Powered by Deep Web Technologies
Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

2

Abengoa Bioenergy Biomass of Kansas, LLC  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed...

3

EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...  

Broader source: Energy.gov (indexed) [DOE]

07: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS August 20, 2010 EIS-0407: Final...

4

Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat ibrcommercialabengoa.pdf More Documents & Publications Abengoa Bioenergy...

5

FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC  

Office of Energy Efficiency and Renewable Energy (EERE)

FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC.

6

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy a Conditional Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee August 19, 2011 - 11:15am Addthis Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation's Capacity for Cellulosic Ethanol Production Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a $133.9 million loan guarantee to Abengoa Bioenergy Biomass of Kansas LLC (ABBK) to support the development of a commercial-scale cellulosic ethanol plant. ABBK's parent company and project sponsor, Abengoa Bioenergy US Holding, Inc., estimates the project will create approximately 300 construction jobs and 65 permanent

7

Department of Energy Offers Abengoa Bioenergy a Conditional Commitment...  

Office of Environmental Management (EM)

of a conditional commitment for a 133.9 million loan guarantee to Abengoa Bioenergy Biomass of Kansas LLC (ABBK) to support the development of a commercial-scale cellulosic...

8

Abengoa IBR Successes  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Thomas Robb, Manager of Institutional Relations, Abengoa Bioenergy

9

STATEMENT OF CONSIDERATIONS REQUEST BY ABENGOA BIOENERGY CORPORATION FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

ABENGOA BIOENERGY CORPORATION FOR AN ADVANCE WAIVER ABENGOA BIOENERGY CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER A DOE COOPERATIVE AGREEMENT INITIALLY IDENTIFIED AS GOV WORKS NO. 04-03- CA-79759 AND NOW INCORPORATED BY REFERENCE AND CONTINUED AS DOE COOPERATIVE AGREEMENT NO. DE-FC36-03GO13142; W(A)-05-006; CH-1267 The Petitioner, Abengoa Bioenergy Corporation (Abengoa), has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retair title to inventions pursuant to P.L 96-517, as amended, and National Laboratories. This agreement is a continuation of work begun under Gov Works Cooperative Agreement No. 04-03-CA-79759.

10

Abengoa Bioenergy Biomass of Kansas, LLC  

Broader source: Energy.gov [DOE]

This project from a committed long-term player has the potential to demonstrate dual biochemical and thermochemical capabilities to convert lignocellulosic feedstocks to biofuels.

11

EIS-0407: Abengoa Biorefinery Project Near Hugoton, Kansas | Department of  

Broader source: Energy.gov (indexed) [DOE]

07: Abengoa Biorefinery Project Near Hugoton, Kansas 07: Abengoa Biorefinery Project Near Hugoton, Kansas EIS-0407: Abengoa Biorefinery Project Near Hugoton, Kansas Abengoa Biorefinery Project Near Hugoton, Kansas Abengoa Biorefinery Project Near Hugoton, Kansas Summary The U.S. Department of Energy (DOE or the Department) prepared an environmental impact statement (EIS) (DOE/EIS-0407) to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton in Stevens County, southwestern Kansas. The integrated biorefinery would use a combination of biomass feedstocks,

12

Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...  

Office of Environmental Management (EM)

its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic...

13

Grand Opening of Abengoas Biorefinery: Nations Third Commercial-Scale Facility  

Broader source: Energy.gov [DOE]

The nations third commercial-scale cellulosic ethanol biorefinery celebrates its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic hydrolysis process which turns cellulosic biomass into fermentable sugars that are then converted into transportation fuels.

14

Biomass Basics: The Facts About Bioenergy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses....

15

NREL: Biomass Research - National Bioenergy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Bioenergy Center National Bioenergy Center The National Bioenergy Center (NBC) was established in October 2000 to support the science and technology goals of the U.S. Department of Energy (DOE) Bioenergy Technologies Office. Headquartered at NREL, this virtual center unifies DOE's efforts to advance technology for producing renewable transportation fuels from biomass. A primary goal is to demonstrate the production of cost-competitive cellulosic ethanol by 2012. Collaborating with industrial, academic, and other governmental research, development, and commercialization efforts is central to achieving this goal. Mission The National Bioenergy Center's mission is to foster capability to catalyze the replacement of petroleum with transportation fuels from biomass by delivering innovative, cost-effective biofuels solutions.

16

Biomass as Feedstock for a Bioenergy and Bioproducts Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

17

Abengoa SA | Open Energy Information  

Open Energy Info (EERE)

SA SA Jump to: navigation, search Name Abengoa SA Place Seville, Spain Zip 41018 Sector Bioenergy, Solar Product Construction, biofuel, solar and power company - parent of Abengoa Bioenergia, Abengoa Bioenergy Corp, and Solucar. Coordinates 37.387697°, -6.001813° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.387697,"lon":-6.001813,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

18

Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 638­645 Forest bioenergy system to reduce the hazard of wildfires for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache. The outlet for the wood fuel pellets is the growing market for house and business heating, and co

19

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

20

Canada Biomass-Bioenergy Report May 31, 2006  

E-Print Network [OSTI]

Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions National Team Leader- IEA Bioenergy Task 40- Biotrade 402 Third Avenue ·Ottawa, Ontario ·Canada K1S 2K7 of the ten provinces. Canada resembles the US in its market-oriented economic system, pattern of production

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Biomass Basics: The Facts About Bioenergy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Basics: The Facts About Bioenergy We Rely on Energy Every Day Energy is essential in our daily lives. We use it to fuel our cars, grow our food, heat our homes, and run our...

22

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

WORKSHOP Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

23

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

Broader source: Energy.gov [DOE]

An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply"

24

Available online at www.sciencedirect.com Biomass and Bioenergy 24 (2003) 269276  

E-Print Network [OSTI]

commercial markets are poor, there has been a great deal of success in utilizing bioenergy by designatingAvailable online at www.sciencedirect.com Biomass and Bioenergy 24 (2003) 269­276 Flagsta 's wildÿre fuels treatments: prescriptions for community involvement and a source of bioenergy Allen

25

ASSESSMENT OF NON-INDUSTRIAL PRIVATE FOREST LANDOWNER WILLINGNESS TO HARVEST WOODY BIOMASS IN SUPPORT OF BIOENERGY PRODUCTION IN MISSISSIPPI.  

E-Print Network [OSTI]

?? Harvesting woody biomass for biofuel has become an important research topic. In Mississippi, feasibility of utilizing woody biomass for bioenergy lies in the willingness (more)

Gruchy, Steven Ray

2011-01-01T23:59:59.000Z

26

An overview of the biomass resource potential of Norway for bioenergy use  

Science Journals Connector (OSTI)

This paper provides an overview of the Norwegian biomass resources for bioenergy use, bioenergy market and frame conditions through a comparison with Denmark, Finland and Sweden, which have a leading role in bioenergy production in the European Union. Although the contribution of renewable energy in Norway is among the highest in Europe (58%), mainly due to hydroelectricity, bioenergy has a low contribution to Norwegian energy supply (6%). As the experience from the other EU Member States showed, long-term, stable policies and relatively strong incentives are needed to initiate and build up a bioenergy market. In Norway, there is still a significant available potential for increasing the bioenergy contribution to the energy supply. The abundance and relatively low prices of energy (i.e. fossil fuels and electricity), in connection with the need of high investment costs, did not favour so far bioenergy production. Additional forest biomass may be mobilized in Norway by more intensive management of currently exploited forests. However, there are several limitations related to topography, accessibility and economics. The biomass resources and the full range of technologies available for heat or electricity generation both at small and large scale that can provide good opportunities for increased bioenergy production. The experience gained in Denmark, Finland and Sweden may be relevant for Norway, as well as for other EU Member States, where there is a deficit of mobilization of biomass resources and insufficient industrial integration of bioenergy with other forest-based sectors.

Nicolae Scarlat; Jean-Francois Dallemand; Odd Jarle Skjelhaugen; Dan Asplund; Lars Nesheim

2011-01-01T23:59:59.000Z

27

Research Note The removal of tree stumps and coarse roots from felling sites as a source of woody biomass for bioenergy generation  

E-Print Network [OSTI]

biomass for bioenergy generation is well established in parts of Europe, and interest has been expressed

28

Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products Industries in Florida  

E-Print Network [OSTI]

1 Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products as the starting point for implementation of the CGE model, which finds a solution where all markets

Florida, University of

29

A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project  

Science Journals Connector (OSTI)

...climate, geography, biological resources, cultural traditions and politico-economic situations. A range of biomass feedstocks are employed for bioenergy production in the Asia-Oceania countries, such as oil palm (Malaysia and Indonesia...

2011-01-01T23:59:59.000Z

30

Biomass and Bioenergy 30 (2006) 316320 How to recover more value from small pine trees  

E-Print Network [OSTI]

Biomass and Bioenergy 30 (2006) 316­320 How to recover more value from small pine trees: Essential of residual biomass. To offset the cost of handling this low-value timber, additional marketing options States market for such products. However, less is known of the capability of essential oils extracted

31

Ris har udgivet en rapport om moderne bioenergi. Den slr fast, at biomasse er en  

E-Print Network [OSTI]

Risø har udgivet en rapport om moderne bioenergi. Den slår fast, at biomasse er en ligeså værdifuld eventyret med moderne bioenergi i hovedrollen. På Risø skubber vi eventyret i gang ved at udvikle nye større skala, end man troede det muligt for bare få år siden. Andre perspektiver for bioenergien er

32

Sorghum Program BIOENERGY PROGRAM  

E-Print Network [OSTI]

Sorghum Program BIOENERGY PROGRAM Sorghums are important nongrain lignocellulosic feedstocks Biomass Switch Grass Forage Sorghum Bioenergy Sorghum Biomass per acre per year that can be converted (DT

33

FOA for the Demonstration of an Integrated Biorefinery System...  

Office of Environmental Management (EM)

Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an...

34

d. 11. dec. 2003 Moderne bioenergi -et nyt dansk vkstomrde 1 Har forbrnding og forgasning af biomasse en  

E-Print Network [OSTI]

d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 1 Har forbrænding og forgasning af biomasse en fremtid ? Charles Nielsen Elsam A/S #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 2 JaJa #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 3 Disposition

35

Microsoft Word - Abengoa Final EA  

Broader source: Energy.gov (indexed) [DOE]

83 83 FINAL ENVIRONMENTAL ASSESSMENT FOR DEPARTMENT OF ENERGY LOAN GUARANTEE TO ABENGOA SOLAR INC. FOR THE SOLANA THERMAL ELECTRIC POWER PROJECT NEAR GILA BEND, ARIZONA U.S. Department of Energy Loan Guarantee Program Office Washington, DC 20585 May 2010 DOE/EA-1683 i CONTENTS Acronynms and Abbreviations ................................................................................................. viii SUMMARY ....................................................................................................................................x 1 Purpose and Need for Agency Action .......................................................................... 1-1

36

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta Marrone Biofuels Program Manager Email Rebecca McDonald Bioscience Communications Email Srinivas Iyer Bioscience Group Leader Email Richard Sayre Senior Scientist Email "Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this century. Energy security is vital to our future national security and the efficient functioning of our market economy." -LANL Director Charles McMillan Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae,

37

Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark  

E-Print Network [OSTI]

Bioenergy and emerging biomass conversion technologies Hanne ?stergård, Risø National Laboratory in Denmark 8th May 2007 Background Bioenergy is an important topic to include in a foresight analysis of the world agricultural markets and Europe. In the recent Agricultural Outlook report from OECD-FAO1

38

Abengoa | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

biomass cogeneration plant will use the residual solids and waste water treatment biogas to generate up to 21 MW gross electrical power-enough to supply all of the...

39

Bioenergy  

Broader source: Energy.gov [DOE]

Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

40

Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview of Research and Highlights The next-generation of biofuels are being developed at Los Alamos. Made from renewable resources, biofuels could yield reduced carbon dioxide emissions. Los Alamos scientists are * working to bring cellulosic ethanol (made from the inedible parts of plants, instead of corn) and algae-based fuels to the marketplace in ways that make them economically competitive with fossil fuels and prevent a strain on valuable food

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The scientometric evaluation of the research on the production of bioenergy from biomass  

Science Journals Connector (OSTI)

The present study explores the characteristics of the literature on the production of bioenergy from biomass published during the last three decades, based on the databases of Science Citation Index-Expanded (SCIE) and Social Sciences Citation Index (SSCI) and its implications using the scientometric techniques. The results of this study reveal that the research output in this field has grown exponentially during this period reaching to 5892 papers in total with paralleling enormous changes in the research landscape. Papers are mostly journal articles, reviews, and proceedings, being predominantly in English. The US is the most publishing single country producing 27% of the output, but lagging significantly behind the Europe as a whole (near 50%). The Chinese Academy of Sciences is the most contributing institution where the most publishing author is A Demirbas. Biomass & Bioenergy is the most publishing journal whilst, Energy & Fuels is the most published subject area. The total number of citations is 82,732, giving a ratio for the Average Citations per Item as 13.83 and H-index as 102. The results of this first-ever such study of its kind show that the scientometric analysis has a great potential to gain valuable insights into the evolution of the research on the production of bioenergy from biomass.

Ozcan Konur

2012-01-01T23:59:59.000Z

42

Abengoa Bioenergia Brasil | Open Energy Information  

Open Energy Info (EERE)

Brasil Jump to: navigation, search Name: Abengoa Bioenergia Brasil Place: Sao Paulo, Sao Paulo, Brazil Zip: 04551-060 Product: Brazilian-based ethanol producer, subsidiary of...

43

Abengoa Solar, Inc. (Mojave Solar) | Department of Energy  

Energy Savers [EERE]

Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Location: San Bernardino County, CA Eligibility: 1705 Snapshot In September 2011,...

44

Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. EEEnnneeerrrgggyyy rrreeeqqquuuiiirrreeemmmeeennnttt fffooorrr fffiiinnneee gggrrriiinnndddiiinnnggg ooofff tttooorrrrrreeefffiiieeeddd wwwooooooddd  

E-Print Network [OSTI]

Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010.01.039. 1 EEEnnneeerrrgggyyy,version1-3Aug2010 Author manuscript, published in "Biomass and Bioenergy 34, 7 (2010) 923-930" DOI : 10.1016/j.biombioe.2010.01.039 #12;Biomass & Bioenergy, 2010, 34(7), 923-930, doi:10.1016/j.biombioe.2010

Paris-Sud XI, Université de

45

Agricultural Chemistry and Bioenergy  

Science Journals Connector (OSTI)

Agricultural Chemistry and Bioenergy ... Renewed interest in converting biomass to biofuels such as ethanol, other forms of bioenergy, and bioenergy byproducts or coproducts of commercial value opens opportunities for chemists, including agricultural chemists and related disciplines. ...

William J. Orts; Kevin M. Holtman; James N. Seiber

2008-05-13T23:59:59.000Z

46

Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State  

Science Journals Connector (OSTI)

The development of short-rotation intensive cultural (SRIC) willow systems as a source of bioenergy and bioproducts is growing in the northeastern and midwestern United States. Important data for sustainable management such as nutrient removal and nutrient use efficiency in willow bioenergy plantations is lacking. This study reports wood biomass production, annual removal of nutrients, and nutrient use efficiency in experimental plantings of SRIC willow and poplar at Tully, New York. Effects of clone, fertilization, irrigation, planting density, and harvest cycle were analyzed. Annual biomass production of 1522 dryMg/ha removed 7586, 1011, 2732, 5279 and 45kg/ha/year of N, P, K, Ca and Mg, respectively. For all the variables studied, the responses depended on clone. Fertilization and irrigation increased rates of nutrient removal by means of increased biomass production. Unlike planting density, harvest cycle significantly affected rates of nutrient removal and nutrient use efficiency. For clone SV1 (Salix dasyclados), an irrigated and fertilized planting with a density of 36,960trees/ha harvested on a 3-year rotation had the highest biomass production and nutrient use efficiency, and the lowest rates of nutrient removal. The annual harvest cycle had the lowest nutrient use efficiency and the highest annual removal of nutrients suggesting that this choice would be most appropriate for biomass crops that are to be used as buffer strips to manage nutrient runoff from agricultural fields. An appropriate choice of clone, planting density, and harvest cycle could tailor the rates of nutrient removal and nutrient use efficiency to match the objective of the planting.

Hector G. Adegbidi; Timothy A. Volk; Edwin H. White; Lawrence P. Abrahamson; Russell D. Briggs; Donald H. Bickelhaupt

2001-01-01T23:59:59.000Z

47

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

fuel resources. Bio- mass Bioenergy 27:613 20. Parker N,Strategic assessment of bioenergy development in the west:as Feedstock for a Bioenergy and Bioprod- ucts Industry: The

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

48

Abengoa Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Solar Name Abengoa Solar Address 11500 W 13th Ave Place Lakewood, Colorado Zip 80215 Sector Solar Product Solar developer Number of employees 11-50 Website http://www.abengoasolar.com/ Coordinates 39.735456°, -105.127413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.735456,"lon":-105.127413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

Bioenerg. Res. (010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advance

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

50

Bioenergy Impact on Wisconsin's Workforce  

Broader source: Energy.gov [DOE]

Troy Runge, Wisconsin Bioenergy Initiative, presents on bioenergy's impact on Wisconsin's workforce development for the Biomass/Clean Cities States webinar.

51

Abengoa Bioenergia SL | Open Energy Information  

Open Energy Info (EERE)

Abengoa Bioenergia SL Abengoa Bioenergia SL Place Seville, Spain Zip 41018 Product A biodiesel production and a plant operation company within the European market as a part of Abengoa group. Coordinates 37.387697°, -6.001813° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.387697,"lon":-6.001813,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Biomass & Bioenergy, 2010, 34(5), 602-609, doi : 10.1016/j.biombioe.2010.01.002 MMMooodddeeelllllliiinnnggg aaannnhhhyyydddrrrooouuusss wwweeeiiiggghhhttt lllooossssss ooofff wwwooooooddd ccchhhiiipppsss ddduuurrriiinnnggg tttooorrrrrreeefffaaaccctttiiioo  

E-Print Network [OSTI]

Biomass & Bioenergy, 2010, 34(5), 602-609, doi : 10.1016/j.biombioe.2010.01.002 1 : govin@emse.fr hal-00477323,version1-28Apr2010 Author manuscript, published in "Biomass and Bioenergy 34, 5 (2010) 602-609" DOI : 10.1016/j.biombioe.2010.01.002 #12;Biomass & Bioenergy, 2010, 34(5), 602

Paris-Sud XI, Université de

53

Nutrient use efficiency in bioenergy cropping systems: Critical research questions  

E-Print Network [OSTI]

x giganteus. Biomass Bioenergy 12:21-24. Christian, D.G. ,for-biofuels systems. Biomass Bioenergy Gentry, L.E. , F.E.cynosuroides. Biomass Bioenergy 12:419-428. Brejda, J.J.

Brouder, Sylvie; Volenec, Jeffrey J; Turco, Ronald; Smith, Douglas R; Ejeta, Gebisa

2009-01-01T23:59:59.000Z

54

The US Department of Energy Great Lakes Bioenergy Research Center: Midwestern Biomass as a Resource for Renewable Fuels  

Science Journals Connector (OSTI)

The Great Lakes Bioenergy Research Center is one of three Bioenergy Research Centers establish by the US Department...

Steven Slater; Kenneth Keegstra; Timothy J. Donohue

2010-03-01T23:59:59.000Z

55

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

recycling and biomass conversion. More than a million tonsmost cellulosic biomass conversion processes should operateConversion process Fuel type Solid Thermochemical Biomass

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

56

EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar Project near Barstow, California July 8, 2011 EA-1798: Finding of No Significant...

57

Effect of Harvest Dates on Biomass Accumulation and Composition in Bioenergy Sorghum  

E-Print Network [OSTI]

for use as a feedstock for ethanol production. Other factors such as water use efficiency, drought tolerance, yield potential, composition, and established production systems also make sorghum a logical choice as a feedstock for bioenergy production...

Borden, Dustin Ross

2012-02-14T23:59:59.000Z

58

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

Science Journals Connector (OSTI)

The mission of the Joint BioEnergy Institute is to advance the development of the next-generation of biofuelsliquid fuels derived from the solar energy...

Henrik Vibe Scheller; Seema Singh; Harvey Blanch; Jay D. Keasling

2010-06-01T23:59:59.000Z

59

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GW. 1986. Biomass production from herbaceous plant. In biomass energy development. WH Smith (ed.). Plenum Press, New York, NY. pp. 163-175. 165 U.S. BILLION-TON UPDATE: BIOMASS...

60

Local and remote climate impacts from expansion of woody biomass for bioenergy feedstock in the Southeastern US  

E-Print Network [OSTI]

as a feedstock for a bioenergy and bioproducts industry: TheCooling the greenhouse with bioenergy. Nature, 353, 1112.F. , and C. Azar, 2009: Bioenergy plantations or long- term

Murphy, L.N.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

power plant. and pyrolysis of biomass by heating underpyrolysis oils) Producer gas Synthesis gas (syngas) Substitute natural gas (SNG) Hydrogen Biochemical Biosolids Physiochemical Densified biomass

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

62

Switchgrass for Forage and Bioenergy: II. Effects of P and K fertilization  

E-Print Network [OSTI]

systems. Biomass and Bioenergy 30:198-206. Fixen, PE. 2007.and persistence under bioenergy harvest systems in thebiomass yields for bioenergy purposes have typically been

Guretzky, John A; Kering, Maru K; Biermacher, Jon T; Cook, Billy J

2009-01-01T23:59:59.000Z

63

Our Commitment to Bioenergy Sustainability  

Broader source: Energy.gov [DOE]

To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production.

64

AGCO Biomass Solutions: Biomass 2014 Presentation  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy FeedstocksFrom Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

65

Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops  

SciTech Connect (OSTI)

The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

Doust, Andrew, N.

2011-11-11T23:59:59.000Z

66

Abengoa Mojave Final Biological Opinion | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Mojave Final Biological Opinion Biological Opinion on Mojave Solar, LLC's Mojave Solar Project, San Bernardino County, California (8-8-11-F-3) Related to EA-1798: Loan...

67

EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...  

Broader source: Energy.gov (indexed) [DOE]

Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6,...

68

Biomass Characteristics Index: A Numerical Approach in Palm Bio-Energy Estimation  

Science Journals Connector (OSTI)

Abstract In order to give a clear insight of the energy output estimation from the biomass, a comprehensive study on the physical properties of the biomass: bulk density and moisture content is crucial. A Biomass Characteristics Index (BCI) is proposed to represent the relationship between bulk density and moisture content. A numerical framework is developed to determine the BCI. This index is used to estimate the biomass bulk density and moisture content before the calorific value calculation. The classification of biomass according to its specific BCI can forecast the related bulk density and moisture content. Therefore, it reduces the hassle and time constraint to get those values through conventional empirical method. This will increase the overall biomass operational management efficiency.

Jiang Ping Tang; Hon Loong Lam; Mustafa Kamal Abdul Aziz; Noor Azian Morad

2014-01-01T23:59:59.000Z

69

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

70

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

biomass resources can help meet state and national bioenergythis chemically complex help meet state goals for increasingLCFS), and can similarly help meet significant promise for

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

71

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

In addition to ethanol, other energy types might emerge inthe higher octane of ethanol offsets the energy penalty forto increase ethanol yields. Energy uses for biomass Fig. 4.

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

72

Biomass Program Peer Review Sustainability Platform  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2000. "Biomass and Bioenergy Applications of the POLYSYS Modeling Framework," Biomass & Bioenergy 4(3):1-18. * County model anchored to USDA 10-year baseline & extended to 2030 -...

73

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

fuel purchases. On an energy basis, corn prices of $4 perEthanol from corn using biomass for process energy exceedssuch as the Midwest Corn Belt. Energy crops may aid in

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

74

The Economic and Financial Implications of Supplying a Bioenergy Conversion Facility with Cellulosic Biomass Feedstocks  

E-Print Network [OSTI]

biomass feedstocks. Targeting the Middle Gulf Coast, Edna-Ganado, Texas area, mathematical programming in the form of a cost-minimization linear programming model(Sorghasaurus) is used to assess the financial and economic logistics costs for supplying a...

McLaughlin, Will

2012-02-14T23:59:59.000Z

75

Bioenergy: America's Energy Future  

ScienceCinema (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-08-12T23:59:59.000Z

76

Bioenergy: America's Energy Future  

SciTech Connect (OSTI)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

2014-07-31T23:59:59.000Z

77

Advancing Bioenergy in Europe: Exploring bioenergy systems and socio-political issues.  

E-Print Network [OSTI]

??This thesis concentrates on bioenergy (or biomass utilised for heat, electricity and fuels for transport) as a renewable energy with significant potentials and options. Biomass (more)

McCormick, Kes

2007-01-01T23:59:59.000Z

78

Switchgrass for Forage and Bioenergy: I. Effects of Nitrogen Rate and Harvest System  

E-Print Network [OSTI]

biofuel systems. Biomass and Bioenergy 30:198-206. Muir JP,systems. Biomass and Bioenergy 19: 281-286. Sanderson MA,whether for forage or bioenergy) is defining how crop

Kering, Maru K; Biermacher, Jon T; Cook, Billy J; Guretzky, John A

2009-01-01T23:59:59.000Z

79

DOE Perspectives on Sustainable Bioenergy Landscapes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Bioenergy Technologies Office biomass.energy.gov Kristen Johnson Sustainability T echnology M anager Bioenergy Technologies Office U.S. D epartment o f E nergy ( DOE) Green L...

80

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

fluidised bed biomass gasifier, Fuel, 2007, 86, 1417-1429.utilizing a down draft gasifier, Biomass and Bioenergy,fixed bed and fluidized bed gasifier, Biomass and Bioenergy,

FAN, XIN

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EERE: Bioenergy Technologies Office Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Technologies Office Search Bioenergy Technologies Office Search Search Help Bioenergy Technologies Office HOME ABOUT THE PROGRAM RESEARCH & DEVELOPMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Bioenergy Technologies Office Site Map Printable Version Share this resource Send a link to EERE: Bioenergy Technologies Office Home Page to someone by E-mail Share EERE: Bioenergy Technologies Office Home Page on Facebook Tweet about EERE: Bioenergy Technologies Office Home Page on Twitter Bookmark EERE: Bioenergy Technologies Office Home Page on Google Bookmark EERE: Bioenergy Technologies Office Home Page on Delicious Rank EERE: Bioenergy Technologies Office Home Page on Digg Find More places to share EERE: Bioenergy Technologies Office Home Page on AddThis.com... Biomass is a clean, renewable energy source that can help to significantly

82

Life cycle assessment of Brassica carinata biomass conversion tobioenergy and platform chemicals  

Science Journals Connector (OSTI)

Abstract The extraction, supply and use of fossil energy carriers and chemicals is a day-by-day increasingly critical issue, linked as it is to severe damages to environment and human health, not to talk of the shrinking availability of fossil fuels worldwide. Therefore, research on suitable alternatives to the extensive use of fossil-based fuels and chemicals is crucial: the potential of Brassica carinata, a non-food oil crop, to grow on marginal lands in Campania Region was investigated, focusing on the production of biodiesel from seeds and platform chemicals from agricultural and extraction residues via an innovative conversion route (so-called Biofine process) in a local industry. The aim of this paper is to evaluate the performance of such an agro-industrial system for biodiesel and bio-chemicals. A comparison with an equivalent system only producing biodiesel and thermal energy is also carried out. A Life Cycle Assessment (LCA) is performed by means of commercial LCA software (Simapro 7.3.0), investigating energy requirements and environmental impacts (global warming, acidification, abiotic depletion, human toxicity, eutrophication and photochemical oxidation). Results show that, in spite of claims of biomass-based greenness, both systems still rely on large fractions of non-renewable energy sources (around 90% of the total use) and mostly affect the same impact categories (abiotic depletion and global warming). The agricultural phase contributes to the total impact more than the industrial extraction and conversion steps, being the nitrogen fertilizers responsible for most of impacts of both systems. However, the conversion of lignocellulosic residues into chemicals instead of heat, conserves the structural quality of natural polymers in the form of marketable value added products (ethyl levulinate and formic acid), also translating into large energy savings compared to traditional chemical routes.

G. Fiorentino; M. Ripa; S. Mellino; S. Fahd; S. Ulgiati

2014-01-01T23:59:59.000Z

83

Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production  

E-Print Network [OSTI]

The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

Bumguardner, Marisa

2012-10-19T23:59:59.000Z

84

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

85

GIS and Location Theory Based Bioenergy Systems Planning.  

E-Print Network [OSTI]

??This research is concerned with bioenergy systems planning and optimization modelling in the context of locating biomass power plants and allocating available biomass feedstock to (more)

Dong, Jingyuan

2008-01-01T23:59:59.000Z

86

Bioenergy and Bioproducts BIOENERGY PROGRAM  

E-Print Network [OSTI]

Bioenergy and Bioproducts BIOENERGY PROGRAM Texas AgriLife Research, a part of the Texas A&M University System, is a national leader in bioenergy and bioproducts research, development

87

Bioenergy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy News Bioenergy News Bioenergy News RSS August 30, 2011 USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation WASHINGTON, Aug. August 10, 2011 Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock potential nationwide. The report examines the nation's capacity to produce a billion dry tons of biomass resources annually for energy uses without impacting other vital U.S. June 10, 2011 Department of Energy Announces up to $36 Million to Support the Development

88

The water footprint of bioenergy  

Science Journals Connector (OSTI)

...hunger threshold. Households may make decisions...replacement of fossil energy with bioenergy generates...biofuels. Bioenergy. Energy derived from biomass...and industrial and household organic waste...beet Morocco 56 Japan 0 Russia 455 Russia...of 9 Table S3. Energy provided by ethanol...

Winnie Gerbens-Leenes; Arjen Y. Hoekstra; Theo H. van der Meer

2009-01-01T23:59:59.000Z

89

DOE Bioenergy Center Special Issue. The Bioenergy Sciences Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy Center Special Issue. The Bioenergy Sciences Center (BESC) Richard A. Dixon Published online: 22 October 2009 # Springer Science + Business Media, LLC. 2009 Keywords Bioenergy centers . United States Department of Energy . Biomass recalcitrance . High-throughput screening . Plant transformation This issue of BioEnergy Research is the first of three special issues to feature work from the US Department of Energy (DOE) Bioenergy Centers. In June 2006, the DOE's Genomes to Life Program published a report, entitled "Breaking the biological barriers to cellulosic ethanol: a joint research agenda," that outlined research areas requir- ing significant investment in order to meet the target of making cellulosic ethanol cost-competitive by 2012. Words were converted to action in June 2007 when Energy Secretary Samuel W. Bodman announced the establishment of

90

Sorghum bioenergy genotypes, genes and pathways  

E-Print Network [OSTI]

and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

Plews, Ian Kenneth

2009-05-15T23:59:59.000Z

91

Bioenergy farming using woody crops. A review  

Science Journals Connector (OSTI)

Bioenergy plantations will predictably become the primary source of biomass for energy purposes on a global scale. More specifically, the use of forest wood has been identified as a potential source of biomass fo...

Carmen Roco Rodrguez Pleguezuelo

2014-10-01T23:59:59.000Z

92

Special issue: bioenergy Don-Hee Park Sang Yup Lee  

E-Print Network [OSTI]

EDITORIAL Special issue: bioenergy Don-Hee Park · Sang Yup Lee Published online: 11 December 2011 ? of the world. The 2011 international symposium on bioenergy Korea was held on 17­18 March 2011. This special, but not limited to, bio- mass cultivation, biomass pretreatment, and biomass conversion in the field of bioenergy

93

Renewable Technologies and Environmental Injustice: Subsidizing Bioenergy, Promoting Inequity  

E-Print Network [OSTI]

Renewable Technologies and Environmental Injustice: Subsidizing Bioenergy, Promoting Inequity-giganteus biomass, this article shows that bioenergy projects are (1) not clean, given overwhelming particulate biomass in- cineration? No. Despite bioenergy threats to climate change,3,4 and despite the World Bank

Shrader-Frechette, Kristin

94

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

95

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply  

Broader source: Energy.gov [DOE]

The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption.

96

Definition: Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Bioenergy Energy produced from organic materials from plants or animals.[1][2] View on Wikipedia Wikipedia Definition Bioenergy is renewable energy made available from materials derived from biological sources. Biomass is any organic material which has stored sunlight in the form of chemical energy. As a fuel it may include wood, wood waste, straw, manure, sugarcane, and many other byproducts from a variety of agricultural processes. By 2010, there was 35GW of globally installed bioenergy capacity for electricity generation, of which 7GW was in the United States. In its most narrow sense it is a synonym to biofuel, which is fuel derived from biological sources. In its broader sense it includes biomass, the biological material used as a biofuel, as well as the

97

Biomass 2012 Agenda  

Office of Environmental Management (EM)

reach of biomass and biofuel applications, helping to build capacity that will allow for bioenergy markets to develop and deepen in the international arena. Moderator: Natasha...

98

Biomass 2014 Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bender Novozymes Bryna Berendzen DOE - Bioenergy Technologies Office Joshua Berg The Earth Partners Dilfia Bermudez Summerhill Biomass Systems Inc. Michael Bernstein BCS, Inc....

99

Biomass Indirect Liquefaction Workshop  

Broader source: Energy.gov [DOE]

To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL)...

100

ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Biomass Program Peer...

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

About the Bioenergy Technologies Office: Growing America's Energy...  

Energy Savers [EERE]

making affordable, abundant, and high-quality biomass materials accessible for use as bioenergy feedstocks. Feedstock logistics R&D is focused on reducing costs and improving...

102

Bioenergy Review Mapping Work Resource efficiency science programme  

E-Print Network [OSTI]

Bioenergy Review ­ Mapping Work Resource efficiency science programme Science report: SC070001/SR2 #12;ii Science Report ­ Bioenergy Review ­ Mapping Work The Environment Agency is the leading public, biomass, bioenergy, waste, wood-fuel, land, land-take, mapping, 2010, GIS Research Contractor: Forest

103

Future perspectives of international bioenergy trade  

Science Journals Connector (OSTI)

Abstract According to the IEA World Energy Outlook 2012, primary demand for bioenergy will strongly increase up to the year 2035: the demand for biofuels and biomass for electricity is expected to triple. These changes will have an impact on the regional balance of demand and supply of bioenergy leading to both increasing trade flows and changes in trade patterns. The GFPM, TIMER and POLES models have been selected for a detailed comparison of scenarios and their impact on global bioenergy trade: In ambitious scenarios, 1426% of global bioenergy demand is traded between regions in 2030. The model scenarios show a huge range of potential bioenergy trade: for solid biomass, in ambitious scenarios bioenergy trade ranges from 700Mt to more than 2,500Mt in 2030. For liquid biomass, the ambitious scenarios show a bioenergy trade in the range of 65 - >360Mt in 2030. Considering the currently very small share of internationally traded bioenergy, this would result in huge challenges and require tremendous changes in terms of production, pretreatment of biomass and development of logistic chains.

Julian Matzenberger; Lukas Kranzl; Eric Tromborg; Martin Junginger; Vassilis Daioglou; Chun Sheng Goh; Kimon Keramidas

2015-01-01T23:59:59.000Z

104

BIOENERGI ER BLEVET MODERNE 4DECEMBER 2003  

E-Print Network [OSTI]

at bruge biomasse til energi. Opfyring med brænde og opvarmning med halmfyr eller biogas er kendte, biogas og bioethanol. Bioenergi er den eneste vedvarende energikilde, der findes i fast, flydende og

105

Syllabus -Plants for Bioenergy Fall 2011 Instructors: Stacy Bonos and Zane R. Helsel  

E-Print Network [OSTI]

Syllabus - Plants for Bioenergy ­ Fall 2011 11:776:410 Instructors: Stacy Bonos and Zane R. Helsel Breeding) Bonos #12;Course Title: Plants for Bioenergy Instructors: Drs. Stacy Bonos and Zane R. Helsel of bioenergy and discuss various renewable energy sources from biomass. Agronomic and bioenergy traits

Chen, Kuang-Yu

106

Introduction The bioenergy industry is pursuing low-input crops to be  

E-Print Network [OSTI]

1 Introduction The bioenergy industry is pursuing low-input crops to be grown on marginal lands the unintentional introduction and spread of potentially invasive species. Background Information The bioenergy- generation bioenergy crops are grown specifically for biomass pro- duction. Therefore, bioenergy crops

Liskiewicz, Maciej

107

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast  

E-Print Network [OSTI]

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast gas emissions implications of wood biomass (`bioenergy') harvests are highly uncer- tain yet of great bioenergy is only one of many products. We used field data to formulate bioenergy harvest scenarios, applied

Vermont, University of

108

Hawaii Bioenergy Master Plan Bioenergy Technology  

E-Print Network [OSTI]

-commercial bioenergy demonstration projects. 6. Hawaii should establish a bioenergy/biofuel development fund to support should be allocated to support training manpower in the field of bioenergy/biofuel technology. Table E.1Hawaii Bioenergy Master Plan Bioenergy Technology University of Hawaii at Manoa Samir Khanal

109

Explore Bioenergy Technology Careers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technology Careers Bioenergy Technology Careers Explore Bioenergy Technology Careers About Bioenergy Technologies Office Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Photo of a woman tending to plants in a lab. What jobs are available? Feedstocks Farmers Seasonal workers Tree farm workers Mechanical engineers Harvesting equipment mechanics Equipment production workers Chemical engineers Chemical application specialists Chemical production workers Biochemists Aquaculture technicians Agricultural engineers Genetic engineers and scientists Storage facility operators Conversion Microbiologists Clean room technicians Industrial engineers Chemical & mechanical engineers Plant operators

110

Bioenergy: Americas Energy Future  

Office of Energy Efficiency and Renewable Energy (EERE)

Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the publics understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

111

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

112

Bioenergy KDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navigation Navigation Home Sign-In Contact Us Register Search this site: Search Connect: Bioenergy Library Map Tools & Apps Overview The Bioenergy KDF supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner. Read more and watch a short walkthrough video lease note: The KDF works best in the Google Chrome or Mozilla Firefox browsers. What Would You Like to Do? CONTRIBUTE DATA Fill out the contribute form to add data sets and other types of

113

Bioenergy Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference http://energy.gov/eere/articles/lab-your-gas-tank-4-bioenergy-testing-facilities-are-making-difference bioenergy-testing-facilities-are-making-difference" class="title-link">From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference

114

Bioenergy Feedstock Potential from Short-Rotation Woody Crops in a Dryland Environment  

Science Journals Connector (OSTI)

Bioenergy Feedstock Potential from Short-Rotation Woody Crops in a Dryland Environment ... Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia ... Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia ...

R. J. Harper; S. J. Sochacki; K. R. J. Smettem; N. Robinson

2009-08-28T23:59:59.000Z

115

STATEMENT OF CONSIDERATIONS PETITION FOR ADVANCE WAIVER OF PATENT RIGHTS BY  

Broader source: Energy.gov (indexed) [DOE]

ABENGOA BIOENERGY BIOMASS OF KANSAS, LLC ("ABENGOA ABENGOA BIOENERGY BIOMASS OF KANSAS, LLC ("ABENGOA KANSAS") UNDER COOPERATIVE AGREEMENT NO. DE-FC36- 07017028 BETWEEN ABENGOA KANSAS AND DOE; W(A)-08-022; CH- 1449 The Petitioner, ABENGOA KANSAS, has requested a waiver of domestic and certain foreign patent rights for itself and its technology affiliate Abengoa New Technologies, Inc. (ABNT), all subject inventions that may be conceived or first actually reduced to practice under the above-identified agreement, and subcontracts thereof. The agreement is entitled "Integrated Biorefinery for Conversion of Biomass to Ethanol, Synthesis Gas, and Heat." The objective of the current project is the development and operation of an integrated biorefinery facility in southwestern Kansas, having a lignocellulosic biomass

116

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network [OSTI]

Techniques for Biomass Conversion. Bioeng. Res. 2009; 2 179-Deconstruction in Biomass Conversion. In preparation LloydTechniques for Biomass Conversion. BioEnergy Research 2009;

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

117

Bioenergy Technologies FY14 Budget At-a-Glance  

Broader source: Energy.gov (indexed) [DOE]

BIOENERGY TECHNOLOGIES AT-A-GLANCE Bioenergy Technologies supports targeted research, development, demonstration, and deployment (RDD&D) activities to progress sustainable, nationwide production of advanced biofuels that will displace a share of petroleum-derived fuels, mitigate climate change, create American jobs, and increase U.S. energy security. What We Do Bioenergy Technologies employs an integrated, cross- cutting RDD&D strategy to develop commercially viable biomass utilization technologies. The office makes strategic investments in the following areas:  Feedstock Infrastructure advances a sustainable, secure, reliable, and affordable biomass feedstock supply for the U.S. bioenergy industry.  Conversion R&D identifies and develops viable

118

Biomass 2014: Growing the Future Bioeconomy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy Bioenergy: America's Energy Future is a short documentary film showcasing examples of...

119

Enhanced Biomass Digestion with Wood Wasp Bacteria - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Biomass Digestion with Wood Wasp Bacteria Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Plant biomass represents a...

120

Secretary Moniz Speaks at Biomass 2013 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2013 Secretary Moniz Speaks at Biomass 2013 Addthis Speakers Secretary Ernest Moniz Duration 22:43 Topic Biofuels Bioenergy Biological Science...

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bioenergy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy News Bioenergy News Bioenergy News RSS August 1, 2013 Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz highlighted the important role biofuels play in the Administration's Climate Action Plan. July 31, 2013 Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Groundbreaking Project Deploys Technology Developed Through Early Energy Department R&D Investments July 1, 2013 Energy Department Announces Investment to Accelerate Next Generation Biofuels Following last week's rollout of President Obama's plan to cut carbon pollution, the Energy Department today announced four research and development projects to bring next generation biofuels on line faster and

122

Bioenergy in Energy Transformation and Climate Management  

SciTech Connect (OSTI)

Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectivesreducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

2014-04-01T23:59:59.000Z

123

Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels  

Science Journals Connector (OSTI)

Forest Bioenergy or Forest Carbon? ... Forest carbon consequences of biomass harvest for bioenergy production can significantly delay and reduce GHG mitigation and should be included in life cycle studies. ... The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. ...

Jon McKechnie; Steve Colombo; Jiaxin Chen; Warren Mabee; Heather L. MacLean

2010-12-10T23:59:59.000Z

124

BioEnergy Blog  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

bioenergy985271 BioEnergy Blog en Energy Department Helping Lower Biofuel Costs for the Nation http:energy.goveerearticlesenergy-department-helping-lower-biofuel-costs-nation...

125

Bioenergy for Sustainable Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Bioenergy High-Impact Opportunity Sustainable Energy For All BIOENERGY FOR SUSTAINABLE DEVELOPMENT Overview * Energy poverty is widespread and prevents economic...

126

CARBON LIFE-CYCLE AND ECONOMIC ANALYSIS OF FOREST CARBON SEQUESTRATION AND WOODY BIOENERGY PRODUCTION.  

E-Print Network [OSTI]

??Sequestering carbon in standing biomass, using woody bioenergy, and using woody products are the three potential ways to utilize forests in reducing greenhouse gases (GHGs) (more)

Shrestha, Prativa

2013-01-01T23:59:59.000Z

127

Ris har udgivet en rapport om moderne bioenergi. Den slr fast, at  

E-Print Network [OSTI]

Risø har udgivet en rapport om moderne bioenergi. Den slår fast, at biomasse er en ligeså værdifuld teknologi, der skal til for at udnytte hele dens potentiale. RIS?NYT N O 42003 MODERNE BIOENERGI HAR STORE MULIGHEDER Moderne bioenergi har store muligheder Af Hans Larsen, Jens Kossmann og Leif Sønderberg Petersen

128

Bioenergy crop greenhouse gas mitigation potential under a range of management practices  

E-Print Network [OSTI]

Bioenergy crop greenhouse gas mitigation potential under a range of management practices T A R A W been proposed as viable bioenergy crops because of their potential to yield harvest- able biomass-senescence harvests are a more effective means than maximizing yield potential. Keywords: bioenergy, feedstocks, GHG

DeLucia, Evan H.

129

The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge  

E-Print Network [OSTI]

© The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State · The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

Lee, Dongwon

130

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

2004). "Optimizing Forest Biomass Exploitation for Energyat a Regional Level." Biomass and Bioenergy, 26(1), 15-25.Energy Crop Feedstock." Biomass and Bioenergy, 18(4), 309-

Parker, Nathan

2007-01-01T23:59:59.000Z

131

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

2004). "Optimizing Forest Biomass Exploitation for Energyat a Regional Level." Biomass and Bioenergy, 26(1), 15-25.Energy Crop Feedstock." Biomass and Bioenergy, 18(4), 309-

Parker, Nathan C

2007-01-01T23:59:59.000Z

132

Biomass Program Monthly News Blast - March 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Past and Upcoming Events with Biomass Representation International Energy Agency Bioenergy Task 42 Meeting, February 27-March 3, 2012, Melissa Klembara, Copenhagen,...

133

Biomass Indirect Liquefaction Strategy Workshop: Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies...

134

Biomass Indirect Liquefaction Strategy Workshop: Summary Report  

Broader source: Energy.gov [DOE]

This report is based on the proceedings of the U.S. DOEs Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop.

135

NREL: Biomass Research - Justin B. Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's National Bioenergy Center. Justin started at NREL in 1996 working on a lignin...

136

NREL: Biomass Research - Mark R. Nimlos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory....

137

Utility Promoters for Biomass Feedstock Biotechnology - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Efficiency Find More Like This Return to Search Utility Promoters for Biomass Feedstock Biotechnology Inventors: Kyung-Hwan Han, Jae-Heung Ko Great Lakes Bioenergy...

138

Development of bioenergy technologies in Uganda: A review of progress  

Science Journals Connector (OSTI)

Biomass is a renewable energy resource; however, its exploitation raises concerns about its ability to sustain the growing demand and its negative impacts on the environment, particularly in developing countries. These concerns are more prominent on the African continent where high population growth rates is leading to high rates of deforestation due to expansion of agricultural land and increased demand for bioenergy. Use of traditional and inefficient bioenergy technologies and appliances also exacerbate the problem. This paper presents a review of the efforts and progress made by different organisations in promoting improved bioenergy technologies in Uganda. The study was based on an extensive review of available literature on improved bioenergy technologies introduced in the country. It was found that there is high level of wastage of biomass resources since an estimated 72.7% of the population use traditional cooking stoves with efficiency estimated to be less than 10%. Inefficient cooking stoves are also blamed for indoor air pollution and respiratory illness reported amongst its users. Modern bioenergy technologies such as biomass gasification, cogeneration, biogas generation, biomass densification, and energy-efficient cooking stoves have been introduced in the country but have certainly not been widely disseminated. The country should pursue policies that will accelerate proliferation of more efficient bioenergy technologies in order to reduce the negative environmental impacts of bioenergy utilisation and to ensure sustainability of biomass supplies.

Collins Okello; Stefania Pindozzi; Salvatore Faugno; Lorenzo Boccia

2013-01-01T23:59:59.000Z

139

Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading  

Broader source: Energy.gov [DOE]

Algal lipid upgrading is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

140

High-biomass sorghums for biomass biofuel production  

E-Print Network [OSTI]

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Applicant Organization:  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy Biomass of Kansas, LLC Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Colwich, Kansas Description: This project from a committed long-term player has the potential to demonstrate dual biochemical and thermochemical capabilities. CEO or Equivalent: Javier Salgado (CEO of Abengoa Bioenergy) Gerson Santos-Leon, Director ABBK Participants: Abengoa Bioenergy R&D, Abengoa Engineering, Antares Corp., Taylor Enegineering Production: * 11. 4 million gallons/year and sufficient energy to power the operation and sell excess energy to the co-located dry-grind ethanol production plant * Both ethanol and syngas production, with long term strategy of using the syngas for ethanol and chemicals production

142

Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems  

E-Print Network [OSTI]

Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential...

Husmoen, Derek Howard

2012-07-16T23:59:59.000Z

143

Bioscience: Bioenergy, Biosecurity, and Health  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioscience: Bioenergy, Biosecurity, and Health science-innovationassetsimagesicon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are...

144

Frontline BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Frontline BioEnergy LLC Frontline BioEnergy LLC Jump to: navigation, search Name Frontline BioEnergy LLC Place Ames, Iowa Zip 50010 Sector Bioenergy, Biomass Product Frontline BioEnergy Inc develops and installs gasification systems and individual equipment to convert biomass into valuable products. Coordinates 30.053389°, -94.742269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.053389,"lon":-94.742269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Center for BioEnergy Sustainability | Open Energy Information  

Open Energy Info (EERE)

Sustainability Sustainability Jump to: navigation, search Logo: Center for BioEnergy Sustainability Name Center for BioEnergy Sustainability Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Focus Area Biomass Topics Resource assessment Resource Type Dataset, Maps Website http://www.ornl.gov/sci/besd/c References Center for BioEnergy Sustainability[1] Abstract The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. The Center for BioEnergy Sustainability, or CBES, is a Center at Oak Ridge National Laboratory with a focus on "dealing with the environmental impacts

146

Argonne National Laboratory Launches Bioenergy Assessment Tools |  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools September 30, 2013 - 4:00pm Addthis A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable

147

E-Print Network 3.0 - aboveground biomass study Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Arizona Collection: Environmental Sciences and Ecology 8 Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne...

148

E-Print Network 3.0 - aboveground biomass distributions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Biology and Medicine ; Environmental Sciences and Ecology 8 Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne...

149

Bioenergy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Bioenergy Blog RSS December 16, 2013 The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference The Energy Department is working to cut the cost of biofuel production by supporting advanced development and demonstration facilities throughout the country that enable researchers to fully examine their efforts on a large scale without having to maintain an expensive pilot plant. November 6, 2013 National Renewable Energy Laboratory researcher Lee Elliott collects samples of algae at a creek in Golden, Colorado. | Photo by Dennis Schroeder, National Renewable Energy Laboratory

150

Bioenergy for Sustainable Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bioenergy for Sustainable Development Bioenergy for Sustainable Development Deployment Markets Keynote Bioenergy for Sustainable Development Gerard Ostheimer, Global Lead,...

151

National Bioenergy Day 2014  

Broader source: Energy.gov [DOE]

Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an...

152

Trading biomass or GHG emission credits?  

Science Journals Connector (OSTI)

Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the countr...

Jobien Laurijssen; Andr P. C. Faaij

2009-06-01T23:59:59.000Z

153

Seasonal energy storage using bioenergy production from abandoned croplands  

Science Journals Connector (OSTI)

Bioenergy has the unique potential to provide a dispatchable and carbon-negative component to renewable energy portfolios. However, the sustainability, spatial distribution, and capacity for bioenergy are critically dependent on highly uncertain land-use impacts of biomass agriculture. Biomass cultivation on abandoned agriculture lands is thought to reduce land-use impacts relative to biomass production on currently used croplands. While coarse global estimates of abandoned agriculture lands have been used for large-scale bioenergy assessments, more practical technological and policy applications will require regional, high-resolution information on land availability. Here, we present US county-level estimates of the magnitude and distribution of abandoned cropland and potential bioenergy production on this land using remote sensing data, agriculture inventories, and land-use modeling. These abandoned land estimates are 61% larger than previous estimates for the US, mainly due to the coarse resolution of data applied in previous studies. We apply the land availability results to consider the capacity of biomass electricity to meet the seasonal energy storage requirement in a national energy system that is dominated by wind and solar electricity production. Bioenergy from abandoned croplands can supply most of the seasonal storage needs for a range of energy production scenarios, regions, and biomass yield estimates. These data provide the basis for further down-scaling using models of spatially gridded land-use areas as well as a range of applications for the exploration of bioenergy sustainability.

J Elliott Campbell; David B Lobell; Robert C Genova; Andrew Zumkehr; Christopher B Field

2013-01-01T23:59:59.000Z

154

Tersus BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Tersus BioEnergy Tersus BioEnergy Jump to: navigation, search Name Tersus BioEnergy Place London, Greater London, United Kingdom Zip W1J 5PT Sector Bioenergy, Biomass Product Subsidiary of Tersus Energy. Tersus BioEnergy invests in companies developing biofuel and biomass and waste technologies. Typical investment size USD 500,000-USD 5m Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Nishant Bioenergy P Ltd | Open Energy Information  

Open Energy Info (EERE)

Nishant Bioenergy P Ltd Nishant Bioenergy P Ltd Jump to: navigation, search Logo: Nishant Bioenergy P Ltd Name Nishant Bioenergy P Ltd Address Sector 18-D, Chandigarh Place Chandigarh Zip 160018 Sector Bioenergy Product Biomass Fuel Pellet and Biomass Pellet Fired Cook Stove for institutional use Stock Symbol Stove Earth Stove Year founded 1999 Number of employees 1-10 Company Type For Profit Phone number 09815609301 Website http://www.nishantbioenergy.co Coordinates 30.7347851°, 76.7884713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7347851,"lon":76.7884713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Secretary Moniz Dedicates Innovative Commercial-Scale Cellulosic...  

Office of Environmental Management (EM)

28,000 vehicles off the road. The cellulosic ethanol produced at the Abengoa Bioenergy Biomass of Kansas (ABBK) facility, located about 90 miles southwest of Dodge City, Kansas,...

157

Sustainability criteria for bioenergy systems: results from an expert survey Thomas Buchholz*, Valerie A. Luzadis, Timothy A. Volk  

E-Print Network [OSTI]

Sustainability criteria for bioenergy systems: results from an expert survey Thomas Buchholz in revised form 10 April 2009 Accepted 24 April 2009 Available online 9 May 2009 Keywords: Bioenergy and concerns about regional and national security are driving the development and use of biomass for bioenergy

Vermont, University of

158

Bioenergy Science Center KnowledgeBase  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

Syed, M.H.; Karpinets, T.V.; Parang, M.; Leuze, M.R.; Park, B.H.; Hyatt, D.; Brown, S.D.; Moulton, S. Galloway, M.D.; Uberbacher E.C.

159

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

160

UNEP-Bioenergy Decision Support Tool | Open Energy Information  

Open Energy Info (EERE)

UNEP-Bioenergy Decision Support Tool UNEP-Bioenergy Decision Support Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: UNEP-Bioenergy Decision Support Tool Agency/Company /Organization: United Nations Environment Programme (UNEP) Partner: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Renewable Energy, Biomass, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, People and Policy Topics: Co-benefits assessment, - Energy Access, - Energy Security, - Environmental and Biodiversity, - Health, Implementation, Market analysis, Policies/deployment programs Resource Type: Guide/manual, Publications

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM  

E-Print Network [OSTI]

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM Pyrolysis research is conducted at Texas A&M University at the Bioenergy Testing and Analysis Laboratory. Our researchers create

162

Sustainable Bioenergy: A Framework for Decision Makers | Open Energy  

Open Energy Info (EERE)

Sustainable Bioenergy: A Framework for Decision Makers Sustainable Bioenergy: A Framework for Decision Makers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Bioenergy: A Framework for Decision Makers Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Energy, Land Focus Area: Renewable Energy, Biomass Topics: Implementation, Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: esa.un.org/un-energy/pdf/susdev.Biofuels.FAO.pdf References: Sustainable Bioenergy: A Framework for Decision Makers[1] "In this publication, UN-Energy seeks to structure an approach to the current discussion on bioenergy, it is the contribution of the UN system to the issues that need further attention, analysis and valuation, so that

163

Online Toolkit Fosters Bioenergy Innovation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Toolkit Fosters Bioenergy Innovation Toolkit Fosters Bioenergy Innovation Online Toolkit Fosters Bioenergy Innovation January 21, 2011 - 2:27pm Addthis Learn more about the Bioenergy Knowledge Discovery Framework, an online data sharing and mapping toolkit. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What will the project do? The $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a facility that will nearly triple the amount of renewable diesel produced domestically. The online data sharing and mapping toolkit provides the extensive data, analysis, and visualization tools to monitor the bioenergy industry. Yesterday, Secretary Chu announced a $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a

164

USDA, DOE Announce $18 Million Solicitation for Biomass Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will be available for research and development of biomass-based products, biofuels, bioenergy and related processes. USDA and DOE are issuing these grant solicitations for...

165

Addressing Biomass Supply Chain Challenges With AFEX Technology  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy FeedstocksFrom Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX Technology Allen Julian, Chief Business Officer, MBI

166

Biomass Energy Program Grants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Program Grants Biomass Energy Program Grants Biomass Energy Program Grants < Back Eligibility Local Government Nonprofit Schools State Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Varies Program Info Funding Source U.S. Department of Energy's State Energy Program (SEP) State Michigan Program Type State Grant Program Rebate Amount Varies by solicitation; check website for each solicitation's details Provider Michigan Economic Development Corporation '''''The application window for the most recent grant opportunity closed November 26, 2012.''''' The Michigan Biomass Energy Program (MBEP) provides funding for state bioenergy and biofuels projects on a regular basis. Funding categories typically include biofuels and bioenergy education, biofuels

167

Bioenergy KDF | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Bioenergy KDF Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy KDF Agency/Company /Organization: US Department of Energy Office of Biomass Program Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Renewable Energy, Biomass Phase: Bring the Right People Together Topics: Background analysis, Resource assessment Resource Type: Maps, Presentation, Publications, Technical report, Software/modeling tools User Interface: Website Website: bioenergykdf.net Web Application Link: bioenergykdf.net Cost: Free OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Coordinates: 36.00941332491°, -84.270080532879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.00941332491,"lon":-84.270080532879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Bioenergy Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

61 Bioenergy Success Stories en Departments of Energy, Navy, and Agriculture Invest 210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military...

169

Bioenergy Research | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy SHARE Bioenergy: Feedstocks to Biopower Oak Ridge National Laboratory brings together teams from across laboratory disciplines and the country to research feedstocks,...

170

NEPA DETERM1.I"{ REClPIENT:Abengoa Solar Inc STATE: CO PROJECT  

Broader source: Energy.gov (indexed) [DOE]

OF::ENEROY OF::ENEROY 6flR:EPROJECT MANAGEMBNTCENTER NEPA DETERM1.I"{ REClPIENT:Abengoa Solar Inc STATE: CO PROJECT Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FC36-08G018038 FC36-08G018038 GFO-G018038-001 G018038 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 63.6 Siting. construction (or modification). operation, and decommissioning of facilities for indoor bench-scale research projects and conventional laboratory operations (for example. preparation of chemical standards and sample analysis);

171

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production  

Science Journals Connector (OSTI)

Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production ... This system achieves the simultaneous removal from a synthetic solution of organics (in the MFC) and nutrients (in the algal bioreactor), and the production of bioenergy in electricity and algal biomass through bioelectrochemical and microbiological processes. ...

Li Xiao; Erica B. Young; John A. Berges; Zhen He

2012-09-21T23:59:59.000Z

172

The International Energy Agency Cooperative Research on Biomass for Energy  

Science Journals Connector (OSTI)

The Bioenergy Agreement of the International Energy Agency promotes cooperative research among its participating countries on biomass for energy. Three areas in this field are under study: biomass growth and prod...

R. Gambles; L. Zsuffa

1988-01-01T23:59:59.000Z

173

STATEMENT OF CON SID ERA TIONS REQUEST BY ABENGOA SOLAR INC. (ASI) FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

ABENGOA SOLAR INC. (ASI) FOR AN ADVANCE WAIVER OF ABENGOA SOLAR INC. (ASI) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE AWARD NO. DE-FC36- 08G018037; W(A) 2011-61 ASI has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its participation under the above referenced cooperative agreement entitled ''Development of Next-Generation Parabolic Trough Collectors and Components for CSP Applications." According to ASI's petition, the objective of the project funded by the cooperative agreement is "to develop the technology that is needed to build a competitive parabolic trough industry for the [U.S .] utility mru·ket." Specifically, the scope of work includes the "development of alternative collectors structures, components and field deployment teclmiques.

174

Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.  

SciTech Connect (OSTI)

This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

Pacific Northwest and Alaska Bioenergy Program (U.S.)

1991-02-01T23:59:59.000Z

175

Economic assessment of regional bioenergy systems in Australia: a flow analysis application  

Science Journals Connector (OSTI)

This paper describes a modelling tool that integrates Material Flow Analysis, energy production and Greenhouse Gas (GHG) emissions accounting for biomass flows at a regional scale. This tool allows comprehensive analysis of alternative systems for management of biomass waste and bioenergy production in regional areas. Different possible options for processing a range of biomass waste streams can be evaluated against multiple criteria including various environmental impacts and cost-effectiveness. The objective is to support the design of integrated biomass waste and bioenergy systems that maximise synergies and optimise tradeoffs between bioenergy production, GHG emissions, recycling of valuable soil nutrients and control of harmful contaminants. This analytical tool is applied to a major agricultural region in Australia, the Murrumbidgee Irrigation Area. A scenario demonstrates how the construction of different types of bioenergy plant can offer valuable benefits with regard to renewable energy production, GHG emission reductions, increasing phosphorus cycling back to soils and reduced cadmium contamination.

Napat Jakrawatana; Stephen Moore; Iain MacGill

2009-01-01T23:59:59.000Z

176

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #26, January - March 2010  

SciTech Connect (OSTI)

January-March, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding and improving sugar measurements in biomass hydrolysates; expansion of the NREL/DOE Biochemical Pilot Plant.

Schell, D.

2010-04-01T23:59:59.000Z

177

Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels  

Broader source: Energy.gov [DOE]

Syngas upgrading to hydrocarbon fuels is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

178

Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction  

Broader source: Energy.gov [DOE]

Whole algae hydrothermal liquefaction is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

179

Advancing Sustainable Bioenergy: Evolving Stakeholder Interests and the Relevance of Research  

Science Journals Connector (OSTI)

The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conve...

Timothy Lawrence Johnson; Jeffrey M. Bielicki

2013-02-01T23:59:59.000Z

180

Bioenergy: how much can we expect for 2050?  

Science Journals Connector (OSTI)

Estimates of global primary bioenergy potentials in the literature span almost three orders of magnitude. We narrow that range by discussing biophysical constraints on bioenergy potentials resulting from plant growth (NPP) and its current human use. In the last 30years, terrestrial NPP was almost constant near 54PgCyr?1, despite massive efforts to increase yields in agriculture and forestry. The global human appropriation of terrestrial plant production has doubled in the last century. We estimate the maximum physical potential of the world's total land area outside croplands, infrastructure, wilderness and denser forests to deliver bioenergy at approximately 190EJyr?1. These pasture lands, sparser woodlands, savannas and tundras are already used heavily for grazing and store abundant carbon; they would have to be entirely converted to bioenergy and intensive forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly double the global human biomass harvest, with far-reaching effects on biodiversity, ecosystems and food supply. Identifying sustainable levels of bioenergy and finding ways to integrate bioenergy with food supply and ecological conservation goals remains a huge and pressing scientific challenge.

Helmut Haberl; Karl-Heinz Erb; Fridolin Krausmann; Steve Running; Timothy D Searchinger; W Kolby Smith

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Agency/Company /Organization Overseas Development Institute Sector Energy, Land Focus Area Renewable Energy, Biomass, Forestry Topics Policies/deployment programs, Background analysis Resource Type Publications Website http://www.odi.org.uk/resource Country Uganda, India Eastern Africa, Southern Asia References Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities[1] Summary "This report presents findings from a research study in Uganda and India looking at the opportunities that carbon offset projects offer for poor

182

Thailand-Key Results and Policy Recommendations for Future Bioenergy  

Open Energy Info (EERE)

and Policy Recommendations for Future Bioenergy and Policy Recommendations for Future Bioenergy Development Jump to: navigation, search Name Thailand-Key Results and Policy Recommendations for Future Bioenergy Development Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Land Focus Area Biomass, Agriculture Topics Co-benefits assessment, Policies/deployment programs, Background analysis Resource Type Lessons learned/best practices Website http://www.fao.org/docrep/013/ Country Thailand UN Region South-Eastern Asia References Thailand-Key Results and Policy Recommendations for Future Bioenergy Development[1] Abstract "The Government of Thailand, through its Alternative Energy Development Plan, has set a target to increase biofuel production to five billion

183

Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

184

Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

185

Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

186

Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

187

Gasification Research BIOENERGY PROGRAM  

E-Print Network [OSTI]

Gasification Research BIOENERGY PROGRAM Description Researchers inthe@tamu.edu Skid-mounted gasifier: 1.8 tons-per-day pilot unit Gasification of cotton gin trash The new Texas A

188

Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Bioenergy: Energy produced from organic materials from plants or animals. Other definitions:Wikipedia Reegle 1 This article is a stub. You can help OpenEI by expanding it....

189

Biomass 2014 Poster Session  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

190

DOE Perspectives on Sustainable Bioenergy Landscapes  

Broader source: Energy.gov [DOE]

DOE Perspectives on Sustainable Bioenergy Landscapes; Kristen Johnson, Sustainability Program Technology Manager, Bioenergy Technologies Office; November 19, 2014

191

Borgford BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Borgford BioEnergy LLC Borgford BioEnergy LLC Jump to: navigation, search Name Borgford BioEnergy LLC Place Colville, Washington State Zip 99114 Sector Biomass Product Washington-based developer of biomass-to-energy projects. Coordinates 48.54657°, -117.904754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.54657,"lon":-117.904754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Woody Biomass Logistics Robert Keefe1  

E-Print Network [OSTI]

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

193

Energy from Forest Biomass: Potential Economic Impacts  

E-Print Network [OSTI]

Energy from Forest Biomass: Potential Economic Impacts in Massachusetts Prepared for: Massachusetts Bioenergy Initiative, a multifaceted study of biomass energy potential in Massachusetts. The economic impact study looks specifically at impacts in the 5 western counties of the Commonwealth, where biomass energy

Schweik, Charles M.

194

Energy Department Finalizes $132 Million Loan Guarantee to Support the  

Broader source: Energy.gov (indexed) [DOE]

32 Million Loan Guarantee to Support 32 Million Loan Guarantee to Support the Abengoa Bioenergy Project Energy Department Finalizes $132 Million Loan Guarantee to Support the Abengoa Bioenergy Project September 29, 2011 - 4:39pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced that the Department finalized a $132.4 million loan guarantee to Abengoa Bioenergy Biomass of Kansas, LLC (ABBK) to support the development of a commercial-scale cellulosic ethanol plant. ABBK's parent company and project sponsor, Abengoa Bioenergy US Holding, Inc., estimates the project will fund approximately 300 construction jobs and 65 permanent jobs. The project will be located in Hugoton, Kansas, about 90 miles southwest of Dodge City, Kansas. "Investing in a domestic advanced biofuels industry will help us compete

195

Biomass Program Monthly News Blast: May  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2011: Replace the Whole Barrel, Supply the Whole Market - The New Horizons of Bioenergy July 26-27, 2011, at the Gaylord National Resort and Convention Center in...

196

Opportunities for Farmers in Biomass Feedstock Production  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy FeedstocksFrom Field to Fuel Opportunities for Farmers in Biomass Feedstock Production J. Richard Hess, Idaho National Lab, Director of Energy Systems & Technology Division

197

Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow  

Broader source: Energy.gov [DOE]

Bioenergy Technologies Office selects student team from Redmond, Washington, to present at the Biomass 2014 conference, which is taking place July 29 to July 30 in Washington, D.C. The team was chosen for their idea on how to help the nation transition to renewable forms of energy using cellulosic ethanol.

198

Networks within networks - interaction in bioenergy business  

Science Journals Connector (OSTI)

Collaboration is seen as one of the most important means for small and medium-sized enterprises (SMEs) to compete and innovate in dynamic business environments. This paper approaches this phenomenon by studying a group of Finnish biomass heating firms and their interaction in the bioenergy business. In this paper, two frameworks are combined into a practical two-level tool for relationship and network analysis. This paper offers detailed information on the formation of partnerships and networks around the bioenergy business. Moreover, it speculates about the motives and mechanisms behind an actor's business relations. This study confirms that it is often profitable for SMEs to act simultaneously in different types of networks. In these networks, the firms form relationships that are different in breadth and depth.

Kirsi Kokkonen; Tuomo Kässi; Ville Ojanen

2014-01-01T23:59:59.000Z

199

E-Print Network 3.0 - aboveground forest biomass Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine ; Environmental Sciences and Ecology 7 Forest Biomass and Bioenergy: Opportunities and Constraints in the Northeastern United States Summary:...

200

Characterization of Woody and Herbaceous Biomasses Lignin Composition with 1064 nm Dispersive Multichannel Raman Spectroscopy  

Science Journals Connector (OSTI)

Biomass representing different classes of bioenergy feedstocks, including woody and herbaceous species, was measured with 1064 nm Raman spectroscopy. Pine, oak, poplar, kenaf,...

Lupoi, Jason S; Smith, Emily A

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

Broader source: Energy.gov [DOE]

The goal of the U.S. Department of Energys Bioenergy Technologies Office (BETO) is to enable the development of biomass technologies.

202

One- and Two-Phase Conversion of Biomass to Furfural - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

One- and Two-Phase Conversion of Biomass to Furfural Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryExploiting the energy...

203

Development of a Web-based woody biomass energy expert system.  

E-Print Network [OSTI]

??Woody biomass is evolving as a potential bioenergy feedstock at an industrial scale to provide the required supply for industries relying on these resources at (more)

Dhungana, Sabina.

2009-01-01T23:59:59.000Z

204

EIS-0407: Final Environmental Impact Statement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0407: Final Environmental Impact Statement Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas DOE's Proposed Action is to provide federal funding to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton, Stevens County, Kansas. If DOE decides to provide federal funding, it would negotiate an agreement with Abengoa Bioenergy to provide up to $71 million, subject to annual appropriations, of the total anticipated cost of approximately $685 million (2009 dollars). The biorefinery would use lignocellulosic biomass (corn stover, wheat straw) as feedstock to produce ethanol and biopower (electricity)

205

EIS-0407: Draft Environmental Impact Statement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0407: Draft Environmental Impact Statement Abengoa Biorefinery Project Near Hugoton, Stevens County, Kansas DOE's Proposed Action is to provide federal funding to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton, Stevens County, Kansas. If DOE decides to provide federal funding, it would negotiate an agreement with Abengoa Bioenergy to provide approximately $85 million of the total anticipated cost of approximately $300 million (2008 dollars). The biorefinery would use lignocellulosic biomass (corn stover, wheat straw) as feedstock to produce ethanol and biopower (electricity) sufficient to meet the needs of

206

Vanadium catalysts break down biomass for fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

207

Neutron Technologies for Bioenergy Research  

SciTech Connect (OSTI)

Neutron scattering is a powerful technique that can be used to probe the structures and dynamics of complex systems. It can provide a fundamental understanding of the processes involved in the production of biofuels from lignocellulosic biomass. A variety of neutron scattering technologies are available to elucidate both the organization and deconstruction of this complex composite material and the associations and morphology of the component polymers and the enzymes acting on them, across multiple length scales ranging from Angstroms to micrometers and time scales from microseconds to picoseconds. Unlike most other experimental techniques, neutron scattering is uniquely sensitive to hydrogen (and its isotope deuterium), an atom abundantly present throughout biomass and a key effector in many biological, chemical, and industrial processes for producing biofuels. Sensitivity to hydrogen, the ability to replace hydrogen with deuterium to alter scattering levels, the fact that neutrons cause little or no direct radiation damage, and the ability of neutrons to exchange thermal energies with materials, provide neutron scattering technologies with unique capabilities for bioenergy research. Further, neutrons are highly penetrating, making it possible to employ sample environments that are not suitable for other techniques. The true power of neutron scattering is realized when it is combined with computer simulation and modeling and contrast variation techniques enabled through selective deuterium labeling.

Langan, Paul [ORNL

2012-01-01T23:59:59.000Z

208

Biofuel and Bioenergy implementation scenarios  

E-Print Network [OSTI]

and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costsBiofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André

209

Biomass 2012: Confronting Challenges, Creating Opportunities  

Broader source: Energy.gov [DOE]

On July 1011, 2012, the U.S. Department of Energy's Bioenergy Technologies Office hosted its fifth annual conference, Biomass 2012: Confronting Challenges, Creating Opportunities Sustaining a Commitment to Bioenergy, at the Washington, D.C. Convention Center. This year's conference was co-hosted by Advanced Biofuels USA and examined the dynamic playing field of bioenergy in 2012 as exciting new technologies move forward within a shifting policy, tax, and economic landscape. The Biomass 2012 Agenda outlines events from the conference, including information about the exciting breakout sessions.

210

Bioenergy Assessment Toolkit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte Produced under direction of the United States Agency for International Development by the National Renewable Energy Laboratory (NREL) under Interagency Agreement AEG-P-00-00003-00; Work for Others Agreement number 3010543; Task Numbers WFE2.1012, WFE2.1013, and WFE2.1014. Technical Report NREL/TP-6A20-56456 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Bioenergy Assessment Toolkit Anelia Milbrandt and Caroline Uriarte

211

Bioenergy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation » Bioenergy Transportation » Bioenergy Bioenergy EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of a passenger airplane flying, with blue sky above and clouds below. The U.S. Department of Energy (DOE) funds research, development, and demonstration to help develop sustainable and cost-competitive biofuels, bioproducts, and biopower. For biofuels, DOE has lowered the cost of non-food-based ethanol by more than $6 per gallon since 2001, and it is now

212

Strategic sourcing in the UK bioenergy industry  

Science Journals Connector (OSTI)

Successful supply chain management requires the management of a complex, multi-stakeholder, multi-criteria system. Stakeholder inclusion in the supply chain design and decision making processes is an area of growing interest for companies looking to design sustainable supply chains or produce sustainable products. This paper demonstrates the use of the integrated quality function deployment and analytic hierarchy process (QFDAHP) method for the inclusion of a wide group of stakeholder requirements into the supplier selection process. The method provides a weighted ranked list of evaluating criteria which can be used to assess potential suppliers in the UK renewable bioenergy industry. The bioenergy industry is suitable as there are many stakeholders placing various requirements upon potential biomass suppliers. The paper uses a mixture of literature review and semi-structured industry interviews to answer three research questions: which stakeholder groups are important when selecting biomass suppliers for the UK? What requirements are made by these stakeholders on the supply of biomass fuels and feedstocks? Which evaluating criteria are most important?

James A. Scott; William Ho; Prasanta K. Dey

2013-01-01T23:59:59.000Z

213

Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLs capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

214

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

215

ORNL Bioenergy technologies  

SciTech Connect (OSTI)

ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

2014-07-02T23:59:59.000Z

216

FACT SHEET: BIOENERGY WORKING GROUP  

Broader source: Energy.gov (indexed) [DOE]

, 2010 , 2010 1 FACT SHEET: BIOENERGY WORKING GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a Bioenergy Working Group, which will advance the deployment of bioenergy technologies by implementing recommendations of the Technology Action Plan on Bioenergy Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The Working Group will work in close cooperation with the Global Bioenergy Partnership (GBEP), which is co-chaired by Brazil and Italy. Initial key activities of the Working Group include: 1. Global Bioenergy Atlas: The Working Group will combine and build upon existing databases of sustainably-developed bioenergy potential around the globe and make it available in an open web-

217

EIS-0407: Record of Decision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: Record of Decision 7: Record of Decision EIS-0407: Record of Decision Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County, Kansas (October 2011) The U.S. Department of Energy (DOE) announces its decision to issue a $134 million loan guarantee under Title XVII of the Energy Policy Act of 2005 (EPAct 2005) to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa) for construction and start-up of a cellulosic ethanol plant near Hugoton, Kansas (Project). The integrated biorefinery will use a combination of biomass feedstocks, such as corn stover and wheat straw, to produce cellulosic ethanol and to generate sufficient electricity to power the facility. The Project site comprises approximately 810 acres of

218

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)  

SciTech Connect (OSTI)

Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

Not Available

2011-09-01T23:59:59.000Z

219

Evaluation of Basic Parameters for Packaging, Storage and Transportation of Biomass Material from Field to Biorefinery  

E-Print Network [OSTI]

for biofuels primarily because it is a renewable _________________ This thesis follows the style of Biomass and Bioenergy. 2 and sustainable resource. Secondly, it has a low sulfur content and a positive impact on the environment[1]. Biomass energy...

Paliwal, Richa

2012-02-14T23:59:59.000Z

220

Agave Transcriptomes and microbiomes for bioenergy research  

E-Print Network [OSTI]

as a biofuel feedstock. GCB Bioenergy 3, 6878, (2011). [2]in Agave tequilana. GCB Bioenergy 3, 2536, (2011). [4]and microbiomes for bioenergy research Stephen Gross 1,2 ,

Gross, Stephen

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Aspects of Applied Biology 112, 2011 Biomass and Energy Crops IV  

E-Print Network [OSTI]

, biomass yields, bioenergy Introduction The United States'Energy Independence and SecurityAct of 2007 (EISA; Fargione et al., 2008). Producing more corn-based ethanol may increase food prices due to changing market dynamics. Alternative bioenergy options include non-food biomass feedstock from perennial crops and more

Weiblen, George D

222

BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN  

E-Print Network [OSTI]

BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN Caroline Rayol Resources and Bioenergy Project : Market opening 2003 : Flex-fuel car 2004 : Biodiesel Production and Use National Program 2006

Canet, Léonie

223

Bioenergy Geradora de Energia | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Geradora de Energia Jump to: navigation, search Name: Bioenergy - Geradora de Energia Place: Sao Paulo, Sao Paulo, Brazil Zip: 1456010 Sector: Wind energy Product: Brazil...

224

Bioenergy Knowledge Discovery Framework Recognized at National...  

Energy Savers [EERE]

Knowledge Discovery Framework (KDF) is bringing together the bioenergy community through Web-based tools, and was presented by Bioenergy KDF team members from Oak Ridge National...

225

Sustainable development of bioenergy sector: an integrated methodological framework  

Science Journals Connector (OSTI)

Climate change and sustainable development are interrelated issues, which are of vital importance to government policy and corporate decision makers. The sustainability evaluation of a biomass-based technology with consideration of stakeholder interests can provide a foundation for implementing energy and environmental policies. This study aims to develop an integrated and structured methodological framework for analysing biofuel systems in pursuit of sustainable large scale production. The integrated assessment framework can assist to formulate integrative and transparent policies for sustainable biomass certification. The proposed framework uses first the analytic hierarchy process (AHP) to aid in extracting knowledge and judgments from stakeholders. AHP determines the critical criteria and indicators representing conflicting stakeholders' interests which can be incorporated in creating a dynamic system model for landscape-scale bioenergy modelling and assessment. An integrated AHP and system dynamics approach is currently being applied to assess the sustainable development of forest bioenergy sector in Maine, USA.

Anthony Halog

2011-01-01T23:59:59.000Z

226

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group  

E-Print Network [OSTI]

2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group AUGUST 2012 Edmund G. Brown Jr., Governor #12;Bioenergy Interagency Working Group Julia Levin, Chair, Bioenergy Interagency and the California Energy Commission with input from the Bioenergy Interagency Working Group. This report

227

Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

228

Bioenergy: how much?  

Science Journals Connector (OSTI)

The perspective by Haberl etal (2013 Environ. Res. Lett. 8 031004) entitled 'Bioenergy: how much can we expect for 2050?' is timely and valuable. It deals with an important subject since contrasting views on the subject make it very difficult for policy makers to adopt policies that would allow 'production and consumption of energy at sustainable levels', in the words of the authors. It is therefore very important to sort out from the abundant literature on the issue which are the facts and which are the biases and preferences.

Jos Goldemberg; Suani Teixeira Coelho

2013-01-01T23:59:59.000Z

229

NETWORK OF EXCELLENCE The CAP & Bioenergy  

E-Print Network [OSTI]

a campaign to inform farmers about markets for energy crops. #12;BIOENERGY NETWORK OF EXCELLENCE BAPBIOENERGY NETWORK OF EXCELLENCE The CAP & Bioenergy Driver or Barrier? IEA Bioenergy ExCo58://www.ieabioenergy.com/DocSet.aspx?id=5331 #12;BIOENERGY NETWORK OF EXCELLENCE IIIEE ? · A (relatively) small institute in a large University

230

Bioenergy technology balancing energy output with environmental  

E-Print Network [OSTI]

E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John standards #12;Is it right to grow bioenergy? Or How much bioenergy production is right? #12;Historical bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy

Levi, Ran

231

BETO Announces Launch of the Bioenergy KDF Legislative Library  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office is pleased to announce the release of a new Bioenergy Knowledge Discovery Framework (Bioenergy KDF) resource: the Legislative Library.

232

EIS-0407: Record of Decision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

: Record of Decision : Record of Decision EIS-0407: Record of Decision Abengoa Biorefinery Project Near Hugoton, Stevens County, Kansas The U.S. Department of Energy (DOE or the Department) prepared an environmental impact statement (EIS) (DOE/EIS-0407) to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton in Stevens County, southwestern Kansas. Record of Decision for the Environmental Impact Statement for the Proposed Abengoa Biorefinery Project Near Hugoton, Stevens County, Kansas, DOE/EIS-0407 (January 2011) 76 FR 2096

233

Wide Hybridization, Genomic, and Overwintering Characterization of High-Biomass Sorghum Spp. Feedstocks  

E-Print Network [OSTI]

development for lignocellulosic feedstocks incentivizes the development of versatile biomass products with greater end- use possibilities, as in either a forage or bioenergy system. High-biomass, perennial grasses offer dual-use potential in either forage... and S. bicolor ssp. drummondii have been used as a source of high biomass forage and hay in the U.S. for decades (Armah-Agyeman et al., 2002). Recently Sorghum species have been evaluated as bioenergy feedstocks with ethanol being produced from grain...

Whitmire, David Kyle

2012-10-19T23:59:59.000Z

234

Bioenergy in India: Barriers and Policy Options | Open Energy Information  

Open Energy Info (EERE)

Bioenergy in India: Barriers and Policy Options Bioenergy in India: Barriers and Policy Options Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy in India: Barriers and Policy Options Agency/Company /Organization: UNEP-Risoe Centre Sector: Energy Focus Area: Renewable Energy, Biomass, - Biofuels Topics: Implementation, Market analysis, Pathways analysis, Background analysis Resource Type: Publications, Lessons learned/best practices, Case studies/examples Website: tech-action.org/Perspectives/BioenergyIndia.pdf Country: India Cost: Free UN Region: Southern Asia Coordinates: 20.593684°, 78.96288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.593684,"lon":78.96288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

236

Bioscience: Bioenergy, Biosecurity, and Health  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioscience: Bioenergy, Biosecurity, and Health Bioscience: Bioenergy, Biosecurity, and Health /science-innovation/_assets/images/icon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are developing science and technology to improve pathogen detection, create better therapeutics, and anticipate-even prevent-epidemics and pandemics. Bioenergy» Environmental Microbiology» Proteins» Biosecurity and Health» Genomics and Systems Biology» Algal vats Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview Charlie McMillan, Director of Los Alamos National Laboratory

237

JGI - DOE Bioenergy Research Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Bioenergy Research Centers DOE Bioenergy Research Centers DOE JGI performs sequencing on behalf of the U.S. Department of Energy Bioenergy Research Centers. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing the federal initiative that seeks to reduce U.S. gasoline consumption by 20% within 10 years through increased efficiency and diversification of clean energy sources. The three Centers are located in geographically distinct areas and use different plants both for laboratory research and for improving feedstock crops. DOE BioEnergy Science Center led by DOE's Oak Ridge National Laboratory in Oak Ridge, Tennessee. This center will focus on the resistance of plant fiber to breakdown into sugars and is studying the potential energy crops

238

Assessment of global bioenergy potentials  

Science Journals Connector (OSTI)

A recently published literature review (Berndes et al. 2003) analysed 17 studies that reported bioenergy potentials, all published in the 1990s except...2001...) which became available in 2001. The analysed studi...

Ruth Offermann; Thilo Seidenberger

2011-01-01T23:59:59.000Z

239

New and emerging bioenergy technologies  

E-Print Network [OSTI]

Rohstoffe e.V. Germany Consultant Charles Butcher Science Journalist Risø Energy Report 2 #12;1. Preface 3 2 or fisheries. Examples of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol

240

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research  

E-Print Network [OSTI]

HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research Hawaii Natural Energy Development Pathways for Bioenergy Systems Crops Intermediate Products Conversion Technologies Bioenergy.hnei.hawaii.edu Research and the Bioenergy Industry Value Chain Feedstock Production Feedstock Logistics Conversion

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Accounting for Carbon Dioxide Emissions from Bioenergy Systems  

SciTech Connect (OSTI)

Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not counted as part of emissions inventories, and biomass energy is sometimes referred to as being 'carbon neutral.' But what happens when a forest is harvested for fuel but takes 60 years to regrow or when biomass is harvested in a country that is not party to an international accord but is burned in a country that is party to an international accord? Biomass energy is only truly 'carbon neutral' if we get the system boundaries right. They need to make sure that the accounting methodology is compatible with our needs and realities in management and policy.

Marland, Gregg [ORNL

2010-12-01T23:59:59.000Z

242

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Broader source: Energy.gov (indexed) [DOE]

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

243

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are  

Broader source: Energy.gov (indexed) [DOE]

From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 - 2:46pm Addthis The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory Leslie Pezzullo

244

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town |  

Broader source: Energy.gov (indexed) [DOE]

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town December 16, 2011 - 12:10pm Addthis Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How does it work? This ARPA-E awardee removes the oxygen and other contaminants in the biomass to be turned into fuel with a novel "catalytic biomass pyrolysis" approach. This substance is more carbon efficient, requires less hydrogen to

245

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town |  

Broader source: Energy.gov (indexed) [DOE]

Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town Move Over Flash Pyrolysis, There's a New Bioenergy Sheriff in Town December 16, 2011 - 12:10pm Addthis Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. Jonathan Peters, a researcher at RTI International (an ARPA-E awardee), characterizes the water content of a bio-oil sample. | Courtesy of RTI International. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How does it work? This ARPA-E awardee removes the oxygen and other contaminants in the biomass to be turned into fuel with a novel "catalytic biomass pyrolysis" approach. This substance is more carbon efficient, requires less hydrogen to

246

State-of-the-art of fast pyrolysis in IEA bioenergy member countries  

Science Journals Connector (OSTI)

Fast pyrolysis of biomass is becoming increasingly important in some member countries of the International Energy Agency (IEA). Six countries have joined the IEA Task 34 of the Bioenergy Activity: Canada, Finland, Germany, Netherlands, UK, and USA. The National Task Leaders give an overview of the current activities in their countries both on research, pilot and demonstration level.

Dietrich Meier; Bert van de Beld; Anthony V. Bridgwater; Douglas C. Elliott; Anja Oasmaa; Fernando Preto

2013-01-01T23:59:59.000Z

247

A Probabilistic Inventory Analysis of Biomass for the State of Texas for Cellulosic Ethanol  

E-Print Network [OSTI]

, bioenergy from second generation cellulosic feedstocks cost more than fossil fuels. Another issue in dealing with corn grain as the feedstock for ethanol is that corn is used for food and livestock feed. The cellulosic process takes cellulosic material... Assessment and Utilization Options for Three Counties in Eastern Oregon? which was prepared by McNeil Technologies (2003); ?Biomass Inventory and Bioenergy Assessment: An evaluation of Organic Material Resources for Bioenergy Production in Washington State...

Gleinser, Matthew A.

2010-01-16T23:59:59.000Z

248

Chapter 6 - Databases for Bioenergy-Related Enzymes  

Science Journals Connector (OSTI)

Abstract As one of the many clean and renewable energy forms, bioenergy, especially the liquid biofuels, has received great attention in the past 5 years, as biofuels have a great potential to be used for replacing the fossil-based gasoline as transportation fuels. However, the lignocellulosic biofuels are currently too expensive because plant cell walls, the major component of plant biomass, are recalcitrant to microbial/enzymatic deconstruction. In order to achieve the practical goals, reduce plant cell wall recalcitrance to enzymatic degradation and develop low-cost microbial or engineering approaches to releasing sugars, plant and microbial biologists as well as engineers have been working together to study the molecular mechanisms underlying plant biomass formation and microbial degradation. The past decades have seen a lot of genes experimentally characterized to be involved in plant cell wall synthesis or deconstruction. As a result, many bioenergy-related databases have been developed to collect and classify these genes, which are further used for annotating newly sequenced genomes. Here we summarize these bioenergy-related databases, with a special focus on plant resources. We also discuss the limitation of existing resources and suggest that there is still a strong need for new databases. The newly developed database should include not only enzymes, but also other important genes such as transcription factors, micro ribonucleic acid and transporters by extensive literature curation. The integration of various high-throughput omics data, e.g. comparative genomics data and precomputed bioinformatics data, is also highly recommended for developing new bioenergy-related databases.

Yanbin Yin

2014-01-01T23:59:59.000Z

249

Perennial Grass Breeding Program BIOENERGY PROGRAM  

E-Print Network [OSTI]

Perennial Grass Breeding Program BIOENERGY PROGRAM One Texas AgriLife Research initiative for bioenergy is the perennial grass breeding program. Results are outlined here. Pearl Millet-Napiergrass P

250

NREL: Biomass Research - Amie Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

251

Hawaii Bioenergy Master Plan Economic Impacts  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Economic Impacts Prepared for The Hawaii Natural Energy Institute: averaging $49/barrel. Although there are several avenues by which a local bioenergy industry could develop mandate implementation, amongst other federal and state-level incentives, was to prompt a local bioenergy

252

Moderne bioenergi -et nyt dansk vkstomrde?  

E-Print Network [OSTI]

Moderne bioenergi - et nyt dansk vækstområde? 11. december 2003 Marriott Hotel, København #12;Moderne bioenergi - et nyt dansk vækstområde? Velkomst og introduktion Jørgen Kjems, administrerende direktør, Risø #12;Program 13.40-14.00 Perspektiver for moderne bioenergi Hans Larsen, Risø 14

253

Bioenergy Business Partner Information Gathering Form  

E-Print Network [OSTI]

Bioenergy Business Partner Information Gathering Form Fax completed form to the Agribusiness.hnei.hawaii.edu/bmpp/stakeholders.asp Partners are organizations that perform, intend to perform, or should perform bioenergy processes and/or requirements. Please tell us about your organization and the role it plays in bioenergy production in Hawaii

254

Hawaii Bioenergy Master Plan Stakeholder Comment  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Prepared for State of Hawaii Department of Ocean Earth Sciences and Technology December 2009 #12;i Hawaii Bioenergy Master Plan Volume III Stakeholder Comment Comments on the Draft Hawaii Bioenergy Master Plan were solicited by posting the document

255

"Bioenergy Research within SLU" Symposium Program  

E-Print Network [OSTI]

1 "Bioenergy Research within SLU" Symposium Program Tuesday, 25 September 2012 09:00 - 09 School Bioenergy Martin Weih Department of Crop Production Ecology, SLU Uppsala 09:45 ­ 10:00 Swedish funding for bioenergy research 2007-2010 Pär Aronsson Research Officer, Faculty of Natural Resources

256

NREL: Biomass Research - Richard L. Bain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Richard L. Bain Richard L. Bain Photo of Richard Bain Richard Bain is a Principal Engineer in the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He has worked at NREL since 1990 and has extensive experience in the thermal conversion of biomass, municipal wastes, coal, and petroleum. He is a lead researcher in the area of production of transportation fuels and hydrogen via thermochemical conversion of biomass; technical advisor to the U.S. Department of Energy (DOE) and U.S. Department of Agriculture (USDA) on biofuels demonstrations; and Task Leader for the International Energy Agency Bioenergy Annex Biomass Gasification Task. Dr. Bain manages biomass gasification research activities for the Fuel Cell Technologies Program at NREL and coordinates support to the USDA for

257

Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose  

Science Journals Connector (OSTI)

...depolymerization and conversion: A review of thermochemical methods . Chem Eng...in ionic liquids . Biomass Bioenergy 33 : 1122 1130 . 40 Abdel-Magid AF Carson...profiling was supported by the BioEnergy Science Center administered...information, and related literature citations. Table S2. Raw...

Aaron M. Socha; Ramakrishnan Parthasarathi; Jian Shi; Sivakumar Pattathil; Dorian Whyte; Maxime Bergeron; Anthe George; Kim Tran; Vitalie Stavila; Sivasankari Venkatachalam; Michael G. Hahn; Blake A. Simmons; Seema Singh

2014-01-01T23:59:59.000Z

258

Introduction and Selection of Photoperiod Sensitive Sorghum Genotypes for Agronomic Fitness and Biomass Composition  

E-Print Network [OSTI]

............................................................. 7 Compositional Analysis Methods .......................................................... 9 Identification of Sorghum Bioenergy Germplasm ................................ 11 Objectives... Independency and Security Act of 2007. Alternate feedstock for biofuel is needed and dedicated bioenergy crops will be inevitable for the successful production of biofuels. Currently, biomass production in the U.S. is up to 190 million dry tons, but only...

Hoffmann, Leo

2012-10-19T23:59:59.000Z

259

Sustainability trade-offs in bioenergy development in the Philippines: An application of conjoint analysis  

Science Journals Connector (OSTI)

Abstract Sustainability assessments of bioenergy production are essential because it can have both positive and negative impacts on society. Human preferences that influence trade-off decisions on the relevant determinants and indicators of sustainability should be taken into account in these assessments. In this paper, we conducted a survey with five groups of respondents including government officials and employees, academic and research professionals, private company managers and workers, farm owners and workers, and others (e.g. students, residents, etc.) to assess their trade-off decisions on bioenergy development in the Philippines. The analyses of the survey results reveal that sustainability of bioenergy production will depend on the choice of biomass feedstock and these choices depend on people's perceptions. Heterogeneous perceptions among the different groups of respondents on the appropriate bioenergy feedstock to achieve economic, social and ecological sustainability suggest that sustainability of bioenergy is not a generic concept. The use of aggregate indices for sustainability assessments that ignore these perceptions on bioenergy production can thus be very misleading. The preference weights from conjoint analysis, which measure human preferences on different determinants and indicators of economic, social and ecological sustainability, can help improve sustainability assessments.

Lilibeth A. Acosta; Elena A. Eugenio; Nelson H. Enano Jr.; Damasa B. Magcale-Macandog; Belita A. Vega; Paula Beatrice M. Macandog; Jemimah Mae A. Eugenio; Marilou A. Lopez; Arnold R. Salvacion; Wolfgang Lucht

2014-01-01T23:59:59.000Z

260

Abellon Bioenergy | Open Energy Information  

Open Energy Info (EERE)

Abellon Bioenergy Abellon Bioenergy Jump to: navigation, search Name Abellon Bioenergy Place Ahmedabad, Gujarat, India Zip 380054 Sector Renewable Energy Product Ahmedabad-based start-up project developer having interest in renewable energy. Coordinates 26.93077°, 80.66416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.93077,"lon":80.66416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE/EA-1683: Finding of No Significant Impact Department of Energy Loan Guarantee to Abengoa Solar Inc. for the Solana Concentrating Solar Power Facility Near Gila Bend, Arizona (05/06/10)  

Broader source: Energy.gov (indexed) [DOE]

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO ABENGOA SOLAR INC. FOR THE SOLANA CONCENTRATING SOLAR POWER FACILITY NEAR GILA BEND, ARIZONA AGENCY: U.S. Department of Energy, Loan Guarantee Program Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with a 280 Megawatt (MW) concentrating solar power (CSP) plant (Solana Generating Plant) and associated 230 kilovolt transmission line (Solana Gen-Tie) proposed by Abengoa Solar Inc. (Abengoa) near Gila Bend, Arizona (Solana Project). DOE, through its Loan Guarantee Program Office (LGPO), proposes to provide a Federal loan guarantee pursuant to Title XVII of the

262

Responses of High Biomass Rice (Oryza sativa L.) to Various Abiotic Stresses  

E-Print Network [OSTI]

Rice produces a lot of biomass which is an important trait in increasing grain yield and it is a potential feedstock for bioenergy production. High biomass rice is important to meet the growing demands of grains and biomass for food, fodder and bio...

Kondhia, Aditi Nitinkumar

2011-10-21T23:59:59.000Z

263

Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA  

E-Print Network [OSTI]

3 July 2013 Keywords: Forest biomass Greenhouse gas emissions Air pollution Bioenergy Cofire a b mine and power plant. Model emissions tradeoffs of cofiring forest biomass with coal up to 20% by heat emissions sources: coal mining, power plant processes, forest biomass processes, boiler emissions

Fried, Jeremy S.

264

NREL: Biomass Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

265

EERE Assistant Secretary and BETO Director Confirmed Speakers for Algae Biomass Summit  

Broader source: Energy.gov [DOE]

Dr. David Danielson, Assistant Secretary of the Office of Energy Efficiency and Renewable Energy and Jonathan Male, Director of the Bioenergy Technologies Office, will be speaking at the Algae Biomass Summit, September 29October 2, 2014 in San Diego, California.

266

An Evaluation of Biomass Energy Potential with a Global Energy and Land Use Model  

Science Journals Connector (OSTI)

The authors evaluate global land use competition and bioenergy potential through developing a global energy and land use model using a SD ... The model describes competition among various uses of biomass such as ...

H. Yamamoto; K. Yamaji

1997-01-01T23:59:59.000Z

267

Bioenergy Plants in Indonesia: Sorghum for Producing Bioethanol as an Alternative Energy Substitute of Fossil Fuels  

Science Journals Connector (OSTI)

Abstract Indonesia's energy demand is increasing every year. Bioenergy plants are expected to be one of the solutions to fill energy demand in Indonesia. Sorghum is a bioenergy plant that can be used in Indonesia for producing bioethanol. Sorghum bioethanol is produced from sorghum biomass waste processing results with fermentation process. Ethanol is derived from fermented sorghum which is about 40-55%. Sorghum bioethanol can be used as an alternative fuel that is renewable and can be used as a substitute for fossil fuels.

Rahayu Suryaningsih; Irhas

2014-01-01T23:59:59.000Z

268

Fundamental & Applied Bioenergy | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Bioenergy SHARE Fundamental and Applied Bioenergy Steven Brown (left) and Shihui Yang have developed a microbial strain with an improved ability to convert wood products to biofuel as part of research within the DOE BioEnergy Science Center.Source: ORNL News article ORNL researchers are investigating the biological mechanisms underlying production of biofuels so that those mechanisms can be improved and used to develop a new generation of efficient bioenergy strategies that will reduce U.S. dependence on foreign oil and help curb carbon emissions. Fundamental and applied bioenergy research at ORNL includes studies conducted within the BioEnergy Science Center and the following research areas: Bioconversion Science and Technology Plant-Microbe Interfaces

269

Alterra Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Alterra Bioenergy LLC Alterra Bioenergy LLC Jump to: navigation, search Name Alterra Bioenergy LLC Place Macon, Georgia Sector Biofuels Product Manufacturer and distributor of biofuels. References Alterra Bioenergy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alterra Bioenergy LLC is a company located in Macon, Georgia . References ↑ "Alterra Bioenergy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Alterra_Bioenergy_LLC&oldid=342070" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

270

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

271

Socio-economic drivers in implementing bioenergy projects  

Science Journals Connector (OSTI)

Within the international community there is considerable interest in the socio-economic implications of moving society towards the more widespread use of renewable energy resources. Such change is seen to be very necessary but is often poorly communicated to people and communities who need to accept such changes. There are pockets of activity across the world looking at various approaches to understand this fundamental matter. Typically, socio-economic implications are measured in terms of economic indices, such as employment and monetary gains, but in effect the analysis relates to a number of aspects which include social, cultural, institutional, and environmental issues. The extremely complex nature of bioenergy, many different technologies involved and a number of different, associated aspects (socio-economics, greenhouse gas mitigation potential, environment, ) make this whole topic a complex subject. This paper is primarily a descriptive research and review of literature on employment and other socio-economic aspects of bioenergy systems as drivers for implementing bioenergy projects. Due to the limited information, this paper does not provide absolute quantification on the multiplier effects of local and or national incomes of any particular country or region. The paper intends to trigger a more in-depth discussion of data gaps, potentials, opportunities and challenges. An encouraging trend is that in many countries policy makers are beginning to perceive the potential economic benefits of commercial biomass e.g. employment/earnings, regional economic gain, contribution to security of energy supply and all others.

J. Domac; K. Richards; S. Risovic

2005-01-01T23:59:59.000Z

272

Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria  

Science Journals Connector (OSTI)

Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets.

Johannes Schmidt; Sylvain Leduc; Erik Dotzauer; Erwin Schmid

2011-01-01T23:59:59.000Z

273

Final Scientific and Technical Report State and Regional Biomass Partnerships  

SciTech Connect (OSTI)

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

274

Life cycle assessment of bioenergy systems: State of the art and future challenges  

Science Journals Connector (OSTI)

The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most \\{LCAs\\} found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy.

Francesco Cherubini; Anders Hammer Strmman

2011-01-01T23:59:59.000Z

275

Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998  

SciTech Connect (OSTI)

As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

Kirschner, J.; Badin, J.

1998-12-31T23:59:59.000Z

276

Bird communities in future bioenergy landscapes of the Upper Midwest  

Science Journals Connector (OSTI)

...The effects of bioenergy crop management...that extensive literature reviews have concluded...understanding how different bioenergy crops, and the...Fargione JE ( 2009 ) Bioenergy and wildlife: Threats and...Camp M ( 1995 ) A review and synthesis of habitat...

Timothy D. Meehan; Allen H. Hurlbert; Claudio Gratton

2010-01-01T23:59:59.000Z

277

Production of bioenergy and biochemicals from industrial and  

E-Print Network [OSTI]

Production of bioenergy and biochemicals from industrial and agricultural wastewater Largus T biological processing strat- egies that produce bioenergy or biochemicals while treating industrial on wastewater treatment from pollution control to resource exploitation. Many bioprocesses can provide bioenergy

Angenent, Lars T.

278

STAFFREPORT Prepared for the Bioenergy Interagency Working Group  

E-Print Network [OSTI]

STAFFREPORT Prepared for the Bioenergy Interagency Working Group: Air Resources Board 2010 2009 PROGRESS TO PLAN BIOENERGY ACTION PLAN FOR CALIFORNIA CALIFORNIA ENERGY COMMISSION #12, and et. al. 2010. 2009 Progress to Plan Bioenergy Action Plan for California. California Energy

279

Track Bioenergy Legislation with New Web Tool | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Track Bioenergy Legislation with New Web Tool Track Bioenergy Legislation with New Web Tool February 27, 2014 - 5:59pm Addthis The Bioenergy KDF Legislative Library aims to help...

280

Harnessing Genetic Diversity in Saccharomyces cerevisiae for Fermentation of Xylose in Hydrolysates of Alkaline Hydrogen Peroxide-Pretreated Biomass  

Science Journals Connector (OSTI)

...have been well covered in the literature (23, 26 - 34). Alkaline...funded by the DOE Great Lakes Bioenergy Research Center (DOE BER...lignocellulosic ethanol-a review. Appl. Biochem. Biotechnol...in batch reactors. Biomass Bioenergy 32 :1353-1358. doi: 10...

Trey K. Sato; Tongjun Liu; Lucas S. Parreiras; Daniel L. Williams; Dana J. Wohlbach; Benjamin D. Bice; Irene M. Ong; Rebecca J. Breuer; Li Qin; Donald Busalacchi; Shweta Deshpande; Chris Daum; Audrey P. Gasch; David B. Hodge

2013-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Harnessing Genetic Diversity in Saccharomyces cerevisiae for Fermentation of Xylose in Hydrolysates of Alkaline Hydrogen Peroxide-Pretreated Biomass  

Science Journals Connector (OSTI)

...funded by the DOE Great Lakes Bioenergy Research Center (DOE BER...lignocellulosic ethanol-a review. Appl. Biochem. Biotechnol...in batch reactors. Biomass Bioenergy 32 :1353-1358. doi: 10...controlled nutrient-limited environments in yeast. PLoS Genet. 4...

Trey K. Sato; Tongjun Liu; Lucas S. Parreiras; Daniel L. Williams; Dana J. Wohlbach; Benjamin D. Bice; Irene M. Ong; Rebecca J. Breuer; Li Qin; Donald Busalacchi; Shweta Deshpande; Chris Daum; Audrey P. Gasch; David B. Hodge

2013-11-08T23:59:59.000Z

282

NREL: Biomass Research - Eric P. Knoshaug  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Eric P. Knoshaug Eric P. Knoshaug Photo of Eric Knoshaug Eric P. Knoshaug is a senior scientist in the Applied Science section of the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He joined NREL in August 2000 and has since worked on engineering yeast for efficient utilization of biomass-generated pentose sugars, protein design and evolution for increased activity on recalcitrant biomass substrates, and increasing lipid production in microalgae. Current projects include: Pentose utilization in yeast Algal growth systems Algal lipid production and nitrogen stress responses Enzymatic degradation of algal biomass. Research Interests Microbiology Molecular biology Microbial physiology Fermentation and growth systems development Metabolic engineering

283

Bioenergy Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Toolkit Bioenergy Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

284

Biomass Energy Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Program Biomass Energy Program Biomass Energy Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Schools State Government Savings Category Bioenergy Maximum Rebate $75,000 Program Info State Alabama Program Type State Grant Program Rebate Amount Varies by project and interest rate Provider Alabama Department of Economic and Community Affairs The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on loans to install approved biomass projects. Technical assistance is also available through the program. Industrial, commercial and institutional facilities; agricultural property owners; and city, county, and state government entities are eligible.

285

Bioenergy Documentary | OpenEI Community  

Open Energy Info (EERE)

and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated. --- Subscribe to...

286

Bioenergy Technologies Office Overview | Department of Energy  

Office of Environmental Management (EM)

More Documents & Publications Bioenergy Technologies Office Overview August 2014 Monthly News Blast Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

287

The Bioenergy Knowledge Discovery Framework (KDF) | Department...  

Energy Savers [EERE]

and investors to explore and engage the latest bioenergy research. The KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that...

288

Bioenergy & Clean Cities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The...

289

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...  

Broader source: Energy.gov (indexed) [DOE]

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

290

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...  

Open Energy Info (EERE)

Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching...

291

Guofu Bioenergy Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name: Guofu Bioenergy Science & Technology Co Ltd Place: Beijing Municipality, China Zip: 100101 Sector:...

292

Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Resources Overview Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Darlene Steward, NREL Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012 2 Objective * Identify the primary opportunities and challenges for producing and utilizing methane from renewable resources o Biogas from digestion of: - Manure Management - Wastewater Treatment - Food Processing o Landfill gas 3 Bio-energy Pathways; Three Broad Categories of Products Biomass to liquid fuels pathways Source; EPA, NREL, State Bioenergy Primer, Sept. 15, 2009 Biomass to bioproducts pathways 4 Energy Product Pathway is the Focus of this Workshop Biomass to electricity and/or heat pathways Focus on * Landfill gas * Wastewater treatment sludge * Animal manure * Food processing Source; EPA, NREL, State Bioenergy Primer, Sept. 15, 2009

293

Physical and Chemical Characteristics of High-Tonnage Sorghum for an Extended Biomass Harvesting Season and Storage  

E-Print Network [OSTI]

and storage; various harvest techniques investigated to identify potential cost savings; and impact of various storage techniques on quantity and quality of deliverable biomass. This study investigated the use of two sorghum varieties as a potential bioenergy...

Hartley, Brandon

2013-05-06T23:59:59.000Z

294

BioEnergie Park Soesetal GmbH | Open Energy Information  

Open Energy Info (EERE)

BioEnergie Park Soesetal GmbH BioEnergie Park Soesetal GmbH Jump to: navigation, search Name BioEnergie-Park Soesetal GmbH Place Osterode, Lower Saxony, Germany Zip 37520 Sector Biomass Product Lower Saxony-based biomass project developer. Coordinates 53.695599°, 19.973301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.695599,"lon":19.973301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Chapter 4 - Production Technology for Bioenergy Crops and Trees  

Science Journals Connector (OSTI)

Abstract New technologies for producing energy crops and trees based on fundamental studies have been developed to improve self-sufficiency in food and feed supplies in addition to achieving sustainable natural resources. Energy crops and trees with improved leaf growth, light interception of crop canopy, photosynthetic rate, lodging resistance, and saccharification efficiency of lignocellulose, among many other traits, need to be explored. DNA marker-assisted selection using genome information has been developed as a powerful tool for breeding new bioenergy crops and trees. In this chapter, the concept and basic technologies for producing biomass from herbaceous energy crops and trees, ecophysiological characteristics for high yield and biomass production, genetic analyses of the traits responsible for biomass production, and molecular breeding for improving these traits are discussed. The definitions of herbaceous energy crops for the first and second generations, agronomy and breeding technology for these crops are explained. Recent studies on woody cell wall formation and genetic improvements associated with biomass saccharification in energy crops and woods are introduced.

Tadashi Hirasawa; Taiichiro Ookawa; Shinya Kawai; Ryo Funada; Shinya Kajita

2014-01-01T23:59:59.000Z

296

The New Horizons of Bioenergy  

ScienceCinema (OSTI)

At the Office of Energy Efficiency and Renewable Energy's "Biomass 2011" conference, Argonne researcher Seth Snyder spoke with DOE Biomass Program head, Paul Bryan. In this conversation, Snyder explains the process of biochemical conversion, and talks about Argonne's patented resin wafer technology. The resin wafer electrodeionization technology may help significantly reduce the cost of producing clean energy and of the chemicals and water used in industry. The separations technology can also process biomass-based feedstocks into biofuels and chemicals.

None

2013-04-19T23:59:59.000Z

297

Bioenergy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 5, 2014 DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells, and More EERE offers webinars to the public on a...

298

Ethanol or Bioelectricity? Life Cycle Assessment of Lignocellulosic Bioenergy Use in Light-Duty Vehicles  

Science Journals Connector (OSTI)

The remaining unfermented material, which includes lignin, is combusted to generate process heat and electricity. ... Delivered feedstock is combusted within a biomass boiler, generating steam to drive a steam turbine electrical generator, and flue gas to dry delivered feedstock. ... Fossil energy use in the bioenergy pathways is associated primarily with three aspects of the life cycle: (i) in the vehicle cycle (production/disposal) stage, coal and natural gas are used extensively. ...

Jason M. Luk; Mohammad Pourbafrani; Bradley A. Saville; Heather L. MacLean

2013-09-09T23:59:59.000Z

299

BETO Announces Bioenergy Technologies Incubator FOA  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy (EERE) has released a new $10 million funding opportunity announcement (FOA) to support innovative technologies and solutions that could help achieve bioenergy development goals, but are not significantly represented in the Bioenergy Technology Office's (BETO's) existing multi-year program plans or current research and development portfolio.

300

Office of the Biomass Program Educational Opportunities in Bioenergy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 2 1 The need to reduce dependence on foreign oil and lower greenhouse gas (GHG) emissions has renewed the urgency for developing sustainable biofuels, bioproducts,...

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hawaii Bioenergy Master Plan Potential Environmental Impacts of  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 of the Hawaii State Legislature in 2007. This effort

302

Proceedings of the Bio-Energy '80 world congress and exposition  

SciTech Connect (OSTI)

Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

None

1980-01-01T23:59:59.000Z

303

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network [OSTI]

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

304

Major DOE Biofuels Project Locations  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Project Locations Biofuels Project Locations BlueFire Ethanol Biochemical Municipal Solid Waste (Mecca, CA) Poet Biochemical Corn Cob/Corn Fiber (Emmetsburg, IA) Lignol Biochemical Woody Biomass- Ag Residues (Grand Junction, CO) ICM Biochemical Switchgrass, Forage Sorghum, Stover (St. Joseph, MO) Abengoa Biochemica Agricultural Residue (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage Thermochemical Woody Biomass - Mill Residues (Wisconsin Rapids, WI) Range Fuels Thermochemical Woody Waste (Soperton, GA) DSM Innovation Center Biochemical Various (Parsippany, NJ) Novozymes Biochemical Various (Davis, CA) Genencor Biochemical Various (Palo Alto, CA) Verenium Corp Biochemical Various (San Diego, CA)

305

Biomass Pyrolysis and Gasification of Varying Particle Sizes in a Fluidized-Bed Reactor  

Science Journals Connector (OSTI)

Light gases, char, and tar evolution as function of the bed temperature and particle size have been compared to literature data. ... A review of the primary measures for tar elimination in biomass gasification processes Biomass Bioenergy 2003, 24 ( 2) 125 140 ... Some aspects of primary methods and the research and development in this area are reviewed and cited in the present paper. ...

Katherine R. Gaston; Mark W. Jarvis; Perrine Pepiot; Kristin M. Smith; William J. Frederick, Jr.; Mark R. Nimlos

2011-05-06T23:59:59.000Z

306

State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State State Bioenergy Primer information and resources for States on issues, opportunities, and options for Advancing Bioenergy U.S. EnvironmEntal ProtEction agEncy and national rEnEwablE EnErgy laboratory SEPtEmbEr 15, 2009 TABle of ConTenTS Acknowledgements ________________________________________________________________ iv Key Acronyms and Abbreviations ______________________________________________________ v executive Summary ___________________________________________________ 1 introduction _________________________________________________________ 3 1.1 How the Primer Is Organized ____________________________________________________ 5 1.2 References ____________________________________________________________________ 5 What is Bioenergy? ____________________________________________________

307

Biomass energy with carbon capture and storage (BECCS): a review  

E-Print Network [OSTI]

Biomass energy with carbon capture and storage (BECCS): a review Claire Gough, Paul Upham December are alternative terms for the coupling of bioenergy with carbon capture and storage (CCS). The paper follows from a workshop held in December 2009, hosted by the Scottish Centre for Carbon Capture and Storage

Matthews, Adrian

308

Biomass 2011: Replace the Whole Barrel, Supply the Whole Market  

Broader source: Energy.gov [DOE]

More than 600 speakers, moderators, sponsors, exhibitors, and attendees were able to listen to discussions about the ongoing challenges and achievements in the bioenergy industry. Biomass 2011 addressed key issues in important areas, such as feedstock supply, conversion pathways, algal biofuels, investment risk and innovation, regulation and policy, and the international perspective.

309

Creative Discovery Museum : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Creative Discovery Museum The Creative Discovery Museum BESC reaches thousands of students with 'Farming for Fuels' lessons The DOE BioEnergy Science Center and the Creative Discovery Museum in Chattanooga, TN, have developed a set of hands-on lesson plans on BioFuels aimed at students in fourth, fifth and sixth grades. These "Farming for Fuels" lessons educate students about the carbon cycle, the use of lignocellulosic biomass as a substrate for the production of biofuels and the technical and economic obstacles to a bio-based fuel economy. The nationally expanded outreach program has now reached more than 60,000 students, teachers and parents by partnering with museums and centers in Tennessee, Georgia, Texas, Michigan, Illinois, Florida, New York and Arizona. To extend use of the lessons to the general public we have assembled

310

Ris Energy Report 2 Bioenergy conversion  

E-Print Network [OSTI]

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

311

Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass  

SciTech Connect (OSTI)

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

Kang, Shujiang [ORNL; Kline, Keith L [ORNL; Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Dr Jeff A [ORNL; Post, Wilfred M [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL

2013-01-01T23:59:59.000Z

312

Biomass Resources , Worldwide  

Science Journals Connector (OSTI)

The way bioenergy is developed, under what conditions, and...78, 79] with examples of such scenarios for Argentina). Bioenergy has the opportunity to contribute to climate ... and developing countries alike but t...

Dr. Andr Faaij

2012-01-01T23:59:59.000Z

313

Biomass Resources , Worldwide  

Science Journals Connector (OSTI)

The way bioenergy is developed, under what conditions, and...78, 79] with examples of such scenarios for Argentina). Bioenergy has the opportunity to contribute to climate ... and developing countries alike but t...

Dr. Andr Faaij

2013-01-01T23:59:59.000Z

314

NREL: Biomass Research - Daniel J. Schell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel J. Schell Daniel J. Schell Photo of Daniel Schell Daniel Schell is a senior biochemical engineer and supervisor of the Bioprocess Integration R&D section of the National Bioenergy Center at NREL. Mr. Schell has more than 25 years of research experience in bio-based conversion of lignocellulosic biomass and has expertise in integrated operations at the bench and pilot scales. He also manages numerous projects for industrial clients investigating various aspects of lignocellulosic biomass conversion and currently leads a multi-disciplinary team of engineers, microbiologists, and chemists. Research Interests Integrated biomass processing High solids biomass conversion Fermentation development Separation processes Technoeconomic analysis Measurement uncertainty Pilot plant operation and process scale up

315

Biomass Energy Production Incentive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Production Incentive Biomass Energy Production Incentive Biomass Energy Production Incentive < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 100,000 per fiscal year per taxpayer; 2.1 million per fiscal year for all taxpayers Program Info Start Date 5/29/2008 State South Carolina Program Type Performance-Based Incentive Rebate Amount 0.01 per kWh / 0.30 per therm Provider South Carolina Energy Office In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-hour (kWh) for electricity generated or $0.30 per therm (100,000 Btu) for energy produced

316

Life cycle assessment and biomass carbon accounting  

U.S. Energy Information Administration (EIA) Indexed Site

Biomass feedstocks Biomass feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest Σ = . Over time, if carbon stocks are returned to pre-harvest levels... ...the net emissions over this time are zero. single plot analysis Net Cumulative CO2 combustion emissions Cumulative CO2 combustion emissions Time Time Biomass energy Fossil fuel energy single plot analysis Net Cumulative CO2 combustion emissions Cumulative

317

Biomass Conversion  

Science Journals Connector (OSTI)

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the su...

Stephen R. Decker; John Sheehan

2007-01-01T23:59:59.000Z

318

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan

2012-01-01T23:59:59.000Z

319

Biomass pretreatment  

SciTech Connect (OSTI)

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

320

The water footprint of bioenergy  

Science Journals Connector (OSTI)

...ethanol [higher heating value (HHV) ethanol...energy provided by oil from the 3 oil crops...note on Rising Food Prices. World Bank Policy...1985 ) Jatropha seed oils for energy . Biomass...coconut, and jatropha oils are used (13...HHVethanol the higher heating value of ethanol...

Winnie Gerbens-Leenes; Arjen Y. Hoekstra; Theo H. van der Meer

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplies  

Science Journals Connector (OSTI)

The anticipated 2014 launch of three full-scale corn stover bioenergy conversion facilities is a strong US market ... , and several other factors affecting the fledgling bioenergy industry are addressed in this s...

Douglas L. Karlen; Jane M. F. Johnson

2014-06-01T23:59:59.000Z

322

EMBRAPAs Food-Feed-Bioenergy Production Systems  

Science Journals Connector (OSTI)

Embrapas concept of integrated and decentralized food-feed- bioenergy production on a farm is presented. The ... for demonstration purposes are briefly described. The bioenergy component in these systems is base...

Levon Yeganiantz; Adhemar Brandini

1986-01-01T23:59:59.000Z

323

Bird communities in future bioenergy landscapes of the Upper Midwest  

Science Journals Connector (OSTI)

...The effects of bioenergy crop management...that extensive literature reviews have concluded...understanding how different bioenergy crops, and the...conservation: A review of food resource provision...energy, and environment trilemma . Science 325...

Timothy D. Meehan; Allen H. Hurlbert; Claudio Gratton

2010-01-01T23:59:59.000Z

324

Facility will focus on bioenergy, global food security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security The New Mexico Consortium expects to complete the 27,000 square foot...

325

REPORT from 1st Annual World Congress of BIOENERGY ,  

E-Print Network [OSTI]

REPORT from 1st Annual World Congress of BIOENERGY , DALIAN, CHINA Dr. Efstratios Kalogirou Earth of SYNERGIA (WTERT Greece) participated in the successful 1st Annual World Congress of BIOENERGY, held between

326

Draft Bioenergy Master Plan for the State of Hawaii  

E-Print Network [OSTI]

Draft Bioenergy Master Plan for the State of Hawaii Prepared for the U.S. Department of Energy DRAFT Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business

327

Energy Department Announces $10 Million to Develop Innovative Bioenergy Technologies  

Broader source: Energy.gov [DOE]

The Energy Departments Bioenergy Technologies Office (BETO) announces the selection of seven projects across the country to receive up to $10 million to support innovative technologies and solutions to help advance bioenergy development.

328

The Global Potential of Bioenergy on Abandoned Agriculture Lands  

Science Journals Connector (OSTI)

The Global Potential of Bioenergy on Abandoned Agriculture Lands ... The global potential for bioenergy from abandoned agriculture lands is determined to be less than 8% of current primary energy demand based on land use data and ecosystem modeling. ... Converting forest lands into bioenergy agriculture could accelerate climate change by emitting carbon stored in forests, while converting food agriculture lands into bioenergy agriculture could threaten food security. ...

J. Elliott Campbell; David B. Lobell; Robert C. Genova; Christopher B. Field

2008-06-25T23:59:59.000Z

329

Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops  

Science Journals Connector (OSTI)

Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops ... Because of increasing demands for bioenergy, a considerable amount of land in the midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. ... The foliar carbon/nitrogen ratio (C/N) in these bioenergy crops at harvest is significantly higher than the ratios in replaced crops, such as corn or soybean. ...

Dong K. Woo; Juan C. Quijano; Praveen Kumar; Sayo Chaoka; Carl J. Bernacchi

2014-09-10T23:59:59.000Z

330

Bioenergy Technologies Office | Department of Energy  

Energy Savers [EERE]

renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. Learn More About Our Office Biomass Feedstocks Processing...

331

Magnetic Resonance Facility (Fact Sheet), National Bioenergy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientists to run their own liquid sample analysis * Solid-state analysis of biomass feedstocks, biomass- related materials, and polymers * Analysis of compounds with...

332

Fulcrum Bioenergy Inc | Open Energy Information  

Open Energy Info (EERE)

Fulcrum Bioenergy Inc Fulcrum Bioenergy Inc Jump to: navigation, search Name Fulcrum Bioenergy, Inc. Place Pleasanton, California Zip 94588 Sector Bioenergy, Renewable Energy Product Fulcrum BioEnergy is a waste-to-fuels company that focuses on the development of clean, environmentally responsible facilities for the conversion of municipal solid waste and other waste products to ethanol and other renewable transportation fuels. Coordinates 28.967394°, -98.478862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.967394,"lon":-98.478862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

NREL: Energy Analysis - Sustainable Biomass Resource Development and Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A flowchart illustrating the process flow of life-cycle assessment. Enlarge image NREL's international work in sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can use existing resources in a sustainable manner. It also examines the environmental and socio-economic impacts of resource development and use. Our analysts also look at the relationship of sustainable land use and biomass resource development. They look at whether there is available land to support bioenergy. They also study how we can use this available land for biomass resource development in a sustainable manner. Another key question is how biomass resource development is linked to food supply,

334

Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And Other Funding Sources Prepared Summary The goal of this section of the Hawaii Bioenergy Master Plan is to identify and evaluate financial incentives and barriers at points along the bioenergy industry value chain (feedstock production, feedstock

335

Bioenergy Production Pathways and Value-Chain Components  

E-Print Network [OSTI]

Bioenergy Production Pathways and Value-Chain Components Prepared for the U.S. Department of Energy on Life Cycle Analyses of Bioenergy Systems Prepared by Hawai`i Natural Energy Institute School of Ocean or reflect those of the United States Government or any agency thereof. #12;Bioenergy Production Pathways

336

Hawaii Bioenergy Master Plan State, County, and Federal  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan State, County, and Federal Plans, Policies, Statutes, and Regulations, Policies, Statutes, and Regulations was prepared as part of the Hawaii Bioenergy Master Plan project based on information available as of April 28, 2009. #12;ii Hawaii Bioenergy Master Plan State, County and Federal

337

Bioenergy and land-use competition in Northeast Brazil  

E-Print Network [OSTI]

Bioenergy and land-use competition in Northeast Brazil Christian Azar Department of Physical policies are warranted if use of degraded lands for bioenergy plantations is desired. 1. Introduction There are two main categories of bioenergy: residues and dedicated plantations. In this paper, we exclusively

338

Nitrogen use in switchgrass grown for bioenergy across the USA  

E-Print Network [OSTI]

Nitrogen use in switchgrass grown for bioenergy across the USA V.N. Owens a , D.R. Viands b , H Available online 17 August 2013 Keywords: Nitrogen removal Switchgrass Bioenergy Nitrogen use efficiency as a forage, conservation, and bioenergy crop [1e5]. It offers a number of distinct benefits including broad

Pawlowski, Wojtek

339

Hawaii Bioenergy Master Plan Marc. M. Siah & Associates, Inc.  

E-Print Network [OSTI]

Hawaii Bioenergy Master Plan Permitting Marc. M. Siah & Associates, Inc. Manfred J. Zapka, Ph.D., P including biofuels. Stakeholders in Hawaii's bioenergy industry, however, have identified Hawaii of promising bioenergy projects in the state. To meet its clean energy goals, Hawaii cannot afford

340

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations  

E-Print Network [OSTI]

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations R E B E C C body of research linking bioenergy cultivation to changing patterns of biodiversity, there has been remarkably little interest in how bioenergy plantations affect key ecosystem processes underpinning impor

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks  

Science Journals Connector (OSTI)

Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks ... The environmental burdens of cultivating algae for bioenergy have been quantified and compared to several terrestrial crops using a stochastic life cycle model. ... Algae are an appealing source for bioenergy due to their high yields relative to terrestrial energy crops. ...

Andres F. Clarens; Eleazer P. Resurreccion; Mark A. White; Lisa M. Colosi

2010-01-19T23:59:59.000Z

342

20 PLANET EARTH Autumn 2014 Bioenergy the name alone  

E-Print Network [OSTI]

20 PLANET EARTH Autumn 2014 Bioenergy � the name alone implies it's a good thing, environmentally's Den-style experts. Our aim was to work out how using more land to grow bioenergy crops would affect- BioCrop consortium was born. The UK needs bioenergy to meet its greenhouse gas emissions reduction

Brierley, Andrew

343

Global bioenergy potential from high-lignin agricultural residue  

Science Journals Connector (OSTI)

...production systems has a global bioenergy production potential of 4.1...efficiency (1540%) of the bioenergy into actual electricity...Costa Rica, Chile, and Argentina (coconut, olive, mango...2000 (17, 18). Modeling Bioenergy Based on Geospatial Data Shows...

Venugopal Mendu; Tom Shearin; J. Elliott Campbell; Jr; Jozsef Stork; Jungho Jae; Mark Crocker; George Huber; Seth DeBolt

2012-01-01T23:59:59.000Z

344

Kent BioEnergy | Open Energy Information  

Open Energy Info (EERE)

Kent BioEnergy Kent BioEnergy Jump to: navigation, search Name Kent BioEnergy Address 11125 Flintkote Avenue Place San Diego, California Zip 92121 Sector Biofuels Product Technologies that use algae in biofuel production, water pollution remediation, CO2 absorption, etc Website http://www.kentbioenergy.com/ Coordinates 32.904312°, -117.231255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.904312,"lon":-117.231255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Northeast Kansas Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Kansas Bioenergy LLC Kansas Bioenergy LLC Jump to: navigation, search Name Northeast Kansas Bioenergy LLC Place Hiawatha, Kansas Zip 66434 Product Developing and integrated Bioethanol / Biodiesel refinery near Hiawatha, Kansas Coordinates 39.853465°, -95.527144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.853465,"lon":-95.527144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Our Partners : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bringing the best and the brightest together. Bringing the best and the brightest together. The mission of the Department of Energy BioEnergy Science Center is to revolutionize how Bioenergy is processed within five years. To reach this goal, we have assembled a world-class team of some of the world's leading experts and facilities. We are working together to develop alternative fuel solutions that are a viable and affordable option to petroleum-based fuels. To accomplish this mission, The BioEnergy Science Center is backed by more than $80 million in investments from state and private-sector sources. This includes $30 million toward research and equipment and a $40 million, 250,000 gallons-a-year switchgrass-to-ethanol demonstration facility. View the INTERACTIVE MAP to learn more about the specific contributions we

347

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-04-30T23:59:59.000Z

348

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-01-31T23:59:59.000Z

349

Energy Department to Host Biomass 2012 Conference in Washington, D.C |  

Broader source: Energy.gov (indexed) [DOE]

Biomass 2012 Conference in Washington, Biomass 2012 Conference in Washington, D.C Energy Department to Host Biomass 2012 Conference in Washington, D.C July 9, 2012 - 4:52pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - On July 10-11, the U.S. Department of Energy will host its fifth annual conference, Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy. Biomass 2012 will bring together hundreds of diverse stakeholders in the public and private sectors to discuss the latest advances in bioenergy technology, policy news and financing strategies. As part of President Obama's all-of-the-above energy strategy, the Energy Department is working in partnership with industry and other federal agencies to catalyze breakthroughs in innovative biofuel technologies and

350

Deconst of lignocell biomass to fuels and chems, 2011.pdf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CH02CH06-Chundawat CH02CH06-Chundawat ARI 27 January 2011 20:20 R E V I E W S I N A D V A N C E Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals Shishir P. S. Chundawat, 1,2,∗ Gregg T. Beckham, 3,4,6,7,∗ Michael E. Himmel, 5,8 and Bruce E. Dale 1,2 1 Great Lakes Bioenergy Research Center, East Lansing, Michigan 48824; email: chundawa@msu.edu 2 Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824 3 National Bioenergy Center, 4 National Advanced Biofuels Consortium, and 5 Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401; email: gregg.beckham@nrel.gov 6 Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401 7 Renewable and Sustainable Energy Institute, Boulder, Colorado 80309 8 Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee

351

Pacific Rim Summit on Industrial Biotechnology & Bioenergy  

Broader source: Energy.gov [DOE]

The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 79, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

352

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2004-04-30T23:59:59.000Z

353

U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science  

SciTech Connect (OSTI)

Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

None

2010-07-01T23:59:59.000Z

354

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

355

Fundamentals of Biomass Pretreatment by Fractionation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fundamentals of Biomass Pretreatment by Fractionation Poulomi Sannigrahi 1,2 and Arthur J. Ragauskas 1,2,3 1 BioEnergy Science Center, Oak Ridge, USA 2 Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, USA 3 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, USA 10.1 Introduction With the rise in global energy demand and environmental concerns about the use of fossil fuels, the need for rapid development of alternative fuels from sustainable, non-food sources is now well acknowledged. The effective utilization of low-cost high-volume agricultural and forest biomass for the production of transporta- tion fuels and bio-based materials will play a vital role in addressing this concern [1]. The processing of lignocellulosic biomass, especially from mixed agricultural and forest sources with varying composition,

356

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website | Open  

Open Energy Info (EERE)

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Focus Area: Other Biofuels Topics: Training Material Website: www.fao.org/bioenergy/foodsecurity/befsci/en/ Equivalent URI: cleanenergysolutions.org/content/bioenergy-and-food-security-criteria- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website-created by the Bioenergy and food Security project of the Food and Agriculture Organization of the United Nations (FAO)-provides policymakers and practitioners a set of criteria, indicators, good practices, and policy options for sustainable bioenergy production to

357

Bioenergy Research Centers U.S. Department of Energy Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bioenergy Research Centers Bioenergy Research Centers U.S. Department of Energy Office of Science U.S. Department of Energy Office of Science Suggested citation: U.S. DOE. 2010. U.S. Department of Energy's Bioen- ergy Research Centers: An Overview of the Science, DOE/SC-0127. Office of Biological and Environmental Research within the DOE Office of Science (genomicscience.energy.gov/centers/brcbrochure.pdf). Sources for cover images: Joint BioEnergy Institute photo by Jona- than Remis, Lawrence Berkeley National Laboratory. BioEnergy Sci- ence Center photo by Seokwon Jung and Arthur Ragauskas, Georgia Institute of Technology. Great Lakes Bioenergy Research Center photo by Kurt Stepnitz, Michigan State University. Websites for DOE Bioenergy Research Centers DOE Joint BioEnergy Institute

358

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Broader source: Energy.gov (indexed) [DOE]

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

359

Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective  

Science Journals Connector (OSTI)

Abstract Nowadays, the energy requirement of increasing population is creating energy crisis, and its become a serious and alarming thread for sustainability of natural resources. Moreover, upcoming demand of energy requirement is growing faster in developing countries as compared to developed ones. Malaysia is one of the fastest growing, developing countries, which is experiencing drastic and regular growth in population and economy in the recent years. It is an urgent requirement for the government and policy makers to explore alternative energy sources to accomplish upcoming demands of a growing population in the form of energy sufficiency. Malaysia is blessed with tropical and sub-tropical climates, which are suitable for exploring the green agriculture and forest potential. Most of the available energy resources in the form of fossil fuels have already been explored, and it is expected that energy demand will grow continuously by two to three fold in the next decades. Biomass resource is abundant in Malaysia. This can be considered as an alternative source of renewable and sustainable energy, with a promising future to fulfil continuous and uninterrupted supply of energy. Agricultural biomass such as Industrial Kenaf (Hibiscus cannabinus L.) has been successfully investigated as a great potential to be used as a renewable and sustainable feedstock for the production of bio-energy. Kenaf regarded as a traditional crop of Malaysia. Kenaf biomass would appear as a potential material for great sustainable energy (bioethanol, biohydrogen, bioenergy) supplier in the coming future. In this review, we have provided an insight of kenaf biomass, its morphology, structure, chemical compositions, storage and sowing, cultivation, harvesting, yield and different sustainable energy possible to get from it. We also discuss the feasibility of kenaf biomass as a sustainable energy source supplier in Malaysian prospective.

N. Saba; M. Jawaid; K.R. Hakeem; M.T. Paridah; A. Khalina; O.Y. Alothman

2015-01-01T23:59:59.000Z

360

NREL-United States/Brazil Bioenergy Technical Workshop | Open Energy  

Open Energy Info (EERE)

NREL-United States/Brazil Bioenergy Technical Workshop NREL-United States/Brazil Bioenergy Technical Workshop Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL-United States/Brazil Bioenergy Technical Workshop Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy, Biomass, - Biofuels Resource Type: Workshop, Training materials User Interface: Website Website: www.nrel.gov/international/ Country: Brazil South America Coordinates: -14.235004°, -51.92528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-14.235004,"lon":-51.92528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Logistics cost analysis of rice residues for second generation bioenergy production in Ghana  

Science Journals Connector (OSTI)

Abstract This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghanas energy demands. Major rice growing regions of Ghana have 7090% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5MWe straw combustion plant were 39.01, 47.52 and 47.89USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25MWe husk gasification plant (with roundtrip distance 10km) was 2.64USD/t in all regions. Capital cost (6672%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 4648% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs.

Pooja Vijay Ramamurthi; Maria Cristina Fernandes; Per Sieverts Nielsen; Clemente Pedro Nunes

2014-01-01T23:59:59.000Z

362

Bioenergy Upcoming Events | Department of Energy  

Energy Savers [EERE]

Fri Sat 26 27 28 29 30 31 1 2 3 4 5 6 7 8 F.O. Licht's 17th Annual World Ethanol & Biofuels Conference 8:30AM to 1:20PM CET Webinar: Landscape Design for Sustainable Bioenergy...

363

Bioenergy Development in Thailand: Challenges and Strategies  

Science Journals Connector (OSTI)

Abstract In recognition of concerns about the security of energy supply and climate change, the Thai government has developed Alternative Energy Development Plan for the period 20122021. Under this plan, the production of bio- ethanol and biodiesel in 2021 is expected to grow significantly. This growth will add more pressures on water and land requirements for growing energy crops. This is likely to contribute to worsening the security of water and food supply. This paper, therefore, provides an overview of the bioenergy development and current policies in Thailand with a view to identify the challenges faced by the development of bioenergy. A review of the bioenergy policies reveals that the existing policies have been exclusively focus on energy perspective and largely ignore the significance of the implications arising from the interdependencies between energy, water and food. There is a lack of understanding of the interrelationships between bioenergy, water and food policy interactions. The lack of such understanding is likely to pose several challenges including food or fuel dilemma, security of water supply and issues surrounding land use for biofuel production. This paper further emphasizes the need to develop an integrated framework for developing an understanding of the relationships between energy, water and land.

Supannika Wattana

2014-01-01T23:59:59.000Z

364

Reporting on marginal lands for bioenergy feedstock production -a modest proposal Brian K. Richards1  

E-Print Network [OSTI]

1 Reporting on marginal lands for bioenergy feedstock production - a modest proposal Brian K.edu ---PREPRINT In press 2014, BioEnergy Research --- Abstract Growing bioenergy feedstocks can provide a long research. Using marginal lands for bioenergy feedstock production Discussions of renewable bioenergy

Walter, M.Todd

365

Modular Biomass Systems Could Boost Rural Areas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas June 16, 2010 - 1:09pm Addthis Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE Increased ethanol production will help revitalize the rural economy and decrease America's dependence on foreign oil, but there are other ways to create opportunities in the farmlands. For Robb Walt, president of Community Power Corporation (CPC) in Littleton, Colo., one answer is community-scale, bio-energy service companies, or

366

Biomass Equipment and Materials Compensating Tax Deduction | Department of  

Broader source: Energy.gov (indexed) [DOE]

Biomass Equipment and Materials Compensating Tax Deduction Biomass Equipment and Materials Compensating Tax Deduction Biomass Equipment and Materials Compensating Tax Deduction < Back Eligibility Commercial Industrial Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Wind Maximum Rebate None Program Info Start Date 6/17/2005 State New Mexico Program Type Sales Tax Incentive Rebate Amount 100% of value may be deducted for purposes of calculating Compensating Tax due Provider New Mexico Taxation and Revenue Department In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in determining the amount of

367

Obama Administration Announces New Funding for Biomass Research and  

Broader source: Energy.gov (indexed) [DOE]

New Funding for Biomass Research and New Funding for Biomass Research and Development Initiative Obama Administration Announces New Funding for Biomass Research and Development Initiative March 22, 2012 - 1:12pm Addthis COLUMBUS, Ohio - Today, as President Obama went to Ohio State University to discuss the Administration's all-out, all-of-the-above strategy for American energy, the White House announced up to $35 million over three years to support research and development in advanced biofuels, bioenergy and high-value biobased products. The projects funded through the Biomass Research and Development Initiative (BRDI) - a joint program through the U.S. Department of Agriculture (USDA) and the U.S. Energy Department (DOE) - will help develop economically and environmentally sustainable sources of renewable biomass and increase the availability of

368

Modular Biomass Systems Could Boost Rural Areas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas June 16, 2010 - 1:09pm Addthis Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE Increased ethanol production will help revitalize the rural economy and decrease America's dependence on foreign oil, but there are other ways to create opportunities in the farmlands. For Robb Walt, president of Community Power Corporation (CPC) in Littleton, Colo., one answer is community-scale, bio-energy service companies, or

369

Role of community acceptance in sustainable bioenergy projects in India  

Science Journals Connector (OSTI)

Abstract Community acceptance has been identified as one of the key requirements for a sustainable bioenergy project. However less attention has been paid to this aspect from developing nations and small projects perspective. Therefore this research examines the role of community acceptance for sustainable small scale bioenergy projects in India. While addressing the aim, this work identifies influence of community over bioenergy projects, major concerns of communities regarding bioenergy projects and factors influencing perceptions of communities about bioenergy projects. The empirical research was carried out on four bioenergy companies in India as case studies. It has been identified that communities have significant influence over bioenergy projects in India. Local air pollution, inappropriate storage of by-products and credibility of developer are identified as some of the important concerns. Local energy needs, benefits to community from bioenergy companies, level of trust on company and relationship between company and the community are some of the prime factors which influence community?s perception on bioenergy projects. This research sheds light on important aspects related to community acceptance of bioenergy projects, and this information would help practitioners in understanding the community perceptions and take appropriate actions to satisfy them.

Vimal Kumar Eswarlal; Geoffrey Vasudevan; Prasanta Kumar Dey; Padma Vasudevan

2014-01-01T23:59:59.000Z

370

Transforming Biomass - main page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

harvesting, collection, and storage systems, and preconversion of advanced feedstocks for bioenergy commodity markets. INL feedstock preprocessing research and development ranges...

371

Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options  

SciTech Connect (OSTI)

This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

2014-04-01T23:59:59.000Z

372

Shrew response to variable woody debris retention: Implications for sustainable forest bioenergy  

Science Journals Connector (OSTI)

Abstract Shrews are integral components of forest food webs and may rely on downed woody debris to provide microhabitats that satisfy high moisture and metabolic requirements. However, woody biomass harvests glean downed woody debris to use as a bioenergy feedstock. Biomass Harvesting Guidelines (BHGs) provide guidance on the amount and distribution of downed woody debris retained after harvest to ensure ecological sustainability of woody biomass harvesting and limit detrimental effects on wildlife. However, the success of Biomass Harvesting Guidelines at reaching sustainability goals, including conservation of wildlife habitat, has not been tested in an operational setting. Thus, we compared shrew captures among six woody biomass harvesting treatments in pine plantations in North Carolina, USA from April to August 20112014 (n=4) and Georgia, USA from April to August 20112013 (n=4). Treatments included: (1) woody biomass harvest with no BHGs; (2) 15% retention with woody biomass dispersed; (3) 15% retention with woody biomass clustered; (4) 30% retention with woody biomass dispersed; (5) 30% retention with woody biomass clustered; and (6) no woody biomass harvested. We sampled shrews with drift fence arrays and compared relative abundance of shrews among treatments using analysis of variance. Additionally, we used general linear regression models to evaluate the influence of downed woody debris volume and vegetation structure on shrew capture success at each drift fence for species with >100 captures/state/year. In 53,690 trap nights, we had 1,712 shrew captures representing three species, Cryptotis parva, Blarina carolinensis, and Sorex longirostris. We did not detect consistent differences in shrew relative abundance among woody biomass harvest treatments, but relative abundance of all species increased over time as vegetation became established. In North Carolina, total shrew capture success was negatively related to volume of downed woody debris within 50m of the drift fence array (P=0.05) in 2013 and positively related to bare groundcover in 2013 (P=0.02) and 2014 (P<0.01). In Georgia, total shrew capture success was negatively related to herbaceous groundcover (P<0.01) and leaf litter groundcover (P=0.02) and positively related to woody vegetation groundcover (P<0.01) and vertical vegetation structure (P=0.03) in 2013. Our results suggest that shrews in our study area were associated more with vegetation characteristics than downed woody debris and that woody biomass harvests may have little influence on shrew abundances in the southeastern United States Coastal Plain.

S.R. Fritts; C.E. Moorman; S.M. Grodsky; D.W. Hazel; J.A. Homyack; C.B. Farrell; S.B. Castleberry

2015-01-01T23:59:59.000Z

373

Setting the rules of the game: ethical and legal issues raised by bioenergy governance methods  

Science Journals Connector (OSTI)

Bioenergy is increasingly promoted as an energy carrier ... as motivating factors for a shift towards more bioenergy use. The supply and demand of bioenergy is to a high degree steered by ... this regulation is a...

C. Gamborg; P. Sande; H. T. Anker

2012-01-01T23:59:59.000Z

374

Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An  

E-Print Network [OSTI]

Bioenergy crop productivity and potential climate change mitigation from marginal lands bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops June 2014 Introduction Bioenergy, an important renewable energy produced from biological materials

Zhuang, Qianlai

375

High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks  

E-Print Network [OSTI]

and their enzymes on bioenergy feedstocks Amitha P. ReddyVanderGheynst 1,2* Joint BioEnergy Institute, Emeryville, CA2009. The water footprint of bioenergy. Proceedings of the

Reddy, A. P.

2012-01-01T23:59:59.000Z

376

Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25, at  

E-Print Network [OSTI]

Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25 on the web page of the Research school Bioenergy (http://www.slu.se/sv/forskarskolor/bioenergy/) on Monday

377

Biomass Basics  

Broader source: Energy.gov [DOE]

Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae,...

378

Assessing Maturity in Sweet Sorghum Hybrids and its Role in Daily Biomass Supply  

E-Print Network [OSTI]

in ___________ This thesis follows the style of Crop Science. 2 feed and food grain markets. Finally, perceived concerns over fuel versus food will continue to affect policy and production practices (Hoekman, 2009). Because our biofuel needs cannot be met... by starch-derived ethanol alone, ligno- cellulosic biomass sources will also be required (Heaton et al., 2008). There are many potential ligno-cellulosic biomass sources ranging from crop and wood residue to dedicated bioenergy crops grown specifically...

Burks, Payne

2012-07-16T23:59:59.000Z

379

Algal Biomass Constituent Analysis: Method Uncertainties and Investigation of the Underlying Measuring Chemistries  

Science Journals Connector (OSTI)

National Bioenergy Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401, United States ... There are many advantages to algal biomass-based biofuels but also a lot of challenges associated with rendering the process economical, most of which have been part of recent reviews of the literature. ... Placing microalgae on the biofuels priority list: a review of the technological challenges ...

Lieve M. L. Laurens; Thomas A. Dempster; Howland D. T. Jones; Edward J. Wolfrum; Stefanie Van Wychen; Jordan S. P. McAllister; Michelle Rencenberger; Kylea J. Parchert; Lindsey M. Gloe

2012-01-12T23:59:59.000Z

380

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification  

Science Journals Connector (OSTI)

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification ... National Bioenergy Center, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401, United States ... Similar activation energies (9-10 kcal/mol) were measured for ZnO and Zn-Ti-O sulfidation. ...

Abhijit Dutta; Singfoong Cheah; Richard Bain; Calvin Feik; Kim Magrini-Bair; Steven Phillips

2012-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Assessing Available Woody Plant Biomass on Rangelands with Lidar and Multispectral Remote Sensing  

E-Print Network [OSTI]

products. Mesquite trees, a type of woody plant, are a proven source of bioenergy feedstock found on semi-arid lands. The overall objectives of this study were to develop algorithms for determining woody plant biomass on rangelands in Texas at plot...

Ku, Nian-Wei

2012-07-16T23:59:59.000Z

382

Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China  

Broader source: Energy.gov [DOE]

Breakout Session 3DFostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

383

Establishment phase greenhouse gas emissions in short rotation woody biomass plantations  

E-Print Network [OSTI]

-rotation woody bio- energy crops (SRWC), specifically hybrid-poplar (Populus spp.) and willow (Salix spp.), being to short-rotation woody biomass crops (SRWC) for bioenergy in the Northern U.S. Lake States. GHG debts in time since last cultivation: 5 vs. 42 years. To address the short-term effects of plantation

Turner, Monica G.

384

Joining : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inventions Inventions The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site features inventions and commercial opportunities in addition to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact speckrr@ornl.gov) Periodically Host a "BioEnergy Nexus" venture forum Provide opportunity for research institutions and private companies

385

Advanced Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Bioenergy LLC Bioenergy LLC Place Minneapolis, Minnesota Zip 55305 Product Developer of the 378.5m litre pa bioethanol plant in Fairmount. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Webinar: Landscape Design for Sustainable Bioenergy Systems  

Broader source: Energy.gov [DOE]

The Energy Departments Bioenergy Technologies Office will present a live informational webcast on the Landscape Design for Sustainable Bioenergy Systems Funding Opportunity (DE-FOA-0001179) on November 3, 2014, 1:30 p.m.3:00 p.m. Eastern Standard Time. This FOA seeks interdisciplinary projects that apply landscape design approaches to integrate cellulosic feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability including ecosystem services and food, feed, and fiber production. For the purposes of this FOA, cellulosic feedstock production refers to dedicated annual and perennial energy crops, use of agricultural and forestry residues, or a combination of these options.

387

Bioenergy Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

Bioenergy Assessment Toolkit Bioenergy Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

388

Bioenergy Technologies Office: Association of Fish and Wildlife...  

Broader source: Energy.gov (indexed) [DOE]

Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural...

389

BioEnergy Solutions BES | Open Energy Information  

Open Energy Info (EERE)

California Zip: 93309 Product: Bakersfield-based firm installing and operating biogas plants for farmers and food producers. References: BioEnergy Solutions (BES)1 This...

390

Bioenergy Technologies FY14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

Bioenergy Technologies FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

391

INEOS-New Planet: Indian River Bioenergy Center | Department...  

Energy Savers [EERE]

source of value for the community." Dr. Peter Williams, Chairman, INEOS New Planet BioEnergy By diverting vegetative waste from the local landfill and minimizing waste...

392

Thailand-Key Results and Policy Recommendations for Future Bioenergy...  

Open Energy Info (EERE)

biofuel feedstock crops. How the Thai Government manages the potential pressures that the bioenergy sector will exert on its natural resources and agricultural markets and the...

393

Assessing Bioenergy Sustainability: Application of a Suite of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Success Stories Contact Us Index Home | ORNL | Events and Conferences Assessing Bioenergy Sustainability: Application of a Suite of Environmental and Socioeconomic Indicators...

394

Adoption of bioenergy technologies for a sustainable energy system.  

E-Print Network [OSTI]

??A future sustainable energy system must achieve great improvements in energy efficiency and the energy supply must be based on renewable energy sources. Bioenergy will (more)

Bjrnstad, Even

2011-01-01T23:59:59.000Z

395

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

396

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

397

Shades of green : spatial and temporal variability of potentials, costs and environmental impacts of bioenergy production.  

E-Print Network [OSTI]

??Bioenergy is expected to play an important role in future energy supply. However, increased implementation of large scale bioenergy production could have significant adverse effects. (more)

Hilst, F. van der

2012-01-01T23:59:59.000Z

398

E-Print Network 3.0 - analysing bioenergy demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

normally derived... of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only... action on climate change have all served to...

399

E-Print Network 3.0 - assessing bioenergy options Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

origin, normally derived... of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only... action on climate change have all served...

400

Sustainable Food & Bioenergy Systems Program-Sustainable Crop Production Option 2014-2015 Catalog  

E-Print Network [OSTI]

Sustainable Food & Bioenergy Systems Program- Sustainable Crop Production Option 2014-2015 Catalog SFBS 146 Intro to Sustainable Food & Bioenergy Systems ................................ S

Dyer, Bill

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial  

E-Print Network [OSTI]

BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial electrolysis cell fed performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

402

> ExplorACES projects attract potential students > Bioenergy grant fuels excitement  

E-Print Network [OSTI]

Inside: > ExplorACES projects attract potential students > Bioenergy grant fuels excitement. Our current technical emphases are in the areas of agricultural automation, bio-energy and bio

Gilbert, Matthew

403

Washington, D.C. and Tennessee: Bioenergy Technologies Office Announces Launch of New and Improved KDF  

Broader source: Energy.gov [DOE]

The relaunched Bioenergy KDF supports the development of a sustainable bioenergy industry by providing unique value for researchers, private industry, policymakers, and the public.

404

Document  

Broader source: Energy.gov (indexed) [DOE]

until each distinct technology is in full commercial operation. (CPS at 7). Abengoa Bioenergy New Technologies (ABNT) recommends that DOE select the definition which utilizes...

405

NREL: Biomass Research - Jonathan J. Stickel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jonathan J. Stickel Jonathan J. Stickel Photo of Jonathan J. Stickel Jonathan Stickel is a senior research engineer in the Biochemical Process R&D group of the National Bioenergy Center at NREL. His primary role is the leader (Principal Investigator) for the Process Science of Enzymatic Hydrolysis subtask of the NREL Biomass Program. This work involves fundamental and applied research of the fluid mechanics, mass transfer, and reaction kinetics of biomass undergoing enzymatic hydrolysis in order to improve overall conversion yields and process economics. Education Ph.D., Chemical Engineering, University of California at Davis, 2006 B.S., Chemical Engineering, Rensselaer Polytechnic Institute, 1999 Professional Experience Senior Research Engineer, National Renewable Energy Laboratory,

406

Chapter 2 - Biomass for Biorefining: Resources, Allocation, Utilization, and Policies  

Science Journals Connector (OSTI)

Abstract This chapter discusses the importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass use. Bioenergy development depends on maximizing the amount of biomass obtained from agriculture and forestry, while prioritizing nature conservation and the protection of soils, water, and biodiversity. The major challenges facing the commercial production of biofuels and bioproducts are sustainable biomass availability and capital-intensive biomass processing facilities. The two main competitors for biomass resources are biopower and biofuels, and their future status depends on the federal and state regulations governing them. A combination of policies encouraging infrastructure investment and supporting favorable market conditions appears to be the most effective means for establishing an economically sustainable biofuel supply chain. Understanding the extent of biomass resources, their potential in energy markets, and the most economic utilization of biomass is important in the development of policies that improve energy security and mitigate climate change.

Stephen R. Hughes; Nasib Qureshi

2014-01-01T23:59:59.000Z

407

USDA, DOE Announce $18 Million Solicitation for Biomass Research and  

Broader source: Energy.gov (indexed) [DOE]

$18 Million Solicitation for Biomass Research $18 Million Solicitation for Biomass Research and Development USDA, DOE Announce $18 Million Solicitation for Biomass Research and Development June 11, 2007 - 1:40pm Addthis WASHINGTON - The U.S. Department of Agriculture (USDA) and the U.S. Department of Energy (DOE) today announced a combined total of up to $18 million will be available for research and development of biomass-based products, biofuels, bioenergy and related processes. USDA and DOE are issuing these grant solicitations for several types of projects aimed at increasing the availability of alternative and renewable fuels, which will help further President Bush's bold energy initiatives, including Twenty in Ten. The Twenty in Ten Initiative promotes greater energy security through increased efficiency and diversification of energy sources. USDA

408

Agricultural Biomass Income Tax Credit (Personal) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Personal) Personal) Agricultural Biomass Income Tax Credit (Personal) < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate Statewide annual limit of 5 million in total credits Program Info Start Date 1/1/2011 State New Mexico Program Type Personal Tax Credit Rebate Amount 5 per wet ton Provider New Mexico Energy, Minerals and Natural Resources Department [http://www.nmlegis.gov/Sessions/10%20Regular/final/HB0171.pdf House Bill 171] of 2010 created a tax credit for agricultural biomass from a dairy or feedlot transported to a facility that uses agricultural biomass to generate electricity or make biocrude or other liquid or gaseous fuel for commercial use. For the purposes of this tax credit, agricultural biomass means wet manure. The Energy, Minerals and Natural Resources Department may

409

Agricultural Biomass Income Tax Credit (Corporate) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Corporate) Corporate) Agricultural Biomass Income Tax Credit (Corporate) < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate Statewide annual limit of 5 million in total credits Program Info Start Date 1/1/2011 State New Mexico Program Type Corporate Tax Credit Rebate Amount 5 per wet ton Provider New Mexico Energy, Minerals and Natural Resources Department [http://www.nmlegis.gov/Sessions/10%20Regular/final/HB0171.pdf House Bill 171] of 2010 created a tax credit for agricultural biomass from a dairy or feedlot transported to a facility that uses agricultural biomass to generate electricity or make biocrude or other liquid or gaseous fuel for commercial use. For the purposes of this tax credit, agricultural biomass means wet manure. The Energy, Minerals and Natural Resources Department may

410

Biogas and Biomass to Energy Grant Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biogas and Biomass to Energy Grant Program Biogas and Biomass to Energy Grant Program Biogas and Biomass to Energy Grant Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Energy Sources Maximum Rebate Feasibility Studies: $2,500 Biogas to Energy Systems: $225,000 Biomass to Energy Systems: $500,000 Program Info Start Date 12/16/1997 State Illinois Program Type State Grant Program Rebate Amount Up to 50% of project cost Provider University of Illinois at Chicago '''The most recent application period closed April 30, 2012. Check the program web site for updates on future solicitations. ''' The Renewable Energy Resources Program (RERP) promotes the development of

411

Bioenergy Technologies Office (BETO) Announces Renewable Carbon...  

Broader source: Energy.gov (indexed) [DOE]

within the Office of Energy Efficiency and Renewable Energy (EERE) is to develop and transform biomass resources into commercially viable, high-performance biofuels, bioproducts,...

412

Bioenergy Technologies Office April Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about the event, and to find registration information, please visit the Biomass 2014 Web page. Funding Opportunity Announcement: Biological and Chemical Upgrading for Advanced...

413

High-Throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-throughput High-throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass Jaclyn D. DeMartini 1,2,3,Ã and Charles E. Wyman 1,2,3 1 Department of Chemical and Environmental Engineering, University of California, Riverside, USA 2 Center for Environmental Research and Technology, University of California, Riverside, USA 3 BioEnergy Science Center, Oak Ridge, USA 22.1 Introduction: The Need for High-throughput Technologies The primary barrier to low-cost biological conversion of lignocellulosic biomass to renewable fuels and chemicals is plant recalcitrance, that is to say, resistance of cell walls to deconstruction by enzymes or microbes [1,2]. However, the discovery and use of biomass species with reduced recalcitrance, when com- bined with optimized pretreatment processes and enzyme mixtures, could potentially

414

The Climate Impacts of Bioenergy Systems Depend on Market and  

E-Print Network [OSTI]

The Climate Impacts of Bioenergy Systems Depend on Market and Regulatory Policy Contexts D E R E K, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis

Kammen, Daniel M.

415

A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators  

Science Journals Connector (OSTI)

Abstract In 2011 the Global Bioenergy Partnership (GBEP) released a set of indicators for sustainable bioenergy. However, two important issues still remain unresolved. One of them is the definition of sustainability, and the other is the lack of a holistic assessment tool for drawing conclusions from the indicators. The aim of this paper is to provide clarification on the concept of sustainability in the context of the GBEP indicators, and to develop a holistic assessment tool for assessing the sustainability of bioenergy programmes. The GBEP indicators are diverse in terms of what to measure, and some of them are not sufficiently directly related to the concept of sustainability. This makes the indicators ambiguous regarding to sustainability assessment. This study identifies whether the GBEP indicators are concerned with strong or weak sustainability, and develops a tool based on Multi Criteria Analysis (MCA) which can be used for assessing sustainability of bioenergy programmes using the GBEP indicators. The tool is demonstrated in an example for assessing the sustainability of biofuel production in a case study of Kyoto. We found that the biodiesel production in Kyoto performs well on the environmental pillar, but badly on the economic pillar, and based on the weights applied in this study the overall sustainability is better than diesel fuel. The holistic assessment tool provides practical information to policymakers on both ex-ante and ex-post policy evaluations.

Takashi Hayashi; Ekko C. van Ierland; Xueqin Zhu

2014-01-01T23:59:59.000Z

416

A Virtual Visit to Bioenergy Research at the National Laboratories  

Office of Energy Efficiency and Renewable Energy (EERE)

For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to increase public awareness of bioenergy and its role in the clean energy landscape. By the same token, the Bioenergy Technologies Office (BETO) is offering this virtual open house of its national laboratoriesthe facilities at the core of BETOs research and development. If you want to know how Energy Department bioenergy funding is making an impact, be sure to take a look at our national labs47% of BETO funding this past year went to the national laboratories. Of that funding, about half went to the National Renewable Energy Laboratory. Pacific Northwest National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory also received a large share.

417

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

418

Industrial Relations : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. The BESC member institutions recognize that a common strategy is important to the success of BESC. To promote the commercialization of new technologies, our plan is to: Maintain a single portal for information about available technologies. This web site will feature inventions and commercial opportunities in additoin to the information content related to the research program Provide a single point of contact for the licensing of new BESC inventions on behalf of our team (contact: Renae Speck) Provide opportunity for research institutions and private companies to become "BESC Affiliates"

419

Bioenergy Deployment Consortium (BDC) 2014 Fall Symposium  

Broader source: Energy.gov [DOE]

The 2014 BDC Fall Symposium will be held on October 2122, 2014 in Fort Myers, Florida. The event will include a tour of the Algenol facility on Wednesday morning. The symposium will have panels for progress reports from current cellulosic bio-product companies, updates on government policy from several agencies, scale-up strategies,and lessons learned. POET-DSM will provide the after dinner success story. Neil Rossmeissl, Program Manager, Algal Program, Bioenergy Technologies Office, will be delivering the keynote address on expanding the bioeconomy.

420

DOE and USDA Select Projects for more than $24 Million in Biomass Research  

Broader source: Energy.gov (indexed) [DOE]

DOE and USDA Select Projects for more than $24 Million in Biomass DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants November 12, 2009 - 12:00am Addthis Washington, DC - The U.S. Departments of Agriculture and Energy today announced projects selected for more than $24 million in grants to research and develop technologies to produce biofuels, bioenergy and high-value biobased products. Of the $24.4 million announced today, DOE plans to invest up to $4.9 million with USDA contributing up to $19.5 million. Advanced biofuels produced through this funding are expected to reduce greenhouse gas emissions by at least 50 percent compared to fossil fuels. "The selected projects will help make bioenergy production from renewable

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE and USDA Select Projects for more than $24 Million in Biomass Research  

Broader source: Energy.gov (indexed) [DOE]

and USDA Select Projects for more than $24 Million in Biomass and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants November 12, 2009 - 12:00am Addthis Washington, DC - The U.S. Departments of Agriculture and Energy today announced projects selected for more than $24 million in grants to research and develop technologies to produce biofuels, bioenergy and high-value biobased products. Of the $24.4 million announced today, DOE plans to invest up to $4.9 million with USDA contributing up to $19.5 million. Advanced biofuels produced through this funding are expected to reduce greenhouse gas emissions by at least 50 percent compared to fossil fuels. "The selected projects will help make bioenergy production from renewable

422

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

423

Science Activities in Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

424

Enhanced Charge Transport in Enzyme-Wired Organometallic Block Copolymers for Bioenergy and Biosensors  

Science Journals Connector (OSTI)

Enhanced Charge Transport in Enzyme-Wired Organometallic Block Copolymers for Bioenergy and Biosensors ...

Joungphil Lee; Hyungmin Ahn; Ilyoung Choi; Markus Boese; Moon Jeong Park

2012-03-21T23:59:59.000Z

425

Importance of bioenergy markets for the development of the global energy system  

E-Print Network [OSTI]

Importance of bioenergy markets for the development of the global energy system Nicklas Forsell, Bioenergy, TIAM-FR model, bioenergy markets, climate policies Overview Fossil fuels such as oil, coal international bioenergy markets are still in their infancy, international trade of biofuels, wood pellets

Paris-Sud XI, Université de

426

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Broader source: Energy.gov [DOE]

Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

427

Is bioenergy trade good for the environment? Jean-Marc Bourgeona  

E-Print Network [OSTI]

Is bioenergy trade good for the environment? Jean-Marc Bourgeona , Hélène Ollivierb a of bioenergy trade on greenhouse gas emissions using a two-good, three-factor model. Bioenergy emissions depending on regional comparative advantages. Keywords: bioenergy, intermediate product, North

Paris-Sud XI, Université de

428

2011 Bioenergy Action Plan Prepared by the California Energy Commission for the  

E-Print Network [OSTI]

2011 Bioenergy Action Plan Prepared by the California Energy Commission for the Bioenergy Commission Renewables Committee as part of the Preparation of the 2011 Bioenergy Action Plan ­ docket # 10 policy of the Energy Commission until the report is adopted. #12;i ACKNOWLEDGEMENTS The 2011 Bioenergy

429

Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,  

E-Print Network [OSTI]

2 Risø Energy Report 2 Bioenergy is energy of biological and renewable origin, normally derived of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only action on climate change have all served to increase interest in bioenergy. Technological advances

430

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

SciTech Connect (OSTI)

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

431

A review of remote sensing methods for biomass feedstock production  

Science Journals Connector (OSTI)

Monitoring and maximization of bioenergy yield from biomass feedstock has recently become a critically important goal for researchers. Remote sensing represents a potential method to monitor and estimate biomass so as to increase biomass feedstock production from energy crops. This paper reviews the biophysical properties of biomass and remote sensing methods for monitoring energy crops for site-specific management. While several research studies have addressed the agronomic dimensions of this approach, more research is required on perennial energy crops in order to maximize the yield of biomass feedstock. Assessment of established methods could lead to a new strategy to monitor energy crops for the adoption of site-specific management in biomass feedstock production. In this article, satellite, aerial and ground-based remote sensings were reviewed and focused on the spatial and temporal resolutions of imagery to adopt for site-specific management. We have concluded that the biomass yield prediction, the ground-based sensing is the most suitable to establish the calibration model and reference for aerial and satellite remote sensing. The aerial and satellite remote sensing are required for wide converge of planning and policy implementations of biomass feedstock production systems.

T. Ahamed; L. Tian; Y. Zhang; K.C. Ting

2011-01-01T23:59:59.000Z

432

Biopower Report Presents Methodology for Assessing the Value of Co-Firing Biomass in Pulverized Coal Plants  

Broader source: Energy.gov [DOE]

A joint Idaho National Laboratory (INL) and Pacific Northwest National Laboratory (PNNL) report presents the results of an evaluation funded by the Bioenergy Technologies Office that examines the effects of substituting up to 20% renewable biomass for coal in electricity production. This report is the first publically available assessment of its kind to investigate the impacts of co-firing biomass with coal at concentrations greater than 10% biomass without modification to the pulverized coal plant or its feed system. Findings have expanded the methodology that communities and energy providers can use to evaluate the potential economic and environmental benefits of using biomass in their coal plants.

433

Bioenergy Sustainability at the Regional Scale  

SciTech Connect (OSTI)

To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.

Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Mulholland, Patrick J [ORNL; Lowrance, Richard [USDA-ARS Southeast Watershed Research Laboratory, Tifton, Georgia; Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research

2010-11-01T23:59:59.000Z

434

Event:Sustainable Biomass for Electricity Conference (SB4E) | Open Energy  

Open Energy Info (EERE)

Biomass for Electricity Conference (SB4E) Biomass for Electricity Conference (SB4E) Jump to: navigation, search Calendar.png Sustainable Biomass for Electricity Conference (SB4E): on 2012/05/02 The Conference on Sustainable Biomass for Electricity (SB4E), organized by UN-Energy in cooperation with the Global Bioenergy Partnership (GBEP) and other partners, will consider the role of biomass technologies in decarbonizing the global energy system. Acknowledging the readily available and cost effective potential for emission reductions that could be achieved through the large-scale deployment of sustainable biomass for electricity production, the SB4E Conference will provide an opportunity for governments, international organizations and the private sector to share knowledge, lessons, best practices and experiences and to join efforts

435

Publicprivate partnerships value in bioenergy projects: Economic feasibility analysis based on two case studies  

Science Journals Connector (OSTI)

Abstract Greece and Italy are facing serious energy challenges concerning sustainability and greenhouse gas emissions as well as security of supply and the competitiveness of the internal energy market. These challenges require investments by the public sector, while the countries have seen in the last years their debts rising. A solution to promote bioenergy business, without rising public debt, could be the use of PPP (PublicPrivate Partnership). This paper presents a methodology to develop agro-energy business using PPP in two rural areas: the municipality of Evropos (in Greece) and the municipality of Montefalco (in Italy). At first biomass availability is studied, then the optimal technology is selected. Once technological issues have been analyzed PPP value for money has to be assessed. Conventional methods to evaluate economic viability of a project are not enough and a Public-Sector Comparator (PSC) has to be calculated. Typical risks of bioenergy projects are identified, estimating their probabilities and consequences. This will lead to associate a monetary value to each risk. Then the identified risks are allocated among private and public partners, establishing synergies. The allocation of risks will have consequences on the preparation of PPP contract and on partner selection procedure.

Francesco Fantozzi; Pietro Bartocci; Bruno D'Alessandro; Stratos Arampatzis; Basil Manos

2014-01-01T23:59:59.000Z

436

Bioenergy and rural development: The role of agroforestry in a Tanzanian village economy  

Science Journals Connector (OSTI)

Abstract Recent papers indicate that decentralized bioenergy crop production offers increased market access and income diversification strategies for the rural population. The analyses concentrate on the potential effects of newly discussed crops such as Jatropha curcas, cassava, and sugarcane on macro level. Thereby two aspects are neglected, the income effects on micro level, and the integration of traditional firewood production systems for comparison. To fill this gap, an Environmentally Extended Social Accounting Matrix (ESAM) at the village level is developed and applied to a rural village in Tanzania. The objective is first to explore the integration of agroforestry systems in rural smallholder systems and second to analyze income effects of agricultural biomass production for bioenergy purposes in comparison to firewood production. In order to distinguish the use of firewood from public and private tree resources, environmental accounts for changes in tree stocks (public and private) are included. Findings indicate the importance of including common firewood production as a reference point. The highest income effect for the poorest households derives from agroforestry, which households use as a source of firewood and fruits for sale or home consumption, followed by J. curcas, sugarcane and finally cassava. Agroforestry in general has been also found to substantially release the pressure on public forest reserves.

Anja Fae; Etti Winter; Ulrike Grote

2014-01-01T23:59:59.000Z

437

Minimizing Land Use and Nitrogen Intensity of Bioenergy  

Science Journals Connector (OSTI)

Table 1 classifies the analyzed biomass feedstocks into categories with similar characteristics. ... Biomass Feedstocks Separated by Category ...

Shelie A. Miller

2010-04-26T23:59:59.000Z

438

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

SciTech Connect (OSTI)

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

439

BioEnergy Blog | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 in Washington, D.C., where the Energy Department announced it is joining Farm to Fly 2.0. | Energy Department photo Farm to Fly 2.0: Energy Department Joins...

440

Bioenergy Technologies Office May Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mexico * 22nd European Biomass Conference and Exhibition; June 23-26, 2014; Hamburg, Germany * 11th Renewable Energy Finance Forum Wall Street; June 25-26, 2014; New York, New...

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sustainable Bioenergy Production: An Integrated Perspective  

Science Journals Connector (OSTI)

In addition, this chapter discusses the application of Germanys Renewable Energy Source Act and the resulting National Biomass Action Plan. Moreover, it highlights the quota system and feed-in tariffs as promote...

Hans Ruppert; Martin Kappas; Jens Ibendorf

2013-01-01T23:59:59.000Z

442

Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations  

SciTech Connect (OSTI)

This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.

Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.; Manowitz, David H.; Zhang, Xuesong

2013-03-01T23:59:59.000Z

443

Quantitative appraisal of biomass resources and their energy potential in Egypt  

Science Journals Connector (OSTI)

Abstract The utilization of biomass as a renewable source of energy is important from the energetic as well as the environmental viewpoint. It can reduce the rate of fossil fuel depletion caused by the rapid increase in energy consumption. This paper presents an estimation of the biomass and its potential energy in Egypt. Four main types of biomass energy sources are included: agricultural residues (dedicated bioenergy crop residues), municipal solid wastes, animal wastes, and sewage sludge. The potential biomass quantity and its theoretical energy content were computed according to statistical reports, literature reviews, and personal investigations. The results show that Egypt produces a considerable amount of biomass with a total theoretical energy content of 416.91015J. The dry biomass produced from bioenergy crop residue sources has been estimated at about 12.33 million tons/year, of which 63.75% is produced from rice straw. This source represents the highest percentage (44.6%) of the total theoretical potential energy in Egypt, followed by municipal solid wastes, which could produce 41.7% from an annual amount of 34.6 million tons. Meanwhile, the rest of the total theoretical potential energy could be produced from animal and sewage wastes. The estimated biomass with its considerable potential energy content represents an important renewable energy source in Egypt.

N. Said; S.A. El-Shatoury; L.F. Daz; M. Zamorano

2013-01-01T23:59:59.000Z

444

Bioenergy Production from Perennial Energy Crops: A Consequential LCA of 12 Bioenergy Scenarios including Land Use Changes  

Science Journals Connector (OSTI)

Bioenergy Production from Perennial Energy Crops: A Consequential LCA of 12 Bioenergy Scenarios including Land Use Changes ... In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. ... Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. ...

Davide Tonini; Lorie Hamelin; Henrik Wenzel; Thomas Astrup

2012-11-05T23:59:59.000Z

445

Determining the most sustainable lignocellulosic bioenergy system following a case study approach  

Science Journals Connector (OSTI)

Abstract The paradigm shift from fossil to renewable energy sources is driven, largely, by a growing sustainability awareness, necessitating more sophisticated measurements in terms of a wider range of criteria. Technical efficiency, financial profitability, environmental friendliness and social acceptance are some of the aspects determining the sustainability of renewable energy systems. The resulting complexity and sometimes conflicting nature of these criteria constitute major barriers to the implementation of renewable energy projects. The Worcester biomass procurement area in the Western Cape Province, South Africa, is used as a case study. It provides a blueprint for measuring the impacts of lignocellulosic bioelectricity systems using life-cycle assessment (LCA), multi-period budgeting (MPB), geographic information systems (GIS) and multi-criteria decision-making analysis (MCDA), among others and for prioritising the relevant criteria to determine the most sustainable technological option. Following the LCA approach, 37 plausible lignocellulosic bioenergy systems were assessed against five financial-economic, three socio-economic and five environmental criteria. On translating the quantitative performance data into a standardised common language of relative performance, an expert group attached weights to the considered criteria, using the analytical hierarchy process (AHP). Assuming the prerequisite of financial-economic viability, the preferred option comprises a feller-buncher for harvesting, a forwarder for biomass extraction, mobile comminution at the roadside, secondary transport in truck-container-trailer combinations and an integrated gasification system for the conversion into electricity. This approach illustrates how to internalise externalities as typical market failures, aiding decision makers to choose the most sustainable bioenergy system.

C.C.C. von Doderer; T.E. Kleynhans

2014-01-01T23:59:59.000Z

446

Local Option - Solar, Wind and Biomass Energy Systems Exemption |  

Broader source: Energy.gov (indexed) [DOE]

Local Option - Solar, Wind and Biomass Energy Systems Exemption Local Option - Solar, Wind and Biomass Energy Systems Exemption Local Option - Solar, Wind and Biomass Energy Systems Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Program Info Start Date 01/01/1991 State New York Program Type Property Tax Incentive Rebate Amount 100% exemption for 15 years (unless local jurisdiction has opted out) Provider Office of Real Property Tax Services Section 487 of the New York State Real Property Tax Law provides a 15-year real property tax exemption for solar, wind energy, and farm-waste energy

447

Biomass Energy Tax Credit (Corporate) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Tax Credit (Corporate) Biomass Energy Tax Credit (Corporate) Biomass Energy Tax Credit (Corporate) < Back Eligibility Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $650,000 per year; credit may not exceed 50% of tax liability Program Info Start Date 1/1/2007 State South Carolina Program Type Corporate Tax Credit Rebate Amount 25% of eligible costs Provider South Carolina Energy Office In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'' [http://www.scstatehouse.gov/sess117_2007-2008/bills/243.htm (S.B. 243)], which amended previous legislation concerning a landfill methane tax credit. The original legislation, enacted in 2006, allows a 25% corporate tax credit for costs incurred by a taxpayer for the use of landfill methane

448

DOE, USDA Announce Funding for Biomass Research and Development Initiative  

Broader source: Energy.gov (indexed) [DOE]

DOE, USDA Announce Funding for Biomass Research and Development DOE, USDA Announce Funding for Biomass Research and Development Initiative DOE, USDA Announce Funding for Biomass Research and Development Initiative May 6, 2010 - 12:00am Addthis Washington, DC - The U.S. Departments of Energy (DOE) and Agriculture (USDA) today jointly announced up to $33 million in funding for research and development of technologies and processes to produce biofuels, bioenergy and high-value biobased products, subject to annual appropriations. These projects will support the Obama Administration's comprehensive energy strategy of increasing the nation's energy, economic and national security by reducing our reliance on foreign oil and reducing greenhouse gases. "These projects will help advance the production of biofuels and related

449

NREL: Biomass Research - Biomass Characterization Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

450

Press Releases: BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Press Releases Chu presents energy research, development vision to senators U.S. Energy Secretary Steven Chu testified at a U.S. Senate Energy and Natural Resources Committee hearing March 5. During his testimony, Chu presented his vision for energy research and development at the... Source: Checkbiotech (Trade), March 11, 2009 Keywords Matched: Oak Ridge National Country: Switzerland Region: SourceType: News Laboratory: ORNL Feed Source: Meltwater Chu presents energy research, development vision to senators: An example, Chu said, is the current biofuels research underway at the three BioEnergy Research Centers located at the Oak Ridge National Laboratory in Oak Ridge, Tenn.; the University of Wisconsin in Madison; and Lawrence Berkeley National Laboratory. March 10, 2009

451

U.S. Bioenergy Statistics | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Bioenergy Statistics U.S. Bioenergy Statistics Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data U.S. Bioenergy Statistics Dataset Summary Description The U.S. Bioenergy Statistics are a source of information on biofuels intended to present a picture of the renewable energy industry and its relationship to agriculture. Where appropriate, data are presented in both a calendar year and the relevant marketing year timeframe to increase utility to feedstock-oriented users. The statistics highlight the factors that influence the demand for agricultural feedstocks for biofuels production; for instance, numerous tables emphasize the relationship between energy and commodity markets.

452

Energy Department Selects Three Bioenergy Research Centers for $375 Million  

Broader source: Energy.gov (indexed) [DOE]

Three Bioenergy Research Centers for $375 Three Bioenergy Research Centers for $375 Million in Federal Funding Energy Department Selects Three Bioenergy Research Centers for $375 Million in Federal Funding June 26, 2007 - 2:08pm Addthis Basic Genomics Research Furthers President Bush's Plan to Reduce Gasoline Usage 20 Percent in Ten Year WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will invest up to $375 million in three new Bioenergy Research Centers that will be located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing President Bush's Twenty in Ten Initiative, which seeks to reduce U.S. gasoline consumption by 20 percent

453

10 Questions for a Bioenergy Expert: Melinda Hamilton | Department of  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Expert: Melinda Hamilton Bioenergy Expert: Melinda Hamilton 10 Questions for a Bioenergy Expert: Melinda Hamilton February 15, 2011 - 4:43pm Addthis Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Melinda Hamilton | Photo courtesy of the Idaho National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Melinda Hamilton - she's a bioenergy expert and the Director of Education Programs at Idaho National Laboratory. She recently took some time to share what she's doing to help ramp-up U.S. competitiveness in science and technology, why Jane Goodall led her to a career in science and what can happen in a lab if you don't start with a good plan. Q: What sparked your interest to pursue a career in science? Melinda Hamilton: The answer is kind of corny, but the truth is when I was

454

Erratum to: Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplies  

Science Journals Connector (OSTI)

Two regrettable errors occurred in citing a critical funding source for the multi-location research summarized in the 2014 article entitled Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplie...

Douglas L. Karlen; Jane M. F. Johnson

2014-09-01T23:59:59.000Z

455

Bioprocessing of Microalgae for Bioenergy and Recombinant Protein Production  

E-Print Network [OSTI]

This dissertation investigates harvesting of marine microalgae for bioenergy and production of two recombinant proteins for therapeutic applications in Chlamydomonas reinhardtii. The first study describes harvesting of marine microalgae...

Garzon Sanabria, Andrea J

2013-07-31T23:59:59.000Z

456

DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels  

Broader source: Energy.gov [DOE]

Our Bioenergy Technologies Office (BETO) is helping the U.S. military increase the nations #energy security, reduce greenhouse gas emissions, and create jobs in #America by advancing renewable biofuels.

457

Three Essays on Bioenergy Production in the United States  

E-Print Network [OSTI]

This dissertation examines future prospects of bioenergy production in the United States. The analysis examines three issues on liquid fuel and cellulosic ethanol. First, the amount that costs need to decrease in order to make cellulosic ethanol...

Wlodarz, Marta

2013-12-02T23:59:59.000Z

458

Bioenergy Technologies Office Multi-Year Program Plan: July 2014...  

Broader source: Energy.gov (indexed) [DOE]

and can displace a share of petroleum-derived fuels to reduce U.S. dependence on foreign oil Encourage the creation of a new domestic bioenergy and bioproduct industry....

459

Global bioenergy potential from high-lignin agricultural residue  

Science Journals Connector (OSTI)

...net greenhouse-gas flux for bioenergy...cycle (IBGCC) power generation concept: The...Mill Wastes-Fired Power Generation Systems and...Waste IX (Inst Gas Technol, Chicago...cycle (IBGCC) power generation concept: The...

Venugopal Mendu; Tom Shearin; J. Elliott Campbell; Jr; Jozsef Stork; Jungho Jae; Mark Crocker; George Huber; Seth DeBolt

2012-01-01T23:59:59.000Z

460

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network [OSTI]

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

462

Images / Graphics : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Images / Graphics Images / Graphics Cellulosic Biofuel Production Steps and Biological Research Challenges Cellulosic Biofuel Production Steps and Biological Research Challenges This figure depicts some key processing steps in an artistâ€(tm)s conception of a future large-scale facility for transforming cellulosic biomass (plant fibers) into biofuels. Three areas where focused biological research can lead to much lower costs and increased productivity include developing crops dedicated to biofuel production (see step 1), engineering enzymes that deconstruct cellulosic biomass (see steps 2 and 3), and engineering microbes and developing new microbial enzyme systems for industrial-scale conversion of biomass sugars into ethanol and other biofuels or bioproducts (see step 4). Biological research challenges

463

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

NREL: Biomass Research - Biomass Characterization Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

465

Biomass Analytical Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

466

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

467

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

468

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

469

Agronomic Suitability of Bioenergy Crops in Mississippi  

SciTech Connect (OSTI)

In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ Which areas in the state are best for bioenergy crop production? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How much could these areas produce sustainably? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How can bioenergy crops impact carbon sequestration and carbon credits? ???????????????????????????????¢???????????????????????????????????????????????????????????????¢ How will these crops affect fertilizer use and water quality? ???????????????????????????????¢?????????????

Lemus, Rocky; Baldwin, Brian; Lang, David

2011-10-01T23:59:59.000Z

470

Trade-offs of different land and bioenergy policies on the path to achieving climate targets  

Science Journals Connector (OSTI)

Many papers have shown that bioenergy and land-use are potentially important elements ... anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. ....

Katherine Calvin; Marshall Wise; Page Kyle; Pralit Patel; Leon Clarke

2014-04-01T23:59:59.000Z

471

Student Job (2 positions at Great Lakes Bioenergy Research Center (GLBRC))  

E-Print Network [OSTI]

Student Job (2 positions at Great Lakes Bioenergy Research Center (GLBRC)) Full-time summer job upon experience and qualifications. The Great Lakes Bioenergy Research Center (GLBRC) has openings

Liblit, Ben

472

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM  

E-Print Network [OSTI]

Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM on the tank bottom will be opened. The Continued on back #12;http://AgBioenergy.tamu.edu concentrated algae

473

32 Robust og bredygtig bioenergi september 2012 Af Brian Vad Mathiesen, David  

E-Print Network [OSTI]

32 Robust og bæredygtig bioenergi · september 2012 Af Brian Vad Mathiesen, David Connolly, Henrik me- get el ind i transportsektoren som muligt. #12;Robust og bæredygtig bioenergi · september 2012 33

Schaltz, Erik

474

Bioenergy Production via Microbial Conversion of Residual Oil to Natural Gas  

Science Journals Connector (OSTI)

...Microbiology May 15, 2008 ARTICLE PHYSIOLOGY AND BIOTECHNOLOGY Bioenergy Production via Microbial Conversion of Residual Oil to Natural...alkanes by anaerobic microorganisms. Nature 401: 266-269. Bioenergy production via microbial conversion of residual oil to natural...

Lisa M. Gieg; Kathleen E. Duncan; Joseph M. Suflita

2008-03-31T23:59:59.000Z

475

BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b-xylooligosaccharides  

E-Print Network [OSTI]

BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b. Li � R. Kumar � C. E. Wyman BioEnergy Science Center, Oak Ridge, TN 37831, USA 123 J Ind Microbiol

California at Riverside, University of

476

From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass Stories of Discovery & Innovation From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass Enlarge Photo Image by Eric Steen, JBEI Once E. coli have secreted oil, they sequester themselves from the droplets as shown by this optical image, thereby facilitating oil recovery. Currently, biochemical processing of cellulosic biomass requires costly enzymes for sugar liberation. By giving the E. coli the capacity to ferment both cellulose and hemicellulose without the 03.28.11 From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass A microbe that can produce an advanced biofuel directly from biomass was developed by researchers with the U.S. Department of Energy's Joint BioEnergy

477

Biomass treatment method  

DOE Patents [OSTI]

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

478

BETO Announces Request for Information on Landscape Design for Sustainable Bioenergy Systems  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys (DOEs) Bioenergy Technologies Office (BETO) invites public comment on its request for information (RFI) regarding landscape design for sustainable bioenergy systems. The purpose of this RFI is to solicit feedback from bioenergy stakeholders on landscape design approaches that integrate cellulosic bioenergy feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability.

479

Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy  

Science Journals Connector (OSTI)

Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy ... Taken together, these are the principal reasons corn stover has been looked upon favorably in the policy dialogue relative to dedicated bioenergy crops. ... Research that considers greenhouse gases, water quality, and farm-gate economics of cellulosic bioenergy crops together in a single integrated analysis is needed given societal concerns about the overall impact of using agricultural land to grow bioenergy crops. ...

Benjamin M. Gramig; Carson J. Reeling; Raj Cibin; Indrajeet Chaubey

2013-01-22T23:59:59.000Z

480

GIS mapping of rice straw residue for bioenergy purpose in a rural area of Assam, India  

Science Journals Connector (OSTI)

Abstract Agricultural residues are a promising source of biomass energy. However, agricultural residues are seasonally available and loosely distributed over large geographical areas and hence require spatio-temporal assessment. Satellite image is a handy input for such assessment and high resolution image could increase the preciseness of estimation. In the present study, rice cropland is mapped using high resolution WorldView-2 satellite image in a rural area of Assam, India. The rice cropland map in combination with agricultural statistics is then analyzed in GIS in order to assess rice straw availability for potential bioenergy generation. About 54% land of study area belongs to rice cropland, which can contribute 5360 tonnes surplus rice straw per annum (equivalent to 83,296GJ). Potential electric power capacity from the surplus rice straw in the study area is 523.50kW. However, at individual village level the potential varies from 4.45kW to 28.69kW. Considering the power crisis in India, the findings of this work are expected to assist policy makers and biomass energy developers in decision making process. Particularly, this paper generated information on village level rice straw residue availability and subsequently potential electric power capacity. Such information is limited in the India expect for few states.

Moonmoon Hiloidhari; D.C. Baruah

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "abengoa bioenergy biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

­ ORNL Bioenergy Resource & Engineering Systems Matt has expertise in accounting for non-market amenitiesThe Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of Short-rotation Pine for Bioenergy on Water Quality and Quantity Using a Watershed-scale Experiment

482

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) At Oak Ridge National Laboratory (ORNL) is pleased of bioenergy crops as well as the impacts that the expansion of these crops over large areas may have on climate, water, nutrient, and biodiversity. The DOE Great Lakes Bioenergy Research Center (GLBRC) has been

483

Special issue: current status of bioenergy research Don-Hee Park Sang Yup Lee  

E-Print Network [OSTI]

EDITORIAL Special issue: current status of bioenergy research Don-Hee Park · Sang Yup Lee Published the world. The Bioenergy Korea Conference 2012 International Symposium was held on 24­25 April 2012 conversion in the field of bioenergy. Also, several papers on general enzyme technology and bioconversion

484

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE?  

E-Print Network [OSTI]

WHY STUDY FOREST OPERATIONS, BIOPRODUCTS AND BIOENERGY AT THE UNIVERSITY OF MAINE? e efficient-developed cluster of industrial forests and processing facilities for the production of bioproducts and bioenergy for research and field experience. UMaine's Forest Operations, Bioproducts and Bioenergy Program has been

Thomas, Andrew

485

SLU, Spring 2012 Bioenergy and social sciences: economics and sociology, 5hp  

E-Print Network [OSTI]

SLU, Spring 2012 1/6 Bioenergy and social sciences: economics and sociology, 5hp PNS0083 Bioenergy and social sciences: economics and sociology, 5hp The course is given as part of the postgraduate research school "Bioenergy". The overall objective of the course is: 1. to enable the students

486

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014  

E-Print Network [OSTI]

Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014 Bioenergie, Chimica Verde e Agricoltura Destinato ai laureati di qualsiasi Facoltà che hanno dell'uso delle bioenergie o della chimica verde in agricoltura I Concorsi - promossi da Cremona

Segatti, Antonio

487

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE)  

E-Print Network [OSTI]

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE) Evaluation - ENERBIO Livrable D4.1 : GHG balances of bioenergy pathways Mars 2012 Nathalie GAGNAIRE, Benoît GABRIELLE sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions

Paris-Sud XI, Université de

488

Bacterial community structures are unique and resilient in full-scale bioenergy systems  

E-Print Network [OSTI]

Bacterial community structures are unique and resilient in full-scale bioenergy systems Jeffrey J digestion is the most successful bioenergy technology worldwide with, at its core, undefined microbialFrac | community function | digester | sludge The production of bioenergy from wastes is an essential com- ponent

Hammerton, James

489

Switchgrass for Bioenergy held at the University of NebraskaLincoln  

E-Print Network [OSTI]

Switchgrass for Bioenergy held at the University of Nebraska­Lincoln Agricultural Research. Cenusa bioenergy, a USDA-funded research initiative, is investigating the creation of a sustainable Diagnostic Clinics Switchgrass for Bioenergy training session was conducted during the UNL Extension Late

Farritor, Shane

490

Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,, Ewald Rametsteiner b  

E-Print Network [OSTI]

Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,?, Ewald Rametsteiner b Available online 11 November 2008 Keywords: Multi Criteria Analysis Bioenergy Sustainability a b s t r a c t Sustainable bioenergy systems are, by definition, embedded in social, economic, and environmental contexts

Vermont, University of

491

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)  

E-Print Network [OSTI]

The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased Studies Great Lakes Bioenergy Research Center University of Wisconsin-Madison. Co-Leader in Creating Sustainable Bioenergy Practices Jackson's program focuses on structure and function of managed, semi

492

*** Draft: do not cite or distribute -COP7 Bioenergy Document: October 18, 2001 *** Address Correspondence to  

E-Print Network [OSTI]

*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** Address;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** 10/23/01 Page 2 of 111 omasera@ate.oikos.unam.mx #12;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18

Kammen, Daniel M.

493

2014 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all informa0on  

E-Print Network [OSTI]

2014 Bioenergy Summer Bridge Fellowship Applica;on Please type or print all want to be a Bioenergy Summer Bridge student and what you hope to contribute for future Bioenergy Summer Bridge students. Le=er B: Write and in-depth le

Tullos, Desiree

494

Mapping Biomass Distribution Potential  

E-Print Network [OSTI]

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nations power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

495

Kai BioEnergy Corporation | Open Energy Information  

Open Energy Info (EERE)

Kai BioEnergy Corporation Kai BioEnergy Corporation Jump to: navigation, search Name Kai BioEnergy Corporation Place Del Mar, California Zip 92014 Sector Biofuels Product Developing technologies to produce biodiesel from algae Website http://www.kaibioenergy.com/ Coordinates 32.964294°, -117.265191° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.964294,"lon":-117.265191,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

Anhui Yineng Bioenergy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yineng Bioenergy Co Ltd Yineng Bioenergy Co Ltd Jump to: navigation, search Name Anhui Yineng Bioenergy Co Ltd Place Hefei, Anhui Province, China Product A Chinese bio-oil equipment manufacturer Coordinates 31.86141°, 117.27562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.86141,"lon":117.27562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

BESC Affiliate Program : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Affiliate Program Affiliate Program The BioEnergy Science Center has among its goals the effective, coordinated commercialization of appropriate technologies through formation of start-up ventures as well as licensing to corporate entities pursuing biofuels development. The effective translation of BESC research results into applications testing and potential deployment is an implicit part of reaching DOE's bioenergy goals. Toward this end, we are offering companies and universities the opportunity to become BESC Affiliates and receive the following benefits: An invitation to participate in all bio-energy related training, summer courses, symposia, and seminars hosted by or connected with BESC Notification of all publications resulting from BESC sponsored research, as well as timely information about BESC news

498

A Bioenergy Ecosystem - ORNL Review Vol. 44, No. 3, 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Magazine Search Magazine Go Features Next Article Previous Article Comments Home Clyde Thurman A Bioenergy Ecosystem BESC partnerships translate R&D into biofuels Paul Gilna, director of the BioEnergy Science Center at ORNL, is a man on a mission. In fact his entire organization is working under a Department of Energy mandate to focus the world's leading scientific minds and resources on revolutionizing bioenergy production. When the center was created in 2007, this innovative partnership of national laboratories, a private research foundation, universities and industries set out to break down the barriers to developing viable and affordable biofuel alternatives to petroleum-based fuels from plants that do not compete with food crops, such as switchgrass or poplar trees. Four years into a five-year mission, they

499

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Broader source: Energy.gov (indexed) [DOE]

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

500

Facility will focus on bioenergy, global food security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security Facility will focus on bioenergy, global food security The New Mexico Consortium expects to complete the 27,000 square foot laboratory and office facility next spring. May 22, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Kevin Roark Communications Office (505) 665-9202 Email Los Alamos, N.M., May 22, 2012 - U.S. Senator Tom Udall (D-NM) spoke at the groundbreaking ceremony marking the start of construction on the New Mexico Consortium's (NMC) biological research facility last Friday afternoon. Senator Udall noted New Mexico's novel and extensive contributions to our nation's renewable energy efforts and congratulated LANL, the NMC, and Richard Sayre on their commitment to advancing the nations goals for energy