National Library of Energy BETA

Sample records for abengoa bioenergy biomass

  1. Abengoa Bioenergy Biomass of Kansas, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed long-term player has the potential to demonstrate dual biochemical and thermochemical capabilities to convert lignocellulosic feedstocks to biofuels. CEO or Equivalent: Gerson Santos-Leon, Executive Vice President, Abengoa Bioenergy New Technology Participants: Abengoa Bioenergy New Technologies; Abengoa Bioenergy

  2. ABENGOA BIOENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY ABENGOA BIOENERGY PROJECT SUMMARY In September 2011, the Department of Energy issued a $132.4 million loan guarantee to finance Abengoa Bioenergy Biomass of Kansas (ABBK), one of the first commercial-scale biofuel plants in the United States, located about 90 miles southwest of Dodge

  3. EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...

    Office of Environmental Management (EM)

    07: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS August 20, 2010 EIS-0407: Final...

  4. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IBR Fact Sheet: Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat PDF icon ...

  5. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass IBR Fact Sheet: Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat PDF icon ibr_commercial_abengoa.pdf More Documents & Publications Abengoa Bioenergy Biomass of Kansas, LLC ABENGOA BIOENERGY 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Bioenergy Home About the Bioenergy Technologies Office Research & Development Education & Workforce Development

  6. Biomass IBR Fact Sheet: Abengoa Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EE-0816 * December 2012 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste Abengoa Bioenergy Biomass of Kansas Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat Abengoa Bioenergy's efforts involve the construction of a 1,200-tons-per- day commercial biorefinery, producing cellulosic ethanol and also power and heat to operate the facility. Project Description The Biorefinery Project site would be located

  7. EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County,

    Office of Environmental Management (EM)

    KS | Department of Energy 07: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS August 20, 2010 EIS-0407: Final Environmental Impact Statement Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas October 6, 2011 EIS-0407: Record of Decision Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County, Kansas

  8. ABENGOA BIOENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ABENGOA BIOENERGY ABENGOA BIOENERGY PDF icon DOE-LPO_Project-Posters_BIO_Abengoa-Bioenergy.pdf More Documents & Publications Bioenergy Technologies Office FY 2016 Budget At-A-Glance Abstract: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production Abstract: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production

  9. Bioenergy Impacts: Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Abengoa for the construction of two commercial-scale biorefineries. POET-DSM's Project LIBERTY and Abengoa's Bioenergy Biomass of Kansas are biorefineries that convert corn ...

  10. Abengoa Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefineries Abengoa Integrated Biorefineries Demonstration and Deployment Successes Gerson Santos, Executive Vice President, Abengoa PDF icon b13_santos_ap-2.pdf More Documents & Publications 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Biomass IBR Fact Sheet: Abengoa Bioenergy Abengoa IBR Successes

  11. Abengoa IBR Successes

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Thomas Robb, Manager of Institutional Relations, Abengoa Bioenergy

  12. FOA for the Demonstration of an Integrated Biorefinery System: Abengoa

    Office of Environmental Management (EM)

    Bioenergy Biomass of Kansas, LLC | Department of Energy Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC. PDF icon Award No. DE-FC36-07GO17028, Part 1 PDF icon Award No. DE-FC36-07GO17028, Part 2 PDF icon Abengoa, Mod No. M001 Contract No. DE-FC36-07GO17028 More Documents & Publications FOA

  13. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility | Department of Energy Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial-Scale Facility Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial-Scale Facility October 17, 2014 - 11:42am Addthis Photo courtesy of Abengoa Photo courtesy of Abengoa The nation's third commercial-scale cellulosic ethanol biorefinery celebrates its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its

  14. EIS-0407: Abengoa Biorefinery Project Near Hugoton, Kansas

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an environmental impact statement to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton in Stevens County, southwestern Kansas.

  15. Abengoa SA | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Abengoa SA Place: Seville, Spain Zip: 41018 Sector: Bioenergy, Solar Product: Construction, biofuel, solar and power company - parent of Abengoa...

  16. Abengoa Bioenergy Biomass of Kansas, LLC

    Broader source: Energy.gov [DOE]

    This project from a committed long-term player has the potential to demonstrate dual biochemical and thermochemical capabilities to convert lignocellulosic feedstocks to biofuels.

  17. Biomass Basics: The Facts About Bioenergy

    SciTech Connect (OSTI)

    2015-04-01

    Biomass Basics: The Facts About Bioenergy. This document provides general information about bioenergy and its creation and potential uses.

  18. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses....

  19. Office of the Biomass Program Educational Opportunities in Bioenergy...

    Office of Environmental Management (EM)

    Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Introduction...

  20. Integrated Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office(BETO) IBR 2015 Project Peer Review Integrated Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat March 25, 2015 Integrated Biorefinery Peer Review Joseph Bradford - Project Director Gerson Santos-Leon - Principal Investigator Abengoa Bioenergy 1 Abengoa Bioenergy Biomass of Kansas Corporate Headquarters - St. Louis MO Subsidiary of Abengoa SA, Spain Ethanol facilities in Nebraska, Kansas, New Mexico, Illinois, Indiana, Spain, France, Netherlands and Brazil 2 Goal

  1. LPO5-002-Proj-Poster-BIO-Abengoa

    Office of Environmental Management (EM)

    ABENGOA BIOENERGY Using an innovative process, Abengoa Bioenergy's cellulosic ethanol plant will convert non-edible crop residue into clean fuel. INVESTING in AMERICAN ENERGY OWNERS Abengoa, S.A. & Abengoa Bioenergy U.S. Holding, Inc. LOCATION Hugoton, Kansas LOAN AMOUNT $132.4 Million ISSUANCE DATE September 2011 PRODUCTION CAPACITY 25 Million Gallons Annually GASOLINE SAVED 14,900,000 Gallons Annually CLIMATE BENEFIT 132,000 Metric Tons of C0 2 Prevented Annually

  2. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses. PDF icon biomassbasics.pdf More Documents ...

  3. 2014 DOE Biomass Program Integrated Biorefinery Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review DOE Award No. DE-FC36-07GO17028 April 16, 2014 Principal Investigator - Gerson Santos-Leon Project Director - Joseph Bradford Abengoa Bioenergy Biomass of Kansas, LLC The following contains proprietary and confidential information that may not be released to persons outside the US Department of Energy 2 2 2014 ABBK Comprehensive Project Review Table of Contents Abengoa Bioenergy Background General Overview 1 Company

  4. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility ... of producing a sustainable supply of biomass sufficient to displace 30% or more of the ...

  5. Office of the Biomass Program Educational Opportunities in Bioenergy Intro

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar | Department of Energy Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Introduction to the Biomass Program at the Educational Opportunities in Bioenergy webinar. PDF icon obp_educational_opportunities_webinar.pdf More Documents & Publications Webinar: Using the New Bioenergy KDF for Data Discovery and Research Sustainability for the Global Biofuels Industry:

  6. NREL Releases BioEnergy Atlas - a Comprehensive Biomass Mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application - News Releases | NREL NREL Releases BioEnergy Atlas - a Comprehensive Biomass Mapping Application September 28, 2010 BioEnergy Atlas, a Web portal that provides access to two bioenergy analysis and mapping tools, was released today by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The visualization screening tools, BioPower and BioFuels Atlas, allow users to layer related bioenergy data onto a single map to gather information on biomass feedstocks,

  7. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy Biomass is any organic material that has stored sunlight in the form of chemical energy, such as plants, agricultural crops or residues, municipal wastes, and algae. DOE is focusing on new and better ways to make liquid transportation fuels, or "biofuels," like ethanol, biodiesel, and renewable gasoline. DOE is also investigating the potential of producing power and a range of products from biomass. PDF icon

  8. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Feasibility of a Billion-Ton Annual Supply | Department of Energy as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of

  9. Abengoa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Abengoa Abengoa Abengoa's biorefinery in Hugoton, Kansas, is the third cellulosic ethanol facility co-funded by the U.S. Department of Energy (DOE) to begin production at commercial scale since July 2013. The Department provides cost-shared funding to these first-of-a-kind facilities to help drive down technical risk and foster private investment in the growing U.S. bioeconomy. Abengoa designed and built the Kansas facility around an enzymatic hydrolysis process that was evaluated for

  10. Applicant Organization: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas, LLC Applicant Organization: Broin Companies

  11. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry | Department of Energy Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply" PDF icon billion_ton_update.pdf More Documents & Publications ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP Biomass Program

  12. Biomass Basics: The Facts About Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics: The Facts About Bioenergy 1 We Rely on Energy Every Day Energy is essential in our daily lives. We use it to fuel our cars, grow our food, heat our homes, and run our businesses. Most of our energy comes from burning fossil fuels like petroleum, coal, and natural gas. These fuels provide the energy that we need today, but there are several reasons why we are developing sustainable alternatives. 2 Use of fossil fuels can be harmful to humans and the environment When fossil fuels are

  13. Abengoa Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Abengoa Solar Name: Abengoa Solar Address: 11500 W 13th Ave Place: Lakewood, Colorado Zip: 80215 Region: Rockies Area Sector: Solar Product:...

  14. Abengoa | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Abengoa Abengoa's biorefinery in Hugoton, Kansas, is the third cellulosic ethanol facility co-funded by the U.S. Department of Energy (DOE) to begin production at commercial scale since July 2013. The Department provides cost-shared funding to these first-of-a-kind facilities to help drive down technical risk and foster private investment in the growing U.S. bioeconomy. Abengoa designed and built the Kansas facility around an enzymatic hydrolysis process that was evaluated for more than 30,000

  15. Section 2, Bioenergy Technologies Office Multi-Year Program Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Route Feedstock Abengoa 25 Cellulosic Ethanol Biochemical Agricultural Residue POET-DSM 25 Cellulosic Ethanol Biochemical Agricultural Residue INEOS New Planet Bioenergy 8 ...

  16. Bioenergy Technologies Office Multi-Year Program Plan, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Route Feedstock Abengoa 25 Cellulosic Ethanol Biochemical Agricultural Residue POET-DSM 25 Cellulosic Ethanol Biochemical Agricultural Residue INEOS New Planet Bioenergy 8 ...

  17. Bioenergy `96: Partnerships to develop and apply biomass technologies. Volume I and II

    SciTech Connect (OSTI)

    1996-12-31

    The conference proceedings consist of two volumes of papers detailing numerous issues related to biomass energy production and use. An author and keyword index are provided in the proceedings. A total of 143 papers were selected for the database. Papers were selected from the following areas from Volume 1: feedstock production, harvest, storage, and delivery; the DOE biomass power program; technical, economic, and policy barriers and incentives; new developments in biomass combustion; advancements in biomass gasification; liquid fuels production and use; and case studies of bioenergy projects. From Volume 2, subtopics selected included: bioenergy systems for distributed generation; assessment and use of biomass wastes; non-technical barriers to bioenergy implementation; improving commercial viability through integrated systems; and anaerobic digestion.

  18. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Supply for a Bioenergy and Bioproducts Industry U.S. BILLI N-TON UPDATE U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry A Study Sponsored by U.S. Department of Energy Energy Effciency and Renewable Energy Offce of the Biomass Program August 2011 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6335 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 This report was prepared as an account of

  19. Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFICE OF BIOMASS PROGRAM Educational Opportunities in Bioenergy April 23, 2012 2 | Biomass Program eere.energy.gov 3 2 1 The need to reduce dependence on foreign oil and lower greenhouse gas (GHG) emissions has renewed the urgency for developing sustainable biofuels, bioproducts, and biopower. The transportation sector accounts for about two- thirds of U.S. oil consumption and contributes to one-third of the nation's GHG emissions. Near term, biomass is the only renewable resource that can

  20. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Contact Us Babetta Marrone Biofuels Program Manager Email Srinivas Iyer Bioscience Division Leader Email Richard Sayre Senior Scientist Email Rebecca McDonald Bioscience Communications Email "Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this

  1. Abengoa-Tilley RevD

    Office of Environmental Management (EM)

    Innovative Technology Solutions for Sustainability ABENGOA SOLAR S S S Su u u un n n nS ... Innovative technology solutions for sustainability ABENGOA SOLAR Project Details Title: ...

  2. NREL: Energy Systems Integration - Abengoa Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abengoa Solar Photo of a person standing in front of a large 3D visualization screen. Abengoa Solar is leveraging the 3D visualization capabilities of the ESIF Insight Center to...

  3. Bioenergy

    SciTech Connect (OSTI)

    2014-11-20

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  4. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  5. Bioenergy

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

  6. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce such costs by more than 90%. Overview of Research and Highlights The next-generation of biofuels are being developed at Los Alamos. Made

  7. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Abengoa Photo courtesy of Abengoa The nation's third commercial-scale cellulosic ethanol biorefinery celebrates its grand opening on October 17, 2014, in Hugoton, Kansas. The...

  8. Solucar Energia SA aka Abengoa Solar | Open Energy Information

    Open Energy Info (EERE)

    Solucar Energia SA aka Abengoa Solar Jump to: navigation, search Name: Solucar Energia SA (aka Abengoa Solar) Place: Sevilla, Spain Zip: 410002 Sector: Solar Product: Developer of...

  9. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar Project near Barstow, California March 17, 2011 Abengoa Mojave Final Biological Opinion Biological Opinion on ...

  10. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683:...

  11. Abengoa Bioenergia SL | Open Energy Information

    Open Energy Info (EERE)

    search Name: Abengoa Bioenergia SL Place: Seville, Spain Zip: 41018 Product: A biodiesel production and a plant operation company within the European market as a part of...

  12. Abengoa Bioenergia Brasil | Open Energy Information

    Open Energy Info (EERE)

    Brasil Jump to: navigation, search Name: Abengoa Bioenergia Brasil Place: Sao Paulo, Sao Paulo, Brazil Zip: 04551-060 Product: Brazilian-based ethanol producer, subsidiary of...

  13. Bioenergy Impacts … Self-Loading Trailer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FDC Enterprises, which partnered with Kelderman Manufacturing to develop a self- loading trailer. Biofuels company Abengoa purchased the self-loading trailer to streamline the movement of corn plant residues to its biorefinery, where they are converted into biofuel. Biorefineries are cutting their costs by using more efficient harvesting equipment BIOENERGY To learn more, visit bioenergy.energy.gov. BIOENERGY TECHNOLOGIES OFFICE Photo courtesy of Dave Jordan, MacDon Industries Ltd.

  14. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA |

    Office of Environmental Management (EM)

    Department of Energy 8: Abengoa Solar's Mojave Solar Project near Barstow, CA EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar Project near Barstow, California July 8, 2011 EA-1798: Finding of No Significant Impact Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar Project near Barstow, California March 17, 2011 Abengoa Mojave Final Biological

  15. Bioenergy Impact on Wisconsin's Workforce

    Broader source: Energy.gov [DOE]

    Troy Runge, Wisconsin Bioenergy Initiative, presents on bioenergy's impact on Wisconsin's workforce development for the Biomass/Clean Cities States webinar.

  16. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

  17. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  18. Global and regional potential for bioenergy from agricultural and forestry residue biomass

    SciTech Connect (OSTI)

    Gregg, Jay S.; Smith, Steven J.

    2010-02-11

    As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed method for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into over 50 EJ yr-1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 80-95 EJ yr-1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to increase to 70-100 EJ yr-1 by mid- to late- century in a central case, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.

  19. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila

    Office of Environmental Management (EM)

    Bend, AZ | Department of Energy 83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6, 2010 EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona

  20. NREL SBV Pilot Bioenergy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  1. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil prices topped $70 per barrel (bbl) and catastrophic hurricanes in the Gulf Coast shut down a significant fraction of U.S. refinery capacity. The following year, oil approached $80 per bbl due to supply concerns, as well as continued political tensions in the Middle East. The Energy Independence and Security Act of 2007 (EISA) was enacted in December of that year. By the end of December 2007, oil prices surpassed $100 per bbl for the first time, and by mid-summer 2008, prices approached $150 per bbl because of supply concerns, speculation, and weakness of the U.S. dollar. As fast as they skyrocketed, oil prices fell, and by the end of 2008, oil prices dropped below $50 per bbl, falling even more a month later due to the global economic recession. In 2009 and 2010, oil prices began to increase again as a result of a weak U.S. dollar and the rebounding of world economies.

  2. Bioenergy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    made from renewable, non-food-based biomass, such as agricultural residues and woody biomass. February 26, 2014 BETO Announces Launch of the Bioenergy KDF Legislative...

  3. Guangxi Funan Bioenergy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Funan Bioenergy Co Ltd Jump to: navigation, search Name: Guangxi Funan Bioenergy Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product: Guangxi-based biomass...

  4. Frontline BioEnergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Frontline BioEnergy LLC Jump to: navigation, search Name: Frontline BioEnergy LLC Place: Ames, Iowa Zip: 50010 Sector: Bioenergy, Biomass Product: Frontline BioEnergy Inc develops...

  5. Tersus BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    BioEnergy Jump to: navigation, search Name: Tersus BioEnergy Place: London, Greater London, United Kingdom Zip: W1J 5PT Sector: Bioenergy, Biomass Product: Subsidiary of Tersus...

  6. Our Commitment to Bioenergy Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production. The Department of Energy's Biomass Program is committed to developing sustainable sources of renewable energy that displace fossil fuels, enhance energy security, promote environmental benefits, and create economic opportunities across

  7. Abengoa Solar Visual Inspection Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Solar Visual Inspection Tool Abengoa Solar Visual Inspection Tool Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_abengoa_delgado.pdf More Documents & Publications Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Failure and Degradation Modes of PV Modules in a Hot Dry Climate: Results After 12 to 26 Years of

  8. Department of Energy Offers Abengoa Bioenergy a Conditional Commitment...

    Energy Savers [EERE]

    Million Loan Guarantee August 19, 2011 - 11:15am Addthis Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation's Capacity for Cellulosic...

  9. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP Biomass Program Peer Review Sustainability Platform WEBINAR: A CHANGING MARKET FOR ...

  10. The Future of Bioenergy Feedstock Production

    Office of Environmental Management (EM)

    2 Bioenergy Technologies Office background Feedstock assessment, production and logistics Biomass yield improvements Sustainable feedstock production Future...

  11. Biomass Compositional Analysis: NIR Rapid Methods (Fact Sheet), National Bioenergy Center, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists at NREL use near-infrared spectroscopy to predict the composition of a variety of biomass types. Photo by Dennis Schroeder, NREL 26528 Biomass Compositional Analysis: NIR Rapid Methods Developing rapid calibration models to predict the composition of biomass NREL biomass analysis scientists use near-infrared (NIR) spectroscopy correlated with compositional data, produced using traditional wet chemical techniques, to develop rapid calibration models. These models dramatically decrease

  12. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    SciTech Connect (OSTI)

    Doust, Andrew, N.

    2011-11-11

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  13. Biomass Compositional Analysis Laboratory (Fact Sheet), National Bioenergy Center, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes. Compositional Analysis

  14. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  15. Chongqing Dianfeng Bioenergy Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dianfeng Bioenergy Power Co Ltd Jump to: navigation, search Name: Chongqing Dianfeng Bioenergy Power Co Ltd Place: Chongqing Municipality, China Sector: Biomass Product:...

  16. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Review | Department of Energy 4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I: Progress in Advanced Biofuels 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Gerson Santos-Leon, Executive Vice President, Abengoa PDF icon santos-leon_biomass_2014.pdf More Documents & Publications Abengoa IBR Successes Applicant

  17. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  18. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  19. C3 BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    Name: C3 BioEnergy Place: Massachusetts Sector: Bioenergy, Biofuels, Biomass, Hydro, Hydrogen, Renewable Energy Product: C3 BioEnergy is an early-stage biofuels technology...

  20. PROJECT PROFILE: Abengoa Solar, LLC - ATLAS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ATLAS PROJECT PROFILE: Abengoa Solar, LLC - ATLAS Funding Opportunity: CSP APOLLO SunShot Subprogram: CSP Location: Lakewood, CO Amount Awarded: $1,221,015 Awardee Cost Share: $1,221,015 Abengoa will re-optimize the collector as an entire system to enable the use of molten salt in the collector field, detailing and validating innovative improvements in the concentrator design, drive and controls, manufacturing, installation, plant operation, and optical performance. APPROACH The new collector

  1. Abengoa-Tilley RevD | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa-Tilley RevD Abengoa-Tilley RevD This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_tilley.pdf More Documents & Publications Phase Change Material Tower CX-010503: Categorical Exclusion Determination 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power

  2. Bioenergy for Sustainable Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Sustainable Development Bioenergy for Sustainable Development Deployment Markets Keynote Bioenergy for Sustainable Development Gerard Ostheimer, Global Lead, Sustainable Bioenergy High Impact Opportunity Of Sustainable Energy For All (SE4ALL) PDF icon ostheimer_biomass_2014.pdf More Documents & Publications Before House Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Biomass 2014: Breakout Speaker Biographies

  3. Our Commitment to Bioenergy Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability Our Commitment to Bioenergy Sustainability To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production. PDF icon sustainability_four_pager.pdf More Documents & Publications Our Commitment to Bioenergy Sustainability Sustainability for the Global Biofuels Industry: Minimizing Risks and

  4. International Bioenergy Trade | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Bioenergy Trade International Bioenergy Trade Chris Wright, INL, presentation at the December 5, 2012, Biomass Program-hosted International Webinar on international bioenergy trade. PDF icon wright_2012_webinar.pdf More Documents & Publications 2015 Peer Review Presentations-Biochemical Conversion Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update

  5. Bioenergy: America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy: America's Energy Future Bioenergy: America's Energy Future Addthis Description Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. Text Version Below is the text version for the Bioenergy:

  6. Impact of Collection Equipment on Ash Variability of Baled Corn Stover Biomass for Bioenergy

    SciTech Connect (OSTI)

    William Smith; Jeffery Einerson; Kevin Kenney; Ian J. Bonner

    2014-09-01

    Cost-effective conversion of agricultural residues for renewable energy hinges not only on the materials quality but also the biorefinerys ability to reliably measure quality specifications. The ash content of biomass is one such specification, influencing pretreatment and disposal costs for the conversion facility and the overall value of a delivered lot of biomass. The biomass harvest process represents a primary pathway for accumulation of soil-derived ash within baled material. In this work, the influence of five collection techniques on the total ash content and variability of ash content within baled corn stover in southwest Kansas is discussed. The equipment tested included a mower for cutting the corn stover stubble, a basket rake, wheel rake, or shred flail to gather the stover, and a mixed or uniform in-feed baler for final collection. The results showed mean ash content to range from 11.5 to 28.2 % depending on operational choice. Resulting impacts on feedstock costs for a biochemical conversion process range from $5.38 to $22.30 Mg-1 based on the loss of convertible dry matter and ash disposal costs. Collection techniques that minimized soil contact (shred flail or nonmowed stubble) were shown to prevent excessive ash contamination, whereas more aggressive techniques (mowing and use of a wheel rake) caused greater soil disturbance and entrainment within the final baled material. Material sampling and testing were shown to become more difficult as within-bale ash variability increased, creating uncertainty around feedstock quality and the associated costs of ash mitigation.

  7. The Bioenergy Knowledge Discovery Framework (KDF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future for Bioenergy To meet the mandated national bioenergy goals, the United States' evolving bioenergy industry must be effcient, reliable, and sustainable. A key challenge to achieving these goals is synchronizing all of the steps in the biomass-to-biofuels supply chain-from biomass production and logistics to bioenergy production, distribution, delivery, and end use. Each current and proposed production system will be subject to economic, environmental, and infrastructure challenges unique

  8. International Energy Agency Bioenergy 2015

    Broader source: Energy.gov [DOE]

    This year, Sweden is hosting the International Energy Agency Bioenergy Task 38 conference on climate change effects of biomass and bioenergy systems, bringing together several international experts with an interest in bioenergy for the two-day program. The aim of the conference is to provide cutting-edge knowledge about the climate effects of converting wood products into bioenergy , as well as methods to analyze these effects. Feedstocks and Algae Program Manager Alison Goss Eng will be representing the U.S. Department of Energys Bioenergy Technologies Office at the meeting.

  9. Hestia BioEnergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Hestia BioEnergy LLC Jump to: navigation, search Name: Hestia BioEnergy LLC Place: New York, New York Zip: 11378 Sector: Biomass Product: Hestia builds, operates and owns biomass...

  10. G K Bioenergy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    K Bioenergy Pvt Ltd Jump to: navigation, search Name: G.K.Bioenergy Pvt. Ltd. Place: Namakkal District, India Zip: 637 109 Sector: Biomass Product: Tamil Nadu-based biomass project...

  11. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    SciTech Connect (OSTI)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  12. Webinar: Using the New Bioenergy KDF for Data Discovery and Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Using the New Bioenergy KDF for Data Discovery and Research Webinar: Using the New Bioenergy KDF for Data Discovery and Research Webinar Slides about the new Bioenergy KDF PDF icon october2013_kdf_webinar.pdf More Documents & Publications Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Bioenergy Technologies Office Overview Biomass 2013: Welcome

  13. Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources » Renewable Energy » Bioenergy Bioenergy Learn how Energy Department scientists and researchers produce clean, renewable fuel -- from algae. Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured 6 New Things Happening with Biofuels The science and industry of biofuels is changing rapidly. See what's new with the fuels of the future. World's First Algae Surfboard Makes Waves in San Diego Surfing into

  14. Biomass 2013: Welcome

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Bioenergy Technologies Office July 31, 2013 Valerie Reed Acting Director 2 | Bioenergy Technologies Office Welcome Co-hosted by Advanced Biofuels USA 6 th Annual EERE Conference 3 | Bioenergy Technologies Office Social Media at Biomass 2013 * Live social media coverage of Biomass 2013 via the Bioenergy Knowledge Discovery Framework's (KDF) Facebook and Twitter accounts. Coverage will include live tweeting, Facebook posts, photography, and blog posts. * Follow the Bioenergy KDF to monitor

  15. Biomass 2012 Agenda

    Broader source: Energy.gov [DOE]

    Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy.

  16. Roadmap for Bioenergy and Biobased Products in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Roadmap for Bioenergy and Biobased Products in the United States Biomass Research and Development Technical Advisory Committee Biomass Research and Development Initiative October...

  17. Incorporating Bioenergy into Sustainable Landscape Designs Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    Webinar: Biofuels for the Environment and Communities Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply...

  18. Bioenergy Assessment Toolkit | Open Energy Information

    Open Energy Info (EERE)

    intended to provide a practical, common methodology for measuring and recording the consumption and supply of biomass energy. It mainly emphasizes traditional bioenergy use, but...

  19. Joint BioEnergy Institute

    SciTech Connect (OSTI)

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuelsliquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  20. EIS-0407: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County, Kansas (October 2011) The U.S. Department of Energy (DOE) announces its decision to issue a $134 million loan guarantee under Title XVII of the Energy Policy Act of 2005 (EPAct 2005) to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa) for construction and start-up of a cellulosic ethanol plant near Hugoton, Kansas (Project). The integrated biorefinery will

  1. Bioenergy Technologies Office Solicitations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities » Bioenergy Technologies Office Solicitations Bioenergy Technologies Office Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Bioenergy Notice of Intent (NOI): Advancements in Algal Biomass Yield, Phase 2 Department of Energy 12/142015 TBD Bioenergy Request for Information (RFI):

  2. Our Commitment to Bioenergy Sustainability

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes how the Biomass Program and its partners combine advanced analysis with applied research to understand and address the potential environmental, economic, and social impacts of bioenergy production.

  3. Educational Opportunities in Bioenergy - ORNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational Opportunities in Bioenergy Office of the Biomass Program Webinar April 23, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy ORNL - Educational Opportunities in Bioenergy Agenda Overview of programs - Tim Theiss - Laboratory Relationship Manager, Biomass Program - Oak Ridge National Laboratory * Mentor perspective - Erin Webb, Ph.D., P.E - Research Engineer, Renewable Systems Group - Oak Ridge National Laboratory * Post-graduate perspective - Scott Curran - Research

  4. Advance Patent Waiver W(A)2008-022

    Broader source: Energy.gov [DOE]

    This is a request by ABENGOA BIOENERGY BIOMASS OF KANSAS, LLC for a DOE waiver of domestic and foreign patent rights under agreement DE-FC3607017028

  5. FOA for the Demonstration of an Integrated Biorefinery System...

    Energy Savers [EERE]

    Biorefinery System: POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. Abengoa Bioenergy Biomass of Kansas, LLC...

  6. FOA for the Demonstration of an Integrated Biorefinery System...

    Energy Savers [EERE]

    Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc...

  7. Preparing the Next Generation of Bioenergy Leaders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparing the Next Generation of Bioenergy Leaders Preparing the Next Generation of Bioenergy Leaders March 31, 2015 - 5:12pm Addthis Dr. Valerie Sarisky-Reed Dr. Valerie Sarisky-Reed Deputy Director, Bioenergy Technologies Office Engaging and supporting the next generation of renewable energy researchers and innovators is one of the important roles the Bioenergy Technologies Office (BETO) plays in advancing bioenergy and biofuels. BETO provides numerous resources from biomass basics to

  8. Our Commitment to Bioenergy Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability Our Commitment to Bioenergy Sustainability To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production. PDF icon sustainability_four_pager.pdf More Documents & Publications Our Commitment to Bioenergy Sustainability Webinar: Biofuels for the Environment and Communities Replacing the Whole

  9. State Bioenergy Primer: Information and Resources for States...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Primer | chaPtEr OnE Solar 1% Hydroelectric 41% Geothermal 5% Biomass 49% ... often used for bioenergy power plants. However, the typically small size of bioenergy power plants ...

  10. Borgford BioEnergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Borgford BioEnergy LLC Jump to: navigation, search Name: Borgford BioEnergy LLC Place: Colville, Washington State Zip: 99114 Sector: Biomass Product: Washington-based developer of...

  11. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  12. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply

    SciTech Connect (OSTI)

    Perlack, Robert D.; Wright, Lynn L.; Turhollow, Anthony F.; Graham, Robin L.; Stokes, Bryce J.; Erbach, Donald C.

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption.

  13. Biomass 2013: Presentations

    Broader source: Energy.gov [DOE]

    This page displays the links to available presentations from Day One and Day Two of the Bioenergy Technologies Office's (BETO) Biomass 2013 conference. Approved presentations have been made...

  14. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    SciTech Connect (OSTI)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  15. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Lipid Upgrading Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading Algal lipid upgrading is one of eight priority pathways chosen to convert biomass into...

  16. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  17. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  18. The Future of Bioenergy Feedstock Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Bioenergy Feedstock Production The Future of Bioenergy Feedstock Production This presentation was given by John Ferrell at the Symbiosis Conference PDF icon symbiosis_conference_ferrell.pdf More Documents & Publications 2015 Peer Review Presentations-Terrestrial Feedstocks Symbiosis: Addressing Biomass Production Challenges and Climate Change Bioenergy Technologies Office Overview

  19. Roadmap for Bioenergy and Biobased Products in the United States |

    Energy Savers [EERE]

    Department of Energy Roadmap for Bioenergy and Biobased Products in the United States Roadmap for Bioenergy and Biobased Products in the United States Biomass resources are a sustainable and environmentally friendly feedstock that can contribute significantly to a diverse energy portfolio. PDF icon obp_roadmapv2_web.pdf More Documents & Publications Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: March 2015

  20. Seizing our Bioenergy Opportunities in a Changing Energy Landscape |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Seizing our Bioenergy Opportunities in a Changing Energy Landscape Seizing our Bioenergy Opportunities in a Changing Energy Landscape June 3, 2015 - 12:41pm Addthis Jonathan Male Jonathan Male Director, Bioenergy Technologies Office At the Bioenergy Technologies Office, we're working with public and private partners to develop an industry of advanced biofuels and bioproducts from non-food biomass sources that is commercially and environmentally sustainable. In the United

  1. Bioenergy Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Ltd Jump to: navigation, search Name: Bioenergy Technology Ltd Place: East Sussex, United Kingdom Zip: TN22 5RU Sector: Biomass Product: Firm dedicated to the use of...

  2. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    S. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; 29 ENERGY PLANNING, POLICY AND ECONOMY BIOMASS; BIOFUEL; BSM; SYSTEM DYNAMICS; BIOFUEL INCENTIVES; SCENARIOS; Bioenergy;...

  3. Biomass Indirect Liquefaction Strategy Workshop: Summary Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies Office Biomass Indirect ...

  4. Explore Bioenergy Technology Careers | Department of Energy

    Office of Environmental Management (EM)

    Bioenergy Technology Careers Explore Bioenergy Technology Careers Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Feedstocks Feedstocks Farmers Seasonal workers Tree farm workers Mechanical engineers Harvesting equipment mechanics Equipment

  5. Energy Systems Integration Partnerships, NREL + Abengoa, Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL + ABENGOA NREL is collaborating with solar power company Abengoa at the Energy Systems Integration Facility (ESIF) to develop a new, more cost-effective manufacturing process for critical components of concentrating solar power systems. Concentrating solar power is positioned to become a major source of renewable electricity generation in the United States. The goal of the partnership is to lower the cost of the technology-currently a barrier to more widespread implementation-by introducing

  6. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  7. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Energy Savers [EERE]

    Department of Energy You are here Home » About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S. Department of Energy's Bioenergy Technologies Office (BETO) establishes partnerships with key public and private stakeholders to develop and demonstrate technologies for producing cost-competitive advanced biofuels from non-food biomass resources, including cellulosic biomass, algae, and wet waste

  8. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S. Department of Energy's Bioenergy Technologies Office (BETO) establishes partnerships with key public and private stakeholders to develop and demonstrate technologies for producing cost-competitive advanced biofuels from non-food biomass resources, including cellulosic biomass, algae, and wet waste (e.g. biosolids).

  9. Energy Department Finalizes $132 Million Loan Guarantee to Support the Abengoa Bioenergy Project

    Broader source: Energy.gov [DOE]

    Groundbreaking cellulosic ethanol project expected to fund more than 300 jobs and build nations capacity for cellulosic ethanol production

  10. AGCO Biomass Solutions: Biomass 2014 Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AGCO Biomass Solutions: Biomass 2014 Presentation AGCO Biomass Solutions: Biomass 2014 Presentation Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation PDF icon farris_biomass_2014.pdf More Documents & Publications High Level Overview of DOE Biomass Logistics II Project Activities Feedstock Supply and Logistics:Biomass as a Commodity 3323197.pdf

  11. Bioenergy Demand in a Market Driven Forest Economy (U.S. South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Breakout Session 1A: Biomass Feedstocks for the...

  12. Stage Gate Review Guide for the Biomass Program

    Broader source: Energy.gov [DOE]

    Stage Gate Management in the Biomass Program (now the Bioenergy Technologies Office), a document from February 2005.

  13. EIS-0407: Final Environmental Impact Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0407: Final Environmental Impact Statement Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas DOE's Proposed Action is to provide federal funding to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton, Stevens County, Kansas. If DOE decides to provide federal funding, it would negotiate an agreement

  14. EIS-0407: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Biorefinery Project Near Hugoton, Stevens County, Kansas The U.S. Department of Energy (DOE or the Department) prepared an environmental impact statement (EIS) (DOE/EIS-0407) to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of

  15. Biomass Engineering: Transportation & Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office eere.energy.gov 1 | Bioenergy Technologies Office Content 1 | Bioenergy Technologies Office eere.energy.gov 2015 DOE Bioenergy Technologies Office (BETO) Project Peer Review March 23-27, 2015 1.2.1.3 Biomass Engineering: Transportation & Handling Mar. 27, 2015 Tyler Westover, Ph.D. Idaho National Laboratory "Why 'flowability' doesn't work and how to fix it" This presentation does not contain any proprietary, confidential, or otherwise restricted

  16. Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    Bioenergy Jump to: navigation, search Dictionary.png Bioenergy: Energy produced from organic materials from plants or animals. Other definitions:Wikipedia Reegle 1 This article...

  17. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Plenary IV: Advances in Bioenergy ...

  18. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect (OSTI)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectivesreducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  19. Energy Department Announces National Bioenergy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announces National Bioenergy Center For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Kansas City, Mo., Nov. 1, 2000 - Secretary of Energy Bill Richardson today announced the formation of a U.S. Department of Energy National Bioenergy Center to help the U.S. meet its energy needs, manage its environmental challenges and strengthen economic opportunities in rural America. "The biomass initiative gives new meaning to the words 'power plant.' Focusing our efforts to

  20. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics Photo of a farmer standing in a field and inspecting corn crops. We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived...

  1. Great Lakes Bioenergy Research Center Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Great Lakes Bioenergy Research Center Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Great Lakes Bioenergy Research Center (GLBRC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Great Lakes Bioenergy Research Center 43 Technology Marketing Summaries Category Title and Abstract Laboratories Date Biomass and

  2. Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow June 10, 2014 - 2:50pm Addthis Imagine Tomorrow participants Pavan Kumar (from left), Isaak Nanneman, Ethan Perrin, Andrew Wang and Oisin Doherty were selected by the Bioenergy Technologies Office to present their idea at the Biomass 2014 conference next month. The student team from Redmond, Washington, was chosen for their idea

  3. DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstock Supply Chain Analysis WBS #:1.1.1.2 March 25, 2015 Jake Jacobson Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Feedstocks Platform DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review 2 | Bioenergy Technologies Office Goal Statement Connecting the Nation's Diverse Biomass Resources to the Bioenergy Industry The primary purpose of this project is to provide technical analysis support to the

  4. Online Toolkit Fosters Bioenergy Innovation | Department of Energy

    Energy Savers [EERE]

    Online Toolkit Fosters Bioenergy Innovation Online Toolkit Fosters Bioenergy Innovation January 21, 2011 - 2:27pm Addthis Learn more about the Bioenergy Knowledge Discovery Framework, an online data sharing and mapping toolkit. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What will the project do? The $241 million loan guarantee for Diamond Green Diesel, funding which will support the construction of a facility that will nearly triple the amount of

  5. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    SciTech Connect (OSTI)

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the countrys present petroleum consumption the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  6. National Bioenergy Day 2015

    Broader source: Energy.gov [DOE]

    Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the third annual National Bioenergy Day on October 22, 2014. This is an opportunity to showcase bioenergy facilities and the bioenergy supply chain around the United States. The Bioenergy Technologies Office (BETO) will celebrate National Bioenergy Day with an educational display about the bioenergy supply chain and the bioeconomy in the lobby of the Energy Department’s Forrestal building in downtown Washington, D.C.

  7. Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.

    SciTech Connect (OSTI)

    Folk, Richard

    1991-12-31

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

  8. Biomass Basics Webinar

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  9. State Biomass Contacts

    Broader source: Energy.gov [DOE]

    Most state governments have designated contacts for biomass conversion programs. The following contacts used by the Bioenergy Technologies Office may also be good contacts for you to find out about...

  10. Center for BioEnergy Sustainability | Open Energy Information

    Open Energy Info (EERE)

    and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. The Center for BioEnergy Sustainability, or CBES, is a Center at Oak...

  11. Bioenergy Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Barriers to Cellulosic Ethanol - A Joint Research Agenda, Jun 2006 (8.9 MB) Roadmap for Agricultural Biomass Feedstock Supply in the United States, Nov 2003 (3.5 MB)...

  12. BioFuels and BioEnergy - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bio BioFuels and BioEnergy Bioenergy is renewable energy derived from biological sources, to be used for heat, electricity, or vehicle fuel. Biofuels are a wide range of fuels which are in some way derived from biomass and are among the most rapidly growing renewable energy technologies. Biomass, a renewable energy source, is biological material from living, or recently living organisms, such as wood, waste, (hydrogen) gas, and even alage. For the average citizen, algae is often viewed as a

  13. Biomass 2014: Breakout Speaker Biographies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Speaker Biographies Biomass 2014: Breakout Speaker Biographies This document outlines the biographies of the breakout speakers for Biomass 2014, held July 29-July 30 in Washington, D.C. PDF icon breakout_speaker_bios_biomass_2014.pdf More Documents & Publications Bioenergy 2015 Speaker Biographies Biomass 2013: Breakout Speaker Biographies Bioenergy 2015 Agenda

  14. Bioenergy Technologies Office Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    slideshow explains the work of the Bioenergy Technologies Office. bioenergywalkthrough.pdf More Documents & Publications Bioenergy Technologies Office Overview Bioenergy...

  15. Bioenergy Impact Posters

    Broader source: Energy.gov [DOE]

    On October 1, 2015, the U.S. Department of Energy's (DOE's) Bioenergy Technologies Office kicked off Energy Action Month by displaying bioenergy impacts posters in the DOE Forrestal Building in Washington, D.C.

  16. Bioenergy 2015 Press Room

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news.

  17. Bioenergy Technologies Office … Federal Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Federal Partnerships June 25,2015 Alicia Lindauer Technology Manager Alison Goss Eng Program Manager Zia Haq Chief Analyst 2 | Bioenergy Technologies Office Inter- and Intra-agency Collaboration Federal Collaboration * Biomass Research & Development Board * Offices and programs within the following: * Department of Agriculture * Department of Defense * Department of the Interior * Department of Transportation * Environmental Protection Agency * National Aeronautics and Space Administration

  18. Bioenergy Key Publications

    Broader source: Energy.gov [DOE]

    The following key publications are issued by the U.S. Department of Energy’s Bioenergy Technologies Office.

  19. Global Bioenergy Partnership Meetings

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bioenergy Technologies Office Sustainability Technology Manager Kristen Johnson represented the Office at the Global Bioenergy Partnership (GBEP) Meetings in Rome, Italy. The event included three meetings, the 7th annual GBEP Working Group on Capacity Building, the 13th annual Task Force on Sustainability to discuss the experiences with the GBEP Sustainability Indicators for Bioenergy, and the 18th annual GBEP Steering Committee to discuss strategies for sustainable bioenergy development and deployment.

  20. Bioenergy Key Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KEY PUBLICATIONS BIOENERGY TECHNOLOGIES OFFICE Budget and Investment Resources PUBLICATION TITLE PUBLICATION DATE Bioenergy Technologies Office FY 2015 Budget-at-a-Glance March 2014 FY 2015 Congressional Budget Request (pp. 53-71) March 2014 American Recovery and Reinvestment Act: Bioenergy Technologies Office Investments June 2012 2013 Peer Review Report February 2014 Office Overview Resources PUBLICATION TITLE PUBLICATION DATE Bioenergy Technologies Office Walkthrough Presentation July 2014

  1. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy July 14, 2014 - 11:16am Addthis Leslie Ovard Bioenergy Policy Specialist, Bioenergy Technologies Office Bioenergy has the potential to be a major source of renewable energy for the nation, powering homes, businesses, vehicles, and planes using diverse and sustainable fuels such as algae and agricultural waste. To grow America's bioenergy economy and reduce our dependence on oil imports, industry, academia,

  2. New market potential: Torrefaction of Woody Biomass

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; J. Richard Hess

    2015-07-01

    According to researchers in Idaho National Laboratorys Bioenergy Program, torrefaction of woody biomass could reduce variability in biomass feedstock and enable development of a commodity-type product for green energy generation and usage.

  3. Biomass Engineering: Harvest, Collection, and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1.2.1.1 Biomass Engineering: Harvest, Collection, and Storage March 25, 2015 William A Smith, Ian J Bonner, & Lynn M Wendt Idaho National Laboratory Biomass and Bioenergy This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office 2015 Project Peer Review Feedstock Supply and Logistics 2 | Bioenergy Technologies Office Goal Statement * Objective - Identify and develop solutions to feedstock supply and storage

  4. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  5. Biomass Program September 2012 News Blast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2012 Bioenergy YouTube Channel Features Biomass 2012 Videos On July 10-11, 2012, the Energy Department's Biomass Program hosted its fifth annual conference, Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy, at the Washington, D.C., Convention Center. The Biomass Program created several videos to archive the event, including an interview with Energy Secretary Steven Chu, clips from keynote speakers, an image documentary, as well as

  6. Bioenergy Success Stories

    Office of Environmental Management (EM)

    61 Bioenergy Success Stories en Largest Cellulosic Ethanol Plant in the World Opened in October http:energy.goveeresuccess-storiesarticleslargest-cellulosic-ethanol-plant-wor...

  7. Bioenergy Impacts ? Green Racing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ushers in the next generation of road- relevant technologies and renewable fuels. Sports car racing is using biofuels to drive renewable fuel development BIOENERGY To learn more,...

  8. Bioenergy 2015 Agenda

    Broader source: Energy.gov [DOE]

    Agenda for Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held on June 23–24, 2015, at the Washington Convention Center.

  9. NREL: Innovation Impact - Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and catalytic conversion, for development to the pilot scale. Learn More Learn more Close Learn more about NREL's bioenergy innovation impacts. Photo and composite photo...

  10. Smithfield Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Smithfield Bioenergy Place: Smithfield, Virginia Zip: 23430 Product: Biodiesel producer based in Virgina References: Smithfield Bioenergy1 This article is a...

  11. Osage Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Osage Bioenergy Place: Virginia Zip: 23060 Product: Virginia-based ethanol plant developer. References: Osage Bioenergy1 This article is a stub. You can help...

  12. Abellon Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    Abellon Bioenergy Jump to: navigation, search Name: Abellon Bioenergy Place: Ahmedabad, Gujarat, India Zip: 380054 Sector: Renewable Energy Product: Ahmedabad-based start-up...

  13. Bioenergy KDF | Open Energy Information

    Open Energy Info (EERE)

    lt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English References: Bioenergy KDF1 Logo: Bioenergy KDF ORNL is designing and...

  14. Producing Linear Alpha Olefins From Biomass - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Producing Linear Alpha Olefins From Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Linear alpha olefins (LAOs) are...

  15. From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass

    DOE R&D Accomplishments [OSTI]

    Yarris, Lynn

    2011-03-28

    A microbe that can produce an advanced biofuel directly from biomass was developed by researchers with the U.S. Department of Energy's Joint BioEnergy Institute.

  16. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM's Project LIBERTY cellulosic ethanol biorefinery in Emmetsburg, Iowa, was made possible with $100 million in BETO cost-shared funding. Photo courtesy POET-DSM. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 The Bioenergy Technologies Office (BETO) forms cost-share public-private partnerships to help sustainably develop cost- competitive biofuels and bioproducts in the United States from non-food biomass resources. The potential exists to sustainably

  17. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9th-12th Grade Classroom | Department of Energy Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom PDF icon bioenergize_me_ngss_20151210.pdf More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge Toolkit

  18. Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee

    Broader source: Energy.gov [DOE]

    Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation’s Capacity for Cellulosic Ethanol Production

  19. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Liquefaction | Department of Energy Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18. PDF icon Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal

  20. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Algal Lipid Upgrading Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading Algal lipid upgrading is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18. PDF icon Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading More Documents & Publications Pathways for Algal Biofuels Algal Lipid Extraction and Upgrading

  1. INEOS-New Planet: Indian River Bioenergy Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INEOS-New Planet: Indian River Bioenergy Center INEOS-New Planet: Indian River Bioenergy Center INEOS infographic Waste Biomass Photo via iStock by Getty Images. The feedstock-flexible processing technology at Indian River BioEnergy Center takes advantage of the abundant local supply of agricultural and yard waste. Municipal trucks delivering these wastes pay a tipping fee to the biorefinery, while local residents can drop off yard waste at no charge. Diverting this organic material from the

  2. Bioenergy 2015: Presentations

    Broader source: Energy.gov [DOE]

    This page displays the links to available presentations from Day One and Day Two of the Bioenergy Technologies Office's (BETO’s) Bioenergy 2015 conference. Approved presentations have been made available. Copying or using any materials without the consent of the presentation owner is prohibited.

  3. Bioenergy Impacts … Renewable Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department's Bioenergy Technologies Office, the U.S. Department of Agriculture, and the U.S. Navy are funding the construction of three biorefineries that will be able to produce renewable jet fuel for the commercial aviation industry and the military. FedEx, Southwest Airlines, United Airlines, and Hong Kong-based Cathay Pacific Airways signed agreements to purchase biofuel made from sorted landfill waste and woody biomass. Biofuel is becoming an option for commercial and military

  4. International Energy Agency Bioenergy Webinar: Mobilizing Sustainable Bioenergy Supply Chains

    Broader source: Energy.gov [DOE]

    International Energy Agency (IEA) Bioenergy program will be hosting a webinar on Feb. 25, 2016 to present the findings of their “Mobilize Sustainable Bioenergy Supply Chains” project. Over the last three years, researchers have collaborated to examine the prospects for large-scale mobilization of bioenergy resources across the globe. Members of Bioenergy Technologies Office staff support the research and activities and IEA Bioenergy. Email to register to attend the webinar.

  5. Nishant Bioenergy P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nishant Bioenergy P Ltd Jump to: navigation, search Logo: Nishant Bioenergy P Ltd Name: Nishant Bioenergy P Ltd Address: Sector 18-D, Chandigarh Place: Chandigarh Zip: 160018...

  6. Orchid Bioenergy Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    Orchid Bioenergy Group Ltd Jump to: navigation, search Name: Orchid Bioenergy Group Ltd. Place: United Kingdom Sector: Bioenergy Product: A company formed to combine Fairport...

  7. Solarvest BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    Solarvest BioEnergy Place: Bloomington, Indiana Zip: 3057 Sector: Bioenergy, Hydro, Hydrogen, Solar Product: Solarvest BioEnergy's primary focus is to develop hydrogen, methane...

  8. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    SciTech Connect (OSTI)

    Woods J, Lynd LR; Laser, M; Batistella M, De Castro D; Kline, Keith L; Faaij, Andre

    2015-01-01

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr in 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.

  9. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect (OSTI)

    Yin, Hengfu [ORNL; Chen, Rick [ORNL; Yang, Jun [ORNL; Weston, David [ORNL; Chen, Jay [ORNL; Muchero, Wellington [ORNL; Ye, Ning [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Cheng, Zong-Ming [ORNL; Tuskan, Gerald A [ORNL; Yang, Xiaohan [ORNL

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  10. Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels

    Broader source: Energy.gov [DOE]

    Syngas upgrading to hydrocarbon fuels is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

  11. From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference ... technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, ...

  12. BioEnergie Park Soesetal GmbH | Open Energy Information

    Open Energy Info (EERE)

    BioEnergie Park Soesetal GmbH Jump to: navigation, search Name: BioEnergie-Park Soesetal GmbH Place: Osterode, Lower Saxony, Germany Zip: 37520 Sector: Biomass Product: Lower...

  13. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In ex-situ catalytic fast pyrolysis, biomass is heated with catalysts to create bio-oils, which are then used to produce biofuel blendstocks. PDF icon Bioenergy Technologies Office ...

  14. Bioenergy Demand in a Market Driven Forest Economy (U.S. South)

    Broader source: Energy.gov [DOE]

    Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Robert C. Abt, Professor of Natural Resource Economics and Management, North Carolina State University

  15. Growing America’s Energy Future: Bioenergy Technologies Office Successes of 2014

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) forms cost-share public-private partnerships to help sustainably develop cost-competitive biofuels and bioproducts in the United States from non-food biomass resources.

  16. Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs

    Broader source: Energy.gov [DOE]

    Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs Laurence Eaton, Research Economist, Oak Ridge National Laboratory/U.S. Department of Energy’s Bioenergy Technologies Office

  17. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  18. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  19. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  20. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  1. Arbuscular mycorrhizal interactions … an important trait for biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production of bioenergy crops? | Department of Energy Arbuscular mycorrhizal interactions … an important trait for biomass production of bioenergy crops? Arbuscular mycorrhizal interactions … an important trait for biomass production of bioenergy crops? This presentation was given by Heike Bucking at the Symbiosis Conference. PDF icon symbiosis_conference_bucking.pdf More Documents & Publications CX-005436: Categorical Exclusion Determination Symbiosis Conference Speaker and Attendee

  2. Bioenergy 2015 Confirmed Speakers

    Broader source: Energy.gov [DOE]

    A list of confirmed speakers for Bioenergy 2015: Opportunities in a Changing Energy Landscape, which will be held on June 23–24, 2015, at the Walter E. Washington Convention Center in Washington, D.C.

  3. Bioenergy 2015 Speaker Biographies

    Broader source: Energy.gov [DOE]

    This document outlines the speaker biographies for Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held on June 23–24, 2015, at the Washington Convention Center.

  4. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  5. Bioenergy Impacts … Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office funding has helped to develop and commercialize bio-based chemicals that can replace petroleum and other fossil fuels in every-day products. Nearly 12% of every barrel of crude oil is used to make products ranging from everyday plastics to specialty chemicals. The development of renewable, plant-based alternatives will help reduce U.S. dependence on foreign oil. Plants are replacing petrochemicals in plastics and products BIOENERGY To learn more, visit

  6. Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 BETO Project Peer Review - Conversion Area Overview Bryna Guriel, Technology Manager Conversion R&D March 23 rd 2015 2 | Bioenergy Technologies Office eere.energy.gov Introduction to Conversion R&D 3 | Bioenergy Technologies Office eere.energy.gov * The strategic goal of the conversion program is to develop commercially viable technologies for converting feedstocks via biological and chemical routes energy-dense, fungible, finished liquid fuels, such as renewable gasoline, jet, and

  7. Bioenergy for Sustainable Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gerard J. Ostheimer, Ph.D. Global Lead Sustainable Bioenergy High-Impact Opportunity Sustainable Energy For All BIOENERGY FOR SUSTAINABLE DEVELOPMENT Overview * Energy poverty is widespread and prevents economic development * The international development community is beginning to act * Momentum is building to grow the bioeconomy across the globe Energy Poverty: Statistics * 1.2 Billion people lack access to modern energy services - 0.5 Billion in sub-Saharan Africa * 2.7 Billion people lack

  8. Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Bioenergy EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. The U.S. Department of Energy (DOE) funds research, development, and

  9. Importance of Biomass Production and Supply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Importance of Biomass Production and Supply Importance of Biomass Production and Supply Bryce Stokes gave this presentation at the Symbiosis Conference. PDF icon symbiosis_conference_stokes.pdf More Documents & Publications Biomass Program Peer Review Sustainability Platform ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

  10. Bioenergy & Biofuels Projects | Department of Energy

    Energy Savers [EERE]

    Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects BIOENERGY & BIOFUELS 1 PROJECT in 1 LOCATION 25,000,000 GALLONS ANNUAL PRODUCTION CAPACITY 14,900,000 GALLONS OF GASOLINE SAVED ANNUALLY 132,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 BIOENERGY & BIOFUELS PROJECT LOAN PROGRAM TECHNOLOGY

  11. National Bioenergy Day 2014 | Department of Energy

    Office of Environmental Management (EM)

    National Bioenergy Day 2014 National Bioenergy Day 2014 October 14, 2014 - 3:41pm Addthis Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an opportunity to showcase bioenergy facilities and the bioenergy supply chain around the United States. The Bioenergy Technologies Office (BETO) will celebrate National Bioenergy Day with an educational display about

  12. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  13. Biomass Program Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The emerging U.S. bioindustry is using a range of biomass resources to provide a secure and growing supply of transportation fuels and electric power. Displacing an increasing portion of our imported oil with renewable, domestic bioenergy will provide clear benefits:Reduced greenhouse gas (GHG) emissions; A cleaner, more secure energy future; Sustainable transportation fuels; Opportunities for economic growth

  14. Biomass 2014 Poster Session

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  15. Algae Biomass Summit

    Broader source: Energy.gov [DOE]

    The 9th annual Algae Biomass Summit will be hosted at the Washington Marriot Wardman Park in Washington D.C., September 29 – October 2, 2015. The event will gather leaders in algae biomass from all sectors. U.S. Department of Energy Undersecretary Franklin Orr will give a keynote address at the conference, and Bioenergy Technologies Office (BETO) Director Jonathan, Algae Program Manager Alison Goss Eng, and the BETO Algae Team will be in attendance.

  16. Biomass Feedstock Supply Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6, 2015 Feedstock Supply and Logistics PI: Erin Webb Shahab Sokhansanj Michael Hilliard Craig Brandt Anthony Turhollow Oak Ridge National Laboratory 1.2.3.1 Biomass Feedstock Supply Modeling 2 | Bioenergy Technologies Office Perform experiments to test equipment designs and supply chain configurations Characterize impacts of variability and uncertainty Identify risk-reduction strategies Optimize feedstock supply logistics Goal Statement Build and apply simulations of biomass supply chains

  17. Alterra Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    Bioenergy Jump to: navigation, search Name: Alterra Bioenergy Place: Gordon, Georgia Zip: 31031 Product: Alterra has developed a 56.85mLpa (15m gallon) capacity, multifeedstock...

  18. Opportunities for Farmers in Biomass Feedstock Production

    Broader source: Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel Opportunities for Farmers in Biomass Feedstock Production J. Richard Hess, Idaho National Lab, Director of Energy Systems & Technology Division

  19. Establishment and Characterization of a Bioenergy-Focused Microalgal Strain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collection - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Establishment and Characterization of a Bioenergy-Focused Microalgal Strain Collection National Renewable Energy Laboratory Colorado School of Mines Contact NREL About This Technology High lipid strain from NREL culture collection. Photo by Lee Elliott, Colorado School of Mines<br /> High lipid strain from NREL culture collection. Photo by Lee Elliott, Colorado School of

  20. Federal Biomass Activities | Department of Energy

    Energy Savers [EERE]

    Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels PDF icon federal_biomass_activities.pdf More Documents & Publications Webinar: Bioproducts in the Federal Bioeconomy Portfolio Webinar Vision for Bioenergy and Biobased Products in the United States Federal Activities Report on the Bioeconomy

  1. NREL: Biomass Research - National Bioenergy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of four technical groups and a technical lead for partnership development with industry. Partnership development includes work performed at NREL under Cooperative Research...

  2. Biomass Indirect Liquefaction Strategy Workshop: Summary Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. PDF icon idl_workshop_summary_report_july_2014 More Documents & Publications Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels ITP Chemicals: Industrial Feedstock Flexibility Workshop

  3. Biomass Indirect Liquefaction Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Indirect Liquefaction Workshop Biomass Indirect Liquefaction Workshop To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL) Workshop. This workshop discussed and detailed the R&D needs for biomass IDL. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols

  4. Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNL’s capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

  5. Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNLs capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

  6. NREL: Biomass Research - Amie Sluiter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis

  7. NREL: Biomass Research - Thomas Foust

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's

  8. International Biomass Conference and Expo

    Broader source: Energy.gov [DOE]

    The International Biomass Conference and Expo will be held April 11–14, 2016, in Charlotte, North Carolina, and will gather bioeconomy experts across the supply chain. Bioenergy Technologies Office Technology Manager Elliott Levine will be moderating a panel titled, “The Near-Term Opportunity for Biomass as a Low-Carbon Coal Supplement or Replacement.” The panel will focus on the technological challenges and opportunities in the potential for biomass to replace coal.

  9. ORNL Bioenergy technologies

    SciTech Connect (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-02

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  10. ORNL Bioenergy technologies

    ScienceCinema (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-15

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  11. Distributed Reforming of Biomass Pyrolysis Oils (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biomass Pyrolysis Oils (Presentation) Distributed Reforming of Biomass Pyrolysis Oils (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 06_nrel_distributed_reforming_biomass_pyrolysis_oils.pdf More Documents & Publications Distributed Bio-Oil Reforming Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D

  12. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Events » Conferences » Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports

  13. Bioenergy Technologies Office FY 2017 Budget At-A-Glance

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is accelerating the commercialization of first-of-a-kind technologies that use our nation’s abundant renewable biomass resources for the production of advanced biofuels and biobased products. Non-food sources of biomass, such as algae, agricultural residues and forestry trimmings, and energy crops like switchgrass, are being used in BETO-supported, cutting edge technologies to produce drop-in biofuels, including renewable gasoline, diesel, and jet fuels. BETO is also investigating how to improve the economics of biofuel production by converting biomass into higher-value chemicals and products that historically have always been derived from petroleum.

  14. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-07-01

    April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

  15. Bioenergy Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office Watch the Sustainability in Bioenergy Video Watch the Sustainability in Bioenergy Video From its big screen premier at Bioenergy 2015: Opportunities in a Changing Energy Landscape, "Sustainability in Bioenergy: A Nation Connected" is a short documentary film highlighting personal stories and the efforts being made by communities across the United States to develop, produce, and provide bioenergy, while ensuring it is environmentally, economically, and

  16. Bioenergy Feedstock Development Program Status Report

    SciTech Connect (OSTI)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  17. Bioscience: Bioenergy, Biosecurity, and Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioscience: Bioenergy, Biosecurity, and Health /science-innovation/_assets/images/icon-science.jpg Bioscience: Bioenergy, Biosecurity, and Health Los Alamos scientists are developing science and technology to improve pathogen detection, create better therapeutics, and anticipate-even prevent-epidemics and pandemics. Bioscience Division» Bioenergy» Environmental Microbiology» Proteins» Biosecurity and Health» Genomics and Systems Biology» Algal vats Read caption + Los Alamos scientists used

  18. Bioenergy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy News Bioenergy News RSS December 22, 2015 BETO Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and Bioproducts The Energy Department announces its intent to issue, on behalf of the Bioenergy Technologies Office (BETO), a funding opportunity announcement (FOA) entitled "MEGA-BIO: Bioproducts to Enable Biofuels." This FOA supports BETO's goal of meeting its 2022 cost target of $3/gallon gasoline equivalent for the production of hydrocarbon fuels from

  19. NREL: Biomass Research - David W. Templeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National Bioenergy Center at the National Renewable Energy Laboratory (NREL). As an analytical chemist, he works with principal investigators, external collaborators, researchers, chemical analysts, and technicians to generate high-quality process data leading to improved biochemical transformations of biomass to renewable fuels

  20. Bioenergy News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    June 9, 2015 Cropped view of the winning infographic "Cellulosic Ethanol." Winning Team Announced for 2015 BioenergizeME Infographic Challenge Pilot Bioenergy Technologies Office...

  1. Bioenergy Toolkit | Open Energy Information

    Open Energy Info (EERE)

    Bioenergy Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities DevelopBAU Stage 4:...

  2. CEE Bioenergie | Open Energy Information

    Open Energy Info (EERE)

    Place: Germany Product: Holding company that will develop a portfolio of biogas plants through acquisitions and project development. References: CEE Bioenergie1 This...

  3. Bioenergy Knowledge Discovery Framework Recognized at National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KDF team members from Oak Ridge National Laboratory. The Bioenergy KDF is an online collaboration and geospatial analysis tool managed by the Bioenergy Technologies Office and...

  4. Advanced Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Bioenergy LLC Jump to: navigation, search Name: Advanced Bioenergy LLC Place: Minneapolis, Minnesota Zip: 55305 Product: Developer of the 378.5m litre pa bioethanol plant in...

  5. Alterra Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Bioenergy LLC Jump to: navigation, search Name: Alterra Bioenergy LLC Place: Macon, Georgia Sector: Biofuels Product: Manufacturer and distributor of biofuels. References: Alterra...

  6. Northeast Kansas Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Kansas Bioenergy LLC Jump to: navigation, search Name: Northeast Kansas Bioenergy LLC Place: Hiawatha, Kansas Zip: 66434 Product: Developing and integrated Bioethanol Biodiesel...

  7. Emergence BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    Emergence BioEnergy Jump to: navigation, search Name: Emergence BioEnergy Place: Massachusetts Product: MA-based startup company focused on providing power generation capabilities...

  8. Guangxi Gofar Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    Gofar Bioenergy Jump to: navigation, search Name: Guangxi Gofar Bioenergy Place: Guangxi Autonomous Region, China Product: A Chinese biofuel developer References: Guangxi Gofar...

  9. Filter Specialty Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    Filter Specialty Bioenergy Jump to: navigation, search Name: Filter Specialty Bioenergy Place: Autryville, NC, North Carolina Product: The company runs a 6m liter biodiesel plant...

  10. Terranova Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Terranova Bioenergy LLC Jump to: navigation, search Name: Terranova Bioenergy LLC Place: Larkspur, California Zip: 94939 Sector: Biofuels Product: California-based project...

  11. Fulcrum Bioenergy Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94588 Sector: Bioenergy, Renewable Energy Product: Fulcrum BioEnergy is a waste-to-fuels company that focuses on the development of clean, environmentally responsible...

  12. DOE Bioenergy Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Research Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  13. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang Systems Assessment Section Energy Systems Division Argonne National Laboratory Biomass 2014 Washington, D.C., July 30, 2014 2 The GREET TM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) Model  DOE has been sponsoring GREET development and applications since 1995 - Vehicle Technology Office (VTO) - Bioenergy Technology Office (BETO) - Fuel-Cell Technology Office (FCTO) - Energy Policy and

  14. Review of Sorghum Production Practices: Applications for Bioenergy

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F; Webb, Erin; Downing, Mark

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  15. Biomass IBR Fact Sheet: POET | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET Biomass IBR Fact Sheet: POET Design, construct, build, and operate a commercial processing plant as part of an integrated biorefinery to produce lignocellulosic ethanol primarily from corn cobs. PDF icon ibr_commercial_poet.pdf More Documents & Publications Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 Bioenergy Technologies Office FY 2016 Budget At-A-Glance POET Project Liberty, LLC

  16. Biomass 2011 Conference Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tuesday July 26, 2011 Breakfast and Registration Room: CHERRy BLOSSOM BALLROOM LOBBy Detailed Agenda Welcoming Remarks Room: CHERRy BLOSSOM BALLROOM  Paul F . Bryan, Program Manager, Biomass Program, U .S . Department of Energy Opening Keynotes: "Federal Perspectives on Bioenergy" Room: CHERRy BLOSSOM BALLROOM  Steven Chu, Secretary of Energy  Tom Vilsack, Secretary of Agriculture  Jackalyne Pfannenstiel, Assistant Secretary of the Navy (Energy, Installations, and

  17. Ecological objectives can be achieved with wood-derived bioenergy

    SciTech Connect (OSTI)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. In addition, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollution from power plants.

  18. Ecological objectives can be achieved with wood-derived bioenergy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. In addition, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbonmore » pollution from power plants.« less

  19. Great Lakes Bioenergy Research Center Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal GLBRC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Great Lakes Bioenergy Research Center

  20. Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement (FOA) | Department of Energy (BETO) Announces Renewable Carbon Fiber Funding Opportunity Announcement (FOA) Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber Funding Opportunity Announcement (FOA) February 4, 2014 - 12:00am Addthis BETO's mission within the Office of Energy Efficiency and Renewable Energy (EERE) is to develop and transform biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower

  1. National Bioenergy Center Biochemical Platform Integration Project

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

  2. Bioenergy Technologies Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Bioenergy Technologies Office Overview This slideshow explains the work of the Bioenergy Technologies Office. To download the file, right click and save it to your computer, then open the file with Adobe Reader. PDF icon bioenergy_overview_july_2014 More Documents & Publications Bioenergy Technologies Office Overview August 2014 Monthly News Blast 2015 Peer Review Presentations-Plenaries

  3. Bioenergy Technologies Office: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Search Browse by Topic Mail Requests Help Key Publications Newsletter Biomass Basics Multimedia Webinars Databases Analytical Tools Glossary Student & Educator Resources...

  4. Laurentian Bioenergy Project

    SciTech Connect (OSTI)

    Berguson, William Evan; Buchman, Daniel; Rack, Jim; Gallagher, Tom; McMahon, Bernard; Hedke, Dale

    2015-03-30

    Work performed under this contract involves development of forest management guidelines related to removal of forest harvest residues from forested sites and brushlands in Minnesota, assessments of biomass availability from forests and brushlands and logistics and equipment associated with handling woody biomass with emphasis on evaluation of a trailer-mounted bundling system. Also, work on hybrid poplar breeding, field testing and yield analysis is included. Evaluation of the production of aspen and red pine along with opportunities to procure woody biomass through thinning operations in red pine is described. Finally, an assessment of issues related to increasing biomass usage at the Laurentian Energy Authority generation facilities is discussed.

  5. DOE Thermochemical Users Facility A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    None

    2003-11-01

    The National Bioenergy Center at the National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products.

  6. Feedstock Supply and Logistics: Biomass as a Commodity

    SciTech Connect (OSTI)

    2013-05-06

    The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.

  7. Idaho National Laboratory Bioenergy Program | Open Energy Information

    Open Energy Info (EERE)

    Laboratory Bioenergy Program Jump to: navigation, search Logo: Bioenergy Program at Idaho National Laboratory Name Bioenergy Program at Idaho National Laboratory AgencyCompany...

  8. BETO Announces Launch of the Bioenergy KDF Legislative Library

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office is pleased to announce the release of a new Bioenergy Knowledge Discovery Framework (Bioenergy KDF) resource: the Legislative Library.

  9. Biomass 2014: Additional Speaker Biographies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additional Speaker Biographies Biomass 2014: Additional Speaker Biographies This document outlines the biographies of the additional speakers for Biomass 2014, held July 29-July 30 in Washington, D.C. PDF icon additional_speaker_biographies_biomass_2014 More Documents & Publications Bioenergy 2015 Speaker Biographies Demonstration and Deployment Workshop - Day 2 Sustainable Solutions to Global Energy Challenges

  10. INEOS New Planet BioEnergy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INEOS New Planet BioEnergy Indian River BioEnergy Center 2015 DOE IBR Platform Peer Review March 24, 2015 Kelly Russell Regulatory and External Affairs This presentation does not contain any proprietary, confidential, or otherwise restricted information INEOS Bio/INPB Indian River BioEnergy Center (July 2013) 2 INEOS New Planet BioEnergy Commercial Demonstration Facility (May 2013) fermentation gasification power generation distillation 3 INEOS Bio/INPB Indian River BioEnergy Center (May 2013) 4

  11. Bioenergy Technologies Office | Department of Energy

    Energy Savers [EERE]

    Bioenergy Technologies Office Bioenergy 2016: Mobilizing the Bioeconomy through Innovation Bioenergy 2016: Mobilizing the Bioeconomy through Innovation On July 12-14, 2016, the U.S. Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) will host its ninth annual conference-Bioenergy 2016: Mobilizing the Bioeconomy through Innovation. Partnering with the Clean Energy Research and Education Foundation (CEREF), this year's conference will focus on opportunities to grow future

  12. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News » BioEnergy Blog BioEnergy Blog RSS The Bioenergy Technologies Office (BETO) blog posts are a great source to learn about the progress BETO is making toward its goals to sustainably develop cost-competitive biofuels and bioproducts. To see how far bioenergy has come (posts from 2012-2014), visit the Bioenergy Technologies Office Blog archive site. December 18, 2015 Newtown Creek Wastewater Treatment Plant | New York City Department of Environmental Protection One Year Down the Road of

  13. Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

  14. Our Commitment to Bioenergy Sustainability

    SciTech Connect (OSTI)

    2015-06-18

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO’s Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a result, the area is critical to achieving BETO’s overall goals.

  15. NREL: Biomass Research - Ryan M. Ness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ryan M. Ness Ryan Ness is a research technician with the National Bioenergy Center Biomass Analysis Group at NREL. Ryan has been with NREL since 2007. Ryan's primary responsibilities involve bench-scale wet chemical and instrumental analysis of lignocellulosic biomass feedstocks for the purpose of providing baseline, solids-intermediate, and biomass hydrolyzate compositional analysis in support of ongoing research and development. Ryan's work is performed in compliance with NREL's Standard

  16. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  17. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individualsÆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  18. International Bioenergy Trade

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Shipping cost parameters (Deseck and Lams 2011) Evaluation of US-to-China Biomass Supply System Case 1: Savannah to Shanghai Case 2: Kansas City to Shanghai Case 3: St. ...

  19. Gordian Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    The Gordian Bioenergy is a private equity formed by undisclosed investors who want invest in Greenfield projects. They plan to developed 6 to 8 projects in the states of Bahia,...

  20. Bioenergy Impacts … Green Jobs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is supporting the research, development, and demonstration of advanced technologies that are creating new opportunities for the U.S. workforce. Energy Department funding is helping to commercialize ethanol from non-food plant sources and "drop-in" biofuels (can directly replace gasoline, diesel, and jet fuel) for use in vehicles and airplanes-contributing to new jobs and economic growth. The bioenergy industry is creating new career opportunities BIOENERGY To learn more, visit

  1. Bioenergy Knowledge Discovery Framework (KDF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Bioenergy Knowledge Discovery Framework (KDF) April 1, 2015 Analysis & Sustainability Aaron Myers Oak Ridge National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Managed by UT-Battelle for the Department of Energy Goal Statement  Creation and enhancement of geo-spatial, temporal decision support system to connect researchers, industry, and sponsors to share

  2. International Energy Agency Bioenergy Conference 2015

    Broader source: Energy.gov [DOE]

    The 2015 International Energy Agency (IEA) Bioenergy Conference will be hosted in Berlin, Germany, from October 27 to 29, 2015. The conference will highlight recent research and market developments in bioenergy, such as challenges across bioenergy value chains, as well as crosscutting topics such as environmental sustainability, socioeconomic issues, and trade. The U.S. Department of Energy Bioenergy Technologies Office Demonstration and Market Transformation Program Manager Jim Spaeth will be moderating a panel on multidisciplinary projects within IEA Bioenergy. He will also be attending the IEA Executive Committee meeting on October 26, during which plans and commitments will be made for the IEA Bioenergy projects for the next triennium.

  3. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Office of Fossil Energy (FE) and Bioenergy Technologies Office (BETO) co-hosted the Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on...

  4. Bioenergy Documentary | OpenEI Community

    Open Energy Info (EERE)

    Bioenergy Documentary Home > Groups > OpenEI Community Central WikiSysop's picture Submitted by WikiSysop(15) Member 1 September, 2014 - 17:34 Bioenergy: America's Energy Future is...

  5. Achieving Water-Sustainable Bioenergy Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioEnergy 2015: Opportunities in a Changing Energy Landscape Achieving Water-Sustainable Bioenergy Production May Wu Argonne National Laboratory Session 3-A: Growing a Water-Smart ...

  6. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014—United States

    SciTech Connect (OSTI)

    Hess, J. Richard; Lamers, Patrick; Roni, Mohammad S.; Jacobson, Jacob J.; Heath, Brendi

    2015-01-01

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long-distance international transport by ship is feasible in terms of energy use and transportation costs, but availability of suitable vessels and meteorological conditions (e.g., winter time in Scandinavia and Russia) need to be considered. However, local transportation by truck (both in biomass exporting and importing countries) may be a high-cost factor, which can influence the overall energy balance and total biomass costs.

  7. BETO-Funded Study Offers Methods to Support a Water-Sustainable Bioenergy Industry

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory released a study funded by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) that examines the potential effects of future biofuel production on freshwater resources in the Missouri River Basin—a region that could play a central role in the production of cellulosic biomass like switchgrass, a perennial energy crop

  8. Bioenergy Technologies Office (BETO) Announces Renewable Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces Renewable Carbon Fiber Funding Opportunity Announcement (FOA) Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber Funding Opportunity Announcement ...

  9. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Allen Julian, Chief Business Officer, MBI PDF icon julian_biomass_2014.pdf More Documents & Publications 2015 Peer Review Presentations-Biochemical Conversion Process Design and Economics for Biochemical

  10. Biomass Program Peer Review Sustainability Platform | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Sustainability Platform Biomass Program Peer Review Sustainability Platform Presentation on the Update to the Billion-Ton Study, including differences between the Update and the 2005 Billion-Ton Sudy, assumptions, and findings. PDF icon bt2_webinar.pdf More Documents & Publications U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry Importance of Biomass Production and Supply ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP

  11. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    SciTech Connect (OSTI)

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  12. Developing Switchgrass as a Bioenergy Crop

    SciTech Connect (OSTI)

    Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

    1998-11-08

    The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the foreign trade deficit in the U.S. and about 45% of the total annual U.S. oil consumption of 34 quads (1 quad = 1015 Btu, Lynd et al. 1991). The 22 quads of oil consumed by transportation represents approximately 25% of all energy use in the US and excedes total oil imports to the US by about 50%. This oil has environmental and social costs, which go well beyond the purchase price of around $15 per barrel. Renewable energy from biomass has the potential to reduce dependency on fossil fhels, though not to totally replace them. Realizing this potential will require the simultaneous development of high yielding biomass production systems and bioconversion technologies that efficiently convert biomass energy into the forms of energy and chemicals usable by industry. The endpoint criterion for success is economic gain for both agricultural and industrial sectors at reduced environmental cost and reduced political risk. This paper reviews progress made in a program of research aimed at evaluating and developing a perennial forage crop, switchgrass as a regional bioenergy crop. We will highlight here aspects of research progress that most closely relate to the issues that will determine when and how extensively switchgrass is used in commercial bioenergy production.

  13. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    SciTech Connect (OSTI)

    Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bielicki, Dr Jeffrey M [University of Minnesota; Dodder, Rebecca [U.S. Environmental Protection Agency; Hilliard, Michael R [ORNL; Kaplan, Ozge [U.S. Environmental Protection Agency; Miller, C. Andy [U.S. Environmental Protection Agency

    2013-01-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  14. Symbiosis: Addressing Biomass Production Challenges and Climate Change |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening keynote of the Symbiosis Conference. PDF icon symbiosis_conference_hamilton.pdf More Documents & Publications The Future of Bioenergy Feedstock Production Symbiosis Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase Feedstock Production Symbiosis

  15. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    SciTech Connect (OSTI)

    Wallace Tyner

    2012-05-30

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  16. U.S.-France Science & Technology Workshop on Bioenergy | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) U.S.-France Science & Technology Workshop on Bioenergy Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 10.23.15 U.S.-France Science & Technology Workshop on Bioenergy Print Text Size: A A A Subscribe FeedbackShare Page On October 1 - 2, 2015 the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) at Purdue University

  17. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program; United States. Bonneville Power Administration.

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  18. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  19. Biomass Program Monthly News Blast, October 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On December 5, 2012, from 1:00 p.m.-2:30 p.m. Eastern Time, the Biomass Program will host a webinar, "Global Biomass Social Media & Solutions for Global Challenges: International Multimedia Corner Collaborations to Advance Bioenergy Research." Presenters will highlight the progress of ongoing research collaborations between scientists supported by the Energy Department and researchers from China, Brazil, and other countries around the world. Scientists from the National Renewable

  20. Importance of Biomass Production and Supply

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Importance of Biomass Production and Supply June 20, 2013 Symbiosis Conference Cornell University Bryce Stokes, PhD Senior Advisor CNJV Contractor - DOE 2 | Bioenergy Technologies Office A Second Look - John's Plenary Talk * DOE (BETO, SC, ARPA-e), other agencies, and partners are working to: - Understand and enhance the availability and accessibility of biomass feedstocks - Develop technologies and systems to reduce cost of feedstocks and overall final product cost - Improve quality of

  1. NREL: Biomass Research - Daniel J. Schell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daniel J. Schell Photo of Daniel Schell Daniel Schell is Research Supervisor of the Bioprocess Integration R&D section of the National Bioenergy Center at National Renewable Energy Laboratory (NREL) and currently leads a multi-disciplinary team of engineers and pilot plant technicians. Daniel has more than 30 years of research experience in bio-based conversion of lignocellulosic biomass and has extensive expertise in integrated biomass conversion operations at the bench and pilot scale. He

  2. NREL: Biomass Research - Eric P. Knoshaug

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eric P. Knoshaug Photo of Eric Knoshaug Eric P. Knoshaug is a senior scientist in the Applied Science section of the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He joined NREL in August 2000 and has since worked on engineering yeast for efficient utilization of biomass-generated pentose sugars, protein design and evolution for increased activity on recalcitrant biomass substrates, and increasing lipid production in microalgae. Current projects

  3. NREL: Biomass Research - Jonathan J. Stickel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jonathan J. Stickel Photo of Jonathan J. Stickel Jonathan Stickel is a senior research engineer in the Biochemical Process R&D group of the National Bioenergy Center at NREL. His primary role is the leader (Principal Investigator) for the Mechanistic Process Modeling task of the Biomass Program. This work involves fundamental and applied research of the fluid mechanics, mass transfer, and reaction kinetics of biomass undergoing biochemical conversion in order to improve overall conversion

  4. NREL: Biomass Research - Mark R. Nimlos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory. Education Ph.D., Chemical Physics, University of Colorado at Boulder, Boulder, CO, 1986 B.S., Chemistry, University of Massachusetts, Boston, MA, 1981 Research Interests and Selected Publications The Biomass Molecular Sciences group performs research in the following areas: Molecular dynamics modeling of cellulases

  5. NREL: Biomass Research - Michelle L. Reed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michelle L. Reed Photo of Michelle L. Reed Michelle Reed is a Research Technician at the National Bioenergy Center at the National Renewable Energy Laboratory (NREL). She is highly proficient at performing the NREL suite of Laboratory Analytical Procedures (LAPs) and contributes to both in-house and external client training. Michelle joined NREL in 2010 as part of the Biomass Analysis Technologies (BAT) team. She provides compositional analysis data on biomass feedstocks and process

  6. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect (OSTI)

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  7. Biomass 2014 Draft Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014 Draft Agenda All topics and times are tentative and subject to change. Page | 1 BIOMASS 2014: Growing the Future Bioeconomy July 29-30, 2014, Washington Convention Center Day 1: Tuesday, July 29, 2014 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:30 a.m. Welcome and Introduction U.S. Department of Energy's (DOE's) Bioenergy Technology Office (BETO) Director Jonathan Male 8:30 a.m.-9:00 a.m. Morning Keynote/VIP 9:00 a.m.-9:30 a.m. Morning Keynote/VIP 9:30 a.m.-10:45 a.m.

  8. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Travel to the Future with Bioenergy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Travel to the Future with Bioenergy BIOENERGIZEME INFOGRAPHIC CHALLENGE: Travel to the Future with Bioenergy BIOENERGIZEME INFOGRAPHIC CHALLENGE: Travel to the Future with Bioenergy

  9. Track Bioenergy Legislation with New Web Tool | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Track Bioenergy Legislation with New Web Tool Track Bioenergy Legislation with New Web Tool February 27, 2014 - 5:59pm Addthis The Bioenergy KDF Legislative Library aims to help...

  10. Fact Sheet: Bioenergy Working Group | Department of Energy

    Office of Environmental Management (EM)

    Bioenergy Working Group Fact Sheet: Bioenergy Working Group A fact sheet detailling the group launched at the Clean Energy Ministerial in Washington, D.C. on July 19th and 20th, where ministers launched a Bioenergy Working Group, which will advance the deployment of bioenergy technologies by implementing recommendations of the Technology Action Plan on Bioenergy Technologies that was released by the Major Economies Forum Global Partnership in December 2009. PDF icon Fact Sheet: Bioenergy Working

  11. A Virtual Visit to Bioenergy Research at the National Laboratories |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Virtual Visit to Bioenergy Research at the National Laboratories A Virtual Visit to Bioenergy Research at the National Laboratories October 22, 2014 - 10:34am Addthis Watch researchers at Pacific Northwest National Laboratory describe their bioenergy research funded by the Energy Department. Alicia Moulton Communications Specialist, Bioenergy Technologies Office For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to

  12. Bioenergy 2015 Press Kit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Press Kit Bioenergy 2015 Press Kit This U.S. Department of Energy Bioenergy 2015 Press Kit provides contacts and resources to media who cover conference-related news. PDF icon bioenergy_2015_press_kit.pdf More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge POLICY FLASH 2015-36 - AL 2015-09 Acquisition Letter No. AL 2015-09

  13. Bioenergy Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation » Bioenergy Success Stories Bioenergy Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing sustainable, cost-competitive biofuels, bioproducts, and biopower translate into clean, affordable fuels for the cars and trucks of today and tomorrow, and products and power that can help reduce dependence on fossil fuels. Explore EERE's bioenergy success stories below. November 30, 2015 The DuPont cellulosic ethanol facility

  14. Final Scientific and Technical Report State and Regional Biomass Partnerships

    SciTech Connect (OSTI)

    Handley, Rick; Stubbs, Anne D.

    2008-12-29

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  15. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrotreating and Hydrocracking: A Design Case | Department of Energy Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case The goal of the U.S. Department of Energy's Bioenergy Technologies Office (BETO) is to enable the development of biomass technologies. PDF icon PNNL-23053.pdf More Documents & Publications

  16. USDA, DOE Announce $18 Million Solicitation for Biomass Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy $18 Million Solicitation for Biomass Research and Development USDA, DOE Announce $18 Million Solicitation for Biomass Research and Development June 11, 2007 - 1:40pm Addthis WASHINGTON - The U.S. Department of Agriculture (USDA) and the U.S. Department of Energy (DOE) today announced a combined total of up to $18 million will be available for research and development of biomass-based products, biofuels, bioenergy and related processes. USDA and DOE are

  17. Cost-Effective Enzyme for Producing Biofuels from Cellulosic Biomass -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Cost-Effective Enzyme for Producing Biofuels from Cellulosic Biomass Inventors: Ming Woei Lau, Bruce Dale Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryProducing biofuels from cellulosic materials, such as corn stalks, wood chips, and other biomass, requires the use of enzymes to degrade the cellulosic biomass into its molecular components. The cost to produce these enzymes is high, a factor contributing to the

  18. Enhanced Biomass Digestion with Wood Wasp Bacteria - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Enhanced Biomass Digestion with Wood Wasp Bacteria Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Plant biomass represents a vast and renewable source of energy. However, harnessing this energy requires breaking down tough lignin and cellulose cell walls. In nature, certain microbes can deconstruct biomass into simple sugars by secreting combinations of enzymes. Two organisms that utilize cellulose are Clostridium thermocellum -

  19. Ethanol Tolerant Yeast for Improved Production of Ethanol from Biomass -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Ethanol Tolerant Yeast for Improved Production of Ethanol from Biomass Inventors: Audrey Gasch, Jeffrey Lewis Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryEthanol production from cellulosic biomass can make a significant contribution toward decreasing our dependence on fossil fuels. However, the fermentation of biomass can be problematic. One bottleneck in this process is the toxicity of ethanol to microbes

  20. Mild, Nontoxic Production of Fuels and Chemicals from Biomass - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Mild, Nontoxic Production of Fuels and Chemicals from Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Fossil fuel resources supply almost 90 percent of the world's energy and the vast majority of its organic chemicals. This dependency is insupportable in light of rising emissions, demand and diminishing access. Abundant, renewable biomass is an emerging alternative. But if biomass is to supplant oil, coal and

  1. Biomass 2011: Replace the Whole Barrel, Supply the Whole Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: Replace the Whole Barrel, Supply the Whole Market Biomass 2011: Replace the Whole Barrel, Supply the Whole Market The New Horizons of Bioenergy Biomass 2011 July 26-27, 2011 Gaylord National Resort and Convention Center 201 Waterfront Street National Harbor, MD 20745 Thank you to everyone who attended and participated to help make Biomass 2011 a remarkable success. More than 600 speakers, moderators, sponsors, exhibitors, and attendees were able to listen to

  2. Biomass 2013: How the Advanced Bioindustry is Reshaping American Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: How the Advanced Bioindustry is Reshaping American Energy Biomass 2013: How the Advanced Bioindustry is Reshaping American Energy Biomass 2013 July 31-August 1, 2013 Washington, D.C. Convention Center 801 Mt. Vernon Place, NW Washington, D.C. 20001 On July 31-August 1, 2013, the Bioenergy Technologies Office (BETO) and Advanced Biofuels USA co-hosted the Office's sixth annual conference, Biomass 2013: How the Advanced Bioindustry is Reshaping American Energy, at the

  3. Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    Kirschner, J.; Badin, J.

    1998-12-31

    As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

  4. Bioenergy Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EERE's bioenergy success stories below. November 30, 2015 The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol...

  5. Growing America's Energy Future: Bioenergy Technologies Office...

    Broader source: Energy.gov (indexed) [DOE]

    The Bioenergy Technologies Office (BETO) forms cost-share public-private partnerships to help sustainably develop cost-competitive biofuels and bioproducts in the United States...

  6. Bioenergy Technologies Office Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    slideshow explains the work of the Bioenergy Technologies Office. To download the file, right click and save it to your computer, then open the file with Adobe Reader....

  7. Terra Bioenergy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Terra Bioenergy Inc Place: Missouri Zip: MO 64068 Product: Privately-owned Missouri-based manufacturer of bioediesel. References: Terra...

  8. International Market Opportunities in Bioenergy: Leveraging U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources Breakout Session 3C-Fostering Technology Adoption III: International Market Opportunities in ...

  9. Bioenergy Geradora de Energia | Open Energy Information

    Open Energy Info (EERE)

    Geradora de Energia Jump to: navigation, search Name: Bioenergy - Geradora de Energia Place: Sao Paulo, Sao Paulo, Brazil Zip: 1456010 Sector: Wind energy Product: Brazil based...

  10. Achieving Water-Sustainable Bioenergy Production | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Breakout Session 3-A: Growing a Water-Smart Bioeconomy Achieving Water-Sustainable Bioenergy Production May Wu, Principal Environmental System Analyst in the...

  11. Bioenergy Technologies Office Releases Symbiosis Biofeedstock...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases Symbiosis Biofeedstock Conference Summary Report Bioenergy Technologies Office Releases Symbiosis Biofeedstock Conference Summary Report January 2, 2014 - 12:00am Addthis...

  12. Bioenergy Technologies Office Program Management Review

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office will be hosting its biennial Program Management Peer Review on June 25, 2015 at the Walter E. Washington Convention Center.

  13. Bioenergy Impacts … National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    funds facilities that help companies to identify and address potential challenges before ... at Idaho National Laboratory assists companies in moving their bioenergy business ...

  14. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Broader source: Energy.gov (indexed) [DOE]

    below or by individual sections. myppjuly2014.pdf More Documents & Publications Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update Bioenergy...

  15. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Broader source: Energy.gov (indexed) [DOE]

    november2014.pdf More Documents & Publications Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update Bioenergy Technologies Office Multi-Year Program Plan:...

  16. Kai BioEnergy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Kai BioEnergy Corporation Jump to: navigation, search Name: Kai BioEnergy Corporation Place: Del Mar, California Zip: 92014 Region: Southern CA Area Sector: Biofuels Product:...

  17. NREL-United States/Brazil Bioenergy Technical Workshop | Open...

    Open Energy Info (EERE)

    United StatesBrazil Bioenergy Technical Workshop Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL-United StatesBrazil Bioenergy Technical Workshop AgencyCompany...

  18. Bioenergy Technologies Office Multi-Year Program Plan: March...

    Broader source: Energy.gov (indexed) [DOE]

    aphymyppmarch2015.pdf appendixa-dmyppmarch2015.pdf More Documents & Publications Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update Bioenergy...

  19. Nantong BIOLUX Bioenergy Protein Feed Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nantong BIOLUX Bioenergy Protein Feed Co Ltd Jump to: navigation, search Name: Nantong BIOLUX Bioenergy Protein Feed Co Ltd Place: Nantong, Jiangsu Province, China Product: BIOLUX...

  20. Hawaii BioEnergy LLC | Open Energy Information

    Open Energy Info (EERE)

    BioEnergy LLC Jump to: navigation, search Name: Hawaii BioEnergy LLC Place: Hawaii Sector: Renewable Energy, Services Product: Hawaiian-based consortium researching the viability...

  1. Guofu Bioenergy Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name: Guofu Bioenergy Science & Technology Co Ltd Place: Beijing Municipality, China Zip: 100101 Sector:...

  2. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores opportunities for alternative CHP fuels. PDF icon CHP and Bioenergy for ...

  3. Bioenergy Technologies Office Fiscal Year 2014 Annual Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2014 Annual Report Bioenergy Technologies Office Fiscal Year 2014 Annual Report Bioenergy Technologies Office Fiscal Year 2014 Annual Report PDF icon...

  4. Bibliography, Bioenergy Technologies Office Multi-Year Program...

    Broader source: Energy.gov (indexed) [DOE]

    M. (2013). "Status of Advanced Biofuels Demonstration Facilities in 2012: A Report to IEA Bioenergy Task 39," http:demoplants.bioenergy2020.eufilesDemoplantsReportFinal.pd...

  5. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments...

  6. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    SciTech Connect (OSTI)

    Nair, S. Surendran; Nichols, Jeff A. {Cyber Sciences}; Post, Wilfred M; Wang, Dali; Wullschleger, Stan D; Kline, Keith L; Wei, Yaxing; Singh, Nagendra; Kang, Shujiang

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  7. Biomass Indirect Liquefaction Strategy Workshop Summary Report

    SciTech Connect (OSTI)

    none,

    2014-07-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. The workshop, held March 2021, 2014, in Golden, Colorado, discussed and detailed the research and development needs for biomass indirect liquefaction. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or acids) and further synthesize those intermediates to liquid hydrocarbons that are compatible as either a refinery feed or neat fuel.

  8. Biomass 2012: Confronting Challenges, Creating Opportunities | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: Confronting Challenges, Creating Opportunities Biomass 2012: Confronting Challenges, Creating Opportunities Sustaining a Commitment to Bioenergy Biomass 2012 Logo. Image consists of a curved leaf and green and yellow circles surrounding a silhouette of the US Capitol building. The text 'U.S. Department of Energy Biomass 2012' is overlayed on the image. July 10-11, 2012 Washington, D.C. Convention Center 801 Mt. Vernon Place, NW Washington, D.C. 20001 On July 10-11, 2012, the

  9. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  10. Social Aspects of Bioenergy Sustainability Workshop Report

    SciTech Connect (OSTI)

    Luchner, Sarah; Johnson, Kristen; Lindauer, Alicia; McKinnon, Taryn; Broad, Max

    2013-05-30

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office held a workshop on Social Aspects of Bioenergy on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The findings and recommendations from the workshop and webinar are compiled in this report.

  11. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Advanced Logistical Systems and Focused Bioenergy Harvesting Technologies to Supply Crop Residues and Energy Crops in a Densified Large Square Bale Format OBP WBS: 1.2.1.4 Principal Investigator: Maynard Herron Co-Principal Investigator: Bob Matousek Performing Organization: AGCO Sub-Recipients: INL, Stinger Inc., OSU, ISU, TAMU, Noble Foundation Project objectives support the adoption and production goals of the Office of Biomass Programs for feedstock adoption and cost

  12. The New Horizons of Bioenergy

    ScienceCinema (OSTI)

    None

    2013-04-19

    At the Office of Energy Efficiency and Renewable Energy's "Biomass 2011" conference, Argonne researcher Seth Snyder spoke with DOE Biomass Program head, Paul Bryan. In this conversation, Snyder explains the process of biochemical conversion, and talks about Argonne's patented resin wafer technology. The resin wafer electrodeionization technology may help significantly reduce the cost of producing clean energy and of the chemicals and water used in industry. The separations technology can also process biomass-based feedstocks into biofuels and chemicals.

  13. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014

    SciTech Connect (OSTI)

    Bioenergy Technologies Office

    2015-03-25

    This fact sheet summarizes key accomplishments and successes of the Bioenergy Technologies Office in 2014.

  14. Webtrends Archives by Fiscal Year - Bioenergy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    From the EERE Web Statistics Archive: Bioenergy Technologies Office, Webtrends archives by fiscal year. Microsoft Office document icon Bioenergy FY09 Microsoft Office document icon Bioenergy FY10 Microsoft Office document icon Bioenergy FY11 More Documents & Publications Webtrends Archives by Fiscal Year - Geothermal Webtrends Archives by Fiscal Year - Advanced Manufacturing Office Webtrends Archives by Fiscal Year - Solar

  15. International Market Opportunities in Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Opportunities in Bioenergy: Leveraging U.S. Government Resources Cora Dickson U.S. Department of Commerce July 30, 2014 Top 10 Countries (90%) Liters Exported Jan-May 2014 Canada 529,669,726 Brazil 247,520,896 United Arab Emirates 117,885,710 Philippines 73,965,881 Korea 51,342,328 India 40,702,101 Peru 40,636,692 Jamaica 35,092,896 Mexico 31,849,256 Singapore 28,529,930 TOTAL TO THE WORLD IN 2014 1,316,134,700 Year to Date 2014 Ethanol (Fuel Use) Exports Biodiesel (B100) Exports - not as

  16. High-Yielding Method for Converting Biomass to Fermentable Sugars for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuel Production - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search High-Yielding Method for Converting Biomass to Fermentable Sugars for Biofuel Production Inventors: Ronald Raines, Joseph Binder Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Lignocellulosic biomass is a very desirable feedstock for biofuel production. If the fermentation process for lignocellulose could be

  17. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... USDA genetic improvement research in soybeans at Beltsville, Maryland has focused on developing varieties that have a higher ratio of straw to beans, grow taller, have improved ...

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy: Creating Biofuels from Biomass

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from North Caddo Magnet High School in Vivian, LA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  19. Bioenergy 2016: Mobilizing the Bioeconomy through Innovation | Department

    Office of Environmental Management (EM)

    of Energy Bioenergy 2016: Mobilizing the Bioeconomy through Innovation Bioenergy 2016: Mobilizing the Bioeconomy through Innovation July 12-14, 2016 Bioenergy 2016 Conference Logo Walter E. Washington Convention Center 801 Mt. Vernon Place, NW Washington, D.C. 20001 On July 12-14, 2016, the U.S. Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) will host its ninth annual conference-Bioenergy 2016: Mobilizing the Bioeconomy through Innovation. Partnering with the Clean

  20. DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels November 10, 2014 - 2:50pm Addthis DOE's Bioenergy Technologies Office is developing military-grade biofuels DOE's Bioenergy Technologies Office is developing military-grade biofuels Happy Veteran's Day from EERE! Our Bioenergy Technologies Office (BETO) is helping the U.S. military increase the nation's #energy security, reduce

  1. Microsoft PowerPoint - The DOE Bioenergy Technologies Office

    Office of Environmental Management (EM)

    Office eere.energy.gov Bioenergy Technologies Office - Jonathan Male Director July 24, 2014 http://www.energy.gov/eere/bioenergy/ bioenergy-technologies-office 2 | Bioenergy Technologies Office EERE Organization Chart Assistant Secretary David Danielson Office of Transportation Vehicle Technologies Office (VTO) Bioenergy Technologies Office (BETO) Fuel Cell Technologies Office (FCTO) Office of Renewable Power Solar Energy Technologies Office (SETO) Geothermal Technologies Office (GTO) Wind &

  2. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

  3. Proceedings of the Bio-Energy '80 world congress and exposition

    SciTech Connect (OSTI)

    1980-01-01

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

  4. BioenergizeME Office Hours Webinar: Biomass Basics

    Broader source: Energy.gov [DOE]

    Many students haven’t thought much about biomass as an option for generating electricity, transportation fuels, and other products. The Biomass Basics Webinar provides general information about bioenergy, its creation, and its potential uses, and is designed to assist teams competing in the 2016 BioenergizeME Infographic Challenge. This challenge, hosted by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO), is a competition for high school students to learn about bioenergy, create infographics to present what they have learned, and share their infographics on social media. This webinar is part of the BioenergizeME Office Hours webinar series developed by BETO in conjunction with the 2016 BioenergizeME Infographic Challenge.

  5. Webinar: BioenergizeME Office Hours Webinar: Biomass Basics

    Broader source: Energy.gov [DOE]

    Many students haven’t thought much about biomass as an option for generating electricity, transportation fuels, and other products. The Biomass Basics Webinar provides general information about bioenergy, its creation, and its potential uses, and is designed to assist teams competing in the 2016 BioenergizeME Infographic Challenge. This challenge, hosted by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO), is a competition for high school students to learn about bioenergy, create infographics to present what they have learned, and share their infographics on social media. This webinar is part of the BioenergizeME Office Hours webinar series developed by BETO in conjunction with the 2016 BioenergizeME Infographic Challenge.

  6. NREL: Biomass Research - Justin B. Sluiter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's National Bioenergy Center. Justin started at NREL in 1996 working on a lignin utilization project aimed at catalytic conversion of lignin into a high octane fuel additive. Justin also assisted with developing a metal oxide sensor array that would detect volatile organic compounds for indoor air quality monitoring. At the end of that project, Justin began working on chemical characterization of

  7. Biomass Engineering: Size reduction, drying and densification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Biomass Engineering: Size reduction, drying and densification March 25th, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information Technology Review Area: Feedstock Supply and Logistics Jaya Shankar Tumuluru (PI) Research Team: Neal Yancey, Craig C Conner, Tyler Westover, Richard McCulloch, Kara Cafferty, and Mitch Plummer Organization: Biofuels and Renewable Energy Technology, Idaho National Laboratory DOE Bioenergy Technologies Office (BETO)

  8. Achieving Water-Sustainable Bioenergy Production

    Broader source: Energy.gov [DOE]

    Breakout Session 3-A: Growing a Water-Smart Bioeconomy Achieving Water-Sustainable Bioenergy ProductionMay Wu, Principal Environmental System Analyst in the Energy Systems Division, Argonne...

  9. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. for their Winning Bioenergy Infographic A team of five freshmen from Williamsburg High School for Architecture and Design in Brooklyn, New York-designed an infographic on the...

  10. Innovative Technologies for Bioenergy Technologies Incubator...

    Broader source: Energy.gov (indexed) [DOE]

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  11. Bioenergy Upcoming Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar 1:00PM to 2:00PM EDT 6 7 8 9 10 11 12 13 14 15 16 17 18 19 American Energy and...

  12. Bioenergy Upcoming Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Upcoming Events Bioenergy Upcoming Events January 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Webinar: Excellence in Bioenergy Innovation-A Presentation of 2015 R&D 100 Award Winning Projects 1:00PM to 2:00PM EST BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME Infographic Challenge 4:00PM to 4:45PM EST 24 25 26 27 28 29 30 31 1 2 3 4 5 6 Bioenergy Home About the

  13. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    major national security imperatives of this century. Get Expertise Babetta Marrone Biofuels Program Manager Email Rebecca McDonald Bioscience Communications Email Srinivas Iyer...

  14. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    making it much easier to harvest for biofuel production. Harvesting algae accounts for approximately 15-20 percent of the total cost of biofuel production-magnetic algae can reduce ...

  15. Bioenergy 2016: Mobilizing the Bioeconomy through Innovation

    Broader source: Energy.gov [DOE]

    Save the date: July 12–14 for Bioenergy 2016: Mobilizing the Bioeconomy through Innovation! This year, the conference is in July—same place, different month! Hear directly from leading bioenergy experts from the public and private sectors. You will hear from government agency officials, academic researchers, and members of Congress, industry, and the national laboratories. Click below to add it to your Outlook Calendar!

  16. GCAM Bioenergy and Land Use Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GCAM Bioenergy and Land Use Modeling March 25, 2015 Analysis and Sustainability PI: Marshall Wise Pacific Northwest National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Support BETO Analysis and Sustainability goals by studying bioenergy production and use in a systems and economic context of US and global energy, agriculture, land use, and emissions. MYPP goal: Develop and maintain analytical tools, models,

  17. DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

  18. Better Biomass Conversion with Recyclable GVL Solvent - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Better Biomass Conversion with Recyclable GVL Solvent Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary To recover useful carbohydrates locked in biomass, molecular bonds must be broken while avoiding further reaction of the resulting glucose and xylose sugars. This is a challenge because glucose can degrade quicker than it is produced. Fast, hot reactions try to minimize such degradation, but are impractical. Expensive catalysts

  19. Photosynthesis and Biomass Growth (7 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photosynthesis and Biomass Growth (7 Activities) Photosynthesis and Biomass Growth (7 Activities) Below is information about the student activity/lesson plan from your search. Grades 9-12 Subject Bioenergy Summary Introduce your students to the power of plants! Photosynthesis is arguably the most important form of energy transformation and is a fundamental concept for students of all ages. Projects listed in this section should be used as an exciting starting point for both classroom and science

  20. An Affordable Advanced Biomass Cookstove with Thermoelectric Generator (TEG)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Bioenergy Technologies Office 2015 Peer Review Biomass Cookstove Technology Review March 26, 2015 Lawrence Berkeley National Laboratory An Affordable Advanced Biomass Cookstove with Thermoelectric Generator (TEG) This presentation does not contain any proprietary, confidential, or otherwise restricted information Ashok Gadgil eere.energy.gov 1 Goal Statement Develop an affordable tier-4 cookstove desirable for purchase Design novel air injection configurations for flame manipulation powered

  1. Nation's Largest Biomass Conference To Draw International Experts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Largest Biomass Conference To Draw International Experts Technology Breakthroughs, "Green" Power, New Initiatives Focus Of Gathering For more information contact: e:mail: Public Affairs Golden, Colo., July 29, 1999 — One of mankind's oldest sources of energy may find new importance in the new millennium. Experts from around the world will review technical achievements, major new bioenergy initiatives and environmental issues surrounding the use of biomass for fuels, power and products

  2. Forest carbon and biomass energy … LCA issues and challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    carbon and biomass energy - LCA issues and challenges by Reid Miner and Caroline Gaudreault, NCASI Presentation to Biomass 2014: Growing the Future Bioeconomy July 29 and 30, Washington D.C Hosted by the U.S. Department of Energy's Bioenergy Technologies Office Six areas that get insufficient (or inappropriate) attention * Matching the study objective to the accounting framework * Spatial and temporal scales of accounting * Market-related effects * Uncertainty (not discussed in interest of time)

  3. Modified Yeast with Enhanced Tolerance for GVL Biomass Solvent - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Modified Yeast with Enhanced Tolerance for GVL Biomass Solvent Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Gamma-valerolactone (GVL) is an inexpensive solvent derived from biomass that can be used to break apart tough lignocellulose into fermentable sugars including xylose and glucose. GVL-based techniques are a potentially transformative breakthrough in biofuel production (for more information see WARF reference

  4. DOE, USDA Announce Funding for Biomass Research and Development Initiative

    Office of Environmental Management (EM)

    | Department of Energy DOE, USDA Announce Funding for Biomass Research and Development Initiative DOE, USDA Announce Funding for Biomass Research and Development Initiative May 6, 2010 - 12:00am Addthis Washington, DC - The U.S. Departments of Energy (DOE) and Agriculture (USDA) today jointly announced up to $33 million in funding for research and development of technologies and processes to produce biofuels, bioenergy and high-value biobased products, subject to annual appropriations. These

  5. Carbon Green BioEnergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Green BioEnergy LLC Jump to: navigation, search Name: Carbon Green BioEnergy LLC Place: Chicago, Illinois Zip: 60603 Sector: Efficiency Product: Chicago-based company dedicated to...

  6. Four Rivers BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    BioEnergy Jump to: navigation, search Name: Four Rivers BioEnergy Place: Calvert City, Kentucky Zip: 42029 Product: Kentucky-based ethanol and biodiesel producer, which is...

  7. BioenergizeME Office Hours Webinar: Integrating Bioenergy into...

    Office of Environmental Management (EM)

    Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom PDF icon...

  8. Western BioEnergy Ltd | Open Energy Information

    Open Energy Info (EERE)

    BioEnergy Ltd Jump to: navigation, search Name: Western BioEnergy Ltd Place: Cardiff, United Kingdom Zip: CF24 0EB Product: Developing a 13.8MW wood burning project in Margam,...

  9. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Breakout Session 2D-Building Market ...

  10. Hoogen Bioenergie GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    Germany Zip: 1968 Product: Hoogen Bioenergie assist in building and operating biogas plants. References: Hoogen Bioenergie GmbH & Co.KG1 This article is a stub. You can...

  11. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23–24, 2015, the U.S. Department of Energy's (DOE’s) Bioenergy Technologies Office (BETO) will host its eighth annual conference—Bioenergy 2015: Opportunities in a Changing Energy Landscape...

  12. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy is derived from organic matter to produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department is challenging high school-aged students to investigate a bioenergy topic and design an infographic that illustrates their research. For more information, please visit energy.gov/eere/bioenergy/infographic-challenge Questions? Email BioenergizeME@ee.doe.gov O P

  13. Report Explains How Bioenergy Supports Global Sustainability Goals |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Report Explains How Bioenergy Supports Global Sustainability Goals Report Explains How Bioenergy Supports Global Sustainability Goals May 4, 2015 - 12:47pm Addthis Agave sisilana growing in East Africa. Image courtesy of Jeff Cameron. Agave sisilana growing in East Africa. Image courtesy of Jeff Cameron. Willow to the rescue - combining bioenergy with waste treatment. Image courtesy of Par Aronsson. Willow to the rescue - combining bioenergy with waste treatment. Image

  14. Incorporating Bioenergy into Sustainable Landscape Designs Workshop Two

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Report | Department of Energy Incorporating Bioenergy into Sustainable Landscape Designs Workshop Two Summary Report Incorporating Bioenergy into Sustainable Landscape Designs Workshop Two Summary Report This report is based on the proceedings of the U.S. Department of Energy's Bioenergy Technologies Office's second Incorporating Bioenergy into Sustainable Landscape Designs Workshop, held from June 24-26, 2014, in Argonne, Illinois. PDF icon

  15. BETO Announces Bioenergy Technologies Incubator FOA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Incubator FOA BETO Announces Bioenergy Technologies Incubator FOA February 25, 2014 - 12:00am Addthis The Office of Energy Efficiency and Renewable Energy (EERE) has released a new $10 million funding opportunity announcement (FOA) to support innovative technologies and solutions that could help achieve bioenergy development goals, but are not significantly represented in the Bioenergy Technology Office's (BETO's) existing multi-year program plans or current research and

  16. The Bioenergy Knowledge Discovery Framework (KDF) | Department of Energy

    Energy Savers [EERE]

    The Bioenergy Knowledge Discovery Framework (KDF) The Bioenergy Knowledge Discovery Framework (KDF) The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. The KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of

  17. Sustainable Bioenergy and the RSB | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy and the RSB Sustainable Bioenergy and the RSB Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting Misconceptions Sustainable Bioenergy and the RSB Barbara Bramble, Senior Director for International Wildlife Conservation at National Wildlife Federation and Chair of Board of Directors for the Roundtable on Sustainable Biomaterials PDF icon bramble_bioenergy_2015.pdf More Documents & Publications Biobased Chemicals Landscape in 2015: What's the Role of

  18. Energy Department Announces $10 Million to Develop Innovative Bioenergy

    Office of Environmental Management (EM)

    Technologies | Department of Energy 0 Million to Develop Innovative Bioenergy Technologies Energy Department Announces $10 Million to Develop Innovative Bioenergy Technologies February 20, 2015 - 1:23pm Addthis The Energy Department's Bioenergy Technologies Office (BETO) announces the selection of seven projects across the country to receive up to $10 million to support innovative technologies and solutions to help advance bioenergy development. These projects will support BETO's work to

  19. Our Commitment to Bioenergy Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability Our Commitment to Bioenergy Sustainability The U.S. Department of Energy's Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and advances environmental, economic, and social benefits. BETO's Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance,

  20. Washington, D.C. and Tennessee: Bioenergy Technologies Office Announces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launch of New and Improved KDF | Department of Energy Washington, D.C. and Tennessee: Bioenergy Technologies Office Announces Launch of New and Improved KDF Washington, D.C. and Tennessee: Bioenergy Technologies Office Announces Launch of New and Improved KDF January 31, 2014 - 12:00am Addthis In September 2013, the Bioenergy Technologies Office (BETO) launched a revamped, easier-to-use version of the Bioenergy Knowledge Discovery Framework. Initially released in January 2011, the KDF

  1. Sustainability in Bioenergy: A Nation Connected | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability in Bioenergy: A Nation Connected Sustainability in Bioenergy: A Nation Connected Addthis "Sustainability in Bioenergy: A Nation Connected" is a short documentary highlighting personal stories and the efforts being made by communities across the United States to develop, produce, and provide bioenergy, while ensuring it is environmentally, economically, and socially sustainable. From farmers and families in the Midwest, to researchers and business-owners on the coasts,

  2. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or other industries are interested in lignin as a potential fuel or feedstock but need more information on properties.

  3. DOE/EA-1683: Finding of No Significant Impact Department of Energy Loan Guarantee to Abengoa Solar Inc. for the Solana Concentrating Solar Power Facility Near Gila Bend, Arizona (05/06/10)

    Office of Environmental Management (EM)

    FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO ABENGOA SOLAR INC. FOR THE SOLANA CONCENTRATING SOLAR POWER FACILITY NEAR GILA BEND, ARIZONA AGENCY: U.S. Department of Energy, Loan Guarantee Program Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with a 280 Megawatt (MW) concentrating solar power (CSP) plant (Solana

  4. U.S. Biomass Potential: An Update to the 2005 and 2011 Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Biomass Potential An Update to the 2005 and 2011 Assessments March 26, 2015 Alison Goss Eng Acting Feedstocks Supply and Logistics Team Lead ‹#› | Bioenergy Technologies Office Motivation * In order to realize a commercial advanced biofuels industry, we need a significant sustainable supply of biomass * DOE is focused on analyzing the resource potential of biomass to understand feedstocks supply for the bioeconomy of the future * Supply analysis is housed in the BETO Feedstock Supply

  5. U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOENERGY TECHNOLOGIES OFFICE 2015 PROJECT PEER RE IEW March 23-27, 2015 | Hilton Alexandria Mark Center, Alexandria, VA 2015 PROJECT PEER REVIEW 2 BIOENERGY TECHNOLOGIES OFFICE (This page intentionally left blank) 2015 PROJECT PEER REVIEW 3 BIOENERGY TECHNOLOGIES OFFICE TABLE OF CONTENTS Welcome Message .............................................................................................................................. 5 Agenda at a Glance

  6. Bioenergy Technologies Office Fiscal Year 2014 Annual Report | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fiscal Year 2014 Annual Report Bioenergy Technologies Office Fiscal Year 2014 Annual Report Bioenergy Technologies Office Fiscal Year 2014 Annual Report PDF icon beto_2014_annual_report.pdf More Documents & Publications November 2013 News Blast August 2014 Monthly News Blast Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014

  7. Educational Opportunities in Bioenergy - ORNL | Department of Energy

    Office of Environmental Management (EM)

    ORNL Educational Opportunities in Bioenergy - ORNL ORNL presentation about the educational opportunities in bioenergy at the lab. PDF icon ornl_opportunities_bioenergy.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy Ensuring Project Success - The Fundamental Art of Managing the Interfaces Carbon Fiber Technology Facility

  8. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Emerson, Rachel; Hoover, Amber; Ray, Allison; Lacey, Jeffrey; Cortez, Marnie; Payne, Courtney; Karlen, Douglas; Birrell, Stuart; Laird, David; Kallenbach, Robert; et al

    2014-07-04

    Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study is to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed grasses from Conservation Reserve Program lands, and Miscanthus × giganteus. To assess drought effects on these feedstocks, samples from 2010 (minimal to no drought) and 2012 (severe drought) were compared from multiple locations in the US. In all feedstocks, drought significantly increased extractives and reduced structural sugars and lignin; subsequently, TEYs were reduced 10–15%. Biomass yields were significantly reduced formore » M. × giganteus and mixed grasses. When reduction in quality and quantity were combined, TEYs decreased 26–59%. Drought negatively affected biomass quality and quantity that resulted in significant TEY reductions. As a result, such fluctuations in biomass quality and yield may have significant consequences for developing lignocellulosic biorefineries.« less

  9. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  10. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  11. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  12. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 79, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  13. Bioenergy 2015: Opportunities in a Changing Energy Landscape | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Jim Spaeth, Program Manager and Conference Chair of the Bioenergy Technologies Office, invites you to attend Bioenergy 2015 in Washington, D.C., June 23-24. June 23-24, 2015 Bioenergy 2015 Logo Walter E. Washington Convention Center 801 Mt. Vernon Place, NW Washington, D.C. 20001 On June 23-24, 2015, the U.S. Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) will host its eighth annual conference-Bioenergy 2015: Opportunities in a Changing Energy Landscape.

  14. DOE Provides $30 Million to Jump Start Bioenergy Research Centers |

    Energy Savers [EERE]

    Department of Energy 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment

  15. Bioenergy 2015: Opportunities in a Changing Energy Landscape | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Events » Conferences » Bioenergy 2015: Opportunities in a Changing Energy Landscape Bioenergy 2015: Opportunities in a Changing Energy Landscape Jim Spaeth, Program Manager and Conference Chair of the Bioenergy Technologies Office, invites you to attend Bioenergy 2015 in Washington, D.C., June 23-24. June 23-24, 2015 Bioenergy 2015 Logo Walter E. Washington Convention Center 801 Mt. Vernon Place, NW Washington, D.C. 20001 On June 23-24, 2015, the U.S. Department of Energy's

  16. Bioenergy systems report: The AID (Agency for International Development) approach. Using agricultural and forestry wastes for the production of energy in support of rural development

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The Biomass Energy Systems and Technology project (BEST) seeks to integrate natural resources, private sector expertise, and financial support in order to convert biomass into marketable energy products at existing agro-processing facilities. This report documents BEST's approach to biomass promotion and includes sections on: the rationale for the project's commodity focus (sugar cane, rice, and wood); the relevant U.S. biomass experience with rice, cane, and wood residues, etc., which BEST draws upon; A.I.D.'s experience in the field application of rice, wood, and cane residue bioenergy systems; economic analyses of biomass systems (using examples from Indonesia and Costa Rica); research initiatives to develop off-season fuels for sugar mills, advanced biomass conversion systems, and energy efficiency in sugar factories; and the environmental aspects of biomass (including its ability to be used without increasing global warming).

  17. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  18. Biomass Logistics

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  19. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect (OSTI)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  20. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borole, Abhijeet P.

    2015-08-25

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  1. "Frontiers in Bioenergy Symposium" co-hosted by C3Bio and IACT | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Frontiers in Bioenergy Symposium" co-hosted by C3Bio and IACT Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 05.19.10 "Frontiers in Bioenergy Symposium" co-hosted by C3Bio and IACT Print Text Size: A A A Subscribe FeedbackShare Page May 24-25, 2010 :: The Center for Direct Catalytic Conversion of Biomass to Biofuels

  2. Bioenergy Upcoming Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 29 30 1 2 3 4 5 6 7 8 9 10 11 12 BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom...

  3. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment

    SciTech Connect (OSTI)

    Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.

    2012-10-06

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.

  4. Assessing the interactions among U.S. climate policy, biomass energy, and agricultural trade

    SciTech Connect (OSTI)

    Wise, Marshall A.; McJeon, Haewon C.; Calvin, Katherine V.; Clarke, Leon E.; Kyle, G. Page

    2014-09-01

    Energy from biomass is potentially an important contributor to U.S. climate change mitigation efforts. However, an important consideration to large-scale implementation of bioenergy is that the production of biomass competes with other uses of land. This includes traditionally economically productive uses, such as agriculture and forest products, as well as storage of carbon in forests and non-commercial lands. In addition, in the future, biomass may be more easily traded, meaning that increased U.S. reliance on bioenergy could come with it greater reliance on imported energy. Several approaches could be implemented to address these issues, including limits on U.S. biomass imports and protection of U.S. and global forests. This paper explores these dimensions of bioenergys role in U.S. climate policy and the relationship to these alternative measures for ameliorating the trade and land use consequences of bioenergy. It first demonstrates that widespread use of biomass in the U.S. could lead to imports; and it highlights that the relative stringency of domestic and international carbon mitigation policy will heavily influence the degree to which it is imported. Next, it demonstrates that while limiting biomass imports would prevent any reliance on other countries for this energy supply, it would most likely alter the balance of trade in other agricultural products against which biomass competes; for example, it might turn the U.S. from a corn exporter to a corn importer. Finally, it shows that increasing efforts to protect both U.S. and international forests could also affect the balance of trade in other agricultural products.

  5. Benefits of Biofuel Production and Use in Kansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas is a national leader in the development of advanced biofuels. The U.S. Department of Energy (DOE)-supported Abengoa biorefinery in Hugoton leverages the state's extensive biomass resources and existing bioenergy infrastructure to produce advanced biofuels. Kansas Kansas' Integrated Biorefinery Advanced biofuels produced from excess post-harvest waste help maintain soil health, create another income stream for rural communities, and improve energy security for Kansas. Robust agricultural

  6. Energy Department Harvesting Technology Goes Commercial | Department of

    Office of Environmental Management (EM)

    Energy Harvesting Technology Goes Commercial Energy Department Harvesting Technology Goes Commercial October 1, 2015 - 3:33pm Addthis Kelderman self-loading trailer 1 of 2 Kelderman self-loading trailer The Kelderman Manufacturing Self-Loading Trailer as adapted for Abengoa Bioenergy Biomass of Kansas biorefinery. Image: Photo courtesy of Kelderman Manufacturing Kelderman self-loading trailer, open sides 2 of 2 Kelderman self-loading trailer, open sides Another version of the Kelderman

  7. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire

    Office of Environmental Management (EM)

    Ethanol, Inc. | Department of Energy Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. PDF icon Award No. DE-FC36-07GO17025 More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty,

  8. Energy Department Harvesting Technology Goes Commercial | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Energy Department Harvesting Technology Goes Commercial Energy Department Harvesting Technology Goes Commercial Addthis Kelderman self-loading trailer 1 of 2 Kelderman self-loading trailer The Kelderman Manufacturing Self-Loading Trailer as adapted for Abengoa Bioenergy Biomass of Kansas biorefinery. Image: Photo courtesy of Kelderman Manufacturing Kelderman self-loading trailer, open sides 2 of 2 Kelderman self-loading trailer, open sides Another version of the Kelderman

  9. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options

    SciTech Connect (OSTI)

    Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

    2014-04-01

    This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

  10. Webinar: Using the New Bioenergy KDF for Data Discovery and Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using the New Bioenergy KDF for Data Discovery and Research Webinar: Using the New Bioenergy KDF for Data Discovery and Research Webinar Slides about the new Bioenergy KDF PDF icon...

  11. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... quantify variability affects on preprocessing - Drying data to support Algae blending TEA 17 | Bioenergy Technologies Office 4 - Relevance * User Facility projects highlight the ...

  12. Biomass 2013 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Moderator: Joyce Yang, Bioenergy Technologies Office, U.S. Department of Energy Speakers: Gary Anderson, Economist, NIST Thomas Robb, Manager of Institutional Relations, ...

  13. Biomass One Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBiomassOneBiomassFacility&oldid397204" Feedback Contact needs updating Image needs...

  14. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 10, 2015 BioenergizeME Office Hours Integrating Bioenergy into the 9 th__ 12 th Grade Classroom Alexis Martin Knauss Fellow Bioenergy Technologies Office U.S. Department of Energy Shannon Zaret Contractor, The Hannon Group Bioenergy Technologies Office U.S. Department of Energy 2 | Bioenergy Technologies Office Agenda 1. Overview Of Energy Literacy 2. Overview of Next Generation Science Standards 3. Bioenergy Basics 5. Incorporation of Bioenergy into the Classroom 4. 2016 BioenergizeME

  15. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    SciTech Connect (OSTI)

    Negri, M. Cristina; Ssegane, H.

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  16. Energy Department Selects Three Bioenergy Research Centers for $375 Million

    Energy Savers [EERE]

    in Federal Funding | Department of Energy Three Bioenergy Research Centers for $375 Million in Federal Funding Energy Department Selects Three Bioenergy Research Centers for $375 Million in Federal Funding June 26, 2007 - 2:08pm Addthis Basic Genomics Research Furthers President Bush's Plan to Reduce Gasoline Usage 20 Percent in Ten Year WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will invest up to $375 million in three new Bioenergy

  17. Track Bioenergy Legislation with New Web Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Track Bioenergy Legislation with New Web Tool Track Bioenergy Legislation with New Web Tool February 27, 2014 - 5:59pm Addthis The Bioenergy KDF Legislative Library aims to help the public, industry, and decision makers quickly and easily find legislation related to the production and use of biofuels. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs With thousands of proposed bills floating through Congress every session, it's difficult to keep track of legislation

  18. NREL: News - Director of National Bioenergy Center Named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director of National Bioenergy Center Named Thursday December 12, 2002 Golden, CO. - Michael Pacheco has accepted the position of director of the National Bioenergy Center (NBC). The center was formed by the U.S. Department of Energy (DOE) in November 2000 and is based in the department's National Renewable Energy Laboratory (NREL) in Golden, Colo. The virtual center is the focal point for technology development and information about bioenergy in the United States, giving industry a one-stop

  19. Argonne National Laboratory Scientists Study Benefits of Bioenergy Crop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration | Department of Energy Argonne National Laboratory Scientists Study Benefits of Bioenergy Crop Integration Argonne National Laboratory Scientists Study Benefits of Bioenergy Crop Integration August 5, 2015 - 4:47pm Addthis How can our landscapes be managed most effectively to produce crops for food, feed, and bioenergy, while also protecting our water resources by preventing the loss of nutrients from the soil? Dr. Cristina Negri and her team at the U.S. Department of Energy's

  20. Webinar: Landscape Design for Sustainable Bioenergy Systems

    Broader source: Energy.gov [DOE]

    The Energy Department’s Bioenergy Technologies Office will present a live informational webcast on the Landscape Design for Sustainable Bioenergy Systems Funding Opportunity (DE-FOA-0001179) on November 3, 2014, 1:30 p.m.–3:00 p.m. Eastern Standard Time. This FOA seeks interdisciplinary projects that apply landscape design approaches to integrate cellulosic feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability including ecosystem services and food, feed, and fiber production. For the purposes of this FOA, cellulosic feedstock production refers to dedicated annual and perennial energy crops, use of agricultural and forestry residues, or a combination of these options.

  1. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Bioenergy 2015 Agenda Below is an agenda overview of the Bioenergy 2015 schedule of events. A more detailed agenda with session descriptions and speakers (as they become available) is also available. Tuesday, June 23, 2015 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:15 a.m. Welcome Keynote 8:15 a.m.-8:30 a.m. Congressional Keynote(s) 8:30 a.m.-8:40 a.m. Introductory Keynote 8:40 a.m.-9:00 a.m. BETO Keynote 9:00 a.m.-10:30 a.m. Plenary I: Policy and Market Overview 10:30

  2. Argonne National Laboratory Scientists Study Benefits of Bioenergy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... BETO-Funded Study Offers Methods to Support a Water-Sustainable Bioenergy Industry Agave sisilana growing in East Africa. Image courtesy of Jeff Cameron. Report Explains How ...

  3. Carbon Dioxide Emissions Associated with Bioenergy and Other...

    Open Energy Info (EERE)

    and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources AgencyCompany...

  4. Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...

    Open Energy Info (EERE)

    Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural...

  5. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural ...

  6. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bioenergy Technologies Office Association of Fish & Wildlife Agencies Agricultural Conservation Committee Meeting March 29, 2013 Kristen Johnson Sustainability ...

  7. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting a CHP technology, such as ...

  8. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Broader source: Energy.gov (indexed) [DOE]

    the project objectives for the integration of advanced logistical systems and focused bioenergy harvesting technologies that supply crop residues and energy crops in a large bale...

  9. BioEnergy of Colorado LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: BioEnergy of Colorado LLC Address: 4875 National Western Drive Place: Denver, Colorado Zip: 80216 Region: Rockies Area Sector: Biofuels...

  10. BioEnergy of America | Open Energy Information

    Open Energy Info (EERE)

    of America Jump to: navigation, search Name: BioEnergy of America Place: Edison, New Jersey Zip: 8817 Product: Defunct New Jersey biodiesel project developer & owner. Company was...

  11. BioEnergy International LLC | Open Energy Information

    Open Energy Info (EERE)

    International LLC Jump to: navigation, search Name: BioEnergy International LLC Address: 1 Pinehill Drive Place: Quincy, Massachusetts Zip: 02169 Region: Greater Boston Area...

  12. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

  13. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals...

  14. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and...

  15. BioEnergy Solutions BES | Open Energy Information

    Open Energy Info (EERE)

    Solutions BES Jump to: navigation, search Name: BioEnergy Solutions (BES) Place: Bakersfield, California Zip: 93309 Product: Bakersfield-based firm installing and operating biogas...

  16. BioEnergy Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Engineering LLC Jump to: navigation, search Name: BioEnergy Engineering LLC Place: Tennessee Sector: Biofuels Product: A biofuels engineering and design firm with proprietary...

  17. Bioenergy Technologies Office Conversion R&D Pathway: Syngas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Syngas Upgrading to Hydrocarbon Fuels Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels Syngas upgrading to hydrocarbon fuels is one of...

  18. Washington, D.C. and Tennessee: Bioenergy Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a variety of data sets, publications, and collaboration and ... geospatial data; and browse the site's collection of ... Recognized at National Conference National Bioenergy Day ...

  19. About the Bioenergy Technologies Office: Growing America's Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computer modeling, and advanced analysis, the Office investigates the life-cycle impacts of bioenergy production on the reduction of greenhouse gas emissions, cleaner air,...

  20. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... chain is the key to informing technology portfolio ... developed the Bioenergy Knowledge Discovery Framework ... Earnings of Production Workers Current indices from ...

  1. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... chain is the key to informing technology portfolio ... developed the Bioenergy Knowledge Discovery Framework ... Earnings of Production Workers Current indices from ...

  2. Life cycle assessment and biomass carbon accounting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest Σ = . Over time, if carbon stocks are returned to

  3. Bioenergy Impacts … Non-Food

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Researchers at Energy Department national laboratories, including National Renewable Energy Laboratory, are reducing the cost of producing biofuel from non-food sources (such as corn stalks, grasses, and forestry trimmings, and algae) by reducing and streamlining conversion process steps to producing ethanol and "drop-in" biofuels (a direct replacement for gasoline, diesel, and jet fuel). Biofuel from non-food sources is becoming cheaper to produce BIOENERGY IMPACTS To learn more,

  4. Conversion of Biomass Sugars via Fermentation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass Sugars via Fermentation Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Microorganisms like yeast and Escherichia coli are cultured in labs for many purposes, notably the production of useful chemicals (such as ethanol) via fermentation. The growth media used in these processes are relatively expensive. Cheaper media derived from renewable resources would be a boon to researchers and industries that rely on

  5. NREL: Biomass Research - Edward J. Wolfrum, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edward J. Wolfrum, Ph.D. Photo of Edward J. Wolfrum I am a Senior Researcher and Manager at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. I have experience in the technical management of research projects for both governmental and private clients, including financial management, training and supervision of research staff, subcontract monitoring, and general laboratory management. I currently lead the Biomass Compositional Analysis section, a team of

  6. NREL: Biomass Research - James D. McMillan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    James D. McMillan Photo of James McMillan James D. ("Jim") McMillan is Chief Engineer for the National Renewable Energy Laboratory's (NREL's) National Bioenergy Center (NBC), which works to advance lignocellulosic and algal biorefining science and technology. His primary research and development focus is on lignocellulosic biomass conversion process technology development, integration and scale up. He has more than 25 years of research experience on biochemical or sugar platform

  7. NREL: Biomass Research - Lieve Laurens, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lieve Laurens, Ph.D. I am a senior research scientist in the Bioprocess Research and Development group at the National Renewable Energy Laboratory. My research experience is primarily analytical biochemistry-investigating ways to understand lipid, carbohydrate, and protein production and composition in microalgae and other microorganisms. A large fraction of my time I dedicate to leading the DOE/EERE-funded Algal Biomass Characterization project at the National Bioenergy Center and coordinating

  8. Design and Demonstration Comprehensive Biomass Feedstock Supply System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    antaresgroupinc.com www.fdcenterprises.com DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Design and Demonstration of a Comprehensive Biomass Feedstock Supply System March 2015 Feedstocks Platform Presented By: Kevin Comer Antares Group, Inc. Principle Investigator: Fred Circle FDC Enterprises This presentation does not contain any proprietary, confidential, or otherwise restricted information www.antaresgroupinc.com www.fdcenterprises.com Goal Statement (Project Objectives)

  9. Modified Yeast Ferments Biomass Xylose - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ferments Biomass Xylose Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Producing biofuel on a useful scale requires efficient fermentation of cellulosic plant material. The sugars glucose and xylose are the most abundant carbohydrates found in hemicellulose. The yeast most commonly utilized for industrial fermentation - Saccharomyces cerevisiae - can ferment glucose but not xylose. By studying the genomes of wild strains of yeast capable of

  10. Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Anhydrous Liquid Ammonia - Energy Innovation Portal Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass Using Anhydrous Liquid Ammonia Inventors: Shishir Chundawat, Leonardo Sousa, Albert Cheh, Venkatesh Balan, Bruce Dale Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryIn the continuing push to develop alternative fuels, bioethanol is clearly a viable option. However, if it is to become a truly economical

  11. Woody Biomass Converted to Gasoline by Five-Company Team

    Broader source: Energy.gov [DOE]

    An international consortium of five companies and organizations came together in a joint effort to transform woody biomass, including trees and wood waste, into a gasoline product suitable for use in today’s automobiles. The collaborative project was cost shared between the project participants and the U.S. Department of Energy’s Office of Bioenergy Technologies Office (BETO) using funding provided by the American Recovery and Reinvestment Act.

  12. EIS-0407: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hugoton, Stevens County, Kansas. If DOE decides to provide federal funding, it would negotiate an agreement with Abengoa Bioenergy to provide approximately 85 million of the...

  13. Energy Department Finalizes $132 Million Loan Guarantee to Support...

    Broader source: Energy.gov (indexed) [DOE]

    of Kansas, LLC (ABBK) to support the development of a commercial-scale cellulosic ethanol plant. ABBK's parent company and project sponsor, Abengoa Bioenergy US Holding, Inc.,...

  14. Advance Patent Waiver W(A)2005-006

    Broader source: Energy.gov [DOE]

    This is a request by ABENGOA BIOENERGY CORPORATION for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-03GO13142.

  15. DOE-LPO-Outreach_Solar

    Broader source: Energy.gov (indexed) [DOE]

    30 BILLION INVESTED IN MORE THAN 30 DIVERSE PROJECTS NATIONWIDE DEPLOYING INNOVATION 4 Tesla Shepherds Flat Abengoa Bioenergy Ivanpah Solana Vogtle LAUNCHING NEW MARKETS 5...

  16. Biomass stakeholder views and concerns: Environmental groups and some trade association

    SciTech Connect (OSTI)

    Peelle, E.

    2000-01-01

    This exploratory study of the views and concerns of 25 environmental organizations found high interest and concern about which biomass feedstocks would be used and how these biomass materials would be converted to energy. While all favored renewable energy over fossil or nuclear energy, opinion diverged over whether energy crops, residues, or both should be the primary source of a biomass/bioenergy fuel cycle. About half of the discussants favored biomass ``in general'' as a renewable energy source, while the others were distributed about equally over five categories, from favor-with-conditions, uncertain, skeptical, opposed, to ``no organizational policy.''

  17. Energy Department to Host Biomass 2012 Conference in Washington, D.C |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Biomass 2012 Conference in Washington, D.C Energy Department to Host Biomass 2012 Conference in Washington, D.C July 9, 2012 - 4:52pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - On July 10-11, the U.S. Department of Energy will host its fifth annual conference, Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy. Biomass 2012 will bring together hundreds of diverse stakeholders in the public and private sectors

  18. Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

  19. DOE and USDA Select Projects for more than $24 Million in Biomass Research

    Energy Savers [EERE]

    and Development Grants | Department of Energy Select Projects for more than $24 Million in Biomass Research and Development Grants DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants November 12, 2009 - 12:00am Addthis Washington, DC - The U.S. Departments of Agriculture and Energy today announced projects selected for more than $24 million in grants to research and develop technologies to produce biofuels, bioenergy and high-value biobased

  20. USDA, DOE Announce Up to $25 Million in Funding for Biomass Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Initiative | Department of Energy Up to $25 Million in Funding for Biomass Research and Development Initiative USDA, DOE Announce Up to $25 Million in Funding for Biomass Research and Development Initiative January 30, 2009 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Departments of Energy (DOE) and Agriculture (USDA) today announced up to $25 million in funding for research and development of technologies and processes to produce biofuels, bioenergy, and high-value biobased

  1. Concentrated C5 and C6 Sugars from Biomass - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrated C5 and C6 Sugars from Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Widespread production of sustainable fuels and chemicals will require cost-effective methods for breaking down biomass into its constituent sugars. Attaining high yields of concentrated C5 and C6 carbohydrates (e.g., xylose and glucose) is particularly challenging. Many processes have been tested but all have drawbacks such as very high temperatures or

  2. Thermoelectric-Enhanced Cookstove Add-on (TECA) for Clean Biomass Cookstoves

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International is a trade name of Research Triangle Institute www.rti.org DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Thermoelectric-Enhanced Cookstove Add-on (TECA) for Clean Biomass Cookstoves March 26, 2015 Cookstoves David Stokes RTI International This presentation does not contain any proprietary, confidential, or otherwise restricted information www.rti.org Goal Statement * This program seeks to demonstrate an innovative solution to enhance existing biomass cookstove

  3. Watershed Scale Evaluation of the Sustainability and Productivity of Dedicated Energy Crop and Woody Biomass Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Southeastern Forest Biomass Crop Production: Watershed Scale Evaluation of the Sustainability and Productivity of Dedicated Energy Crop and Woody Biomass Operations DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review March 23, 2015 Sustainability and Strategic Analysis George Chescheir N. C. State University Jami Nettles Weyerhaeuser Company Goal Statement Develop and disseminate science-based information for sustainable production of biofuel feedstock in a forestry

  4. Microsoft PowerPoint - Biomass Resource Assessments and What do you need to know [Compatibility Mode]

    Office of Environmental Management (EM)

    Biomass Resource Assessments What do you need to know? Marcus Kauffman, Oregon Dept. of Forestry Tribal Leaders Forum Series July 9, 2014 why do we care? * feedstock and raw materials are central to all biomass projects * feedstock costs can be a significant operational expense * securing reliable sources raw materials key to acquiring financing * most combustion systems are optimized to run on a consistent feedstock * smaller bio-energy systems are less robust * larger systems are more robust

  5. Methods for pretreating biomass

    DOE Patents [OSTI]

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2015-03-03

    A method of alkaline pretreatment of biomass, in particular, pretreating biomass with gaseous ammonia.

  6. EERC Center for Biomass Utilization 2005

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

    2008-07-28

    Biomass utilization is one solution to our nations addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nations reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

  7. Bibliography on Biomass Feedstock Research: 1978-2002

    SciTech Connect (OSTI)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  8. Biomass 2014: Growing the Future Bioeconomy Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014: Growing the Future Bioeconomy Agenda Biomass 2014: Growing the Future Bioeconomy Agenda Tuesday, July 29, 2014 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:20 a.m. Welcome and Introduction Jonathan Male, Director, Bioenergy Technologies Office, U.S. Department of Energy 8:20 a.m.-9:00 a.m. Morning Keynotes David Danielson, Assistant Secretary for Energy Efficiency & Renewable Energy, U.S. Department of Energy Byron Paez, Deputy Director for Deputy Assistant

  9. Growing and Sustaining Communities with Bioenergy- Text-Alt Version

    Broader source: Energy.gov [DOE]

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping America’s rural economies grow and thrive.

  10. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23–24, 2015, the U.S. Department of Energy's (DOE’s) Bioenergy Technologies Office (BETO) will host its eighth annual conference—Bioenergy 2015: Opportunities in a Changing Energy Landscape. Co-hosted with the Clean Energy Research and Education Foundation (CEREF), this year's conference will focus on opportunities and challenges in our current highly dynamic energy ecosystem.

  11. DOE Perspectives on Sustainable Bioenergy Landscapes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Bioenergy Landscapes DOE Perspectives on Sustainable Bioenergy Landscapes This presentation was given on November 19, 2014, by Kristen Johnson at the Green Lands Blue Water 2014 Fall Conference. PDF icon johnson_ glbw_2014.pdf More Documents & Publications HIA ZERH Judge Bios Quadrennial Energy Review: Scope, Goals, Vision, Approach, Outreach Behavioral Opportunities for Energy Savings in Office Buildings: a London Field Experiment

  12. Bioenergy Technologies Office: Association of Fish and Wildlife Agencies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agricultural Conservation Committee Meeting | Department of Energy Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting This presentation was given on March 29, 2013, by Kristen Johnson to the Association of Fish & Wildlife Agencies and addresses BETO's work and sustainability efforts. PDF icon

  13. Educational Opportunities in Bioenergy - NREL | Department of Energy

    Office of Environmental Management (EM)

    NREL Educational Opportunities in Bioenergy - NREL NREL presentation about the educational opportunities at the lab. PDF icon nrel_opportunities_bioenergy.pdf More Documents & Publications Powerpoint on STEM Programs EERE Resources for Undergraduate Students Department of Energy Research Opportunities for Historically Black Colleges and Universities

  14. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

  15. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  16. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009

    SciTech Connect (OSTI)

    Schell, D.

    2009-08-01

    April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  17. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009

    SciTech Connect (OSTI)

    Schell, D.

    2010-01-01

    October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  18. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities

    Broader source: Energy.gov [DOE]

    Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

  19. Bioenergy Deployment Consortium (BDC) 2014 Fall Symposium

    Broader source: Energy.gov [DOE]

    The 2014 BDC Fall Symposium will be held on October 21–22, 2014 in Fort Myers, Florida. The event will include a tour of the Algenol facility on Wednesday morning. The symposium will have panels for progress reports from current cellulosic bio-product companies, updates on government policy from several agencies, scale-up strategies,and lessons learned. POET-DSM will provide the after dinner success story. Neil Rossmeissl, Program Manager, Algal Program, Bioenergy Technologies Office, will be delivering the keynote address on expanding the bioeconomy.

  20. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LLC Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York...