National Library of Energy BETA

Sample records for a2 relative sampling

  1. Visual Sample Plan (VSP) Statistical Software as Related to the CTBTOs On-Site Inspection Procedure

    SciTech Connect (OSTI)

    Pulsipher, Trenton C.; Walsh, Stephen J.; Pulsipher, Brent A.; Milbrath, Brian D.

    2010-09-01

    In the event of a potential nuclear weapons test the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is commissioned to conduct an on-site investigation (OSI) of the suspected test site in an effort to find confirmatory evidence of the nuclear test. The OSI activities include collecting air, surface soil, and underground samples to search for indications of a nuclear weapons test - these indicators include radionuclides and radioactive isotopes Ar and Xe. This report investigates the capability of the Visual Sample Plan (VSP) software to contribute to the sampling activities of the CTBTO during an OSI. VSP is a statistical sampling design software, constructed under data quality objectives, which has been adapted for environmental remediation and contamination detection problems for the EPA, US Army, DoD and DHS among others. This report provides discussion of a number of VSP sample designs, which may be pertinent to the work undertaken during an OSI. Examples and descriptions of such designs include hot spot sampling, combined random and judgment sampling, multiple increment sampling, radiological transect surveying, and a brief description of other potentially applicable sampling methods. Further, this work highlights a potential need for the use of statistically based sample designs in OSI activities. The use of such designs may enable canvassing a sample area without full sampling, provide a measure of confidence that radionuclides are not present, and allow investigators to refocus resources in other areas of concern.

  2. Green, red and infrared Er-related emission in implanted GaN:Er and GaN:Er,O samples

    SciTech Connect (OSTI)

    Monteiro, T.; Soares, J.; Correia, M. R.; Alves, E.

    2001-06-01

    Er-related luminescence near 1.54 {mu}m ({similar_to}805 meV) is observed under below band gap excitation at 4.2 K in GaN:Er and GaN:Er,O implanted samples. The spectrum of the recovered damage samples is a multiline structure. So far, these lines are the sharpest ones reported for GaN. Well-resolved green and red luminescences are observed in implanted samples. The dependence of luminescence on the excitation energy as well as the influence of different nominal fluence and annealing conditions is discussed. Combining the results obtained from photoluminescence and Rutherford backscattering spectrometry, different lattice sites for the optical active Er-related centers are identified. {copyright} 2001 American Institute of Physics.

  3. Sampling apparatus

    DOE Patents [OSTI]

    Gordon, N.R.; King, L.L.; Jackson, P.O.; Zulich, A.W.

    1989-07-18

    A sampling apparatus is provided for sampling substances from solid surfaces. The apparatus includes first and second elongated tubular bodies which telescopically and sealingly join relative to one another. An absorbent pad is mounted to the end of a rod which is slidably received through a passageway in the end of one of the joined bodies. The rod is preferably slidably and rotatably received through the passageway, yet provides a selective fluid tight seal relative thereto. A recess is formed in the rod. When the recess and passageway are positioned to be coincident, fluid is permitted to flow through the passageway and around the rod. The pad is preferably laterally orientable relative to the rod and foldably retractable to within one of the bodies. A solvent is provided for wetting of the pad and solubilizing or suspending the material being sampled from a particular surface. 15 figs.

  4. Sampling apparatus

    DOE Patents [OSTI]

    Gordon, Norman R. (Kennewick, WA); King, Lloyd L. (Benton, WA); Jackson, Peter O. (Richland, WA); Zulich, Alan W. (Bel Air, MD)

    1989-01-01

    A sampling apparatus is provided for sampling substances from solid surfaces. The apparatus includes first and second elongated tubular bodies which telescopically and sealingly join relative to one another. An absorbent pad is mounted to the end of a rod which is slidably received through a passageway in the end of one of the joined bodies. The rod is preferably slidably and rotatably received through the passageway, yet provides a selective fluid tight seal relative thereto. A recess is formed in the rod. When the recess and passageway are positioned to be coincident, fluid is permitted to flow through the passageway and around the rod. The pad is preferably laterally orientable relative to the rod and foldably retractable to within one of the bodies. A solvent is provided for wetting of the pad and solubilizing or suspending the material being sampled from a particular surface.

  5. JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES

    SciTech Connect (OSTI)

    Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94131 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Babul, Arif; Bildfell, Chris [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Jeltema, Tesla [Santa Cruz Institute for Particle Physics, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Henry, J. Patrick [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-04-20

    We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% {+-} 6% intrinsic scatter at r{sub 500}{sup WL} (the pseudo-pressure Y{sub X} yields a consistent scatter of 22% {+-} 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (<10%) deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure Y{sub X} does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r{sub 500}{sup WL}; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r{sub 2500}{sup WL} and r{sub 500}{sup WL}, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.

  6. Attachment A2

    Office of Environmental Management (EM)

    A2 GEOLOGIC REPOSITORY Waste Isolation Pilot Plant Hazardous Waste Permit October 2013 (This page intentionally blank) Waste Isolation Pilot Plant Hazardous Waste Permit October 2013 PERMIT ATTACHMENT A2 Page A2-i ATTACHMENT A2 GEOLOGIC REPOSITORY TABLE OF CONTENTS A2-1 Description of the Geologic Repository ............................................................................ 1 A2-2 Geologic Repository Design and Process Description ..................................................... 2

  7. PPPL News sample:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News sample:

  8. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protections: Sampling Protections: Sampling Protection #3: Sampling for known and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental Sampling Board, a key piece of the Strategy, ensures that LANL collects relevant and appropriate data to answer questions about the protection of human and environmental health, and to satisfy regulatory requirements. LANL must demonstrate the data are technically justified

  9. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental Sampling Board, a key piece...

  10. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  11. Sampling box

    DOE Patents [OSTI]

    Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

    2000-01-01

    An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

  12. Biology Chemistry & Material Science Laboratory 2 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LaboratoriesA> 2 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 2 Inventory The BioChemMat Lab 2 (BCM 2) at SSRL is dedicated to researcher experiments, including x-ray absorption and emission spectroscopies, macromolecular crystallography, x-ray scattering, and x-ray imaging. The labs are maintained for final-stage sample preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding,

  13. Stack sampling apparatus

    DOE Patents [OSTI]

    Lind, Randall F; Lloyd, Peter D; Love, Lonnie J; Noakes, Mark W; Pin, Francois G; Richardson, Bradley S; Rowe, John C

    2014-09-16

    An apparatus for obtaining samples from a structure includes a support member, at least one stabilizing member, and at least one moveable member. The stabilizing member has a first portion coupled to the support member and a second portion configured to engage with the structure to restrict relative movement between the support member and the structure. The stabilizing member is radially expandable from a first configuration where the second portion does not engage with a surface of the structure to a second configuration where the second portion engages with the surface of the structure.

  14. Relational Blackboard

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    The Relational Blackboard (RBB) is an extension of the H2 Relational Database to support discrete events and timeseries data. The original motivation for RBB is as a knowledge base for cognitive systems and simulations. It is useful wherever there is a need for persistent storage of timeseries (i.e. samples of a continuous process generating numerical data) and semantic labels for the data. The RBB is an extension to the H2 Relational Database, which is open-source.more »RBB is a set of stored procedures for H2 allowing data to be labeled, queried, and resampled.« less

  15. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet lab is located in Rm 109 of the Far Experimental Hall near the MEC, CXI, and XCS hutches. It conveniently serves all LCLS hutches and is available for final stage sample preparation. Due to space limitations, certain types of activities may be restricted and all access must be scheduled in advance. User lab bench

  16. Water and Sediment Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L) (Bq/L) Sample of Opportunity * 9/13/2014 Below MDC Below MDC Sample of Opportunity * 9/13/2014 Below MDC Below MDC Sample of Opportunity * 9/13/2014 Below MDC Below MDC Sample of Opportunity (Dupe) * 9/13/2014 Below MDC Below MDC Sample of Opportunity * 9/13/2014 Below MDC Below MDC Sample of Opportunity * 9/13/2014 Below MDC Below MDC Blank 9/13/2014 Below MDC Below MDC Sample of Opportunity * 8/26/2014 Below MDC Below MDC Sample of Opportunity (Dupe) * 8/26/2014 Below MDC Below MDC Sample

  17. Visual Sample Plan Flyer

    Broader source: Energy.gov [DOE]

    This flyer better explains that VSP is a free, easy-to-use software tool that supports development of optimal sampling plans based on statistical sampling theory.

  18. Sample push-out fixture

    DOE Patents [OSTI]

    Biernat, John L.

    2002-11-05

    This invention generally relates to the remote removal of pelletized samples from cylindrical containment capsules. V-blocks are used to receive the samples and provide guidance to push out rods. Stainless steel liners fit into the v-channels on the v-blocks which permits them to be remotely removed and replaced or cleaned to prevent cross contamination between capsules and samples. A capsule holder securely holds the capsule while allowing manual up/down and in/out movement to align each sample hole with the v-blocks. Both end sections contain identical v-blocks; one that guides the drive out screw and rods or manual push out rods and the other to receive the samples as they are driven out of the capsule.

  19. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R. (Espanola, NM); Johnston, Roger G. (Las Alamos, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  20. Sample Preparation Laboratory Training - Course 204 | Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mandatory for: SLAC employees and non-employees who need unescorted access to SSRL or LCLS Sample Preparation Laboratories Note: This course may be taken in lieu of Course 199,...

  1. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  2. Rain sampling device

    DOE Patents [OSTI]

    Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

    1991-05-14

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

  3. Rain sampling device

    DOE Patents [OSTI]

    Nelson, Danny A. (Richland, WA); Tomich, Stanley D. (Richland, WA); Glover, Donald W. (Prosser, WA); Allen, Errol V. (Benton City, WA); Hales, Jeremy M. (Kennewick, WA); Dana, Marshall T. (Richland, WA)

    1991-01-01

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    February 2015 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Site April 2015 LMS/GJO/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Grand Junction, Colorado, Site April 2015 RIN 15026795 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Site Sample Location Map

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater Sampling at the Grand Junction, Colorado, Disposal Site November 2014 LMS/GRJ/S00814 This page intentionally left blank U.S. Department of Energy DVP-August 2014, Grand Junction, Colorado November 2014 RIN 14076376 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Grand Junction, Colorado, Disposal Site November 2013 LMS/GRJ/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Grand Junction, Colorado November 2013 RIN 13075515 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site September 2014 LMS/GUP/S00414 This page intentionally left blank U.S. Department of Energy DVP-April and June 2014, Gunnison, Colorado September 2014 RIN 14046058 and 14066262 Page i Contents Sampling Event Summary ...............................................................................................................1 Gunnison, Colorado, Processing Site Planned Sampling Map

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Naturita, Colorado Processing Site October 2013 LMS/NAP/S00713 This page intentionally left blank U.S. Department of Energy DVP-July 2013, Naturita, Colorado October 2013 RIN 13075483 Page i Contents Sampling Event Summary ...............................................................................................................1 Naturita, Colorado, Sample Location Map ......................................................................................3

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites August 2013 LMS/RFN/RFO/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Rifle, Colorado August 2013 RIN 13065380 Page i Contents Sampling Event Summary ...............................................................................................................1 Sample Location Map, New Rifle, Colorado, Processing Site ........................................................5 Sample Location Map, Old Rifle,

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites December 2014 LMS/SRW/SRE/S00914 This page intentionally left blank U.S. Department of Energy DVP-September 2014, Slick Rock, Colorado December 2014 RIN 14096456 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock, Colorado, Processing Sites, Sample Location Map

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites January 2016 LMS/SRE/SRW/S00915 This page intentionally left blank U.S. Department of Energy DVP-September 2015, Slick Rock, Colorado January 2016 RINs 15087319 and 15107424 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock, Colorado, Processing Sites, Sample Location Map

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Slick Rock East and West, Colorado, Processing Sites November 2013 LMS/SRE/SRW/S0913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Slick Rock, Colorado November 2013 RIN 13095593 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock East and West, Colorado, Processing Sites, Sample Location Map

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Ambrosia Lake, New Mexico, Disposal Site February 2015 LMS/AMB/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Ambrosia Lake, New Mexico February 2015 RIN 14116607 Page i Contents Sampling Event Summary ...............................................................................................................1 Ambrosia Lake, NM, Disposal Site Planned Sampling Map...........................................................3 Data

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    October 2013 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site December 2013 LMS/BLU/S00813 This page intentionally left blank U.S. Department of Energy DVP-August and October 2013, Bluewater, New Mexico December 2013 RIN 13085537 and 13095651 Page i Contents Sampling Event Summary ...............................................................................................................1 Private Wells Sampled August 2013 and October 2013, Bluewater, NM, Disposal Site

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater Sampling at the Bluewater, New Mexico, Disposal Site February 2015 LMS/BLU/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Bluewater, New Mexico February 2015 RIN 14116606 Page i Contents Sampling Event Summary ...............................................................................................................1 Bluewater, New Mexico, Disposal Site, Sample Location Map......................................................5 Data

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Green River, Utah, Disposal Site August 2014 LMS/GRN/S00614 This page intentionally left blank U.S. Department of Energy DVP-June 2014, Green River, Utah August 2014 RIN 14066228 Page i Contents Sampling Event Summary ...............................................................................................................1 Green River, Utah, Disposal Site Sample Location Map ................................................................5 Data Assessment

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2014 LMS/MON/S01213 This page intentionally left blank U.S. Department of Energy DVP-December 2013, Monument Valley, Arizona March 2014 RIN 13125794 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Processing Site, Sample Location Map

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monument Valley, Arizona, Processing Site February 2015 LMS/MON/S01214 This page intentionally left blank U.S. Department of Energy DVP-December 2014, Monument Valley, Arizona February 2015 RIN 14126645 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Disposal Site Sample Location Map ..................................................5

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2014 LMS/MNT/S00414 This page intentionally left blank U.S. Department of Energy DVP-April 2014, Monticello, Utah July 2014 RIN 14046077 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map, April 2014, Monticello, Utah, Processing Site .........................................5 Data Assessment Summary

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2015 LMS/MNT/S00415 This page intentionally left blank U.S. Department of Energy DVP-April 2015, Monticello, Utah July 2015 RIN 15046927 Page i Contents Sampling Event Summary ...............................................................................................................1 Monticello, Utah, Processing Site Sample Location Map ...............................................................5 Data Assessment

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Water Sampling at the Monticello, Utah, Processing Site January 2014 LMS/MNT/S01013 This page intentionally left blank U.S. Department of Energy DVP-October 2013, Monticello, Utah January 2014 RIN 13105661 and 13105711 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map, Monticello, Utah, Processing and Disposal Site, October 2013 ..............5 Data Assessment Summary

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site May 2014 LMS/RVT/S00314 This page intentionally left blank U.S. Department of Energy DVP-March 2014, Riverton, Wyoming May 2014 RIN 14035986 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, WY, Processing Site, Sample Location Map ...................................................................3 Data

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater, Surface Water, and Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site December 2013 LMS/RVT/S00913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Riverton, Wyoming December 2013 RIN 13095603 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Sample Location Map

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and May 2014 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site June 2014 LMS/SHP/S00314 This page intentionally left blank U.S. Department of Energy DVP-March and May 2014, Shiprock, New Mexico June 2014 RIN 14036011, 14036013, and 14056142 Page i Contents Sampling Event Summary ...............................................................................................................1 Shiprock, New Mexico, Disposal Site, Sample Location Map

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    2015 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site June 2015 LMS/SHP/S00315 This page intentionally left blank U.S. Department of Energy DVP-March 2015, Shiprock, New Mexico June 2015 RIN 15036862 and 15036863 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map Shiprock, New Mexico, Disposal Site

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Shirley Basin South, Wyoming, Disposal Site September 2013 LMS/SBS/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Shirley Basin South, Wyoming September 2013 RIN 13065426 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site Sample Location Map ............................................3 Data Assessment

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Tuba City, Arizona Disposal Site June 2015 LMS/TUB/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Tuba City, Arizona June 2015 RIN 15026775 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map Tuba City, AZ, Disposal Site February 2015 ............................................5 Data

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMS/TUB/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Tuba City, Arizona November 2013 RIN 13085553 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map ..............................................................7 Data

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Falls City, Texas, Disposal Site July 2015 LMS/FCT/S00415 This page intentionally left blank U.S. Department of Energy DVP-April 2015, Falls City, Texas July 2015 RIN 15036899 Page i Contents Sampling Event Summary ...............................................................................................................1 Falls City, Texas, Disposal Site Sample Location Map...................................................................3 Data Assessment Summary

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Hallam, Nebraska, Decommissioned Reactor Site September 2014 LMS/HAL/S00614 This page intentionally left blank U.S. Department of Energy DVP-June 2014, Hallam, Nebraska September 2014 RIN 14056211 Page i Contents Sampling Event Summary ...............................................................................................................1 Hallam, Nebraska, Sample Location Map .......................................................................................3 Data

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Sherwood, Washington, Disposal Site October 2013 LMS/SHE/S00713 This page intentionally left blank U.S. Department of Energy DVP-July 2013, Sherwood, Washington October 2013 RIN 13075481 Page i Contents Sampling Event Summary ...............................................................................................................1 Sherwood, Washington, Disposal Site Sample Location Map ........................................................3 Data Assessment Summary

  12. Aerosol sampling system

    DOE Patents [OSTI]

    Masquelier, Donald A.

    2004-02-10

    A system for sampling air and collecting particulate of a predetermined particle size range. A low pass section has an opening of a preselected size for gathering the air but excluding particles larger than the sample particles. An impactor section is connected to the low pass section and separates the air flow into a bypass air flow that does not contain the sample particles and a product air flow that does contain the sample particles. A wetted-wall cyclone collector, connected to the impactor section, receives the product air flow and traps the sample particles in a liquid.

  13. Sample Proficiency Test exercise

    SciTech Connect (OSTI)

    Alcaraz, A; Gregg, H; Koester, C

    2006-02-05

    The current format of the OPCW proficiency tests has multiple sets of 2 samples sent to an analysis laboratory. In each sample set, one is identified as a sample, the other as a blank. This method of conducting proficiency tests differs from how an OPCW designated laboratory would receive authentic samples (a set of three containers, each not identified, consisting of the authentic sample, a control sample, and a blank sample). This exercise was designed to test the reporting if the proficiency tests were to be conducted. As such, this is not an official OPCW proficiency test, and the attached report is one method by which LLNL might report their analyses under a more realistic testing scheme. Therefore, the title on the report ''Report of the Umpteenth Official OPCW Proficiency Test'' is meaningless, and provides a bit of whimsy for the analyses and readers of the report.

  14. Th1A.2.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Th1A.2.pdf OFC 2015 © OSA 2015 WAN Virtualization and Dynamic End-to-End Bandwidth Provisioning Using SDN Adrian Lara 1 , Byrav Ramamurthy 1 , Eric Pouyoul 2 and Inder Monga 2 1 University of Nebraska-Lincoln, Lincoln NE 68504 {alara,byrav}@cse.unl.edu 2 Energy Science Network, Lawrence Berkeley National Laboratory, Berkeley CA 94720 {lomax,imonga}@es.net Abstract: We evaluate a WAN-virtualization framework in terms of delay and scalability and demonstrate that adding a virtual layer between

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and September 2013 Groundwater and Surface Water Sampling at the Durango, Colorado, Disposal and Processing Sites March 2014 LMS/DUD/DUP/S00613 This page intentionally left blank U.S. Department of Energy DVP-June and September 2013, Durango, Colorado March 2014 RIN 13055370 and 13085577 Page i Contents Sampling Event Summary ...............................................................................................................1 Durango, Colorado, Disposal Site Sample Location Map-June

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    conducted in accordance with the Sampling and Analysis Plan for the U. S. Department of Energy Office of Legacy Management Sites (LMSPROS04351, continually updated). Monitoring...

  17. Adaptive Sampling Proxy Application

    Energy Science and Technology Software Center (OSTI)

    2012-10-22

    ASPA is an implementation of an adaptive sampling algorithm [1-3], which is used to reduce the computational expense of computer simulations that couple disparate physical scales. The purpose of ASPA is to encapsulate the algorithms required for adaptive sampling independently from any specific application, so that alternative algorithms and programming models for exascale computers can be investigated more easily.

  18. Creating Sample Plans

    Energy Science and Technology Software Center (OSTI)

    1999-03-24

    The program has been designed to increase the accuracy and reduce the preparation time for completing sampling plans. It consists of our files 1. Analyte/Combination (AnalCombo) A list of analytes and combinations of analytes that can be requested of the onsite and offsite labs. Whenever a specific combination of analytes or suite names appear on the same line as the code number, this indicates that one sample can be placed in one bottle to bemore » analyzed for these paremeters. A code number is assigned for each analyte and combination of analytes. 2. Sampling Plans Database (SPDb) A database that contains all of the analytes and combinations of analytes along with the basic information required for preparing a sample plan. That basic information includes the following fields; matrix, hold time, preservation, sample volume, container size, if the bottle caps are taped, acceptable choices. 3. Sampling plans create (SPcreate) a file that will lookup information from the Sampling Plans Database and the Job Log File (JLF98) A major database used by Sample Managemnet Services for recording more than 100 fields of information.« less

  19. Sampling system and method

    DOE Patents [OSTI]

    Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

    2013-04-16

    The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Grand Junction, Colorado, Site April 2014 LMS/GJO/S00214 This page intentionally left blank U.S. Department of Energy DVP-February 2014, Grand Junction, Colorado April 2014 RIN 14025928 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Site Sample Location Map ...................................................................3 Data Assessment Summary

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Rifle, Colorado, New and Old Processing Sites January 2014 LMS/RFN/RFO/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Rifle, Colorado January 2014 RIN 13115731 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Sample Location Map ........................................................5 Old Rifle, Colorado, Processing

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites January 2015 LMS/RFN/RFO/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Rifle, Colorado January 2015 RINs 14106568 and 14106569 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Planned Sampling Map ......................................................3 Old Rifle,

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Ambrosia Lake, New Mexico, Disposal Site February 2014 LMS/AMB/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Ambrosia Lake, New Mexico February 2014 RIN 13115745 Page i Contents Sampling Event Summary ...............................................................................................................1 Ambrosia Lake, New Mexico, Disposal Site Sample Location Map ..............................................3 Data Assessment

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Bluewater, New Mexico, Disposal Site February 2014 LMS/BLU/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Bluewater, New Mexico February 2014 RIN 13115746 Page i Contents Sampling Event Summary ...............................................................................................................1 Bluewater, New Mexico, Disposal Site Sample Location Map.......................................................5 Data Assessment Summary

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Burrell, Pennsylvania, Disposal Site January 2014 LMS/BUR/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Burrell, Pennsylvania January 2014 RIN 13095638 Page i Contents Sampling Event Summary ...............................................................................................................1 Burrell, Pennsylvania, Disposal Site, Sample Location Map ..........................................................3 Data Assessment Summary

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Canonsburg, Pennsylvania, Disposal Site February 2014 LMS/CAN/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Canonsburg, Pennsylvania February 2014 RIN 13095639 Page i Contents Sampling Event Summary ...............................................................................................................1 Canonsburg, Pennsylvania, Disposal Site, Sample Location Map ..................................................3 Data Assessment Summary

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Gasbuggy, New Mexico, Site October 2009 LMS/GSB/S00609 This page intentionally left blank U.S. Department of Energy DVP-June 2009, Gasbuggy, New Mexico October 2009 RIN 09062379, 09062380, 09062381 Page i Contents Sampling Event Summary ...............................................................................................................1 Gasbuggy, New Mexico, Sampling Locations ................................................................................2 Data Assessment Summary

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site August 2013 LMS/GRN/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Green River, Utah August 2013 RIN 13065402 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Disposal Site August 2014 LMS/LKD/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Lakeview, Oregon, Disposal August 2014 RIN 14056157 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Disposal Site, Sample Location Map ...............................................................3 Data Assessment Summary

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Processing Site August 2014 LMS/LKP/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Lakeview, Oregon, Processing August 2014 RIN 14056157 and 14056158 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Processing Site, Sample Location Map ............................................................3 Data Assessment Summary

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    L-Bar, New Mexico, Disposal Site February 2014 LMS/BAR/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, L-Bar, New Mexico February 2014 RIN 13115747 Page i Contents Sampling Event Summary ...............................................................................................................1 L-Bar, New Mexico, Disposal Site Sample Location Map .............................................................3 Data Assessment Summary

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Monticello, Utah, Processing Site January 2015 LMS/MNT/S01014 This page intentionally left blank U.S. Department of Energy DVP-October 2014, Monticello, Utah January 2015 RIN 14106558 Page i Contents Sampling Event Summary ...............................................................................................................1 Monticello, Utah, Processing Site Sample Location Map ...............................................................5 Data Assessment Summary

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Riverton, Wyoming, Processing Site September 2013 LMS/RVT/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Riverton, Wyoming September 2013 RIN 13065379 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Processing Site, Sample Location Map .........................................................5 Data Assessment Summary

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Shirley Basin South, Wyoming, Disposal Site October 2015 LMS/SBS/S00715 This page intentionally left blank U.S. Department of Energy DVP-Shirley Basin South, Wyoming October 2015 RIN 15067185 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site, Sample Location Map ...........................................3 Data Assessment Summary

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Tuba City, Arizona, Disposal Site May 2014 LMS/TUB/S00214 This page intentionally left blank U.S. Department of Energy DVP-February 2014, Tuba City, Arizona May 2014 RIN 14025914 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal, Site, Sample Location Map .............................................................7 Data Assessment Summary

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Falls City, Texas, Disposal Site April 2014 LMS/FCT/S00214 This page intentionally left blank U.S. Department of Energy DVP-February 2014, Falls City, Texas April 2014 RIN 14025923 Page i Contents Sampling Event Summary ...............................................................................................................1 Falls City, Texas, Disposal Site, Sample Location Map..................................................................3 Data Assessment Summary

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Parkersburg, West Virginia, Disposal Site February 2014 LMS/PKB/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Parkersburg, West Virginia February 2014 13095640, 13115753 Page i Contents Sampling Event Summary ...............................................................................................................1 Parkersburg, West Virginia, Disposal Site Sample Location Map ..................................................5 Data Assessment Summary

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sherwood, Washington, Disposal Site July 2014 LMS/SHE/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Sherwood, Washington July 2014 RIN 14056159 Page i Contents Sampling Event Summary ...............................................................................................................1 Sherwood, Washington, Disposal Site Sample Location Map ........................................................3 Data Assessment Summary

  19. Biological sample collector

    DOE Patents [OSTI]

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  20. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    SciTech Connect (OSTI)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy�s extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to limited accessibility. However, the consistency and the adequacy of sampling and mixing at SRS could at least be studied under the controlled process conditions based on samples discussed by Ray and others [2012a] in Waste Form Qualification Report (WQR) Volume 2 and the transfers from Tanks 40H and 51H to the Sludge Receipt and Adjustment Tank (SRAT) within DWPF. It is important to realize that the need for sample representativeness becomes more stringent as the material gets closer to the melter, and the tanks within DWPF have been studied extensively to meet those needs.

  1. Water Sample Concentrator

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  2. Dissolution actuated sample container

    DOE Patents [OSTI]

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  3. SAMPLING AND ANALYSIS PROTOCOLS

    SciTech Connect (OSTI)

    Jannik, T; P Fledderman, P

    2007-02-09

    Radiological sampling and analyses are performed to collect data for a variety of specific reasons covering a wide range of projects. These activities include: Effluent monitoring; Environmental surveillance; Emergency response; Routine ambient monitoring; Background assessments; Nuclear license termination; Remediation; Deactivation and decommissioning (D&D); and Waste management. In this chapter, effluent monitoring and environmental surveillance programs at nuclear operating facilities and radiological sampling and analysis plans for remediation and D&D activities will be discussed.

  4. Draft Sample Collection Instrument

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sample Collection Instrument Davis-Bacon Semi-annual Labor Compliance Report OMB Control Number 1910-New Please note that different DOE programs will use different collection instruments. Wherever possible, the data collection will be integrated into existing reporting processes for recipients of DOE financial assistance and prime contractors use. The sample collection instrument below would be used by recipients of Energy Efficiency Conservation Block Grants, State Energy Program grants, and

  5. Liquid sampling system

    DOE Patents [OSTI]

    Larson, Loren L. (Idaho Falls, ID)

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  6. Liquid sampling system

    DOE Patents [OSTI]

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  7. Remote possibly hazardous content container sampling device

    DOE Patents [OSTI]

    Volz, David L. (59 La Paloma, Los Alamos, NM 87544)

    1998-01-01

    The present invention relates to an apparatus capable of sampling enclosed containers, where the contents of the container is unknown. The invention includes a compressed air device capable of supplying air pressure, device for controlling the amount of air pressure applied, a pneumatic valve, a sampling device having a hollow, sampling insertion needle suspended therein and device to communicate fluid flow between the container and a containment vessel, pump or direct reading instrument.

  8. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  9. Visual Sample Plan

    Energy Science and Technology Software Center (OSTI)

    2007-10-25

    VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to risk decisions have the required confidence and performance. VSP Version 5.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. It also provides data quality assessment and statistical analysis functions to support evaluation of the data and determine whether the data support decisions regarding sitesmore » suspected of contamination. The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (98, NT, 2000, Millennium Edition, CE, and XP) Designed primarily for project managers and users without expertise in statistics, VSP is applicable to two- and three-dimensional populations to be sampled (e.g., rooms and buildings, surface soil, a defined layer of subsurface soil, water bodies, and other similar applications) for studies of environmental quality. VSP is also applicable for designing sampling plans for assessing chem./rad/bio threat and hazard identification within rooms and buildings, and for designing geophysical surveys for UXO identification.« less

  10. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  11. Systems and methods for sample analysis

    DOE Patents [OSTI]

    Cooks, Robert Graham; Li, Guangtao; Li, Xin; Ouyang, Zheng

    2015-01-13

    The invention generally relates to systems and methods for sample analysis. In certain embodiments, the invention provides a system for analyzing a sample that includes a probe including a material connected to a high voltage source, a device for generating a heated gas, and a mass analyzer.

  12. Systems and methods for sample analysis

    DOE Patents [OSTI]

    Cooks, Robert Graham; Li, Guangtao; Li, Xin; Ouyang, Zheng

    2015-10-20

    The invention generally relates to systems and methods for sample analysis. In certain embodiments, the invention provides a system for analyzing a sample that includes a probe including a material connected to a high voltage source, a device for generating a heated gas, and a mass analyzer.

  13. Viscous sludge sample collector

    DOE Patents [OSTI]

    Beitel, George A [Richland, WA

    1983-01-01

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  14. Post-Award Deliverables Sample (Part 2 of Sample Deliverables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ...

  15. Field Sampling | Open Energy Information

    Open Energy Info (EERE)

    Field Mapping Hand-held X-Ray Fluorescence (XRF) Macrophotography Portable X-Ray Diffraction (XRD) Field Sampling Gas Sampling Gas Flux Sampling Soil Gas Sampling Surface Gas...

  16. NID Copper Sample Analysis

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  17. Pulsed field sample neutralization

    DOE Patents [OSTI]

    Appelhans, Anthony D. (Idaho Falls, ID); Dahl, David A. (Idaho Falls, ID); Delmore, James E. (Idaho Falls, ID)

    1990-01-01

    An apparatus and method for alternating voltage and for varying the rate of extraction during the extraction of secondary particles, resulting in periods when either positive ions, or negative ions and electrons are extracted at varying rates. Using voltage with alternating charge during successive periods to extract particles from materials which accumulate charge opposite that being extracted causes accumulation of surface charge of opposite sign. Charge accumulation can then be adjusted to a ratio which maintains a balance of positive and negative charge emission, thus maintaining the charge neutrality of the sample.

  18. Germanium-76 Sample Analysis

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Engelhard, Mark H.; Zhu, Zihua

    2011-04-01

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). The DEMONSTRATOR will utilize 76Ge from Russia, and the first one gram sample was received from the supplier for analysis on April 24, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of this first analysis are reported here.

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater Sampling at the Central Nevada Test Area February 2015 LMS/CNT/S01214 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its contractors, in

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site December 2013 LMS/GSB/S00613 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    2014 Groundwater, Surface Water, Produced Water, and Natural Gas Sampling at the Gasbuggy, New Mexico, Site October 2014 LMS/GSB/S00614 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2014 LMS/RBL/S00514 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its contractors, in

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2015 LMS/RBL/S00515 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Produced Water Sampling at the Rulison, Colorado, Site May 2015 LMS/RUL/S00115 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its contractors, in paper,

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Rulison, Colorado, Site October 2015 LMS/RUL/S00515 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Rulison, Colorado, Site November 2014 LMS/RUL/S00714 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Salmon, Mississippi, Site March 2014 Approved for public release; further dissemination unlimited LMS/SAL/S00413 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S.

  8. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R. (Espanola, NM); Johnston, Roger G. (Los Alamos, NM); Martinez, Ronald K. (Santa Cruz, NM)

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  9. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  10. NID Copper Sample Analysis

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  11. Manipulator for rotating and translating a sample holder

    DOE Patents [OSTI]

    van de Water, Jeroen (Breugel, NL); van den Oetelaar, Johannes (Eindhoven, NL); Wagner, Raymond (Gorinchem, NL); Slingerland, Hendrik Nicolaas (Venlo, NL); Bruggers, Jan Willem (Eindhoven, NL); Ottevanger, Adriaan Huibert Dirk (Malden, NL); Schmid, Andreas (Berkeley, CA); Olson, Eric A. (Champaign, IL); Petrov, Ivan G. (Champaign, IL); Donchev, Todor I. (Urbana, IL); Duden, Thomas (Kensington, CA)

    2011-02-08

    A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.

  12. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1993-12-21

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus. 5 figures.

  13. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1993-01-01

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.

  14. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  15. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN)

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  16. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  17. Fluid sampling apparatus and method

    DOE Patents [OSTI]

    Yeamans, D.R.

    1998-02-03

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis. 3 figs.

  18. Fluid sampling apparatus and method

    DOE Patents [OSTI]

    Yeamans, David R. (Los Alamos, NM)

    1998-01-01

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis.

  19. Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling Details Activities (63) Areas (51) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling...

  20. Rock Sampling | Open Energy Information

    Open Energy Info (EERE)

    resource at depth. These hand samples can be collected using a rock hammer or sledge. Data Access and Acquisition Under a detailed investigation, a systematic sampling procedure...

  1. Gas sampling system for a mass spectrometer

    DOE Patents [OSTI]

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  2. Sample holder with optical features

    DOE Patents [OSTI]

    Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

    2013-07-30

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  3. Specified assurance level sampling procedure

    SciTech Connect (OSTI)

    Willner, O.

    1980-11-01

    In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level.

  4. Analysis of large soil samples for actinides

    DOE Patents [OSTI]

    Maxwell, III; Sherrod L. (Aiken, SC)

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  5. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  6. CHARACTERIZATION OF THE TANK 18F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Click, D.; Diprete, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 18F closure samples. Tank 18F slurry samples analyzed included the liquid and solid fractions derived from the 'as-received' slurry materials along with the floor scrape bottom Tank 18F wet solids. These samples were taken from Tank 18F in March 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 18F samples, the samples from the north quadrants of the tank were combined into one North Tank 18F Hemisphere sample and similarly the south quadrant samples were combined into one South Tank 18F Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 18F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the minimum detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 18F, some were not met due to spectral interferences. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  7. Groundwater Sampling | Open Energy Information

    Open Energy Info (EERE)

    500 mL), whereas analysis for stable isotopes that are present in greater abundance in natural samples requires less water to be sampled by a full order of magnitude (approximately...

  8. Labor Relations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relations also provides technical assistance to, and coordination of, the Partnership Council and other labor-management forums. Collective Bargaining Agreements BPA AFGE...

  9. Related Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  10. Labor Relations

    Broader source: Energy.gov [DOE]

    The National Labor Relations Act prohibits unfair labor practices, including discrimination in employment to discourage (or encourage) membership in a union, and engaging in bad faith collective bargaining.

  11. Investor Relations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and related services at cost. BPA Overview for Investors - as of September 24, 2015 Credit Ratings Latest Rating Agency Reports Full Reports: Fitch Full Report, March 2014...

  12. A2Wind Limited | Open Energy Information

    Open Energy Info (EERE)

    Startup with strong capability in carbon fibre design targeting the wind turbine blade space. References: A2Wind Limited1 This article is a stub. You can help OpenEI by...

  13. Sampling Report for May-June, 2014 WIPP Samples

    Office of Environmental Management (EM)

    1 L L N L - X X X X - X X X X X Sampling Report for May- June, 2014 WIPP Samples UNCLASSIFIED Forensic Science Center January 8, 2015 Sampling Report for May-June, 2014 WIPP Samples Lawrence Livermore National Laboratory UNCLASSIFIED ii Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or

  14. Sampling Report for August 15, 2014 WIPP Samples

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 12 Figure 11. Sample transport container and example of bag packing. ... better collect materials, principally the solid materials around the ruptured container. ...

  15. Sampling Report for August 15, 2014 WIPP Samples

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLNL-TR-667000 L L N L - X X X X - X X X X X Sampling Report for August 15, 2014 WIPP Samples UNCLASSIFIED Forensic Science Center December 19, 2014 Sampling Report for August 15 2014 WIPP Samples Lawrence Livermore National Laboratory UNCLASSIFIED ii Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty,

  16. Acceptance sampling using judgmental and randomly selected samples

    SciTech Connect (OSTI)

    Sego, Landon H.; Shulman, Stanley A.; Anderson, Kevin K.; Wilson, John E.; Pulsipher, Brent A.; Sieber, W. Karl

    2010-09-01

    We present a Bayesian model for acceptance sampling where the population consists of two groups, each with different levels of risk of containing unacceptable items. Expert opinion, or judgment, may be required to distinguish between the high and low-risk groups. Hence, high-risk items are likely to be identifed (and sampled) using expert judgment, while the remaining low-risk items are sampled randomly. We focus on the situation where all observed samples must be acceptable. Consequently, the objective of the statistical inference is to quantify the probability that a large percentage of the unsampled items in the population are also acceptable. We demonstrate that traditional (frequentist) acceptance sampling and simpler Bayesian formulations of the problem are essentially special cases of the proposed model. We explore the properties of the model in detail, and discuss the conditions necessary to ensure that required samples sizes are non-decreasing function of the population size. The method is applicable to a variety of acceptance sampling problems, and, in particular, to environmental sampling where the objective is to demonstrate the safety of reoccupying a remediated facility that has been contaminated with a lethal agent.

  17. SAMPLES Visualization Tools V1.0

    Energy Science and Technology Software Center (OSTI)

    2000-01-17

    The SAMPLE Visualization Tools CD consists of a 2D Process Visualizer, 3D Visualizer, and integration code for use with AutoCAD uner Windows NT. The tools are intended to be an add-on package to the SAMPLES (Sandia Agile MEMS Prototyping, Layout Tools, Education and Services). Program CD, a previously published Sandia software package. The 2D Process Visualizer creates 2D cross-section slice views of a MEMS (micro-electromechanical)design. Views are created for each step in the MEMS fabricationmore » process. The 2D viewer has capabilities to pan, zoom, step forward and backward to allow the user to inspect the design. The 3D Visualizer creates an extruded-model view of a MEMS design. The 3D viewer has capabilities to pan, zoom, and fly around the model to allow the user to inspect the design.« less

  18. Sample page | Open Energy Information

    Open Energy Info (EERE)

    Sample pages; Help pages; References Francis C. Monastero. 2002. An overview of industry-military cooperation in the development of power operations at the Coso...

  19. DOE IDIQ ESPC Contract Sample

    Broader source: Energy.gov [DOE]

    Document displays a sample U.S. Department of Energy (DOE) indefinite-delivery, indefinite-quantity (IDIQ) energy savings performance contract (ESPC).

  20. Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    of geothermometric calculations and geochemical modeling of the data. In the case of gas flux sampling, different measurement techniques and devices may disrupt or alter the...

  1. Sample Residential Program Term Sheet

    Broader source: Energy.gov [DOE]

    A sample for defining and elaborating on the specifics of a clean energy loan program. Author: U.S. Department of Energy

  2. Environmental surveillance master sampling schedule

    SciTech Connect (OSTI)

    Bisping, L.E.

    1995-02-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). This document contains the planned 1994 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project. Samples are routinely collected for the SESP and analyzed to determine the quality of air, surface water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. The responsibility for monitoring onsite drinking water falls outside the scope of the SESP. PNL conducts the drinking water monitoring project concurrent with the SESP to promote efficiency and consistency, utilize expertise developed over the years, and reduce costs associated with management, procedure development, data management, quality control, and reporting. The ground-water sampling schedule identifies ground-water sampling .events used by PNL for environmental surveillance of the Hanford Site. Sampling is indicated as annual, semi-annual, quarterly, or monthly in the sampling schedule. Some samples are collected and analyzed as part of ground-water monitoring and characterization programs at Hanford (e.g. Resources Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), or Operational). The number of samples planned by other programs are identified in the sampling schedule by a number in the analysis column and a project designation in the Cosample column. Well sampling events may be merged to avoid redundancy in cases where sampling is planned by both-environmental surveillance and another program.

  3. 200 area TEDF sample schedule

    SciTech Connect (OSTI)

    Brown, M.J.

    1995-03-22

    This document summarizes the sampling criteria associated with the 200 Area Treatment Effluent Facility (TEDF) that are needed to comply with the requirements of the Washington State Discharge Permit No. WA ST 4502 and good engineering practices at the generator streams that feed into TEDF. In addition, this document Identifies the responsible parties for both sampling and data transference.

  4. Duplex sampling apparatus and method

    DOE Patents [OSTI]

    Brown, Paul E. (Pittsburgh, PA); Lloyd, Robert (West Mifflin, PA)

    1992-01-01

    An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a duplex sampling apparatus. The apparatus is adapted to independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved in the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

  5. Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    home / Related Links Institute for Laser Science Applications The Institute for Laser Science Applications (ILSA) facilitates access for students and faculty to LLNL laser experimental facilities in order to support training and research for university students and faculty in research areas important to the Department of Energy (DOE) in high energy density (HED) science with lasers. National Ignition Facility The National Ignition Facility (NIF) is the world's largest and most energetic laser

  6. Solvent Hold Tank Sample Results For MCU-15-710-711-712: June 2015 Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-10-07

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-710, MCU-15-711, and MCU-15-712), pulled on 06/15/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-710-711-712 indicated a low concentration (~ 55 % of nominal) of the suppressor (TiDG) and concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent that were slightly lower than nominal. This analysis confirms the addition of TiDG, MaxCalix, and modifier (92 % of nominal) to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier were sufficient when this solvent sample was collected from MCU. A higher cesium concentration (9.3 E6 dpm/mL) was observed in this sample relative to recent samples. In the past, this level of cesium appeared to correlate with upsets in the MCU operation. It is not known at this time the reason for the higher cesium level in this solvent. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). In addition, the sample contains up to 10.4 micrograms of mercury per gram of solvent (or 8.7 g/mL). A relatively large cesium concentration (9.3 E 6 dpm/mL) was measured in this solvent and it may indicate poor cesium stripping. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  7. Air Sampling System Evaluation Template

    Energy Science and Technology Software Center (OSTI)

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  8. Sample Business Plan Framework 1

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

  9. Sample Business Plan Framework 2

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

  10. Sample Business Plan Framework 3

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 3: A government entity running a Commercial PACE program in the post-grant period.

  11. Sample Business Plan Framework 5

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 5: A program that establishes itself as a government entity, then operates using a fee-based structure.

  12. Sample Business Plan Framework 4

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 4: A program seeking to continue in the post-grant period as a marketing contractor to a utility.

  13. Depth-discrete sampling port

    DOE Patents [OSTI]

    Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Columbia, MD); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA); Nichols, Ralph L. (North Augusta, SC)

    1998-07-07

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  14. Depth-discrete sampling port

    DOE Patents [OSTI]

    Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Columbia, MD); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA); Nichols, Ralph L. (North Augusta, SC)

    1999-01-01

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  15. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or

  16. Microsoft Word - table_A2.doc

    Gasoline and Diesel Fuel Update (EIA)

    195 19 4 Figure A1. Natural gas processing plant capacity in the United States, 2014 2014 Table A2. Natural gas processing plant capacity, by state, 2014 (million cubic feet per day) Alabama 1,459 Arkansas 37 California 898 Colorado 6,130 Florida 90 Illinois 2,102 Kansas 1,664 Kentucky 255 Louisiana 10,870 Michigan 126 Mississippi 1,883 State Plant Capacity Notes: Coverage includes the Lower 48 States (excluding Alaska and Hawaii). Source: Energy Information Administration (EIA), Form EIA-757,

  17. Soil Sampling | Open Energy Information

    Open Energy Info (EERE)

    by Technique Lithology: StratigraphicStructural: Can reveal relatively high permeability zones Hydrological: Thermal: Used to locate active hydrothermal systems...

  18. Ball assisted device for analytical surface sampling

    DOE Patents [OSTI]

    ElNaggar, Mariam S; Van Berkel, Gary J; Covey, Thomas R

    2015-11-03

    A system for sampling a surface includes a sampling probe having a housing and a socket, and a rolling sampling sphere within the socket. The housing has a sampling fluid supply conduit and a sampling fluid exhaust conduit. The sampling fluid supply conduit supplies sampling fluid to the sampling sphere. The sampling fluid exhaust conduit has an inlet opening for receiving sampling fluid carried from the surface by the sampling sphere. A surface sampling probe and a method for sampling a surface are also disclosed.

  19. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign ARM Data Discovery Browse Data Related Campaigns PGS Validation 2011-2013 2011.03.01, Fischer, SGP PGS...

  20. Sample Results from Routine Salt Batch 7 Samples

    SciTech Connect (OSTI)

    Peters, T.

    2015-05-13

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the microbatches of Integrated Salt Disposition Project (ISDP) Salt Batch (Macrobatch) 7B have been analyzed for 238Pu, 90Sr, 137Cs, Inductively Coupled Plasma Emission Spectroscopy (ICPES), and Ion Chromatography Anions (IC-A). The results from the current microbatch samples are similar to those from earlier samples from this and previous macrobatches. The Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU) continue to show more than adequate Pu and Sr removal, and there is a distinct positive trend in Cs removal, due to the use of the Next Generation Solvent (NGS). The Savannah River National Laboratory (SRNL) notes that historically, most measured Concentration Factor (CF) values during salt processing have been in the 12-14 range. However, recent processing gives CF values closer to 11. This observation does not indicate that the solvent performance is suffering, as the Decontamination Factor (DF) has still maintained consistently high values. Nevertheless, SRNL will continue to monitor for indications of process upsets. The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior.

  1. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  2. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  3. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, Katharine H. (13150 Wenonah SE. Apt. 727, Albuquerque, NM 87123)

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  4. The Ocean Sampling Day Consortium

    SciTech Connect (OSTI)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  5. Water-Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation, search REDIRECT Downhole Fluid Sampling Retrieved from "http:en.openei.orgw...

  6. Category:Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Water Sampling page? For detailed information on Water Sampling as...

  7. Labor Relations

    Broader source: Energy.gov [DOE]

    Addressing Poor Performance What Happens if an Employee’s Performance is Below the Meets Expectations (ME) level? Any time during the appraisal period an employee demonstrates that he/she is performing below the ME level in at least one critical element, the Rating Official should contact his/her Human Resources Office for guidance and: •If performance is at the Needs Improvement (NI) level; issue the employee a Performance Assistance Plan (PAP); or •If performance is at the Fails to Meet Expectations (FME) level; issue the employee a Performance Improvement Plan (PIP). Department of Energy Headquarters and The National Treasury Employees Union (NTEU) Collective Bargaining Agreement The National Treasury Employees Union (NTEU) is the exclusive representative of bargaining unit employees at the Department of Energy Headquarters offices in the Washington DC metropolitan area. The terms and conditions of this agreement have been negotiated by DOE and NTEU, and prescribe their respective rights and obligations in matters related to conditions of employment. Headquarters 1187 Request For Payroll Deductions For Labor Organization Dues The Request for Payroll Deduction for Labor Organization Dues (SF-1187) permits eligible employees, who are members of the National Treasury Employees Union (NTEU), to authorize voluntary allotments from their compensation. Headquarters 1188 Cancellation Of Payroll Deductions For Labor Organization Dues The Cancellation of Payroll Deductions for Labor Organizations Dues (SF-1188) permits eligible employees, who are members of the National Treasury Employees Union (NTEU), to cancel dues allotments. The National Treasury Employees Union, Collective Bargaining Agreement, Article 9 – Dues Withholding This article is for the purpose of permitting eligible employees, who are members of the National Treasury Employees Union (NTEU), to authorize voluntary allotments from their compensation.

  8. Apparatus for sampling and characterizing aerosols

    DOE Patents [OSTI]

    Dunn, Patrick F. (Downers Grove, IL); Herceg, Joseph E. (Naperville, IL); Klocksieben, Robert H. (Park Forest, IL)

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  9. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  10. Apparatus and method for handheld sampling

    DOE Patents [OSTI]

    Staab, Torsten A. (Whiterock, NM)

    2005-09-20

    The present invention includes an apparatus, and corresponding method, for taking a sample. The apparatus is built around a frame designed to be held in at least one hand. A sample media is used to secure the sample. A sample media adapter for securing the sample media is operated by a trigger mechanism connectively attached within the frame to the sample media adapter.

  11. The Ocean Sampling Day Consortium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  12. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety

  13. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  14. Analytical liquid test sample filtration apparatus

    DOE Patents [OSTI]

    Lohnes, Brent C. (Soda Springs, ID); Turner, Terry D. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Clark, Michael L. (Menan, ID)

    1996-01-01

    A liquid sample filtration apparatus includes: a) a module retaining filter elements; b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to sealing engage a filter element therebetween; c) an inlet tube connected to an opposing engageable member; d) an outlet tube connected to an opposing engageable member; e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member.

  15. Analytical liquid test sample filtration apparatus

    DOE Patents [OSTI]

    Lohnes, B.C.; Turner, T.D.; Klingler, K.M.; Clark, M.L.

    1996-01-09

    A liquid sample filtration apparatus includes: (a) a module retaining filter elements; (b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to engage a filter element there between; (c) an inlet tube connected to an opposing engageable member; (d) an outlet tube connected to an opposing engageable member; (e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and (f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: (a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and (b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member. 8 figs.

  16. Microsoft Word - Ventilation System Sampling Results 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ventilation System Sampling Results Air sampling results before and after the High Efficiency Particulate Air (HEPA) filters at WIPP are available here. Station A samples air before the filters and Station B samples air after passing through the filters. These samples were analyzed following the detection of airborne radioactivity on February 14, 2014. They are not environmental samples, and are not representative of the public or worker breathing zone air samples. They do provide assurance that

  17. Licensing Guide and Sample License

    Energy Savers [EERE]

    THE TEI:HNOL06Y TRANSFER WORKIN6 6ROUP Lic:en!iing Guide and Sample Lic:en!ie *~ ICan.u City Plan I OFermilab ~OAK ~RIDGE Nuioul~.<o-.,. Arg9..QDe t.AIOUTOlY SRNL .............. ~ A o LOs Alamos MATIO NA L l .U ORUORY / BROOKHAVEN NATIONAL LABORATORY :.:..,/ PRIN. C£loN PlASMA PHYSICS t ABOAATORV .:~ Ul!J Lawrence Uvermore National Laboratory Jef[;?on Lab t1NREL ~ ..................... sandia National Laboratories Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory

  18. Offline solid phase microextraction sampling system

    DOE Patents [OSTI]

    Harvey, Chris A. (French Camp, CA)

    2008-12-16

    An offline solid phase microextraction (SPME) sampling apparatus for enabling SPME samples to be taken a number of times from a previously collected fluid sample (e.g. sample atmosphere) stored in a fused silica lined bottle which keeps volatile organics in the fluid sample stable for weeks at a time. The offline SPME sampling apparatus has a hollow body surrounding a sampling chamber, with multiple ports through which a portion of a previously collected fluid sample may be (a) released into the sampling chamber, (b) SPME sampled to collect analytes for subsequent GC analysis, and (c) flushed/purged using a fluidically connected vacuum source and purging fluid source to prepare the sampling chamber for additional SPME samplings of the same original fluid sample, such as may have been collected in situ from a headspace.

  19. CFCNCA Sample Pledge Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFCNCA Sample Pledge Form CFCNCA Sample Pledge Form This file contains a sample pledge form and instructions for completing a paper donation through the CFC. PDF icon CFCNCA Fall 2012 Sample Pledge Form.pdf More Documents & Publications CFCNCA Sample Pledge Form 2012 CFCNCA Catalog of Caring DOE F 3630.1 Rights and Benefits of Reservists Called to Active Duty

  20. Hanford analytical sample projections 1996 - 2000

    SciTech Connect (OSTI)

    Joyce, S.M.

    1996-02-02

    Sample projections are compiled for the Hanford site based on inputs from the major programs for the years 1996 through 2000. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented.

  1. Chemical analysis of Wild-2 samples returned by Stardust (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Chemical analysis of Wild-2 samples returned by Stardust Citation Details In-Document Search Title: Chemical analysis of Wild-2 samples returned by Stardust Authors: Flynn, G.J. ; Borg, J. ; Bleuet, P. ; Brenker , F. ; Brennan, S. ; Daghlian, C. ; Djouadi, Z. [1] ; ESRF) [2] + Show Author Affiliations (SUNYP) ( Publication Date: 2016-01-15 OSTI Identifier: 1235455 Resource Type: Conference Resource Relation: Conference: Lunar and Plnetary Science XXXVII;March

  2. Biology Chemistry & Material Science Laboratory 1 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories 1 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 1 Inventory The BioChemMat Lab 1 at SSRL is dedicated to researcher experiments, including x-ray absorption and emission spectroscopies, macromolecular crystallography, x-ray scattering, and x-ray imaging. The labs are maintained for final-stage sample preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution

  3. THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY Citation Details In-Document Search Title: THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY Authors: Yakabe, H.M. ; Neilson, H. Publication Date: 1965-02-01 OSTI Identifier: 4654936 Resource Type: Journal Article Resource Relation: Journal Name: J. Assoc. Offic. Agr. Chemists; Journal Volume: Vol: 48; Other Information: Orig. Receipt Date: 31-DEC-65 Research Org: Div. of

  4. Category:Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Technique Subcategories This category has the following 3 subcategories, out of 3 total. G Gas Flux Sampling 1 pages S Soil Gas Sampling 1 pages Surface Gas...

  5. Category:Field Sampling | Open Energy Information

    Open Energy Info (EERE)

    Technique Subcategories This category has the following 2 subcategories, out of 2 total. G + Gas Sampling (3 categories) 4 pages W + Water Sampling (2 categories) 3...

  6. SAMPLE RESULTS FROM MCU SOLIDS OUTAGE

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

    2014-09-22

    Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries ? A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate ? A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate ? A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate ? An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate ? A solids sample from the extraction contactor #1 drain pipe from extraction contactor#1 proved to be mostly sodium aluminosilicate ? A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. ? From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system. ? Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid. ? The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future. ? Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing. ? Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.

  7. Apparatus for sectioning demountable semiconductor samples

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Scottsdale, AZ); Wolf, Abraham (Sun City West, AZ)

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample prior to introduction of a molding medium in the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  8. Electrphoretic Sample Excitation Light Assembly.

    DOE Patents [OSTI]

    Li, Qingbo; Liu, Changsheng

    2002-04-02

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  9. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    SciTech Connect (OSTI)

    Kerr, Kent

    2004-12-17

    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  10. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  11. Core sampling system spare parts assessment

    SciTech Connect (OSTI)

    Walter, E.J.

    1995-04-04

    Soon, there will be 4 independent core sampling systems obtaining samples from the underground tanks. It is desirable that these systems be available for sampling during the next 2 years. This assessment was prepared to evaluate the adequacy of the spare parts identified for the core sampling system and to provide recommendations that may remediate overages or inadequacies of spare parts.

  12. Sample introduction system for a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA)

    1997-01-01

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

  13. Sample introduction apparatus for a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA)

    1998-01-01

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

  14. Sample introduction apparatus for a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1998-03-10

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

  15. Sample introduction system for a flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den

    1997-02-11

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

  16. Apparatus for sectioning demountable semiconductor samples

    DOE Patents [OSTI]

    Sopori, B.L.; Wolf, A.

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  17. EFFECT OF TRANSPORTING SALTSTONE SAMPLES PRIOR TO SET

    SciTech Connect (OSTI)

    Reigel, M.

    2013-05-21

    The Saltstone Sampling and Analyses Plan provides a basis for the quantity (and configuration) of saltstone grout samples required for conducting a study directed towards correlation of the Performance Assessment (PA) related properties of field-emplaced samples and samples processed and cured in the laboratory. The testing described in the saltstone sampling and analyses plan will be addressed in phases. The initial testing (Phase I) includes collecting samples from the process room in the Saltstone Production Facility (SPF) and transporting them to Savannah River National Laboratory (SRNL) where they will cure under a temperature profile that mimics the temperature in the Saltstone Disposal Unit (SDU) and then be analyzed. SRNL has previously recommended that after the samples of fresh (uncured) saltstone are obtained from the SPF process room, they are allowed to set prior to transporting them to SRNL for curing. The concern was that if the samples are transported before they are set, the vibrations during transport may cause artificial delay of structure development which could result in preferential settling or segregation of the saltstone slurry. However, the results of this testing showed there was no clear distinction between the densities of the cylinder sections for any of the transportation scenarios tested (1 day, 1 hour, and 0 minutes set time prefer to transportation) . The bottom section of each cylinder was the densest for each transportation scenario, which indicates some settling in all the samples. Triplicate hydraulic conductivity measurements on samples from each set of time and transportation scenarios indicated that those samples transported immediately after pouring had the highest hydraulic conductivity. Conversely, samples that were allowed to sit for an hour before being transported had the lowest hydraulic conductivity. However, the hydraulic conductivities of all three samples fell within an acceptable range. Based on the cured property analysis of the three samples, there is no clear conclusion about transporting the samples before they are set; however, experience with saltstone grout indicates the samples should sit and develop some structure before being transported to SRNL for curing.

  18. Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orders, IDIQ Attachment. J-4) | Department of Energy Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Document offers a post-award deliverables sample for an energy savings performance contract. Microsoft Office document icon sample_reptg_rqmts.doc More Documents & Publications Pre-Award Deliverables Sample (Part 1 of Sample Deliverables for

  19. A2BE Carbon Capture LLC | Open Energy Information

    Open Energy Info (EERE)

    Logo: A2BE Carbon Capture LLC Name: A2BE Carbon Capture LLC Address: 2301 Panorama Ave Place: Boulder, Colorado Zip: 80304 Region: Rockies Area Sector: Biofuels Product:...

  20. File:FormA2.pdf | Open Energy Information

    Open Energy Info (EERE)

    FormA2.pdf Jump to: navigation, search File File history File usage File:FormA2.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Full resolution...

  1. Categorical Exclusion Determinations: A2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A2 Categorical Exclusion Determinations: A2 Existing Regulations A2: Clarifying or administrative contract actions Contract interpretations, amendments, and modifications that are clarifying or administrative in nature. DOCUMENTS AVAILABLE FOR DOWNLOAD April 2, 2014 CX-012110: Categorical Exclusion Determination Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration October 1, 2012 CX-009195:

  2. Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship Environmental Protection Community Relations Plan Community Relations Plan Consultations, communications, agreements, and disagreements...

  3. Method and apparatus for data sampling

    DOE Patents [OSTI]

    Odell, D.M.C.

    1994-04-19

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples is described. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium. 6 figures.

  4. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  5. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  6. Method and apparatus for data sampling

    DOE Patents [OSTI]

    Odell, Daniel M. C. (Aiken, SC)

    1994-01-01

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium.

  7. Test report for slow rotation core sampling test

    SciTech Connect (OSTI)

    Ralston, G.L.

    1995-04-03

    This report documents the temperature increase experienced when core sampling equipment is rotated slowly with a relatively low downforce applied to the drill string (nominal 10 rpm/400 lb downforce). The test was carried out in close to worst-case conditions, rotating against a cement mixture in one test sequence, and a steel plate in the second test sequence.

  8. Characterization Of Sample HTF-13-13-128

    SciTech Connect (OSTI)

    Pareizs, J. M.

    2013-09-25

    Savannah River Remediation (SRR) has requested that Savannah River National Laboratory (SRNL) characterize a sample of Tank 13 in preparation for Sludge Batch 9 (SB9). A 200 mL sample of Tank 13 was received by SRNL on July 22, 2013 (Tank Farm sample ID HTF-13-13-128). Characterization of the sample to meet the requirements of the request is complete. Results include: visual observations; slurry and supernatant density; weight percent total and insoluble solids; supernatant characterization; total alpha, total beta, and several radionuclide analyses; and elemental analyses of the dried solids. The sample was very fluid. After settling overnight, there was a small layer of solids on the bottom of the sample container (a 250 mL HDPE bottle) with the remainder being clear supernatant. To better show the sludge solids relative to the overall sample, 25 mL of slurry was placed in a graduated cylinder and allowed to settle over a weekend (approximately 90 hours). The sludge layer was at the approximately 4 mL. The small visually observed quantity of insoluble solids was confirmed with a low weight percent insoluble solids of 0.94%.

  9. ANALYSIS OF THE TANK 6F FINAL CHARACTERIZATION SAMPLES-2012

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.; Shine, G.

    2012-06-28

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

  10. Analysis Of The Tank 6F Final Characterization Samples-2012

    SciTech Connect (OSTI)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

  11. Analysis of the Tank 6F Final Characterization Samples-2012

    SciTech Connect (OSTI)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2013-01-31

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm- 243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

  12. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  13. Template:SampleTemplate | Open Energy Information

    Open Energy Info (EERE)

    is the SampleTemplate template. It is designed for use by Sample Pages. To define a test page, please use this form. Parameters Awesomeness - The numeric level of awesomeness...

  14. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of air quality monitors within an exhaust stack. Nuclear facilities have three additional air sampling systems. LANL samples and analyzes air to assess effects on workers, the public, animals, and plants. As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. How we do it

  15. Inspection/Sampling Schedule | Department of Energy

    Energy Savers [EERE]

    Inspection/Sampling Schedule Inspection/Sampling Schedule Site Inspection and Water Sampling Schedules Note: The following schedules are subject to change without prior notice and will be updated periodically. Site Name Inspection Date Sampling Week Ambrosia Lake, NM, Disposal Site August 22, 2016 December 3, 2015 Bluewater, NM, Disposal Site August 22, 2016 December 2, 2015 May 23, 2016 BONUS, PR, Decommissioned Reactor Site No annual inspections N/A Burrell, PA, Disposal Site October 28, 2015

  16. Water Sampling (Healy, 1970) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Healy, 1970) Exploration Activity Details Location Unspecified Exploration...

  17. Water Sampling At International Geothermal Area, Philippines...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, Philippines (Wood, 2002) Exploration...

  18. Organically bound tritium analysis in environmental samples

    SciTech Connect (OSTI)

    Baglan, N.; Cossonnet, C.; Fournier, M.; Momoshima, N.; Ansoborlo, E.

    2015-03-15

    Organically bound tritium (OBT) has become of increased interest within the last decade, with a focus on its behaviour and also its analysis, which are important to assess tritium distribution in the environment. In contrast, there are no certified reference materials and no standard analytical method through the international organization related to OBT. In order to resolve this issue, an OBT international working group was created in May 2012. Over 20 labs from around the world participated and submitted their results for the first intercomparison exercise results on potato (Sep 2013). The samples, specially-prepared potatoes, were provided in March 2013 to each participant. Technical information and results from this first exercise are discussed here for all the labs which have realised the five replicates necessary to allow a reliable statistical treatment. The results are encouraging as the increased number of participating labs did not degrade the observed dispersion of the results for a similar activity level. Therefore, the results do not seem to depend on the analytical procedure used. From this work an optimised procedure can start to be developed to deal with OBT analysis and will guide subsequent planned OBT trials by the international group.

  19. Analysis Of The Tank 5F Final Characterization Samples-2011

    SciTech Connect (OSTI)

    Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  20. ANALYSIS OF THE TANK 5F FINAL CHARATERIZATION SAMPLES-2011

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-01-20

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  1. ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-08-03

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  2. Rotary Mode Core Sample System availability improvement

    SciTech Connect (OSTI)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D.; Cross, B.T.; Burkes, J.M.; Rogers, A.C.

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  3. Hawaii Revised Statute 523A-2, Definition of Mineral Resources...

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii Revised Statute 523A-2, Definition of Mineral Resources Citation...

  4. Structure and function of lysosomal ;#8203;phospholipase A2 and...

    Office of Scientific and Technical Information (OSTI)

    function of lysosomal ;8203;phospholipase A2 and ;8203;lecithin:cholesterol acyltransferase Citation Details In-Document Search Title: Structure and function of lysosomal...

  5. Optical method for the characterization of laterally patterned samples in integrated circuits

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2009-03-17

    Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.

  6. Optical method and system for the characterization of laterally-patterned samples in integrated circuits

    DOE Patents [OSTI]

    Maris, Humphrey J.

    2008-03-04

    Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.

  7. Optical method and system for the characterization of laterally-patterned samples in integrated circuits

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2011-02-22

    Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.

  8. Optical method for the characterization of laterally-patterned samples in integrated circuits

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2010-08-24

    Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.

  9. Optical method for the characterization of laterally-patterned samples in integrated circuits

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2001-01-01

    Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.

  10. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOE Patents [OSTI]

    Postma, A.K.

    1984-09-07

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  11. Air sampling in the workplace. Final report

    SciTech Connect (OSTI)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

  12. Reconstruction of Intensity From Covered Samples

    SciTech Connect (OSTI)

    Barabash, Rozaliya; Watkins, Thomas R; Meisner, Roberta Ann; Burchell, Timothy D; Rosseel, Thomas M

    2015-01-01

    The safe handling of activated samples requires containment and covering the sample to eliminate any potential for contamination. Subsequent characterization of the surface with x-rays ideally necessitates a thin film. While many films appear visually transparent, they are not necessarily x-ray transparent. Each film material has a unique beam attenuation and sometimes have amorphous peaks that can superimpose with those of the sample. To reconstruct the intensity of the underlying activated sample, the x-ray attenuation and signal due to the film needs to be removed from that of the sample. This requires the calculation of unique deconvolution parameters for the film. The development of a reconstruction procedure for a contained/covered sample is described.

  13. Data validation report for the 100-HR-3 Operable Unit first quarter 1994 groundwater sampling data

    SciTech Connect (OSTI)

    Biggerstaff, R.L.

    1994-06-24

    Westinghouse-Hanford has requested that a minimum of 20% of the total number of Sample Delivery Groups be validated for the 100-HR-3 Operable Unit First Quarter 1994 Groundwater Sampling Investigation. Therefore, the data from the chemical analysis of twenty-four samples from this sampling event and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. The samples were analyzed by Thermo-Analytic Laboratories (TMA) and Roy F. Weston Laboratories (WESTON) using US Environmental Protection Agency (EPA) CLP protocols. Sample analyses included: inorganics; and general chemical parameters. Forty-two samples were validated for radiochemical parameters by TMA and Teledyne.

  14. Disc valve for sampling erosive process streams

    DOE Patents [OSTI]

    Mrochek, John E. (Oak Ridge, TN); Dinsmore, Stanley R. (Norris, TN); Chandler, Edward W. (Knoxville, TN)

    1986-01-01

    A four-port disc valve for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of .alpha. silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions.

  15. LANSCE | Lujan Center | Chemical & Sample Prep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Charles Kelsey | ckelsey@lanl.gov | 505.665.5579 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact theLujan Center Experiment Coordinator: TBA Chemistry Laboratories High-Pressure Laboratory X-ray Laboratory Spectroscopy Laboratory Clean Room Laboratory Glove box - He atmosphere High-purity water Diamond

  16. Hanford Sampling Quality Management Plan (HSQMP)

    SciTech Connect (OSTI)

    Hyatt, J.E.

    1995-06-01

    HSQMP establishes quality requirements in response to DOE Order 5700. 6C and to 10 Code of Federal Regulations 830.120. HSQMP is designed to meet the needs of Richland Operations Office for controlling the quality of services provided by sampling operations. It is issued through the Analytical Services Program of the Waste Programs Division. This document describes the Environmental Sampling and Analysis Program activities considered to represent the best management activities necessary to achieve a sampling program with adequate control.

  17. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Policy Workplace Charging Challenge: Sample Workplace Charging Policy Review the policy guidelines used by one Workplace Charging Challenge partner to keep their...

  18. Workplace Charging Challenge: Sample Municipal Workplace Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV...

  19. Hanford analytical sample projections 1996--2001

    SciTech Connect (OSTI)

    Joyce, S.M.

    1996-06-26

    This document summarizes the biannual Hanford sample projections for fiscal years 1996 to 2001. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Analytical Services, Site Monitoring, and Industrial Hygiene. This information will be used by Hanford Analytical Services to assure that laboratories and resources are available and effectively utilized to meet these documented needs. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented.

  20. Bayesian Approaches to Adaptive Spatial Sampling

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    The purpose of this software is to support the design of spatial sampling data collection programs to delineate contamination footprints in response to an environmental contamination release.

  1. Surface Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Surface Water Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field...

  2. Surface Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff &...

  3. Colloid characterization and quantification in groundwater samples

    SciTech Connect (OSTI)

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples should be analyzed for colloid size and concentration shortly after they have been collected. A prolonged waiting period after sampling will affect the colloid size distribution as well as colloid concentration resulting from the changes of water chemical properties. The data also shows that sample containers, filter materials, and labware that are used for colloid analyses should be cleaned by specially treated low-colloid-containing water. Water used for sample dilution should be verified for total colloidal particle concentration. They then analyzed freshly collected groundwater from NTS wells ER-20-5{number_sign}1 and {number_sign}3. Results show that these groundwater samples have similar colloid concentrations and particle size distributions. For the particle size range between 50- and 200-nm, about ten trillion (1E10) colloidal particles per liter are present in these water samples. Most of these colloidal particles are less than 100 mm in size. For example, more than 98% of the colloids are smaller than 100 nm in size in the ER-20-5 {number_sign}1 sample. Furthermore, it was found that the smaller the sizes of colloid, the higher the colloid concentration present in the water. For another site at NTS, Cheshire, they had analyzed two zones of groundwater samples. For water samples collected from the lower water zone (near the underground detonation cavity about 3,700 feet of slanted depth from the surface), the colloid concentration was about 5E12 particles per liter. About 20 times less than the lower zone of total colloids was found in water samples collected from the upper aquifer (around 2,511 feet of slanted depth), although colloid size distributions from these two zones appear to be rather similar.

  4. Sampling probe for microarray read out using electrospray mass spectrometry

    DOE Patents [OSTI]

    Van Berkel, Gary J.

    2004-10-12

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  5. Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    None

    2009-11-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted hydrologic and natural gas sampling for the Gasbuggy, New Mexico, site on June 16, and 17, 2009. Hydrologic sampling consists of collecting water samples from water wells and surface water locations. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. The water well samples were analyzed for gamma-emitting radionuclides and tritium. Surface water samples were analyzed for tritium. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. Water samples were analyzed by ALS Laboratory Group in Fort Collins, Colorado, and natural gas samples were analyzed by Isotech Laboratories in Champaign, Illinois. Concentrations of tritium and gamma-emitting radionuclides in water samples collected in the vicinity of the Gasbuggy site continue to demonstrate that the sample locations have not been impacted by detonation-related contaminants. Results from the sampling of natural gas from producing wells demonstrate that the gas wells nearest the Gasbuggy site are not currently impacted by detonation-related contaminants. Annual sampling of the gas production wells nearest the Gasbuggy site for gas and produced water will continue for the foreseeable future. The sampling frequency of water wells and surface water sources in the surrounding area will be reduced to once every 5 years. The next hydrologic sampling event at water wells, springs, and ponds will be in 2014.

  6. Small-Angle Shubnikov-de Haas Measurements in a 2D Electron System: The

    Office of Scientific and Technical Information (OSTI)

    Effect of a Strong In-Plane Magnetic Field (Journal Article) | SciTech Connect Small-Angle Shubnikov-de Haas Measurements in a 2D Electron System: The Effect of a Strong In-Plane Magnetic Field Citation Details In-Document Search Title: Small-Angle Shubnikov-de Haas Measurements in a 2D Electron System: The Effect of a Strong In-Plane Magnetic Field Measurements in magnetic fields applied at small angles relative to the electron plane in silicon MOSFETs indicate a factor of 2 increase of the

  7. Modular microfluidic system for biological sample preparation

    DOE Patents [OSTI]

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  8. Disc valve for sampling erosive process streams

    DOE Patents [OSTI]

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1984-08-16

    This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.

  9. Draft Sample Collection Instrument | Department of Energy

    Office of Environmental Management (EM)

    Draft Sample Collection Instrument Draft Sample Collection Instrument Davis-Bacon Semi-annual Labor Compliance Report OMB Control Number 1910-New PDF icon dba_collection_instrument_mock_up.pdf More Documents & Publications SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Labor Standards/Wage and Hour Laws

  10. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  11. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  12. Sample injector for high pressure liquid chromatography

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  13. A2E High Fidelity Modeling: Strategic Planning Meetings

    SciTech Connect (OSTI)

    Barone, Matthew F.; Hammond, Steven; Sprague, Michael; Womble, David E.

    2015-10-01

    This report documents the combined work of the two meetings and serves as a key part of the foundation for the A2e/HFM effort for predictive modeling of whole wind plant physics.

  14. ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS

    SciTech Connect (OSTI)

    Edwards, T.; Hera, K.; Coleman, C.; Jones, M.; Wiedenman, B.

    2011-12-05

    Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1). This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from the two locations were compared to determine if the contents of the tank were well mixed. The Coliwasa sampler is a tube with a stopper at the bottom and is designed to obtain grab samples from specific locations within the drum contents. A position paper (4) was issued to address the prototypic flow loop issues and simulant selections. A statistically designed plan (5) was issued to address the total number of samples each sampler needed to pull, to provide the random order in which samples were pulled and to group samples for elemental analysis. The TTR required that the Isolok sampler perform as well as the Hydragard sampler during these tests to ensure the acceptability of the Isolok sampler for use in the DWPF sampling cells. Procedure No.L9.4-5015 was used to document the sample parameters and process steps. Completed procedures are located in R&D Engineering job folder 23269.

  15. Automated collection and processing of environmental samples

    DOE Patents [OSTI]

    Troyer, Gary L. (Richland, WA); McNeece, Susan G. (Richland, WA); Brayton, Darryl D. (Richland, WA); Panesar, Amardip K. (Kennewick, WA)

    1997-01-01

    For monitoring an environmental parameter such as the level of nuclear radiation, at distributed sites, bar coded sample collectors are deployed and their codes are read using a portable data entry unit that also records the time of deployment. The time and collector identity are cross referenced in memory in the portable unit. Similarly, when later recovering the collector for testing, the code is again read and the time of collection is stored as indexed to the sample collector, or to a further bar code, for example as provided on a container for the sample. The identity of the operator can also be encoded and stored. After deploying and/or recovering the sample collectors, the data is transmitted to a base processor. The samples are tested, preferably using a test unit coupled to the base processor, and again the time is recorded. The base processor computes the level of radiation at the site during exposure of the sample collector, using the detected radiation level of the sample, the delay between recovery and testing, the duration of exposure and the half life of the isotopes collected. In one embodiment, an identity code and a site code are optically read by an image grabber coupled to the portable data entry unit.

  16. Evaluating Radionuclide Air Emission Stack Sampling Systems

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.

    2002-12-16

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R&D) facilities for the U.S. Department of Energy at the Hanford Site, Washington. These facilities are subject to Clean Air Act regulations that require sampling of radionuclide air emissions from some of these facilities. A revision to an American National Standards Institute (ANSI) standard on sampling radioactive air emissions has recently been incorporated into federal and state regulations and a re-evaluation of affected facilities is being performed to determine the impact. The revised standard requires a well-mixed sampling location that must be demonstrated through tests specified in the standard. It also carries a number of maintenance requirements, including inspections and cleaning of the sampling system. Evaluations were performed in 2000 2002 on two PNNL facilities to determine the operational and design impacts of the new requirements. The evaluation included inspection and cleaning maintenance activities plus testing to determine if the current sampling locations meet criteria in the revised standard. Results show a wide range of complexity in inspection and cleaning activities depending on accessibility of the system, ease of removal, and potential impact on building operations (need for outages). As expected, these High Efficiency Particulate Air (HEPA)-filtered systems did not show deposition significant enough to cause concerns with blocking of the nozzle or other parts of the system. The tests for sampling system location in the revised standard also varied in complexity depending on accessibility of the sample site and use of a scale model can alleviate many issues. Previous criteria to locate sampling systems at eight duct diameters downstream and two duct diameters upstream of the nearest disturbances is no guarantee of meeting criteria in the revised standard. A computational fluid dynamics model was helpful in understanding flow and contaminant mixing in an exhaust system and may be useful to identify potential sampling locations in an exhaust system that are likely to meet criteria in the revised standard.

  17. Visual Sample Plan (VSP) - FIELDS Integration

    SciTech Connect (OSTI)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download instructions and software requirements for running the integrated package.

  18. Creating ensembles of decision trees through sampling

    DOE Patents [OSTI]

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  19. Spectroscopic diagnostics for bacteria in biologic sample

    DOE Patents [OSTI]

    El-Sayed, Mostafa A. (Atlanta, GA); El-Sayed, Ivan H. (Somerville, MA)

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  20. Disc valve for sampling erosive process streams

    DOE Patents [OSTI]

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1986-01-07

    A four-port disc valve is described for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of [alpha] silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions. 1 fig.

  1. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  2. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  3. EMPLOYMENT OF RELATIVES (NEPOTISM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMPLOYMENT OF RELATIVES (NEPOTISM) An applicant who is a relative of an employee of Oak Ridge Associated Universities (ORAU) will be considered for employment on the same basis as other candidates. However, applicants are obligated to inform the Employment Department of relatives who are ORAU employees. ORAU's nepotism policy places the following restrictions on employment of relatives: * An employee may not have a managerial or administrative relationship over a relative (this prohibition

  4. Waste Sampling and Characterization Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sampling and Characterization Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory...

  5. Surface sampling concentration and reaction probe

    DOE Patents [OSTI]

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  6. Sample Plan of Development | Open Energy Information

    Open Energy Info (EERE)

    Sample Plan of DevelopmentLegal Published NA Year Signed or Took Effect 2001 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  7. Form:SampleForm | Open Energy Information

    Open Energy Info (EERE)

    SampleForm Jump to: navigation, search Input the name of a Test Page below. If the resource already exists, you will be able to edit its information. AddEdit a Test Page The text...

  8. WRAP Module 1 sampling and analysis plan

    SciTech Connect (OSTI)

    Mayancsik, B.A.

    1995-03-24

    This document provides the methodology to sample, screen, and analyze waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing Module 1 facility. This includes Low-Level Waste, Transuranic Waste, Mixed Waste, and Dangerous Waste.

  9. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  10. Generation of High Density Sample Array

    Energy Science and Technology Software Center (OSTI)

    1995-08-15

    An analytical procedure was developed for manipulation of a large number of samples using the Beckman BIOMEK 1000 workstation. The RUR software was written to create a number of different script files for control of robotic movement commands, which are read and executed via the Beckman Biorun3 program. This setup has the capability of creating arrays of as many as one million samples per day.

  11. Sampling Report for Parent Drum S855793

    Office of Environmental Management (EM)

    6999 L L N L - X X X X - X X X X X Sampling Report for Parent Drum S855793 UNCLASSIFIED Forensic Science Center January 6, 2015 Sampling Report for Parent Drum S855793 Lawrence Livermore National Laboratory UNCLASSIFIED ii Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or

  12. Laboratory begins environmental sampling in townsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory begins environmental sampling Laboratory begins environmental sampling in townsite Environmental assessment of areas that have been or could have been affected by Laboratory operations from the days of the Manhattan Project to the early 1970s. September 25, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources,

  13. Rapid determination of actinides in asphalt samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  14. Rapid determination of actinides in seawater samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomoreseparate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 12 weeks and provide chemical yields of ~3060 %. This new sample preparation method can be performed in 48 h with tracer yields of ~8595 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.less

  15. Rapid determination of actinides in asphalt samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  16. Sampling Report for August 15, 2014 Waste Isolation Pilot Plant Samples |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sampling Report for August 15, 2014 Waste Isolation Pilot Plant Samples Sampling Report for August 15, 2014 Waste Isolation Pilot Plant Samples This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team (TAT) has undertaken a deliberative investigation process to understand and determine the cause

  17. Sampling and analysis plan for canister liquid and gas sampling at 105 KW fuel storage basin

    SciTech Connect (OSTI)

    Trimble, D.J.

    1996-08-09

    This Sampling and Analysis Plan describes the equipment,procedures and techniques for obtaining gas and liquid samples from sealed K West fuel canisters. The analytical procedures and quality assurance requirements for the subsequent laboratory analysis of the samples are also discussed.

  18. A General Investigation of Optimized Atmospheric Sample Duration

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Miley, Harry S.

    2012-11-28

    ABSTRACT The International Monitoring System (IMS) consists of up to 80 aerosol and xenon monitoring systems spaced around the world that have collection systems sensitive enough to detect nuclear releases from underground nuclear tests at great distances (CTBT 1996; CTBTO 2011). Although a few of the IMS radionuclide stations are closer together than 1,000 km (such as the stations in Kuwait and Iran), many of them are 2,000 km or more apart. In the absence of a scientific basis for optimizing the duration of atmospheric sampling, historically scientists used a integration times from 24 hours to 14 days for radionuclides (Thomas et al. 1977). This was entirely adequate in the past because the sources of signals were far away and large, meaning that they were smeared over many days by the time they had travelled 10,000 km. The Fukushima event pointed out the unacceptable delay time (72 hours) between the start of sample acquisition and final data being shipped. A scientific basis for selecting a sample duration time is needed. This report considers plume migration of a nondecaying tracer using archived atmospheric data for 2011 in the HYSPLIT (Draxler and Hess 1998; HYSPLIT 2011) transport model. We present two related results: the temporal duration of the majority of the plume as a function of distance and the behavior of the maximum plume concentration as a function of sample collection duration and distance. The modeled plume behavior can then be combined with external information about sampler design to optimize sample durations in a sampling network.

  19. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOE Patents [OSTI]

    Apley, Walter J. (Pasco, WA); Cliff, William C. (Richland, WA); Creer, James M. (Richland, WA)

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  20. STP K Basin Sludge Sample Archive at the Pacific Northwest National Laboratory FY2014

    SciTech Connect (OSTI)

    Fiskum, Sandra K.; Smoot, Margaret R.; Schmidt, Andrew J.

    2014-06-01

    The Pacific Northwest National Laboratory (PNNL) currently houses 88 samples (~10.5 kg) of K Basin sludge (81 wet and seven dry samples) on behalf of the Sludge Treatment Project (STP), which is managed for the U.S. Department of Energy (DOE) by the CH2M Hill Plateau Remediation Company (CHPRC). Selected samples are intended to serve, in part, as sentinels to enhance understanding of sludge properties after long-term storage, and thus enhance understanding of sludge behavior following transfer to sludge transfer and storage containers (STSCs) and storage at the Hanford 200 Area central plateau. In addition, remaining samples serve in contingency for future testing requirements. At PNNL, the samples are tracked and maintained under a prescriptive and disciplined monthly sample-monitoring program implemented by PNNL staff. This report updates the status of the K Basin archive sludge sample inventory to April 2014. The previous inventory status report, PNNL 22245 (Fiskum et al. 2013, limited distribution report), was issued in February of 2013. This update incorporates changes in the inventory related to repackaging of 17 samples under test instructions 52578 TI052, K Basin Sludge Sample Repackaging for Continued Long Term Storage, and 52578 TI053, K Basin Sludge Sample Repackaging Post-2014 Shear Strength Measurements. Note that shear strength measurement results acquired in 2014 are provided separately. Specifically, this report provides the following: a description of the K Basin sludge sample archive program and the sample inventory a summary and images of the samples that were repackaged in April 2014 up-to-date images and plots of the settled density and water loss from all applicable samples in the inventory updated sample pedigree charts, which provide a roadmap of the genesis and processing history of each sample in the inventory occurrence and deficiency reports associated with sample storage and repackaging

  1. Germanium-76 Sample Analysis: Revision 3

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Zhu, Zihua; Engelhard, Mark H.

    2011-09-19

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0{nu}{beta}{beta}). The DEMONSTRATOR will utilize 76Ge from Russia. The first one-gram sample was received from the supplier for analysis on April 24, 2011. The second one-gram sample was received from the supplier for analysis on July 12, 2011. The third sample, which came from the first large shipment of germanium from the vendor, was received from Oak Ridge National Laboratory (ORNL) on September 13, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of these analyses are reported here. The isotopic composition of a sample of natural germanium was also measured twice. Differences in the result between these two measurements led to a re-measurement of the second 76Ge sample.

  2. Analytical instrument with apparatus for sample concentrating

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL)

    1989-01-01

    A system for analysis of trace concentrations of contaminants in air includes a portable liquid chromatograph and a preconcentrator for the contaminants to be analyzed. The preconcentrator includes a sample bag having an inlet valve and an outlet valve for collecting an air sample. When the sample is collected the sample bag is connected in series with a sorbing apparatus in a recirculation loop. The sorbing apparatus has an inner gas-permeable container containing a sorbent material and an outer gas-impermeable container. The sample is circulated through the outer container and around the inner container for trapping and preconcentrating the contaminants in the sorbent material. The sorbent material may be a liquid having the same composition as the mobile phase of the chromatograph for direct injection thereinto. Alternatively, the sorbent material may be a porous, solid body, to which mobile phase liquid is added after preconcentration of the contaminants for dissolving the contaminants, the liquid solution then being withdrawn for injection into the chromatograph.

  3. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    SciTech Connect (OSTI)

    Bannochie, C.; Crawford, C.

    2013-06-18

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facilitys Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPFs proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  4. Sample Desorption/Onization From Mesoporous Silica

    DOE Patents [OSTI]

    Iyer, Srinivas (Los Alamos, NM); Dattelbaum, Andrew M. (Los Alamos, NM)

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.

  5. Sample collection system for gel electrophoresis

    DOE Patents [OSTI]

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  6. Analytical laboratory and mobile sampling platform

    SciTech Connect (OSTI)

    Stetzenbach, K.; Smiecinski, A.

    1996-04-30

    This is the final report for the Analytical Laboratory and Mobile Sampling Platform project. This report contains only major findings and conclusions resulting from this project. Detailed reports of all activities performed for this project were provided to the Project Office every quarter since the beginning of the project. This report contains water chemistry data for samples collected in the Nevada section of Death Valley National Park (Triangle Area Springs), Nevada Test Site springs, Pahranagat Valley springs, Nevada Test Site wells, Spring Mountain springs and Crater Flat and Amargosa Valley wells.

  7. RAPID DETERMINATION OF RADIOSTRONTIUM IN SEAWATER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-01-16

    A new method for the determination of radiostrontium in seawater samples has been developed at the Savannah River National Laboratory (SRNL) that allows rapid preconcentration and separation of strontium and yttrium isotopes in seawater samples for measurement. The new SRNL method employs a novel and effective pre-concentration step that utilizes a blend of calcium phosphate with iron hydroxide to collect both strontium and yttrium rapidly from the seawater matrix with enhanced chemical yields. The pre-concentration steps, in combination with rapid Sr Resin and DGA Resin cartridge separation options using vacuum box technology, allow seawater samples up to 10 liters to be analyzed. The total {sup 89}Sr + {sup 90}Sr activity may be determined by gas flow proportional counting and recounted after ingrowth of {sup 90}Y to differentiate {sup 89}Sr from {sup 90}Sr. Gas flow proportional counting provides a lower method detection limit than liquid scintillation or Cerenkov counting and allows simultaneous counting of samples. Simultaneous counting allows for longer count times and lower method detection limits without handling very large aliquots of seawater. Seawater samples up to 6 liters may be analyzed using Sr Resin for {sup 89}Sr and {sup 90}Sr with a Minimum Detectable Activity (MDA) of 1-10 mBq/L, depending on count times. Seawater samples up to 10 liters may be analyzed for {sup 90}Sr using a DGA Resin method via collection and purification of {sup 90}Y only. If {sup 89}Sr and other fission products are present, then {sup 91}Y (beta energy 1.55 MeV, 58.5 day half-life) is also likely to be present. {sup 91}Y interferes with attempts to collect {sup 90}Y directly from the seawater sample without initial purification of Sr isotopes first and {sup 90}Y ingrowth. The DGA Resin option can be used to determine {sup 90}Sr, and if {sup 91}Y is also present, an ingrowth option with using DGA Resin again to collect {sup 90}Y can be performed. An MDA for {sup 90}Sr of <1 mBq/L for an 8 hour count may be obtained using 10 liter seawater sample aliquots.

  8. Performance evaluation soil samples utilizing encapsulation technology

    DOE Patents [OSTI]

    Dahlgran, J.R.

    1999-08-17

    Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

  9. Performance evaluation soil samples utilizing encapsulation technology

    DOE Patents [OSTI]

    Dahlgran, James R. (Idaho Falls, ID)

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  10. System and method for extracting a sample from a surface

    DOE Patents [OSTI]

    Van Berkel, Gary; Covey, Thomas

    2015-06-23

    A system and method is disclosed for extracting a sample from a sample surface. A sample is provided and a sample surface receives the sample which is deposited on the sample surface. A hydrophobic material is applied to the sample surface, and one or more devices are configured to dispense a liquid on the sample, the liquid dissolving the sample to form a dissolved sample material, and the one or more devices are configured to extract the dissolved sample material from the sample surface.

  11. Sample Contract Language for Construction Using Energy-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sample Contract Language for Construction Using Energy-Efficient Products Sample Contract Language for Construction Using Energy-Efficient Products Document covers sample language ...

  12. Stack sampling apparatus (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Stack sampling apparatus Citation Details In-Document Search Title: Stack sampling apparatus An apparatus for obtaining samples from a structure includes a support member, ...

  13. Computed microtomography of reservoir core samples

    SciTech Connect (OSTI)

    Coles, M.E.; Muegge, E.L.; Spanne, P.; Jones, K.W.

    1995-03-01

    X-ray computed tomography (CT) is often utilized to evaluate and characterize structural characteristics within reservoir core material systems. Generally, medical CT scanners have been employed because of their availability and ease of use. Of interest lately has been the acquisition of three-dimensional, high resolution descriptions of rock and pore structures for characterization of the porous media and for modeling of single and multiphase transport processes. The spatial resolution of current medical CT scanners is too coarse for pore level imaging of most core samples. Recently developed high resolution computed microtomography (CMT) using synchrotron X-ray sources is analogous to conventional medical CT scanning and provides the ability to obtain three-dimensional images of specimens with a spatial resolution on the order of micrometers. Application of this technique to the study of core samples provides two- and three-dimensional high resolution description of pore structure and mineral distributions. Pore space and interconnectivity is accurately characterized and visualized. Computed microtomography data can serve as input into pore-level simulation techniques. A generalized explanation of the technique is provided, with comparison to conventional CT scanning techniques and results. Computed microtomographic results of several sandstone samples are presented and discussed. Bulk porosity values and mineralogical identification were obtained from the microtomograms and compared with gas porosity and scanning electron microscope results on tandem samples.

  14. Negligible sample heating from synchrotron infrared beam

    SciTech Connect (OSTI)

    Martin, Michael C.; Tsvetkova, Nelly M.; Crowe, John H.; McKinney, Wayne R.

    2000-08-30

    The use of synchrotron sources for infrared (IR) spectromicroscopy provides greatly increased brightness enabling high-quality IR measurements at diffraction-limited spatial resolutions. This permits synchrotron-based IR spectromicroscopy to be applied to biological applications at spatial resolutions of the order of the size of a single mammalian cell. The question then arises, ''Does the intense synchrotron beam harm biological samples?'' Mid-IR photons are too low in energy to break bonds directly, however they could cause damage to biological molecules due to heating. In this work, we present measurements showing negligible sample heating effects from a diffraction-limited synchrotron IR source. The sample used is fully hydrated lipid bilayers composed of dipalmitoylphosphatidylcholine(DPPC), which undergoes a phase transition from a gel into a liquid-crystalline state at about 315 K during heating. Several IR-active vibrational modes clearly shift in frequency when the sample passes through the phase transition. We calibrate and then use these shifting vibrational modes as an in situ temperature sensor.

  15. Core sample truck improvement test report

    SciTech Connect (OSTI)

    Cockrell, A.B.

    1994-10-14

    This report summarizes the bit testing results done under test plan WHC-SD-WM-TP-236. The conclusions and recommendations state the drill bit that gives the best overall results and will be used in the field for push mode sampling.

  16. Hanford Sampling Quality Management Plan (HSQMP)

    SciTech Connect (OSTI)

    Hyatt, J.E.

    1995-04-28

    This document provides a management tool for evaluating and designing the appropriate elements of a field sampling program. This document provides discussion of the elements of a program and is to be used as a guidance document during the preparation of project and/or function specific documentation. This document does not specify how a sampling program shall be organized. The HSQMP is to be used as a companion document to the Hanford Analytical Services Quality Assurance Plan (HASQAP) DOE/RL-94-55. The generation of this document was enhanced by conducting baseline evaluations of current sampling organizations. Valuable input was received from members of field and Quality Assurance organizations. The HSQMP is expected to be a living document. Revisions will be made as regulations and or Hanford Site conditions warrant changes in the best management practices. Appendices included are: summary of the sampling and analysis work flow process, a user`s guide to the Data Quality Objective process, and a self-assessment checklist.

  17. Hanford site transuranic waste sampling plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-13

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed.

  18. Sonochemical Digestion of Soil and Sediment Samples

    SciTech Connect (OSTI)

    Sinkov, Sergei I.; Lumetta, Gregg J.

    2006-10-12

    This work was performed as part of a broader effort to automate analytical methods for determination of plutonium and other radioisotopes in environmental samples. The work described here represented a screening study to determine the potential for applying ultrasonic irradiation to sample digestion. Two standard reference materials (SRMs) were used in this study: Columbia River Sediment and Rocky Flats Soil. The key experiments performed are listed below along with a summary of the results. The action of nitric acid, regardless of its concentration and liquid-to-solid ratio, did not achieve dissolution efficiency better that 20%. The major fraction of natural organic matter (NOM) remained undissolved by this treatment. Sonication did not result in improved dissolution for the SRMs tested. The action of hydrofluoric acid at concentrations of 8 M and higher achieved much more pronounced dissolution (up to 97% dissolved for the Rocky Flats soil sample and up to 78% dissolved for the Columbia River Sediment sample). Dissolution efficiency remains constant for solid-to-liquid ratios of up to 0.05 to 1 and decreases for the higher loadings of the solid phase. Sonication produced no measurable effect in improving the dissolution of the samples compared with the control digestion experiments. Combined treatment of the SRM by mixtures of HNO3 and HF showed inferior performance compared with the HF alone. An adverse effect of sonication was found for the Rocky Flats soil material, which became more noticeable at higher HF concentrations. Sonication of the Columbia River sediment samples had no positive effect in the mixed acid treatment. The results indicate that applying ultrasound in an isolated cup horn configuration does not offer any advantage over conventional ''heat and mix'' treatment for dissolution of the soil and sediment based on the SRM examined here. This conclusion, however, is based on an approach that uses gravimetric analysis to determine gross dissolution efficiency. This approach does not allow any conclusion regarding the possible advantage of sonication in selective dissolution of plutonium traces incorporated into an inorganic or organic fraction of the samples.

  19. Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links Related Links Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size

  20. ARM - Relative Humidity Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsRelative Humidity Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Relative Humidity Calculations Heat Index is an index that combines air temperature and relative humidity to estimate how hot it actually feels. The human body cools off through perspiration, which

  1. Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Environmental Protection » Community Relations Plan Community Relations Plan Consultations, communications, agreements, and disagreements between the Permittees and the public are documented during the Hazardous Waste Facility Permit Community Relations Plan development. Contact Environmental Communication & Public Involvement PO Box 1663, MS M996 Los Alamos, NM 87544 (505) 667-0216 Email We welcome your comments and suggestions on how

  2. ARM - Related Data Sets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govDataRelated Data Sets Related Data Sets Numerous ARM collaborators compile and share similar types of data from their own research efforts. The links below provide a lengthy selection of these related data sets. AmeriFlux network, 120 sites-including ACRF-operating across North, Central, and South America CAGEX Database, from the cooperative program between CERES, ARM, and GEWEX CEPEX Integrated Data System (CIDS), from the Center for Clouds, Chemistry and Climate (C4). An interactive access

  3. Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-11-01

    This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

  4. Fermilab Today - Related Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Content Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO Classifieds Director's Corner Physics in a Nutshell Frontier Science Result Tip of the Week...

  5. Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus

    DOE Patents [OSTI]

    Green, Lanny A. (Knoxville, TN); Heck, Jr., Joaquim L. (Knoxville, TN)

    1987-01-01

    A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.

  6. Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus

    DOE Patents [OSTI]

    Green, L.A.; Heck, J.L. Jr.

    1985-04-23

    A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.

  7. Water Sampling (Lewicki & Oldenburg, 2004) | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling (Lewicki & Oldenburg, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Lewicki & Oldenburg, 2004) Exploration...

  8. WIPP - Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Categories Project Participants TRU Waste Sites Oversight Other Related Links Project Participants US Department of Energy - Albuquerque Operations Office US Department of Energy - Headquarters Nuclear Waste Partnership LLC Los Alamos National Laboratory Sandia National Laboratories Portage - Carlsbad Field Office Technical Assistance Contractor Skylla Engineering SM Stoller Corporation L&M Technologies, Inc. Transuranic Back to top Waste Sites Argonne National Laboratory

  9. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  10. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  11. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOE Patents [OSTI]

    Pines, Alexander (Berkeley, CA); Samoson, Ago (Tallinn, SU)

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  12. Well purge and sample apparatus and method

    DOE Patents [OSTI]

    Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

    1995-10-24

    The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

  13. Well purge and sample apparatus and method

    DOE Patents [OSTI]

    Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.; Gustafson, Gregg S.

    1995-01-01

    The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

  14. Transuranic waste characterization sampling and analysis plan

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    Los Alamos National Laboratory (the Laboratory) is located approximately 25 miles northwest of Santa Fe, New Mexico, situated on the Pajarito Plateau. Technical Area 54 (TA-54), one of the Laboratory`s many technical areas, is a radioactive and hazardous waste management and disposal area located within the Laboratory`s boundaries. The purpose of this transuranic waste characterization, sampling, and analysis plan (CSAP) is to provide a methodology for identifying, characterizing, and sampling approximately 25,000 containers of transuranic waste stored at Pads 1, 2, and 4, Dome 48, and the Fiberglass Reinforced Plywood Box Dome at TA-54, Area G, of the Laboratory. Transuranic waste currently stored at Area G was generated primarily from research and development activities, processing and recovery operations, and decontamination and decommissioning projects. This document was created to facilitate compliance with several regulatory requirements and program drivers that are relevant to waste management at the Laboratory, including concerns of the New Mexico Environment Department.

  15. A2 Processor User's Manual for Blue Gene/Q

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A2 Processor User's Manual for Blue Gene/Q Note: This document and the information it contains are provided on an as-is basis. There is no plan for providing for future updates and corrections to this document. October 23, 2012 Version 1.3 Title Page ® Copyright and Disclaimer © Copyright International Business Machines Corporation 2010, 2012 Printed in the United States of America October 2012 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

  16. Radiation absorption properties of different plaster samples

    SciTech Connect (OSTI)

    Akkurt, Iskender; Guenoglu, Kadir; Mavi, Betuel; K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I ncarslan, Semsettin; Seven, Aysun

    2012-09-06

    Although the plaster is one of the oldest known synthetic building materials, nowadays, it is used as interior coating of walls and ceilings of buildings. Thus measuring its radiation shielding properties is vital. For this purpose, radiation absorption properties of different plaster samples in this study. The measurements have been performed using gamma spectrometer system which connected to 3'' Multiplication-Sign 3''NaI (TI) detector.

  17. Geoscience Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Equipment Inventory « Geoscience Laboratory Title Equipment Type Description Coy Anaerobic Chamber Inert Atmosphere Chamber Coy anaerobic chamber (Type C, model 7100-000) with auto airlock for wet and dry sample preparations, 5% H2/95% N2 mix atmosphere, and auto injection system. Fisher Scientific General Purpose Refrigerator Temperature Control Fisher Scientific General Purpose refrigerator. Fisher Scientific Isotemp Freezer Temperature Control Fisher Scientific Isotemp Freezer.

  18. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove

  19. Sample Employee Survey for Workplace Charging Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKPLACE CHARGING CHALLENGE Sample Employee Survey for Workplace Charging Planning Plug-in electric vehicles (PEVs) use electricity as either their primary fuel or to improve fuel efficiency. Fifteen new PEVs are expected for market availability in 2013, expanding driver options. We are considering the installation of charging infrastructure to assist employees who drive PEVs to work. Your responses to this survey will be used to determine employee interest in this benefit. Participation in

  20. Sample Forms | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sample Forms | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  1. Method for testing earth samples for contamination by organic contaminants

    DOE Patents [OSTI]

    Schabron, J.F.

    1996-10-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

  2. Method for testing earth samples for contamination by organic contaminants

    DOE Patents [OSTI]

    Schabron, John F. (Laramie, WY)

    1996-01-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants.

  3. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, David J. (Albuquerque, NM); McNamee, Michael J. (Albuquerque, NM)

    1986-01-01

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer, a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  4. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  5. CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES

    SciTech Connect (OSTI)

    Hay, M.; Reboul, S.

    2012-04-16

    The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitrate, sodium nitrite, gibbsite, hydrated sodium bicarbonate, and muscovite. Based on the weight of solids remaining at the end of the test, the water leaching test results indicate approximately 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and {approx}1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The preliminary data on the oxalic acid leaching test indicate the three acid contacts at 45 C dissolved from {approx}34-47% of the solids. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.

  6. Field sampling and selecting on-site analytical methods for explosives in soil

    SciTech Connect (OSTI)

    Crockett, A.B.; Craig, H.D.; Jenkins, T.F.; Sisk, W.E.

    1996-12-01

    A large number of defense-related sites are contaminated with elevated levels of secondary explosives. Levels of contamination range from barely detectable to levels above 10% that need special handling because of the detonation potential. Characterization of explosives-contaminated sites is particularly difficult because of the very heterogeneous distribution of contamination in the environment and within samples. To improve site characterization, several options exist including collecting more samples, providing on-site analytical data to help direct the investigation, compositing samples, improving homogenization of the samples, and extracting larger samples. This publication is intended to provide guidance to Remedial Project Managers regarding field sampling and on-site analytical methods for detecting and quantifying secondary explosive compounds in soils, and is not intended to include discussions of the safety issues associated with sites contaminated with explosive residues.

  7. ARM - Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Related Links TWP-ICE Home Tropical Western Pacific Home ARM Data Discovery Browse Data Post-Experiment Data Sets Weather Summary (pdf, 6M) New York Workshop Presentations Experiment Planning TWP-ICE Proposal Abstract Detailed Experiment Description Science Plan (pdf, 1M) Operations Plan (pdf, 321K) Maps Contact Info Related Links Daily Report Report Archives Press Media Coverage TWP-ICE Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <=""

  8. Paducah Community Relations Plan

    Broader source: Energy.gov [DOE]

    The Paducah Community Relations Plan is a primary document of the FFA that directs the comprehensive remediation of the PGDP site. The Paducah CRP describes how DOE will provide opportunities for...

  9. Measurement uncertainty relations

    SciTech Connect (OSTI)

    Busch, Paul; Lahti, Pekka; Werner, Reinhard F.

    2014-04-15

    Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order ? rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases, the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.

  10. Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Relations Plan Community Relations Plan The Laboratory maintains an open working relationship with communities and interested members of the public. August 1, 2013 Guests listen to Lab historian Ellen McGhee on tour of historical sites Guests listen to Laboratory historian Ellen McGhee on a tour of historical sites. What the plan does Establishes a productive government-to-government relationship with local tribes and pueblos Keeps communities and interested members of the public

  11. Simulating a Nationally Representative Housing Sample Using EnergyPlus

    SciTech Connect (OSTI)

    Hopkins, Asa S.; Lekov, Alex; Lutz, James; Rosenquist, Gregory; Gu, Lixing

    2011-03-04

    This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies. The RECS contains information regarding the construction and location of each sampled home, as well as its appliances and other energy-using equipment. We combined this data with the home simulation prototypes developed by Huang et al. to simulate homes that match the RECS sample wherever possible. Where data was not available, we used distributions, calibrated using the RECS energy use data. Each home was assigned a best-fit location for the purposes of weather and some construction characteristics. RECS provides some detail on the type and age of heating, ventilation, and air-conditioning (HVAC) equipment in each home; we developed EnergyPlus models capable of reproducing the variety of technologies and efficiencies represented in the national sample. This includes electric, gas, and oil furnaces, central and window air conditioners, central heat pumps, and baseboard heaters. We also developed a model of duct system performance, based on in-home measurements, and integrated this with fan performance to capture the energy use of single- and variable-speed furnace fans, as well as the interaction of duct and fan performance with the efficiency of heating and cooling equipment. Comparison with RECS revealed that EnergyPlus did not capture the heating-side behavior of heat pumps particularly accurately, and that our simple oil furnace and boiler models needed significant recalibration to fit with RECS. Simulating the full RECS sample on a single computer would take many hours, so we used the 'cloud computing' services provided by Amazon.com to simulate dozens of homes at once. This enabled us to simulate the full RECS sample, including multiple versions of each home to evaluate the impact of marginal changes, in less than 3 hours. Once the tool was calibrated, we were able to address several policy questions. We made a simple measurement of the heat replacement effect and showed that the net effect of heat replacement on primary energy use is likely to be less than 5%, relative to appliance-only measures of energy savings. Fuel switching could be significant, however. We also evaluated the national and regional impacts of a variety of 'overnight' changes in building characteristics or occupant behavior, including lighting, home insulation and sealing, HVAC system efficiency, and thermostat settings. For example, our model shows that the combination of increased home insulation and better sealed building shells could reduce residential natural gas use by 34.5% and electricity use by 6.5%, and a 1 degree rise in summer thermostat settings could save 2.1% of home electricity use. These results vary by region, and we present results for each U.S. Census division. We conclude by offering proposals for future work to improve the tool. Some proposed future work includes: comparing the simulated energy use data with the monthly RECS bill data; better capturing the variation in behavior between households, especially as it relates to occupancy and schedules; improving the characterization of recent construction and its regional variation; and extending the general framework of this simulation tool to capture multifamily housing units, such as apartment buildings.

  12. Characterization Data Package for Containerized Sludge Samples Collected from Engineered Container SCS-CON-210

    SciTech Connect (OSTI)

    Fountain, Matthew S.; Fiskum, Sandra K.; Baldwin, David L.; Daniel, Richard C.; Bos, Stanley J.; Burns, Carolyn A.; Carlson, Clark D.; Coffey, Deborah S.; Delegard, Calvin H.; Edwards, Matthew K.; Greenwood, Lawrence R.; Neiner, Doinita; Oliver, Brian M.; Pool, Karl N.; Schmidt, Andrew J.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.; Soderquist, Chuck Z.; Thompson, Christopher J.; Trang-Le, Truc LT; Urie, Michael W.

    2013-09-10

    This data package contains the K Basin sludge characterization results obtained by Pacific Northwest National Laboratory during processing and analysis of four sludge core samples collected from Engineered Container SCS-CON-210 in 2010 as requested by CH2M Hill Plateau Remediation Company. Sample processing requirements, analytes of interest, detection limits, and quality control sample requirements are defined in the KBC-33786, Rev. 2. The core processing scope included reconstitution of a sludge core sample distributed among four to six 4-L polypropylene bottles into a single container. The reconstituted core sample was then mixed and subsampled to support a variety of characterization activities. Additional core sludge subsamples were combined to prepare a container composite. The container composite was fractionated by wet sieving through a 2,000 micron mesh and a 500-micron mesh sieve. Each sieve fraction was sampled to support a suite of analyses. The core composite analysis scope included density determination, radioisotope analysis, and metals analysis, including the Waste Isolation Pilot Plant Hazardous Waste Facility Permit metals (with the exception of mercury). The container composite analysis included most of the core composite analysis scope plus particle size distribution, particle density, rheology, and crystalline phase identification. A summary of the received samples, core sample reconstitution and subsampling activities, container composite preparation and subsampling activities, physical properties, and analytical results are presented. Supporting data and documentation are provided in the appendices. There were no cases of sample or data loss and all of the available samples and data are reported as required by the Quality Assurance Project Plan/Sampling and Analysis Plan.

  13. Sample Results From Tank 48H Samples HTF-48-14-158, -159, -169, and -170

    SciTech Connect (OSTI)

    Peters, T.; Hang, T.

    2015-04-28

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 48H in support of determining the cause for the unusually high dose rates at the sampling points for this tank. A set of two samples was taken from the quiescent tank, and two additional samples were taken after the contents of the tank were mixed. The results of the analyses of all the samples show that the contents of the tank have changed very little since the analysis of the previous sample in 2012. The solids are almost exclusively composed of tetraphenylborate (TPB) salts, and there is no indication of acceleration in the TPB decomposition. The filtrate composition shows a moderate increase in salt concentration and density, which is attributable to the addition of NaOH for the purposes of corrosion control. An older modeling simulation of the TPB degradation was updated, and the supernate results from a 2012 sample were run in the model. This result was compared to the results from the 2014 recent sample results reported in this document. The model indicates there is no change in the TPB degradation from 2012 to 2014. SRNL measured the buoyancy of the TPB solids in Tank 48H simulant solutions. It was determined that a solution of density 1.279 g/mL (~6.5M sodium) was capable of indefinitely suspending the TPB solids evenly throughout the solution. A solution of density 1.296 g/mL (~7M sodium) caused a significant fraction of the solids to float on the solution surface. As the experiments could not include the effect of additional buoyancy elements such as benzene or hydrogen generation, the buoyancy measurements provide an upper bound estimate of the density in Tank 48H required to float the solids.

  14. Solvent Hold Tank Sample Results for MCU-15-556-557-558. March 2015 Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-05-04

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-556, MCU-15-557, and MCU-15-558), pulled on 03/16/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-556-557-558 indicated a low concentration (~ 78 % of nominal) of the suppressor (TiDG) and concentrations of the extractant (MaxCalix), and of the modifier (CS-7SB) in the solvent that were slightly lower than nominal. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient for continuing operation without adding a trim at this time. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). However, the p-nut vials that delivered the samples contained small (1 mm) droplets of oxidized modifier and amides (as detected by the FTIR analysis). In addition, up to 21 microgram of mercury per gram of solvent (or 17.4 g/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  15. A BASIS FOR MODIFYING THE TANK 12 COMPOSITE SAMPLING DESIGN

    SciTech Connect (OSTI)

    Shine, G.

    2014-11-25

    The SRR sampling campaign to obtain residual solids material from the Savannah River Site (SRS) Tank Farm Tank 12 primary vessel resulted in obtaining appreciable material in all 6 planned source samples from the mound strata but only in 5 of the 6 planned source samples from the floor stratum. Consequently, the design of the compositing scheme presented in the Tank 12 Sampling and Analysis Plan, Pavletich (2014a), must be revised. Analytical Development of SRNL statistically evaluated the sampling uncertainty associated with using various compositing arrays and splitting one or more samples for compositing. The variance of the simple mean of composite sample concentrations is a reasonable standard to investigate the impact of the following sampling options. Composite Sample Design Option (a). Assign only 1 source sample from the floor stratum and 1 source sample from each of the mound strata to each of the composite samples. Each source sample contributes material to only 1 composite sample. Two source samples from the floor stratum would not be used. Composite Sample Design Option (b). Assign 2 source samples from the floor stratum and 1 source sample from each of the mound strata to each composite sample. This infers that one source sample from the floor must be used twice, with 2 composite samples sharing material from this particular source sample. All five source samples from the floor would be used. Composite Sample Design Option (c). Assign 3 source samples from the floor stratum and 1 source sample from each of the mound strata to each composite sample. This infers that several of the source samples from the floor stratum must be assigned to more than one composite sample. All 5 source samples from the floor would be used. Using fewer than 12 source samples will increase the sampling variability over that of the Basic Composite Sample Design, Pavletich (2013). Considering the impact to the variance of the simple mean of the composite sample concentrations, the recommendation is to construct each sample composite using four or five source samples. Although the variance using 5 source samples per composite sample (Composite Sample Design Option (c)) was slightly less than the variance using 4 source samples per composite sample (Composite Sample Design Option (b)), there is no practical difference between those variances. This does not consider that the measurement error variance, which is the same for all composite sample design options considered in this report, will further dilute any differences. Composite Sample Design Option (a) had the largest variance for the mean concentration in the three composite samples and should be avoided. These results are consistent with Pavletich (2014b) which utilizes a low elevation and a high elevation mound source sample and two floor source samples for each composite sample. Utilizing the four source samples per composite design, Pavletich (2014b) utilizes aliquots of Floor Sample 4 for two composite samples.

  16. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    SciTech Connect (OSTI)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

  17. Universal nucleic acids sample preparation method for cells, spores and their mixture

    DOE Patents [OSTI]

    Bavykin, Sergei

    2011-01-18

    The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.

  18. AFFIDAVIT FOR SURVIVING RELATIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ____________________________________________ AFFIDAVIT FOR SURVIVING RELATIVE STATE_________________ ] ] SS: _________________________ COUNTY OF____________] That I, _________________________________ , am the *_____________________ of ____________________________________ who is deceased and make the attached request pursuant to 10 C.F.R., Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this

  19. Extreme pressure fluid sample transfer pump

    DOE Patents [OSTI]

    Halverson, Justin E. (Grovertown, GA); Bowman, Wilfred W. (North Augusta, SC)

    1990-01-01

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  20. High throughput liquid absorption preconcentrator sampling instrument

    DOE Patents [OSTI]

    Zaromb, S.; Bozen, R.M.

    1992-12-22

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.

  1. High throughput liquid absorption preconcentrator sampling instrument

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL); Bozen, Ralph M. (Hattiesburg, MS)

    1992-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  2. Flow cytometric detection method for DNA samples

    DOE Patents [OSTI]

    Nasarabadi,Shanavaz (Livermore, CA); Langlois, Richard G. (Livermore, CA); Venkateswaran, Kodumudi S. (Round Rock, TX)

    2011-07-05

    Disclosed herein are two methods for rapid multiplex analysis to determine the presence and identity of target DNA sequences within a DNA sample. Both methods use reporting DNA sequences, e.g., modified conventional Taqman.RTM. probes, to combine multiplex PCR amplification with microsphere-based hybridization using flow cytometry means of detection. Real-time PCR detection can also be incorporated. The first method uses a cyanine dye, such as, Cy3.TM., as the reporter linked to the 5' end of a reporting DNA sequence. The second method positions a reporter dye, e.g., FAM.TM. on the 3' end of the reporting DNA sequence and a quencher dye, e.g., TAMRA.TM., on the 5' end.

  3. Flow cytometric detection method for DNA samples

    DOE Patents [OSTI]

    Nasarabadi, Shanavaz (Livermore, CA); Langlois, Richard G. (Livermore, CA); Venkateswaran, Kodumudi S. (Livermore, CA)

    2006-08-01

    Disclosed herein are two methods for rapid multiplex analysis to determine the presence and identity of target DNA sequences within a DNA sample. Both methods use reporting DNA sequences, e.g., modified conventional Taqman.RTM. probes, to combine multiplex PCR amplification with microsphere-based hybridization using flow cytometry means of detection. Real-time PCR detection can also be incorporated. The first method uses a cyanine dye, such as, Cy3.TM., as the reporter linked to the 5' end of a reporting DNA sequence. The second method positions a reporter dye, e.g., FAM, on the 3' end of the reporting DNA sequence and a quencher dye, e.g., TAMRA, on the 5' end.

  4. Mass spectrometer having a derivatized sample presentation apparatus

    DOE Patents [OSTI]

    Nelson, Randall W. (Phoenix, AZ)

    2000-07-25

    A mass spectrometer having a derivatized sample presentation apparatus is provided. The sample presentation apparatus has a complex bound to the surface of the sample presentation apparatus. This complex includes a molecule which may chemically modify a biomolecule.

  5. Two Sample T-Test for Comparing Genetic Sequence Diversity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Sample T-Test for Comparing Genetic Sequence Diversity Two Sample T-Test for Comparing Genetic Sequence Diversity Given two samples of sequences the program performs a t-test...

  6. Sample of E-file Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sample of E-file Application Sample of E-file Application PDF icon Sample of E-file Application More Documents & Publications pocforms06a0399.doc&0; SEMI-ANNUAL REPORTS FOR GOLDEN ...

  7. Hanford analytical sample projections FY 1998--FY 2002

    SciTech Connect (OSTI)

    Joyce, S.M.

    1997-12-10

    Sample projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented.

  8. Sample Questions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Questions Set 6 | Sample Questions Set 7 | Sample Rounds Sample Questions Set 1 Round 1 .pdf file (51KB) Round 2 .pdf file (46KB) Round 3 .pdf file (42KB) Round 4 .pdf file (42KB)...

  9. Sample Questions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Set 5 | Sample Questions Set 6 | Sample Questions Set 7 Sample Questions Set 1 Round 1 .pdf file (75KB) Round 2 .pdf file (51KB) Round 3 .pdf file (52KB) Round 4 .pdf file (48KB)...

  10. DETECTION OF $sup 54$Mn IN FOOD SAMPLES (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    DETECTION OF $sup 54$Mn IN FOOD SAMPLES Citation Details In-Document Search Title: DETECTION OF $sup 54$Mn IN FOOD SAMPLES Authors: Neilson, H. ; Yakabe, H.M. Publication Date: 1966-01-01 OSTI Identifier: 4590897 Resource Type: Journal Article Resource Relation: Journal Name: Health Physics (England); Journal Volume: Vol: 12; Other Information: Orig. Receipt Date: 31-DEC-66 Research Org: Food and Drug Administration, Washington, D.C. Country of Publication: Country unknown/Code not available

  11. Solvent Hold Tank Sample Results For MCU-15-750-751-752-: June Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-10-07

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-750, MCU-15-751, and MCU-15-752), pulled on 06/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-750-751-752 indicated a low concentration (~ 49 % of nominal) of the suppressor (TiDG) and slightly lower than nominal concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient for continuing operation without adding a trim at this time but it is recommended that an addition of TiDG, modifier and IsoparL should be made in the near future. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). In addition, up to 13.9 micrograms of mercury per gram of solvent (or 11.5 g/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  12. Surface Gas Sampling At Lightning Dock Area (Norman, Et Al.,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At...

  13. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Wister Area (DOE GTP) (Redirected from Water-Gas Samples At Wister Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  14. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Wister Area (DOE GTP) Exploration Activity...

  15. Surface Gas Sampling At Lightning Dock Area (Norman & Moore,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman & Moore, 2004) (Redirected from Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004)) Jump to: navigation, search...

  16. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Colrado Area (DOE GTP) (Redirected from Water-Gas Samples At Colrado Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  17. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Colrado Area (DOE GTP) Exploration...

  18. Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Yellowstone Region...

  19. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Jemez Mountain...

  20. Sample Business Plan Framework 5 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Sample Business Plan Framework 5 U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 5: A program that establishes itself as a ...

  1. Sample Business Plan Framework 1: A program seeking to continue...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sample Business Plan Framework 1: A program seeking to continue operations in the ... U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan ...

  2. Category:Surface Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Surface Gas Sampling page? For detailed information on Surface...

  3. Category:Soil Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Soil Gas Sampling page? For detailed information on Soil Gas...

  4. Category:Gas Flux Sampling | Open Energy Information

    Open Energy Info (EERE)

    Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Gas Flux Sampling page? For detailed information on Gas Flux...

  5. Sampling System for Hot Cell Aqueous Processing Streams Julia...

    Office of Scientific and Technical Information (OSTI)

    and Sampling System for Hot Cell Aqueous Processing Streams Julia Tripp; Jack Law; Tara Smith 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS microfluidics; robotic; sampling...

  6. Raft River Geothermal Field Well Head Brine Sample

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Lanyk

    2015-12-18

    Raw data and data workup of assay for real-world brine sample. Brine sample was taken at the well head.

  7. Representativeness-based Sampling Network Design for the State...

    Office of Scientific and Technical Information (OSTI)

    Representativeness-based Sampling Network Design for the State of Alaska Citation Details In-Document Search Title: Representativeness-based Sampling Network Design for the State...

  8. Representativeness based Sampling Network Design for the State...

    Office of Scientific and Technical Information (OSTI)

    Representativeness based Sampling Network Design for the State of Alaska Title: Representativeness-based Sampling Network Design for the State of Alaska Authors: Forrest M. Hoffman...

  9. Representativeness-Based Sampling Network Design for the State...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Representativeness-Based Sampling Network Design for the State of Alaska Citation Details In-Document Search Title: Representativeness-Based Sampling Network...

  10. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

    SciTech Connect (OSTI)

    Jack D. Law; Julia L. Tripp; Tara E. Smith; Veronica J. Rutledge; Troy G. Garn; John Svoboda; Larry Macaluso

    2014-02-01

    A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample system and identified system modifications to optimize performance.

  11. Category:Surface Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Surface Water Sampling page? For detailed information on...

  12. Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...

    Open Energy Info (EERE)

    approximately 1000 ft to the NE of the sample area to account for background soil mercury concentrations. Sample lines were designed to cross known nearby structural features...

  13. Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Yellowstone Region...

  14. IWTU Process Sample Analysis Report (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    analyze various samples collected during June - August 2012 at the Integrated Waste Treatment Facility (IWTU). Samples of IWTU process materials were collected from various...

  15. Stack sampling apparatus (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Stack sampling apparatus Citation Details In-Document Search Title: Stack sampling ... Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote ...

  16. Study Guide for Photovoltaic System Installers and Sample Examination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Study Guide for Photovoltaic System Installers and Sample Examination Questions Study Guide for Photovoltaic System Installers and Sample Examination ...

  17. Apparatus and method for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-11

    A dilution apparatus for diluting a gas sample. The apparatus includes a sample gas conduit having a sample gas inlet end and a diluted sample gas outlet end, and a sample gas flow restricting orifice disposed proximate the sample gas inlet end connected with the sample gas conduit and providing fluid communication between the exterior and the interior of the sample gas conduit. A diluted sample gas conduit is provided within the sample gas conduit having a mixing end with a mixing space inlet opening disposed proximate the sample gas inlet end, thereby forming an annular space between the sample gas conduit and the diluted sample gas conduit. The mixing end of the diluted sample gas conduit is disposed at a distance from the sample gas flow restricting orifice. A dilution gas source connected with the sample gas inlet end of the sample gas conduit is provided for introducing a dilution gas into the annular space, and a filter is provided for filtering the sample gas. The apparatus is particularly suited for diluting heated sample gases containing one or more condensable components.

  18. A comparison of methods for representing sparsely sampled random quantities.

    SciTech Connect (OSTI)

    Romero, Vicente Jose; Swiler, Laura Painton; Urbina, Angel; Mullins, Joshua

    2013-09-01

    This report discusses the treatment of uncertainties stemming from relatively few samples of random quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse data samples it is not practical to have a goal of accurately estimating the underlying probability density function (PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a specified percentile range of the actual PDF, say the range between 0.025 and .975 percentiles, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the desired percentile range of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem interesting and difficult. In this report, five uncertainty representation techniques are characterized for their performance on twenty-one test problems (over thousands of trials for each problem) according to these two opposing objectives and other performance measures. Two of the methods, statistical Tolerance Intervals and a kernel density approach specifically developed for handling sparse data, exhibit significantly better overall performance than the others.

  19. Time-domain sampling of x-ray pulses using an ultrafast sample response

    SciTech Connect (OSTI)

    Gaal, P.; Shayduk, R.; Schick, D.; Herzog, M.; Bojahr, A.; Goldshteyn, J.; Navirian, H. A.; Leitenberger, W.; Vrejoiu, I.; Khakhulin, D.; Wulff, M.; Bargheer, M.

    2012-12-10

    We employ the ultrafast response of a 15.4 nm thin SrRuO{sub 3} layer grown epitaxially on a SrTiO{sub 3} substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape.

  20. Minutes of the 28th Annual Plutonium Sample Exchange Meeting. Part II: metal sample exchange

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Contents of this publication include the following list of participating laboratories; agenda; attendees; minutes of October 25 and 26 meeting; and handout materials supplied by speakers. The handout materials cover the following: statistics and reporting; plutonium - chemical assay 100% minus impurities; americium neptunium, uranium, carbon and iron data; emission spectroscopy data; plutonium metal sample exchange; the calorimetry sample exchange; chlorine determination in plutonium metal using phyrohydrolysis; spectrophotometric determination of 238-plutonium in oxide; plutonium measurement capabilities at the Savannah River Plant; and robotics in radiochemical laboratory.

  1. Microfluidic-Based Sample Chips for Radioactive Solutions

    SciTech Connect (OSTI)

    J. L. Tripp; J. D. Law; T. E. Smith; V. J. Rutledge; W. F. Bauer; R. D. Ball; P. A. Hahn

    2014-02-01

    Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply L sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.

  2. Transmission electron microscope sample holder with optical features

    DOE Patents [OSTI]

    Milas, Mirko (Port Jefferson, NY); Zhu, Yimei (Stony Brook, NY); Rameau, Jonathan David (Coram, NY)

    2012-03-27

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  3. Microfluidic-Based sample chips for radioactive solutions

    SciTech Connect (OSTI)

    Tripp, J. L.; Law, J. D.; Smith, T. E.; Rutledge, V. J.; Bauer, W. F.; Ball, R. D.; Hahn, P. A.

    2015-01-01

    Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply L sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.

  4. Brine Sampling and Evaluation Program, 1991 report

    SciTech Connect (OSTI)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J.; Belski, D.S.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  5. Liquid-absorption preconcentrator sampling instrument

    DOE Patents [OSTI]

    Zaromb, S.

    1990-12-11

    A system is described for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow. 4 figs.

  6. Liquid-absorption preconcentrator sampling instrument

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL)

    1990-01-01

    A system for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow.

  7. Microfluidic DNA sample preparation method and device

    DOE Patents [OSTI]

    Krulevitch, Peter A. (Pleasanton, CA); Miles, Robin R. (Danville, CA); Wang, Xiao-Bo (San Diego, CA); Mariella, Raymond P. (Danville, CA); Gascoyne, Peter R. C. (Bellaire, TX); Balch, Joseph W. (Livermore, CA)

    2002-01-01

    Manipulation of DNA molecules in solution has become an essential aspect of genetic analyses used for biomedical assays, the identification of hazardous bacterial agents, and in decoding the human genome. Currently, most of the steps involved in preparing a DNA sample for analysis are performed manually and are time, labor, and equipment intensive. These steps include extraction of the DNA from spores or cells, separation of the DNA from other particles and molecules in the solution (e.g. dust, smoke, cell/spore debris, and proteins), and separation of the DNA itself into strands of specific lengths. Dielectrophoresis (DEP), a phenomenon whereby polarizable particles move in response to a gradient in electric field, can be used to manipulate and separate DNA in an automated fashion, considerably reducing the time and expense involved in DNA analyses, as well as allowing for the miniaturization of DNA analysis instruments. These applications include direct transport of DNA, trapping of DNA to allow for its separation from other particles or molecules in the solution, and the separation of DNA into strands of varying lengths.

  8. UMTRA water sampling and analysis plan, Green River, Utah

    SciTech Connect (OSTI)

    Papusch, R.

    1993-12-01

    The purpose of this water sampling and analysis plan (WSAP) is to provide a basis for groundwater and surface water sampling at the Green River Uranium Mill Tailing Remedial Action (UMTRA) Project site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations.

  9. RelatedUIIs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    strategyID strategyTitle decisionDate RelatedUIIs ombInitiative useOfSavingsAvoidance netOrGross amountType FY2012Amount FY2013Amount FY2014Amount FY2015Amount 2 Fossil Energy's (FE) Rocky Mountain Oilfield Test Center 11/01/2011 019-000000236 Other Per Congressional direction, RMOTC was decommissioned in FY2014 and the field site facility is closed. The Casper, Wyoming site (administrative office) reduced IT personnel by 2 FTEs as part of the disposition plan. DOE will completely close-out its

  10. Community Relations Plan Update

    Office of Legacy Management (LM)

    8-TAR MAC-MRAP 1.9.1 Monticello Mill Tailings Superfund Site and Monticello Vicinity Properties Superfund Site Monticello, Utah Community Relations Plan Update FY 2001 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Prepared by MACTEC Environmental Restoration Services, LLC Grand Junction, Colorado Work performed under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy For more information or to request additional copies of this

  11. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    SciTech Connect (OSTI)

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodrguez-Rey, J.C.

    2014-04-04

    Highlights: NR5A2 expression in C2C12 is associated with myotube differentiation. DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  12. Modified electrokinetic sample injection method in chromatography and electrophoresis analysis

    DOE Patents [OSTI]

    Davidson, J. Courtney (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    A sample injection method for horizontal configured multiple chromatography or electrophoresis units, each containing a number of separation/analysis channels, that enables efficient introduction of analyte samples. This method for loading when taken in conjunction with horizontal microchannels allows much reduced sample volumes and a means of sample stacking to greatly reduce the concentration of the sample. This reduction in the amount of sample can lead to great cost savings in sample preparation, particularly in massively parallel applications such as DNA sequencing. The essence of this method is in preparation of the input of the separation channel, the physical sample introduction, and subsequent removal of excess material. By this method, sample volumes of 100 nanoliter to 2 microliters have been used successfully, compared to the typical 5 microliters of sample required by the prior separation/analysis method.

  13. Photoacoustic sample vessel and method of elevated pressure operation

    DOE Patents [OSTI]

    Autrey, Tom; Yonker, Clement R.

    2004-05-04

    An improved photoacoustic vessel and method of photoacoustic analysis. The photoacoustic sample vessel comprises an acoustic detector, an acoustic couplant, and an acoustic coupler having a chamber for holding the acoustic couplant and a sample. The acoustic couplant is selected from the group consisting of liquid, solid, and combinations thereof. Passing electromagnetic energy through the sample generates an acoustic signal within the sample, whereby the acoustic signal propagates through the sample to and through the acoustic couplant to the acoustic detector.

  14. Nitrogen concentration and isotope dataset for environmental samples from

    Office of Scientific and Technical Information (OSTI)

    2012 and 2013, Barrow, Alaska (Dataset) | Data Explorer Data Explorer Search Results Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Title: Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt,

  15. Accurate LPG analysis begins with sampling procedures, equipment

    SciTech Connect (OSTI)

    Wilkins, C.M. )

    1990-11-05

    Proper equipment and procedures are essential for obtaining representative samples from an LPG stream. This paper discusses how sampling of light liquid hydrocarbons generally involves one of two methods: flow- proportional composite sampling by a mechanical device or physical transfer of hydrocarbon fluids from a flowing pipeline or other source into a suitable portable sample container. If sampling by proper techniques and equipment supports careful chromatographic analysis, full advantage of accurate mass measurement of LPG can be realized.

  16. Submit a Public Comment on The Atmosphere to Electrons (A2e)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reviewed the current program planning and provided suggestions on the formulation of A2e strategy, goals and implementation approaches. The A2e External Merit Review meeting...

  17. The genesis solar-wind sample return mission

    SciTech Connect (OSTI)

    Wiens, Roger C

    2009-01-01

    The compositions of the Earth's crust and mantle, and those of the Moon and Mars, are relatively well known both isotopically and elementally. The same is true of our knowledge of the asteroid belt composition, based on meteorite analyses. Remote measurements of Venus, the Jovian atmosphere, and the outer planet moons, have provided some estimates of their compositions. The Sun constitutes a large majority, > 99%, of all the matter in the solar system. The elemental composition of the photosphere, the visible 'surface' of the Sun, is constrained by absorption lines produced by particles above the surface. Abundances for many elements are reported to the {+-}10 or 20% accuracy level. However, the abundances of other important elements, such as neon, cannot be determined in this way due to a relative lack of atomic states at low excitation energies. Additionally and most importantly, the isotopic composition of the Sun cannot be determined astronomically except for a few species which form molecules above sunspots, and estimates derived from these sources lack the accuracy desired for comparison with meteoritic and planetary surface samples measured on the Earth. The solar wind spreads a sample of solar particles throughout the heliosphere, though the sample is very rarified: collecting a nanogram of oxygen, the third most abundant element, in a square centimeter cross section at the Earth's distance from the Sun takes five years. Nevertheless, foil collectors exposed to the solar wind for periods of hours on the surface of the Moon during the Apollo missions were used to determine the helium and neon solar-wind compositions sufficiently to show that the Earth's atmospheric neon was significantly evolved relative to the Sun. Spacecraft instruments developed subsequently have provided many insights into the composition of the solar wind, mostly in terms of elemental composition. These instruments have the advantage of observing a number of parameters simultaneously, including charge state distributions, velocities, and densities, all of which have been instrumental in characterizing the nature of the solar wind. However, these instruments have lacked the ability to make large dynamic range measurements of adjacent isotopes (i.e., {sup 17}O/{sup 16}O {approx} 2500) or provide the permil (tenths of percent) accuracy desirable for comparison with geochemical isotopic measurements. An accurate knowledge of the solar and solar-wind compositions helps to answer important questions across a number of disciplines. It aids in understanding the acceleration mechanisms of the solar wind, gives an improved picture of the charged particle environment near the photosphere, it constrains processes within the Sun over its history, and it provides a database by which to compare differences among planetary systems with the solar system's starting composition, providing key information on planetary evolution. For example, precise knowledge of solar isotopic and elemental compositions of volatile species in the Sun provides a baseline for models of atmospheric evolution over time for Earth, Venus, and Mars. Additionally, volatile and chemically active elements such as C, H, O, N, and S can tell us about processes active during the evolution of the solar nebula. A classic example of this is the oxygen isotope system. In the 1970s it was determined that the oxygen isotopic ratio in refractory inclusions in primitive meteorites was enriched {approx}4% in {sup 16}O relative to the average terrestrial, lunar, and thermally processed meteorite materials. In addition, all processed solar-system materials appeared to each have a unique oxygen isotopic composition (except the Moon and Earth, which are thought to be formed from the same materials), though differences are in the fraction of a percent range, much smaller than the refractory material {sup 16}O enrichment. Several theories were developed over the years to account for the oxygen isotope heterogeneity, each theory predicting a different solar isotopic composition and each invoking a differ

  18. Excess /sup 129/Xe in terrestrial samples: A non-primordial hypothesis

    SciTech Connect (OSTI)

    Caffee, M.W.; Hudson, G.B.

    1987-03-01

    Excesses of /sup 129/Xe relative to the isotopic composition in air are observed in some terrestrial samples. Traditionally these /sup 129/Xe excesses have been thought to be related to /sup 129/I that was present in abundance in the early solar system. We propose an alternative hypothesis to explain terrestrial /sup 129/Xe excesses based on the production of /sup 129/I from the spontaneous fission of /sup 238/U.

  19. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  20. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOE Patents [OSTI]

    Turner, T.D.; Beller, L.S.; Clark, M.L.; Klingler, K.M.

    1997-10-14

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: (a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; (b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; (c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and (d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus is also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container. 8 figs.

  1. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOE Patents [OSTI]

    Turner, Terry D.; Beller, Laurence S.; Clark, Michael L.; Klingler, Kerry M.

    1997-01-01

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus are also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container.

  2. REPORT ON ELECTROCHEMICAL CORROSION TESTING FOR TANK 241-AN-106 USING 2009 SAMPLING CAMPAIGN GRAB SAMPLES

    SciTech Connect (OSTI)

    WYRWAS RB

    2010-05-11

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 24l-AN-l06 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 9l.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-l06 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, 'Tank Farms Technical Safety Requirements', Administrative Control (AC) 5.16, 'Corrosion Mitigation Controls.' The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-15l-00007, 'Operating Specifications for the Double-Shell Storage Tanks.' Problem evaluation request WRPS-PER-2009-0218 was submitted February 9,2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.

  3. An evaluation of adhesive sample holders for advanced crystallographic experiments

    SciTech Connect (OSTI)

    Mazzorana, Marco; Sanchez-Weatherby, Juan Sandy, James; Lobley, Carina M. C.; Sorensen, Thomas

    2014-09-01

    Commercially available adhesives have been evaluated for crystal mounting when undertaking complex macromolecular crystallography experiments. Here, their use as tools for advanced sample mounting and cryoprotection is assessed and their suitability for room-temperature data-collection and humidity-controlled studies is investigated. The hydration state of macromolecular crystals often affects their overall order and, ultimately, the quality of the X-ray diffraction pattern that they produce. Post-crystallization techniques that alter the solvent content of a crystal may induce rearrangement within the three-dimensional array making up the crystal, possibly resulting in more ordered packing. The hydration state of a crystal can be manipulated by exposing it to a stream of air at controlled relative humidity in which the crystal can equilibrate. This approach provides a way of exploring crystal hydration space to assess the diffraction capabilities of existing crystals. A key requirement of these experiments is to expose the crystal directly to the dehydrating environment by having the minimum amount of residual mother liquor around it. This is usually achieved by placing the crystal on a flat porous support (Kapton mesh) and removing excess liquid by wicking. Here, an alternative approach is considered whereby crystals are harvested using adhesives that capture naked crystals directly from their crystallization drop, reducing the process to a one-step procedure. The impact of using adhesives to ease the harvesting of different types of crystals is presented together with their contribution to background scattering and their usefulness in dehydration experiments. It is concluded that adhesive supports represent a valuable tool for mounting macromolecular crystals to be used in humidity-controlled experiments and to improve signal-to-noise ratios in diffraction experiments, and how they can protect crystals from modifications in the sample environment is discussed.

  4. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    SciTech Connect (OSTI)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and ? ????trap-shy?¢??? species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  5. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    SciTech Connect (OSTI)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and ?¢????trap-shy?¢??? species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  6. Gas sampling system for reactive gas-solid mixtures

    DOE Patents [OSTI]

    Daum, Edward D. (Alliance, OH); Downs, William (Alliance, OH); Jankura, Bryan J. (Mogadore, OH); McCoury, Jr., John M. (Mineral City, OH)

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  7. Gas sampling system for reactive gas-solid mixtures

    DOE Patents [OSTI]

    Daum, Edward D. (Alliance, OH); Downs, William (Alliance, OH); Jankura, Bryan J. (Mogadore, OH); McCoury, Jr., John M. (Mineral City, OH)

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  8. Amphiphilic mediated sample preparation for micro-flow cytometry

    DOE Patents [OSTI]

    Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

    2006-07-25

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  9. Amphiphilic mediated sample preparation for micro-flow cytometry

    DOE Patents [OSTI]

    Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

    2009-03-17

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  10. Apparatus for testing skin samples or the like

    DOE Patents [OSTI]

    Holland, J.M.

    1982-08-31

    An apparatus for testing the permeability of living skin samples has a flat base with a plurality of sample-holding cavities formed in its upper surface, the samples being placed in counterbores in the cavities with the epidermis uppermost. O-rings of Teflon washers are respectively placed on the samples and a flat cover is connected to the base to press the rings against the upper surfaces of the samples. Media to maintain tissue viability and recovery of metabolites is introduced into the lower portion of the sample-holding cavities through passages in the base. Test materials are introduced through holes in the cover plate after assembly of the chamber.

  11. Method and apparatus for imaging a sample on a device

    DOE Patents [OSTI]

    Trulson, Mark (Santa Clara, CA); Stern, David (Mountain View, CA); Fiekowsky, Peter (Los Altos, CA); Rava, Richard (Palo Alto, CA); Walton, Ian (Menlo Park, CA); Fodor, Stephen P. A. (Palo Alto, CA)

    2001-01-01

    A method and apparatus for imaging a sample are provided. An electromagnetic radiation source generates excitation radiation which is sized by excitation optics to a line. The line is directed at a sample resting on a support and excites a plurality of regions on the sample. Collection optics collect response radiation reflected from the sample I and image the reflected radiation. A detector senses the reflected radiation and is positioned to permit discrimination between radiation reflected from a certain focal plane in the sample and certain other planes within the sample.

  12. Methods for point-of-care detection of nucleic acid in a sample

    DOE Patents [OSTI]

    Bearinger, Jane P.; Dugan, Lawrence C.

    2015-12-29

    Provided herein are methods and apparatus for detecting a target nucleic acid in a sample and related methods and apparatus for diagnosing a condition in an individual. The condition is associated with presence of nucleic acid produced by certain pathogens in the individual.

  13. Aerosol Sample Inhomogeneity with Debris from the Fukushima Daiichi Nuclear Accident

    SciTech Connect (OSTI)

    Gomez, Reynaido; Biegalski, Steven R.; Woods, Vincent T.

    2014-09-01

    Radionuclide aerosol sampling is a vital component in the detection of nuclear explosions, nuclear accidents, and other radiation releases. This was proven by the detection and tracking of emissions from the Fukushima Daiichi incident across the globe by IMS stations. Two separate aerosol samplers were operated in Richland, WA following the event and debris from the accident were measured at levels well above detection limits. While the atmospheric activity concentration of radionuclides generally compared well between the two stations, they did not agree within uncertainties. This paper includes a detailed study of the aerosol sample homogeneity of 134Cs and 137Cs, then relates it to the overall uncertainty of the original measurement. Our results show that sample inhomogeneity adds an additional 5–10% uncertainty to each aerosol measurement and that this uncertainty is in the same range as the discrepancies between the two aerosol sample measurements from Richland, WA.

  14. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect (OSTI)

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

  15. Documents Related to the ICP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Assistance & Solicitations > ICP Contract > Documents Related ICP Blue Line Free Acrobat Reader Link The documents listed below are related to the Idaho Cleanup...

  16. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

  17. Surface Gas Sampling At Lightning Dock Area (Norman, Et Al.,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) (Redirected from Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002)) Jump to: navigation, search...

  18. Rheology and TIC/TOC results of ORNL tank samples

    SciTech Connect (OSTI)

    Pareizs, J. M.; Hansen, E. K.

    2013-04-26

    The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determined from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water.

  19. Solar wind samples give insight into birth of solar system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar wind samples Solar wind samples give insight into birth of solar system Most of the Genesis payload consisted of fragile solar-wind collectors, which had been exposed to the ...

  20. IWTU Process Sample Analysis Report (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: IWTU Process Sample Analysis Report CH2M-WG ... Samples of IWTU process materials were collected from various locations in the process. ...

  1. Green Button Sample Data from NSTAR (Monthly) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    This sample data is provided by the latest utility to make Green Button data available to their customers, NSTAR. Unlike the other sample data on Energy.govdeveloper, this data is ...

  2. Methods for characterizing, classifying, and identifying unknowns in samples

    DOE Patents [OSTI]

    Grate, Jay W.; Wise, Barry M.

    2003-08-12

    Disclosed is a method for taking the data generated from an array of responses from a multichannel instrument, and determining the characteristics of a chemical in the sample without the necessity of calibrating or training the instrument with known samples containing the same chemical. The characteristics determined by the method are then used to classify and identify the chemical in the sample. The method can also be used to quantify the concentration of the chemical in the sample.

  3. Methods for characterizing, classifying, and identifying unknowns in samples

    DOE Patents [OSTI]

    Grate, Jay W [West Richland, WA; Wise, Barry M [Manson, WA

    2002-01-01

    Disclosed is a method for taking the data generated from an array of responses from a multichannel instrument, and determining the characteristics of a chemical in the sample without the necessity of calibrating or training the instrument with known samples containing the same chemical. The characteristics determined by the method are then used to classify and identify the chemical in the sample. The method can also be used to quantify the concentration of the chemical in the sample.

  4. Modular microfluidic system for biological sample preparation (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Modular microfluidic system for biological sample preparation Citation Details In-Document Search Title: Modular microfluidic system for biological sample preparation A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis

  5. Volume 2 Appendices: Sample Solicitation and Contracting Document

    SciTech Connect (OSTI)

    Baechler, Michael C.

    2011-09-01

    Appendices for the report A Guide to Performance Contracting with ESCOs. The appendices include a sample solicitation and contracting document

  6. Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976) Exploration Activity...

  7. Water Sampling At International Geothermal Area, New Zealand...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) Exploration...

  8. Water Sampling At Lightning Dock Geothermal Area (Witcher, 2006...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lightning Dock Geothermal Area (Witcher, 2006) Exploration Activity...

  9. Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  10. Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) Exploration Activity...

  11. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

  12. ( Sample of Shipment Notice) Federal Records Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ( Sample of Shipment Notice) Federal Records Center ( Sample of Shipment Notice) Federal Records Center This document instructs on how to ship records to the Federal Records Center PDF icon ( Sample of Shipment Notice) Federal Records Center More Documents & Publications Correspondence Style Guide Records Management Handbook Records Management Handbook

  13. Sampling device with a capped body and detachable handle

    DOE Patents [OSTI]

    Jezek, Gerd-Rainer (Orchard Park, NY)

    2000-01-01

    The apparatus is a sampling device having a pad for sample collection, a body which supports the pad, a detachable handle connected to the body and a cap which encloses and retains the pad and body to protect the integrity of the sample.

  14. Sampling and Analysis Plan for PUREX canyon vessel flushing

    SciTech Connect (OSTI)

    Villalobos, C.N.

    1995-03-01

    A sampling and analysis plan is necessary to provide direction for the sampling and analytical activities determined by the data quality objectives. This document defines the sampling and analysis necessary to support the deactivation of the Plutonium-Uranium Extraction (PUREX) facility vessels that are regulated pursuant to Washington Administrative Code 173-303.

  15. SAMPLE RESULTS FROM THE INTERIM SALT DISPOSITION PROGRAM MACROBATCH 8 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L.

    2015-01-13

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 8 for the Interim Salt Disposition Program (ISDP). An Actinide Removal Process (ARP) and several Extraction-Scrub- Strip (ESS) tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). No issues with the projected Salt Batch 8 strategy are identified. A demonstration of the monosodium titanate (MST) (0.2 g/L) removal of strontium and actinides provided acceptable average decontamination factors for plutonium of 2.62 (4 hour) and 2.90 (8 hour); and average strontium decontamination factors of 21.7 (4 hour) and 21.3 (8 hour). These values are consistent with results from previous salt batch ARP tests. The two ESS tests also showed acceptable performance with extraction distribution ratios (D{sub (Cs)}) values of 52.5 and 50.4 for the Next Generation Solvent (NGS) blend (from MCU) and NGS (lab prepared), respectively. These values are consistent with results from previous salt batch ESS tests. Even though the performance is acceptable, SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed in order to improve our predictive capabilities for the ESS tests.

  16. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  17. MARKOV CHAIN MONTE CARLO POSTERIOR SAMPLING WITH THE HAMILTONIAN METHOD

    SciTech Connect (OSTI)

    K. HANSON

    2001-02-01

    The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In analogy to a physical system, a Hamiltonian H is defined as a kinetic energy involving the momenta plus a potential energy {var_phi}, where {var_phi} is minus the logarithm of the target pdf. Hamiltonian dynamics allows one to move along trajectories of constant H, taking large jumps in the parameter space with relatively few evaluations of {var_phi} and its gradient. The Hamiltonian algorithm alternates between picking a new momentum vector and following such trajectories. The efficiency of the Hamiltonian method for multidimensional isotropic Gaussian pdfs is shown to remain constant at around 7% for up to several hundred dimensions. The Hamiltonian method handles correlations among the variables much better than the standard Metropolis algorithm. A new test, based on the gradient of {var_phi}, is proposed to measure the convergence of the MCMC sequence.

  18. Novel Tube-in-Tube System Simplifies Subsurface Fluid Sampling

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2011-01-21

    Barry Freifeld of Berkeley Lab has developed a device that simplifies subsurface fluid sampling. The technology’s tube-within-a-tube construction is a substantial improvement to the U-tube sampling system widely used for borehole sampling today. Using only one line, instead of two, the tube-in-tube system enables the sampling device to get lowered easily through a pressure control device (such as a grease head or pack-off) for discrete level sampling of live oil and gas wells...

  19. Method for using polarization gating to measure a scattering sample

    DOE Patents [OSTI]

    Baba, Justin S.

    2015-08-04

    Described herein are systems, devices, and methods facilitating optical characterization of scattering samples. A polarized optical beam can be directed to pass through a sample to be tested. The optical beam exiting the sample can then be analyzed to determine its degree of polarization, from which other properties of the sample can be determined. In some cases, an apparatus can include a source of an optical beam, an input polarizer, a sample, an output polarizer, and a photodetector. In some cases, a signal from a photodetector can be processed through attenuation, variable offset, and variable gain.

  20. Multi-well sample plate cover penetration system

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2011-12-27

    An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

  1. Prospecting by sampling and analysis of airborne particulates and gases

    DOE Patents [OSTI]

    Sehmel, G.A.

    1984-05-01

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  2. Vapor and gas sampling of the single-shell tank 241-S-101 using the in situ vapor sampling system

    SciTech Connect (OSTI)

    Lockrem, L.L.

    1997-08-05

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-101. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the June 6, 1996 sampling of SST 241-S-101. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media.

  3. Microfluidic-Based sample chips for radioactive solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tripp, J. L.; Law, J. D.; Smith, T. E.; Rutledge, V. J.; Bauer, W. F.; Ball, R. D.; Hahn, P. A.

    2015-01-01

    Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument wouldmore » greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply µL sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.« less

  4. Integrated system for gathering, processing, and reporting data relating to site contamination

    DOE Patents [OSTI]

    Long, D.D.; Goldberg, M.S.; Baker, L.A.

    1997-11-11

    An integrated screening system comprises an intrusive sampling subsystem, a field mobile laboratory subsystem, a computer assisted design/geographical information subsystem, and a telecommunication linkup subsystem, all integrated to provide synergistically improved data relating to the extent of site soil/groundwater contamination. According to the present invention, data samples related to the soil, groundwater or other contamination of the subsurface material are gathered and analyzed to measure contaminants. Based on the location of origin of the samples in three-dimensional space, the analyzed data are transmitted to a location display. The data from analyzing samples and the data from the locating the origin are managed to project the next probable sample location. The next probable sample location is then forwarded for use as a guide in the placement of ensuing sample location, whereby the number of samples needed to accurately characterize the site is minimized. 10 figs.

  5. Integrated system for gathering, processing, and reporting data relating to site contamination

    DOE Patents [OSTI]

    Long, Delmar D. (Oak Ridge, TN); Goldberg, Mitchell S. (Lenior City, TN); Baker, Lorie A. (Oak Ridge, TN)

    1997-01-01

    An integrated screening system comprises an intrusive sampling subsystem, a field mobile laboratory subsystem, a computer assisted design/geographical information subsystem, and a telecommunication linkup subsystem, all integrated to provide synergistically improved data relating to the extent of site soil/groundwater contamination. According to the present invention, data samples related to the soil, groundwater or other contamination of the subsurface material are gathered and analyzed to measure contaminants. Based on the location of origin of the samples in three-dimensional space, the analyzed data are transmitted to a location display. The data from analyzing samples and the data from the locating the origin are managed to project the next probable sample location. The next probable sample location is then forwarded for use as a guide in the placement of ensuing sample location, whereby the number of samples needed to accurately characterize the site is minimized.

  6. Summary of Rock-Property Measurements for Hong Kong TuffSamples

    SciTech Connect (OSTI)

    Dobson, Patrick F.; Nakagawa, Seiji

    2005-09-21

    A series of rock-property measurements was performed on a suite of rhyolitic tuff samples from the area above the Aberdeen Tunnel of Hong Kong. The goal of this study was to determine the mechanical properties of these samples after weathering. This report contains petrographic descriptions, porosity, bulk and grain density, as well as ultrasonic measurements, elastic modulii calculations, and rock-strength determinations. Variations in rock properties are related to alteration and the presence of fractures in the tuff. Granitic rocks located adjacent to the altered tuffs would be better candidates for underground excavations.

  7. Monitoring the fate of chlorine from MSW sampling through combustion. Part II. Combustion studies

    SciTech Connect (OSTI)

    Domalski, E.S.; Churney, K.L.; Ledford, A.E. Jr.; Bruce, S.S.; Buckley, T.J.; Parris, R.M.; Chesler, S.N.

    1984-01-01

    Combustion measurements were carried out in a multi-kilogram capacity flow calorimeter on cellulose and cellulose/sand samples in 100% oxygen and several oxygen/nitrogen mixtures. Some measurements were made on cellulose/sand samples, which had 1 mass % of polyvinylchloride (PVC) as part of their composition, to study the conditions related to the formation/destruction of chlorinated organic compounds as combustion products. Qualitative identifications of a significant variety of chlorinated organic compounds have been made. 2 refs., 2 figs., 7 tabs.

  8. Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Remillieux, Marcel C.; Ulrich, T. J.; Payan, Cédric; Rivière, Jacques; Lake, Colton R.; Le Bas, Pierre -Yves

    2015-07-23

    This paper describes resonant ultrasound spectroscopy (RUS) as a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist.more » In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3-D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.« less

  9. Enhanced AFCI Sampling, Analysis, and Safeguards Technology Review

    SciTech Connect (OSTI)

    John Svoboda

    2009-09-01

    The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. Sampling and analysis of nuclear fuel recycling plant processes is required both to monitor the operations and ensure Safeguards and Security goals are met. In addition, environmental regulations lead to additional samples and analysis to meet licensing requirements. The volume of samples taken by conventional means, can restrain productivity while results samples are analyzed, require process holding tanks that are sized to meet analytical issues rather than process issues (and that create a larger facility footprint), or, in some cases, simply overwhelm analytical laboratory capabilities. These issues only grow when process flowsheets propose new separations systems and new byproduct material for transmutation purposes. Novel means of streamlining both sampling and analysis are being evaluated to increase the efficiency while meeting all requirements for information. This report addresses just a part of the effort to develop and study novel methods by focusing on the sampling and analysis of aqueous samples for metallic elements. It presents an overview of the sampling requirements, including frequency, sensitivity, accuracy, and programmatic drivers, to demonstrate the magnitude of the task. The sampling and analysis system needed for metallic element measurements is then discussed, and novel options being applied to other industrial analytical needs are presented. Inductively coupled mass spectrometry instruments are the most versatile for metallic element analyses and are thus chosen as the focus for the study. Candidate novel means of process sampling, as well as modifications that are necessary to couple such instruments to introduce these samples, are discussed. A suggested path forward based on an automated microchip capillary based sampling system interfaced to the analysis spectrometer is presented. The ability to obtain micro liter volume samples coupled with remote automated means of sample tracking and transport to the instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste. Application of this sampling technique to new types of mass spectrometers for selective elemental isotopic analysis could also provide significant improvements in safeguards and security analyses.

  10. Wind Technology Testing Center Earns A2LA Accreditation for Blade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earns A2LA Accreditation for Blade Testing Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing October 1, 2012 - 12:16pm Addthis This is an excerpt from the...

  11. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006, August 20-24, ...

  12. A 2D Radiation Transport Package with Mimetic Diffusion for ExaFlag...

    Office of Scientific and Technical Information (OSTI)

    A 2D Radiation Transport Package with Mimetic Diffusion for ExaFlag Citation Details In-Document Search Title: A 2D Radiation Transport Package with Mimetic Diffusion for ExaFlag...

  13. Latin Hypercube Sampling (LHS) UNIX Library/Standalone

    Energy Science and Technology Software Center (OSTI)

    2004-05-13

    The LHS UNIX Library/Standalone software provides the capability to draw random samples from over 30 distribution types. It performs the sampling by a stratified sampling method called Latin Hypercube Sampling (LHS). Multiple distributions can be sampled simultaneously, with user-specified correlations amongst the input distributions, LHS UNIX Library/ Standalone provides a way to generate multi-variate samples. The LHS samples can be generated either as a callable library (e.g., from within the DAKOTA software framework) or asmore »a standalone capability. LHS UNIX Library/Standalone uses the Latin Hypercube Sampling method (LHS) to generate samples. LHS is a constrained Monte Carlo sampling scheme. In LHS, the range of each variable is divided into non-overlapping intervals on the basis of equal probability. A sample is selected at random with respect to the probability density in each interval, If multiple variables are sampled simultaneously, then values obtained for each are paired in a random manner with the n values of the other variables. In some cases, the pairing is restricted to obtain specified correlations amongst the input variables. Many simulation codes have input parameters that are uncertain and can be specified by a distribution, To perform uncertainty analysis and sensitivity analysis, random values are drawn from the input parameter distributions, and the simulation is run with these values to obtain output values. If this is done repeatedly, with many input samples drawn, one can build up a distribution of the output as well as examine correlations between input and output variables.« less

  14. JLF Facility-related Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility-related Publications Europa Janus Titan Title Author Source Date Title Author Source Date Title Author Source Date

  15. Entropic uncertainty relations and entanglement

    SciTech Connect (OSTI)

    Guehne, Otfried; Lewenstein, Maciej

    2004-08-01

    We discuss the relationship between entropic uncertainty relations and entanglement. We present two methods for deriving separability criteria in terms of entropic uncertainty relations. In particular, we show how any entropic uncertainty relation on one part of the system results in a separability condition on the composite system. We investigate the resulting criteria using the Tsallis entropy for two and three qubits.

  16. Beryllium Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links About Us Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources Beryllium Related Links Email Email Page | Print Print Page |Text Increase Font

  17. Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links Related Links Since there are an abundance of bioenergy-related websites, we have organized them into the following categories to facilitate your search: Federal Federal Laboratories Partners of the Biomass Initiative Congressional Contacts States Academic and Private Sector Research Programs Trade Organizations Nonprofit Organizations International Organizations Legislative Updates & Online Forums Other Resources Federal DOE EERE International Activities DOE EERE Vehicle

  18. Calculating Confidence, Uncertainty, and Numbers of Samples When Using Statistical Sampling Approaches to Characterize and Clear Contaminated Areas

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Matzke, Brett D.; Sego, Landon H.; Amidan, Brett G.

    2013-04-27

    This report discusses the methodology, formulas, and inputs needed to make characterization and clearance decisions for Bacillus anthracis-contaminated and uncontaminated (or decontaminated) areas using a statistical sampling approach. Specifically, the report includes the methods and formulas for calculating the number of samples required to achieve a specified confidence in characterization and clearance decisions confidence in making characterization and clearance decisions for a specified number of samples for two common statistically based environmental sampling approaches. In particular, the report addresses an issue raised by the Government Accountability Office by providing methods and formulas to calculate the confidence that a decision area is uncontaminated (or successfully decontaminated) if all samples collected according to a statistical sampling approach have negative results. Key to addressing this topic is the probability that an individual sample result is a false negative, which is commonly referred to as the false negative rate (FNR). The two statistical sampling approaches currently discussed in this report are 1) hotspot sampling to detect small isolated contaminated locations during the characterization phase, and 2) combined judgment and random (CJR) sampling during the clearance phase. Typically if contamination is widely distributed in a decision area, it will be detectable via judgment sampling during the characterization phrase. Hotspot sampling is appropriate for characterization situations where contamination is not widely distributed and may not be detected by judgment sampling. CJR sampling is appropriate during the clearance phase when it is desired to augment judgment samples with statistical (random) samples. The hotspot and CJR statistical sampling approaches are discussed in the report for four situations: 1. qualitative data (detect and non-detect) when the FNR = 0 or when using statistical sampling methods that account for FNR > 0 2. qualitative data when the FNR > 0 but statistical sampling methods are used that assume the FNR = 0 3. quantitative data (e.g., contaminant concentrations expressed as CFU/cm2) when the FNR = 0 or when using statistical sampling methods that account for FNR > 0 4. quantitative data when the FNR > 0 but statistical sampling methods are used that assume the FNR = 0. For Situation 2, the hotspot sampling approach provides for stating with Z% confidence that a hotspot of specified shape and size with detectable contamination will be found. Also for Situation 2, the CJR approach provides for stating with X% confidence that at least Y% of the decision area does not contain detectable contamination. Forms of these statements for the other three situations are discussed in Section 2.2. Statistical methods that account for FNR > 0 currently only exist for the hotspot sampling approach with qualitative data (or quantitative data converted to qualitative data). This report documents the current status of methods and formulas for the hotspot and CJR sampling approaches. Limitations of these methods are identified. Extensions of the methods that are applicable when FNR = 0 to account for FNR > 0, or to address other limitations, will be documented in future revisions of this report if future funding supports the development of such extensions. For quantitative data, this report also presents statistical methods and formulas for 1. quantifying the uncertainty in measured sample results 2. estimating the true surface concentration corresponding to a surface sample 3. quantifying the uncertainty of the estimate of the true surface concentration. All of the methods and formulas discussed in the report were applied to example situations to illustrate application of the methods and interpretation of the results.

  19. Single-point representative sampling with shrouded probes

    SciTech Connect (OSTI)

    McFarland, A.R.; Rodgers, J.C.

    1993-08-01

    The Environmental Protection Agency (EPA) prescribed methodologies for sampling radionuclides in air effluents from stacks and ducts at US Department of Energy (DOE) facilities. Requirements include use of EPA Method 1 for the location of sampling sites and use of American National Standards Institute (ANSI) N13.1 for guidance in design of sampling probes and the number of probes at a given site. Application of ANSI N13.1 results in sampling being performed with multiprobe rakes that have as many as 20 probes. There can be substantial losses of aerosol particles in such sampling that will degrade the quality of emission estimates from a nuclear facility. Three alternate methods, technically justified herein, are proposed for effluent sampling. First, a shrouded aerosol sampling probe should replace the sharp-edged elbowed-nozzle recommended by ANSI. This would reduce the losses of aerosol particles in probes and result in the acquisition of more representative aerosol samples. Second, the rakes of multiple probes that are intended to acquire representative samples through spatial coverage should be replaced by a single probe located where contaminant mass and fluid momentum are both well mixed. A representative sample can be obtained from a well-mixed flow. Some effluent flows will need to be engineered to achieve acceptable mixing. Third, sample extraction should be performed at a constant flow rate through a suitable designed shrouded probe rather than at a variable flow rate through isokinetic probes. A shrouded probe is shown to have constant sampling characteristics over a broad range of stack velocities when operated at a fixed flow rate.

  20. Global samples from nuclear contamination sites reveal unpredicted uranium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and plutonium behavior Global samples reveal unpredicted uranium and plutonium behavior Global samples from nuclear contamination sites reveal unpredicted uranium and plutonium behavior Knowing how a chemical in soil reacts and transforms over time in response to neighboring elements, weather and heat is essential in determining whether that chemical is hazardous. June 15, 2015 Workers on a cleanup site at DOE's Hanford Site in southeastern Washington State, one of several sites sampled for

  1. Rotary mode core sampling approved checklist: 241-TX-113

    SciTech Connect (OSTI)

    Fowler, K.D.

    1998-08-03

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-113 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  2. Rotary mode core sampling approved checklist: 241-TX-116

    SciTech Connect (OSTI)

    FOWLER, K.D.

    1999-02-24

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-116 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  3. ARTIFACT FORMATION DURING NEUTRALIZATION OF TANK 50 SAMPLES

    SciTech Connect (OSTI)

    Crump, S.; Young, J.

    2014-08-01

    Degradation products have been identified in the extracts of Tank 50 samples analyzed by semivolatile organic compound analysis (SVOA) using gas chromatography/mass spectrometry (GC/MS). These materials, identified as short chain alkyl alcohols, were formed by acidification during sample preparation. A number of questions were raised about the formation of these and other materials reported in Tank 50 surface samples, and this report serves to address these questions.

  4. Sample Contract Language for Construction Using Energy-Efficient Products |

    Energy Savers [EERE]

    Department of Energy Sample Contract Language for Construction Using Energy-Efficient Products Sample Contract Language for Construction Using Energy-Efficient Products Document covers sample language that federal agencies can use in contracts specifying or purchasing energy-efficient products in construction projects. This includes the following products qualified by ENERGY STAR or designated by the Federal Energy Management Program: Air conditioners Ballasts Boilers Chillers Doors Electric

  5. Wireless Sensors for Process Stream Sampling and Analysis | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wireless Sensors for Process Stream Sampling and Analysis Wireless Sensors for Process Stream Sampling and Analysis Advanced New Wireless Sensor Meets Demanding Requirements of Industrial Production Lines Sensing and controlling manufacturing present unique problems with effective sampling in harsh environments and with real- time control. The demanding requirements of industrial control of manufacturing processes need to be met while maintaining maximum security, battery life, and

  6. DOE Regional Partnership Begins Core Sampling for Large-Volume

    Office of Environmental Management (EM)

    Sequestration Test | Department of Energy Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test DOE Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test May 22, 2009 - 1:00pm Addthis Washington, DC - The Plains CO2 Reduction (PCOR) Partnership, one of seven members of the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has begun collecting core samples from a new characterization well near Spectra Energy's Fort

  7. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08

    The relative permeability to fluids in hydrate-bearing sediments is an important parameter for predicting natural gas production from gas hydrate reservoirs. We estimated the relative permeability parameters (van Genuchten alpha and m) in a hydrate-bearing sand by means of inverse modeling, which involved matching water saturation predictions with observations from a controlled waterflood experiment. We used x-ray computed tomography (CT) scanning to determine both the porosity and the hydrate and aqueous phase saturation distributions in the samples. X-ray CT images showed that hydrate and aqueous phase saturations are non-uniform, and that water flow focuses in regions of lower hydrate saturation. The relative permeability parameters were estimated at two locations in each sample. Differences between the estimated parameter sets at the two locations were attributed to heterogeneity in the hydrate saturation. Better estimates of the relative permeability parameters require further refinement of the experimental design, and better description of heterogeneity in the numerical inversions.

  8. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08

    The relative permeability to fluids in hydrate-bearingsediments is an important parameter for predicting natural gas productionfrom gas hydrate reservoirs. We estimated the relative permeabilityparameters (van Genuchten alpha and m) in a hydrate-bearing sand by meansof inverse modeling, which involved matching water saturation predictionswith observations from a controlled waterflood experiment. We used x-raycomputed tomography (CT) scanning to determine both the porosity and thehydrate and aqueous phase saturation distributions in the samples. X-rayCT images showed that hydrate and aqueous phase saturations arenon-uniform, and that water flow focuses in regions of lower hydratesaturation. The relative permeability parameters were estimated at twolocations in each sample. Differences between the estimated parametersets at the two locations were attributed to heterogeneity in the hydratesaturation. Better estimates of the relative permeability parametersrequire further refinement of the experimental design, and betterdescription of heterogeneity in the numerical inversions.

  9. Characterization of Interlayer Cs+ in Clay Samples Using Secondary Ion Mass Spectrometry with Laser Sample Modification

    SciTech Connect (OSTI)

    G. S. Groenewold; R. Avci; C. Karahan; K. Lefebre; R. V. Fox; M. M. Cortez; A. K. Gianotto; J. Sunner; W. L. Manner

    2004-04-01

    Ultraviolet laser irradiation was used to greatly enhance the secondary ion mass spectrometry (SIMS) detection of Cs+ adsorbed to soil consisting of clay and quartz. Imaging SIMS showed that the enhancement of the Cs+ signal was spatially heterogeneous: the intensity of the Cs+ peak was increased by factors up to 100 for some particles but not at all for others. Analysis of standard clay samples exposed to Cs+ showed a variable response to laser irradiation depending on the type of clay analyzed. The Cs+ abundance was significantly enhanced when Cs+-exposed montmorillonite was irradiated and then analyzed using SIMS, which contrasted with the behavior of Cs+-exposed kaolinite, which displayed no Cs+ enhancement. Exposed illitic clays displayed modest enhancement of Cs+ upon laser irradiation, intermediate between that of kaolinite and montmorillonite. The results for Cs+ were rationalized in terms of adsorption to interlayer sites within the montmorillonite, which is an expandable phyllosilicate. In these locations, Cs+ was not initially detectable using SIMS. Upon irradiation, Cs+ was thermally redistributed, which enabled detection using SIMS. Since neither the illite nor the kaolinite is an expandable clay, adsorption to inner-layer sites does not occur, and either modest or no laser enhancement of the Cs+ signal is observed. Laser irradiation also produced unexpected enhancement of Ti+ from illite and kaolinite clays that contained small quantities of Ti, which indicates the presence of microscopic titanium oxide phases in the clay materials.

  10. Sample data for greenbutton custodian project | OpenEI Community

    Open Energy Info (EERE)

    Sample data for greenbutton custodian project Home > Groups > Green Button Applications Hi Green Button experts, I pulled the data custodian code from https:github.comenergyos...

  11. Extraction of Sulfur Mustard Metabolites from Urine Samples and...

    Office of Scientific and Technical Information (OSTI)

    Extraction of Sulfur Mustard Metabolites from Urine Samples and Analysis by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) Citation Details In-Document Search...

  12. Extraction of Phosphonic Acids from Urine Samples and Analysis...

    Office of Scientific and Technical Information (OSTI)

    Report: Extraction of Phosphonic Acids from Urine Samples and Analysis by Gas Chromatography with Detection by Mass Spectrometryand Flame Photometric Detection Citation...

  13. Surface Gas Sampling At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen...

  14. NNSA implements nondestructive gas sampling technique for nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

  15. Rock Sampling At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Francisco Volcanic...

  16. Nevada Sample Application for Permit Under Utility Environmental...

    Open Energy Info (EERE)

    Sample Application for Permit Under Utility Environmental Protection Act Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  17. Microsoft Word - Final Sample Participant Profile November 2008...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microsoft Word - Final Sample Participant Profile November 2008.doc More Documents & Publications Microsoft Word - ARRAAttachment12v1.doc Microsoft Word - Fact Sheet Energy Speech ...

  18. Extraction of Sulfur Mustard Metabolites from Urine Samples and...

    Office of Scientific and Technical Information (OSTI)

    Title: Extraction of Sulfur Mustard Metabolites from Urine Samples and Analysis by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) Authors: Mayer, B P ; Williams, ...

  19. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    of Water Sample Analysis, Waunita Hot Spring Project, Gunnison County, Colorado Author R. H. Carpenter Organization Colorado Geological Survey in Cooperation with the U.S....

  20. Ch. III, Interpretation of water sample analyses Waunita Hot...

    Open Energy Info (EERE)

    of water sample analyses Waunita Hot Springs area Gunnison County, Colorado Author R. H. Carpenter Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  1. XANES Identification of Plutonium Speciation in RFETS Samples

    SciTech Connect (OSTI)

    LoPresti, V.; Conradson, S.D.; Clark, D.L.

    2009-06-03

    Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

  2. Alaska Sample Special Area Permit | Open Energy Information

    Open Energy Info (EERE)

    to library General: Alaska Sample Special Area Permit Author Alaska Department of Fish and Game Published Division of Habitat, 122012 DOI Not Provided Check for DOI...

  3. Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details...

  4. Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details...

  5. Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

  6. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) Exploration...

  7. Gas Sampling At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area...

  8. Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005...

    Open Energy Info (EERE)

    2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity...

  9. Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  10. Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) Exploration Activity Details Location...

  11. Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity...

  12. Gas Flux Sampling At Kawaihae Area (Thomas, 1986) | Open Energy...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location...

  13. System and method for measuring fluorescence of a sample

    DOE Patents [OSTI]

    Riot, Vincent J

    2015-03-24

    The present disclosure provides a system and a method for measuring fluorescence of a sample. The sample may be a polymerase-chain-reaction (PCR) array, a loop-mediated-isothermal amplification array, etc. LEDs are used to excite the sample, and a photodiode is used to collect the sample's fluorescence. An electronic offset signal is used to reduce the effects of background fluorescence and the noises from the measurement system. An integrator integrates the difference between the output of the photodiode and the electronic offset signal over a given period of time. The resulting integral is then converted into digital domain for further processing and storage.

  14. Modular Automated Processing System (MAPS) for analysis of biological samples.

    SciTech Connect (OSTI)

    Gil, Geun-Cheol; Chirica, Gabriela S.; Fruetel, Julia A.; VanderNoot, Victoria A.; Branda, Steven S.; Schoeniger, Joseph S.; Throckmorton, Daniel J.; Brennan, James S.; Renzi, Ronald F.

    2010-10-01

    We have developed a novel modular automated processing system (MAPS) that enables reliable, high-throughput analysis as well as sample-customized processing. This system is comprised of a set of independent modules that carry out individual sample processing functions: cell lysis, protein concentration (based on hydrophobic, ion-exchange and affinity interactions), interferent depletion, buffer exchange, and enzymatic digestion of proteins of interest. Taking advantage of its unique capacity for enclosed processing of intact bioparticulates (viruses, spores) and complex serum samples, we have used MAPS for analysis of BSL1 and BSL2 samples to identify specific protein markers through integration with the portable microChemLab{trademark} and MALDI.

  15. Efficient merging of data from multiple samples for determination...

    Office of Scientific and Technical Information (OSTI)

    Title: Efficient merging of data from multiple samples for determination of anomalous substructure Authors: Akey, David L. ; Terwilliger, Thomas C. ; Smith, Janet L. 1 ; LANL) ...

  16. Soil Sampling At North Brawley Geothermal Area (Alan & G., 1977...

    Open Energy Info (EERE)

    North Brawley Geothermal Area (Alan & G., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At North Brawley Geothermal Area...

  17. Modcopter: Prompt, Precise Aerial Sample Collection Using Unmanned...

    Office of Scientific and Technical Information (OSTI)

    Title: Modcopter: Prompt, Precise Aerial Sample Collection Using Unmanned Systems Authors: Curtis, Aaron 1 ; Elliott, James 2 ; Ronquest, Michael 3 ; Mascarenas, David D. 3 ...

  18. MODCOPTER: Prompt, Precise Aerial Sample Collection Using Unmanned...

    Office of Scientific and Technical Information (OSTI)

    Title: MODCOPTER: Prompt, Precise Aerial Sample Collection Using Unmanned Systems Authors: Mascarenas, David D. 1 ; Curtis, Aaron 2 ; Elliott, James 3 ; Ronquest, Michael 1 ...

  19. Green Button Sample from Texas | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Texas Green Button Sample from Texas These files contain sample Green Button data from two example households in Texas. Unlike the California sample data, these customers receive cost data along with usage information. For details on the characteristics of each sample household, see Profile Information.docx. File Premise1_2011_GreenButtonData_Texas.xml File Premise1_2012_GreenButtonData_Texas_0.xml File Premise2_GreenButtonData_Texas.xml File Profile Information.docx More Documents &

  20. Preparation and characterization of single crystal samples for...

    Office of Scientific and Technical Information (OSTI)

    So far, we have produced samples of zinc, Alsub 2Osub 3, cobalt, molybdenum and ... MONOCRYSTALS; ORIENTATION; PLASTICITY; SCATTERING; SYNCHROTRONS; X-RAY DIFFRACTION; ZINC