Powered by Deep Web Technologies
Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To  

Open Energy Info (EERE)

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description This project proposes to develop a cost-effective microhole drilling and completion technology with the Flash Abrasive Slurry Jet (ASJ) system and optimize it to maximize the efficiency of fluid circulation and heat removal for Enhanced Geothermal Systems (EGS). The proposed approach is expected to address the key obstacles that currently prevent EGS from becoming a technically feasible, commercially viable major contributor for electricity generation, namely: (1) reduce costs for drilling and well completion and (2) increase the volume of hot rock from which heat can be extracted.

2

A modified ASTM G-75 abrasion test helps select candidate alloys for service in a corrosive and abrasive slurry  

SciTech Connect

The design of a hazardous waste immobilization facility at the Savannah River Site (SRS) set material requirements for both abrasion resistance and corrosion resistance in process equipment. Standard ASTM slurry wear test G75 was modified to permit evaluation and comparison of abrasive resistance of candidate materials of construction in the laboratory. However, corrosion was found to contribute significantly to overall metal loss during the testing. Consequently, the abrasive slurry used for the testing was modified by adjusting its chemistry to include appropriate corrosive species. The Miller numbers obtained in the modified G75 Miller abrasion test are described. Pilot plant observations for Type 304L austenitic stainless steel were available. These data were used to generate a Morrison-Miller Ratio'' in order to determine anticipated field abrasion properties for other alloys. Hardness for many of the alloys fell in a narrow range about Rockwell B90, but performance varied significantly in response to slurry chemistry. This effect if synergistic may often be overlooked in the selection process, and it needs to be addressed. Some pilot plant testing of other alloys is essential to confirm the calculated abrasion rates and the approach of using the Morrison-Miller ratio. 6 refs., 3 figs., 5 tabs.

Corbett, R.A.; Morrison, W.S.; Jenkins, C.F. (Corrosion Testing Labs., Inc., Wilmington, DE (USA); Westinghouse Savannah River Co., Aiken, SC (USA))

1989-01-01T23:59:59.000Z

3

Calculations of slurry pump jet impingement loads  

SciTech Connect

This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented.

Wu, T.T.

1996-03-04T23:59:59.000Z

4

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology...  

Open Energy Info (EERE)

major contributor for electricity generation, namely: (1) reduce costs for drilling and well completion and (2) increase the volume of hot rock from which heat can be extracted....

5

Experimental Testing of an Electrical Submersible Pump Undergoing Abrasive Slurry Erosion  

E-Print Network (OSTI)

The Electrical Submersible Pump (ESP) manufactured by Baker Hughes, model no. WJE-1000 is designed for wells that are expected to have a high content of abrasive solids. It is a mixed flow, tandem compression type pump. Although the erosion of the pump diffuser and impeller stages are significant, the ESP study shows that the most sever failure is due to components that affect the pump’s rotor dynamics such as radial bearings and impeller seals when eroded with 100 mesh sand. Erosion of these seals will result in an internal leakage that can significantly affect stage pressure rise, efficiency, power consumption, vibration, pump life and running cost. The erosion study utilizing 100 mesh fracture sand at 0.2% concentration, with the pump operating at 3600 RPM, 40 PSI intake pressure, 1150 GPM for over 117 hours comparisons are made to the pump’s baseline performance. Measurements of the rotor bearings, impeller seals and their corresponding stators showed that the wear patterns generally increase with time and differ by location. Stage 1 bearings and seals suffered the least amount of erosion and stage 3 rotor components suffered the most erosion. The maximum change in stage 3 bearing clearances was 223% and the maximum change in stage 3 impeller seal clearances was 300%. Performance wise the total pump efficiency dropped by 6.77%, the total pressure rise dropped by 6.3%, the pump’s best efficiency point decreased by 0.78%, and the power consumption increased by 0.49%. Pump vibration patterns also changed with time and by location. The maximum shaft orbit diameter was at stage 3 and it grew 643% in diameter after 117 hours of erosion. The waterfall plots of the pump’s ramp up changed significantly with time. After 117 hours at 3600 RPM, sub-synchronous oscillations at 67% of the synchronous speed dominated the amplitude peaks showing that the rotor vibration locked with the rotor’s first natural frequency at around 2500 RPM. After 117 hours, another sub-synchronous started showing a peak at the rotor’s second natural frequency at 1500 RPM.

Saleh, Ramy Moaness M

2013-05-01T23:59:59.000Z

6

SCALED EXPERIMENTS EVALUATING PULSE JET MIXING OF SLURRIES  

Science Conference Proceedings (OSTI)

Pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid were conducted at three geometric scales to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant. The test data will be used to develop mixing models. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate, the concentration of solids near the vessel floor and the minimum velocity predicted to lift solids can be calculated. The test objective was to observe the influence of vertically downward-directed jets on noncohesive solids in a series of scaled tanks with several bottom shapes. The test tanks and bottom shapes included small-and large-scale tanks with elliptical bottoms, a mid-scale tank with a spherical bottom, and a large-scale tank with an F&D bottom. During testing, the downward-directed jets were operated in either a steady flow condition or a pulsed (periodic) flow condition. The mobilization of the solids resulting from the jets was evaluated based on: the motion/agitation of the particulate on the tank floor and the elevation the solids reach within the tank; the height the solids material reaches in the tank is referred to as the cloud height (HC).

Bamberger, Judith A.; Meyer, Perry A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Minette, Michael J.; Burns, Carolyn A.; Baer, Ellen BK; Eakin, David E.; Elmore, Monte R.; Snyder, Sandra F.

2009-11-13T23:59:59.000Z

7

Scaling Laws for Reduced-Scale Tests of Pulse Jet Mixing Systems in Non-Newtonian Slurries: Mixing Cavern Behavior  

Science Conference Proceedings (OSTI)

The Waste Treatment Plant (WTP) under construction at the Hanford Site will use pulse jet mixer (PJM) technology for mixing and gas retention control applications in tanks expected to contain waste slurries exhibiting a non-Newtonian rheology. This paper presents the results of theoretical and experimental studies undertaken to establish a methodology to perform reduced-scale mixing tests with PJM systems in non-Newtonian fluids. A theoretical model for mixing cavern formation from steady and pulsed jets is developed and compared with data from a single unsteady jet in a yield stress simulant. Dimensional analysis is used to identify the important dimensionless parameters affecting mixing performance in more complex systems. Scaling laws are proposed based on the modeling and dimensional analysis. Experimental validation of the scaling laws governing unsteady jet mixing in non-Newtonian fluids are also presented. Tests were conducted at three scales using two non-Newtonian simulants. The data were compared non-dimensionally, and the important scale laws were confirmed. The key dimensionless parameters were found to be the Strouhal number (which describes unsteady pulse jet mixer operation), the yield Reynolds number (which governs cavern formation due to non-Newtonian fluid behavior), and the viscous Reynolds number (which determines the flow regime and the degree of turbulence). The experimentally validated scaling laws provide the basis for reduced scale testing of prototypic WTP mixing systems. It is argued that mixing systems developed from reduced scale testing will produce conservative designs at full scale.

Meyer, Perry A.; Kurath, Dean E.; Bamberger, Judith A.; Barnes, Steven M.; Etchells, Arthur W.

2006-03-02T23:59:59.000Z

8

An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels  

DOE Green Energy (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonian slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.

Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.; Meyer, Perry A.

2009-05-22T23:59:59.000Z

9

Method and apparatus for transporting liquid slurries  

DOE Patents (OSTI)

An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the nonabrasive liquid and the inner surface of the transport system which thereby prevents erosion.

Berry, G.F.; Lyczkowski, R.W.; Wang, Chi-Sheng.

1991-01-01T23:59:59.000Z

10

Method and apparatus for transporting liquid slurries  

DOE Patents (OSTI)

An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the nonabrasive liquid and the inner surface of the transport system which thereby prevents erosion.

Berry, G.F.; Lyczkowski, R.W.; Wang, Chi-Sheng

1991-12-31T23:59:59.000Z

11

Method and apparatus for transporting liquid slurries  

DOE Patents (OSTI)

An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

Berry, G.F.; Lyczkowski, R.W.; Chisheng Wang.

1993-03-16T23:59:59.000Z

12

Method and apparatus for transporting liquid slurries  

DOE Patents (OSTI)

An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

Berry, Gregory F. (Naperville, IL); Lyczkowski, Robert W. (Darien, IL); Wang, Chi-Sheng (Woodridge, IL)

1993-01-01T23:59:59.000Z

13

Scaling Laws for Reduced-Scale Tests of Pulse Jet Mixing Systems in Non-Newtonian Slurries: Gas Retention and Release Behavior  

Science Conference Proceedings (OSTI)

The Waste Treatment Plant (WTP) under construction at the Hanford Site will use pulse jet mixer (PJM) technology for mixing and gas retention control applications in tanks expected to contain waste slurries exhibiting a non-Newtonian rheology. This paper presents the results of theoretical and experimental studies performed to establish the methodology to perform reduced-scale gas retention and release tests with PJM systems in non-Newtonian fluids with gas generation. The technical basis for scaled testing with unsteady jet mixing systems in gas-generating non-Newtonian fluids is presented in the form of a bubble migration model that accounts for the gas generation rate, the average bubble rise velocity, and the geometry of the vessel. Scaling laws developed from the model were validated with gas holdup and release tests conducted at three scales: large scale, 1/4 scale, and 1/9 scale. Experiments were conducted with two non-Newtonian simulants with in-situ gas generation by decomposition of hydrogen peroxide. The data were compared non-dimensionally, and the important scale laws were examined. From these results, scaling laws are developed which allow the design of mixing systems at a reduced scale.

Stewart, Charles W.; Meyer, Perry A.; Kurath, Dean E.; Barnes, Steven M.

2006-03-02T23:59:59.000Z

14

Slurry 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction to Introduction to Slurry Injection Technology for Disposal of Drilling Wastes Because wastes are injected deep into the earth below drinking water zones, proper slurry injection opera- tions should pose lower environmental and health risks than more conventional surface disposal methods. Table of Contents What Are Drilling Wastes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 How Are Drilling Wastes Managed? . . . . . . . . . . . . . . . . . . . . . .3 Underground Injection of Drilling Wastes . . . . . . . . . . . . . . . . .4 Disposal in Salt Caverns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Subfracture Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Types of Slurry Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

15

Jet Jet Jet Jet  

NLE Websites -- All DOE Office Websites (Extended Search)

protons protons top quark bottom quark muon top quark antiprotons bottom quark low energy muon quark quark - W boson + Jet Jet Jet Jet neutrino W boson particles antiparticles A Top Antitop Quark Event from the D-Zero Detector at Fermilab muon low energy muon Jet Jet Jet Jet particles antiparticles Particles Seen by the D-Zero Detector at Fermilab in a Top Antitop Quark Event. DST LEGO 16-JUL-1996 15:32 Run 92704 Event 14022 9-JUL-1995 13:17 MUON MUON Miss ET ET DST ETA-PHI 4 MUON 1 MISS ET 4 JET (HAD) (EM) D-Zero Detector at Fermi National Accelerator Laboratory Lego Plot CAL+TKS END VIEW 16-JUL-1996 15:33 Run 92704 Event 14022 9-JUL-1995 13:17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

REMOVAL OF EBWR FUEL ELEMENT SCALE BY SLURRY HONING  

SciTech Connect

The scale deposit on the Experimental Boiling Water Reactor fuel plates can be removed by slurry honing the plates with an abrasive-water mixture. Problems inherent in any production operation of this type are discussed. Areas of continued investigation of the method are suggested. (auth)

Charak, I.

1960-09-01T23:59:59.000Z

17

Abrasives for Dry Blast Cleaning  

Science Conference Proceedings (OSTI)

...The materials used in dry abrasive blast cleaning can be categorized as metallic grit, metallic shot, sand, glass, and miscellaneous. Hardness, density, size, and shape are important considerations in choosing an abrasive for a specific

18

Valve for abrasive material  

DOE Patents (OSTI)

A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

Gardner, Harold S. (Turtle Creek, PA)

1982-01-01T23:59:59.000Z

19

Aqueous coal slurry  

DOE Patents (OSTI)

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

20

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

22

Ultrasound Analysis Of Slurries  

DOE Patents (OSTI)

An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

Soong, Yee (Monroeville, PA); Blackwell, Arthur G. (Duquesne, PA)

2005-11-01T23:59:59.000Z

23

Ultrasound Analysis of Slurries  

DOE Patents (OSTI)

An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

Soong, Yee and Blackwell, Arthur G.

2005-11-01T23:59:59.000Z

24

HYDROLYZED WOOD SLURRY FLOW MODELING  

E-Print Network (OSTI)

LBL-10090 UC-61 HYDROLYZED WOOD SLURRY FLOW MODELING JimLBL-10090 HYDROLYZED WOOD SLURRY FLOW MODELING Jim Wrathallconversion of hydrolyzed wood slurry to fuel oil, Based on

Wrathall, Jim

2012-01-01T23:59:59.000Z

25

Stable blasting slurry  

SciTech Connect

This invention relates to stable blasting slurry systems useful particularly with the latest blasting slurry trucks, involving the preparation of particular new fuel liquids mixed with particular oxidizer liquids and including in most emodiments solid oxidizers and solid fuels. (44 claims)

Cook, M.A.

1978-04-18T23:59:59.000Z

26

Ultrasound Analysis of Slurries  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrasound Analysis of Slurries Ultrasound Analysis of Slurries Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,959,589 entitled "Ultrasound Analysis of Slurries." Disclosed in this patent is an apparatus that facilitates the ultrasonic analysis of materials in slurry form. The apparatus focuses on an autoclave arrange- ment to determine the concentration and/or particle size distribution of the slurry under elevated temperature and pressure conditions. During the process, the temperature- and pressure-sensitive ultrasonic transducers are maintained under ambient conditions. The transducers are positioned outside of the temperature-pressure environment of the material to be analyzed,

27

Hydrogen Retention in Tetraphenylborate Slurries  

DOE Green Energy (OSTI)

Researchers measured the production and retention of gases in potassium tetraphenylborate (KTPB) slurries due to radiolysis.

Peterson, R.A.

1998-10-21T23:59:59.000Z

28

Aqueous coal slurry  

DOE Patents (OSTI)

A principal object of the invention is the provision of an aqueous coal slurry containing a dispersant, which is of low-cost and which contains very low or no levels of sodium, potassium, sulfur and other contaminants. In connection with the foregoing object, it is an object of the invention to provide an aqueous slurry containing coal and dextrin as a dispersant and to provide a method of preparing an aqueous coal slurry which includes the step of adding an effective amount of dextrin as a dispersant. The invention consists of certain novel features and a combination of parts hereinafter fully described, and particularly pointed out in the appended claims. 6 tabs.

Berggren, M.H.; Smit, F.J.; Swanson, W.W.

1989-10-30T23:59:59.000Z

29

Current Research on Medical Slurry Cooling: Medical Ice Slurry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Homeland Security Applications Biomedical Applications Medical Ice Slurry Coolants for Inducing Targeted-OrganTissue Protective Cooling Technology...

30

Slurry reactor design studies  

SciTech Connect

The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

1990-06-01T23:59:59.000Z

31

Thermal reclamation of spent blasting abrasive  

Science Conference Proceedings (OSTI)

Abrasive blasting media is used to remove anticorrosive and antifoulant coatings from the hulls and tanks of US Navy ships. The total production of paint-contaminated spent abrasives from the eight US. Navy shipyards ranges from 75,000 to 100,000 tons per year. Most of this spent abrasive is disposed in landfills. Organic paint binders and heavy metals are present in the spent abrasives in concentrations sufficient to classify them as hazardous wastes in some states. In an effort to avoid the rising costs an long-term environmental liability associated with landfilling this waste, the US Navy has investigated various methods of reclaiming spent abrasives for reuse in hull- and tank-blasting operations. This paper discusses the results of a research and development project conducted under the Navy's Hazardous Waste Minimization Program to test a fluidized-bed sloped-grid (FBSG) reclaimer to determine if it could be used to recycle spent abrasive. Thirty tons of abrasive were processed and a product meeting military specifications for new abrasives was reclaimed. Blasting performance was also comparable to new abrasives. 3 refs., 1 fig., 2 tabs.

Bryan, B.G. (Institute of Gas Technology, Chicago, IL (USA)); Thomas, W.; Adema, C. (David Taylor Research Center, Annapolis, MD (USA))

1990-01-01T23:59:59.000Z

32

Design and performance of feed delivery systems for simulated radioactive waste slurries  

Science Conference Proceedings (OSTI)

Processes for vitrifying simulated high-level radioactive waste have been developed at the Pacific Northwest Laboratory (PNL) over the last several years. Paralleling this effort, several feed systems used to deliver the simulated waste slurry to the melter have been tested. Because there had been little industrial experience in delivering abrasive slurries at feed rates of less than 10 L/min, early experience helped direct the design of more-dependable systems. Also, as feed delivery requirements changed, the feed system was modified to meet these new requirements. The various feed systems discussed in this document are part of this evolutionary process, so they have not been ranked against each other. The four slurry feed systems discussed are: (1) vertical-cantilevered centrifugal pump system; (2) airlift feed systems; (3) pressurized-loop systems; and (4) positive-displacement pump system. 20 figures, 11 tables.

Perez, J.M. Jr.

1983-02-01T23:59:59.000Z

33

Measuring wall forces in a slurry pipeline.  

E-Print Network (OSTI)

??Slurry transport is a key material handling technology in a number of industries. In oilsands ore transport, slurry pipelining also promotes conditioning to release and… (more)

El-Sayed, Suheil

2010-01-01T23:59:59.000Z

34

Ceramic-bonded abrasive grinding tools  

DOE Patents (OSTI)

Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

Holcombe, Jr., Cressie E. (Farragut, TN); Gorin, Andrew H. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

35

Ceramic-bonded abrasive grinding tools  

DOE Patents (OSTI)

Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

1994-11-22T23:59:59.000Z

36

DEHYDRATION OF DEUTERIUM OXIDE SLURRIES  

DOE Patents (OSTI)

A method is presented for recovering heavy water from uranium oxide-- heavy water slurries. The method consists in saturating such slurries with a potassium nitrate-sodium nitrate salt mixture and then allowing the self-heat of the slurry to raise its temperature to a point slightly in excess of 100 deg C, thus effecting complete evaporation of the free heavy water from the slurry. The temperature of the slurry is then allowed to reach 300 to 900 deg C causing fusion of the salt mixture and expulsion of the water of hydration. The uranium may be recovered from the fused salt mixture by treatment with water to leach the soluble salts away from the uranium-containing residue.

Hiskey, C.F.

1959-03-10T23:59:59.000Z

37

Ice_slurry_fact_sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

new approach to saving stroke and cardiac arrest victims by using a specially engineered ice slurry to cool organs. The technology is also being investigated as a way to improve...

38

Streamline coal slurry letdown valve  

DOE Patents (OSTI)

A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces.

Platt, Robert J. (Dover, NJ); Shadbolt, Edward A. (Basking Ridge, NJ)

1983-01-01T23:59:59.000Z

39

Streamline coal slurry letdown valve  

DOE Patents (OSTI)

A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

Platt, R.J.; Shadbolt, E.A.

1983-11-08T23:59:59.000Z

40

Medical ice slurry production device  

DOE Patents (OSTI)

The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

Kasza, Kenneth E. (Palos Park, IL); Oras, John (Des Plaines, IL); Son, HyunJin (Naperville, IL)

2008-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Liquid abrasive grit blasting literature search and decontamination scoping tests report  

SciTech Connect

Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. As decommissioning plans are developed, new decontamination methods must be used which result in higher decontamination factors and generate lower amounts of sodium-bearing secondary waste. The primary initiative of the WINCO Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals. One method that was chosen for cold scoping studies during FY-93 was abrasive grit blasting. Abrasive grit blasting has been used in many industries and a vast amount of research and development has already been conducted. However, new grits, process improvements and ICPP applicability was investigated. This evaluation report is a summary of the research efforts and scoping tests using the liquid abrasive grit blasting decontamination technique. The purpose of these scoping tests was to determine the effectiveness of three different abrasive grits: plastic beads, glass beads and alumina oxide.

Ferguson, R.L.

1993-10-01T23:59:59.000Z

42

Coal-oil slurry preparation  

DOE Patents (OSTI)

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

43

Micronized-coal-water slurry sprays from a diesel engine positive displacement fuel injection system  

DOE Green Energy (OSTI)

Experiments have been conducted to characterize the sprays from a modified positive displacement fuel injection system for a diesel engine. Diesel fuel water and three concentrations of micronized-coal-water slurry were used in these experiments. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal slurry fuel from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies and still photographs of the sprays were obtained. In addition, instaneous fuel line pressures and needle lifts were obtained. Data were acquired as a function of fluid, nozzle orifice diameter, rack setting and chamber conditions. The high speed movies were used to determine spray penetration and spray growth.

Caton, J.A.; Kihm, K.D.; Seshadri, A.K.; Zicterman, G. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1991-12-31T23:59:59.000Z

44

Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system  

Science Conference Proceedings (OSTI)

Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}, the break-up time was 0. 30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6{degree}. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1993-12-31T23:59:59.000Z

45

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

46

Coal-water slurry spray characteristics of a positive displacement fuel injection system  

DOE Green Energy (OSTI)

Experiments have been completed to characterized coal-water slurry sprays from a modified positive displacement fuel injection system of a diesel engine. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies and instantaneous fuel line pressures were obtained. For injection pressures of order 30 MPa or higher, the sprays were similar for coal-water slurry, diesel fuel and water. The time until the center core of the spray broke-up (break-up time) was determined from both the movies and from a model using the fuel line pressures. Results from these two independent procedures were in good agreement. For the base conditions, the break-up time was 0.58 and 0.50 ms for coal-water slurry and diesel fuel, respectively. The break-up times increased with increasing nozzle orifice size and with decreasing chamber density. The break-up time was not a function of coal loading for coal loadings up to 53%. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as on the time and location of the measurement. For one set of cases studied, the time-averaged cone angle was 15.9{degree} and 16.3{degree} for coal-water slurry and diesel fuel, respectively.

Seshadri, A.K.; Caton, J.A.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1992-12-31T23:59:59.000Z

47

Liquid abrasive pressure pot scoping tests report  

SciTech Connect

The primary initiatives of the LITCO Decontamination Development group at the Idaho Chemical Process Plant (ICPP) are the development of methods to eliminate the use of sodium bearing decontamination chemicals and minimization of the amount of secondary waste generated during decontamination activities. In July of 1994, a Commerce Business Daily (CBD) announcement was issued by the INEL to determine commercial interest in the development of an in-situ liquid abrasive grit blasting system. As a result of the CBD announcement, Klieber & Schulz issued an Expression of Interest letter which stated they would be interested in testing a prototype Liquid Abrasive Pressure Pot (LAPP). LITCO`s Decontamination group and Kleiber & Schulz entered into a Cooperative Research and Development Agreement (CRADA) in which the Decontamination Development group tested the prototype LAPP in a non-radioactive hot cell mockup. Test results are provided.

Archibald, K.E.

1996-01-01T23:59:59.000Z

48

Jet Observables Without Jet Algorithms  

E-Print Network (OSTI)

We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables---jet multiplicity, summed scalar transverse momentum, and missing transverse momentum---have event shape counterparts that are closely correlated with their jet-based cousins. Due to their "local" computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

Daniele Bertolini; Tucker Chan; Jesse Thaler

2013-10-28T23:59:59.000Z

49

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities. 3 figs.

Becker, F.E.; Smolensky, L.S.; Balsavich, J.

1989-11-01T23:59:59.000Z

50

Microparticulate Ice Slurry For Renal Hypothermia: Laparoscopic...  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROPARTICULATE ICE SLURRY FOR RENAL HYPOTHERMIA : LAPAROSCOPIC PARTIAL NEPHRECTOMY IN A PORCINE MODEL Sergey Shikanov a * , Mark Wille a , Michael Large a , Aria Razmaria a ,...

51

Coal slurries: physiochemical properties and processing  

Science Conference Proceedings (OSTI)

The properties of coal slurries are considered in terms of physicochemical mechanics, and ways of intensifying their processing into marketable products are suggested.

E.G. Gorlov; O.G. Safiev; A.I. Seregin [Institute for Fossil Fuels, Moscow (Russian Federation)

2008-02-15T23:59:59.000Z

52

Cryogenic slurry for extinguishing underground fires  

DOE Patents (OSTI)

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

53

Characterization of coal-water slurry fuel sprays from diesel engine injectors  

Science Conference Proceedings (OSTI)

Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

Caton, J.A.; Kihm, K.D.

1993-06-01T23:59:59.000Z

54

The Effect of Circulating Coal Slurry Water Hardness on Coal ...  

Science Conference Proceedings (OSTI)

In order to investigate the effect of gypsum on flotation and coal slurry settling during coal slurry recirculation, the water hardness and proton conductivity of coal ...

55

Laparoscopic Partial Nephrectomy with Ice Slurry as Coolant in...  

NLE Websites -- All DOE Office Websites (Extended Search)

| Help | PrivacySecurity Notice Home > Capabilities > Biomedical Applications > Medical Ice Slurry Coolants > Laparoscopic Partial Nephrectomy with Ice Slurry as Coolant in the...

56

High Performance Impact-Tolerant and Abrasion-Resistant Materials  

Science Conference Proceedings (OSTI)

... is a ribbon-like structure that consists of abrasion resistant teeth anchored to a flexible stylus that the organism uses to abrade rocky substrates to reach algae.

57

A Computer Simulation of an Agitation Mill Abrasion Process for ...  

Science Conference Proceedings (OSTI)

We already confirmed that a special and selective grinding such as parts abrasion from the board using agitation mill was effective for the recycling of a part of ...

58

Strategy Plan A Methodology to Predict the Uniformity of Double-Shell Tank Waste Slurries Based on Mixing Pump Operation  

SciTech Connect

This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tank and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.

J.A. Bamberger; L.M. Liljegren; P.S. Lowery

1990-12-01T23:59:59.000Z

59

Microwave sintering of sol-gel derived abrasive grain  

DOE Patents (OSTI)

A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

Plovnick, Ross (St. Louis Park, MN); Celikkaya, Ahmet (Woodbury, MN); Blake, Rodger D. (Tuscon, AZ)

1997-01-01T23:59:59.000Z

60

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

62

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

63

Stabilizers for oil slurries of carbonaceous material  

SciTech Connect

Slurries of carbonaceous material in oil, particularly coal, are stabilized with particular tertiary amines. An example is tallow amine first condensed with two moles of propylene oxide and then condensed with thirteen moles of ethylene oxide.

Schick, M. J.

1985-01-08T23:59:59.000Z

64

Method for forming an abrasive surface on a tool  

DOE Patents (OSTI)

A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Swindeman, Catherine J. (Knoxville, TN); Kahl, W. Keith (Knoxville, TN)

1999-01-01T23:59:59.000Z

65

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector  

E-Print Network (OSTI)

Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected into a pressurized chamber equipped with quartz windows. High speed movies, detailed data for fuel line pressures and needle lift signals were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base case conditions (50% by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m'), the break-up time was 0.30 msec. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the base case conditions, the spray tip penetration and initial jet velocity were 15% greater for coal water slurry than for diesel fuel or water. Results of this research and the correlation are specific to the tested coal-water slurry.

Payne, Stephen Ellis

1993-01-01T23:59:59.000Z

66

Atmospheric particulate emissions from dry abrasive blasting using coal slag  

Science Conference Proceedings (OSTI)

Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

2006-08-15T23:59:59.000Z

67

EQUIPMENT DECONTAMINATION BY ABRASIVE BLASTING IN THE PROCESSING REFABRICATION EXPERIMENT  

SciTech Connect

The purpose of this work was to investigate abrasive blasting as a method for decontamination of radioactive Process Refabrication Experiment (PRE) in-cell equipment. Experiments were carried out, initially with nonradioactive materials, and then with low-level radioactive materials to determine the proper operating conditions and effectiveness of abrasive blasting. It was concluded that abrasive blasting with cut steel wirc should be used in PRE for decontamination ot reeovcrable non-precision materials and equipment, or for predisposal partial decontamination of non-recoverable items. Blasting with cut wire resulted in less dust production than blasting with mineral abrasives. A design study including a partial equipment mock-up was made to determine the requirements of a special piece of equipment which could perform abrasive blasting in a cell, and which would be remotely operated and maintained. The design study resuited in the establishment of a basic design for a PRE abrasive blast cabinet, and established the requirements for an air-handling system. (auth)

Savage, J.W.; Stoker, D.J.

1959-04-01T23:59:59.000Z

68

Analysis of Abrasive Blasting of DOP-26 Iridium Alloy  

SciTech Connect

The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

Ohriner, Evan Keith [ORNL; Zhang, Wei [ORNL; Ulrich, George B [ORNL

2012-01-01T23:59:59.000Z

69

Air blast type coal slurry fuel injector  

SciTech Connect

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, Ramkrishna G. (San Antonio, TX)

1986-01-01T23:59:59.000Z

70

Air blast type coal slurry fuel injector  

DOE Patents (OSTI)

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, R.G.

1984-08-31T23:59:59.000Z

71

Velocity Profile and Rheology of Flowing Fluids and Slurries ...  

... real-time capabilities for continuous monitoring of key physical properties of liquids and slurries. ... Oil & Gas; Recycling & Waste ...

72

Technology Description: Medical Ice Slurry Coolants for Inducing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Homeland Security Applications Biomedical Applications Medical Ice Slurry Coolants for Inducing Targeted-OrganTissue Protective Cooling Technology...

73

CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES  

DOE Patents (OSTI)

A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

Morse, L.E.

1962-08-01T23:59:59.000Z

74

District cooling: Phase 2, Direct freeze ice slurry system testing  

DOE Green Energy (OSTI)

The objectives of this research are to: extend the range of pressure drop data for ice-water slurry flows, and design and build a prototypical ice slurry distribution system which demonstrates ice slurry handling at an end user's heat exchanger, without sending ice slurry directly through the heat exchanger. The results of Phase 1 work demonstrated a 40% reduction in pump power required to move an ice-water slurry versus the same mass flow of water only. In addition to lower pressure drop, pumping ice slurries is advantageous because of the large latent and sensible heat cooling capacity stored in the ice compared to only sensible heat in chilled water. For example, an ice-water slurry with a 20% ice fraction (by mass) has a mass flow rate that is 70% less than the mass flow rate required for a chilled water system cooling and equivalent load. The greatly reduced mass flow combined with the friction reducing effects of ice-water slurries results in a total savings of 83% in pumping power. Therefore, a substantial savings potential exists for capital costs and system operating costs in ice-water slurry district cooling systems. One potential disadvantage of an ice-slurry district cooling system is the introduction of ice into equipment not so designed, such as air handlers at end user locations. A prototypic ice slurry distribution loop will demonstrate a cooling network which will provide ice slurry to an end user but sends ice free water into the actual heat transfer.

Winters, P.J.

1991-01-02T23:59:59.000Z

75

Life Cycle Assessment of Biogas from Separated slurry  

E-Print Network (OSTI)

Life Cycle Assessment of Biogas from Separated slurry Lorie Hamelin, Marianne Wesnæs and Henrik AND ALTERNATIVES 28 2.2.1 Reference Scenario (Scenario A) 28 2.2.2 Biogas from raw pig slurry and fibre fraction from chemical- mechanical separation (Scenario F) 29 2.2.3 Biogas from raw cow slurry and fibre

76

Freeforming objects with low-binder slurry  

DOE Patents (OSTI)

In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

Cesarano, III, Joseph (Albuquerque, NM); Calvert, Paul D. (Tucson, AZ)

2000-01-01T23:59:59.000Z

77

Elemental analysis of slurry samples with laser induced breakdown spectroscopy  

Science Conference Proceedings (OSTI)

Direct analysis of wet slurry samples with laser induced breakdown spectroscopy (LIBS) is challenging due to problems of sedimentation, splashing, and surface turbulence. Also, water can quench the laser plasma and suppress the LIBS signal, resulting in poor sensitivity. The effect of water on LIBS spectra from slurries was investigated. As the water content decreased, the LIBS signal was enhanced and the standard deviation was reduced. To improve LIBS slurry analysis, dried slurry samples prepared by applying slurry on PVC coated slides were evaluated. Univariate and multivariate calibration was performed on the LIBS spectra of the dried slurry samples for elemental analysis of Mg, Si, and Fe. Calibration results show that the dried slurry samples give a good correlation between spectral intensity and elemental concentration.

Eseller, Kemal E.; Tripathi, Markandey M.; Yueh, Fang-Yu; Singh, Jagdish P.

2010-05-01T23:59:59.000Z

78

Review of scratch test studies of abrasion mechanisms  

SciTech Connect

The use of scratch tests to simulate the material removal mechanisms which occur during abrasion is reviewed. Although useful studies of the effect of the rake angle on material removal have been carried out using diamond tools, closer simulation of the mechanisms of material removal can be obtained using actual irregular individual abrasive particles as scratch tools. Previous studies are reviewed in which scratch tests have been performed with both conventional scratch test instruments and a specially designed system used for )ital in situ) scratch tests in the scanning electron microscope (SEM). Multiple-pass scratch tests over the same scratch path have been shown to create surface features and wear debris particles which are very similar to those produced by low-stress abrasion. Alumina (Al/sub 2/O/sub 3/) particles have been shown to produce continuous micromachining chips from the hard, brittle carbide phase of Stellite alloys, establishing direct cutting as the important mechanism of material removal for this type of abrasive. An )ital in situ) study of material removal from white cast irons by quartz particles has provided conclusive evidence that carbide removal does not occur by direct cutting but rather always involves microfracture. Previously unpublished work which has compared scratch tests with crushed quartz and alumina particles is included. Also described is a new scratch test system which controls the depth of cut rather than the scratch load in order to simulate high-stress abrasion, in which abrasive particles are constrained to a fixed depth of cut. Preliminary new results show substantially different carbide fracture behavior under fixed-depth conditions. 8 figs., 20 refs.

Kosel, T.H.

1986-01-01T23:59:59.000Z

79

The design of a water jet drill for development of geothermal resources. Final report  

DOE Green Energy (OSTI)

Water jet drilling of rock is shown to be a feasible method for potential improvement in gaining access to the earth's resources. Drilling rates of up to 280 in./min in sandstone and 40 in./min in granite have been achieved. While the addition of polymers to the jet stream is found advantageous the low (15%) level of improvement and the difficulty in maintaining concentrate negated further development. The application of confining pressure was found to reduce jet performance, but this was found to be a function more of the rock response than of the jet parameters. Field tests of water jets underground indicated the jet system could be modified to cope with this change. Water jets were found to be more effective, for drilling larger holes, where a combined water jet:roller bit system was developed and laboratory and field trials of this are described. As well as determining the controlling parameters affecting jet drilling performance, and proving that rock compressive strength is not one of them, the research examined other methods of improving jet cutting performance. At jet pressures below 10,000 psi abrasive laden jets were found most advantageous while, for drilling granite, a cavitating flow proved more effective at pressures above 10,000 psi. A reason for this is postulated. Experiments to develop a standardized cavitation resistance test for rock specimens have also been undertaken.

Summers, David A.; Lehnhoff, Terry F.

1978-09-01T23:59:59.000Z

80

Development of a thermal reclamation system for spent blasting abrasive  

SciTech Connect

Abrasive blasting is the most economical method for paint removal from large surface areas such as the hulls and tanks of oceangoing vessels. Tens of thousands of tons of spent abrasive are generated annually by blasting operations in private and US Navy shipyards. Some of this material is classified as hazardous waste, and nearly all of it is currently being either stockpiled or disposed in landfills. The rapid decline in available landfill space and corresponding rise in landfill tipping fees pose a severe problem for shipyard operators throughout the US. This paper discusses the results of a research and development program initiated by the Institute of Gas Technology and supported by the US Navy to develop and test a fluidized-bed thermal reclamation system for spent abrasive waste minimization. Bench- and pilot-scale reclaimer tests and reclaimed abrasive performance tests are described along with the current status of a program to build and test a 5-ton/hour prototype reclaimer at a US Navy shipyard.

Bryan, B.B.; Mensinger, M.C.; Rehmat, A.G.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparison of conventional and airless abrasive blasting techniques  

SciTech Connect

A comparison of conventional and airless abrasive blasting techniques used to prepare steel surfaces (e.g., North Sea oil facilities, offshore structures, e.g., storage tanks, and land-based oil terminals) for corrosion protection shows the advantages of the Autoblast automatic abrasive blasting machine over the conventional air-blasting machine. Autoblast is based on the principle of a paddle type wheel, revolving at high speed, being continuously fed with abrasive, which is propelled off the wheel onto the work surface by centrifugal force in such a manner and at such an angle that the abrasive is reclaimed, cleaned and returned to the wheel for reuse. All this is done within a totally enclosed, self-propelled, highly maneuverable vehicle. The machine also incorporates a separator to remove dust and refuse, which is passed through a dust collector to allow the machine to operate 98% free of pollution. The production rate of Autoblast machines varies from about 20 sq m/man-hour on offshore platforms with confined areas, to 80 sq m/man-hour on newly constructed storage tanks.

Tighe, J.D.

1979-01-01T23:59:59.000Z

82

Abrasion, weathering and mobility of lead in Florida  

E-Print Network (OSTI)

Abrasion, weathering and mobility of lead in Florida shooting range soils Donald Hardison, Lena Ma properties influence mobility of Pb ­ IC and TOC appeared to be related to Pb mobility ConclusionsConclusions · Pbcontamination occurs rapidly in soils of new shooting ranges · SOM plays the most significant role

Ma, Lena

83

Coal slurry pipelines: a maze of rights  

SciTech Connect

A survey of coal slurry pipeline projects, discussed at the 4th Annual International Slurry Transportation Conference showed that Energy Transportation Systems Inc. has effectively solved the right-of-way problem for its 1400 mi line from Wyoming's Powder River Basin and expects to have an environmental impact statement completed within 30 mo and have the pipeline in operation by 1983. San Marco Pipeline Co., is developing a source of water from wells drilled near Alamosa, Colo., for use in a proposed line from Walsenburg, Colo., to Houston. The Alton pipeline from the Alton coal field in southern Utah to power stations in southern Nevada is delayed by right-of-way needs through federal land and by changing environmental requirements. Florida Gas Co., is working on alternative projects to bring coal to Florida by pipeline. Northwest Energy Co.'s proposed slurry line from Gillette, Wyo., to Boise, Idaho, and Boardman, Oreg., is in a holding position. Texas Eastern Transmission Co. hopes to have a 1300 mi 38 in. line in operation in 1985 from Wyoming's Powder River Basin to the Houston area.

1979-08-01T23:59:59.000Z

84

Improvement of TEOS-chemical mechanical polishing performance by control of slurry temperature  

Science Conference Proceedings (OSTI)

Effects of slurry temperature on the chemical mechanical polishing (CMP) performance of tetra-ethyl ortho-silicate (TEOS) film with silica and ceria slurries were investigated. The change of slurry properties as a function of different slurry temperatures ... Keywords: Chemical mechanical polishing, Planarity, Removal rate, Slurry temperature, Tetra-ethyl ortho-silicate

Nam-Hoon Kim; Pil-Ju Ko; Yong-Jin Seo; Woo-Sun Lee

2006-02-01T23:59:59.000Z

85

Methods to enhance the characteristics of hydrothermally prepared slurry fuels  

DOE Patents (OSTI)

Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.

Anderson, Chris M. (Shakopee, MN); Musich, Mark A. (Grand Forks, ND); Mann, Michael D. (Thompson, ND); DeWall, Raymond A. (Grand Forks, ND); Richter, John J. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); Willson, Warrack G. (Fairbanks, AK)

2000-01-01T23:59:59.000Z

86

Oxidation of coal-water slurry feed to hydrogasifier  

DOE Patents (OSTI)

An aqueous coal slurry is preheated, subjected to partial oxidation and vaporization by injection of high pressure oxygen and is introduced into a top section of a hydrogasifier in direct contact with hot methane-containing effluent gases where vaporization of the slurry is completed. The resulting solids are reacted in the hydrogasifier and the combined gases and vapors are withdrawn and subjected to purification and methanation to provide pipeline gas. The amount of oxygen injected into the slurry is controlled to provide the proper thermal balance whereby all of the water in the slurry can be evaporated in contact with the hot effluent gases from the hydrogasifier.

Lee, Bernard S. (Lincolnwood, IL)

1976-01-01T23:59:59.000Z

87

Ice slurry cooling research: Storage tank ice agglomeration and extraction  

DOE Green Energy (OSTI)

A new facility has been built to conduct research and development on important issues related to implementing ice slurry cooling technology. Ongoing studies are generating important information on the factors that influence ice particle agglomeration in ice slurry storage tanks. The studies are also addressing the development of methods to minimize and monitor agglomeration and improve the efficiency and controllability of tank extraction of slurry for distribution to cooling loads. These engineering issues impede the utilization of the ice slurry cooling concept that has been under development by various groups.

Kasza, K. [Argonne National Lab., IL (United States); Hayashi, Kanetoshi [NKK Corp., Kawasaki (Japan)

1999-08-01T23:59:59.000Z

88

District cooling: Phase 2, Direct freeze ice slurry system testing  

DOE Green Energy (OSTI)

The objectives of this research are to: extend the range of pressure drop data for ice-water slurry flows; and design and build a prototypical ice slurry distribution system which demonstrates ice slurry handling at an end user's heat exchanger, without sending ice slurry directly through the heat exchanger. Previous research (Phase 1) conducted by CBI under DOE Contract FG01-86CE26564 has shown a friction reducing effect of ice crystals in water flow. The results of this work demonstrated a 40% reduction in pump power required to move an ice-water slurry versus the same mass flow of water only. In addition to lower pressure drop, pumping ice slurries is advantageous because of the large latent and sensible heat cooling capacity stored in the ice compared to only sensible heat in chilled water. For example, an ice-water slurry with a 20% ice fraction (by mass) has a mass flow rate that is 70% less than the mass flow rate required for a chilled water system cooling and equivalent load. The greatly reduced mass flow combined with the friction reducing effects of ice-water slurries results in a total savings of 83% in pumping power. Therefore, a substantial savings potential exists for capital costs and system operating costs in ice-water slurry district cooling systems.

Winters, P.J.

1990-01-01T23:59:59.000Z

89

Rapid Cooling Using Ice Slurries for Industrial and Medical ...  

Because of the high energy content of ice slurry, its cooling capacity is many times greater than that of single-phase fluids. ... Wind Energy; Partners (27)

90

Wt% = Weight percent of undissolved solids in the slurry = Density ...  

high-level radioactive waste stored in underground, tanks at the Hanford site. The ability to continuously monitor the solids weight percent of mixed slurries in these

91

Ice slurry cooling research: Microscale study of ice particles characteristics, role of freezing point depressant, and influence on slurry fluidity  

DOE Green Energy (OSTI)

The influences of freezing-point-depressants on ice slurry characteristics in the form of ice slurry fluidity and on the microscale ice particle features are studied. The results identify microscale features of ice particles such as surface roughness that greatly influence slurry fluidity that are altered favorably by the use of a freezing point depressant. The engineering of a workable and efficient ice slurry cooling system depends very strongly on the characteristics of the individual ice particles in the slurry and, in turn, on the method of ice production. Findings from this study provide guidance on the fluidity and handleability of slurry produced by several methods currently under development and already many achieved.

Hayashi, K.; Kasza, K.

2000-05-03T23:59:59.000Z

92

Chemical Hydride Slurry for Hydrogen Production and Storage  

Science Conference Proceedings (OSTI)

The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. ? During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

93

Spray tip penetration and cone angles for coal-water slurry using a modified medium-speed diesel engine injection system  

Science Conference Proceedings (OSTI)

Experiments have been completed to characterize coal-water slurry sprays from a modified positive displacement fuel injection system of a medium-speed diesel engine. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, instantaneous fuel line pressures and needle lifts were obtained. For injection pressures of order 30 MPa, the sprays were similar for coal-water slurry, diesel fuel and water. The time until the center core of the spray broke-up (break-up time) was determined from both the movies and from a correlations using the fuel line pressures. Results from these two independent procedures were in good agreement. For the base case conditions, the break-up time was 0.58 and 0.50 ms for coal-water slurry and diesel fuel, respectively. The break-up times increased with increasing nozzle orifice size and with decreasing chamber density. The break-up time was not a function of coal loading for coal loadings up to 53%. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as on the time and location of the measurement. For the cases studied, the time-averaged cone angles ranged between 10.2 and 17.0{degree}.

Caton, J.a.; Seshadri, A.K.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1992-12-31T23:59:59.000Z

94

Abrasion Testing of Critical Components of Hydrokinetic Devices  

SciTech Connect

The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

Worthington, Monty [ORPC Alaska] [ORPC Alaska; Ali, Muhammad [Ohio University] [Ohio University; Ravens, Tom [University of Alaska Anchorage] [University of Alaska Anchorage

2013-12-06T23:59:59.000Z

95

Microstructural effects in abrasive wear: Final report for period September 15, 1981--March 14, 1986  

SciTech Connect

This report summarizes research performed on abrasion of metallic alloys. The work was designed to improve our understanding of the factors affecting abrasion rates in two-phase alloys containing large, hard second-phase particles (SPPs) such as carbides, since this class of alloys generally has very high abrasion resistance owing to the presence of such carbides. The project was divided into sections dealing with material removal in the carbide and matrix phases. The materials studied included Stellite and high Cr-Mo white cast irons and a set of specially prepared model alloys containing one of six types of artificial SPPs dispersed in a sintered matrix of pure Cu. Scratch tests were employed to simulate abrasion mechanisms, and specially designed scratch test systems were fabricated to permit scratch testing in-situ in the scanning electron microscope (SEM) and to permit scratches to be made at fixed depths of cut rather than fixed loads. Three types of abrasion tests were employed; a dry-sand rubber wheel abrasion test; a low-speed ''gouging'' abrasion test employing a special low-speed Al/sub 2/O/sub 3/ grinding wheel; and a pin-on-disc abrasion test using abrasive paper. Abrasive type and size was varied in the rubber wheel and the pin-on-disc tests. 27 refs., 10 figs., 5 tabs.

Kosel, T.H.

1988-03-08T23:59:59.000Z

96

The Modeling of Slurry Friction Loss of Hydraulic Fracturing  

Science Conference Proceedings (OSTI)

In recent years, the research on theoretical model of hydraulic fracturing has experienced development. But there is little progress in the research on slurry friction loss in the fracturing string, which is the key to guide the design and construction ... Keywords: slurry, friction loss, momentum transfer

Yongming Li; Hu Mao; Fengsheng Yao; Song Wang; Jinzhou Zhao

2011-10-01T23:59:59.000Z

97

Multi-stage slurry system used for grinding and polishing materials  

DOE Patents (OSTI)

A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of shiny in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

Hed, P. Paul; Fuchs, Baruch A.

2000-03-01T23:59:59.000Z

98

Testing of In-Line Slurry Monitors and Pulsair Mixers with Radioactive Slurries  

SciTech Connect

Three in-line slurry monitoring instruments were demonstrated, tested, and evaluated for their capability to determine the transport properties of radioactive slurries. The instruments included the Endress + Hauser Promass 63M Coriolis meter for measuring density, the Lasentec M600P for measuring particle size distribution, and a prototype ultrasonic monitor that was developed by Argonne National Laboratory for measuring suspended solids concentration. In addition, the power consumption of the recirculation pump was monitored to determine whether this parameter could be used as a tool for in-line slurry monitoring. The Promass 63M and the M600P were also evaluated as potential indicators of suspended solids concentration. In order to use the Promass 63M as a suspended solids monitor, the densities of the fluid phase and the dry solid particle phase must be known. In addition, the fluid phase density and the dry solids density must remain constant, as any change will affect the correlation between the slurry density and the suspended solids concentration. For the M600P, the particle size distribution would need to remain relatively constant. These instruments were demonstrated and tested at the Gunite and Associated Tanks Remediation Project at the Oak Ridge National Laboratory. The testing of the instruments was conducted in parallel with the testing of a Pulsair mixing system, which was used to mix the contents of the selected tank. A total of six tests were performed. A submersible pump was positioned at two depths, while the Pulsair system was operated at three mixing rates.

Hylton, T.D.; Bayne, C.K.

1999-08-01T23:59:59.000Z

99

ANALYSIS OF VENTING OF A RESIN SLURRY  

SciTech Connect

A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

Laurinat, J.; Hensel, S.

2012-03-27T23:59:59.000Z

100

Development of Syringe/Bottle Hybrids for Sampling Slurries  

SciTech Connect

A convenient and effective sample bottle system based on simple modifications of disposable plastic syringes and bottles has been devised and tested for slurry samples. Syringe/ bottle hybrids (hereafter referred to as syringe bottles) have the convenience of regular flat-bottom bottles with screw cap closures. In addition, the syringe imparts a sliding and adjustable bottom to the bottle that forces the entire contents from the bottle. The system was designed especially to collect samples for high temperature work-ups of DWPF slurry samples. The syringe bottles together with fixed-bottom sample vial inserts would provide the DWPF with convenient and reliable methods for dealing with slurry samples.

Coleman, C.J. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Char-water slurry fuel and method of making  

DOE Patents (OSTI)

A method of producing a slurry usable as a fuel source is provided which comprises combining the char obtained from the pyrolysis of coal or other feedstocks under mild temperatures with water to produce a char-water slurry. The char-water slurry fuel source can be utilized by combustion or gasification with a high efficiency, and can be prepared using previously underutilized low-rank coals which have a high moisture content. The present invention maximizes efficiency in the overall processing of coal and other feedstocks and provides an alternative method of utilizing indigenous coal resources in the United States and other countries. 2 figs., 2 tabs.

Khan, M.R.

1990-01-29T23:59:59.000Z

102

A rotary-airlock valve resists abrasive mixtures  

SciTech Connect

Hill and Griffith (H and G, Cincinnati, Ohio) is a leading supplier of custom-blended additives to founderies. Thousands of tons of clay and carbon blends such as bentonite, gilsonite and pulverized coal, pass through the company's rotary-airlock feeding system each month. H and G's original rotary valves had cylinders lined with chrome, and closed-end rotors with tips made from nickel-chromium alloys. These valves remained in service for a maximum of only three months each. During that time, the abrasive mixtures passing through the valves virtually eroded them, increasing tolerances and causing significant air leakage. The leaks caused the pneumatic line to plug up, reducing the velocity of the line below the minimum level needed to carry any material. To overcome the leakage, a second blower was added to the system. This unit supplied an additional 40 brake hp to the pneumatic-conveying line. With constant maintenance of the valve and the continuous operation of both blowers, H and G was able to extend the valve's life by nine months. After 20 years of trying valves with various configuration, H and G installed a Smoot Type 6 rotary-airlock valve in September of 1985. The new valve's internals were made from abrasion-resistant grades of NiHard and Stellite. This combination of alloys prolonged the active life of the valve by improving its abrasion resistance. During its first year, the Smoot valve did not break down, leak air or require use of the secondary blower. After its first year of service no wear was found on the valve's internal surfaces. Another mechanical analysis was performed in 1991, after five additional years of valve operation. The valve, which had now handled more than 250,000 tons of product, showed minimal wear. H and G's capital costs had been reduced from 25[cents]/ton to 3[cents]/ton by the new valve.

Not Available

1993-03-01T23:59:59.000Z

103

TEST PLAN CHARACTERIZATION OF JET FORCES UPON WASTE TANK COMPONENTS  

Science Conference Proceedings (OSTI)

Westinghouse Hanford Company plans to install mixer pumps in double-shell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. This test plan describes scaled experiments designed to characterize the velocity profiles of a near floor jet and to quantify the impact farces and drag coefficients of three tank components: radiation dry well, airlift circulator, and steam coil. The experiments will be conducted in water, at approximately 1/6-scale, using one stationary nozzle to simulate the jet. To measure and confirm the velocity profile of the free, submerged jet, the horizontal and vertical velocity profiles will be measured at several distances from the nozzle. The profile will also be measured after the jet impinges upon the tank floor to determine the·extent of the change in the profile caused by impingement. The jet forces upon the test articles will be measured at a maximum of four velocities and a variety of test article orientations. Each orientation will represent a unique position of the test article relative to the jet and the tank floor. In addition, the steam coil will be tested in three rotational orientations because it is not symmetric. The highest jet velocity will be selected so that the Reynolds number of the test article in the model will match that of the prototype when operating at design conditions. The forces measured upon the model components will be used to calculate the force on the prototype components using geometric scaling factors. In addition, the model force measurements will be used to calculate the component's drag coefficient as a function of the component Reynolds number.

Bamberger, J. A.

1992-01-01T23:59:59.000Z

104

Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gary L. Smith - Office of Waste Processing (EM-21) Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop 1 Dr. Gary L. Smith - Office of Waste Processing (EM-21) Dr. Adam P. Poloski - PNNL Michael W. Rinker - PNNL Rick Demmer - INL Dr. Arthur W. Etchells III - Consultant Benjamin E. Lewis, Jr. - ORNL Sharon L. Marra - SRNL November 6, 2008 PNNL-SA-63183 Slurry Handling Workshop  Background: A critical responsibility of DOE's Office of Environmental Management is the design, construction, and operation of equipment and facilities to process legacy radioactive waste slurries for safe, long-term disposal.  Goal: DOE Office of Engineering and Technology, Office of Environmental Management sponsored a slurry handling workshop.  Identify technical vulnerabilities and to reduce risk.  Understand and disseminate lessons learned and best practices

105

Medical Ice Slurry Coolants for Inducing Targeted-Organ/Tissue...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kasza and Yue Wu (Sep. 2009) 804KB Development Of Ice Slurry Phase-Change Coolants For Industrial And Medical Applications K. Kasza, Y. Wu, J. Heine, D. Sheradon, and S. Lake...

106

Slurry line eminent domain urged over rail lands  

Science Conference Proceedings (OSTI)

According to C.E. Bagge of the National Coal Association (NCA), Congress should pass a bill that would grant coal slurry pipelines the right-of-eminent-domain across land held by railroads. An NCA study determined that 85% of the coal shipped by U.S. railroads in 1977 could not have been shipped in any other way, and the NCA feels that the coal market would be improved if the railroads' transport dominance were reduced by the presence of slurry lines. NCA and Senator D. Bumpers would prefer that the bill under consideration be broadened to give slurry lines eminent domain over private lands, but this expansion of powers is considered politically infeasible. According to Senator W. Ford, the proposed bill would be applied primarily in eastern states, rather than in western states, as is generally thought, since eastern railroads usually own their track beds but western railroads are built on federal easements which slurry lines can cross.

Bagge, C.E.

1980-06-09T23:59:59.000Z

107

Sliding-gate valve for use with abrasive materials  

DOE Patents (OSTI)

The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

Ayers, Jr., William J. (Morgantown, WV); Carter, Charles R. (Fairmont, WV); Griffith, Richard A. (Morgantown, WV); Loomis, Richard B. (Bruceton Mills, WV); Notestein, John E. (Morgantown, WV)

1985-01-01T23:59:59.000Z

108

Abrasion resistant coating and method of making the same  

SciTech Connect

An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

Sordelet, Daniel J. (Ames, IA); Besser, Matthew F. (Urbandale, IA)

2001-06-05T23:59:59.000Z

109

Attrition and abrasion models for oil shale process modeling  

Science Conference Proceedings (OSTI)

As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

Aldis, D.F.

1991-10-25T23:59:59.000Z

110

Abrasion Resistant Coating and Method of making the same  

DOE Patents (OSTI)

An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al-Cu-Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

Sordelet, Daniel J.; Besser, Matthew F.

1999-06-25T23:59:59.000Z

111

Slurry burner for mixture of carbonaceous material and water  

DOE Patents (OSTI)

A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

Nodd, Dennis G. (West Mifflin, PA); Walker, Richard J. (Bethel Park, PA)

1987-01-01T23:59:59.000Z

112

Chemical Hydride Slurry for Hydrogen Production and Storage  

DOE Green Energy (OSTI)

?\tDuring the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

113

Ultrasonic techniques for measuring rheological properties of rice slurries  

E-Print Network (OSTI)

The development of new sensors to monitor food quality is an emerging issue of today. Many food processing industries rely on batch methods to inspect food quality. These techniques yield results which are delayed in responding to the dynamic systems during food processing, resulting in poorly processed foods or production delays in processing plants. This research describes the development of a ultrasonic sensor to measure viscoelastic properties of rice slurries and dough. This inexpensive sensor can be applied in the food processing plant to minimize batch methods of Theological testing. Rice was milled to two different particle size distributions (PSD). Concentrations of 5%, 10%, 20%, 30%, and 40% rice flour (for each PSD flour) were mixed with 4% Carboxy-methylcellulose solutions and tested for power law Theological parameters and for viscoelastic parameters with the Haake CV20 rheometer. Two repetitions were completed for each treatment. Sensors were fabricated to measure the relative acoustic impedance of rice slurries. Slurries of different concentration and particle characteristics were placed on the top surface of the sensor. An ultrasonic longitudinal wave was transmitted through the sensor and into the sample where a portion of the energy was absorbed by the slurry and a portion reflected to a receiving transducer. The samples were subjected for ten minutes to continuous, longitudinal waves at 500 kHZ, 1 MHz, and 2 MHz. The output voltage from the receiving transducer was recorded every 10 seconds. Results indicated that the sensors were able to detect differences in the different rice slurries. The sensor output voltage decreased with increased rice flour concentration. The values for flow behavior index follow the same trend. The sensor voltage values correlated to the measured Theological parameters. The sensors were able to detect the differences between the PSD flours (P=0.0739). The small PSD flour created slurries of significantly higher viscosities than the large PSD slurries.

Howell, Terry Allen

1995-01-01T23:59:59.000Z

114

Novel techniques for slurry bubble column hydrodynamics  

Science Conference Proceedings (OSTI)

The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

Dudukovic, M.P.

1999-05-14T23:59:59.000Z

115

An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries  

SciTech Connect

The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the tanks, transferred to treatment facilities (or other storage locations), and processed to stable waste forms. The sludge wastes will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the respective supernatants to create slurries that can be transferred by pipeline to the desired destination. Depending on the DOE site, these slurries may be transferred up to six miles. Since the wastes are radioactive, it is critically important for the transfers to be made without plugging a pipeline. To reduce such a risk, the relevant properties of the slurry (e.g., density, suspended solids concentration, viscosity, and particle size distribution) should be determined to be within acceptable limits prior to transfer. These properties should also be continuously monitored and controlled within specified limits while the transfer is in progress. The baseline method for determining the transport properties of slurries involves sampling and analysis; however, this method is time-consuming, and costly, and it does not provide real-time information. In addition, personnel who collect and analyze the samples are exposed to radiation. It is also questionable as to whether a laboratory analyst can obtain representative aliquots from the sample jar for these solid-liquid mixtures. The alternative method for determining the transport properties is in-line analysis. An in-line instrument is one that is connected to the process, analyzes the slurry as it flows through or by the instrument, and provides the results within seconds. This instrument can provide immediate feedback to operators so that, when necessary, the operators can respond quickly to counteract conditions that could lead to pipeline pluggage (e.g., backflushing the pipeline with water). One of the highest priorities is to determine the concentration of suspended solids in each of the slurries. In the project described in this report, two Coriolis meters were used simultaneously to create a suspended solids monitoring system that would provide accurate results with high precision. One Coriolis meter was used to measure the density of the slurry, while the other meter was used to measure the density of the carrier fluid (i.e., after filtration to remove the solid particles). The suspended solids concentration was then calculated from the density relationships between the slurry, the carrier fluid, and the dry solid particles. The latter density was determined by laboratory analysis and was assumed to be constant throughout the periods that grab samples were collected.

Hylton, T.D.

2000-09-01T23:59:59.000Z

116

Abrasive wear by coal-fueled diesel engine and related particles  

DOE Green Energy (OSTI)

The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1992-09-01T23:59:59.000Z

117

Hypervelocity impact jet formation  

SciTech Connect

The hypervelocity impact of a particle on a surface generates a jet of shocked material which is thrown from the impact site. A simple analytic model has been developed to obtain expressions for the evolution of this jet of ejecta. The analysis is based on applying the conservation equations of mass and momentum to the problem of a normal impact of a sphere against a semi-infinite flat target. Expressions are developed for the evolution of the jet velocity, jet release point and the locus of points which describe the ejecta envelope. These analytical ejecta profiles are compared with high speed photographs of impact jet formation. 6 refs., 7 figs.

Ang, J.A.

1991-01-01T23:59:59.000Z

118

Recycling contaminated spent blasting abrasives in Portland cement mortars using solidification/stabilization technology. Final research report  

SciTech Connect

The use of abrasive blasting to remove lead-based paint from steel bridges produces contaminated spent blasting abrasives that may be classified as hazardous by the Environmental Protection Agency. If the spent abrasives leach lead, chromium, and cadmium greater than the EPA limits, the spent abrasives are classified as hazardous and must be rendered nonhazardous prior to disposal. An alternative to disposing of spent blasting abrasives is to recycle them in an environmentally sound application. This study investigates the feasibility of recycling spent blasting abrasives in portland cement mortars using solidification/stabilization technology to produce a usable construction material. Field application guidelines for recycling spent blasting abrasives in portland cement mortars are established based upon the results of this study.

Salt, B.K.; Carrasquillo, R.L.; Loehr, R.C.; Fowler, D.W.

1995-04-01T23:59:59.000Z

119

Ice slurry technology can save heart attack victims, surgery patients  

NLE Websites -- All DOE Office Websites (Extended Search)

Ice Ice slurry technology can save heart attack victims, surgery patients Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Ice slurry technology can save heart attack victims, surgery patients Doctors use an endoscope to see the application of the slurry during a laparoscopic kidney surgery on a pig

120

Coal-CO2 Slurry Feeding System for Pressurized Gasifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Coal-CO2 Slurry Feeding System for Pressurized Gasifiers Massachusetts Institute of Technology Project Number: FE0012500 Project Description This project will develop and assess a slurry feeding system based on a suspension of coal in liquid CO2 that can be pumped into a high-pressure gasifier. The advantages of this solution are that CO2 has a low heat capacity, a low heat of vaporization and low viscosity. Thus, the liquid CO2 imposes a much smaller thermal load on the gasifier relative to a water slurry, and has the potential to improve the efficiency and economics of integrated gasification combined cycle (IGCC) power plants with carbon capture and dramatically reduce greenhouse gas emissions from coal fired power plants. Project Details

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Slurry burner for mixture of carbonaceous material and water  

DOE Patents (OSTI)

The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

Nodd, D.G.; Walker, R.J.

1985-11-05T23:59:59.000Z

122

PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR  

DOE Green Energy (OSTI)

The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The model includes heat generation due to the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. Results of the CMFD simulations (similar to those shown in Figure 1) will be presented.

Donna Post Guillen; Tami Grimmett; Anastasia M. Gandrik; Steven P. Antal

2010-11-01T23:59:59.000Z

123

THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY  

E-Print Network (OSTI)

Spectral Intensity With 5% Coal (x ::: 86.9 cm) CalculatedPredictions B. Methanol/Coal Slurry as the Fuel TemperatureMethanol as the Fuel B. Methanol/Coal Slurry as the Fuel C.

Grosshandler, W.L.

2010-01-01T23:59:59.000Z

124

Scaling Theory for Pulsed Jet Mixed Vessels, Sparging, and Cyclic Feed Transport Systems for Slurries  

SciTech Connect

This document is a previously unpublished work based on a draft report prepared by Pacific Northwest National Laboratory (PNNL) for the Hanford Waste Treatment and Immobilization Plant (WTP) in 2012. Work on the report stopped when WTP’s approach to testing changed. PNNL is issuing a modified version of the document a year later to preserve and disseminate the valuable technical work that was completed. This document establishes technical bases for evaluating the mixing performance of Waste Treatment Plant (WTP) pretreatment process tanks based on data from less-than-full-scale testing, relative to specified mixing requirements. The technical bases include the fluid mechanics affecting mixing for specified vessel configurations, operating parameters, and simulant properties. They address scaling vessel physical performance, simulant physical performance, and “scaling down” the operating conditions at full scale to define test conditions at reduced scale and “scaling up” the test results at reduced scale to predict the performance at full scale. Essentially, this document addresses the following questions: • Why and how can the mixing behaviors in a smaller vessel represent those in a larger vessel? • What information is needed to address the first question? • How should the information be used to predict mixing performance in WTP? The design of Large Scale Integrated Testing (LSIT) is being addressed in other, complementary documents.

Kuhn, William L.; Rector, David R.; Rassat, Scot D.; Enderlin, Carl W.; Minette, Michael J.; Bamberger, Judith A.; Josephson, Gary B.; Wells, Beric E.; Berglin, Eric J.

2013-09-27T23:59:59.000Z

125

Demonstration experience with an abrasive blasting technique for decontaminating concrete pads  

SciTech Connect

A demonstration was performed for decontaminating a radioactivity contaminated concrete pad with a portable abrasive blasting system. The system utilizes a rotating blast wheel that scours the concrete surface with metal abrasive. The metal abrasive, pulverized concrete dust, and contaminants rebound into a separator chamber. The reusable metal abrasive is recycled, and the pulverized media are removed to an integral dust collection system. The exhaust is HEPA filtered to minimize release of airborne contaminants. However, the technique had limited success in reducing contamination around the cracks and seams in the concrete where the higher activity levels of contamination were detected during the radiological survey before the cleanup. The technique can be successful and cost-effective in decontaminating large areas of low contamination; however, careful characterization and planning are necessary. 3 refs., 3 figs., 1 tabs.

Devgun, J.S. (Argonne National Lab., IL (USA)); Land, R.R. (Bechtel National, Inc., Oak Ridge, TN (USA)); Doane, R.W. (TMA/Eberline, Oak Ridge, TN (USA))

1990-01-01T23:59:59.000Z

126

Treatment of Mixed Wastewater of Slaughterhouse Wastewater and Biogas Slurry with Pilot Contact Oxidation System  

Science Conference Proceedings (OSTI)

In this paper, a pilot contact oxidation system was used to different mixing ratio wastewater of slaughterhouse wastewater and biogas slurry. The results showed that when the mixing ratio of slaughterhouse wastewater and biogas slurry was 19:1 and the ... Keywords: contact oxidation process, slaughterhouse wastewater and biogas slurry, COD removal, ammonia removal

Peng Li; Qun-Hui Wang; Jie Zhang; Tian-Long Zheng; Juan Wang

2012-05-01T23:59:59.000Z

127

Development of software using fuzzy logic to predict erosive wear in slurry pipeline system  

Science Conference Proceedings (OSTI)

The phenomenon of wear is a major challenge in transportation through slurry pipeline system. A predictive software tool has been devised using Fuzzy Logic for predicting the erosive wear rate in slurry pipeline system. It is based on published experimental ... Keywords: Java, erosive wear, fuzzy logic, slurry pipeline system, software

Rajat Gupta; Bikramjit Chowdhury; Ambarish Kapil Barpujari; Jnandeep Borbarua

2008-05-01T23:59:59.000Z

128

Combustion Characteristics and Kinetic Analysis of Biomass Coal Oil Water Slurry  

Science Conference Proceedings (OSTI)

The combustion characteristics of biomass coal oil water slurry (biomass-COWS), containing Fujian anthracite, water hyacinth, heavy oil and dispersant were studied by thermal analysis with TG-DTG method. The results showed that the ignition temperature ... Keywords: biomass coal oil water slurry, coal oil water slurry, water hyacinth, thermal analysis, combustion kinetics

Luo Zuyun; Lin Rongying

2011-02-01T23:59:59.000Z

129

An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites, such as Hanford, Savannah River, and Oak Ridge. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the underground tanks, transferred to treatment facilities (or other storage location), and processed to a stable waste form. Each sludge waste will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the supernatant to create a slurry that can be transferred by pipeline to the desired destination. Depending on the DOE site, such slurries may be transferred up to six miles. Since these wastes are radioactive, it is critically important that the transfers be conducted safely and successfully. The transport properties of a given slurry must be within the appropriate design limits to prevent the formation of a pipeline plug. The consequences of a plugged pipeline with radioactive material are unacceptable from the perspectives of safety, cost, and schedule. If a pipeline plug occurs and conventional methods (e.g., water flushing) are not successful, either the entire pipeline must be replaced (and the plugged pipeline remediated at a later date) or the plugged sections must be located, excised, and replaced. Either option would expose workers to radiation fields, and the cost of the project could escalate and result in a severe delay of the project schedule. Even if a pipeline plug were successfully removed by conventional methods, the project would experience some delay and additional costs. For example, flushing a plugged pipeline would require a shutdown of operations until the situation could be resolved; and such action would lead to the generation of additional liquid waste, which would also require treatment. To reduce the risk of plugging a pipeline, the relevant properties of the slurry (e.g., density, suspended solids concentration, viscosity, and particle size distribution) should be determined to be within acceptable limits prior to transfer. These properties should also be continuously monitored and controlled within specified limits while the slurry transfer is in progress. The baseline method for determining the transport properties of slurries involves sampling and analysis. This method is time-consuming and costly, and it does not provide real-time information. In addition, the personnel who collect and analyze the samples are exposed to radiation. It is also questionable as to whether a laboratory analyst can obtain representative aliquots from the solid-liquid mixtures in the sample jar. The alternative method for determining the transport properties is in-line analysis. An inline instrument is one that is connected to the process, analyzes the slurry as it flows through or by the instrument, and provides the results within seconds. This instrument can provide immediate feedback to operators so that, when necessary, the operators can respond quickly to counteract conditions that could lead to pipeline plugging (e.g., backflushing the pipeline with water).

Hylton, T.D.

2000-09-06T23:59:59.000Z

130

Combustion characterization of coal-water slurry fuel  

SciTech Connect

As a result of coal cleaning operations, a substantial amount of coal is disposed as waste into the ponds, effecting and endangering the environment. This study includes a technique to recover and utilize the waste coal fines from the preparation plant effluent streams and tailing ponds. Due to the large moisture content of the recovered coal fines, this investigation is focused on the utilization of coal fines in the coal-water slurry fuel. It is our belief that a blend of plant coal and waste coal fines can be used to produce a coal-water slurry fuel with the desired combustion characteristics required by the industry. The coal blend is composed of 85% clean coal and 15% recovered coal fines. The coal-water slurry is prepared at 60% solids with a viscosity less than 500 centipose and 80-90% of solid particles passing through 200 mesh. This paper contains analysis of clean coal, recovered coal fines, and coal-water slurry fuel as well as combustion characteristics.

Masudi, Houshang; Samudrala, S.

1996-12-31T23:59:59.000Z

131

NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS  

DOE Green Energy (OSTI)

This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O'Dowd; Dr. Hien Pham; Jian Xu

2001-01-07T23:59:59.000Z

132

Apparatus for converting biomass to a pumpable slurry  

DOE Patents (OSTI)

An apparatus used in the pretreatment of wood chips in a process for converting biomass to a liquid hydrocarbonaceous fuel. The apparatus functions to break down the wood chips to a size distribution that can be readily handled in a slurry form. Low maintenance operation is obtained by hydrolyzing the chips in a pressure vessel having no moving parts.

Ergun, Sabri (Hillsborough, CA); Schaleger, Larry L. (Oakland, CA); Wrathall, James A. (Berkeley, CA); Yaghoubzadeh, Nasser (El Cerrito, CA)

1986-01-01T23:59:59.000Z

133

Rail transportation of coal-water slurry fuels  

Science Conference Proceedings (OSTI)

In view of the anticipated near-term appearance of commercial coal-water slurry (CWS) fuels, least-cost modes of their transportation should be considered now. Unlike dilute pipeline transport slurries (typically 50 percent solids) a CWS fuel is a stable, highly-loaded (typically 70 percent or more solids) with vastly different rheological properties. The high solids loading and stabilization against settling produce effective viscosities one or more orders of magnitude greater than those of dilute slurries. Pipeline transportation of such fuels for more than a few miles thus becomes economically unattractive. In the future, further physical refinement or slight dilution of CWS fuels may permit long-range transmission by slurry pipeline once they become available. In the meantime, distribution of these fuels to serve widely dispersed industrial users will be accomplished by barge or rail. In the latter case the high flow-friction characteristics will preclude use of the unit ''Tank Train'' system designed for loading and unloading via a single connection at high rates of flow. This limitation does not rule out assembly of unit trains of individually-loaded tank cars if desired. The optimum location of CWS fuel plants relative to mine-mouth coal preparation plants and/or pipeline terminals will require modeling of multi-mode transportation networks in order to determine the least-cost combination for serving the needs of industrial as well as utility CWS users.

Green, L.

1982-12-01T23:59:59.000Z

134

Method for freeforming objects with low-binder slurry  

DOE Patents (OSTI)

In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

Cesarano, III, Joseph (Albuquerque, NM); Calvert, Paul D. (Tucson, AZ)

2002-01-01T23:59:59.000Z

135

The ATLAS jet trigger  

E-Print Network (OSTI)

The ATLAS jet trigger system has a 3-level structure, and was designed based on the concept of Regions Of Interest, where only regions of the detector around interesting Level-1 objects are reconstructed at the higher levels. This philosophy has changed during 2011, and there now exists the possibility to unpacking the full calorimeter at Event Filter. In 2012, full calorimeter unpacking is also available at Level-2, in addition jet energies are now calibrated to jet energy scale, and cleaning cuts are applied to reduce rate spikes. This paper presents the performance of the jet trigger in 2011 and an overview of the new features available for 2012.

Tamsett, M; The ATLAS collaboration

2012-01-01T23:59:59.000Z

136

Jet Mass Spectra in Higgs + One Jet at NNLL  

E-Print Network (OSTI)

The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m_jet^2/p_T^jet scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in PYTHIA. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

Teppo T. Jouttenus; Iain W. Stewart; Frank J. Tackmann; Wouter J. Waalewijn

2013-02-04T23:59:59.000Z

137

Selection and development of air-injected frit slurry blasting for decontamination of DWPF canisters  

Science Conference Proceedings (OSTI)

Canisters of waste glass produced in the Defense Waste Processing Facility at the Savannah River Plant will be decontaminated by air-injected frit slurry blasting. The byproduct of this operation, contaminated frit slurry, will be used as part of the feed stock for the glass-making process. Therefore, no secondary waste will be created. Scouting tests of four different frit blasting techniques were conducted by the Savannah River Laboratory. The techniques investigated were dry blasting, direct pump slurry blasting, air-aspirated slurry blasting, and air-injected slurry blasting. The air-injected slurry blasting technique was chosen for development, based on results of these scouting tests. A detailed development program was undertaken to optimize the air-injected frit slurry blasting process. 3 references, 28 figures.

Ward, C.R.

1984-09-01T23:59:59.000Z

138

Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure  

DOE Patents (OSTI)

The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

Loth, John L. (Morgantown, WV); Smith, William C. (Morgantown, WV); Friggens, Gary R. (Morgantown, WV)

1982-01-01T23:59:59.000Z

139

DEMONSTRATION OF MIXING AND TRANSFERRING SETTLING COHESIVE SLURRY SIMULANTS IN THE AY-102 TANK  

SciTech Connect

In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work discussed in this report (Phase III) address the impacts cohesive simulants have on mixing and batch transfer performance. The objective of the demonstrations performed in Phase III was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using 1/22{sup nd} scale mixing system and batch transfer of seed particles. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative. The batch transfers were made by pumping the simulants from the Mixing Demonstration Tank (MDT) to six Receipt Tanks (RTs), and the consistency in the amount of seed particles in each batch was compared. Tests were conducted with non-Newtonian cohesive simulants with Bingham yield stress ranging from 0.3 Pa to 7 Pa. Kaolin clay and 100 {mu}m stainless steel seed particles were used for all the non-Newtonian simulants. To specifically determine the role of the yield stress on mixing and batch transfer, tests were conducted with a Newtonian mixture of glycerol and water with at viscosity of 6.2 cP that was selected to match the Bingham consistency (high shear rate viscosity) of the higher yield stress kaolin slurries. The water/glycerol mixtures used the same 100 {mu}m stainless steel seed particles. For the transfer demonstrations in Phase III, the mixer jet pumps were operated either at 10.0 gpm (28 ft/s nozzle velocity, U{sub o}D=0.63 ft{sup 2}/s) or 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s). All batch transfers from the MDT to the RTs were made at 0.58 gpm (MDT suction velocity 3.95 ft/s). The demonstrations that used simulants that ranged from 1.6 Pa to 7 Pa yield stress had the most successful batch transfer of solids to the RTs in terms of the total quantity of seed particles transferred. Testing suggest that when mixing water/seed particles and transferring, water provides the least desired batch transfer of solids based on the total quantity transferred. For the water tests, large dead zones of solids formed in the MDT and fewer solids get transferred to the RTs. For simulants with a yield stress of 0.3 Pa and below, the batch transfer behavior in terms of total transfer of seed particles was slightly higher than water test results. The testing did show somewhat more batch-to-batch variation in the transfer of seed particles with the slurries in comparison to water. A comparison of batch transfers with the kaolin slurries that had Bingham consistencies (viscosities) that wernearly the same as the Newtonian glycerol/water mixtures showed that the kaolin slurries with Bingham yield stresses of 1.6 and 7 Pa gave better batch transfer of seed particles based on the total quantities transferred. Overall, the batch transfer testing results show that testing with water is conservative, since using a simulant with a yield stress and/or elevated viscosity always resulted in a better total transfer of solids.

Adamson, D.

2011-08-04T23:59:59.000Z

140

FastJet user manual  

E-Print Network (OSTI)

FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.

Matteo Cacciari; Gavin P. Salam; Gregory Soyez

2011-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Jet production at HERA  

E-Print Network (OSTI)

Recent results from jet production in deep inelastic ep scattering to investigate parton dynamics at low x are reviewed. The results on jet production in deep inelastic scattering and photoproduction used to test perturbative QCD are discussed and the values of alphas(Mz) extracted from a QCD analysis of the data are presented

C. Glasman

2004-10-07T23:59:59.000Z

142

Overview of Pulse Jet Mixer/Hybrid Mixing System Development to Support the Hanford Waste Treatment Plant  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of River Protection's Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in underground tanks at the Hanford Site. Pulse jet mixer (PJM) technology was selected for mixing the contents of many of the process vessels. Several of the tanks are expected to contain concentrated slurries that exhibit a non-Newtonian rheology and the understanding required to apply this technology to mobilize the non-Newtonian slurries was not mature. Consequently, an experimental testing effort was undertaken to investigate PJM performance in several scaled versions of WTP vessels and to develop mixing system configurations that met WTP requirements. This effort evolved into a large, multifaceted test program involving many different test facilities. Elements of the test program included theoretical analysis, development and characterization of simulants, development of instrumentation and measurement techniques, hundreds of tests at various scales in numerous test stands, and data analysis and application. This program provided the technical basis for the selection of pulse jet mixers along with air spargers and steady jets generated by recirculation pumps to provide mixing systems for several of the vessels with non-Newtonian slurries. This paper provides an overview of the testing program and a summary of the key technical results that formed the technical basis of the final mixing system configurations to be used in the WTP.

Kurath, Dean E.; Meyer, Perry A.; Stewart, Charles W.; Barnes, Steven M.

2006-03-02T23:59:59.000Z

143

Integrated system for coal-methanol liquefaction and slurry pipeline transportation. Final report. [In slurry transport  

DOE Green Energy (OSTI)

The engineering economics of an integrated coal-to-methanol conversion system and coal-in-methanol transportation system are examined, under the circumstances of the western coalfields, i.e., long distances from major markets and scarcity of water in the vicinity of the mines. The transportation economics are attractive, indicating tariffs of approximately 40 cents per million Btu per thousand miles for the coal-methanol pipeline vs 60 cents via coal-water pipelines and upwards of a dollar via rail. Energy consumption is also less in the coal-methanol pipeline than in the coal-water pipeline, and about equal to rail. It is also concluded that, by a proper marriage of the synthetic fuel (methanolization) plant to the slurrification plant, most, and in some cases all, of the water required by the synthetic fuel process can be supplied by the natural moisture of the coal itself. Thus, the only technology which presently exists and by which synthetic fuel from western coal can displace petroleum in the automotive fuel market is the integrated methanol conversion and tranportation system. The key element is the ability of the methanol slurry pipeline to accept and to deliver dry (1 to 5% moisture) coal, allowing the natural coal moisture to be used as synthesis feedstock in satisfaction of the large water requirement of any synthetic fuel plant. By virtue of these unique properties, this integrated system is seen as the only means in the foreseeable future whereby western coal can be converted to synthetic fuel and moved to distant markets.

Banks, W.F.; Davidson, J.K.; Horton, J.H.; Summers, C.W.

1980-03-31T23:59:59.000Z

144

Stable slurries of solid carbonaceous fuel and water  

Science Conference Proceedings (OSTI)

This patent describes a pumpable slurry of solid carbonaceous fuel and water with reduced viscosity and sedimentation rate for use as feed to a partial oxidation gas generator for the production of raw synthesis gas, reducing gas, or fuel gas by reacting in the gas generator with a free-oxygen containing gas. The slurry comprises about 50 to 75 weight percent of high rank comminuted solid carbonaceous fuel having 5.0 weight percent or below of organically combined oxygen wherein the solid carbonaceous fuel is selected from the group consisting of anthracite coal, petroleum coke, coal liquefaction solid residue, asphaltic bitumen, and mixtures thereof; and about 0.001 to 0.100 parts by weight of a surfactant for each part by weight of the solid carbonaceous fuel.

Yaghmaie, F.; McKeon, R.J.

1988-06-07T23:59:59.000Z

145

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

Robben, Franklin A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

146

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19T23:59:59.000Z

147

Process for gasifying carbonaceous material from a recycled condensate slurry  

DOE Patents (OSTI)

Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

148

Surface Modification of Nickel Foams by a Slurry Aluminizing Process  

Science Conference Proceedings (OSTI)

A novel slurry-based process for aluminizing nickel foams while improving the mechanical properties and conserving the excellent ductility is reported. Cellular unalloyed nickel foams with 92% porosity and uniform pore size and distribution were used as a starting material. Several slurries of different compositions were examined to investigate the possibility of developing an aluminide-nickel intermetallic coating on a Ni foam without considerably degrading the original ductile properties of the foam. The process temperature was varying from 400 to 850 deg. C and the process holding time was ranging between 2h to 6h. Scanning electron microscopy with an energy dispersive X-ray spectrometry and X-Ray diffraction were applied to assess the effectiveness of the aluminizing process and determine both the optimum parameters of the procedure (slurry composition, holding temperature and time) and the concentration profiles across the coating cross-section. The mechanical behavior of the aluminized Ni-foams was evaluated by the conduction of micro-tension tests. The resulting Ni-foams after aluminization retain the pore structure of original Ni-foams and present a thick outer surface layer which consists of a range of aluminide phases. The mechanical properties of the Ni-foams aluminized in low process temperature were insignificantly affected.

Omar, H.; Papanastasiou, N.; Psyllaki, P.; Stergioudi, F.; Tsipas, D. N. [Physical Metallurgy Laboratory (PML), Mechanical Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Tsipas, S. A. [Dpto. Ciencia e Ingenieria de Materiales e Ingenieria Quimica Escuela Politecnica Superior Universidad Carlos III de Madrid, Avda de la Universidad, 30 28911 Leganes (Spain); Michailidis, N. [Physical Metallurgy Laboratory (PML), Mechanical Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Department of Mechanical Engineering, Physical Metallurgy Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

2010-01-21T23:59:59.000Z

149

Jet Quenching at LHC  

E-Print Network (OSTI)

We review up-to-date results on high-pt particles and jets in heavy ion collisions by three major LHC experiments, ALICE, ATLAS, and CMS. Results of analyses of 2010 and 2011 Pb+Pb data at $\\sqrt{s_{NN}} = 2.76$ TeV are discussed. We concentrate mainly on results by fully reconstructed jets and discuss similarities and important differences in measurements among experiments. We point to the importance of understanding the results in a view of difference between quark-initiated and gluon-initiated jets

Martin Spousta

2013-05-28T23:59:59.000Z

150

Angular Scaling In Jets  

SciTech Connect

We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

2012-02-17T23:59:59.000Z

151

Jets with Variable R  

E-Print Network (OSTI)

We introduce a new class of jet algorithms designed to return conical jets with a variable Delta R radius. A specific example, in which Delta R scales as 1/pT, proves particularly useful in capturing the kinematic features of a wide variety of hard scattering processes. We implement this Delta R scaling in a sequential recombination algorithm and test it by reconstructing resonance masses and kinematic endpoints. These test cases show 10-20% improvements in signal efficiency compared to fixed Delta R algorithms. We also comment on cuts useful in reducing continuum jet backgrounds.

David Krohn; Jesse Thaler; Lian-Tao Wang

2009-03-02T23:59:59.000Z

152

Proceedings of the 2nd international technical conference on slurry transportation  

SciTech Connect

Experts from government, academia, and industry discussed aspects of slurry pipelining at the Second International Technical Conference on Slurry Transportation which was held March 2 and 3, 1977 at The Sands Hotel in Las Vegas, Nevada. The US Energy Research and Development Administration, The Battelle Memorial Institute and the Slurry Transport Association cosponsored the Conference. Individual papers have been entered individually into EDB and ERA. (LTN)

1977-01-01T23:59:59.000Z

153

Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries  

DOE Patents (OSTI)

A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

Doherty, J.P.; Marek, J.C.

1987-02-25T23:59:59.000Z

154

Program on Technology Innovation: Advanced Concepts in Slurry Fed Low Rank Coal Gasification  

Science Conference Proceedings (OSTI)

This document reports on experimental and theoretical analyses of low rank coal/liquid CO2 slurries (LRC/CO2(l)). The results showed that viscosities of LRC/CO2(l) were much lower than for LRC/water slurries of similar coal concentrations and higher coal concentrations could be obtained for liquid CO2 slurries than for water-based slurries at flow conditions typical of industrial scale gasification systems. ASPENplus analyses of a typical integrated gasification combined cycle (IGCC) system showed no del...

2009-04-17T23:59:59.000Z

155

Slurry calcination process for conversion of aqueous uranium and plutonium to a mixed oxide powder  

SciTech Connect

Pilot plant studies indicate that a slurry calcination process for conversion of uranium and plutonium solutions to a mixed oxide powder can be operated at a plant scale.

Jones, M K; Jenkins, W J

1980-01-01T23:59:59.000Z

156

Computer model of a kidney being cooled by ice slurry (Quicktime...  

NLE Websites -- All DOE Office Websites (Extended Search)

> Videos Detection & Diagnostic Systems: Computer model of a kidney being cooled by ice slurry Quicktime format Quicktime Format - Mid Bandwidth | Size: 1.12 MB | Bit Rate:...

157

Electronic instrumentation of coal slurry impoundments for real-time data collection to support automated monitoring.  

E-Print Network (OSTI)

??Following the breakthrough and release of coal slurry from the Martin County Coal Corporation impoundment near Inez, Kentucky on October 11, 2000 the United States… (more)

Altobello, James A.

2007-01-01T23:59:59.000Z

158

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch  

DOE Green Energy (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

Marcelin, G.

1992-06-10T23:59:59.000Z

159

Comparison of dry wear characteristics of two abrasion-resistant steels: Q/T C1095 and 15B37H  

SciTech Connect

The dry reciprocating wear characteristics of two abrasion-resistant steels, C1095 and 15B37H, against an abrasive material were studied. Results showed that abrasive wear and surface fatigue were the primary wear mechanisms. The wear failure of the steels was related to frictional softening during wear.

Sim, G.; Tandon, K.N. [Univ. of Manitoba, Winnipeg (Canada). Dept. of Mechanical and Industrial Engineering; Iqbal, K. [Manitoba Rolling Mills, Selkirk, Manitoba (Canada); Wang, Y. [Beijing Univ. of Aeronautics and Astronautics (China)

1995-10-01T23:59:59.000Z

160

Microparticulate ICE slurry for renal hypothermia: laparoscopic partial nephrectomy in a porcine model.  

SciTech Connect

Previously, we described the feasibility of renal hypothermia using microparticulate ice slurry during laparoscopy. In the present study, we compared surface cooling with the ice slurry versus near-frozen saline or warm ischemia (WI) during laparoscopic partial nephrectomy (LPN) in a porcine model. We used a single-kidney porcine model. Animals in 5 equal groups (n = 6 each) underwent right laparoscopic complete nephrectomy. In Phase I, left LPN was performed under 90 minutes of ischemia and 90-minute renal cooling with either slurry (Slurry group 1) or saline (Saline group 1). No cooling was applied in the WI group. In Phase II, to simulate more extreme condition, ischemia time was extended to 120 minutes and cooling shortened to 10 minutes (Slurry group 2 and Saline group 2). The study endpoints were renal and core temperature during the surgery and serum creatinine at baseline and days 1, 3, 7, and 14 after the procedure. The ice slurry was easily produced and delivered. Nadir renal temperature (mean {+-} SD) was 8 {+-} 4 C in Slurry group 1 vs. 22.5 {+-} 3 C in Saline group 1 (P < .0001). Renal rewarming to 30 C occurred after 61 {+-} 7 minutes in Slurry group 2 vs. 24 {+-} 6 minutes in Saline group 2 (P < .0001). Core temperature decreased on average to 35 C in the Saline groups compared with 37 C in the Slurry groups (P < .0001). Serum creatinine did not differ between the Saline and Slurry groups in Phases I and II at any time point. Ice slurry provides superior renal cooling compared with near-frozen saline during LPN without associated core hypothermia.

Shikanov, S; Wille, M; Large, M; Razmaria, A; Lifshitz, D; Chang, A; Wu, Y; Kasza, K; Shalhav, A (Nuclear Engineering Division); (University of Chicago Medical Center)

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Slurry-based fabrication of chopped fiberglass composite preforms  

DOE Green Energy (OSTI)

A water-based process for the fabrication of chopped fiberglass preforms is being developed in collaboration with the Automotive Composite Consortium (ACC) and The Budd Company. This slurry process uses hydraulic pressure to form highly compacted fiberglass preforms on contoured, perforated metal screens. The preforms will be used in the development of structural automotive composites. A key objective is to produce preforms having uniform areal density. Computational simulation of variable open area screens, and areal density mapping using a gamma densitometer are discussed.

Moore, G.A.; Johnson, R.W.; Landon, M.D.; Stoots, C.M.; Anderson, J.L.

1995-12-01T23:59:59.000Z

162

DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR  

DOE Green Energy (OSTI)

The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The model includes heat generation due to the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. Results of the CMFD simulations (similar to those shown in Figure 1) will be presented.

Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

2010-09-01T23:59:59.000Z

163

Method of preparing a high solids content, low viscosity ceramic slurry  

DOE Patents (OSTI)

A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

Tiegs, T.N.; Wittmer, D.E.

1995-10-10T23:59:59.000Z

164

Method of preparing a high solids content, low viscosity ceramic slurry  

DOE Patents (OSTI)

A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

Tiegs, Terry N. (Lenoir City, TN); Wittmer, Dale E. (Carbondale, IL)

1995-01-01T23:59:59.000Z

165

Influence of slurry components on uniformity in copper chemical mechanical planarization  

Science Conference Proceedings (OSTI)

Many researchers studying copper chemical mechanical planarization (CMP) have been focused on mechanisms of copper removal using various chemicals. On the basis of these previous works, we studied the effect of slurry components on uniformity. Chemical ... Keywords: Benzotriazole (BTA), Citric acid, Colloidal silica, Copper CMP, Copper slurry, Hydrogen peroxide, Material removal rate (MRR) profile

Hyunseop Lee; Boumyoung Park; Haedo Jeong

2008-04-01T23:59:59.000Z

166

Jet Fuel from Microalgal Lipids  

DOE Green Energy (OSTI)

A fact sheet on production of jet fuel or multi-purpose military fuel from lipids produced by microalgae.

Not Available

2006-07-01T23:59:59.000Z

167

Organic vapor jet printing system  

DOE Patents (OSTI)

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

168

Separation of catalyst from Fischer-Tropsch slurry  

DOE Green Energy (OSTI)

In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.

White, Curt M. (Pittsburgh, PA); Quiring, Michael S. (Katy, TX); Jensen, Karen L. (Pittsburgh, PA); Hickey, Richard F. (Bethel Park, PA); Gillham, Larry D. (Bartlesville, OK)

1998-10-27T23:59:59.000Z

169

Separation of catalyst from Fischer-Tropsch slurry  

DOE Patents (OSTI)

In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.

White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

1998-10-27T23:59:59.000Z

170

Transcript of "Laparoscopic Partial Nephrectomy with Ice Slurry as Coolant  

NLE Websites -- All DOE Office Websites (Extended Search)

ESE | NE | Site Index | Contact us | Help | Privacy/Security ESE | NE | Site Index | Contact us | Help | Privacy/Security Notice Home > Capabilities > Biomedical Applications > Medical Ice Slurry Coolants > Laparoscopic Partial Nephrectomy with Ice Slurry as Coolant in the Porcine Model > Transcript The Multimedia Collection Laparoscopic Partial Nephrectomy with Ice Slurry as Coolant in the Porcine Model Laparoscopic Partial Nephrectomy with Ice Slurry as Coolant in the Porcine Model VIDEO TRANSCRIPT Achieving optimal hypothermia of the kidney during laparoscopic partial nephrectomy remains a challenge and also an obstacle for wide-spread adoption of this technique for nephron-sparing surgery. Other approaches for renal cooling such as perfusion of the renal collecting system or vasculature with cold saline are either ineffective or cumbersome. In this study we assess the application of ice slurry as kidney cooling during laparoscopic partial nephrectomy in the porcine model. This study was performed in collaboration with Argonne National Laboratory.

171

A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production  

Science Conference Proceedings (OSTI)

The raw slurry preparing is a key process to guarantee product for alumina sintering production. To obtain the qualified raw slurry in the presence of uncertainty, a two-stage intelligent optimization system, which weakens uncertainty effects through ... Keywords: Alumina sintering production, Expert reasoning, Integrated modeling, Intelligent optimization, Raw slurry preparing, Uncertainty

Chunhua Yang; Weihua Gui; Lingshuang Kong; Yalin Wang

2009-06-01T23:59:59.000Z

172

Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered  

DOE Patents (OSTI)

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, Richard F. (Houston, TX); Ryan, Daniel F. (Friendswood, TX)

1982-01-01T23:59:59.000Z

173

Fresh Equatorial Jets  

Science Conference Proceedings (OSTI)

A vertically sheared eastward jet in the equatorial Pacific in late 1991 and early 1992 carried relatively fresh water from the western Pacific overriding the saltier surface layer of the central region. Salinity anomalies of about ?1.0 psu were ...

Dean Roemmich; Michele Morris; W. R. Young; J. R. Donguy

1994-03-01T23:59:59.000Z

174

Biofuels – Jet fuel  

This is a process for producing jet fuel from biological feed stock, including animal fats and oils, vegetable oils, and crop seed oils. The aviation and fuel-producing communities would have the option of leveraging available renewable and/or ...

175

Flow cytometer jet monitor system  

DOE Patents (OSTI)

A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

Van den Engh, Ger (Seattle, WA)

1997-01-01T23:59:59.000Z

176

Sludge Heel Removal Analysis for Slurry Pumps of Tank 11  

SciTech Connect

Computational fluid dynamics methods were used to develop and recommend a slurry pump operational strategy for sludge heel removal in Tank 11. Flow patterns calculated by the model were used to evaluate the performance of various combinations of operating pumps and their orientation. The models focused on removal of the sludge heel located at the edge of Tank 11 using the four existing slurry pumps. The models and calculations were based on prototypic tank geometry and expected normal operating conditions as defined by Tank Closure Project (TCP) Engineering. Computational fluid dynamics models of Tank 11 with different operating conditions were developed using the FLUENT(tm) code. The modeling results were used to assess the efficiency of sludge suspension and removal operations in the 75-ft tank. The models employed a three-dimensional approach, a two-equation turbulence model, and an approximate representation of flow obstructions. The calculated local velocity was used as a measure of sludge removal and mixing capability. For the simulations, a series of the modeling calculations was performed with indexed pump orientations until an efficient flow pattern near the potential location of the sludge mound was established for sludge removal. The calculated results demonstrated that the existing slurry pumps running at 1600 rpm could remove the sludge mound from the tank with a 103 in. liquid level, based on a minimum sludge suspension velocity of 2.27 ft/sec. In this case, the only exception is the region within about 2 ft. from the tank wall. Further results showed that the capabilities of sludge removal were affected by the indexed pump orientation, the number of operating pumps, and the pump speed. A recommended operational strategy for an efficient flow pattern was developed to remove the sludge mound assuming that local fluid velocity can be used as a measure of sludge suspension and removal. Sensitivity results showed that for a given pump speed, a higher tank level and a lower pump nozzle elevation would result in better performance in suspending and removing the sludge. The results also showed that the presence of flow obstructions such as valve housing structure were advantageous for certain pump orientations.

Lee, S.Y.

2003-09-30T23:59:59.000Z

177

Method and apparatus for jet-assisted drilling or cutting  

Science Conference Proceedings (OSTI)

An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

2012-09-04T23:59:59.000Z

178

Method and apparatus for jet-assisted drilling or cutting  

DOE Patents (OSTI)

An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

2013-07-02T23:59:59.000Z

179

A Pipeline Transport Correlation for Slurries with Small but Dense Particles  

Science Conference Proceedings (OSTI)

Most correlations/models for minimum transport or critical velocity of slurry were developed for slurries composed of particles greater than ~100-200 ?m diameter with narrow particle-size distributions which is typical of the minerals industry. Many other process industries handle smaller particles. In particular waste slurries at the U.S. Department of Energy's Hanford Site have broad size distributions and significant fractions of smaller particles. Despite the size of these wastes, recent PNNL studies indicate that the small particles might be of sufficient density to pose a significant risk for pipeline deposition and plugging. To allow predictive assessment of deposition of fine dense particles for waste slurry transport at the U.S. DOE Hanford site, a pipeline-transport correlation for critical velocity was developed using a simple power-law between two dimensionless numbers important for slurry transport, the deposition Froude and Archimedes numbers. The correlation accords well with experimental data for slurries with Archimedes numbers pipeline design guide for processing Hanford waste slurry.

Poloski, Adam P.; Etchells, Arthur W.; Chun, Jaehun; Adkins, Harold E.; Casella, Andrew M.; Minette, Michael J.; Yokuda, Satoru T.

2010-04-01T23:59:59.000Z

180

Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint  

DOE Green Energy (OSTI)

Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

Jorgensen, G.; Gee, R.; DiGrazia, M.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR)TECHNOLOGY  

SciTech Connect

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column 0reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

Bernard A. Toseland, Ph.D

2000-06-01T23:59:59.000Z

182

ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY  

SciTech Connect

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

Bernard A. Toseland, Ph.D.

1999-01-01T23:59:59.000Z

183

Method of burning lightly loaded coal-water slurries  

DOE Patents (OSTI)

In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

Krishna, C.R.

1984-07-27T23:59:59.000Z

184

Heat transfer investigations in a slurry bubble column  

SciTech Connect

Slurry bubble columns, for use in Fisher-Tropsch synthesis, have been investigated. Two bubble columns (0.108 and 0.305 m internal diameter) were set up and experiments were conducted to determine gas holdup and heat transfer coefficients. These columns were equipped with either single heat transfer probes of different diameters, or bundles of five-, seven- or thirty-seven tubes. The experiments were conducted for two- and three-phase systems; employing for gas phase: air and nitrogen, liquid phase: water and Therminol-66, and solid phase: red iron oxide (1.02, 1.70 and 2.38 {mu}m), glass beads (50.0, 90.0, 119.0 and 143.3 {mu}m), silica sand (65 {mu}), and magnetite (28.0, 35.7, 46.0, 58.0, 69.0, 90.5, 115.5, and 137.5 {mu}m). The column temperature was varied between 298--523 K, gas velocity between 0--40 cm/s, and solids concentration between 0--50 weight percent. The holdup and heat transfer data as a function of operating and system parameters were employed to assess the available correlations and semitheoretical models, and to develop new correlations. Information concerning the design and scale-up of larger units is presented. Specific research work that need to be undertaken to understand the phenomena of heat transfer and gas holdup is outlined so that efficient gas conversion and catalyst usage may be accomplished in slurry bubble columns. 130 refs., 177 figs., 54 tabs.

Saxena, S.C.; Rao, N.S.; Vadivel, R.; Shrivastav, S.; Saxena, A.C.; Patel, B.B.; Thimmapuram, P.R.; Kagzi, M.Y.; Khan, I.A.; Verma, A.K.

1991-02-01T23:59:59.000Z

185

Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures  

Science Conference Proceedings (OSTI)

A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

Aines, Roger D.; Bourcier, William L.; Viani, Brian

2013-01-29T23:59:59.000Z

186

Program on Technology Innovation: Advanced Concepts in Slurry-Fed Low-Rank Coal Gasification  

Science Conference Proceedings (OSTI)

This report documents the results of a Technology Innovation screening study of concepts for improving the performance of slurry-fed gasification combined cycle power plants on low rank coals by using two innovative coal preparation technologies: coal slurries with liquid CO2 as the fluid, and hot water drying. Slurry-fed gasification technologies have a cost advantage over dry-fed systems, but they suffer a large performance penalty when used on low rank coals because of the large fraction of water and ...

2006-12-01T23:59:59.000Z

187

Jet initiation of PBX 9502  

SciTech Connect

This report details the progress of an effort to determine the quantitative aspects of the initiation of PBX 9502 (95% TATB, 5% Kel-F 800) by copper jets. The particular jet used was that produced by the LAW warhead (66-mm diameter, 42/sup 0/ angle cone, copper-lined, conical shaped charge). Fifteen experiments, in various configurations, have been fired to define the essential parameters for quantitatively measuring the jet performance and initiation of bare PBX 9502. 7 refs., 8 figs.

McAfee, J.M.

1987-07-01T23:59:59.000Z

188

Design of Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Bubble Column Reactors: Novel Technique Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,619,011 entitled "Design of Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection." Disclosed in this patent is a method to determine the optimum catalyst particle size for application in a fluidized bed reactor, such as a slurry bubble column reactor (SBCR), to convert synthesis gas into liquid fuels. The reactor can be gas-solid, liquid- solid, or gas-liquid-solid. The method considers the complete granular temperature balance based on the kinetic theory of

189

Coal-water slurry fuel internal combustion engine and method for operating same  

SciTech Connect

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

190

A coal-water slurry fueled internal combustion engine and method for operating same  

DOE Patents (OSTI)

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, M.H.

1992-12-31T23:59:59.000Z

191

Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries  

Science Conference Proceedings (OSTI)

Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

Koopman, D. C.

2013-01-22T23:59:59.000Z

192

Rheological Study of Comingled Biomass and Coal Slurries with HydrothermalPretreatment  

E-Print Network (OSTI)

Sirkeci, A. A. ; Dincer, H. The effect of coal properties onthe viscosity of coal-water slurries. Fuel 2002, 81, 1855– (H. ; Atesok, G. Effect of coal particle size distribution,

He, W; Park, C S; Norbeck, J N

2009-01-01T23:59:59.000Z

193

Photon + jets at D0  

E-Print Network (OSTI)

Photon plus jet production has been studied by the D0 experiment in Run II of the Fermilab Tevatron Collider at a centre of mass energy of sqrt{s}=1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavour jet cross sections and double parton interactions in photon plus three jet events are presented. They are based on integrated luminosities between 0.4 fb$^-1 and 1.0 fb^-1. The results are compared to perturbative QCD calculations in various approximations.

Lars Sonnenschein

2009-06-15T23:59:59.000Z

194

Bulk delivery of crosslinkable aqueous slurry explosive with crosslinking agent in a separate feed  

SciTech Connect

A method is described for bulk delivery of an aqueous slurry blasting agent to the packaging unit of an explosive plant or into the borehole of a blasting operation by pumping through a conduit. A suspension is injected into a moving stream of pumpable aqueous slurry blasting mixture containing guar gum under controlled conditions of pH whereby the end product emerging from the conduit is crosslinked to a desired degree of firmness. (10 claims)

Hopler, R.B. Jr.

1970-08-04T23:59:59.000Z

195

Advanced Concepts in Slurry-Fed Low-Rank Coal Gasification  

Science Conference Proceedings (OSTI)

After an initial scouting study (described in Electric Power Research Institute [EPRI] Technical Update 1014432) revealed that using liquid CO2 in place of water in coal slurries could have several beneficial effects on integrated-gasificationcombined-cycles (IGCCs) employing CO2 capture, EPRI's Program on Technology Innovation funded additional work on this subject. This report summarizes the results of rheological testing performed with slurries made from liquid CO2 and two types of subbituminous coal ...

2008-09-14T23:59:59.000Z

196

Variability of Southern Ocean Jets Near Topography  

Science Conference Proceedings (OSTI)

The interaction of jets with topography in the Southern Ocean is investigated using 19 years of altimetry data. In particular, the “jet jumping” mode of variability, by which two or more jets passing close to the same topographic feature show ...

Christopher C. Chapman; Rosemary Morrow

197

DEMONSTRATION OF MIXING AND TRANSFERRING SETTLING COHESIVE SLURRY SIMULANTS IN THE AY-102 TANK  

SciTech Connect

In support of Hanford's feed delivery of high level waste (HLW) to the Waste Treatment and Immobilization Plant (WTP), pilot-scale testing and demonstrations with simulants containing cohesive particles were performed as a joint collaboration between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) staff. The objective of the demonstrations was to determine the impact that cohesive particle interactions in the simulants, and the resulting non-Newtonian rheology, have on tank mixing and batch transfer of large and dense seed particles. The work addressed the impacts cohesive simulants have on mixing and batch transfer performance in a pilot-scale system. Kaolin slurries with a range of wt% concentrations to vary the Bingham yield stress were used in all the non-Newtonian simulants. To study the effects of just increasing the liquid viscosity (no yield stress) on mixing and batch transfers, a glycerol/water mixture was used. Stainless steel 100 micron particles were used as seed particles due to their density and their contrasting color to the kaolin and glycerol. In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work addresses the impacts cohesive simulants have on mixing and batch transfer performance. This work is follow-on to the previous tasks 'Demonstration of Mixer Jet Pump Rotational Sensitivity on Mixing and Transfers of the AY-102 Tank' and 'Demonstration of Simulated Waste Transfers from Tank AY-102 to the Hanford Waste Treatment Facility'. The cohesive simulants were investigated and selected jointly by SRNL and PNNL and a white paper was written on this evaluation. The testing and demonstrations of cohesive simulants was a joint effort performed as collaboration between SRNL and PNNL staff. The objective of the demonstrations was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using the 1/22nd scale mixing system and batch transfer of seed particles. Seed particles are particles of contracting color added to mixing tank for visual inspection and an indicator of how well the contents of the tank are mixing. Also the seed particles serve as a measuring stick for how well the contents of the tank are transferred from the mixing tank during batch transfers. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative.

Adamson, D.; Gauglitz, P.

2012-01-03T23:59:59.000Z

198

COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS  

Science Conference Proceedings (OSTI)

The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. This report summarizes the measurements and simulations completed so far. This work will continue under the sponsorship of the National Science Foundation and Dow Corning Corporation. This phase of the work is part of the DOE/Industry/University Multiphase Fluid Dynamics Research Consortium. Optimization of the LaPorte pilot plant reactor was attempted by rearranging the heat exchangers. The paper accepted for presentation at the Sixth World Congress of Chemical Engineering, Melbourne, Australia, September 23-27, 2001 is a part of this report.

Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

2002-05-01T23:59:59.000Z

199

Shroud for a submerged jet cutting nozzle  

DOE Patents (OSTI)

A shroud for a submerged jet cutting nozzle is described which separates the jet from surrounding fluid environment and enhances the cutting effect.

Schwab, Thomas L. (1369 Windsor Way, Livermore, CA 94550)

1978-01-01T23:59:59.000Z

200

Coal slurry combustion optimization on single cylinder engine  

DOE Green Energy (OSTI)

Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

Not Available

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Experimental characterization of slurry bubble-column reactor hydrodynamics  

DOE Green Energy (OSTI)

Sandia`s program to develop, implement, and apply diagnostics for hydrodynamic characterization of slurry bubble column reactors (SBCRs) at industrially relevant conditions is discussed. Gas liquid flow experiments are performed on an industrial scale. Gamma densitometry tomography (GDT) is applied to measure radial variations in gas holdup at one axial location. Differential pressure (DP) measurements are used to calculate volume averaged gas holdups along the axis of the vessel. The holdups obtained from DP show negligible axial variation for water but significant variations for oil, suggesting that the air water flow is fully developed (minimal flow variations in the axial direction) but that the air oil flow is still developing at the GDT measurement location. The GDT and DP gas holdup results are in good agreement for the air water flow but not for the air oil flow. Strong flow variations in the axial direction may be impacting the accuracy of one or both of these techniques. DP measurements are also acquired at high sampling frequencies (250 Hz) and are interpreted using statistical analyses to determine the physical mechanism producing each frequency component in the flow. This approach did not yield the information needed to determine the flow regime in these experiments. As a first step toward three phase material distribution measurements, electrical impedance tomography (EIT) and GDT are applied to a liquid solid flow to measure solids holdup. Good agreement is observed between both techniques and known values.

Shollenberger, K.A.; Torczynski, J.R.; Jackson, N.B.; O`Hern, T.J.

1997-09-01T23:59:59.000Z

202

Interferometric Visualization of Jet Flames  

Science Conference Proceedings (OSTI)

This paper presents visualizations of reacting, round jets of the premixed and nonpremixed type realized by using interferometry and, complementarily, direct photography. The available interferometer, proposed by Carlomagno (1986), employs low-cost components ... Keywords: coherent structures, combustion, destabilization, interferometry, jet flames

A. Stella; G. Guj; A. Mataloni

2000-01-01T23:59:59.000Z

203

Effects of total solids concentrations of poultry, cattle, and piggery waste slurries on biogas yield  

SciTech Connect

The effects of total solids concentrations of poultry, cattle and piggery waste slurries on biogas yield was investigated. Twelve laboratory-size anaerobic batch digesters with 25 L volume were constructed and used for the experiments. Three replicates of 5%, 10%, 15%, and 20% TS concentrations of poultry, cattle, and piggery waste slurries were anaerobically digested for a 30-day detention period and gas yield was measured by the method of water displacement. Temperature variation within the digesters was measured with a maximum and minimum thermometer. Anaerobic digestion of the slurries was undertaken in the mesophilic temperature range (20--40 C). The carbon:nitrogen ratio of each of the slurries digested was determined. The carbon content was determined using the wackley-Black method, and nitrogen content was determined by the regular kjeldhal method. The pH was measured weekly during the period of digestion from a digital pH meter. Gas quality (% methane fraction) was also measured weekly from an analyzer. Coefficient of variation was computed to ascertain the status of the digestion process. Analysis of variance was used to determine the significant difference in gas yield at p < 0.05. Duncan's New Multiple Range Test at p < 0.05 was used to analyze the difference in gas yield among the various TS concentrations of the slurries investigated. The results indicate that biogas yield is of the order: 5% TS > 10% TS > 15% TS > 20% TS. This result shows that gas yield increases with decreasing TS concentration of the slurries. The ANOVA showed that the gas yield from the various TS % was significantly different (p < 0.05). DNMRT showed that there was significant difference in gas yield from the slurries and wastetypes investigated. Poultry waste slurries had the greatest gas yield (L CH4/kg TS) as the gas yield from the waste types was of the order: Poultry > Piggery > Cattle. The pH of the slurries was of the range 5.5 to 6.8 (weakly acidic). The C:N of the slurries varied between 6:1 and 9:1. The Coefficient of Variation (CV) for 10 consecutive days of digestion was less than 10% indicating a steady state in all the digesters.

Itodo, I.N.; Awulu, J.O.

1999-12-01T23:59:59.000Z

204

Investigation of the filtration processes of coal hydrogenation slurries and suspensions obtained after the extraction of oils  

Science Conference Proceedings (OSTI)

As a result of an investigation of the filtration of slurries and their suspensions in hydrogenates under a pressure difference ..delta..P = 0.03 MPa at t = 25 to 120/sup 8/C on various filtration barriers (the ash content of the filtrates did not exceed 0.1%) it was established that the filtration rate of the slurries and their suspensions in hydrogenates is strongly dependent on the type of coal and the hydrogenation conditions and decreases as the content of solid substances and asphaltenes increases. The rate of filtration of the suspensions of the slurries in the hydrogenates is approximately an order of magnitude greater than that of the original slurries; this is due to the sharp drop in the viscosity of the liquid and the aggregation of the small solid particles when the slurry is mixed with the hydrogenate. The rate of filtration for the slurries can be increased by adding auxiliary substances.

Gel'perin, N.I.; Pebalk, V.L.; Shashkova, M.N.; Gorlov, E.G.; Zotova, O.V.

1987-10-10T23:59:59.000Z

205

Jet quenching and heavy quarks  

E-Print Network (OSTI)

Jet quenching and more generally physics at high transverse momentum P_T scales is a cornerstone of the heavy-ion physics program at the LHC. In this work, the current understanding of jet quenching in terms of a QCD shower evolution being modified by the surrounding medium is reviewed along with the evidence for this picture from light parton high P_T observables. Conceptually, the same QCD shower description should also be relevant for heavy quarks, but with several important modifications introduced by the quark masses. Thus especially in the limit of small jet energy over quark mass E_jet/m_q, the relevant physics may be rather different from light quark jets, and several attempts to explain the observed phenomenology of heavy quarks at high P_T are discussed here.

Thorsten Renk

2013-09-12T23:59:59.000Z

206

Demonstration Development Project: Evaluation of a Test Loop to Demonstrate Handling Properties of Liquid CO2-Coal Slurry  

Science Conference Proceedings (OSTI)

Integrated gasification combined cycle (IGCC) power plants employing liquid CO2 in lieu of water as the slurrying medium to feed coal to the gasifier are a promising option for carbon capture and storage (CCS). This report summarizes the design and cost estimate for a proposed CO2-coal slurry test loop system. The objective is to validate a cost estimate for the construction of a full scale CO2-coal slurry test loop and aid in technical aspects of working with ...

2014-01-07T23:59:59.000Z

207

Application of Abrasive-Waterjets for Machining Fatigue-Critical Aircraft Aluminum Parts  

SciTech Connect

The effects of dry-grid blasting of AWJ-machined dog-bone specimens of aircraft aluminum with aluminum oxide abrasives were investigated in terms of enhancement in fatigue performance and mitigating concerns of abrasive contamination. Results obtained from fatigue tests have indicated that the surface roughness, Ra, of AWJ-induced striations is inversely proportional to the fatigue life. The fatigue life of AWJ-machined and baseline specimens, excluding those processed with dry-grit blasting, decreases with the increase in Ra. Removal of the striations with dry-grit blasting until they disappear visually only reduces Ra from 3.5 to 2.4 ?m and is still higher than that of the conventionally machined edges with Ra = 1.6 ?m. From the surface roughness point of view, the fatigue life of the dry-grit blasted specimens should not have exceeded that of the baseline counterparts. Yet the dry-grit blasting process has extended the fatigue life of the AWJ-machined specimens and the baseline counterparts by more than four and three times, respectively. The extraordinary boost in the fatigue performance is believed to be attributed to the induction of residual compressive stresses by dry-grit blasting. Such a belief was subsequent confirmed quantitatively through measurements of residual compressive stresses. Dry-grid blasting can be carried out efficiently and cost effectively by stacking AWJ-machined parts together. The benefits gained from dry-grit blasting simply outweigh the marginal cost increase.

Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.; Zeng, J.

2010-08-19T23:59:59.000Z

208

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

209

Jet fuel from LPG  

SciTech Connect

Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

Maples, R.E.; Jones, J.R.

1983-02-01T23:59:59.000Z

210

COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS  

SciTech Connect

The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

Paul Lam; Dimitri Gidaspow

2000-09-01T23:59:59.000Z

211

Dehydration of isobutanol to isobutene in a slurry reactor  

DOE Green Energy (OSTI)

The April 1990 Alternative Fuels Proposal to the Department of Energy involved the development of new technology, based on the liquid phase process, for conversion of coal-derived synthesis gas to oxygenated hydrocarbon fuels, fuel additives, and fuel intermediates. The objective of this work was to develop a slurry reactor based process for the dehydration of isobutanol to isobutene. The isobutene can serve as a feedstock for the high octane oxygenated fuel additive methyl tertiary-butyl either (MTBE). Alumina catalysts were investigated because of their wide use as a dehydration catalyst. Four commercially available alumina catalysts (Catapal B, Versal B, Versal GH, and Al-3996R) were evaluated for both activity and selectivity to the branched olefin. All four catalysts demonstrated conversions greater than 80% at 290 C, while conversions of near 100% could be obtained at 330 C. The reaction favors low pressures and moderate to low space velocities. A yield of 0.90 mole isobutene per mole reacted isobutanol or better was obtained at conversions of 60--70% and higher. From 75 to 98% conversion, the four catalysts all provide isobutene yields ranging from 0.92 to 0.94 with the maximum occurring around 90% conversion. At low conversions, the concentration of diisobutyl ether becomes significant while the concentration of linear butenes is essentially a linear function of isobutanol conversion. Doping the catalyst with up to 0.8 wt % potassium showed a modest increase in isobutene selectivity; however, this increase was more than offset by a reduction in activity. Investigations using a mixed alcohols feed (consistent with isobutanol synthesis from syngas) demonstrated a small increase in the C4 iso-olefin selectivity over that observed for a pure isobutanol feed. 55 refs.

Latshaw, B.E.

1994-02-01T23:59:59.000Z

212

Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream  

DOE Patents (OSTI)

A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (S. Somerville, NJ)

1989-01-01T23:59:59.000Z

213

The effect of particle-particle interaction forces on the flow properties of silica slurries  

SciTech Connect

Preliminary work has been completed to investigate the effect of particle-particle interaction forces on the flow properties of silica slurries. Classically hydro-transport studies have focused on the flow of coarse granular material in Newtonian fluids. However, with current economical and environmental pressures, the need to increase solid loadings in pipe flow has lead to studies that examine non-Newtonian fluid dynamics. The flow characteristics of non-Newtonian slurries can be greatly influenced through controlling the solution chemistry. Here we present data on an 'ideal' slurry where the particle size and shape is controlled together with the solution chemistry. We have investigated the effect of adsorbed cations on the stability of a suspension, the packing nature of a sediment and the frictional forces to be overcome during re-slurrying. A significant change in the criteria assessed was observed as the electrolyte concentration was increased from 0.1 mM to 1 M. In relation to industrial processes, such delicate control of the slurry chemistry can greatly influence the optimum operating conditions of non-Newtonian pipe flows. (authors)

Harbottle, David; Fairweather, Michael; Biggs, Simon [Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, UK, LS2 9JT (United Kingdom); Rhodes, Dominic [Nexia Solutions, Sellafield, Cumbria (United Kingdom)

2007-07-01T23:59:59.000Z

214

Ice Slurry Medical Protective Organ Cooling: Buying Surgeons and Emergency Responders More Time  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Medical Protective Organ Cooling: Slurry Medical Protective Organ Cooling: Buying Surgeons and Emergency Responders More Time Prepared by Ken Kasza* (PhD) and Yue Wu* (PhD) *Argonne National Laboratory 10-9-09 yuewu@anl.gov; 630-252-7203 Surgical procedures are pushing the limits of technical excision and becoming less invasive through the development and use of laparoscopic procedures assisted by surgeon/machine robotic manipulations. There is an unmet need to protect critical organs and various tissue masses during the course of surgical manipulations. Multiple tissue sites and organ systems that require complex operative manipulations to cure disease are often exposed to ischemic, traumatic, and xenobiotic insults that can result in loss of function or life-threatening conditions. Ice slurry production and delivery equipment developed by

215

MEASUREMENT AND PREDICTION OF RADIOLYTIC HYDROGEN PRODUCTION IN DEFENSE WASTE PROCESSING SLURRIES AT SAVANNAH RIVER SITE  

DOE Green Energy (OSTI)

This paper presents results of measurements and predictions of radiolytic hydrogen production rates from two actual process slurries in the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS). Hydrogen is a flammable gas and its production in nuclear facilities can be a safety hazard if not mitigated. Measurements were made in the Shielded Cells of Savannah River National Laboratory (SRNL) using a sample of Sludge Batch 3 (SB3) currently being processed by the DWPF. Predictions were made using published values for rates of radiolytic reactions producing H{sub 2} in aqueous solutions and the measured radionuclide and chemical compositions of the two slurries. The agreement between measured and predicted results for nine experiments ranged from complete agreement to 24% difference. This agreement indicates that if the composition of the slurry being processed is known, the rate of radiolytic hydrogen production can be reasonably estimated.

Bibler, N; John Pareizs, J; Terri Fellinger, T; Cj Bannochie, C

2007-01-10T23:59:59.000Z

216

Sensitivity of Perturbation Variance and Fluxes in Turbulent Jets to Changes in the Mean Jet  

Science Conference Proceedings (OSTI)

Synoptic-scale eddy variance and fluxes of heat and momentum in midlatitude jets are sensitive to small changes in mean jet velocity, dissipation, and static stability. In this work the change in the jet producing the greatest increase in ...

Brian F. Farrell; Petros J. Ioannou

2004-11-01T23:59:59.000Z

217

Department of Mechanical and Nuclear Engineering Fall 2011 Torque and Axial Measurement Device for Soil Abrasion Testing  

E-Print Network (OSTI)

PENNSTATE Department of Mechanical and Nuclear Engineering Fall 2011 Torque and Axial Measurement Device for Soil Abrasion Testing Overview The Penn State Department of Energy and Mineral Engineering to completely re-design with five weeks left. This left minimal time for machining, assembly, testing

Demirel, Melik C.

218

The use of FBC wastes in the reclamation of coal slurry solids  

SciTech Connect

Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

Dreher, G.B.

1991-01-01T23:59:59.000Z

219

Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali  

Science Conference Proceedings (OSTI)

The effect of the oxidized surface of brown coal on the structural and rheological properties of water-coal slurries was found. The kinetics of structure formation processes in water-coal slurries based on as-received and oxidized brown coal was studied. The effect of lignosulfonate and alkali additives on the samples of brown coal was considered.

D.P. Savitskii; A.S. Makarov; V.A. Zavgorodnii [National Academy of Sciences of Ukraine, Kiev (Ukraine). Dumanskii Institute of Colloid and Water Chemistry

2009-07-01T23:59:59.000Z

220

Synthesis gas solubility in Fischer-Tropsch slurry: Final report  

DOE Green Energy (OSTI)

The objective is to investigate the phase equilibrium behavior of synthesis gases and products in a Fischer-Tropsch slurry reactor. A semi-flow apparatus has been designed and constructed for this purpose. Measurements have been made for hydrogen, cabon monoxide, methane, ethane, ethylene, and carbon dioxide in a heavy n-paraffin at temperatures from 100 to 300)degree)C and pressures 10 to 50 atm. Three n-paraffin waxes: n-eicosane (n-C/sub 20/), n-octacosane )n-C/sub 28/), and n-hexatriacontane (n-C/sub 36/), were studied to model the industrial wax. Solubility of synthesis gas mixtures of H/sub 2/ and CO in n-C/sub 28/ was also determined at two temperatures (200 and 300)degree)C) for each of three gas compositions (40.01, 50.01, and 66.64 mol%) of hydrogen). Measurements were extended to investigate the gas solubility in two industrial Fischer-Tropsch waxes: Mobilwax and SASOL wax. Observed solubility increases in the order: H/sub 2/, CO, CH/sub 4/, CO/sub 2/, C/sub 2/H/sub 4/, C/sub 2/H/sub 6/, at a given temperature pressure, and in the same solvent. Solubility increases with increasing pressure for all the gases. Lighter gases H/sub 2/ and CO show increased solubility with increasing temperature, while the heavier gases CO/sub 2/, ethane, and ethylene show decreased solubility with increasing temperature. The solubility of methane, the intermediate gas, changes little with temperature, and shows a shallow minimum at about 200)degrees)C or somewhat above. Henry's constant and partial molal volume of the gas solute at infinite dilution are determinedfrom the gas solubility data. A correlation is developed from the experimental data in the form on an equation of state. A computer program has been prepared to implement the correlation. 19 refs., 66 figs., 39 tabs.

Chao, K.C.; Lin, H.M.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications  

Science Conference Proceedings (OSTI)

Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium. In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.

Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

2012-02-01T23:59:59.000Z

222

Rapid estimation of cylinder erosion rates in abrasive dust-laden streams  

Science Conference Proceedings (OSTI)

Erosion yield data for particular combinations of target and projectile materials (via laboratory experiments carried out with a narrow-size distribution over the important range of impact velocities and incidence angles), together with recently developed rational correlations for inertial impaction of suspended particles on a cylinder in high Reynolds number crossflow are used to provide a tractable framework for predicting the erosion rates of, say, heat exchanger tubes immersed in particle-laden streams of combustion products. Universal results are cast in terms of the following accessible parameters: sensitivity of erosion yield to projectile incident velocity and angle, ratio of mean particle size to the threshold size required for impaction on the cylindrical target, spread of the mainstream particle size distribution (here log-normal), and the characteristic slip Reynolds number for the critical size abrasive particle in the mainstream. Applications of the results are illustrated, and several generalizations are discussed.

Rosner, D.E.; Tandon, P.; Labowsky, M.J. [Yale Univ., New Haven, CT (United States)

1995-05-01T23:59:59.000Z

223

Plasma jet ignition device  

DOE Patents (OSTI)

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

224

Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid  

SciTech Connect

An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

Ackerman, Carl D. (Olympia, WA)

1983-03-29T23:59:59.000Z

225

Rheological properties essential for the atomization of coal water slurries (CWS). Quarterly progress report, March 15, 1995--June 15, 1995  

SciTech Connect

The analysis of pipeline transportation of highly concentrated suspensions such as coal-water slurries, can exhibit several flow characteristics depending on the concentration and the physical parameters of the dispersed phase. Experiments were conducted for coal-water slurries flows in a series of horizontal capillary tubes of diameters 0.8, 1.5 and 3.0 mm and 100 mm in length, in order to investigate the effect of concentration, pressure drop, and the transitional Reynolds number from laminar to turbulent flow in a homogeneous slurry. The solid concentration was varied from 15% to 63% in 0.1% xanthum gum solution. Pressure drop and the volume flow measurement were made using HVA-6 Capillary viscometer. The Reynolds numbers obtained were found to be dependent on the slurry concentration and the viscosity of the slurry mixture, but independent of the capillary diameter.

Ohene, F. [Grambling State Univ., LA (United States)

1995-10-01T23:59:59.000Z

226

Impact of finite-rate kinetics on carbon conversion in a single-stage entrained flow gasifier with coal-CO2 slurry feed  

E-Print Network (OSTI)

with coal-CO2 slurry feed Cristina Botero , Randall P. Field, Howard J. Herzog, Ahmed F. Ghoniem Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 Abstract Coal-CO2 slurry feed has been suggested as an attractive alternative to coal-water slurry feed for single

227

Effect of coal beneficiation process on rheology/atomization of coal water slurries. Final report, October 1, 1992--July 31, 1996  

SciTech Connect

To examine the factors that govern fine spray production during atomization of coal water slurries, an experimental study of the effect of coal beneficiation and their rheological properties on atomization of clean slurries was proposed. The objective of this study was to understand the effect of low shear, high shear rheology, and viscoelastic behavior on the atomization of beneficiated slurries.

Ohene, F.

1997-05-01T23:59:59.000Z

228

Jet Performance and Jet Energy Scale Determination at CMS  

Science Conference Proceedings (OSTI)

We describe the jet response of the CMS calorimeter which will be used to study pp collisions at Large Hadron Collider at CERN, Geneva, Switzerland at {radical}(s) = 14 TeV. The electromagnetic section of calorimeter consists of lead tungstate crystals which gives an excellent resolution for electrons. The hadron section is brass-scintillator sampling calorimeter read by wavelength shifting fibers in the central region (vertical bar {eta} vertical bar < 3.0) and steel/quartz-fibers in the forward (3.0 < vertical bar {eta} vertical bar < 5.0) region. Extensive test beam calibration data has been collected. A GEANT-based calorimeter simulation has been tuned to reproduce the test beam measurements. The calorimeter response to jets has been determined using this tuned simulation. We describe the calorimeter response to jets, the jet energy resolution, and the procedure we plan to use to establish the jet energy scale from a combination of test beam and pp data when we start taking data in September 2007.

Bhatti, Anwar A. [Experimental Physics Laboratory, The Rockefeller University, 1230 York Ave, New York NY 10021 (United States)

2006-10-27T23:59:59.000Z

229

Microwave applicator for in-drum processing of radioactive waste slurry  

DOE Patents (OSTI)

A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

White, Terry L. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

230

Evaluation of Protected Metal Hydride Slurries in a H2 Mini-  

E-Print Network (OSTI)

Evaluation of Protected Metal Hydride Slurries in a H2 Mini- Grid TIAX, LLC Acorn Park Cambridge_MERIT_REVIEW_MAY2003 2 Introduction Hydrogen Mini-Grid Concept Distributed FCPS utilizing a H2 Mini-Grid can provide waste heat can be used for hot water or space heating in buildings (i.e. "cogen") Distributed FCPS

231

Design of a mixing system for simulated high-level nuclear waste melter feed slurries  

SciTech Connect

The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs.

Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.

1986-03-01T23:59:59.000Z

232

Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material Slurry  

E-Print Network (OSTI)

The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a counterflow CHE consisting of 3 helical coils. Two separate tests were conducted, one where water was used as heat transfer fluid (HTF) on the coil and shell sides, respectively; while the second one made use of MPCM slurry and water on the coil and shell sides, respectively. The NTU-effectiveness relationship of the CHE when MPCM fluid is used approaches that of a heat exchanger with a heat capacity ratio of zero. The heat transfer results have shown that when using a MPCM slurry, an increase in heat transfer rate can be obtained when compared to heat transfer results obtained using straight heat transfer sections. It has been concluded that the increased specific heat of the slurry as well as the fluid dynamics in helical coil pipes are the main contributors to the increased heat transfer.

Gaskill, Travis

2011-12-01T23:59:59.000Z

233

Ice slurry hydraulic characterization testing of a direct freeze district cooling system  

DOE Green Energy (OSTI)

The work described in this report was performed by Chicago Bridge Iron Technical Services Company (CBITS) for the US Department of Energy (DOE). The scope of the current effort (Phase 2) is divided into three separate areas: (1) Ice Slurry Hydraulic Characterization Testing -- The objective of this effort is to fully characterize the flow characteristics of an ice slurry system in 3 different pipe sizes and across a wide range of velocities and ice fractions. This work is a direct continuation of the Phase 1 effort, with the inclusion of equipment upgrades and a wider range of test conditions. (2) Ice Slurry District Cooling Feasibility Testing -- The objective of this effort is to simulate the real-time operation of a prototype Direct Freeze district cooling system. This work includes the design, construction and operation of a pilot-scale Direct Freeze district cooling system. Variable cooling loads and ice storage capability will combine to simulate a dynamic district cooling network with thermal energy storage for peak-shifting. (3) Final Report With Economic Analysis -- The objective of this effort is to document and analyze the technical results obtained and also to discuss the economic impact of these results on a commercial Direct Freeze district cooling system. This report briefly presents the results obtained in the Ice Slurry Hydraulic Characterization Testing. A detailed discussion of these results will be provided in the project final report. 8 figs., 1 tab.

Winters, P.J.

1990-08-01T23:59:59.000Z

234

Transportation of the MOAB Uranium Mill Tailings to White Mesa Mill by Slurry Pipeline  

SciTech Connect

The Moab uranium mill tailings pile, located at the former Atlas Minerals Corporation site approximately three miles north of Moab, Utah, is now under the control of the US Department of Energy (''DOE''). The location of the tailings pile adjacent to the Colorado River, and the ongoing contamination of groundwater and seepage of pollutants into the river, have lead to the investigation, as part of the final site remediation program, of alternatives to relocate the tailings to a qualified permanent disposal site. This paper will describe the approach being taken by the team formed between International Uranium (USA) Corporation (''IUC'') and Washington Group International (''WGINT'') to develop an innovative technical proposal to relocate the Moab tailings to IUC's White Mesa Mill south of Blanding, Utah. The proposed approach for relocating the tailings involves using a slurry pipeline to transport the tailings to the White Mesa Mill. The White Mesa Mill is a fully licensed, active uranium mill site that is uniquely suited for permanent disposal of the Moab tailings. The tailings slurry would be dewatered at the White Mesa Mill, the slurry water would be recycled to the Moab site for reuse in slurry makeup, and the ''dry'' tailings would be permanently disposed of in an approved below grade cell at the mill site.

Hochstein, R. F.; Warner, R.; Wetz, T. V.

2003-02-26T23:59:59.000Z

235

COMPUTATIONAL AND EXPERIMENTAL MODELING OF THREE-PHASE SLURRY-BUBBLE COLUMN REACTOR  

SciTech Connect

Considerable progress has been achieved in understanding three-phase reactors from the point of view of kinetic theory. In a paper in press for publication in Chemical Engineering Science (Wu and Gidaspow, 1999) we have obtained a complete numerical solution of bubble column reactors. In view of the complexity of the simulation a better understanding of the processes using simplified analytical solutions is required. Such analytical solutions are presented in the attached paper, Large Scale Oscillations or Gravity Waves in Risers and Bubbling Beds. This paper presents analytical solutions for bubbling frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble column reactors are not optimum. They involve upflow in the center and downflow at the walls. It may be possible to control flow patterns by proper redistribution of heat exchangers in slurry bubble column reactors. We also believe that the catalyst size in operating slurry bubble column reactors is not optimum. To obtain an optimum size we are following up on the observation of George Cody of Exxon who reported a maximum granular temperature (random particle kinetic energy) for a particle size of 90 microns. The attached paper, Turbulence of Particles in a CFB and Slurry Bubble Columns Using Kinetic Theory, supports George Cody's observations. However, our explanation for the existence of the maximum in granular temperature differs from that proposed by George Cody. Further computer simulations and experiments involving measurements of granular temperature are needed to obtain a sound theoretical explanation for the possible existence of an optimum catalyst size.

Isaac K. Gamwo; Dimitri Gidaspow

1999-09-01T23:59:59.000Z

236

Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Final report  

DOE Green Energy (OSTI)

This report describes results of a study aimed at developing and evaluating improved catalysts for a slurry Fischer-Tropsch (FT) process for converting synthesis gas to high quality transportation fuels (gasoline and distillate). The improvements in catalyst performance were sought by studying effects of pretreatment conditions, promoters and binders/supports. A total of 20 different, iron based, catalysts were evaluated in 58 fixed bed reactor tests and 10 slurry reactor tests. The major accomplishments and conclusions are summarized below. The pretreatment conditions (temperature, duration and the nature of reducing gas) have significant effect on catalyst performance (activity, selectivity and stability) during Fischer-Tropsch synthesis. One of precipitated unsupported catalysts had hydrocarbon selectivity similar to Mobil`s I-B catalyst in high wax mode operation, and had not experienced any loss in activity during 460 hours of testing under variable process conditions in a slurry reactor. The effect of promoters (copper and potassium) on catalyst performance during FT synthesis has been studied in a systematic way. It was found that potassium promotion increases activities of the FT and water-gas-shift (WGS) reactions, the average molecular weight of hydrocarbon products, and suppresses the olefin hydrogenation and isomerization reactions. The addition of binders/supports (silica or alumina) to precipitated Fe/Cu/K catalysts, decreased their activity but improved their stability and hydrocarbon selectivity. The performance of catalysts of this type was very promising and additional studies are recommended to evaluate their potential for use in commercial slurry reactors.

Bukur, D.B.; Mukesh, D.; Patel, S.A.; Zimmerman, W.H.; Rosynek, M.P. [Texas A& M Univ., College Station, TX (United States); Kellogg, L.J. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1990-04-01T23:59:59.000Z

237

Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries  

SciTech Connect

Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

Koopman, D. C.

2013-01-22T23:59:59.000Z

238

EVALUATION OF BIOMSS AND COAL SLURRIES AS FUEL-LEAN REBURN FUELS  

DOE Green Energy (OSTI)

Breen Energy Solutions (BES) and Western Research Institute (WRI) tested biomass and coal slurries and other carbonaceous substances such as fuel oil/water emulsions as NO{sub x} reburn fuel in the combustion test facility (CTF). The overall goal of the project was to determine the NO{sub x} reduction potential of various biomass and coal reburn fuels, and to identify the optimum conditions for NO{sub x} control. Specific objectives were to inject biomass, biosolids, coal, biomass/coal, and biosolids/coal slurries into the upper furnace of CTF and determine the resulting NO{sub x} reductions and CO emissions, to identify optimum injection rates and injection locations for these reburn fuels, and to install a reaction zone stabilizer device in CTF and determine its effectiveness in reducing CO and further reducing NO{sub x}. Combustion tests achieved 40% to 60% NO{sub x} reductions with 10% to 20% reburn fuel heat input. The project has demonstrated the technical feasibility of in-situ gasification of slurries including pulverized coal and 75% pulverized coal/25% biosolids by weight, and the ability to utilize the gasification products as NO{sub x} reburn fuel. This work also demonstrated that pulverized coal/water slurries can be successfully gasified and used as reburn fuels, and there is no need for use of micronized coal. Very good burnout of the pulverized coal slurry was demonstrated in this work. Similarly, the project has demonstrated the technical feasibility of in-situ gasification of oil/water emulsion and the ability to utilize the associated gasification products as NO{sub x} reburn fuel.

Vijay K. Sethi

2006-11-06T23:59:59.000Z

239

Eddy Formation in 2½-Layer, Quasigeostrophic Jets  

Science Conference Proceedings (OSTI)

The formation of nonlinear eddies in unstable 2½-layer, quasigeostrophic jets is investigated using a piecewise constant potential vorticity, “contour dynamical” model. Both infinite and semi-infinite jet dynamics are explored, considering a ...

Ilson C. A. da Silveira; Glenn R. Flierl

2002-03-01T23:59:59.000Z

240

African Easterly Jet: Structure and Maintenance  

Science Conference Proceedings (OSTI)

This article investigates the African easterly jet (AEJ), its structure, and the forcings contributing to its maintenance, critically revisiting previous work that attributed the maintenance of the jet to soil moisture gradients over tropical ...

Man-Li C. Wu; Oreste Reale; Siegfried D. Schubert; Max J. Suarez; Randy D. Koster; Philip J. Pegion

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dynamics of the Southern Hemisphere Spiral Jet  

Science Conference Proceedings (OSTI)

The formation of the Southern Hemisphere spiral jet is investigated using observations over a 40-yr period. It is found that between late March and early April, the upper-tropospheric westerly jet in the Southern Hemisphere undergoes a transition ...

Lindsey N. Williams; Sukyoung Lee; Seok-Woo Son

2007-02-01T23:59:59.000Z

242

BioJet Corporation | Open Energy Information  

Open Energy Info (EERE)

93940 Sector Carbon Product Monterey-based carbon credit developer and producer of bio-jet fuel derived from jatropha. References BioJet Corporation1 LinkedIn Connections...

243

Advanced thermally stable jet fuels  

Science Conference Proceedings (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

244

Shaping Planetary Nebulae by Jets  

E-Print Network (OSTI)

We conduct 2D axisymmetrical hydrodynamical simulations to investigate the interaction of a collimated fast wind (CFW; wide jets) with a spherical AGB wind. The code includes radiative cooling. We find that the shape of the planetary nebula (PN) is sensitive to the exact mass loss history of the AGB wind, and the opening angle of the CFW. Some typical PN morphologies are obtained, but many other observed morphologies seem to require more ingredients than what we assume in our present simulations, e.g., equatorial AGB wind, and ionization and fast wind during the PN phase. The hot bipolar bubble formed by the jets is an X-ray source.

Muhammad Akashi

2007-09-06T23:59:59.000Z

245

Inclusive jet production at Tevatron  

Science Conference Proceedings (OSTI)

The CDF and D0 Collaborations have measured the inclusive jet cross section using 1992--93 collider data at {radical}s = 1,800 GeV. The D0 measurement is higher than NLO QCD predictions, though within systematic uncertainties. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However it is systemically higher than NLO QCD predictions for E{sub T} above 200 GeV. The CDF measurement of two-jet mass and total transverse energy spectra also show a similar excess above QCD predictions at higher E{sub T}.

Bhatti, A.A.; CDF Collaboration; D0 Collaboration

1995-07-01T23:59:59.000Z

246

Jet physics at HERA, Tevatron and LHC  

E-Print Network (OSTI)

In this short report, we discuss the Jet Physics results and perspectives at HERA, Tevatron and LHC.

C. Royon

2008-11-10T23:59:59.000Z

247

Inclusive jet production at the Tevatron  

SciTech Connect

Preliminary results on inclusive jet production in proton-antiproton collisions at {radical}s = 1.96 TeV based on 1 fb{sup -1} of CDF Run II data are presented. Measurements are preformed using different jet algorithms in a wide range of jet transverse momentum and jet rapidity. The measured cross sections are compared to next-to-leading order perturbative QCD calculations

Norniella, Olga; /Barcelona, IFAE

2006-08-01T23:59:59.000Z

248

Production of biocomponent containing jet fuels  

Science Conference Proceedings (OSTI)

Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Further than quality requirements were more aggravated in front of jet fuels. This was generated by ... Keywords: aromatic content, biocomponent, crystallization point, jet fuel, kerosene, vegetable oil

Z. Eller; P. Solymosi; T. Kasza; Z. Varga; J. Hancsók

2011-12-01T23:59:59.000Z

249

Abrasive wear by diesel engine coal-fuel and related particles  

DOE Green Energy (OSTI)

The purpose of the work summarized in this report was to obtain a basic understanding of the factors which are responsible for wear of the piston ring and cylinder wall surfaces in diesel engines utilizing coal-fuel. The approach included analytical studies using scanning electron microscopy and energy dispersive x-ray analyses to characterize coal-fuel and various combustion particles, and two different wear tests. The wear tests were a modified pin-on-disk test and a block-on-ring test capable of either unidirectional or reciprocating-rotational sliding. The wear tests in general were conducted with mixtures of the particles and lubricating oil. The particles studied included coal-fuel, particles resulting from the combustion of coal fuel, mineral matter extracted during the processing of coal, and several other common abrasive particle types among which quartz was the most extensively examined. The variables studied included those associated with the particles, such as particle type, size, and hardness; variables related to contact conditions and the surrounding environment; and variables related to the type and properties of the test specimen materials.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-09-01T23:59:59.000Z

250

Effective Compressibility of a Bubbly Slurry: I. Theory of the Behavior of Bubbles Trapped in Porous Media  

SciTech Connect

Bubbles trapped within the slurry at the bottom of waste tanks at the Hanford Site expand and contract in response to ambient pressure changes. These bubbles contain hydrogen and other flammable gases that can pose a safety hazard. Determining the effective compressibility of bubbles in the slurry could allow one to make improved estimates of the quantity of gas trapped in the slurry from changes in slurry volume with ambient pressure changes. Numerical calculations based on a one-dimensional biconical-pore-network model show that the effective compressibility of a population of bubbles shows hysteresis with pressure increase and decrease. This hysteresis is caused by the unsteady, impulsive movements of interfaces from pore throat to throat during a pressure decrease and from pore body to body during a pressure increase. Snap-off may occur during these jumps but does not significantly alter the effective compressibility of the population of bubbles.

Kam, Seung I. (PEMEX REFINACION); Gauglitz, Phillip A. (BATTELLE (PACIFIC NW LAB)); Rossen, William R. (UNKNOWN)

2000-12-01T23:59:59.000Z

251

In-situ end point detection of the STI-CMP process using a high selectivity slurry  

Science Conference Proceedings (OSTI)

We studied the end point detection (EPD) for the direct CMP of the STI structure without the reverse moat etch process. In this case, we applied a high selectivity slurry (HSS) that improves the silicon oxide removal rate and maximizes the oxide-to-nitride ... Keywords: chemical mechanical polishing (CMP), end point detection (EPD), high selectivity slurry (HSS), reverse moat etch process, shallow trench isolation (STI)

Sang-Yong Kim; Kyoung-Jin Lee; Yong-Jin Seo

2003-05-01T23:59:59.000Z

252

NETL: Gasification Systems - Liquid Carbon Dioxide/Coal Slurry for Feeding  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Liquid Carbon Dioxide/Coal Slurry for Feeding Low-Rank Coal to Gasifiers Project Number: DE-FE0007977 There is increased interest in carbon capture and storage (CCS) for future coal-based power plants, and in a CCS integrated gasification plant, relatively pure, high pressure CO2 stream(s) will be available within the power plant. Electric Power Research Institute (EPRI) aims to help reduce the cost and improve the efficiency of integrated gasification combined cycle (IGCC) with CCS by using a portion of the high purity CO2 product stream as the carrier fluid to feed low rank coal (LRC) into the gasifier. EPRI proposes to confirm the potential advantages of LRC/liquid carbon dioxide (LCO2) slurries by: Conducting plant-wide technical and economic simulations.

253

Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines  

SciTech Connect

The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication of slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 ?m in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 ?m or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.

Poloski, Adam P.; Adkins, Harold E.; Abrefah, John; Casella, Andrew M.; Hohimer, Ryan E.; Nigl, Franz; Minette, Michael J.; Toth, James J.; Tingey, Joel M.; Yokuda, Satoru T.

2009-03-25T23:59:59.000Z

254

Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers  

SciTech Connect

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

Givens, Edwin N. (Bethlehem, PA); Ying, David H. S. (Macungie, PA)

1983-01-01T23:59:59.000Z

255

Engineering development of slurry bubble column reactor (SBCR) technology. Quarterly report, January 1--March 31, 1996  

DOE Green Energy (OSTI)

The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity; (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions; and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors. The main part of this report describes tracer studies of slurry bubble column hydrodynamics during methanol synthesis.

Toseland, B.A.; Tischer, R.E.

1997-12-31T23:59:59.000Z

256

Rhelogical properties essential for the atomization of coal water slurries (CWS)  

SciTech Connect

The overall objective of this project is to perform experiments to understand the effect of high shear and extensional properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the extensional and high shear properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS. During the past quarter, several experimental studies on pressure dependent atomization of Coal-water slurries and simulated fluids were performed. Also surface tension, elastic, high and low shear viscosities were performed. These tests were performed to initiate the understanding of the fundamental parameters that govern the atomization process of CWS.

Ohene, F.

1992-01-01T23:59:59.000Z

257

SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS  

DOE Patents (OSTI)

A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.

Grinstead, R.R.

1959-01-20T23:59:59.000Z

258

Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers  

DOE Green Energy (OSTI)

The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables.

HASSAN, NEGUIB

2004-06-29T23:59:59.000Z

259

Materials and design experience in a slurry-fed electric glass melter  

SciTech Connect

The design of a slurry-fed electric gas melter and an examination of the performance and condition of the construction materials were completed. The joule-heated, ceramic-lined melter was constructed to test the applicability of materials and processes for high-level waste vitrification. The developmental Liquid-Fed Ceramic Melter (LFCM) was operated for three years with simulated high-level waste and was subjected to conditions more severe than those expected for a nuclear waste vitrification plant.

Barnes, S.M.; Larson, D.E.

1981-08-01T23:59:59.000Z

260

Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

DeGeorge, Charles W. (Chester, NJ)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Microwave applicator for in-drum processing of radioactive waste slurry  

DOE Patents (OSTI)

A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

White, T.L.

1994-06-28T23:59:59.000Z

262

Conditions of utilization of coal mining and processing sludges as slurry fuel  

Science Conference Proceedings (OSTI)

The results of this study have shown that coal sludge can be used as slurry fuel (like coal-water fuel (CWF)) providing that its ash content does not exceed 30% and the amount in the fuel is at least 55%. The conventional CWF preparation technologies are inapplicable to the fabrication of water-sludge fuel; therefore, special technologies with allowance for the ash content, the particle size, and the water content of coal sludge are demanded.

E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-12-15T23:59:59.000Z

263

Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor  

DOE Patents (OSTI)

Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

1999-08-17T23:59:59.000Z

264

Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor  

DOE Patents (OSTI)

Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

Singleton, Alan H. (Marshall Township, Allegheny County, PA); Oukaci, Rachid (Allison Park, PA); Goodwin, James G. (Cranberry Township, PA)

1999-01-01T23:59:59.000Z

265

Experimental techniques for hydrodynamic characterization of multiphase flows in slurry-phase bubble-column reactors  

DOE Green Energy (OSTI)

Slurry-phase bubble-column Fischer-Tropsch (FT) reactors are recognized as one of the more promising technologies for converting synthesis gas from coal into liquid fuel products (indirect liquefaction). However, hydrodynamic effects must be considered when attempting to scale these reactors to sizes of industrial interest. The objective of this program is to facilitate characterization of reactor hydrodynamics by developing and applying noninvasive tomographic diagnostics capable of measuring gas holdup spatial distribution in these reactors.

Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Shollenberger, K.A.; Mondy, L.A.; Jackson, N.B.

1994-09-01T23:59:59.000Z

266

Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing  

Science Conference Proceedings (OSTI)

Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, have to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.

Shah, S.; Zhoi, Y.X.; Bailey, M.; Hernandez, J. [University of Oklahoma, Norman, OK (United States)

2009-08-15T23:59:59.000Z

267

Experimental investigation of ice slurry flow pressure drop in horizontal tubes  

SciTech Connect

Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

2009-01-15T23:59:59.000Z

268

Effective Compressibility of A Bubbly Slurry: II. Fitting Numerical Results to Field Data and Implications  

Science Conference Proceedings (OSTI)

The goal of this study is to fit model parameters to changes in waste level in response to barometric pressure changes in underground storage tanks at the Hanford Site. This waste compressibility is a measure of the quantity of gas, typically hydrogen and other flammable gases that can pose a safety hazard, retained in the waste. A one-dimensional biconical-pore-network model for compressibility of a bubbly slurry is presented in a companion paper. Fitting these results to actual waste level changes in the tanks implies that bubbles are long in the slurry layer and the ratio of pore-body radius to pore-throat radius is close to one; unfortunately, capillary effects can not be quantified unambiguously from the data without additional information on pore geometry. Therefore determining the quantity of gas in the tanks requires more than just slurry volume data. Similar ambiguity also exists with two other simple models: a capillary-tube model with contact angle hysteresis and spherical-p ore model.

Kam, Seung I. (PEMEX REFINACION); Gauglitz, Phillip A. (BATTELLE (PACIFIC NW LAB)); Rossen, William R. (UNKNOWN)

2000-12-01T23:59:59.000Z

269

Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102  

SciTech Connect

The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

Y Onishi; KP Recknagle; BE Wells

2000-08-09T23:59:59.000Z

270

Beaming and Jets in GRBs  

E-Print Network (OSTI)

The origin of GRBs have been a mystery for almost 30 years. The afterglowobserved in the last few years enabled redshift determination for a handful ofbursts, and the cosmological origin is now firmly established. Though thedistance scale is settled, there still remains orders of magnitude uncertaintyin their rate and in the total energy that is released in the explosion due tothe possibility that the emission is not spherical but jet-like. Contrary tothe GRB itself, the afterglow can be measured up to months and even years afterthe burst, and it can provide crucial information on the geometry of theejecta. We review the theory of afterglow from jets and discuss the evidencethat at least some of the bursts are not spherical. We discuss the prospects ofpolarization measurements, and show that this is a powerful tool inconstraining the geometry of the explosion.

Sari, R

2000-01-01T23:59:59.000Z

271

CX-000663: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

663: Categorical Exclusion Determination 663: Categorical Exclusion Determination CX-000663: Categorical Exclusion Determination Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems CX(s) Applied: A9, B3.1, B3.6 Date: 02/09/2010 Location(s): Tulsa, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office This project proposes to develop a cost-effective microhole drilling and completion technology with the Flash Abrasive Slurry Jet (ASJ) system and optimize it to maximize the efficiency of fluid circulation and heat removal for Enhanced Geothermal Systems (EGS). The proposed approach is expected to address the key obstacles that currently prevent EGS from becoming a technically feasible, commercially viable major contributor for

272

Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner  

Science Conference Proceedings (OSTI)

The reactants are generally injected into the industrial furnaces by jets. An effective method to act on combustion in such systems is to control the way injection jets. The present study concerns the control of turbulent flames by the jets deflection in a natural gas-oxygen burner with separated jets. The burner of 25 kW power is constituted with three aligned jets, one central natural gas jet surrounded by two oxygen jets. The principal idea is to confine the fuel jet by oxygen jets to favour the mixing in order to improve the flame stability and consequently to reduce the pollutant emissions like NO{sub x}. The flame stability and its structural properties are analyzed by the OH chemiluminescence. The Particle Image Velocimetry technique has been used to characterize the dynamic field. Results show that the control by inclined jets has a considerable effect on the dynamic behaviour and flame topology. Indeed, the control by incline of oxygen jets towards fuel jet showed a double interest: a better stabilization of flame and a significant reduction of nitrogen oxides. Measurements showed that the deflection favours the mixing and accelerates the fusion of jets allowing the flame stabilization. (author)

Boushaki, T.; Mergheni, M.A.; Sautet, J.C. [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Avenue de l'Universite, 76 801 Saint Etienne du Rouvray, Cedex (France); Labegorre, B. [Air Liquide CRCD, Les Loges en Josas, BP 126, 78350 Jouy en Josas (France)

2008-07-15T23:59:59.000Z

273

ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX MISCIBLE AND IMMISCIBLE LIQUIDS IN TANK 50H  

SciTech Connect

Tank 50H is the feed tank for the Saltstone Production Facility (SPF). At present, Tank 50H contains two standard slurry pumps and two Quad Volute slurry pumps. Current requirements and mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste would like to move one or both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that are failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to blend miscible and immiscible liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Salt Disposition Integration Project (SDIP) and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters needed to blend the tank contents. The conclusions from this analysis are: (1) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will be able to blend miscible liquids (i.e., salt solution) in Tank 50H within 4.4 hours. (2) Two rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 3.1 hours. (3) Three rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 2.5 hours. (4) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will disperse Isopar L{reg_sign} droplets that are less than or equal to 15 micron in diameter. If the droplets are less than 15 micron, they will be dispersed within 4.4 hours. Isopar L{reg_sign} provides a lower bound on the maximum size of droplets that will be dispersed by the slurry pumps in Tank 50H. (5) Two rotating standard slurry pumps will disperse Isopar L{reg_sign} droplets less than 15 micron within 3.1 hours, and three rotating standard slurry pumps will disperse Isopar L{reg_sign} droplets less than 15 micron within 2.5 hours. (6) If the Isopar L{reg_sign} droplets are drawn through the pump, they will be further reduced in size, with a maximum drop size less than 15 micron.

Poirier, M.

2011-06-15T23:59:59.000Z

274

Simple technologies for on-farm composting of cattle slurry solid fraction  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Simple management techniques were examined for composting slurry solid fraction. Black-Right-Pointing-Pointer Composting slurry solids was effective without bulking agents, turning or rewetting. Black-Right-Pointing-Pointer Maximum rates of organic matter destruction were observed in short piles. Black-Right-Pointing-Pointer Thermophilic temperatures in tall piles maximised sanitation and moisture reduction. Black-Right-Pointing-Pointer The simple compost management approach maximised N retention and agronomic value. - Abstract: Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animal slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4 m{sup 3} h{sup -1} and 1 m{sup 3} h{sup -1} and composted in tall (1.7 m) and short (1.2 m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62-64 Degree-Sign C) were measured in tall piles compared to short piles (52 Degree-Sign C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520-660 g kg{sup -1} dry solids and the net loss of OM significantly (P < 0.001) increased nutrient concentrations during the composting period. An advanced degree of stabilization of the SF was indicated by low final pile temperatures and C/N ratio, low concentrations of NH{sub 4}{sup +} and increased concentrations of NO{sub 3}{sup -} in SF composts. The results indicated that minimum intervention composting of SF in static piles over 168 days can produce agronomically effective organic soil amendments containing significant amounts of OM (772-856 g kg{sup -1}) and plant nutrients. The implications of a minimal intervention management approach to composting SF on compost pathogen reduction are discussed and possible measures to improve sanitation are suggested.

Brito, L.M., E-mail: miguelbrito@esa.ipvc.pt [Escola Superior Agraria, Instituto Politecnico de Viana do Castelo, Refoios, 4990-706 Ponte de Lima (Portugal) and Mountain Research Centre (CIMO), IPB, Campus de St Apolonia, Apartado 1172, 5301-855 Braganca (Portugal); Mourao, I. [Escola Superior Agraria, Instituto Politecnico de Viana do Castelo, Refoios, 4990-706 Ponte de Lima (Portugal) and Mountain Research Centre (CIMO), IPB, Campus de St Apolonia, Apartado 1172, 5301-855 Braganca (Portugal); Coutinho, J., E-mail: j_coutin@utad.pt [C. Quimica, DeBA, EC Vida e Ambiente, Universidade de Tras-os-Montes e Alto Douro, ap 1013, 5001-911 Vila Real (Portugal); Smith, S.R., E-mail: s.r.smith@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ (United Kingdom)

2012-07-15T23:59:59.000Z

275

The ATLAS b-Jet Trigger  

E-Print Network (OSTI)

The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers was contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from using the b-jet trigger. An overview of the b-jet trigger menu and performance on data is presented.

Per Hansson

2011-11-17T23:59:59.000Z

276

Turbulent fluid jet excavation in cohesive soil : with particular application to jet grouting  

E-Print Network (OSTI)

This thesis reviews the jet grouting methodology, and the current state of practice and research. Current methods of prediction of jet grout diameters are highly empirical and site specific, and do not take into account ...

Ho, Chu Eu

2005-01-01T23:59:59.000Z

277

Abrasive blasting, a technique for the industrial decontamination of metal components and concrete blocks from decommissioning to unconditional release levels  

Science Conference Proceedings (OSTI)

When decommissioning nuclear installations, large quantities of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has gone to recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can considered to be a first order ecological priority in order to limit the quantities of radioactive wastes for final disposal and to reduce the technical and economic problems involved with the management of radioactive wastes. It will help as well to make economic use of primary material and to conserve natural resources of basic material for future generations. In a demonstration programme, Belgoprocess has shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, the unit cost for decontamination being only 30 % of the global cost for radioactive waste treatment, conditioning, storage and disposal. As a result, an industrial dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. At the end of December 2006, more than 1,128 Mg of contaminated metal has been treated as well as 313 Mg of concrete blocks. The paper gives an overview of the experience relating to the decontamination of metal material and concrete blocks at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium as well from the decontamination of concrete containers by abrasive blasting. (authors)

Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R. [Belgoprocess N.V., Gravenstraat 73, 2480 Dessel (Belgium)

2007-07-01T23:59:59.000Z

278

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 5, October 1, 1991--December 31, 1991  

DOE Green Energy (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

Marcelin, G.

1992-06-10T23:59:59.000Z

279

Increasing jet entrainment, mixing and spreading  

DOE Patents (OSTI)

A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 11 figs.

Farrington, R.B.

1994-08-16T23:59:59.000Z

280

Increasing jet entrainment, mixing and spreading  

DOE Patents (OSTI)

A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

Farrington, Robert B. (Wheatridge, CO)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Safe Fluids for Jet Engine Texts  

Science Conference Proceedings (OSTI)

... industry and DoD use NIST calibration services for hydrocarbon liquid flow to ensure agreement and quality of measurements of jet fuel flow and ...

2012-08-29T23:59:59.000Z

282

Mechanisms of Jet Formation on the Giant Planets  

Science Conference Proceedings (OSTI)

The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are ...

Junjun Liu; Tapio Schneider

2010-11-01T23:59:59.000Z

283

SpartyJet 4.0 User's Manual  

E-Print Network (OSTI)

SpartyJet is a set of software tools for jet finding and analysis, built around the FastJet library of jet algorithms. SpartyJet provides four key extensions to FastJet: a simple Python interface to most FastJet features, a powerful framework for building up modular analyses, extensive input file handling capabilities, and a graphical browser for viewing analysis output and creating new on-the-fly analyses. Many of these capabilities rely on a ROOT-based backend. Beyond finding jets, many jet tools in SpartyJet perform measurement of jet or event variables, available to subsequent tools and stored in the final output. SpartyJet can be downloaded from HepForge at http://projects.hepforge.org/spartyjet.

Pierre-Antoine Delsart; Kurtis L. Geerlings; Joey Huston; Brian T. Martin; Christopher K. Vermilion

2012-01-17T23:59:59.000Z

284

Angular Energy Distribution of Collapsar-Jets  

E-Print Network (OSTI)

Collapsars are fast-spinning, massive stars, whose core collapse liberates an energy, that can be channeled in the form of ultrarelativistic jets. These jets transport the energy from the collapsed core to large distances, where it is dissipated in the form of long-duration gamma-ray bursts. In this paper we study the dynamics of ultrarelativistic jets produced in collapsars. Also we extrapolate our results to infer the angular energy distribution of the produced outflows in the afterglow phase. Our main focus is to look for global energetical properties which can be imprinted by the different structure of different progenitor stars. Thus, we employ a number of pre-supernova, stellar models (with distinct masses and metallicities), and inject in all of them jets with fixed initial conditions. We assume that at the injection nozzle, the jet is mildly relativistic (Lorentz factor $\\sim 5$), has a finite half-opening angle ($5^\\circ$), and carries a power of $10^{51} $erg s$^{-1}$. These jets arrive intact to the stellar surface and break out of it. A large Lorentz factor region $\\Gamma\\simmore 100$ develops well before the jet reaches the surface of the star, in the unshocked part of the beam, located between the injection nozzle and the first recollimation shock. These high values of $\\Gamma$ are possible because the finite opening angle of the jet allows for free expansion towards the radial direction. We find a strong correlation between the angular energy distribution of the jet, after its eruption from the progenitor surface, and the mass of the progenitors. The angular energy distribution of the jets from light progenitor models is steeper than that of the jets injected in more massive progenitor stars. This trend is also imprinted in the angular distribution of isotropic equivalent energy.

Akira Mizuta; Miguel A. Aloy

2008-12-28T23:59:59.000Z

285

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. [801Methyl tert-butyl ether  

DOE Green Energy (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

Marcelin, G.

1992-06-24T23:59:59.000Z

286

HEFA and F-T jet fuel cost analyses  

E-Print Network (OSTI)

Aviation and the Environment 2. HEFA jet fuel from vegetable oil bottom-up cost study 3. HEFA jet fuel from microalgae bottom-up cost

Nick Carter; Michael Bredehoeft; Christoph Wollersheim; Hakan Olcay; James Hileman; Steven Barrett; Website Lae. Mit. Edu

2012-01-01T23:59:59.000Z

287

Enhanced boiling heat transfer by submerged, vibration induced jets .  

E-Print Network (OSTI)

??In this analysis, the efficacy of cavitation jets for heat transfer enhancement was demonstrated. The cavitation jet was formed from a cluster of cavitation bubbles… (more)

Tillery, Steven W.

2005-01-01T23:59:59.000Z

288

Jet Fuel Supply/Price Outlook - Fueling the Recovery  

U.S. Energy Information Administration (EIA)

Jet Fuel Supply/Price Outlook: Fueling the Recovery Energy Information Administration Presentation to 4th International Jet Fuel Conference February ...

289

Aerosol Jet® Material Deposition for High Resolution Printed ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Aerosol Jet printing, is finding wide use in a number of ... The Aerosol Jet systems deposit a wide variety of functional materials onto a wide ...

290

Modifications to, and Vibration Analysis of Tank 7 Slurry Pumps, F Tank Farm  

SciTech Connect

Slurry pumps have demonstrated short life spans when operated in nuclear waste tanks. Their life approximates one thousand hours or approximately 42 days of continuous operation, evidenced by past performance in H-Area and F-Area at the Savannah River Site (SRS). Several investigations over the past six years have isolated the most significant reliability problems. These problems are seal and bearing failures caused by the vibrations of the long drive shafts in the pump, manufacturing tolerance accumulations, failures caused by material incompatibility between the waste and the lowest process bearing that is exposed to the waste, and vibrations which occur when the pump operates at critical speeds. Only vibration and material problems were corrected. Potential bearing and seal degradation still exists for those pumps with a critical speed near the operating speed. Bearing damage can be expected below 700 rpm. The pumps are used to mix or slurry nuclear waste products contained in waste storage tanks prior to transferring the tank contents for further processing. In particular, Lawrence Pumps, Inc. slurry pumps are installed on Tank 7 in F Tank Farm. Appendix A provides the initial recommendations, and further states that this follow up report would provide detailed descriptions of the pump components, failure mechanisms, and corrective actions which include tilt pad bearings, a Stellite process bearing, and modified split shaft retainers. By testing the pumps in a non-radioactive test facility, these corrections have been shown to significantly decrease the vibrations associated with bearing and seal failures, and consequently are expected to improve reliability.

Lieshear, R.A.

2002-05-10T23:59:59.000Z

291

Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996  

DOE Green Energy (OSTI)

The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

Gidaspow, D.

1996-04-01T23:59:59.000Z

292

Electro jet drilling using hybrid NNGA approach  

Science Conference Proceedings (OSTI)

This paper presents a hybrid neural network and genetic algorithm (NNGA) approach for the multi-response optimization of the electro jet drilling (EJD) process. The approach first uses a neural network model to predict the response parameters of the ... Keywords: Electro jet drilling, Electrochemical machining, Genetic algorithm, Multi-response, Neural network, Optimization

Mohan Sen; H. S. Shan

2007-02-01T23:59:59.000Z

293

Formation of Jets by Baroclinic Turbulence  

Science Conference Proceedings (OSTI)

Turbulent fluids are frequently observed to spontaneously self-organize into large spatial-scale jets; geophysical examples of this phenomenon include the Jovian banded winds and the earth’s polar-front jet. These relatively steady large-scale ...

Brian F. Farrell; Petros J. Ioannou

2008-11-01T23:59:59.000Z

294

Inertial Resonance Induced by an Oceanic Jet  

Science Conference Proceedings (OSTI)

The dynamics of the mixed layer in the presence of an embedded geostrophic jet has been investigated using a simple 1½-layer model and a two-dimensional primitive equation model. The jet vorticity induces a spatial variability of the wind-driven ...

P. Klein; A. M. Treguier

1993-09-01T23:59:59.000Z

295

Dynamics of the West African Westerly Jet  

Science Conference Proceedings (OSTI)

The West African westerly jet (WAWJ) is a low-level westerly jet located at 8°–11°N over the eastern Atlantic and the West African coast. It is clearly distinguished from the monsoon westerly flow by its structure and dynamics, and plays an ...

Bing Pu; Kerry H. Cook

2010-12-01T23:59:59.000Z

296

Integration of stripping of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

DeGeorge, Charles W. (Chester, NJ)

1980-01-01T23:59:59.000Z

297

Program on Technology Innovation: Liquid CO2 Coal Slurry for Feeding Coal to Gasifiers  

Science Conference Proceedings (OSTI)

Liquid CO2 (CO2(l)) has several property differences from water that make it attractive for the coal slurries used in coal-gasification-based power plants. Liquid CO2 has a heat of vaporization that is less than one-quarter of that of water, and it has lower viscosity. Since future coal-based power plants may have to control CO2 emissions by use of a CO2 capture and storage system, it may make economic sense to recycle some of the captured CO2 back to the coal feeding system where it could be used as the...

2010-06-30T23:59:59.000Z

298

Vibration mills in the manufacturing technology of slurry fuel from unbeneficiated coal sludge  

Science Conference Proceedings (OSTI)

Coal-water slurry fuel (CWSF) is economically viable provided that its ash content does not exceed 30% and the amount water in the fuel is at most 45%. Two impoundments were revealed that have considerable reserves of waste coal useful for commercial manufacture of CWSF without the beneficiation step. One of the CWSF manufacture steps is the comminution of coal sludge to have a particle size required by the combustion conditions. Vibration mills, which are more compact and energy-intensive that drum mills, can be used in the CWSG manufacture process. The rheological characteristics of CWSF obtained from unbeneficiated waste coal were determined.

E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russia)

2008-08-15T23:59:59.000Z

299

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

DOE Green Energy (OSTI)

The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240[degrees]C, 0.5 to 1.5 MPa, H[sub 2]/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R[sub H[sub 2+Co

Yates, I.C.; Satterfield, C.N.

1989-01-01T23:59:59.000Z

300

Spray drying and attrition behavior of iron catalysts for slurry phase Fischer-Tropsch synthesis  

E-Print Network (OSTI)

This thesis describes results of a study aimed at developing and evaluating attrition resistant iron catalysts prepared by spray drying technique. These catalysts are intended for Fischer-Tropsch (F-T) synthesis in a slurry bubble column reactor (SBCR). One of the major challenges associated with the use of SBCR for this purpose is the problem of catalyst/wax separation. If the catalyst particles break up into smaller ones during the F-T synthesis, these small particles (>5-10 ?m in diameter) will cause problems with the catalyst/wax separation. Several research groups have worked on development of attrition resistant spray-dried iron catalysts, and methodology to measure and predict their attrition behavior. However, these attrition tests were not conducted under conditions representative of those encountered in a SBCR. In this work, the attrition behavior of six spray-dried catalysts and two precipitated catalysts was evaluated under slurry reaction conditions in a stirred tank slurry reactor (STSR). Spray-dried catalysts used in this study were prepared at Texas A&M University (TAMU) and at Hampton University (HU), employing different preparation procedures and silica sources (potassium silicate, tetraethyl orthosilicate or colloidal silica). The attrition properties of F-T catalysts were determined by measuring particle size distribution (PSD) of catalysts before and after F-T synthesis in the STSR. This provides a direct measure of changes in particle size distribution in the STSR, and accounts for both physical and chemical attrition effects. Also, scanning electron microscopy (SEM) was used to investigate the mechanism of attrition - erosion vs. fracture, and to obtain morphological characteristics of catalysts. Spray dried 100Fe/3Cu/5K/16SiO2 catalyst (WCS3516-1), prepared from wet precursors using colloidal silica as the silica source, was the best in terms of its attrition strength. After 337 hours of F-T synthesis in the STSR, the reduction in the average particle size and generation of particles less than 10 ?m in diameter were found to be very small. This indicates that both particle fracture and erosion were insignificant during testing in the STSR. All other catalysts, except one of the spray dried catalysts synthesized at Hampton University, also had a good attrition resistance and would be suitable for use in slurry reactors for F-T synthesis.

Carreto Vazquez, Victor Hugo

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ditau jets in Higgs searches  

SciTech Connect

Understanding and identifying ditau jets--jets consisting of pairs of tau particles--can be of crucial importance and may even turn out to be a necessity if the Higgs boson decays dominantly to new light scalars which, on the other hand, decay to tau pairs. As often seen in various models beyond the standard model such as in the next-to-minimal supersymmetric standard model, Higgs portals, etc., the lightness of these new states ensures their large transverse momenta and, as a consequence, the collinearity of their decay products. We show that the nonstandard signatures of these objects, which can easily be missed by standard analysis techniques, can be superbly exploited in an analysis based on subjet observables. When combined with additional selection strategies, this analysis can even facilitate an early discovery of the Higgs boson. To be specific, a light Higgs can be found with S/{radical}(B) > or approx. 5 from L{approx_equal}12 fb{sup -1} of data. We combine all these observables into a single discriminating likelihood that can be employed toward the construction of a realistic and standalone ditau tagger.

Englert, Christoph; Roy, Tuhin S.; Spannowsky, Michael [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)

2011-10-01T23:59:59.000Z

302

Hypervelocity jets from conical hollow-charges  

Science Conference Proceedings (OSTI)

In this article the formation of jets by means of the implosion of conical targets is analyzed. This implosion might be induced by high intensity lasers or X rays. It is known of experiments with explosive and numeric simulations that the formation of jets depends critically on the aperture of the cone. It is found in these simulations that for a given collapsing speed an angle of the cone exists below which jet doesn't take place. This critical angle grows with the collapsing speed. The numerical simulations seem to indicate that the production of jets is related to the separation of the shock wave that takes place in the collapsing region. We will also analyze the mass and kinetic energy of the jets taken place as a function of the initial opening of the cone.

Velarde, P. M.; Martinez-Val, J. M.; Eliezer, S.; Piera, M.; Guillen, J.; Cobo, M. D.; Ogando, F.; Crisol, A.; Gonzalez, L.; Prieto, J.; Velarde, G. [Instituto de Fusion Nuclear Universidad Politecnico de Madrid Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

1997-04-15T23:59:59.000Z

303

A dichotomy in radio jet orientations  

E-Print Network (OSTI)

We examine the relative orientations of radio jets, central dust and stars in low-power (i.e., FR I and FR I/II) radio galaxies. We use the position angles of jet and dust to constrain the three-dimensional angle $\\theta_{\\rm DJ}$ between jet and dust. For galaxies with filamentary dust 'lanes' (which tend to be misaligned with the galaxy major axis) the jet is approximately perpendicular to the dust structure, while for galaxies with elliptical dust distributions (typically aligned with the galaxy major axis) there is a much wider distribution of $\\theta_{\\rm DJ}$. nThe dust ellipses are consistent with being nearly circular thin disks viewed at random viewing angles. The lanes are likely warped, unsettled dust structures. We consider two scenarios to explain the dust/jet orientation dichotomy.

Gijs Verdoes Kleijn; Tim de Zeeuw

2005-11-30T23:59:59.000Z

304

Comparison of heat transfer characteristics of axisymmetric and two dimensional reattachment jet nozzles to conventional jet impingement nozzles.  

E-Print Network (OSTI)

??The Radial Jet Reattachment (RJR) nozzle was developed over the past decade as a modification of the In-Line Jet (ILJ) nozzle in order to enhance… (more)

Narayanan, Vinod

2012-01-01T23:59:59.000Z

305

Entrained-flow dry-bottom gasification of high-ash coals in coal-water slurries  

SciTech Connect

It was shown that the effective use of dry ash removal during entrained-flow gasification of coal-water slurries consists in simplification of the ash storage system and utilization of coal ash, a decrease in the coal demand, a reduction in the atmospheric emissions of noxious substances and particulate matter, and abandonment of the discharge of water used for ash slurry. According to the results of gasification of coal-water slurries (5-10 {mu}m) in a pilot oxygen-blow unit at a carbon conversion of >91%, synthesis gas containing 28.5% CO, 32.5% H{sub 2}, 8.2% CO{sub 2}, 1.5% CH{sub 4}, the rest being nitrogen, was obtained. The fly ash in its chemical composition, particle size, and density meets the requirements of the European standard EN 450 as a cement additive for concrete manufacture.

E.G. Gorlov; V.G. Andrienko; K.B. Nefedov; S.V. Lutsenko; B.K. Nefedov [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-04-15T23:59:59.000Z

306

A study of ignition and combustion characteristics of isolated coal water slurry droplet using digital image processing technique  

E-Print Network (OSTI)

A digital image processing technique is used to investigate the ignition and combustion characteristics of an isolated coal water slurry droplet in low Re flow. Coal water slurry droplet study is useful for dilute coal suspensions based on the premise that ignitability of a spray of coal water slurry must depend on the ignition characteristic of an isolated coal water slurry droplet. A flat flame burner is used for optical accessibility and also for simulating vitiated gases as existing in boiler burners. A quartz wire of 0.175 mm diameter is chosen for low thermal conductivity and to hold the droplet above theflat flame burner. The following sequence of events is observed: (i) Water first evaporates leaving agglomerated coal particle, (ii) glowing first occurs at the leading edge of the droplet, (iii) for a droplet with diameter of the order less than I mm it was observed that the volatile combustion usually occurs away from the droplet in the wake of the combustible gases made upstream, while for droplet more than I mm, the flame is attached to the particle, (iv) combustion of coal water slurry droplet is intermittent. The ignition time and volatile combustion times are obtained. Parametric studies include the effect of drop diameter and ambient oxygen concentrations. Simplified phenomen ological type models are presented in order to determine the number of particles. interparticle spacing and density of coal water slurry droplet. Finally qualitative relations between ignition and combustion times and particle diameter are obtained and the results are then compared with experimental data.

Bhadra, Tanmoy

1998-01-01T23:59:59.000Z

307

The use of FBC wastes in the reclamation of coal slurry solids. Technical report, September 1--November 30, 1991  

SciTech Connect

Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

Dreher, G.B.

1991-12-31T23:59:59.000Z

308

Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows  

SciTech Connect

The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel contents for PJM operation, and maximum and minimum rheological properties). Test data collected from the PJM overblow tests were provided to Bechtel National, Inc. (BNI) for assessing hydrostatic, dynamic, and acoustic pressure loadings on in-tank structures during 1) single overblows; 2) multiple overlapping overblows of two to four PJMs; 3) simultaneous overblows of pairs of PJMs.

Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

2008-03-03T23:59:59.000Z

309

Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows  

SciTech Connect

The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel contents for PJM operation, and maximum and minimum rheological properties). Test data collected from the PJM overblow tests were provided to Bechtel National, Inc. (BNI) for assessing hydrostatic, dynamic, and acoustic pressure loadings on in-tank structures during 1) single overblows; 2) multiple overlapping overblows of two to four PJMs; 3) simultaneous overblows of pairs of PJMs.

Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

2009-07-20T23:59:59.000Z

310

Alternate processing flowsheets for treating NCAW waste slurry with formic acid  

DOE Green Energy (OSTI)

High-level waste stored at the US Department of Energy`s Hanford Site will be pretreated and fed to the Hanford Waste Virtrification Plant (HWVP). The reference flowsheet used to develop the pretreatment process calls for formic acid. However, the potential for generating H{sub 2} and NH{sub 3} during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory by Wiemers. Work performed at PNL during FY 1991, FY 1992, and FY 1993 further documented the generation of H{sub 2} and NH{sub 3} in neutralized current acid waste (NCAW) slurries treated with HCOOH. Studies at the University of Georgia under contract with Savannah River Technology Center (SRTC) and PNL have verified the catalytic role of noble metals in the generation of H{sub 2} and NH{sub 3}. Both laboratory-scale and pilot-scale studies at SRTC have documented the H{sub 2} and NH{sub 3} generation phenomena. Since H{sub 2} and NH{sub 3} may create hazardous conditions in a waste slurry treatment plant, it is important to reduce the H{sub 2} generation rate and the amount of NH{sub 3} to the lowest levels.

Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Bell, R.D.; Williford, R.E.; Larson, D.E.

1994-04-01T23:59:59.000Z

311

1/12-Scale scoping experiments to characterize double-shell tank slurry uniformity: Test plan  

SciTech Connect

Million gallon double-shell tanks (DSTs) at Hanford are used to store transuranic, high-level, and low-level wastes. These wastes generally consist of a large volume of salt-laden solution covering a smaller volume of settled sludge primarily containing metal hydroxides. These wastes will be retrieved and processed into immobile waste forms suitable for permanent disposal. The current retrieval concept is to use submerged dual-nozzle pumps to mobilize the settled solids by creating jets of fluid that are directed at the tank solids. The pumps oscillate, creating arcs of high-velocity fluid jets that sweep the floor of the tank. After the solids are mobilized, the pumps will continue to operate at a reduced flow rate sufficient to maintain the particles in a uniform suspension. The objectives of these 1/12-scale scoping experiments are to determine how Reynolds number, Froude number, and gravitational settling parameter affect the degree of uniformity achieved during jet mixer pump operation in the full-scale double-shell tanks; develop linear models to predict the degree of uniformity achieved by jet mixer pumps operating in the full-scale double-shell tanks; apply linear models to predict the degree of uniformity that will be achieved in tank 241-AZ-101 and determine whether contents of that tank will be uniform to within {+-} 10% of the mean concentration; and obtain experimental concentration and jet velocity data to compared with the TEMPEST computational and modeling predictions to guide further code development.

Bamberger, J.A.; Liljegren, L.M.

1994-10-01T23:59:59.000Z

312

Composite Octet Searches with Jet Substructure  

Science Conference Proceedings (OSTI)

Many new physics models with strongly interacting sectors predict a mass hierarchy between the lightest vector meson and the lightest pseudoscalar mesons. We examine the power of jet substructure tools to extend the 7 TeV LHC sensitivity to these new states for the case of QCD octet mesons, considering both two gluon and two b-jet decay modes for the pseudoscalar mesons. We develop both a simple dijet search using only the jet mass and a more sophisticated jet substructure analysis, both of which can discover the composite octets in a dijet-like signature. The reach depends on the mass hierarchy between the vector and pseudoscalar mesons. We find that for the pseudoscalar-to-vector meson mass ratio below approximately 0.2 the simple jet mass analysis provides the best discovery limit; for a ratio between 0.2 and the QCD-like value of 0.3, the sophisticated jet substructure analysis has the best discovery potential; for a ratio above approximately 0.3, the standard four-jet analysis is more suitable.

Bai, Yang; /SLAC; Shelton, Jessie; /Yale U.

2012-02-14T23:59:59.000Z

313

Numerical Simulations of Boiling Jet Impingement Cooling in Power Electronics  

DOE Green Energy (OSTI)

This paper explores turbulent boiling jet impingement for cooling power electronic components in hybrid electric vehicles.

Narumanchi, S.; Troshko, A.; Hassani, V.; Bharathan, D.

2006-12-01T23:59:59.000Z

314

The usability of Cerchar abrasivity index for the prediction of UCS and E of Misis Fault Breccia: Regression and artificial neural networks analysis  

Science Conference Proceedings (OSTI)

The derivation of some predictive models for the geomechanical properties of fault breccias will be useful due to the fact that the preparation of smooth specimens from the fault breccias is usually difficult and expensive. To develop some predictive ... Keywords: Artificial neural networks, Cerchar abrasivity index, Elastic modulus, Fault breccia, Physical and textural properties, Uniaxial compressive strength

S. Kahraman; M. Alber; M. Fener; O. Gunaydin

2010-12-01T23:59:59.000Z

315

THE RHIC HYDROGEN JET LUMINESCENCE MONITOR.  

DOE Green Energy (OSTI)

A hydrogen jet polarimeter was developed for the RHIC accelerator to improve the process of measuring polarization. Particle beams intersecting with gas molecules can produce light by the process known as luminescence. This light can then be focused, collected, and processed giving important information such as size, position, emittance, motion, and other parameters. The RHIC hydrogen jet polarimeter was modified in 2005 with specialized optics, vacuum windows, light transport, and a new camera system making it possible to monitor the luminescence produced by polarized protons intersecting the hydrogen beam. This paper describes the configuration and preliminary measurements taken using the RHIC hydrogen jet polarimeter as a luminescence monitor.

RUSSO,T.; BELLAVIA, S.; GASSNER, D.; THIEBERGER, P.; TRBOJEVIC, D.; TSANG, T.

2007-06-25T23:59:59.000Z

316

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

317

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

318

Study of falling-jet flash evaporators  

DOE Green Energy (OSTI)

Experimental results of flash evaporation from sheets of water, 3.2 mm and 6.3 mm thick and 27.9 cm wide, falling freely in the presence of their own vapor, are reported. With no flashing the jets fall in coherent sheets, but with flashing the jets were observed to spread and break up into droplets. Flashing was characterized by an effectiveness parameter, which was found to increase with increasing water temperature and jet length. Variations in water flow rate and heat flux did not influence the effectiveness appreciably.

Kreith, F.; Olson, D.A.; Bharathan, D.; Green, H.J.

1982-11-01T23:59:59.000Z

319

Jet production in muon scattering at Fermilab E665  

SciTech Connect

Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.

Salgado, C.W.; E665 Collaboration

1993-11-01T23:59:59.000Z

320

Thin-wall hollow ceramic spheres from slurries. Quarterly project status report, 1 January--31 March 1991  

SciTech Connect

The hollow sphere materials were alumina, mullite, and mullite- ZrO{sub 2} (the Zr reduced the high-temperature thermal conductivity). During this phase, three major tasks were emphasized: Use of opacifiers (Zr oxide) to reduce the high-temperature thermal conductivity of the sphere, convert the slurries from organic-based to aqueous-based, and technology transfer to industry.

Chapman, A.T.; Cochran, J.K.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Stochastic Dynamics of the Midlatitude Atmospheric Jet  

Science Conference Proceedings (OSTI)

The innate tendency of the background straining field of the midlatitude atmospheric jet to preferentially amplify a subset of disturbances produces a characteristic response to stochastic perturbation whether the perturbations are internally ...

Brian F. Farrell; Peteros J. Ioannou

1995-05-01T23:59:59.000Z

322

Internal shocks model for microquasar jets  

E-Print Network (OSTI)

We present an internal shocks model to investigate particle acceleration and radiation production in microquasar jets. The jet is modelled with discrete ejecta at various time intervals. These ejecta (or 'shells') may have different properties including the bulk velocity. Faster shells can catch up and collide with the slower ones, thus giving rise to shocks. The particles are accelerated inside the shocked plasma. Each collision results in a new shell, which may take part in any subsequent collisions as well as radiate due to synchrotron radiation. Almost continuous energy dissipation along the jet can be obtained with a large number of shell collisions. We investigate the spectral energy distribution of such jets as well as the physical significance of various parameters (e.g. the time interval between ejections and the shell size).

Omar Jamil; Rob Fender; Christian Kaiser

2008-11-20T23:59:59.000Z

323

Jet Fuel from Bio-Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Jet Fuel from Bio-Diesel Background Due to concerns with limited resources of petroleum-based fuels, the demand for using renewable feedstocks, such as vegetable oils and animal...

324

Current-driven instability of magnetic jets  

E-Print Network (OSTI)

MHD instabilities can be responsible for the complex morphology of astrophysical jets. We consider the stability properties of jets containing both the azimuthal and axial field of subthermal strength. The presence of the magnetic field with complex topology in jets is suggested by theoretical models and it is consistent with recent observations. Stability is discussed by means of a linear analysis of the ideal MHD equations.We argue that, in the presence of azimuthal and axial magnetic fields, the jet is always unstable to non-axisymmetric perturbations. Stabilization does not occur even if the strengths of these field components are comparable. If the axial field is weaker than the azimuthal one, instability occurs for perturbations with any azimuthal wave number $m$, and the growth rate reach a saturation value for small values of $m$. If the axial field is stronger than the toroidal one, the instability shows off for perturbations with relatively large $m$.

Bonanno, Alfio

2010-01-01T23:59:59.000Z

325

Jets (relativistic and non) in astrophysics  

E-Print Network (OSTI)

Let's take stock of the situation on one of the most studied astrophysical phenomena during the latest years: the jets escaping from protostars, stellar singularities, GRB and active galactic nuclei.

Foschini, Luigi

2010-01-01T23:59:59.000Z

326

String model for spinning quark jets  

Science Conference Proceedings (OSTI)

A string model of quark hadronization, taking the quark spin degree of freedom into account, is proposed. The method for using the model in a Monte-Carlo code for jet generation is given.

Artru, X.; Belghobsi, Z. [Universite de Lyon, CNRS/IN2P3 and Universite Lyon 1, Institut de Physique Nucleaire de Lyon, Laboratoire de Physique Theorique, Universite de Jijel (Algeria)

2012-06-27T23:59:59.000Z

327

Mixing Processes within the Polar Night Jet  

Science Conference Proceedings (OSTI)

Lagrangian material line simulations are performed using U.K. Meteorological Office assimilated winds and temperatures to examine mixing processes in the middle- and lower-stratospheric polar night jet during the 1992 Southern Hemisphere spring ...

R. Bradley Pierce; T. Duncan Fairlie; William L. Grose; Richard Swinbank; Alan O'Neill

1994-10-01T23:59:59.000Z

328

Developments of the ATLAS Jet Trigger  

E-Print Network (OSTI)

There have been a lot of recent changes in the ATLAS jet trigger. The standard strategy, based on Regions Of Interest, is not well-suited for multi-jet events since it leads to pathologies and efficiency losses. This philosophy has been changed for the jet trigger, and we now have the possibility of unpacking the full calorimeter at Event Filter and (even for a small subset of the events) at an intermediate level between Level-1 and Level-2. We also moved to the use of calibrated scale at trigger level, and to the application of noise cuts to reduce rate spikes. We will present the performance of the jet trigger in 2011, when most of these changes were operational

Lopes, L; The ATLAS collaboration

2012-01-01T23:59:59.000Z

329

Performance of the ATLAS Jet Trigger  

E-Print Network (OSTI)

There have been a lot of recent changes in the ATLAS jet trigger. The standard strategy, based on Regions Of Interest, is not well-suited for multi-jet events since it leads to pathologies and efficiency losses. This philosophy has been changed for the jet trigger, and we now have the possibility of unpacking the full calorimeter at Event Filter and (even for a small subset of the events) at an intermediate level between Level-1 and Level-2. We also moved to the use of calibrated scale at trigger level, and to the application of noise cuts to reduce rate spikes. We will present the performance of the jet trigger in 2011, when most of these changes were operational

Lopes, L; The ATLAS collaboration

2012-01-01T23:59:59.000Z

330

The Initial Composition of Jet Condensation Trails  

Science Conference Proceedings (OSTI)

Physicochemical processes that generate and transform aerosols in jet aircraft plumes are discussed on the basis of theoretical models and recent observations of young contrails in the upper troposphere. The initial evolution of optical depth and ...

B. Kärcher; Th Peter; U. M. Biermann; U. Schumann

1996-11-01T23:59:59.000Z

331

Persistent Multiple Jets and PV Staircase  

Science Conference Proceedings (OSTI)

The persistence of multiple jets is investigated with a quasigeostrophic, two-layer, ?-plane channel model. Linearly unstable normal modes are found to be capable of qualitatively describing the eddy fluxes of the nonlinear model. For a ...

Changhyun Yoo; Sukyoung Lee

2010-07-01T23:59:59.000Z

332

Parametric systems studies of the aqueous-based (slurry) blanket concept for accelerator transmutation of waste  

Science Conference Proceedings (OSTI)

Transmutation of long-lived nuclear waste currently stored in spent reactor fuels may represent an attractive alternative to deep geologic disposal. The aqueous-based accelerator transmutation of waste (ATW) concept uses a proton accelerator to produce a 1.6-GeV, 250-mA ( ca. 400 MW) beam that is split four ways and directed to four D{sub 2}O-cooled solid W-Pb composite targets. Each target in turn is centered in a heavy water moderated, highly multiplying, actinide (oxide)-slurry blanket. The target-blanket system for ATW resides at an interface separating two major systems that are crucial to the economic and technical success of the concept: (a) the high-energy (power-intensive) accelerator delivering 0.8 to 1.6 GeV protons to the high-Z spallation neutron source and (b) the chemical-plant equipment (CPE) that provides feedstock appropriate for efficient and effective transmutation. Parametric studies have been performed to assess the effects of the target-blanket on overall system performance with regard to neutron economy, chemical-processing efficiency and thermal-hydraulic design options. Based on these parametric evaluations, an interim base-case aqueous-slurry ATW design was selected for more detailed analysis. This base-case target-blanket consists of an array of Zr-Nb pressure tubes placed in a heavy water moderator surrounding a heavy-water-cooled W-Pb target. Neutronics and thermal-hydraulic calculations indicate that each of the four ATW target-blanket modules operating with a neutron multiplication k{sub eff} = 0.95 can transmute the actinide waste and the technetium and iodine waste from ca. 2.5 light water reactors. By recovering the fission heat, sufficient electricity can be produced both to operate the accelerator and to supply power to the grid for revenue generation. These broad-based parametric studies have provided guidance to a preliminary conceptual engineering design of the aqueous-slurry ATW blanket concept.

Beard, C.A.; Davidson, J.W.; Krakowski, R.A.; Battat, M.E. [Los Alamos National Lab., NM (United States)

1995-06-01T23:59:59.000Z

333

New results on jet fragmentation at CDF  

SciTech Connect

Presented are the latest results of jet fragmentation studies at the Tevatron using the CDF Run II detector. Studies include the distribution of transverse momenta (Kt) of particles jets, two-particle momentum correlations, and indirectly global event shapes in p{bar p} collisions. Results are discussed within the context of recent Next-to-Leading Log calculations as well as earlier experimental results from the Tevatron and e{sup +}e{sup -} colliders.

Jindariani, Sergo; /Florida U.

2006-12-01T23:59:59.000Z

334

Dark Matter Jets at the LHC  

SciTech Connect

We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

Bai, Yang; /SLAC; Rajaraman, Arvind; /UC, Irvine

2012-03-28T23:59:59.000Z

335

Supersonic Jet Excitation using Flapping Injection  

E-Print Network (OSTI)

Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

2013-01-01T23:59:59.000Z

336

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

DOE Green Energy (OSTI)

This report details experiments performed on three different copper-based catalysts: Cu/Cr[sub 2]O[sub 3], Cu/MnO/Cr[sub 2]O[sub 3] and Cu/ZnO/Al[sub 2]O[sub 3]. Of these three catalysts, the Cu/ZnO/Al[sub 2]O[sub 3] exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H[sub 2]/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

Yates, I.C.; Satterfield, C.N.

1988-01-01T23:59:59.000Z

337

Hydrodynamic characterization of slurry bubble-column reactors for Fischer-Tropsch synthesis  

DOE Green Energy (OSTI)

In the Fischer-Tropsch approach to indirect liquefaction, slurry bubble-column reactors (SBCRs) are used to convert coal syngas into the desired product. Sandia`s program to develop, implement, and apply diagnostics for hydrodynamic characterization of SBCRs at industrially relevant conditions is discussed.Gas-liquid flow experiments are performed in an industrial-scale stainless steel vessel. Gamma-densitometry tomography (GDT) is applied to make spatially resolved gas holdup measurements. Both water and Drakeol 10 with air sparging are examined at ambient and elevated pressures. Gas holdup increases with gas superficial velocity and pressure, and the GDT values are in good agreement with values from differential pressure (DP) measurements.

Jackson, N.B.; Torczynski, J.R.; Shollenberger, K.A.; O`Hern, T.J.; Adkins, D.R.

1996-08-01T23:59:59.000Z

338

U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel Exports; Kerosene-Type Jet Fuel Exports by Destination; Kerosene-Type Jet Fuel Supply and Disposition ...

339

The Furnace combustion and radiation characteristics of methanol and a methanol/coal slurry  

DOE Green Energy (OSTI)

An experimental facility has been built to study the combustion of methanol and a slurry of methanol plus 5% coal in an environment similar to industrial and utility boilers. The furnace is a horizontal water cooled cylinder, 20 cm in diameter by one meter long, with a firing rate of 60 kW. The measurements taken throughout the furnace include temperature and concentration of carbon monoxide, carbon dioxide, water, oxides of nitrogen, methanol and particulates. Spectral radiation intensity measurements are taken along the axis of the furnace burning methanol and the methanol/coal slurry. The effect of the fuel on flame structure is reported. The temperatures in the pure methanol flame are, in general, higher than in the methanol/coal flame. The levels of the oxides of nitrogen are low in the pure methanol flame (less than 20 ppM NO). Addition of 5% coal to the methanol causes NO concentration to increase to 100 ppM. This represents a conversion of 40% of the coal bound nitrogen to NO. Particulate levels increase from less than .001 g/m/sup 3/ for the pure methanol to over .25 g/m/sup 3/ when pulverized coal is added. The low levels of soot and particulates in the methanol flame have an effect on the spectral intensity. No continuous radiation is measured in the methanol flame, but small amounts of particulate radiation can be seen from the spectra of the methanol/coal flame. The total emittance of the flame is increased from about .10 to .135 with the addition of 5% pulverized coal, but the radiation intensity is reduced because of the lower flame temperatures. A numerical program has been written to calculate the spectral intensity from an inhomogeneous mixture of combustion products. Comparisons are made between the calculated intensity and the measured intensity for both fuel systems. The numerical results are about 25% lower than the measured results. Reasons for this are discussed.

Grosshandler, W.L.

1977-01-01T23:59:59.000Z

340

ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)  

SciTech Connect

The objectives set for this cooperative project between Washington University (WU), Ohio State University (OSU), and Air Products and Chemicals, Inc. (APCI) to advance the understanding of the Fischer-Tropsch (FT) slurry bubble column reactor hydrodynamics for proper design and scale-up via advanced diagnostic techniques have been accomplished successfully despite the unexpected challenging technical difficulties in implementing the advanced techniques in high pressure stainless steel slurry bubble column. In this work, a detailed review of the aspects of high pressure phenomena of bubbles in liquids and liquid-solids suspension was performed. All the challenging technical problems mentioned above were resolved and the advanced measurement techniques were successfully used in this project. The effects of reactor pressure, superficial gas velocity, solids loading, and liquid physical properties on the overall gas holdup, holdups distribution, recirculation velocity, turbulent parameters, bubble dynamics (size and rise velocity) were investigated via advanced measurement techniques that includes optical probe, Laser Doppler Anemometry (LDA), Computed Tomography (CT), Computer Automated Radioactive Particle Tracking (CARPT). The findings are discussed and analyzed in this report. In attempt to advance the design and scale-up of bubble columns, new correlations have been developed based on a large bank of data collected at a wide range of operating and design conditions. These correlations are for prediction of radial gas holdup profile, axial liquid velocity profile, overall gas holdup based on Neural Network and gas-liquid mass transfer coefficient. Despite the noticeable advances made on FT SBCR as a part of this project, there are still many parameters and challenging issues that need to be further and properly investigated and understood before this technology will be readily used for alternative fuel development technology.

M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Jet energy scale determination in the D0 experiment  

E-Print Network (OSTI)

The calibration of jet energy measured in the \\DZero detector is presented, based on ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Jet energies are measured using a sampling calorimeter composed of uranium and liquid argon as the passive and active media, respectively. This paper describes the energy calibration of jets performed with photon+jet, Z+jet and dijet{} events, with jet transverse momentum pT > 6 GeV and pseudorapidity range |eta| energy in simulation and in particular of the effects due to the flavor of the parton originating the jet, correcting biases up to 3%-4% in jets with low pT originating from gluons and up to 6%-8% in jets from b quarks.

D0 Collaboration

2013-12-24T23:59:59.000Z

342

AIAA Paper 2006-0102 Analysis of Jet Effects on Co-Flow Jet Airfoil  

E-Print Network (OSTI)

.-C. Zha, C. Paxton, A. Conley, A. Wells, and B. Carroll, "Effect of Injection Slot Size on High in this paper to analyze the jet effect on co-flow jet airfoil with injection and suction and the airfoil with injection only. The ducts reaction forces formulations to be included for lift and drag calculation

Zha, Gecheng

343

ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS  

SciTech Connect

Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

Huarte-Espinosa, M.; Frank, A.; Blackman, E. G. [Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY 14627-0171 (United States); Ciardi, A. [LERMA, Universite Pierre et Marie Curie, Observatoire de Paris, F-92195 Meudon (France); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V.; Chittenden, J. P. [Blackett Laboratory, Imperial College London, SW7 2BW London (United Kingdom)

2012-09-20T23:59:59.000Z

344

Results Summary Investigating the Use of Liquid CO2 Coal Slurry for Feeding Low Rank Coal to the E-Gas™ Gasifier  

Science Conference Proceedings (OSTI)

This report summarizes the results of US Department of Energy (DOE) Award No. DE-FE0007977, Liquid CO2/Coal Slurry for Feeding Low Rank Coal to Gasifiers, which investigates the practicality of using a liquid CO2/coal slurry preparation and feed system for the E-Gas gasifier in an integrated-gasification–combined-cycle (IGCC) electric power generation plant configuration.Liquid CO2 (LCO2) has several property differences from water that ...

2013-12-11T23:59:59.000Z

345

High energy emission from galactic jets  

E-Print Network (OSTI)

In this chapter we review some aspects of X-ray binaries, particularly those presenting steady jets, i.e. microquasars. Because of their proximity and similarities with active galactic nuclei (AGN), galactic jet sources are unique laboratories to test astrophysical theories of a universal scope. Due to recent observational progress made with the new generation of gamma-ray imaging atmospheric Cherenkov telescopes and in view of the upcoming km3-size neutrino detectors, we focus especially on the possible high-energy gamma radiation and neutrino emission. In connection with this, we also comment about astrophysical jets present in young stellar objects, and we briefly discuss similarities and differences with extragalactic AGN and gamma-ray bursters.

H. R. Christiansen

2013-06-07T23:59:59.000Z

346

The Dynamical Relationship between Subtropical and Eddy-Driven Jets  

Science Conference Proceedings (OSTI)

This study examines the impact of a subtropical jet on the development of baroclinic waves and polar-front jets with an idealized multilevel primitive equation model. Linear stability analysis and initial-value approaches suggest that baroclinic ...

Sukyoung Lee; Hyun-kyung Kim

2003-06-01T23:59:59.000Z

347

Jet physics from static charges in AdS space  

E-Print Network (OSTI)

Soft interactions with high-energy jets are explored in radial coordinates which exploit the approximately conformal behavior of perturbative gauge theories. In these coordinates, the jets, approximated by Wilson lines, ...

Stewart, Iain

348

Formation of Jets and Equatorial Superrotation on Jupiter  

Science Conference Proceedings (OSTI)

The zonal flow in Jupiter’s upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of ...

Tapio Schneider; Junjun Liu

2009-03-01T23:59:59.000Z

349

Recirculation Gyres Forced by a Beta-Plane Jet  

Science Conference Proceedings (OSTI)

A numerical model, with quasigeostrophic and barotropic dynamics, is used to study the forcing of mean flows by an unstable jet. The initially zonal jet has specified shape and transport at the western inflow boundary and is sufficiently intense ...

Steven R. Jayne; Nelson G. Hogg; Paola Malanotte-Rizzoli

1996-04-01T23:59:59.000Z

350

Jet Jumping: Low-Frequency Variability in the Southern Ocean  

Science Conference Proceedings (OSTI)

The authors study intrinsic variability in the position of jets in a ?-plane channel ocean with simple topography using a quasigeostrophic numerical model. This study links the variability in jet position with abyssal anticyclones that form as a ...

Christopher C. Chapman; Andrew McC. Hogg

2013-05-01T23:59:59.000Z

351

Properly synchronized measurements of droplet sizes for high-pressure intermittent coal-water slurry fuel sprays  

DOE Green Energy (OSTI)

Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation with a laser diffraction particle analyzing (LDPA) technique. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. A correlation of the SMD with the injection conditions was determined which should show a satisfactory agreement with the measured SMD data. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure.

Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States)

1993-12-31T23:59:59.000Z

352

Rhelogical properties essential for the atomization of coal water slurries (CWS). Quarterly progress report, June 15, 1992--September 15, 1992  

SciTech Connect

The overall objective of this project is to perform experiments to understand the effect of high shear and extensional properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the extensional and high shear properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS. During the past quarter, several experimental studies on pressure dependent atomization of Coal-water slurries and simulated fluids were performed. Also surface tension, elastic, high and low shear viscosities were performed. These tests were performed to initiate the understanding of the fundamental parameters that govern the atomization process of CWS.

Ohene, F.

1992-12-31T23:59:59.000Z

353

Optimized Parameters for a Mercury Jet Target  

Science Conference Proceedings (OSTI)

A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS code, we simulate particle production initiated by incoming protons with kinetic energies between 2 and 100 GeV. For each proton beam energy, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. The number of muons surviving through an ionization cooling channel is determined as a function of the proton beam energy. We optimize the mercury jet target parameters: the mercury jet radius, the incoming proton beam angle and the crossing angle between the mercury jet and the proton beam for each proton beam energy. The optimized target radius varies from about 0.4 cm to 0.6 cm as the proton beam energy increases. The optimized beam angle varies from 75 mrad to 120 mrad. The optimized crossing angle is near 20 mrad for energies above 5 GeV. These values differ from earlier choices of 67 mrad for the beam angle and 33 mrad for the crossing angle. These new choices for the beam parameters increase the meson production by about 20% compared to the earlier parameters. Our study demonstrates that the maximum meson production efficiency per unit proton beam power occurs when the proton kinetic energy is in the range of 5-15 GeV. Finally, the dependence on energy of the number of muons at the end of the cooling channel is nearly identical to the dependence on energy of the meson production 50 m from the target. This demonstrates that the target parameters can be optimized without the additional step of running the distribution through a code such as ICOOL that simulates the bunching, phase rotation, and cooling.

Ding, X.; Kirk, H.

2010-12-01T23:59:59.000Z

354

Development and testing of a high-pressure downhole pump for jet-assist drilling. Topical report, Phase II  

Science Conference Proceedings (OSTI)

The goal of jet-assisted drilling is to increase the rate of penetration (ROP) in deeper gas and oil wells, where the rocks become harder and more difficult to drill. Increasing the ROP can result in fewer drilling days, and therefore, lower drilling cost. In late 1993, FlowDril and the Gas Research Institute (GRI) began a three-year development of a down hole pump (DHP{reg_sign}) capable of producing 30,000 psi out pressure to provide the high-pressure flow for high-pressure jet-assist of the drill bit. The U.S. Department of Energy (DOE) through its Morgantown, WV (DOE-Morgantown) field office, joined with GRI and FlowDril to develop and test a second prototype designed for drilling in 7-7/8 inch holes. This project, {open_quotes}Development and Testing of a High-Pressure Down Hole Pump for Jet-Assist Drilling,{close_quotes} is for the development and testing of the second prototype. It was planned in two phases. Phase I included an update of a market analysis, a design, fabrication, and an initial laboratory test of the second prototype. Phase II is continued iterative laboratory and field developmental testing. This report summarizes the results of Phase II. In the downhole pump approach shown in the following figure, conventional drill pipe and drill collars are used, with the DHP as the last component of the bottom hole assembly next to the bit. The DHP is a reciprocating double ended, intensifier style positive displacement, high-pressure pump. The drive fluid and the high-pressure output fluid are both derived from the same source, the abrasive drilling mud pumped downhole through the drill string. Approximately seven percent of the stream is pressurized to 30,000 psi and directed through a high-pressure nozzle on the drill bit to produce the high speed jet and assist the mechanical action of the bit to make it drill faster.

NONE

1997-10-01T23:59:59.000Z

355

Gamma-Ray Bursts: Jets and Energetics  

E-Print Network (OSTI)

The relativistic outflows from gamma-ray bursts are now thought to be narrowly collimated into jets. After correcting for this jet geometry there is a remarkable constancy of both the energy radiated by the burst and the kinetic energy carried by the outflow. Gamma-ray bursts are still the most luminous explosions in the Universe, but they release energies that are comparable to supernovae. The diversity of cosmic explosions appears to be governed by the fraction of energy that is coupled to ultra-relativistic ejecta.

D. A. Frail

2003-11-12T23:59:59.000Z

356

Gravity waves from vortex dipoles and jets  

E-Print Network (OSTI)

The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here. Within these dipoles, inertia-gravity waves with intrinsic frequencies 1-2 times the Coriolis parameter are simulated in the jet exit region. The ray tracing analysis reveals strong variation of wave characteristics along ray paths. The dependence of wave amplitude on the Rossby number is examined through experiments in which the two vortices are initially separated by a large distance but subsequently approach each other and form a vortex dipole with an associated amplifying localized jet. The amplitude of stationary gravity waves in the simulations with a 90-km grid spacing increases nearly linearly with the square of the Rossby number but significantly more rapidly when smaller grid spacing is used. To further address the source mechanism of the gravity waves within the vortex dipole, a linear numerical framework is developed based on the framework proposed by Plougonven and Zhang (2007). Using the nonlinearly balanced fields as the basic state and driven by three types of large scale forcing, the vorticity, divergence and thermodynamic forcing, this linear model is utilized to obtain linear wave responses. The wave packets in the linear responses compare reasonably well with the MM5 simulated gravity waves. It is suggested that the vorticity forcing is the leading contribution to both gravity waves in the jet exit region and the ascent/descent feature in the jet core. This linear model is also adopted to study inertia-gravity waves in the vicinity of a baroclinic jet during the life cycle of an idealized baroclinic wave. It is found that the thermodynamic forcing and the vorticity forcing are equally important to the gravity waves in the low stratosphere, but the divergence forcing is again playing a lesser role. Two groups of wave packets are present in the linear responses; their sources appear to locate either near the surface front or near the middle/upper tropospheric jet.

Wang, Shuguang

2008-08-01T23:59:59.000Z

357

Centrifugally driven electrostatic instability in extragalactic jets  

SciTech Connect

The stability problem of the rotation-induced electrostatic wave in extragalactic jets is presented. Solving a set of equations describing dynamics of a relativistic plasma flow of active galactic nuclei (AGN) jets, an expression of the instability rate has been derived and analyzed for typical values of AGNs. The growth rate was studied versus the wavelength and the inclination angle and it has been found that the instability process is very efficient with respect to the accretion disk evolution, indicating high efficiency of the instability.

Osmanov, Z. [Georgian National Astrophysical Observatory, Kazbegi ave. 2a, Tbilisi 0160 (Georgia)

2008-03-15T23:59:59.000Z

358

The Cambridge Jet algorithm: features and applications  

E-Print Network (OSTI)

Jet clustering algorithms are widely used to analyse hadronic events in high energy collisions. Recently a new clustering method, known as `Cambridge', has been introduced. In this article we present an algorithm to determine the transition values of y_cut for this clustering scheme, which allows to resolve any event to a definite number of jets in the final state. We discuss some particularities of the Cambridge clustering method and compare its performance to the Durham clustering scheme for Monte Carlo generated e+e- annihilation events.

Stan Bentvelsen; Irmtraud Meyer

1998-03-12T23:59:59.000Z

359

High pressure water jet mining machine  

DOE Patents (OSTI)

A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

Barker, Clark R. (Rolla, MO)

1981-05-05T23:59:59.000Z

360

Enhancement of wall jet transport properties  

DOE Patents (OSTI)

By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

Claunch, Scott D. (Broomfield, CO); Farrington, Robert B. (Golden, CO)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Identification of active agents for tetrachloroethylene degradation in Portland cement slurry containing ferrous iron  

E-Print Network (OSTI)

Fe(II)-based degradative solidification/stabilization (Fe(II)-DS/S) technology is the modification of conventional solidification/stabilization (S/S). Inorganic pollutants are immobilized by Fe(II)-DS/S while organic pollutants are destroyed. Experimental studies were conducted to identify the active agents for Tetrachloroethylene (PCE) degradation as well as the conditions that enhance the formation of the active agents in the Fe(II)-DS/S system. PCE was chosen as a model chlorinated aliphatic hydrocarbon in this study. First, the conditions that lead to maximizing production of the active agents were identified by measuring the ability of various chemical mixtures to degrade PCE. Results showed that Fe(II), Fe(III), Ca, and Cl were the the important elements that affect degradation activity. Elemental compositions of the mixtures and the conditions affecting solid formation might be the important factors in determining how active solids are formed. Second, instrumental analyses (XRD, SEM, SEM-EDS) were used to identify minerals in chemical mixtures that have high activities. Results indicate that active agents for PCE degradation in Portland cement slurries and in cement extracts might be one of several AFm phases. However, systems without cement did not form the same solids as those with cement or cement extract. Ferrous hydroxide was identified as a major solid phase formed in systems without cement. Finally, the effect of using different types of ordinary Portland cement (OPC) on PCE degradation rate during Fe(II)-DS/S was examined and the solids were examined by instrumental analyses (XRD, SEM, SEM-EDS). Four different OPC (Txi, Lehigh, Quikrete, and Capitol) showed different PCE degradation behaviors. Pseudo first-order kinetics was observed for Capitol and Txi OPC and second-order kinetics was observed for Quikrete. In the case of Lehigh cement, pseudo first-order kinetics was observed in cement slurry and second-order kinetics in cement extract. Calcium aluminum hydroxide hydrates dominated solids made with Txi, Quikrete, and Lehigh cements and FriedelÂ?s salt was the major phase found in solids made with Capitol cements. Fe tended to be associated with hexagonal thin plate particles, which were supposed to be a LDH.

Ko, Sae Bom

2003-05-01T23:59:59.000Z

362

Rheological properties essential for the atomization of Coal Water Slurries (CWS). Quarterly progress report, September 15, 1994--December 15, 1994  

SciTech Connect

The overall objective of this project is to perform experiments to understand the effect of high shear and extensional properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to-CWS. A correlation between the extensional and high shear properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS.

Ohene, F.

1995-04-01T23:59:59.000Z

363

Jets and the hadronic final state at HERA  

E-Print Network (OSTI)

Recent results on jets and the hadronic final state from the HERA collaborations H1 and ZEUS are reviewed.

T. Schoerner-Sadenius

2004-10-07T23:59:59.000Z

364

Photon - Jet Correlations and Constraints on Fragmentation Functions  

E-Print Network (OSTI)

We study the production of a large-pT photon in association with a jet in proton-proton collisions. We examine the sensitivity of the jet rapidity distribution to the gluon distribution function in the proton. We then assess the sensitivity of various photon + jet correlation observables to the photon fragmentation functions. We argue that RHIC data on photon-jet correlations can be used to constrain the photon fragmentation functions in a region which was barely accessible in LEP experiments.

Z. Belghobsi; M. Fontannaz; J. -Ph. Guillet; G. Heinrich; E. Pilon; M. Werlen

2009-03-27T23:59:59.000Z

365

Gauge/gravity duality and jets in strongly coupled plasma  

E-Print Network (OSTI)

We discuss jets in strongly coupled N = 4 supersymmetric Yang-Mills plasma and their dual gravitational description.

Chesler, Paul M

2009-01-01T23:59:59.000Z

366

Gauge/gravity duality and jets in strongly coupled plasma  

E-Print Network (OSTI)

We discuss jets in strongly coupled N = 4 supersymmetric Yang-Mills plasma and their dual gravitational description.

Paul M. Chesler

2009-07-26T23:59:59.000Z

367

Michigan Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) Michigan Downstream Charge Capacity of Operable Petroleum Refineries ...

368

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

369

On the Counter-jet Emission in GRB Afterglows  

Science Conference Proceedings (OSTI)

We investigate the dynamical evolution of double-sided jets and present detailed numerical studies on the emission from the receding jet of gamma-ray bursts. It is found that the receding jet emission is generally very weak and only manifests as a plateau in the late time radio afterglow light curves. Additionally, we find that the effect of synchrotron self-absorption can influence the peak time of the receding jet emission significantly.

Wang Xin; Huang, Y. F. [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

2010-10-15T23:59:59.000Z

370

Jet impact on a soap film Geoffroy Kirstetter, Christophe Raufaste,  

E-Print Network (OSTI)

of the micro-jet or con- versely on its destabilization through the control of the liquid jet atomization, such as impacts, have recently raised some interest and uses for sound absorp- tion or bomb explosion safety [15 can be used to guide and control the jet direction. In the second one, a new class of flow is reported

Paris-Sud XI, Université de

371

Structure and Spacing of Jets in Barotropic Turbulence  

Science Conference Proceedings (OSTI)

Turbulent flows are often observed to be organized into large-spatial-scale jets such as the familiar zonal jets in the upper levels of the Jovian atmosphere. These relatively steady large-scale jets are not forced coherently but are maintained ...

Brian F. Farrell; Petros J. Ioannou

2007-10-01T23:59:59.000Z

372

Jet pump feeds corrosion inhibitor in Russian waterflood  

SciTech Connect

The Russian company Orenburgneft JSC tested a proportioning jet pump for injecting corrosion inhibitor into the water injection system at its Tananykskoye waterflood. The jet pump has no moving parts and, therefore, provides an hermetic system with zero emissions of pumped and working fluid. This pump reduces weight, dimensions, and costs compared to mechanical pumps. The paper describes jet pumping and the pump design.

Yuden, I.S. [JKX Oil and Gas, Guildford (United Kingdom); Sazanov, Y.A.; Yeliseev, V.N.; Malov, B.A. [Orenburgneft JSC, Moscow (Russian Federation)

1997-01-27T23:59:59.000Z

373

Studying Z/gamma*+Jet Production  

SciTech Connect

The production of jets in association with a Z/{gamma}* boson is an example of an important class of processes at hadron colliders, namely vector boson + jet (V + jet) production. Comparisons of measurements of this class of processes with theory predictions constitute an important, fundamental test of the Standard Model of particle physics, and of the theory of QCD in particular. While having a smaller cross section than other V +jet processes, Z/{gamma}*({yields} e{sup +}e{sup -}) + jets production, with Z/{gamma}* {yields} e{sup +}e{sup -}/{mu}{sup +}{mu}{sup -}, has a distinct experimental signature allowing for measurements characterized by low backgrounds and a direct, precise measurement of the properties of the decay products of the Z/{gamma}* boson. In this thesis, several new measurements of the properties of jets produced in association with a Z/{gamma}* boson in p{bar p} collisions at {radical}s = 1.96 TeV are presented. The cross section for Z/{gamma}*({yields} e{sup +}e{sup -}) + N jet production (N {le} 3) is measured, differential in the transverse momentum of the Nth jet in the event, normalized to the inclusive Z/{gamma}* cross section. Also, the cross section for Z/{gamma}*({yields} e{sup +}e{sup -}) + N jets (N {ge} 1) is measured, differential in the difference in azimuthal angle between the di-electron system and any jet in the event, normalized to unity. The data used in the measurements were collected by the D0 experiment located at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to an integrated luminosity of 1.04 fb{sup -1}. The measured jet transverse momentum spectra are compared with the predictions of perturbative calculations at the next-to-leading order in the strong coupling constant. Given the low sensitivity of the calculations to model parameters, these comparisons represent a stringent test of perturbative QCD. One of the main goals currently being pursued in particle physics is the discovery of the only particle predicted by the Standard Model which has so far no been detected experimentally, namely the Higgs boson. It is assumed that the ATLAS and CMS experiments located at the Large Hadron Collider (LHC), a proton-proton collider at {radical}s = 14 TeV, will be able to detect the Higgs boson, or rule out its existence, within the next few years. The collisions delivered by the LHC will also be used to perform a long range of searches for other new particles, for instance particles predicted by models based on the principle of supersymmetry. The associated production of vector bosons with jets has relatively large production rates at the LHC and can produce a long list of different final states which can include charged leptons, missing transverse energy, as well as light- and heavy-flavour jets. This makes V + jet production a major source of background events to many searches for new particles. Most techniques used for estimating the expected number of background events to searches rely on passing the stable final-state particles of simulated hadron collisions generated using a so-called event generator code, through a simulation of the experimental detector system. The development of event generators which are capable of reliably predicting the properties of jets produced in association with a core process, e.g. the production of a vector boson, has been the subject of a large amount of research activity during the last ten years. These efforts have led to the appearance of the CKKW and MLM algorithms which are implemented in several event generators, among them SHERPA and ALPGEN + PYTHIA. The large data sample collected by the D0 experiment during Run II offers an excellent opportunity for validating these new event generators against experimental measurements of V + jet production. As argued above, the Z/{gamma}*({yields} e{sup +}e{sup -}) + jets process offers the combination of a clean experimental signature and large production rates, making it the process of choice for these studies.

Nilsen, Henrik Wold; /Freiburg U.

2009-07-01T23:59:59.000Z

374

Simulation and optimization of a slurry-based fiberglass preform manufacturing process  

DOE Green Energy (OSTI)

As a part of the Partnership for a New Generation of Vehicles (PNGV) program directed by the U.S. Department of Commerce, the U.S. Department of Energy (DOE) is currently supporting various research and development projects identified by representatives of the U.S. Council for Automotive Research (USCAR) as high priority areas deserving special attention. A water-based slurry process for producing chopped fiberglass preforms that can be used in manufacturing structural automotive composites is being developed by researchers at the Idaho National Engineering Laboratory (INEL) and members of the Automotive Composites Consortium (ACC), as part of the U.S. Advanced Manufacturing Partnership (USAMP). The main objective of the project is to achieve a uniform (by mass) distribution of fibers in the preform. To this end, computer modeling and experimental efforts are currently underway at the INEL. The present article reports strategy, progress and current results for the modeling effort. The modeling effort includes computational fluid dynamic simulations of the current process to help visualize process dynamics and computer-based design optimization that automatically adjusts process parameters to find the best design to meet the objective.

Johnson, R.W.; Landon, M.D.

1995-12-01T23:59:59.000Z

375

Superclean coal-water slurry combustion testing in an oil-fired boiler  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

376

ANALYSES AND COMPARISON OF BULK AND COIL SURFACE SAMPLES FROM THE DWPF SLURRY MIX EVAPORATOR  

Science Conference Proceedings (OSTI)

Sludge samples from the DWPF Slurry Mix Evaporator (SME) heating coil frame and coil surface were characterized to identify differences that might help identify heat transfer fouling materials. The SME steam coils have seen increased fouling leading to lower boil-up rates. Samples of the sludge were taken from the coil frame somewhat distant from the coil (bulk tank material) and from the coil surface (coil surface sample). The results of the analysis indicate the composition of the two SME samples are very similar with the exception that the coil surface sample shows {approx}5-10X higher mercury concentration than the bulk tank sample. Elemental analyses and x-ray diffraction results did not indicate notable differences between the two samples. The ICP-MS and Cs-137 data indicate no significant differences in the radionuclide composition of the two SME samples. Semi-volatile organic analysis revealed numerous organic molecules, these likely result from antifoaming additives. The compositions of the two SME samples also match well with the analyzed composition of the SME batch with the exception of significantly higher silicon, lithium, and boron content in the batch sample indicating the coil samples are deficient in frit relative to the SME batch composition.

Hay, M.; Nash, C.; Stone, M.

2012-02-17T23:59:59.000Z

377

Distributions of 15 elements on 58 absorbers from simulated Hanford Double-Shell Slurry Feed (DSSF)  

SciTech Connect

As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 58 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, pillared layered materials, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford double-shell slurry feed (DSSF) (pH 14.0). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U and Am), and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 870 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2610 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing DSSF solutions.

Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States); Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States)

1994-11-01T23:59:59.000Z

378

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

DOE Green Energy (OSTI)

A Co/MgO/SiO[sub 2] Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al[sub 2]O[sub 3] water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240[degrees]C, a pressure of 0.79 MPa, and a 1.1 H[sub 2]/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO[sub 2] catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO[sub 2] operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts's operation appeared to have a detrimental effect on that of the other, showing promise for future option.

Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

1990-01-01T23:59:59.000Z

379

Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst  

DOE Green Energy (OSTI)

A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al[sub 2]0[sub 3] catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C[sub 5][sup +] selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a[sub 1] was near 0.80 which is higher than that of iron catalysts, while a[sub 2] was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

Yates, I.C.; Satterfield, C.N.

1988-01-01T23:59:59.000Z

380

Attrition resistant catalysts for slurry-phase Fischer-Tropsch process  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process low H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance.

K. Jothimurugesan

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Internal Wave Interactions with Equatorial Deep Jets. Part II: Acceleration of the Jets  

Science Conference Proceedings (OSTI)

What drives the equatorial deep jets is a puzzle because of their isolation from surface forcing by the intervening main pycnocline and the Equatorial Undercurrent, and from lateral boundaries by distances of tens of thousands of kilometers. It ...

Joanna E. Muench; Eric Kunze

2000-08-01T23:59:59.000Z

382

The JET2000 Project: Aircraft Observations of the African Easterly Jet and African Easterly Waves  

Science Conference Proceedings (OSTI)

Scientific background and motivation for the JET2000 aircraft observing campaign that took place in West Africa during the last week of August 2000 are presented. The Met Research Flight C130 aircraft made two flights along the African easterly ...

C. D. Thorncroft; D. J. Parker; R. R. Burton; M. Diop; J. H. Ayers; H. Barjat; S. Devereau; A. Diongue; R. Dumelow; D. R. Kindred; N. M. Price; M. Saloum; C. M. Tayor; A. M. Tompkins

2003-03-01T23:59:59.000Z

383

ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX SOLIDS WITH LIQUIDS IN TANK 50H  

SciTech Connect

Tank 50H is the feed tank for the Saltstone Production Facility (SPF). In the summer of 2011, Tank 50H contained two standard slurry pumps and two quad volute slurry pumps. Current requirements for mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste moved both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that were failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National Laboratory (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to mix solids with liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Small Column Ion Exchange Process (SCIX), SRNL computational fluid dynamics (CFD) modeling, Tank 50H operating experience, and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters of pumps needed to mix the solid particles with the liquid in Tank 50H. The analysis determined pump requirements to suspend the solids with no 'dead zones', but did not determine the pump requirements to produce a homogeneous suspension. In addition, the analysis determined the pump requirements to prevent the accumulation of a large amount of solid particles under the telescoping transfer pump. The conclusions from this analysis follow: (1) The analysis shows that three Quad Volute pumps should be able to suspend the solid particles expected ({approx}0.6 g/L insoluble solids, {approx}5 micron) in Tank 50H. (2) Three standard slurry pumps may not be able to suspend the solid particles in Tank 50H; (3) The ability of two Quad Volute pumps to fully suspend all of the solid particles in Tank 50H is marginal; and (4) One standard slurry pump should be able to achieve a cleaning radius larger than 43.5 feet, which will prevent large amounts of solid particles from settling under the telescoping transfer pump (TTP). The report recommends a pump operating approach to maximize the achieved cleaning radius.

Poirier, M.

2011-11-11T23:59:59.000Z

384

Gluon Polarization and Jet Production at STAR  

Science Conference Proceedings (OSTI)

I will discuss the most recent measurements of the inclusive jet longitudinal spin asymmetry A LL in polarized proton?proton collisions. STAR collected its largest data sample thus far 4.7? pb ?1 of integrated luminosity at an average beam polarization of ?57%

Pibero Djawotho; the STAR Collaboration

2009-01-01T23:59:59.000Z

385

Online b-jets tagging at CDF  

Science Conference Proceedings (OSTI)

We propose a method to identify b-quark jets at trigger level which exploits recently increased CDF trigger system capabilities. b-quark jets identification is of central interest for the CDF high-P{sub T} physics program, and the possibility to select online b-jets enriched samples can extend the physics reaches especially for light Higgs boson searches where the H {yields} b{bar b} decay mode is dominant. Exploiting new trigger primitives provided by two recent trigger upgrades, the Level2 XFT stereo tracking and the improved Level2 cluster-finder, in conjunction with the existing Silicon Vertex Tracker (SVT), we design an online trigger algorithm aimed at selecting good purity b-jets samples useful for many physics measurements, the most important being inclusive H {yields} b{bar b} searches. We discuss the performances of the proposed b-tagging algorithm which must guarantee reasonable trigger rates at luminosity greater than 2 x 10{sup 32} cm{sup -2}s{sup -1} and provide high efficiency on H {yields} b{bar b} events.

Casarsa, M.; /Fermilab; Ristori, L.; /INFN, Pisa; Amerio, S.; Lucchesi, D.; Pagan Griso, S.; /INFN, Padua; Torre, S.T.; /Frascati; Cortiana, G.; /Padua U., Astron. Dept.

2007-04-01T23:59:59.000Z

386

HOT ELECTROMAGNETIC OUTFLOWS. II. JET BREAKOUT  

Science Conference Proceedings (OSTI)

We consider the interaction between radiation, matter, and a magnetic field in a compact, relativistic jet. The entrained matter accelerates outward as the jet breaks out of a star or other confining medium. In some circumstances, such as gamma-ray bursts (GRBs), the magnetization of the jet is greatly reduced by an advected radiation field while the jet is optically thick to scattering. Where magnetic flux surfaces diverge rapidly, a strong outward Lorentz force develops and radiation and matter begin to decouple. The increase in magnetization is coupled to a rapid growth in Lorentz factor. We take two approaches to this problem. The first examines the flow outside the fast magnetosonic critical surface, and calculates the flow speed and the angular distribution of the radiation field over a range of scattering depths. The second considers the flow structure on both sides of the critical surface in the optically thin regime, using a relaxation method. In both approaches, we find how the terminal Lorentz factor and radial profile of the outflow depend on the radiation intensity and optical depth at breakout. The effect of bulk Compton scattering on the radiation spectrum is calculated by a Monte Carlo method, while neglecting the effects of internal dissipation. The peak of the scattered spectrum sits near the seed peak if radiation pressure dominates the acceleration, but is pushed to a higher frequency if the Lorentz force dominates. The unscattered seed radiation can form a distinct, low-frequency component of the spectrum, especially if the magnetic Poynting flux dominates.

Russo, Matthew [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

2013-08-20T23:59:59.000Z

387

Magnetized and collimated millimeter scale plasma jets with astrophysical relevance  

Science Conference Proceedings (OSTI)

Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

Brady, Parrish C.; Quevedo, Hernan J. [Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin, Texas 78712 (United States); Valanju, Prashant M. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712-1060 (United States); Bengtson, Roger D.; Ditmire, Todd [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

2012-01-15T23:59:59.000Z

388

TREATMENT OF CYANIDE SOLUTIONS AND SLURRIES USING AIR-SPARGED HYDROCYCLONE (ASH) TECHNOLOGY  

Science Conference Proceedings (OSTI)

The two-year Department of Energy (DOE) project ''Treatment of Cyanide Solutions and Slurries Using Air-Sparged Hydrocyclone (ASH) Technology'' (ASH/CN) has been completed. This project was also sponsored by industrial partners, ZPM Inc., Elbow Creek Engineering, Solvay Minerals, EIMCO-Baker Process, Newmont Mining Corporation, Cherokee Chemical Co., Placer Dome Inc., Earthworks Technology, Dawson Laboratories and Kennecott Minerals. Development of a new technology using the air-sparged hydrocyclone (ASH) as a reactor for either cyanide recovery or destruction was the research objective. It was expected that the ASH could potentially replace the conventional stripping tower presently used for HCN stripping and absorption with reduced power costs. The project was carried out in two phases. The first phase included calculation of basic processing parameters for ASH technology, development of the flowsheet, and design/adaptation of the ASH mobile system for hydrogen cyanide (HCN) recovery from cyanide solutions. This was necessary because the ASH was previously used for volatile organics removal from contaminated water. The design and modification of the ASH were performed with the help from ZPM Inc. personnel. Among the modifications, the system was adapted for operation under negative pressure to assure safe operating conditions. The research staff was trained in the safe use of cyanide and in hazardous material regulations. Cyanide chemistry was reviewed resulting in identification of proper chemical dosages for cyanide destruction, after completion of each pilot plant run. The second phase of the research consisted of three field tests that were performed at the Newmont Mining Corporation gold cyanidation plant near Midas, Nevada. The first field test was run between July 26 and August 2, 2002, and the objective was to demonstrate continuous operation of the modified ASH mobile system. ASH units were applied for both stripping and absorption, to recover cyanide, using the acidification-volatilization-reabsorption chemistry. Plant barren cyanide solution was used during the field tests. The original ASH system used for the field tests had been designed and fabricated by ZPM Inc. to remove volatile organic compounds from ground water. The system, even with a number of modifications, could not operate at optimum conditions for cyanide recovery. Reactors and pumps installed in the mobile system only allowed for the treatment of clear solutions, not slurries. Also the original mobile system was limited with respect to Q, the relative air flow rate, and the extent of recovery in a single stage. Due to the lack of automatic controls, the system required constant supervision of the University of Utah (U/U) team. In spite of these difficulties, application of the ASH mobile system was particularly attractive due to compactness of the apparatus and less than 1 second residence time of the aqueous phase in the cyclones. The performance of the ASH system was evaluated by comparison with theoretical predictions.

Jan D. Miller; Terrence Chatwin; Jan Hupka; Doug Halbe; Tao Jiang; Bartosz Dabrowski; Lukasz Hupka

2003-03-31T23:59:59.000Z

389

CHARACTERIZATION OF TANK 50 SLURRY FOR SALTSTONE WASTE ACCEPTANCE CRITERIA, APRIL 2007 SAMPLES  

DOE Green Energy (OSTI)

This report summarizes the results from the characterization of the second quarter April 2007 sampling of Tank 50H for the Saltstone Waste Acceptance Criteria (WAC). Six one liter samples were taken in polyethylene bottles to analyze for the WAC contaminants and a 200 mL sample was taken in a steel container for analysis of volatile organic compounds. The information from this characterization will be given to Waste Solidification Engineering personnel to qualify the transfer of aqueous waste to the Saltstone Facility. The following conclusions are drawn from the analytical results found in this report: (1) All six of the one liter samples taken in April 2007 from the mixed slurry in Tank 50 have the same compositions within the experimental uncertainty of the analyses. (2) Of the ninety-one process, chemical, and radioactive WAC target or limit contaminants listed in Revision 7 of the 'Waste Acceptance Criteria for Aqueous Waste sent to the Z-Area Saltstone Production Facility', eighty-nine had concentrations that were unequivocally less than the WAC limit or target. (3) The two contaminants whose concentrations could not be shown to be less than their WAC targets were methanol and radioactive Nb-93m. Currently the AD Section of SRNL does not have a method for measuring methanol in caustic solutions. For Nb-93m the results are ambiguous due to possible interferences in the ICP-MS analysis from Zr-93 or Mo-93. (4) Of the six additional chemical and radioactive contaminants requested in the TTR for Saltstone qualification, five were measured or calculated. These were Sb, Be, Tl, along with total beta and gamma. The AD Section does not have a method to measure the 6th contaminant which was the cyanide ion.

Zeigler, K; Ned Bibler, N; David Diprete, D

2007-12-07T23:59:59.000Z

390

A Novel Slurry-Based Biomass Reforming Process Final Technical Report  

SciTech Connect

This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood to hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310 �������°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed Raney Ni, from 63% to 100% with correspond

Sean C. Emerson; Timothy D. Davis; A. Peles; Ying She; Joshua Sheffel; Rhonda R. Willigan; Thomas H. Vanderspurt; Tianli Zhu

2011-09-30T23:59:59.000Z

391

Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 6, January 1, 1992--March 31, 1992  

DOE Green Energy (OSTI)

The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

Marcelin, G.

1992-06-24T23:59:59.000Z

392

Transmission Line Analogy for Relativistic Poynting-Flux Jets  

E-Print Network (OSTI)

Radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C 303 have shown that one knot of this jet carries a {\\it galactic}-scale electric current and that it is magnetically dominated. We develop the theory of magnetically dominated or Poynting-flux jets by making an analogy of a Poynting jet with a transmission line or waveguide carrying a net current and having a potential drop across it (from the jet's axis to its radius) and a definite impedance which we derive. Time-dependent but not necessarily small perturbations of a Poynting-flux jet are described by the "telegrapher's equations." These predict the propagation speed of disturbances and the effective wave impedance for forward and backward propagating wave components. A localized disturbance of a Poynting jet gives rise to localized dissipation in the jet which may explain the enhanced synchrotron radiation in the knots of the 3C 303 jet, and also in the apparently stationary knot HST-1 in the jet near the nucleus of t...

Lovelace, R V E

2012-01-01T23:59:59.000Z

393

Cryogenic target formation using cold gas jets  

DOE Patents (OSTI)

A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

Hendricks, C.D.

1980-02-26T23:59:59.000Z

394

ON THE ORIGIN OF INTERGRANULAR JETS  

SciTech Connect

We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within individual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band H{alpha} images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the New Solar Telescope (NST) data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m NST operating at the Big Bear Solar Observatory. The data set also includes NST off-band H{alpha} images collected through a Zeiss Lyot filter with a passband of 0.025 nm.

Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I. [Big Bear Solar Observatory, New Jersey Institute of Technology, Big Bear City, CA 92314 (United States); Steiner, O. [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstrasse 6, D-79104 Freiburg (Germany)

2011-08-01T23:59:59.000Z

395

Final Report One-Twelfth-Scale Mixing Experiments to Characterize Double-Shell Tank Slurry Uniformity  

Science Conference Proceedings (OSTI)

The objectives of these 1/12-scale scoping experiments were to ? Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks ? Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks ? Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101 ? Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development ? Analyze the effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform ( ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless groups. The two parameters that best describe the maximum solids volume fraction that can be suspended in a double-shell tank were found to be 1) the Froude number (Fr) based on nozzle velocity (U0) and tank contents level (H) and 2) the dimensionless particle size (dp/D0). The dependence on the Reynolds number (Re) does not appear to be statistically significant.

Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.; Meyer, Perry A.; Greenwood, Margaret S.; Titzler, Pamela A.; Terrones, Guillermo

2007-09-01T23:59:59.000Z

396

Event-by-event jet quenching  

SciTech Connect

High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient {cflx q} extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting {cflx q} to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

Fries, R.J.; Rodriguez, R.; Ramirez, E.

2010-08-14T23:59:59.000Z

397

Ejector device for direct injection fuel jet  

SciTech Connect

Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

Upatnieks, Ansis (Livermore, CA)

2006-05-30T23:59:59.000Z

398

METHOD FOR THE PREPARATION OF STABLE ACTINIDE METAL OXIDE-CONTAINING SLURRIES AND OF THE OXIDES THEREFOR  

DOE Patents (OSTI)

This patent deals with a method of preparing actinide metal oxides of a very fine particle size and of forming stable suspensions therefrom. The process consists of dissolving the nitrate of the actinide element in a combustible organic solvent, converting the solution obtained into a spray, and igniting the spray whereby an oxide powder is obtained. The oxide powder is then slurried in an aqueous soiution of a substance which is adsorbable by said oxides, dspersed in a colloid mill whereby a suspension is obtained, and electrodialyzed until a low spectiic conductance is reached.

Hansen, R.S.; Minturn, R.E.

1958-02-25T23:59:59.000Z

399

Rheological properties essential for the atomization of coal water slurries (CWS). Quarterly progress report, December 15, 1993--March 15, 1994  

SciTech Connect

During the past quarter, further rheological testing of the CWS were performed. The testing included low and high shear measurements. Oscillatory measurements were also planned, but the Haake CV20 accessory needed for this measurement has not yet been delivered. The CWS tested were PSOC-1527 from Middle Kittaning, PSOC-1472 from Lower Banner and PSOC 1475 (Elkhorn No. 3). The test results indicate that PSOC-1527 coal slurried much better than the PSOC 1472 coal. The rheological data is shown in Table 1.

Ohene, F.

1994-05-01T23:59:59.000Z

400

Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue  

DOE Patents (OSTI)

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, J.R.

1981-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Composition, collimation, contamination: the jet of Cygnus X-1  

E-Print Network (OSTI)

We model the observed size and brightness of the VLBA radio core of the jet in Cygnus X-1 to derive an expression for the jet power as a function of basic jet parameters. We apply this expression to recent constraints on the jet power from observations of a large scale shocked shell around the source by Gallo et al. 2005, which leads us to a set of alternative conclusions: either (a) the jet contains large amounts of protons: more than 2000 protons per radio emitting electron, (b) it has a very low radio volume filling factor of f source of the kinetic energy powering the ISM shell, or (d) its asymptotic behavior differs fundamentally from a broad set of plausible analytic jet models.

Sebastian Heinz

2005-09-26T23:59:59.000Z

402

Dynamics of quasi-two-dimensional turbulent jets  

E-Print Network (OSTI)

they can provide, jets have been used in various indus- trial applications, such as waste water disposal (Yannopoulos, 2006), chemical reactors (Jirka & Harleman, 1979), or as a means of propulsion (Stanley, Sarkar & Mellado, 2002). In geophysical flows... .1 Introduction The study of turbulent plane jets is relevant to a wide variety of problems where both qualitative and quantitative knowledge of the concentration in time and space of tracers transported by the jet is needed (Kotsovinos, 1975). In many industrial...

Landel, Julien Rémy Dominique Gérard

2012-11-13T23:59:59.000Z

403

Neutralization of H/sup -/ beams with gas jets  

DOE Green Energy (OSTI)

A test facility was constructed to create a compact curtain-shaped gas jet as a first-generation operational neutralizer for the 150 keV H/sup -/ beam. Different gases and vapors were considered, their optimum target thicknesses and neutralization efficiencies with respect to beam energies were explored. Two techniques of gas jet formation were compared. Multiparallel-channel effusive jets of CO/sub 2/ and H/sub 2/ were selected as test candidates.

Lam, C.K.

1977-01-01T23:59:59.000Z

404

MEASURING THE JET POWER OF FLAT-SPECTRUM RADIO QUASARS  

SciTech Connect

We use frequency-dependent position shifts of flat-spectrum radio cores to estimate the kinetic power of active galactic nucleus (AGN) jets. We find a correlation between the derived jet powers and AGN narrow-line luminosity, consistent with the well-known relation for radio galaxies and steep spectrum quasars. This technique can be applied to intrinsically weak jets even at high redshift.

Shabala, S. S.; Santoso, J. S. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia); Godfrey, L. E. H. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia)

2012-09-10T23:59:59.000Z

405

A computational study of highly viscous impinging jets  

SciTech Connect

Two commercially-available computational fluid dynamics codes, FIDAP (Fluent, Inc., Lebanon, NH) and FLOW-3D (Flow Science, Inc., Los Alamos, NM), were used to simulate the landing region of jets of highly viscous fluids impinging on flat surfaces. The volume-of-fluid method was combined with finite difference and finite element approaches to predict the jet behavior. Several computational models with varying degrees of physical realism were developed, and the results were compared with experimental observations. In experiments, the jet exhibited several complex behaviors. As soon as it exited the nozzle, the jet began to neck down and become narrower. When it impacted the solid surface, the jet developed an instability near the impact point and buckled to the side. This buckling became a spiraling motion, and the jet spiraled about the impact point. As the jet spiraled around, a cone-shaped pile was build up which eventually became unstable and slumped to the side. While all of these behaviors were occurring, air bubbles, or voids, were being entrapped in the fluid pool. The results obtained from the FLOW-3D models more closely matched the behavior of real jets than the results obtained from /the FIDAP models. Most of the FLOW-3D models predicted all of the significant jet behaviors observed in experiments: necking, buckling, spiraling, slumping, and void entrapment. All of the FIDAP models predicted that the jet would buckle relatively far from the point of impact, whereas the experimentally observed jet behavior indicates that the jets buckle much nearer the impact point. Furthermore, it was shown that FIDAP is incapable of incorporating heat transfer effects into the model, making it unsuitable for this work.

Silva, M.W. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering

1998-11-01T23:59:59.000Z

406

EXAMINATION OF SULFUR MEASUREMENTS IN DWPF SLUDGE SLURRY AND SRAT PRODUCT MATERIALS  

SciTech Connect

Savannah River National Laboratory (SRNL) was asked to re-sample the received SB7b WAPS material for wt. % solids, perform an aqua regia digestion and analyze the digested material by inductively coupled plasma – atomic emission spectroscopy (ICP-AES), as well as re-examine the supernate by ICP-AES. The new analyses were requested in order to provide confidence that the initial analytical subsample was representative of the Tank 40 sample received and to replicate the S results obtained on the initial subsample collected. The ICP-AES analyses for S were examined with both axial and radial detection of the sulfur ICP-AES spectroscopic emission lines to ascertain if there was any significant difference in the reported results. The outcome of this second subsample of the Tank 40 WAPS material is the first subject of this report. After examination of the data from the new subsample of the SB7b WAPS material, a team of DWPF and SRNL staff looked for ways to address the question of whether there was in fact insoluble S that was not being accounted for by ion chromatography (IC) analysis. The question of how much S is reaching the melter was thought best addressed by examining a DWPF Slurry Mix Evaporator (SME) Product sample, but the significant dilution of sludge material, containing the S species in question, that results from frit addition was believed to add additional uncertainty to the S analysis of SME Product material. At the time of these discussions it was believed that all S present in a Sludge Receipt and Adjustment Tank (SRAT) Receipt sample would be converted to sulfate during the course of the SRAT cycle. A SRAT Product sample would not have the S dilution effect resulting from frit addition, and hence, it was decided that a DWPF SRAT Product sample would be obtained and submitted to SRNL for digestion and sample preparation followed by a round-robin analysis of the prepared samples by the DWPF Laboratory, F/H Laboratories, and SRNL for S and sulfate. The results of this round-robin analytical study are the second subject of this report.

Bannochie, C.; Wiedenman, B.

2012-11-29T23:59:59.000Z

407

Injection Molding of Tungsten Powder Treated by Jet Mill  

Science Conference Proceedings (OSTI)

Tungsten powder was firstly treated by jet mill, resulting in the improvement of ... and Welding Conditions of Monopile and Transition for Offshore Wind Plant.

408

Shattering Kraft Recovery Boiler Smelt by a Steam Jet.  

E-Print Network (OSTI)

??Kraft recovery boiler smelt is shattered into small droplets by an impinging steam jet to prevent smelt-water explosions in the dissolving tank. Inadequate shattering increases… (more)

Taranenko, Anton

2013-01-01T23:59:59.000Z

409

Simulations of Jets Driven by Black Hole Rotation  

E-Print Network (OSTI)

The origin of jets emitted from black holes is not well understood, however there are two possible energy sources, the accretion disk or the rotating black hole. Magnetohydrodynamic simulations show a well-defined jet that extracts energy from a black hole. If plasma near the black hole is threaded by large-scale magnetic flux, it will rotate with respect to asymptotic infinity creating large magnetic stresses. These stresses are released as a relativistic jet at the expense of black hole rotational energy. The physics of the jet initiation in the simulations is described by the theory of black hole gravitohydromagnetics.

Vladimir Semenov; Sergey Dyadechkin; Brian Punsly

2004-08-20T23:59:59.000Z

410

Electronic spectroscopy of jet-cooled combustion radicals. Final report  

Science Conference Proceedings (OSTI)

Jet-cooled spectra of 1-methylvinoxy and 2-methylvinoxy are reported and analyzed with help from high-level electronic structure calculations.

Weisshaar, James C.

2002-03-11T23:59:59.000Z

411

Relativistic Poynting-Flux Jets as Transmission Lines  

E-Print Network (OSTI)

Recent radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C 303 have shown that one knot of this jet has a {\\it galactic}-scale electric current of $\\sim 3\\times 10^{18}$ Amp\\`ere flowing along the jet axis (Kronberg et al. 2011). We develop the theory of relativistic Poynting-flux jets which are modeled as a transmission line carrying a DC current $I_0$, having a potential drop $V_0$, and a definite impedance ${\\cal Z}_0 =90(u_z/c)\\Omega$, where $u_z$ is the bulk velocity of the jet plasma. The electromagnetic energy flow in the jet is ${\\cal Z}_0 I_0^2$. The observed current in 3C 303 can be used to calculate the electromagnetic energy flow in this magnetically dominated jet. Time-dependent but not necessarily small perturbations of a Poynting-flux jet - possibly triggered by a gas cloud penetrating the jet - are described by "telegrapher's equations," which predict the propagation speed of disturbances and the effective wave impedance ${\\cal Z}$. The disturbance of a Po...

Lovelace, R V E; Kronberg, P P

2012-01-01T23:59:59.000Z

412

Thermal Behavior of a Hot Moving Steel Plate during Jet ...  

Science Conference Proceedings (OSTI)

Presentation Title, Thermal Behavior of a Hot Moving Steel Plate during Jet Impingement Cooling. Author(s), Amir Hossein Nobari, Vladan Prodanovic, ...

413

COLLIMATION AND CONFINEMENT OF MAGNETIC JETS BY EXTERNAL MEDIA  

Science Conference Proceedings (OSTI)

We study the collimation of a highly magnetized jet by a surrounding cocoon that forms as a result of the interaction of the jet with the external medium. We show that in regions where the jet is well confined by the cocoon, current-driven instabilities should develop over timescales shorter than the expansion time of the jet's head. We speculate that these instabilities would give rise to complete magnetic field destruction, whereby the jet undergoes a transition from high to low sigma above the collimation zone. Using this assumption, we construct a self-consistent model for the evolution of the jet-cocoon system in an ambient medium of arbitrary density profile. We apply the model to jet breakout in long gamma-ray bursts (GRBs) and show that the jet is highly collimated inside the envelope of the progenitor star and is likely to remain confined well after breakout. We speculate that this strong confinement may provide a channel for magnetic field conversion in GRB outflows, whereby the hot, low-sigma jet section thereby produced is the source of the photospheric emission observed in many bursts.

Levinson, Amir [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)] [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Begelman, Mitchell C., E-mail: Levinson@wise.tau.ac.il, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309-0440 (United States)

2013-02-20T23:59:59.000Z

414

An alternative model of jet suppression at RHIC energies  

E-Print Network (OSTI)

We propose a simple Glauber-type mechanism for suppression of jet production up to transverse momenta of about 10 GeV/c at RHIC. For processes in this kinematic region, the formation time is smaller than the interval between two successive hard partonic collisions and the subsequent collision influences the jet production. Number of jets then roughly scales with the number of participants. Proportionality to the number of binary collisions is recovered for very high transverse momenta. The model predicts suppression of jet production in d+Au collisions at RHIC.

Roman Lietava; Jan Pisut; Neva Pisutova; Boris Tomasik

2003-01-16T23:59:59.000Z

415

Environmental and economic assessment of microalgae-derived jet fuel  

E-Print Network (OSTI)

Significant efforts must be undertaken to quantitatively assess various alternative jet fuel pathways when working towards achieving environmental and economic United States commercial and military alternative aviation ...

Carter, Nicholas Aaron

2012-01-01T23:59:59.000Z

416

U.S. Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) U.S. Downstream Charge Capacity of Operable Petroleum Refineries ...

417

Idaho Kerosene-Type Jet Fuel Retail Sales by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Idaho Kerosene-Type Jet Fuel Refiner Sales Volumes; Idaho Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

418

Measurement of b-quark Jet Shapes at CDF  

SciTech Connect

The main topic of this thesis is the measurement of b-quark jet shapes at CDF. CDF is an experiment located at Fermilab, in the United States, which studies proton-antiproton collisions at a center of mass energy of 1.96TeV. To reach this energy, the particles are accelerated using the Tevatron accelerator which is currently the highest energy collider in operation. The data used for this analysis were taken between February 2002 and September 2004 and represent an integrated luminosity of about 300 pb{sup -1}. This is the first time that b-quark jet shapes have been measured at hadron colliders. The basis of this measurement lies in the possibility of enhancing the b-quark jet content of jet samples by requiring the jets to be identified as having a displaced vertex inside the jet cone. Such jets are called tagged. This enhances the b-quark jet fraction from about 5% before tagging to 20-40% after tagging, depending on the transverse momentum of the jets. I verified that it is possible to apply this secondary vertex tagging algorithm to different cone jet algorithms (MidPoint and JetClu) and different cone sizes (0.4 and 0.7). I found that the performance of the algorithm does not change significantly, as long as the sub-cone inside which tracks are considered for the tagging is kept at the default value of 0.4. Because the b-quark purity of the jets is still relatively low, it is necessary to extract the shapes of b-quark jets in a statistical manner from the jet shapes both before and after tagging. The other parameters that enter into the unfolding equation used to extract the b-quark jet shapes are the b-jet purities, the biases due to the tagging requirement both for b- and nonbjets and the hadron level corrections. The last of these terms corrects the measured b-jet shapes back to the shapes expected at hadron level which makes comparisons with theoretical models and other experimental results possible. This measurement shows that, despite relatively large systematic uncertainties, the measured b-quark jet shapes are significantly different from those expected from the so-called Pythia Tune A Monte Carlo simulation, the most widely used Leading Order Monte Carlo model at CDF. This difference can be mostly attributed to the fact that the fraction of b-quark jets that originate from flavour creation (where a single b-quark is expected inside the same jet cone) over those that originate from gluon splitting (where two b-quarks are expected to be inside the same jet cone) is slightly different in the Pythia Tune A Monte Carlo predictions than in data. This measurement can help in the tuning of the fraction of gluon splitting to flavour creation b-quark jets in the Monte Carlo simulation. This tuning is particularly important for the extrapolation up to LHC energies where many searches will involve b-quark jets. During the first year of my thesis work, I worked on the implementation of a prototype detector control system for the electromagnetic calorimeter which is being built for the CMS experiment at CERN. The prototype which I implemented was used to monitor and control the high voltage, low voltage, cooling and precision temperature monitoring systems during the summer 2003 test-beam. This was one of the first, almost complete, systems implemented and used by an LHC experiment for test-beam monitoring.

Lister, Alison; /Zurich, ETH

2006-03-01T23:59:59.000Z

419

Abrasive Blast Cleaning  

Science Conference Proceedings (OSTI)

...tightly adhering scale during annealing. Sand blasting is fast and economical, but must be followed by an acid pickling treatment for removal of embedded scale particles....

420

Ignitions in mixtures of coal dust, air, and methane from abrasive impacts of hard minerals with pneumatic pipeline steel. Report of investigations 1976  

SciTech Connect

Laboratory equipment which simulated abrasive impacts between steel and minerals as might occur during pneumatic transport of coal was used by the Bureau of Mines to characterize the potential explosion hazard due to such collisions in an atmosphere of fine coal dust-air-methane. A variety of coal mine rock materials, including sandstone, limestone, and pyrite-bearing limestone, were impacted with specimens of pipeline steel. Tests were conducted in atmospheres containing zero to 6.4 vol-pct methane mixed with zero to 300 mg/l coal dust. Coal dust-air alone was not ignited by abrasive impacts, but additions of as little as 1 vol-pct methane to coal dust-air resulted in ignitions. Steel impacting against sandstone caused ignitions in coal-air-methane mixtures with the probability for ignitions increasing with an increase in methane. Ignitions in coal-air-methane were found to be caused by a hot friction-induced smear on the impacted rock at the impact site rather than by sparks. High-speed photography was used to verify this observation.

Kelley, J.E.; Forkner, B.L.

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Synchronized droplet size measurements for coal-water-slurry (CWS) diesel sprays of an electronically-controlled fuel injection system  

DOE Green Energy (OSTI)

Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1993-12-31T23:59:59.000Z

422

Rheological properties essential for the atomization of coal water slurries (CWS). Quarterly progress report, December 15, 1994--March 15, 1995  

SciTech Connect

The overall objective of this project is to perform experiments to understand the effect of high shear and extensional properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the extensional and high shear properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS. During the past quarter, further rheological testing were performed on CWS samples that had been prepared and stored for a period of three months. The testing included low and high shear measurements as well as dynamic oscillatory measurements. The CWS tested were PSOC-1527 from Middle Kittaning, PSOC-1472 from Lower Banner and PSOC-1475 (Elkhorn No. 3). These tests were performed in order to delineate any differences in rheological properties due to aging, and how this differences will influence subsequent atomization of the slurries. The test results obtained on PSOC-1527 and 1472, showed slight variations in their rheological behavior when compared to previously obtained data on the same samples. The data obtained on PSOC-1475, however showed no significant variation.

Ohene, F.

1995-09-01T23:59:59.000Z

423

Mathematical modeling of Fischer-Tropsch synthesis in an industrial slurry bubble column - article no. A 23  

SciTech Connect

The increase in society's need for fuels and decrease in crude oil resources are important reasons to make more interest for both academic and industry in converting gas to liquids. Fischer-Tropsch synthesis is one of the most attractive methods of Gas-to-Liquids (GTL) processes and the reactor in which, this reaction occurs, is the heart of this process. This work deals with modeling of a commercial size slurry bubble column reactor by two different models, i.e. single bubble class model (SBCM) and double bubble class model (DBCM). The reactor is assumed to work in a churn-turbulent flow regime and the reaction kinetic is a Langmuir-Hinshelwood type. Cobalt-based catalyst is used for this study as it plays an important role in preparing heavy cuts and the higher yield of the liquid products. Parameter sensitivity analysis was carried out for different conditions such as catalyst concentration, superficial gas velocity, H{sub 2} over CO ratio, and column diameter. The results of the SBCM and DBCM revealed that there is no significant difference between single and double bubble class models in terms of temperature, concentration and conversion profiles in the reactor, so the simpler SBCM with less number of model parameters can be a good and reliable model of choice for analyzing the slurry bubble column reactors.

Nasim Hooshyar; Shohreh Fatemi; Mohammad Rahmani [University of Tehran (Iran)

2009-07-01T23:59:59.000Z

424

PowerJet Wind Turbine Project  

SciTech Connect

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

425

JET MIXING ANALYSIS FOR SRS HIGH-LEVEL WASTE RECOVERY  

Science Conference Proceedings (OSTI)

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four slurry pumps located within the tank liquid. The slurry pump may be fixed in position or they may rotate depending on the specific mixing requirements. The high-level waste in Tank 48 contains insoluble solids in the form of potassium tetraphenyl borate compounds (KTPB), monosodium titanate (MST), and sludge. Tank 48 is equipped with 4 slurry pumps, which are intended to suspend the insoluble solids prior to transfer of the waste to the Fluidized Bed Steam Reformer (FBSR) process. The FBSR process is being designed for a normal feed of 3.05 wt% insoluble solids. A chemical characterization study has shown the insoluble solids concentration is approximately 3.05 wt% when well-mixed. The project is requesting a Computational Fluid Dynamics (CFD) mixing study from SRNL to determine the solids behavior with 2, 3, and 4 slurry pumps in operation and an estimate of the insoluble solids concentration at the suction of the transfer pump to the FBSR process. The impact of cooling coils is not considered in the current work. The work consists of two principal objectives by taking a CFD approach: (1) To estimate insoluble solids concentration transferred from Tank 48 to the Waste Feed Tank in the FBSR process and (2) To assess the impact of different combinations of four slurry pumps on insoluble solids suspension and mixing in Tank 48. For this work, several different combinations of a maximum of four pumps are considered to determine the resulting flow patterns and local flow velocities which are thought to be associated with sludge particle mixing. Two different elevations of pump nozzles are used for an assessment of the flow patterns on the tank mixing. Pump design and operating parameters used for the analysis are summarized in Table 1. The baseline pump orientations are chosen by the previous work [Lee et. al, 2008] and the initial engineering judgement for the conservative flow estimate since the modeling results for the other pump orientations are compared with the baseline results. As shown in Table 1, the present study assumes that each slurry pump has 900 gpm flowrate for the tank mixing analysis, although the Standard Operating Procedure for Tank 48 currently limits the actual pump speed and flowrate to a value less than 900 gpm for a 29 inch liquid level. Table 2 shows material properties and weight distributions for the solids to be modeled for the mixing analysis in Tank 48.

Lee, S.

2011-07-05T23:59:59.000Z

426

Two jet energy and rapidity distributions  

SciTech Connect

The D0 detector has been recording data at the Tevatron [bar p]p Collider since May 1992. Because the D0 calorimeter is hermetic and has large acceptance it is well suited for semi-exclusive final state jet studies. We present a primary measurement of the distribution d[sup 3]N/dE[sub t1]/d[eta][sub 1]/d[eta][sub 2] at [radical]s TeV over a large range of [eta]. The sensitivity of this cross-section to parton momentum distributions and the ability of D0 to discriminate between possible parton distributions is discussed.

Blazey, G.C.

1992-11-01T23:59:59.000Z

427

Radiant Energy Power Source for Jet Aircraft  

DOE Green Energy (OSTI)

This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

Doellner, O.L.

1992-02-01T23:59:59.000Z

428

W+3 jet production at the Tevatron  

E-Print Network (OSTI)

We compute the next-to-leading order QCD corrections to the production of W bosons in association with three jets at the Tevatron in the leading color approximation, which we define by considering the number of colors and the number of light flavors as being of the same order of magnitude. The theoretical uncertainty in the next-to-leading order prediction for the cross-section is of the order of 15-25 percent which is a significant improvement compared to the leading order result.

Ellis, R Keith; Zanderighi, Giulia

2009-01-01T23:59:59.000Z

429

W+3 jet production at the Tevatron  

E-Print Network (OSTI)

We compute the next-to-leading order QCD corrections to the production of W bosons in association with three jets at the Tevatron in the leading color approximation, which we define by considering the number of colors and the number of light flavors as being of the same order of magnitude. The theoretical uncertainty in the next-to-leading order prediction for the cross-section is of the order of 15-25 percent which is a significant improvement compared to the leading order result.

R. Keith Ellis; Kirill Melnikov; Giulia Zanderighi

2009-06-08T23:59:59.000Z

430

Infrared safe definition of jet flavor.  

E-Print Network (OSTI)

(energy) and collinear (angular) divergence. For flavour algorithms one should remember that the matrix elements for g ? qq¯ or q ? qg (with a soft quark) have no soft divergence, but just the collinear divergence, [dkj]|M2g?qiq¯j(kj)| ? ?sTR 2? dEj Ei d?2... energy larger than 1TeV and the two hardest jets to have |?| < 1. Three representative channels, qq ? qq (including qq¯ ? qq¯), qq¯ ? gg and qg ? qg are shown in fig. 6, as obtained with Herwig [15]. The standard parton showering in Pythia [23] gives...

Banfi, Andrea; Salam, Gavin P; Zanderighi, Giulia

431

Searches in photon and jet states  

SciTech Connect

The authors present recent results from the Collider Detector at Fermilab (CDF) and D0 experiments using data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. New physics may appear in events with high transverse momentum objects, including photons and quark or gluon jets. The results described here are of signature-based searches and model-based searches probing supersymmetry, leptoquarks, 4th generation quarks, and large extra dimensions.

Soha, A.; /UC, Davis

2007-06-01T23:59:59.000Z

432

Missouri Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; Missouri Kerosene-Type Jet Fuel Refiner Sales Volumes; Missouri Sales for Resale ...

433

New Mexico Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; New Mexico Kerosene-Type Jet Fuel Refiner Sales Volumes; New Mexico Sales for Resale ...

434

Plasma Jet Driven Magneto-Inertial Fusion (PJMIF)  

E-Print Network (OSTI)

National Security, LLC for NNSA LA-UR-11-07030 #12;Plasma jet experiments can provide cm National Security, LLC for NNSA Imploding plasma liner formed by 30 merging plasma jets with 1.5 MJ, LLC for NNSA MIF ICF Basko et al., Nucl. Fusion, 2000 Magnetic field reduces thermal transport

435

On the Disintegration of the Jet in a Plunging Breaker  

Science Conference Proceedings (OSTI)

An inviscid mechanism is proposed for the breakup of the jet in a plunging surface wave. Streamwise perturbations of the original surface are shown to grow rapidly owing to stretching of the thin jet and to drastic reduction in the normal ...

Michael Longuet-Higgins

1995-10-01T23:59:59.000Z

436

Gravity waves excited by jets: Propagation versus generation R. Plougonven  

E-Print Network (OSTI)

Gravity waves excited by jets: Propagation versus generation R. Plougonven School of Mathematics September 2005. [1] Atmospheric jets are known to be an important source of inertia-gravity waves, yet mechanisms for the gravity waves, with the underlying assumption that the characteristics of the waves were

Plougonven, Riwal

437

Higgs Boson Production in Association with Three Jets  

E-Print Network (OSTI)

The scattering amplitudes for Higgs + 5 partons are computed, with the Higgs boson produced via gluon fusion in the large top-quark mass limit. A parton-level analysis of Higgs + 3 jet production via gluon fusion and via weak-boson fusion is presented, and the effectiveness of a central-jet veto is analysed.

V. Del Duca; A. Frizzo; F. Maltoni

2004-04-01T23:59:59.000Z

438

Finite element analysis of the electro jet drilling process  

Science Conference Proceedings (OSTI)

The electro jet drilling (EJD) process is gaining prominence in the machining of micro and macro holes in difficult-to-machine materials used in aerospace, electronics and computers, medical, and automobile industries. As the trend towards miniaturization ... Keywords: electro jet drilling, electrochemical drilling, finite element method, radial overcut

M. Sen; H. S. Shan

2007-01-01T23:59:59.000Z

439

Jet engine's speed controller with constant pressure chamber  

Science Conference Proceedings (OSTI)

The paper deals with an automatic system meant to control a jet engine's rotation speed, through the fuel injection's control, based on a constant pressure chamber controller. One has established the non-linear mathematical model (based on the motion ... Keywords: actuator, control, fuel injection, fuel pump, jet-engine, pressure chamber

Alexandru Nicolae Tudosie

2008-06-01T23:59:59.000Z

440

Deepening Treatment of the Low C/N Ratio Biogas Slurry at Mountainous Region Livestock Farming by Using Modified Two-Stage A/O System  

Science Conference Proceedings (OSTI)

The intensive and fast development of livestock farming with ecological pattern of raising¨Cbiogas¨Cirrigating is widely applied in China. After anaerobic fermentation the agricultural wastes can provides clean energy. However, there is problem by lacking ... Keywords: livestock farming, biogas slurry, low C/N ratio, deepening treatment

Wei-wei Yu; Zhi Zhang; Sheng-lan Bi; Shu-yang Li; Chao Liu

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "abrasive slurry jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.