, and WASP-43b). We confirm that planets with high irradiation temperatures have low heat transport efficiency, and that WASP-43b has ...

Schwartz, Joel C

2015-01-01T23:59:59.000Z

293

Optimisation and comparison of integrated models of direct-drive linear machines for wave energy conversion  

E-Print Network [OSTI]

Combined electrical and structural models of five types of permanent magnet linear electrical machines suitable for direct-drive power take-off on wave energy applications are presented. Electromagnetic models were ...

Crozier, Richard Carson

2014-06-30T23:59:59.000Z

294

Wave Energy Extraction from an Oscillating Water Column in a Truncated Circular Cylinder  

E-Print Network [OSTI]

Oscillating Water Column (OWC) device is a relatively practical and convenient way that converts wave energy to a utilizable form, which is usually electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure...

Wang, Hao

2013-07-19T23:59:59.000Z

295

Novel millimeter wave sensor concepts for energy, environment, and national security  

E-Print Network [OSTI]

Millimeter waves are ideally suited for sensing and diagnosing materials, devices, and processes that are broadly important to energy, environment, and national security. Thermal return reflection (TRR) techniques that ...

Sundaram, S. K.

296

Request for Information Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize  

Broader source: Energy.gov [DOE]

This announcement is intended to serve as a Notice of Intent of the upcoming Funding Opportunity Announcement (FOA) regarding Administration of the Wave Energy Converter (WEC) Prize and Request for Information.

297

Request for Information Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize  

Broader source: Energy.gov [DOE]

This announcement is intended to serve as a Notice of Intent of the upcoming Funding Opportunity Announcement (FOA) regarding Administration of the Wave Energy Converter (WEC) Prize and Request for Information to solicit information regarding pote

298

UTILITY OF EXTRACTING CY PARTICLE ENERGY BY WAVES N.J. FISCH, M.C. HERRMANN  

E-Print Network [OSTI]

UTILITY OF EXTRACTING CY PARTICLE ENERGY BY WAVES N.J. FISCH, M.C. HERRMANN Princeton Plasma. The utility of extracting CY particle power, and then diverting this power to fast fuel ions, is investigated

299

Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean  

E-Print Network [OSTI]

A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(110) km scales obtained ...

Nikurashin, Maxim

300

Durability of NOx Absorbers  

Broader source: Energy.gov (indexed) [DOE]

Exhaust Flow Through Catalyst During Regen From Engine NOx Absorber Oxidation Catalyst Reactor 1 in Sorption Mode Reactor 2 in Regen Mode Open Valve Closed Valve Diesel Fuel In...

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Absorbance modulation optical lithography  

E-Print Network [OSTI]

In this thesis, the concept of absorbance-modulation optical lithography (AMOL) is described, and the feasibility experimentally verified. AMOL is an implementation of nodal lithography, which is not bounded by the diffraction ...

Tsai, Hsin-Yu Sidney

2007-01-01T23:59:59.000Z

302

ABSTRACT: Modern seismic codes recommend the design of ductile structures able to absorb seismic energy through high plastic deformation. Since seismic ductile design relies on an accurate control of  

E-Print Network [OSTI]

1 ABSTRACT: Modern seismic codes recommend the design of ductile structures able to absorb seismic energy through high plastic deformation. Since seismic ductile design relies on an accurate control-concrete composite structures; Material properties variability; Seismic design; capacity design. 1 GENERAL CONTEXT

Boyer, Edmond

303

THEORY OF GRAVITY "ENERGY-WAVE": THE ORIGIN Rodolfo Sergio Gonzlez Castro  

E-Print Network [OSTI]

THEORY OF GRAVITY "ENERGY-WAVE": THE ORIGIN Rodolfo Sergio González Castro Research Institute the gravitational acceleration with the gravitational wavelength corresponding to the "gravitational energy" density), derive an equation of the Energy-Momentum of Einstein suppressing this constant, and further I set

Paris-Sud XI, Université de

304

Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media  

E-Print Network [OSTI]

Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation property and accuracy. Compatible high order energy conserving time integrators are also proposed. The optimal error estimates and the energy conserving property are proved for the semi-discrete methods. Our

Shu, Chi-Wang

305

Energy conserving local discontinuous Galerkin methods for wave propagation Yulong Xing1  

E-Print Network [OSTI]

Energy conserving local discontinuous Galerkin methods for wave propagation problems Yulong Xing1 of applications. The energy conserving property is one of the guiding principles for numerical algorithms estimates, superconvergence toward a particular projection of the exact solution, and the energy conserving

Shu, Chi-Wang

306

Energy Momentum Pseudo-Tensor of Relic Gravitational Wave in Expanding Universe  

E-Print Network [OSTI]

We study the energy-momentum pseudo-tensor of gravitational wave, and examine the one introduced by Landau-Lifshitz for a general gravitational field and the effective one recently used in literature. In short wavelength limit after Brill-Hartle average, both lead to the same gauge invariant stress tensor of gravitational wave. For relic gravitational waves in the expanding universe, we examine two forms of pressure, $p_{gw}$ and $\\mathcal{P}_{gw}$, and trace the origin of their difference to a coupling between gravitational waves and the background matter. The difference is shown to be negligibly small for most of cosmic expansion stages starting from inflation. We demonstrate that the wave equation is equivalent to the energy conservation equation using the pressure $\\mathcal{P}_{gw}$ that includes the mentioned coupling.

Daiqin Su; Yang Zhang

2012-04-04T23:59:59.000Z

307

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWECHelixInformation AbsorbingNARECWEC

308

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect (OSTI)

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration?¢????s (NOAA?¢????s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

309

Black nickel selective absorber, optimization of parameters  

SciTech Connect (OSTI)

Electroplated black nickel selective absorber is one of the most commercially used element of solar energy systems. Electrodeposition parameters such as time of deposition, pH, current density, electrolyte temperature should be optimized to produce the most efficient selective absorber. The topology of the substrate material is very effective on selectivity and it should also be optimized. In this study, by controlling the conditions of electrodeposition black nickel selective absorbers are produced and their reflectivities are measured. The effects of the electrodeposition parameters together with the topology of the substrate, on the selective properties are investigated.

Akinoglu, B.; Cercioglu, V.; Ecevit, A.

1983-12-01T23:59:59.000Z

310

February 5, 2013 10:35 9in x 6in Advances in Wave Turbulence b1517-ch02 2nd Reading Fluctuations of the Energy Flux in Wave Turbulence  

E-Print Network [OSTI]

Fluctuations of the Energy Flux in Wave Turbulence S. Auma^itre , E. Falcon,§ and S. Fauve SPEC, DSM, CEA.falcon@univ-paris-diderot.fr The key governing parameter of wave turbulence is the energy flux that drives the waves and cascades of energy among different scales through the weak interaction between waves. It was understood first

Falcon, Eric

311

ccsd-00001869,version1-22Oct2004 Multi-ion-species effects on magnetosonic waves and energy  

E-Print Network [OSTI]

ccsd-00001869,version1-22Oct2004 Multi-ion-species effects on magnetosonic waves and energy, wave damping, energy transport 1. Introduction The presence of multiple ion species introduces many Magnetosonic waves propagating perpendicular to an external magnetic field are studied with attention

Paris-Sud XI, Université de

312

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm  

E-Print Network [OSTI]

9/18/09 2:43 PM'Big Wave' Theory Offers Alternative to Dark Energy // Current Page 1 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy.htm login | register |home tv shows schedule to Dark Energy // Current Page 2 of 11http://current.com/items/90718274_big-wave-theory-offers-alternative-to-dark-energy

Temple, Blake

313

2007 Survey of Energy Resources World Energy Council 2007 Wave Energy COUNTRY NOTES  

E-Print Network [OSTI]

. International Bodies A number of important international bodies have been involved in ocean energy, including as the European Ocean Energy Association, which has been formed by all stakeholders in ocean energy (both within and outside Europe). Its aim is: to strengthen the development of the markets and technology for ocean energy

314

Constraining the gravitational wave energy density of the Universe using Earth's ring  

E-Print Network [OSTI]

The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density of gravitational waves to values in the range 0.035 - 0.15 normalized by the critical energy density of the Universe at frequencies between 0.3mHz and 5mHz, using 10 years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earth's oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advance in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.

Michael Coughlin; Jan Harms

2014-06-04T23:59:59.000Z

315

Surface Wave Enhanced Turbulence as an important source energy  

E-Print Network [OSTI]

) Pulling by wind stress & surface waves 9/15/2006 4 Heating Cooling Heating Cooling CoolingHeating . . Wind) Surface heating/cooling cannot maintain THC observed in the oceans. Sandstrom Theorem and the new debate 3 balance in the oceans Geostrophic Currents Ekman Drift Freshwater Flux 0.05 KE GPE Mean State Geothermal

316

A novel linear generator for wave energy applications.  

E-Print Network [OSTI]

??With the increasing effort to identify alternative methods of energy generation, extraction of ocean energy has gathered a large interest. Research and industry have begun (more)

Ernst, Steven George

2009-01-01T23:59:59.000Z

317

Thin film absorber for a solar collector  

DOE Patents [OSTI]

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1985-01-01T23:59:59.000Z

318

In conventional accelerators, energy from RF electro-magnetic waves in vacuum is transformed into kinetic energy  

E-Print Network [OSTI]

In conventional accelerators, energy from RF electro- magnetic waves in vacuum is transformed for accelerating and storing countercirculating beams of 7-TeV protons, has a stored beam energy exceeding 300 MJ. Accelerator-based light sources rely on the fact that when beams of GeV electrons interact with magnetic

Geddes, Cameron Guy Robinson

319

Partial-wave analysis for elastic p{sup 13}C scattering at astrophysical energies  

SciTech Connect (OSTI)

A standard partial-wave analysis was performed on the basis of known measurements of differential cross sections for elastic p{sup 13}C scattering at energies in the range 250-750 keV. This analysis revealed that, in the energy range being considered, it is sufficient to take into account the {sup 3}S{sub 1} wave alone. A potential for the triplet {sup 3}S{sub 1}-wave state of the p{sup 13}C system in the region of the J{sup p}T = 1{sup -1} resonance at 0.55 MeV was constructed on the basis of the phase shifts obtained from the aforementioned partial-wave analysis.

Dubovichenko, S. B., E-mail: dubovichenko@mail.ru [V.G. Fessenkov Astrophysical Institute (Kazakhstan)

2012-03-15T23:59:59.000Z

320

Energy Levels and Wave Functions of Vector Bosons in Homogeneous Magnetic Field  

E-Print Network [OSTI]

We aimed to obtain the energy levels of spin-1 particles moving in a constant magnetic field. The method used here is completely algebraic. In the process to obtain the energy levels the wave function is choosen in terms of Laguerre Polynomials.

K. Sogut; A. Havare; I. Acikgoz

2001-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

New Wave Power Project In Oregon | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment of Energy Vehicle FuelGRIDWave

322

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy  

E-Print Network [OSTI]

9/18/09 2:12 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 4http://digg.com/general_sciences/Big_Wave_Theory_Offers_Alternative_to_Dark_Energy show profanity settings Digg is a place Offers Alternative to Dark Energy space.com -- Mathematicians have proposed an alternative explanation

Temple, Blake

323

Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster  

E-Print Network [OSTI]

Size-consistent wave functions for nondynamical correlation energy: The valence active space 6 July 1998; accepted 15 September 1998 The nondynamical correlation energy may be defined correlation energy, as defined above, involves computational complexity that grows exponentially

Krylov, Anna I.

324

Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems  

E-Print Network [OSTI]

A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting via triads with nonzero frequency mismatch, applicable in meteorology, nonlinear optics and plasma wave turbulence. We introduce the concepts of truly dynamical degrees of freedom and triad precession. Transfer efficiency is maximal when the triads' precession frequencies resonate with the system's nonlinear frequencies, leading to a collective state of synchronised triads with strong turbulent cascades at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

Miguel D. Bustamante; Brenda Quinn; Dan Lucas

2014-04-30T23:59:59.000Z

325

Neutron Absorbing Alloys  

DOE Patents [OSTI]

The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

2004-05-04T23:59:59.000Z

326

Energy-Momentum and Angular Momentum Carried by Gravitational Waves in Extended New General Relativity  

E-Print Network [OSTI]

In an extended, new form of general relativity, which is a teleparallel theory of gravity, we examine the energy-momentum and angular momentum carried by gravitational wave radiated from Newtonian point masses in a weak-field approximation. The resulting wave form is identical to the corresponding wave form in general relativity, which is consistent with previous results in teleparallel theory. The expression for the dynamical energy-momentum density is identical to that for the canonical energy-momentum density in general relativity up to leading order terms on the boundary of a large sphere including the gravitational source, and the loss of dynamical energy-momentum, which is the generator of \\emph{internal} translations, is the same as that of the canonical energy-momentum in general relativity. Under certain asymptotic conditions for a non-dynamical Higgs-type field $\\psi^{k}$, the loss of ``spin'' angular momentum, which is the generator of \\emph{internal} $SL(2,C)$ transformations, is the same as that of angular momentum in general relativity, and the losses of canonical energy-momentum and orbital angular momentum, which constitute the generator of Poincar\\'{e} \\emph{coordinate} transformations, are vanishing. The results indicate that our definitions of the dynamical energy-momentum and angular momentum densities in this extended new general relativity work well for gravitational wave radiations, and the extended new general relativity accounts for the Hulse-Taylor measurement of the pulsar PSR1913+16.

Eisaku Sakane; Toshiharu Kawai

2002-09-30T23:59:59.000Z

327

General series solution for finite square-well energy levels for use in wave-packet studies  

E-Print Network [OSTI]

General series solution for finite square-well energy levels for use in wave-packet studies David L a particle is prepared in a spatially localized wave packet instead of in an energy eigenstate, it initially Received 23 July 1999; accepted 11 January 2000 We develop a series solution for the bound-state energy

Stroud Jr., Carlos R.

328

Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation  

E-Print Network [OSTI]

Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave) Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave pulse cleaning over a wide range of input energies (from 0.1 to >10 mJ) and is successfully qualified

329

MHK Technologies/GyroWaveGen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWEC <EPAMGreen Flagship <GyroWaveGen

330

MHK Technologies/Wave Power Desalination | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png Technology ProfileWaveDesalination

331

MHK Technologies/WaveMaster | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png TechnologyRoller <WaveMaster

332

MHK Technologies/WaveStar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png TechnologyRollerWaveStar < MHK

333

MHK Technologies/WaveSurfer | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png TechnologyRollerWaveStar <

334

MHK Technologies/WaveTork | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.png TechnologyRollerWaveStar

335

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill < MHKYOGbioWave < MHK

336

MHK Technologies/hyWave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill < MHKYOGbioWave

337

MHL 2D Wind/Wave | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWCCatcher.pngWavemill < MHKYOGbioWaveMHL 2D

338

10-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Home Jweers's"Ghost"0-ft Wave

339

SyncWaveSystems Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummersideJump to:JumpaSwinertonSyncWave

340

6-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive Jump to:Species |2008 |44Biosolids6-ft Wave

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy  

SciTech Connect (OSTI)

Mathematical phantoms representing the adult female at three, six, and nine months of gestation are described. They are modifications of the 15-year-old male/adult female phantom (15-AF phantom) of Cristy and Eckerman (1987). The model of uterine contents includes the fetus, fetal skeleton, and placenta. The model is suitable for dose calculations for the fetus as a whole; individual organs within the fetus (other than the skeleton) are not modeled. A new model for the nonpregnant adult female is also described, comprising (1) the 15-AF phantom; (2) an adjustment to specific absorbed fractions for organ self-dose from photons to better match Reference Woman masses; and (3) computation of specific absorbed fractions with Reference Woman masses from ICRP Publication 23 for both penetrating and nonpenetrating radiations. Specific absorbed fractions for photons emitted from various source regions are tabulated for the new non;pregnant adult female model and the three pregnancy models.

Stabin, M.G.; Watson, E.E.; Cristy, M.; Ryman, J.C.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Davis, J.L. [Tennessee Univ., Chattanooga, TN (United States)] [Tennessee Univ., Chattanooga, TN (United States); Marshall, D. [Florida Univ., Gainesville, FL (United States). Dept. of Nuclear Engineering] [Florida Univ., Gainesville, FL (United States). Dept. of Nuclear Engineering; Gehlen, M.K. [San Diego State Univ., CA (United States)] [San Diego State Univ., CA (United States)

1995-05-08T23:59:59.000Z

342

Modulational instability of two pairs of counter-propagating waves and energy exchange in two-component media  

E-Print Network [OSTI]

Modulational instability of two pairs of counter-propagating waves and energy exchange in two-propagating waves in two-component media is considered within the framework of two generally nonintegrable coupled Sine-Gordon equations. We consider the dynamics of weakly nonlinear wave packets, and using

343

High Energy Photons, Neutrinos and Gravitational Waves from Gamma-Ray Bursts  

E-Print Network [OSTI]

Most of the current knowldege about GRB is based on electromagnetic observations at MeV and lower energies. Here we focus on some recent theoretical work on GRB, in particular the higher energy (GeV-TeV) photon emission, and two potentially important non-electromagnetic channels, the TeV and higher energy neutrino signals, and the gravitational wave signals expected from GRB.

P. Meszaros; S. Kobayashi; S. Razzaque; B. Zhang

2003-05-06T23:59:59.000Z

344

Journal of Computational Acoustics, Vol. 8, No. 1 (2000) 139156 CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS  

E-Print Network [OSTI]

of the Engquist-Majda boundary conditions, their practical success is limited by the difficulties posed-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION MURTHY N. GUDDATI Department of Civil Engineering, North Revised 1 October 1999 Absorbing boundary conditions are generally required for numerical modeling of wave

Guddati, Murthy N.

345

Multi-wave methods via ultrasound - Department of Mathematics ...  

E-Print Network [OSTI]

absorb much more energy of electromagnetic waves (in some specific .... that a numerical method based on the theoretical developments considered here ..... where |?| is the norm in the metric c?2g, and the prime in ?? stands for the ...... smooth way to make the kernel properly supported at the price of a smoothing error.

2013-05-01T23:59:59.000Z

346

Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy  

E-Print Network [OSTI]

Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.

R. W. Robinett; L. C. Bassett

2004-08-06T23:59:59.000Z

347

Technical Note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV18 MeV  

SciTech Connect (OSTI)

Purpose: Water is the reference medium for radiation therapy dosimetry, but for film dosimetry it is more practical to use a solid phantom. As the composition of solid phantoms differs from that of water, the energy dependence of film exposed within solid phantoms may also differ. The energy dependence of a radiochromic film for a given beam quality Q (energy for monoenergetic beams) has two components: the intrinsic energy dependence and the absorbed-dose energy dependence f(Q), the latter of which can be calculated through a Monte Carlo simulation of radiation transport. The authors used Monte Carlo simulations to study the influence of the phantom material on the f(Q) of the EBT3 radiochromic film (Ashland Specialty Ingredients, Wayne, NJ) for photon beams with energies between 3 keV and 18 MeV. Methods: All simulations were carried out with the general-purpose Monte Carlo code PENELOPE 2011. The geometrical model consisted of a cylindrical phantom, with the film positioned at different depths depending on the initial photon energy. The authors simulated monoenergetic parallel photon beams and x-ray beams from a superficial therapy system. To validate their choice of simulation parameters, they also calculated f(Q) for older film models, EBT and EBT2, comparing with published results. In addition to water, they calculated f(Q) of the EBT3 film for solid phantom materials commonly used for film dosimetry: RW1 and RW3 (PTW-Freiburg, Freiburg, Germany), Solid Water (Gammex-RMI, Madison, WI), and PMMA. Finally, they combined their calculated f(Q) with published overall energy response data to obtain the intrinsic energy dependence of the EBT3 film in water. Results: The calculated f(Q) for EBT and EBT2 films was statistically compatible with previously published data. Between 10 keV and 18 MeV, the variation found in f(Q) of the EBT3 film for water was within 2.3%, with a standard statistical uncertainty less than 1%. If the quantity dose-to-water in the phantom is considered, which is the common practice in radiation dosimetry, the maximum difference of energy dependence for the solid phantoms with respect to water is about 6%, at an energy of 50 keV. Conclusions: The EBT3 film shows a reasonably constant absorbed-dose energy dependence when irradiated in water. If the dose-to-water in the phantom is considered, the maximum difference of EBT3 film energy dependence with the solid phantoms studied with respect to water is about 6% (at an energy of 50 keV). The reported overall energy dependence of the EBT3 film in water at energies below 100 keV is mainly due to the intrinsic energy dependence.

Hermida-Lpez, M., E-mail: mhermida@vhebron.net [NCTeam, Strahlenklinik, Universittsklinikum Essen, Hufelandstrae 55, Essen D-45122, Germany and Servei de Fsica i Protecci Radiolgica, Hospital Universitari Vall dHebron, Pg. Vall dHebron 119-129, Barcelona 08035 (Spain); Ldemann, L.; Flhs, A. [Medical Physics, Strahlenklinik, Universittsklinikum Essen, Hufelandstrae 55, Essen D-45122 (Germany); Brualla, L. [NCTeam, Strahlenklinik, Universittsklinikum Essen, Hufelandstrae 55, Essen D-45122 (Germany)

2014-11-01T23:59:59.000Z

348

A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins Ltd., Woodcote Grove, Epsom KT18 5BW, U.K. rod.rainey@atkinsglobal.com  

E-Print Network [OSTI]

1 A DISTENSIBLETUBE WAVE ENERGY CONVERTER WITH A DISTRIBUTED POWERTAKEOFF R.C.T.Rainey, Atkins A distensibletube Wave Energy Converter (WEC) operates by converting the wave energy into "bulge waves interaction then occurs, and large bulge waves are generated, concentrating the wave energy

349

Wave  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18, 20141 Summer 2001

350

Advancing Technology Readiness: Wave Energy Testing and Demonstration |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdwardDepartment

351

Navy Catching Waves in Hawaii | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy -Energy2014 AnnualNavy

352

Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint  

SciTech Connect (OSTI)

This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

2014-03-01T23:59:59.000Z

353

Single-wavenumber Representation of Nonlinear Energy Spectrum in Elastic-Wave Turbulence of {F}ppl-von {K}rmn Equation: Energy Decomposition Analysis and Energy Budget  

E-Print Network [OSTI]

A single-wavenumber representation of nonlinear energy spectrum, i.e., stretching energy spectrum is found in elastic-wave turbulence governed by the F\\"oppl-von K\\'arm\\'an (FvK) equation. The representation enables energy decomposition analysis in the wavenumber space, and analytical expressions of detailed energy budget in the nonlinear interactions are obtained for the first time in wave turbulence systems. We numerically solved the FvK equation and observed the following facts. Kinetic and bending energies are comparable with each other at large wavenumbers as the weak turbulence theory suggests. On the other hand, the stretching energy is larger than the bending energy at small wavenumbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode $a_{\\bm{k}}$ and its companion mode $a_{-\\bm{k}}$ is observed at the small wavenumbers. Energy transfer shows that the energy is input into the wave field through stretching-energy transfer at the small wavenumbers, and dissipated through the quartic part of kinetic-energy transfer at the large wavenumbers. A total-energy flux consistent with the energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

Naoto Yokoyama; Masanori Takaoka

2014-12-09T23:59:59.000Z

354

Modelling and geometry optimisation of wave energy converters  

E-Print Network [OSTI]

Electrical Hydraulic piston Water turbine Electrical generator Hydraulic motor Air turbine PneumaticHydraulic/rotation Hydraulic Mechanical rotation Electrical Hydraulic piston Water turbine Electrical generator Hydraulic motor Air turbine PneumaticHydraulic Mechanical system #12;Several energy conversion alternatives

Nrvg, Kjetil

355

9/18/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 6http://www.mastersconnection.com/index.php/articles/452-wave  

E-Print Network [OSTI]

9/18/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 6http;9/18/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 2 of 6http:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 4 of 6http

Temple, Blake

356

Ferrite HOM Absorber for the RHIC ERL  

SciTech Connect (OSTI)

A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

Hahn,H.; Choi, E.M.; Hammons, L.

2008-10-01T23:59:59.000Z

357

The Role of Energy and a New Approach to Gravitational Waves in General Relativity  

E-Print Network [OSTI]

The energy localization hypothesis of the author that energy is localized in non-vanishing regions of the energy-momentum tensor implies that gravitational waves do not carry energy in vacuum. If substantiated, this has significant implications for current research. Support for the hypothesis is provided by a re-examination of Eddington's classic calculation of energy loss by a spinning rod. It is emphasized that Eddington did not monitor the entire Tolman energy integral, concentrating solely upon the change of the 'kinetic' part of the energy . The 'quadrupole formula' is thus seen to measure the kinetic energy change. When the derivative of the missing stress-trace integral is computed, it is seen to cancel the Eddington term and hence the energy of the rod is conserved, in support of the localization hypothesis. The issue of initial and final states is addressed.

F. I. Cooperstock

1999-04-19T23:59:59.000Z

358

Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen  

DOE Patents [OSTI]

Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

Tonkovich, Anna Lee Y. (Dublin, OH); Litt, Robert D. (Westerville, OH); Dongming, Qiu (Dublin, OH); Silva, Laura J. (Plain City, OH); Lamont, Micheal Jay (Plain City, OH); Fanelli, Maddalena (Plain City, OH); Simmons, Wayne W. (Plain city, OH); Perry, Steven (Galloway, OH)

2011-10-04T23:59:59.000Z

359

Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice Jump to:

360

Corrosion resistant neutron absorbing coatings  

DOE Patents [OSTI]

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

2013-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Corrosion resistant neutron absorbing coatings  

DOE Patents [OSTI]

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

2012-05-29T23:59:59.000Z

362

The energy of high frequency waves in the low solar Chromosphere  

E-Print Network [OSTI]

High frequency acoustic waves have been suggested as a source of mechanical heating in the chromosphere. In this work the radial component of waves in the frequency interval 22mHz to 1mHz are investigated. Observations were performed using 2D spectroscopy in the spectral lines of Fe I 543.45nm and Fe I 543.29nm at the Vacuum Tower Telescope, Tenerife, Spain. Speckle reconstruction has been applied to the observations. We have used Fourier and wavelet techniques to identify oscillatory power. The energy flux is estimated assuming that all observed oscillations are acoustics running waves. We find that the estimated energy flux is not sufficient to cover the chromospheric radiative losses.

Aleksandra Andic

2007-03-28T23:59:59.000Z

363

MAGNETOACOUSTIC WAVE ENERGY FROM NUMERICAL SIMULATIONS OF AN OBSERVED SUNSPOT UMBRA  

SciTech Connect (OSTI)

We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I {lambda}10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I {lambda}10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I {lambda}10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.

Felipe, T.; Khomenko, E.; Collados, M., E-mail: tobias@iac.es [Instituto de Astrofisica de Canarias, 38205, C/Via Lactea, s/n, La Laguna, Tenerife (Spain)

2011-07-01T23:59:59.000Z

364

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015

365

Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sof EnergyReserveDepartment ofEnvironmental Issues

366

Making Wave Power Efficient and Affordable | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents & PublicationsEnergy5-8 SubjectThis

367

Sandia National Laboratories: Sandia, NREL Release Wave Energy Converter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational Energy at FortEMCORE,Modeling and

368

Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage  

E-Print Network [OSTI]

. The reservoirs of interest here typically comprise a cylindrical pressure vessel containing the solid storage medium in the form of a packed bed of pebbles or gravel, or a uniform... WAVE PROPAGATION AND THERMODYNAMIC LOSSES IN PACKED-?BED THERMAL RESERVOIRS FOR ENERGY STORAGE Alexander White1, Joshua McTigue1, Christos Markides2 1 Cambridge University...

White, Alexander; McTigue, Joshua; Markides, Christos

2014-03-26T23:59:59.000Z

369

Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study  

E-Print Network [OSTI]

, a more active development began only after the rapid increase of the prices of oil-dependent fuels Article history: Received 30 July 2013 Accepted 25 March 2014 Available online Keywords: Wave energy mitigation and adaptation, the shadow of the recent economic crisis that directly affected the oil- dependent

Georgiou, Georgios

370

Dynamics of a horizontal cylinder oscillating as a wave energy converter about an off-centred axis.  

E-Print Network [OSTI]

The hydrodynamic properties of a horizontal cylinder which is free to pitch about an off-centred axis are studied and used to derive the equations of motion of a wave energy converter which extracts energy from incoming ...

Lucas, Jorge

2011-11-22T23:59:59.000Z

371

A comparative analysis of the environmental impacts of a Pelamis Wave Energy device with existing off shore developments and installations.  

E-Print Network [OSTI]

Scotland is currently at the forefront of development and expansion of wave energy, especially with recent renewable energy targets. Research and development has increased greatly off the Scottish coastline. Various adjectives can be used...

Quinn, Eoghan

2011-11-23T23:59:59.000Z

372

An Exact Calculation of the Energy Density of Cosmological Gravitational Waves  

E-Print Network [OSTI]

In this paper we calculate the Bogoliubov coefficients and the energy density of the stochastic gravitational wave background for a universe that undergoes inflation followed by radiation domination and matter domination, using a formalism that gives the Bogoliubov coefficients as continous functions of time. By making a reasonable assumption for the equation of state during reheating, we obtain in a natural way the expected high frequency cutoff in the spectral energy density.

L. E. Mendes; A. B. Henriques; R. G. Moorhouse

1994-10-24T23:59:59.000Z

373

Magnetohydrodynamic kink waves in nonuniform solar flux tubes: phase mixing and energy cascade to small scales  

E-Print Network [OSTI]

Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...

Soler, Roberto

2015-01-01T23:59:59.000Z

374

Investigation of Wave Energy Converter Effects on the Nearshore Environment: A Month-Long Study in Monterey Bay CA.  

SciTech Connect (OSTI)

A modified version of an indust ry standard wave modeling tool, SNL - SWAN, was used to perform model simulations for hourly initial wave conditio ns measured during the month of October 2009. The model was run with an array of 50 wave energy converters (WECs) and compared with model runs without WECs. Maximum changes in H s were found in the lee of the WEC array along the angles of incident wave dire ction and minimal changes were found along the western side of the model domain due to wave shadowing by land. The largest wave height reductions occurred during observed typhoon conditions and resulted in 14% decreases in H s along the Santa Cruz shoreline . Shoreline reductions in H s were 5% during s outh swell wave conditions and negligible during average monthly wave conditions.

Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

2014-09-01T23:59:59.000Z

375

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network [OSTI]

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta < m_e/m_p, the waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between el...

Fletcher, L

2007-01-01T23:59:59.000Z

376

Sandia National Laboratories: resonant wave-energy converter devices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving the highlypowerresilient toresonant

377

Sandia National Laboratories: WEC-Sim (Wave Energy Converter SIMulator)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEIMarineVideosVideos

378

Property:Wave Period Range(s) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to:USGSMeanReservoirTemp Jump to: navigation,Volumes) Jump to:

379

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices  

SciTech Connect (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

2014-06-30T23:59:59.000Z

380

Global regularity of wave maps III. Large energy from $\\R^{1+2}$ to hyperbolic spaces  

E-Print Network [OSTI]

We show that wave maps $\\phi$ from two-dimensional Minkowski space $\\R^{1+2}$ to hyperbolic spaces $\\H^m$ are globally smooth in time if the initial data is smooth, conditionally on some reasonable claims concerning the local theory of such wave maps, as well as the self-similar and travelling (or stationary solutions); we will address these claims in the sequels \\cite{tao:heatwave2}, \\cite{tao:heatwave3}, \\cite{tao:heatwave4} to this paper. Following recent work in critical dispersive equations, the strategy is to reduce matters to the study of an \\emph{almost periodic} maximal Cauchy development in the energy class. We then repeatedly analyse the stress-energy tensor of this development (as in \\cite{tao:forges}) to extract either a self-similar, travelling, or degenerate non-trivial energy class solution to the wave maps equation. We will then rule out such solutions in the sequels to this paper, establishing the desired global regularity result for wave maps.

Tao, Terence

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter MWEC | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWECHelix <IWAVEProfile TechnologyEnergy

382

Sandia National Laboratories: Advanced Controls of Wave Energy Converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs: CroSSlinksHuman Resources &ScienceAboutMay

383

MHK Projects/Humboldt County Wave Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /Tidal ProjectCA

384

Hydropower, Wave and Tidal Technologies Available for Licensing - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAboutSeparationsRelevantHydropower

385

Sandia National Laboratories: WEC-Sim (Wave Energy Converter SIMulator)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEIMarineVideosVideos VideosinpowerSim

386

Category:Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to:Lists Jump to: navigation, search

387

Property:Maximum Wave Height(m) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice Jump to:Height(m) Property Type

388

Property:Maximum Wave Length(m) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice Jump to:Height(m) Property

389

OBSERVATIONAL QUANTIFICATION OF THE ENERGY DISSIPATED BY ALFVN WAVES IN A POLAR CORONAL HOLE: EVIDENCE THAT WAVES DRIVE THE FAST SOLAR WIND  

SciTech Connect (OSTI)

We present a measurement of the energy carried and dissipated by Alfvn waves in a polar coronal hole. Alfvn waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity v{sub nt} and the ion temperature T{sub i}. We have implemented a means to separate the T{sub i} and v{sub nt} contributions using the observation that at low heights the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to v{sub nt}. We find the initial energy flux density present was 6.7 0.7 10{sup 5} erg cm{sup 2} s{sup 1}, which is sufficient to heat the coronal hole and accelerate the solar wind during the 2007-2009 solar minimum. Additionally, we find that about 85% of this energy is dissipated below 1.5 R{sub ?}, sufficiently low that thermal conduction can transport the energy throughout the coronal hole, heating it and driving the fast solar wind. The remaining energy is roughly consistent with what models show is needed to provide the extended heating above the sonic point for the fast solar wind. We have also studied T{sub i}, which we found to be in the range of 1-2 MK, depending on the ion species.

Hahn, M.; Savin, D. W. [Columbia Astrophysics Laboratory, Columbia University, MC 5247, 550 West 120th Street, New York, NY 10027 (United States)

2013-10-20T23:59:59.000Z

390

On de Broglie's soliton wave function of many particles with finite masses, energies and momenta  

E-Print Network [OSTI]

We consider a mass-less manifestly covariant {\\it linear} Schr\\"odinger equation. First, we show that it possesses a class of non-dispersive soliton solution with finite-size spatio-temporal support inside which the quantum amplitude satisfies the Klein-Gordon equation with finite {\\it emergent} mass. We then proceed to interpret the soliton wave function as describing a particle with finite mass, energy and momentum. Inside the spatio-temporal support, the wave function shows spatio-temporal internal vibration with angular frequency and wave number that are determined by the energy-momentum of the particle as firstly conjectured by de Broglie. Imposing resonance of the internal vibration inside the spatio-temporal support leads to Planck-Einstein quantization of energy-momentum. The first resonance mode is shown to recover the classical energy-momentum relation developed in special relativity. We further show that the linearity of the Schr\\"odinger equation allows one to construct many solitons solution through superposition, each describing a particle with various masses, energies and momenta.

Agung Budiyono

2009-08-19T23:59:59.000Z

391

Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System  

SciTech Connect (OSTI)

An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to push or pull air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

Di Bella, Francis A

2014-09-29T23:59:59.000Z

392

Interpreting scattering wave functions in the presence of energy-dependent interactions  

E-Print Network [OSTI]

In scattering theory, the squared relative wave function $|\\phi({\\bf q},{\\bf r})|^2$ is often interpreted as a weight, due to final-state interactions, describing the probability enhancement for emission with asymptotic relative momentum $q$. An equivalence relation also links the integral of the squared wave function over all coordinate space to the density of states. This relation, which plays an important role in understanding two-particle correlation phenomenology, is altered for the case where the potential is energy dependent, as is assumed in various forms of reaction theory. Here, the modification to the equivalence relation is derived, and it is shown that the squared wave function should be augmented by a additional factor if it is to represent the emission enhancement for final-state interactions. Examples with relativistic vector interactions, e.g., the Coulomb interaction, are presented.

Scott Pratt

2007-11-09T23:59:59.000Z

393

Chaos and Energy Redistribution the Nonlinear Interaction of Two Spatio-Temporal Wave Triplets  

E-Print Network [OSTI]

In this paper we examine the spatio-temporal dynamics of two nonlinearly coupled wave triplets sharing two common modes. Our basic findings are the following. When spatial dependence is absent, the homogeneous manifold so obtained can be chaotic or regular. If chaotic, it drives energy diffusion from long to small wavelengths as soon as inhomogeneous perturbations are added to the system. If regular, one may yet have two distinct cases: (i) energy diffusion is again present if the inhomogeneous modes are linearly unstable and triplets are effectively coupled; (ii) energy diffusion is absent if the inhomogeneous modes are linearly stable or the triplets are uncoupled.

S. R. Lopes; F. B. Rizzato

1998-01-08T23:59:59.000Z

394

Predictions of striking energy and angular dependence in pp --> (pp)_S-wave pi^0 production  

E-Print Network [OSTI]

A phenomenological calculation from threshold to 800 MeV of the initial proton beam energy is presented to describe recent data on the reaction pp --> (pp)_S-wave pi^0 with a low energy cut on the final state diproton excitation energy. A strong forward dip is obtained in the differential cross section as in the data from COSY at 800 MeV, although the absolute value of the forward cross section is too low. Earlier low energy data from CELSIUS are reasonably well reproduced. In the unexplored energy interval between these two experiments the model predicts a spectacular energy dependence both in the forward direction and in the angle-integrated cross section.

J. A. Niskanen

2006-03-30T23:59:59.000Z

395

Stress-energy tensor in colliding plane wave space-times: An approximation procedure  

E-Print Network [OSTI]

In a recent work on the quantization of a massless scalar field in a particular colliding plane wave space-time, we computed the vacuum expectation value of the stress-energy tensor on the physical state which corresponds to the Minkowski vacuum before the collision of the waves. We did such a calculation in a region close to both the Killing-Cauchy horizon and the folding singularities that such a space-time contains. In the present paper, we give a suitable approximation procedure to compute this expectation value, in the conformal coupling case, throughout the causal past of the center of the collision. This will allow us to approximately study the evolution of such an expectation value from the beginning of the collision until the formation of the Killing-Cauchy horizon. We start with a null expectation value before the arrival of the waves, which then acquires nonzero values at the beginning of the collision and grows unbounded towards the Killing-Cauchy horizon. The value near the horizon is compatible with our previous result, which means that such an approximation may be applied to other colliding plane wave space-times. Even with this approximation, the initial modes propagated into the interaction region contain a function which cannot be calculated exactly and to ensure the correct regularization of the stress-energy tensor with the point-splitting technique, this function must be given up to adiabatic order four of approximation.

Miquel Dorca

1997-11-07T23:59:59.000Z

396

Broadband patterned magnetic microwave absorber  

SciTech Connect (OSTI)

It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 440 GHz is designed and experimentally realized, which has a thin thickness of 3.7?mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple ?/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo, E-mail: guanjg@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Zhai, Pengcheng [School of Science, Wuhan University of Technology, Wuhan 430070 (China)

2014-07-28T23:59:59.000Z

397

Photodetector with absorbing region having resonant periodic absorption between reflectors  

DOE Patents [OSTI]

A photodetector is disclosed that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer. 11 figs.

Bryan, R.P.; Olbright, G.R.; Brennan, T.M.; Tsao, J.Y.

1995-02-14T23:59:59.000Z

398

Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.  

SciTech Connect (OSTI)

This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

Dallman, Ann Renee; Neary, Vincent Sinclair

2014-10-01T23:59:59.000Z

399

Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second--post-Newtonian order  

E-Print Network [OSTI]

Gravitational waves generated by inspiralling compact binaries are investigated to the second--post-Newtonian (2PN) approximation of general relativity. Using a recently developed 2PN-accurate wave generation formalism, we compute the gravitational waveform and associated energy loss rate from a binary system of point-masses moving on a quasi-circular orbit. The crucial new input is our computation of the 2PN-accurate ``source'' quadrupole moment of the binary. Tails in both the waveform and energy loss rate at infinity are explicitly computed. Gravitational radiation reaction effects on the orbital frequency and phase of the binary are deduced from the energy loss. In the limiting case of a very small mass ratio between the two bodies we recover the results obtained by black hole perturbation methods. We find that finite mass ratio effects are very significant as they increase the 2PN contribution to the phase by up to 52\\%. The results of this paper should be of use when deciphering the signals observed by the future LIGO/VIRGO network of gravitational-wave detectors.

Luc Blanchet; Thibault Damour; Bala R. Iyer

1995-01-24T23:59:59.000Z

400

Electromagnetic wave propagation in an active medium and the equivalent Schrdinger equation with an energy-dependent complex potential  

E-Print Network [OSTI]

Electromagnetic wave propagation in an active medium and the equivalent Schrödinger equation with an energy-dependent complex potential H. Bahlouli,* A. D. Alhaidari, and A. Al Zahrani Physics Department to provide an alternative, but equivalent, representation of plane electromagnetic em wave propagation

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy Annette R. Grilli  

E-Print Network [OSTI]

Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy at least one short-stroke linear generator (SSLG), made of a magnet, suspended to a spring, and oscillating within a coil. This system is aimed at producing low and renewable wave power (up to ¢ £ ¤ ¥ k

Grilli, Stéphan T.

402

Persistent energy flow for a stochastic wave equation model in nonequilibrium statistical mechanics  

E-Print Network [OSTI]

We consider a one-dimensional partial differential equation system modeling heat flow around a ring. The system includes a Klein-Gordon wave equation for a field satisfying spatial periodic boundary conditions, as well as Ornstein-Uhlenbeck stochastic differential equations with finite rank dissipation and stochastic driving terms modeling heat baths. There is an energy flow around the ring. In the case of a linear field with different (fixed) bath temperatures, the energy flow can persist even when the interaction with the baths is turned off. A simple example is given.

Lawrence E. Thomas

2012-04-29T23:59:59.000Z

403

A Physically Based Analytical Model to Predict Quantized Eigen Energies and Wave Functions Incorporating Penetration Effect  

E-Print Network [OSTI]

We propose a physically based analytical compact model to calculate Eigen energies and Wave functions which incorporates penetration effect. The model is applicable for a quantum well structure that frequently appears in modern nano-scale devices. This model is equally applicable for both silicon and III-V devices. Unlike other models already available in the literature, our model can accurately predict all the eigen energies without the inclusion of any fitting parameters. The validity of our model has been checked with numerical simulations and the results show significantly better agreement compared to the available methods.

Nadim Chowdhury; Imtiaz Ahmed; Zubair Al Azim; Md. Hasibul Alam; Iftikhar Ahmad Niaz; Quazi D. M. Khosru

2014-04-14T23:59:59.000Z

404

Stable self-similar blow up for energy subcritical wave equations  

E-Print Network [OSTI]

We consider the semilinear wave equation \\[ \\partial_t^2 \\psi-\\Delta \\psi=|\\psi|^{p-1}\\psi \\] for $10$ and $\\kappa_p$ is a $p$-dependent constant. We prove that the blow up described by $\\psi^T$ is stable against small perturbations in the energy topology. This complements previous results by Merle and Zaag. The method of proof is quite robust and can be applied to other self-similar blow up problems as well, even in the energy supercritical case.

Roland Donninger; Birgit Schrkhuber

2012-07-11T23:59:59.000Z

405

On the conversion of blast wave energy into radiation in active galactic nuclei and gamma-ray bursts  

E-Print Network [OSTI]

It has been suggested that relativistic blast waves may power the jets of AGN and gamma-ray bursts (GRB). We address the important issue how the kinetic energy of collimated blast waves is converted into radiation. It is shown that swept-up ambient matter is quickly isotropised in the blast wave frame by a relativistic two-stream instability, which provides relativistic particles in the jet without invoking any acceleration process. The fate of the blast wave and the spectral evolution of the emission of the energetic particles is therefore solely determined by the initial conditions. We compare our model with existing multiwavelength data of AGN and find remarkable agreement.

Martin Pohl; Reinhard Schlickeiser

1999-11-24T23:59:59.000Z

406

The variability of warm absorbers in Active Galactic Nuclei  

E-Print Network [OSTI]

This thesis presents three studies of warm (photoionized) absorber variability in Active Galactic Nuclei (AGN) using high-resolution X-ray spectra provided by the Chandra High Energy Transmission Grating (HETG). The first ...

Gibson, Robert R. (Robert Ross)

2006-01-01T23:59:59.000Z

407

Wave Functions and Energy Terms of the SCHRdinger Equation with Two-Center Coulomb Plus Harmonic Oscillator Potential  

E-Print Network [OSTI]

Schr\\"odinger equation for two center Coulomb plus harmonic oscillator potential is solved by the method of ethalon equation at large intercenter separations. Asymptotical expansions for energy term and wave function are obtained in the analytical form.

D. Matrasulov

1998-04-17T23:59:59.000Z

408

Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement  

Broader source: Energy.gov [DOE]

On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

409

Enhanced wave absorption through irregular S. Felix, B. Sapoval, M. Filoche and M. Asch  

E-Print Network [OSTI]

(EPL) has a new online home at www.epljournal.org Take a look for the latest journal news and the lossy regions. It is these modes that are particularly efficient in dissipating the energy of waves kind of irreg- ular behavior [1­7]. If the surface of the resonator is itself absorbing

Asch, Mark

410

Arnold Schwarzenegger CALIFORNIA OCEAN WAVE  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration · Transportation California Ocean Wave Energy Assessment is the final report

411

Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny  

E-Print Network [OSTI]

Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny in the human Abstract To calculate the absorbed dose in the human lung due to inhaled radon progeny, ICRP focussed and secretory cells). The absorbed energy for alpha particles emitted by radon progeny in the human respiratory

Yu, K.N.

412

Global warming due to increasing absorbed solar radiation Kevin E. Trenberth1  

E-Print Network [OSTI]

Global warming due to increasing absorbed solar radiation Kevin E. Trenberth1 and John T. Fasullo1 from an energy budget standpoint comes from increases in absorbed solar radiation that stem directly. T. Fasullo (2009), Global warming due to increasing absorbed solar radiation, Geophys. Res. Lett

Fasullo, John

413

T E C H N O L O G Y A V E N U E Wave EnergyMohammad-Reza Alam  

E-Print Network [OSTI]

. Ocean wave energy has significant advantages over other renewable energy resources like wind and solar acceptable methods of generating power. The ocean is a large, relatively untapped renewable energy resource of energy in wind driven waves alone worldwide [1]. This may be compared to the 15 thousands gigawatts

Alam, Mohammad-Reza

414

Possible dark energy imprints in gravitational wave spectrum of mixed neutron-dark-energy stars  

E-Print Network [OSTI]

In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

Stoytcho S. Yazadjiev; Daniela D. Doneva

2011-12-19T23:59:59.000Z

415

The Defocusing Energy-Critical Wave Equation with a Cubic Convolution  

E-Print Network [OSTI]

In this paper, we study the theory of the global well-posedness and scattering for the energy-critical wave equation with a cubic convolution nonlinearity $u_{tt}-\\Delta u+(|x|^{-4}\\ast|u|^2)u=0$ in spatial dimension $d \\geq 5$. The main difficulties are the absence of the classical finite speed of propagation (i.e. the monotonic local energy estimate on the light cone), which is a fundamental property to show the global well-posedness and then to obtain scattering for the wave equations with the local nonlinearity $u_{tt}-\\Delta u+|u|^\\frac4{d-2}u=0$. To compensate it, we resort to the extended causality and utilize the strategy derived from concentration compactness ideas. Then, the proof of the global well-posedness and scattering is reduced to show the nonexistence of the three enemies: finite time blowup; soliton-like solutions and low-to-high cascade. We will utilize the Morawetz estimate, the extended causality and the potential energy concentration to preclude the above three enemies.

Changxing Miao; Junyong Zhang; Jiqiang Zheng

2014-10-10T23:59:59.000Z

416

Energy-Dependent Gamma-Ray Burst Peak Durations and Blast-Wave Deceleration  

E-Print Network [OSTI]

Temporal analyses of the prompt gamma-ray and X-ray light curves of gamma-ray bursts reveal a tendency for the burst pulse time scales to increase with decreasing energy. For an ensemble of BATSE bursts, Fenimore et al. (1995) show that the energy dependence of burst peak durations can be represented by $\\Delta t \\propto E^{-\\gamma}$ with $\\gamma \\simeq 0.4$--0.45. This power-law dependence has led to the suggestion that this effect is due to radiative processes, most notably synchrotron cooling of the non-thermal particles which produce the radiation. Here we show that a similar power-law dependence occurs, under certain assumptions, in the context of the blast-wave model and is a consequence of the deceleration of the blast-wave. This effect will obtain whether or not synchrotron cooling is important, but different degrees of cooling will cause variations in the energy dependence of the peak durations.

James Chiang

1998-05-22T23:59:59.000Z

417

Countercurrent flow absorber and desorber  

DOE Patents [OSTI]

Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

Wilkinson, W.H.

1984-10-16T23:59:59.000Z

418

Countercurrent flow absorber and desorber  

DOE Patents [OSTI]

Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

Wilkinson, William H. (Columbus, OH)

1984-01-01T23:59:59.000Z

419

9/18/09 2:55 PMScienceNology: Big Wave Theory Offers Alternative to Dark Energy Page 1 of 5http://sciencenology.blogspot.com/2009/08/big-wave-theory-offers-alternative-to.html  

E-Print Network [OSTI]

9/18/09 2:55 PMScienceNology: Big Wave Theory Offers Alternative to Dark Energy Page 1 of 5http Offers Alternative to Dark Energy Page 2 of 5http://sciencenology.blogspot.com/2009/08/big-wave-theory-offers-alternative://sciencenology.blogspot.com/2009/08/big-wave-theory-offers-alternative-to.html home posts rss comments rss edit Home Applied

Temple, Blake

420

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices  

SciTech Connect (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nonlinear effects in collision cascades and high energy shock waves during ta-C:H growth  

SciTech Connect (OSTI)

The surface topography of hydrogenated tetrahedral amorphous carbon (ta-C:H) is critical for various applications such as microelectromechanical devices, magnetic and optical storage devices, and medical implants. The surface topography of ta-C:H films deposited by distributed electron cyclotron resonance plasma from C{sub 2}H{sub 2} gas precursor was investigated. The effects of pressure, together with ion flux and energy, are studied by atomic force microscopy in relation to the structural evolution of the films. The results are compared with the predictions of the Edward-Wilkinson model [Proc. R. Soc. London, Ser. A 44, 1039 (1966)] recently proposed to account for ta-C:H growth and with previous interpretations based on hypersonic shock waves. The random hillocks observed on the smooth surfaces of ta-C:H films deposited at high pressure are thought to result from the interference of high energy shock waves triggered by C{sub 4}H{sub x}{sup +} ions that produce overlapping collision cascades and induce nonlinear effects.

Piazza, F.; Resto, O.; Morell, G. [Department of Physics, University of Puerto Rico, P.O. Box 23343, San Juan, 00931 (Puerto Rico)

2007-07-01T23:59:59.000Z

422

Robust energy transfer mechanism and critically balanced turbulence via non-resonant triads in nonlinear wave systems  

E-Print Network [OSTI]

A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting via non-resonant triads, applicable in meteorology, nonlinear optics and plasma wave turbulence. Transfer efficiency is maximal when the frequency mismatch of the non-resonant triad balances the system's nonlinear frequency: at intermediate levels of oscillation amplitudes an instability is triggered that explores unstable manifolds of periodic orbits, so turbulent cascades are most efficient at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

Miguel D. Bustamante; Brenda Quinn

2013-09-02T23:59:59.000Z

423

Energy Department Invests $16 Million to Harness Wave and Tidal Energy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness Competition |StorageAbengoaEnergyFunding

424

Partial-wave analysis of elastic {sup 4}He{sup 4}He scattering in the energy range 40-50 MeV  

SciTech Connect (OSTI)

A partial-wave analysis of elastic {sup 4}He{sup 4}He scattering is performed in the energy range 40-50 MeV.

Dubovichenko, S. B. [Fesenkov Astrophysical Institute (Kazakhstan)], E-mail: sergey@dubovichenko.net

2008-01-15T23:59:59.000Z

425

arXiv:math-ph/0307020v330Dec2003 Energy spectra of the ocean's internal wave field: theory and observations.  

E-Print Network [OSTI]

with internal wave breaking [4] rather than by the production of cold, dense water by convection at high. Consistent only with linear internal wave kinematics, the GM spectrum was developed as an empirical curve fitarXiv:math-ph/0307020v330Dec2003 Energy spectra of the ocean's internal wave field: theory

Tabak, Esteban G.

426

8/24/09 11:48 AMSPACE.com --'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 10http://www.space.com/scienceastronomy/090817-dark-energy-alternative.html#comments  

E-Print Network [OSTI]

8/24/09 11:48 AMSPACE.com -- 'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 10http://www.space.com/scienceastronomy/090817-dark-energy-alternative.html#comments What is Dark Energy? Universe Might Be Bigger and Older Than In New? Register: Join Now! 'Big Wave' Theory Offers Alternative to Dark Energy By Clara Moskowitz Staff

Temple, Blake

427

9/18/09 2:07 PMSPACE.com --'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 8http://www.space.com/scienceastronomy/090817-dark-energy-alternative.html  

E-Print Network [OSTI]

9/18/09 2:07 PMSPACE.com -- 'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 8http://www.space.com/scienceastronomy/090817-dark-energy-alternative.html What is Dark Energy? Universe Might Be Bigger and Older Than Expected In New? Register: Join Now! 'Big Wave' Theory Offers Alternative to Dark Energy By Clara Moskowitz Staff

Temple, Blake

428

Damage tolerant light absorbing material  

DOE Patents [OSTI]

A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

1993-09-07T23:59:59.000Z

429

Damage tolerant light absorbing material  

DOE Patents [OSTI]

A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

Lauf, Robert J. (Oak Ridge, TN); Hamby, Jr., Clyde (Harriman, TN); Akerman, M. Alfred (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

430

Energy Department Announces $10 Million for Full-Scale Wave Energy Device  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. Steven ChuEffectDepartmentAuditsData

431

MHK Projects/Wave Star Energy 1 10 Scale Model Test | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClickKembla <Greenville,

432

Low pumping energy mode of the "optical bars''/"optical lever" topologies of gravitational-wave antennae  

E-Print Network [OSTI]

The ``optical bars''/``optical lever'' topologies of gravitational-wave antennae allow to obtain sensitivity better that the Standard Quantum Limit while keeping the optical pumping energy in the antenna relatively low. Element of the crucial importance in these schemes is the local meter which monitors the local test mirror position. Using cross-correlation of this meter back-action noise and its measurement noise it is possible to further decrease the optical pumping energy. In this case the pumping energy minimal value will be limited by the internal losses in the antenna only. Estimates show that for values of parameters available for contemporary and planned gravitational-wave antennae, sensitivity about one order of magnitude better than the Standard Quantum Limit can be obtained using the pumping energy about one order of magnitude smaller energy than is required in the traditional topology in order to obtain the the Standard Quantum Limit level of sensitivity.

F. Ya. Khalili

2003-04-16T23:59:59.000Z

433

Erbium concentration dependent absorbance in tellurite glass  

SciTech Connect (OSTI)

Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

Sazali, E. S., E-mail: mdsupar@utm; Rohani, M. S., E-mail: mdsupar@utm; Sahar, M. R., E-mail: mdsupar@utm; Arifin, R., E-mail: mdsupar@utm; Ghoshal, S. K., E-mail: mdsupar@utm; Hamzah, K., E-mail: mdsupar@utm [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

2014-09-25T23:59:59.000Z

434

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

435

A Proposal for Determining the Energy Content of Gravitational Waves by Using Approximate Symmetries of Differential Equations  

E-Print Network [OSTI]

Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content but they have not met with great success. Here we propose a definition using "slightly broken" Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to "approximate symmetries" as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying non-vacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.

Ibrar Hussain; F. M. Mahomed; Asghar Qadir

2009-03-11T23:59:59.000Z

436

MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek8512GCKGPPJourney <

437

Role of the basin boundary conditions in gravity wave turbulence  

E-Print Network [OSTI]

Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.

Luc Deike; Benjamin Miquel; Pablo Gutirrez-Matus; Timothe Jamin; Benoit Semin; Sbastien Aumaitre; Michael Berhanu; Eric Falcon; Flicien BONNEFOY

2014-12-16T23:59:59.000Z

438

Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions  

SciTech Connect (OSTI)

The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ? 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.

Deta, U. A., E-mail: utamaalan@yahoo.co.id [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia and Physics Department, State University of Surabaya, Jl. Ketintang, Surabaya 60231 (Indonesia); Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 (Indonesia)

2014-09-30T23:59:59.000Z

439

Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion  

SciTech Connect (OSTI)

An analysis based on the variation principle shows that in the molecules H2 +, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

Schmidt, Michael W.; Ivanic, Joseph; Ruedenberg, Klaus

2014-05-28T23:59:59.000Z

440

Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion  

SciTech Connect (OSTI)

An analysis based on the variation principle shows that in the molecules H{sub 2}{sup +}, H{sub 2}, B{sub 2}, C{sub 2}, N{sub 2}, O{sub 2}, F{sub 2}, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

Schmidt, Michael W.; Ruedenberg, Klaus, E-mail: ruedenberg@iastate.edu [Department of Chemistry and Ames Laboratory USDOE, Iowa State University, Ames, Iowa 50011 (United States); Ivanic, Joseph [Advanced Biomedical Computing Center, Information Systems Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702 (United States)

2014-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses  

E-Print Network [OSTI]

Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity) The effects of interference due to crossed laser beams were studied experimentally in the high- intensity regime. Two ultrashort (400 fs), high-intensity (4 1017 and 1:6 1018 W=cm2) and 1 m wavelength laser

Umstadter, Donald

442

Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves  

E-Print Network [OSTI]

We advance our prior energy- and flux-budget turbulence closure model (Zilitinkevich et al., 2007, 2008) for the stably stratified atmospheric flows and extend it accounting for additional vertical flux of momentum and additional productions of turbulent kinetic energy, turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). Main effects of IGW are following: the maximal value of the flux Richardson number (universal constant 0.2-0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. In the heterogeneous stratification, when IGW propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. IGW also reduce anisotropy of turbulence and increase the share of TPE in the turbulent total energy. Depending on the direction (downward or upward), IGW either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.

S. S. Zilitinkevich; T. Elperin; N. Kleeorin; V. L'vov; I. Rogachevskii

2009-08-18T23:59:59.000Z

443

12th AIAA/CEAS Aeroacoustics Conference, May 8---10, 2006, Cambridge, Massachusetts PML absorbing boundary condition for nonlinear  

E-Print Network [OSTI]

. R. China Perfectly Matched Layer (PML) absorbing boundary condition for the compressible non­ linear shedding from a viscous flow over a circular cylinder are presented. Satisfactory results demonstrated that the absorbing zone is theoretically reflectionless for multi­dimensional linear waves of any angle and frequency

Hu, Fang Q.

444

Spectral line width decrease in the solar corona: resonant energy conversion from Alfv{}n to acoustic waves  

E-Print Network [OSTI]

Observations reveal an increase with height of the line width of several coronal spectral lines probably caused by outwardly propagating Alfv{\\'e}n waves. However, the spectral line width sometimes shows a sudden decrease at a height 0.1-0.2 R, where the ratio of sound to Alfven speeds may approach unity. Qualitative analysis shows that the resonant energy conversion from Alfven to acoustic waves near the region of the corona where the plasma $\\beta$ approaches unity may explain the observed spectral line width reduction.

T. V. Zaqarashvili; R. Oliver; J. L. Ballester

2007-03-13T23:59:59.000Z

445

9/18/09 2:42 PM'Big Wave' Theory Offers Alternative to Dark Energy -Tech Support Forum Page 1 of 4http://www.techsupportforum.com/relaxation-room/offline/406161-big-wave-theory-offers-alternative-dark-energy.html  

E-Print Network [OSTI]

9/18/09 2:42 PM'Big Wave' Theory Offers Alternative to Dark Energy - Tech Support Forum Page 1 of 4http://www.techsupportforum.com/relaxation-room/offline/406161-big-wave-theory-offers-alternative-dark-energy' Theory Offers Alternative to Dark Energy User Name Remember Me? Password Log in Site Map Register Donate

Temple, Blake

446

MHK Technologies/Oxygen Releasing and Carbon Absorbing Ocean...  

Open Energy Info (EERE)

and 8 provision for the addition of fleets without depletion of primary feed stocks as in nuclear energy systems 2 Fig 1 In summary the system converts wave energy from the nearly...

447

A method for EIA scoping of wave energy converters-based on classification of the used technology  

SciTech Connect (OSTI)

During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

Margheritini, Lucia, E-mail: lm@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark); Hansen, Anne Merrild, E-mail: merrild@plan.aau.dk [Aalborg University, Department of Planning and Development, Fibigerstraede 13, DK - 9220, Aalborg (Denmark); Frigaard, Peter, E-mail: pf@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark)

2012-01-15T23:59:59.000Z

448

Durability of NOx Absorbers | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving Innovation atDumping09of NOx

449

Power Maximization in Wave-Energy Converters Using Sampled -Data Extremum Seeking /  

E-Print Network [OSTI]

irregular waves. Ocean engineering, 26(7):625651, 1999. [Engineering University of California, San Diego, 2013 Professor Sonia Martinez, Chair Ocean

Chen, Tianjia

2013-01-01T23:59:59.000Z

450

Porcelain enamel neutron absorbing material  

DOE Patents [OSTI]

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

Iverson, Daniel C. (Aiken, SC)

1990-01-01T23:59:59.000Z

451

Porcelain enamel neutron absorbing material  

DOE Patents [OSTI]

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

Iverson, D.C.

1987-11-20T23:59:59.000Z

452

Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers. Abstract: Super-absorbent polymers (SAPs) have...

453

Energy spectra of the ocean's internal wave field: theory and observations  

E-Print Network [OSTI]

The high-frequency limit of the Garrett and Munk spectrum of internal waves in the ocean and the observed deviations from it are shown to form a pattern consistent with the predictions of wave turbulence theory. In particular, the high frequency limit of the Garrett and Munk spectrum constitutes an {\\it exact} steady state solution of the corresponding kinetic equation.

Yuri V. Lvov; Kurt L. Polzin; Esteban G. Tabak

2003-12-30T23:59:59.000Z

454

10/14/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 3http://www.thirdeyeconcept.com/news/index.php?topic=10126.0  

E-Print Network [OSTI]

10/14/09 2:29 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 3http > Forum > Duality > The Eye > 'Big Wave' Theory Offers Alternative to Dark Energy Pages: [1] Go Down SEND THIS TOPIC | PRINT Author Topic: 'Big Wave' Theory Offers Alternative to Dark Energy (Read 59 times) 'Big

Temple, Blake

455

Integrity of neutron-absorbing components of LWR fuel systems  

SciTech Connect (OSTI)

A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs.

Bailey, W.J.; Berting, F.M.

1991-03-01T23:59:59.000Z

456

Self-similar solutions for the emergence of energy varying shock waves from plane-parallel atmospheres  

E-Print Network [OSTI]

We present a self-similar solution to describe the propagation of a shock wave whose energy is deposited or lost at the front. Both of the propagation of the shock wave in a medium having a power-law density profile and the expansion of the medium to a vacuum after the shock breakout are described with a Lagrangian coordinate. The Chapman-Jouguet detonation is found to accelerate the medium most effectively. The results are compared with some numerical simulations in the literature. We derive the fractions of the deposited/lost energy at the shock front in some specific cases, which will be useful when applying this solution to actual phenomena.

Akihiro Suzuki; Toshikazu Shigeyama

2007-02-09T23:59:59.000Z

457

High power density test of PXIE MEBT absorber prototype  

E-Print Network [OSTI]

One of the goals of the PXIE program at Fermilab is to demonstrate the capability to form an arbitrary bunch pattern from an initially CW 162.5 MHz H- bunch train coming out of an RFQ. The bunch-by-bunch selection will take place in the 2.1 MeV Medium Energy Beam Transport (MEBT) by directing the undesired bunches onto an absorber that needs to withstand a beam power of up to 21 kW, focused onto a spot with a ~2 mm rms radius. Two prototypes of the absorber were manufactured from molybdenum alloy TZM and tested with a 28 keV DC electron beam up to the peak surface power density required for PXIE, 17W/mm2. Temperatures and flow parameters were measured and compared to analysis. This paper describes the absorber prototypes and key testing results.

Shemyakin, A

2015-01-01T23:59:59.000Z

458

Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said  

DOE Patents [OSTI]

A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

Sher, Mark H. (Los Altos, CA); Macklin, John J. (Stanford, CA); Harris, Stephen E. (Palo Alto, CA)

1989-09-26T23:59:59.000Z

459

Wave-actuated power take-off device for electricity generation  

SciTech Connect (OSTI)

Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME'??s power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels ??e.g., 10 to 100kW?

Chertok, Allan

2013-01-31T23:59:59.000Z

460

Acoustic wave propagation and stochastic effects in metamaterial absorbers  

SciTech Connect (OSTI)

We show how stochastic variations of the effective parameters of anisotropic structured metamaterials can lead to increased absorption of sound. For this, we derive an analytical model based on the Bourret approximation and illustrate the immediate connection between material disorder and attenuation of the averaged field. We demonstrate numerically that broadband absorption persists at oblique irradiation and that the influence of red noise comprising short spatial correlation lengths increases the absorption beyond what can be archived with a structured but ordered system.

Christensen, J., E-mail: jochri@fotonik.dtu.dk; Willatzen, M. [Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

2014-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Semiclassical Distorted Wave Model Analysis of Backward Proton Emission from $(p,p^{\\prime}x)$ Reactions at Intermediate Energies  

E-Print Network [OSTI]

A semiclassical distorted wave (SCDW) model with Wigner transform of one-body density matrix is presented for multistep direct $(p,p^{\\prime}x)$ reactions to the continuum. The model uses Wigner distribution functions obtained in methods which include nucleon-nucleon correlations to a different extent, as well as Woods-Saxon (WS) single-particle wave function. The higher momentum components of target nucleons that play a crucial role in reproducing the high-energy part of the backward proton spectra are properly taken into account. This SCDW model is applied to analyses of multistep direct processes in $^{12}$C$(p,p^{\\prime}x)$, $^{40}$Ca$(p,p^{\\prime}x)$ and $^{90}$Zr$(p,p^{\\prime}x)$ in the incident energy range of 150--392 MeV. The double differential cross sections are calculated up to three-step processes. The calculated angular distributions are in good agreement with the experimental data, in particular at backward angles where the previous SCDW calculations with the WS single-particle wave function showed large underestimation. It is found that the result with the Wigner distribution function based on the coherent density fluctuation model provides overall better agreement with the experimental data over the whole emission energies.

M. K. Gaidarov; Y. Watanabe; K. Ogata; M. Kohno; M. Kawai; A. N. Antonov

2003-07-28T23:59:59.000Z

462

Sensitivity to Dark Energy candidates by searching for four-wave mixing of high-intensity lasers in the vacuum  

E-Print Network [OSTI]

Theoretical challenges to understand Dark Matter and Dark Energy suggest the existence of low-mass and weakly coupling fields in the universe. The quasi-parallel photon-photon collision system (QPS) can provide chances to probe the resonant production of these light dark fields and the induced decay by the coherent nature of laser fields simultaneously. By focusing high-intensity lasers with different colors in the vacuum, new colors emerge as the signature of the interaction. Because four photons in the initial and final states interplay via the dark field exchange, this process is analogous to four-wave mixing in quantum optics, where the frequency sum and difference among the incident three waves generate the fourth wave with a new frequency via the nonlinear property of crystals. The interaction rate of the four-wave mixing process has the cubic dependence on the intensity of each wave. Therefore, if high-intensity laser fields are given, the sensitivity to the weakly coupling of dark fields to photons rapidly increases over the wide mass range below sub-eV. Based on the experimentally measurable photon energies and the linear polarization states, we formulate the relation between the accessible mass-coupling domains and the high-intensity laser parameters, where the effects of the finite spectrum width of pulse lasers are taken into account. The expected sensitivity suggests that we have a potential to explore interactions at the Super-Planckian coupling strength in the sub-eV mass range, if the cutting-edge laser technologies are properly combined.

Kensuke Homma

2012-11-12T23:59:59.000Z

463

Bound state energies and wave functions of spherical quantum dots in presence of a confining potential model  

E-Print Network [OSTI]

We obtain the exact energy spectra and corresponding wave functions of the radial Schr\\"odinger equation (RSE) for any (n,l) state in the presence of a combination of psudoharmonic, Coulomb and linear confining potential terms using an exact analytical iteration method. The interaction potential model under consideration is Cornell-modified plus harmonic (CMpH) type which is a correction form to the harmonic, Coulomb and linear confining potential terms. It is used to investigates the energy of electron in spherical quantum dot and the heavy quarkonia (QQ-onia).

Sameer M. Ikhdair

2011-10-03T23:59:59.000Z

464

MHK Projects/US Navy Wave Energy Technology WET Program at Marine...  

Open Energy Info (EERE)

Project StateProvince Hawaii Project Country United States Project Resource Click here Wave Coordinates 21.4164, -157.784 Project Phase Phase 3 Project Details The same PB-40...

465

Live Webinar on the Funding Opportunity for Administration of the Wave Energy Converter Prize  

Broader source: Energy.gov [DOE]

The Water Power Program is seeking a Prize Administrator with expertise in prize competitions to collaborate with DOE, technical experts, and a wave tank testing facility in developing and...

466

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube  

E-Print Network [OSTI]

We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint ...

Aartsen, M.?G.

467

WET-NZ Multi-Mode Wave Energy Converter Advancement Project  

SciTech Connect (OSTI)

The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: ?Wave Tank Testing to Characterize Hydrodynamic Characteristics; ? Open-Sea Testing of a New 1:2 Scale Experimental Model; ? Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status; ? Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.

Kopf, Steven

2013-10-15T23:59:59.000Z

468

Gravitational wave detection by bounded cold electronic plasma in a long pipe  

E-Print Network [OSTI]

We intend to propose an experimental sketch to detect gravitational waves (GW) directly, using an cold electronic plasma in a long pipe. By considering an cold electronic plasma in a long pipe, the Maxwell equations in 3+1 formalism will be invoked to relate gravitational waves to the perturbations of plasma particles. It will be shown that the impact of GW on cold electronic plasma causes disturbances on the paths of the electrons. Those electrons that absorb energy from GW will pass through the potential barrier at the end of the pipe. Therefore, crossing of some electrons over the barrier will imply the existence of the GW.

O. Jalili; S. Rouhani; M. V. Takook

2013-10-15T23:59:59.000Z

469

Production of Kaon and $?$ in nucleus-nucleus collisions at ultra-relativistic energy from a blast wave model  

E-Print Network [OSTI]

The particle production of Kaon and $\\Lambda$ are studied in nucleus-nucleus collisions at relativistic energy based on a chemical equilibrium blast-wave model. The transverse momentum spectra of Kaon and $\\Lambda$ at the kinetic freeze-out stage from our model are in good agreement with the experimental results. The kinetic freeze-out parameters of temperature ($T_{kin}$) and radial flow parameter $\\rho_{0}$ are presented for the FOPI, RHIC and LHC energies. And the resonance decay effect is also discussed. The systematic study for beam energy dependence of the strangeness particle production will help us to better understand the properties of the matter created in heavy-ion collisions at the kinetic freeze-out stage.

Song Zhang; Yu-Gang Ma; Jin-Hui Chen; Chen Zhong

2014-11-06T23:59:59.000Z

470

Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere  

E-Print Network [OSTI]

on how various energy sources from the solar wind ultimatelymodes. The solar wind is an important energy source for ULFmodes. The solar wind is an important energy source for ULF

Hartinger, Michael David

2012-01-01T23:59:59.000Z

471

ENERGY CONSERVATION AND GRAVITY WAVES IN SOUND-PROOF TREATMENTS OF STELLAR INTERIORS. PART I. ANELASTIC APPROXIMATIONS  

SciTech Connect (OSTI)

Typical flows in stellar interiors are much slower than the speed of sound. To follow the slow evolution of subsonic motions, various sound-proof equations are in wide use, particularly in stellar astrophysical fluid dynamics. These low-Mach number equations include the anelastic equations. Generally, these equations are valid in nearly adiabatically stratified regions like stellar convection zones, but may not be valid in the sub-adiabatic, stably stratified stellar radiative interiors. Understanding the coupling between the convection zone and the radiative interior is a problem of crucial interest and may have strong implications for solar and stellar dynamo theories as the interface between the two, called the tachocline in the Sun, plays a crucial role in many solar dynamo theories. Here, we study the properties of gravity waves in stably stratified atmospheres. In particular, we explore how gravity waves are handled in various sound-proof equations. We find that some anelastic treatments fail to conserve energy in stably stratified atmospheres, instead conserving pseudo-energies that depend on the stratification, and we demonstrate this numerically. One anelastic equation set does conserve energy in all atmospheres and we provide recommendations for converting low-Mach number anelastic codes to this set of equations.

Brown, Benjamin P.; Zweibel, Ellen G. [Department of Astronomy, University of Wisconsin, Madison, WI 53706-1582 (United States); Vasil, Geoffrey M., E-mail: bpbrown@astro.wisc.edu [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

2012-09-10T23:59:59.000Z

472

Novel design and implementation of a permanent magnet linear tubular generator for ocean wave energy conversion.  

E-Print Network [OSTI]

??The worlds energy consumption is growing at an alarming rate and the need for renewable energy is apparent now more than ever. Estimates have shown (more)

Prudell, Joseph H.

2007-01-01T23:59:59.000Z

473

Energy and angular momentum of the weak gravitational waves on the Schwarzschild background -- quasilocal gauge-invariant formulation  

E-Print Network [OSTI]

It is shown that the axial and polar perturbations of the spherically symmetric black hole can be described in a gauge-invariant way. The reduced phase space describing gravitational waves outside of the horizon is described by the gauge-invariant quantities. Both degrees of freedom fulfill generalized scalar wave equation. For the axial degree of freedom the radial part of the equation corresponds to the Regge-Wheeler result (Phys. Rev. 108, 1063-1069 (1957)) and for the polar one we get Zerilli result (Phys. Rev. D2, 2141-2160 (1970)), see also Chandrasekhar (The Mathematical Theory of Black Holes,(Clarendon Press Oxford, 1983)), Moncrief (Annals of Physics 88, 323-342 (1974)) for both. An important ingredient of the analysis is the concept of quasilocality which does duty for the separation of the angular variables in the usual approach. Moreover, there is no need to represent perturbations by normal modes (with time dependence $\\exp(-ikt)$), we have fields in spacetime and the Cauchy problem for them is well defined outside of the horizon. The reduced symplectic structure explains the origin of the axial and polar invariants. It allows to introduce an energy and angular momentum for the gravitational waves which is invariant with respect to the gauge transformations. Both generators represent quadratic approximation of the ADM nonlinear formulae in terms of the perturbations of the Schwarzschild metric. We also discuss the boundary-initial value problem for the linearized Einstein equations on a Schwarzschild background outside of the horizon.

Jacek Jezierski

1998-01-20T23:59:59.000Z

474

Development of a Wireless Control and Monitoring System for Wave Energy Converters  

E-Print Network [OSTI]

meters and produce electricity. This production of electricity is by harnessing the oscillatory motion untapped energy resource containing potentially more energy than the combined output of all other resources and partly as thermal energy from the sun. It is estimated that the potential energy of the oceans is up to 2

Wood, Stephen L.

475

12th AIAA/CEAS Aeroacoustics Conference, May 8--10, 2006, Cambridge, Massachusetts PML absorbing boundary condition for non-linear  

E-Print Network [OSTI]

Perfectly Matched Layer (PML) absorbing boundary condition for the compressible non- linear Navier a viscous flow over a circular cylinder are presented. Satisfactory results demonstrated that the proposed that the absorbing zone is theoretically reflectionless for multi-dimensional linear waves of any angle and frequency

Hu, Fang Q.

476

Chaotic wave functions and exponential convergence of low-lying energy eigenvalues  

E-Print Network [OSTI]

We suggest that low-lying eigenvalues of realistic quantum many-body hamiltonians, given, as in the nuclear shell model, by large matrices, can be calculated, instead of the full diagonalization, by the diagonalization of small truncated matrices with the exponential extrapolation of the results. We show numerical data confirming this conjecture. We argue that the exponential convergence in an appropriate basis may be a generic feature of complicated ("chaotic") systems where the wave functions are localized in this basis.

Mihai Horoi; Alexander Volya; Vladimir Zelevinsky

1998-06-04T23:59:59.000Z

477

Gravity Waves Gravity Waves  

E-Print Network [OSTI]

;14/03/2014 6 H L H L L Phase & Group Velocity #12;14/03/2014 7 Doppler Effect #12;14/03/2014 8 Shock Waves #12;14/03/2014 14 Supernova Remnant Cassiopeia A Supernova blast waves #12;14/03/2014 15 Tycho's Remnant (SN 1572AD A SNR flythrough Theory of Supernova Blast Waves Supernovae: Type Ia Subsonic deflagration wave turning

Weijgaert, Rien van de

478

Neutron absorbing coating for nuclear criticality control  

DOE Patents [OSTI]

A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

Mizia, Ronald E. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID); Lister, Tedd E. (Idaho Falls, ID); Pinhero, Patrick J. (Idaho Falls, ID)

2007-10-23T23:59:59.000Z

479

9/18/09 2:17 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 20http://www.freerepublic.com/focus/f-chat/2319699/posts  

E-Print Network [OSTI]

9/18/09 2:17 PM'Big Wave' Theory Offers Alternative to Dark Energy Page 1 of 20http' Theory Offers Alternative to Dark Energy Space.com ^ | 8/18/09 | Clara Moskowitz Posted on August 19'Big Wave' Theory Offers Alternative to Dark Energy Page 2 of 20http

Temple, Blake

480

Tools for incorporating a D-wave contribution in Skyrme energy density functionals  

E-Print Network [OSTI]

The possibility of adding a D-wave term to the standard Skyrme effective interaction has been widely considered in the past. Such a term has been shown to appear in the next-to-next-to-leading order of the Skyrme pseudo-potential. The aim of the present article is to provide the necessary tools to incorporate this term in a fitting procedure: first, a mean-field equation written in spherical symmetry in order to describe spherical nuclei and second, the response function to detect unphysical instabilities. With these tools it will be possible to build a new fitting procedure to determine the coupling constants of the new functional.

P. Becker; D. Davesne; J. Meyer; A. Pastore; J. Navarro

2014-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "absorber wave energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

MHK Technologies/The WaveCatcher System | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWEC <Generator.jpgThe WaveCatcher

482

Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices  

Broader source: Energy.gov [DOE]

The Energy Department announces two projects as part of a larger effort to deploy innovative technologies for clean, domestic power generation from water power resources.

483

Parasitic oscillation suppression in solid state lasers using absorbing thin films  

DOE Patents [OSTI]

A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.

Zapata, L.E.

1994-08-02T23:59:59.000Z

484

Parasitic oscillation suppression in solid state lasers using absorbing thin films  

DOE Patents [OSTI]

A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.

Zapata, Luis E. (Livermore, CA)

1994-01-01T23:59:59.000Z

485

Method of absorbance correction in a spectroscopic heating value sensor  

SciTech Connect (OSTI)

A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

2013-09-17T23:59:59.000Z

486

Formation of Nitrogen- and Sulfur-Containing Light-Absorbing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nitrogen- and Sulfur-Containing Light-Absorbing Compounds Accelerated by Evaporation of Water from Secondary Formation of Nitrogen- and Sulfur-Containing Light-Absorbing Compounds...

487

absorbed gamma dose: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

488

absorbed dose profiles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

489

astronaut absorbed dose: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

490

absorbed dose kerma: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

491

absorbed dose estimates: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NTS tests 3 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

492

absorbed doses: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

493

absorbed doses received: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

494

absorbed radiation dose: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

495

average absorbed doses: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

496

absorbed dose optimization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

497

absorbed dose estimation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NTS tests 3 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

498

absorbed glandular dose: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

499

absorbed dose metrology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...

500

absorbed doses profiles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index 1 Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny Biology and Medicine Websites Summary: Absorbed dose in target cell nuclei and...