National Library of Energy BETA

Sample records for a16 advanced concepts

  1. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  2. 2012 Advanced Accelerator Concepts Workshop

    SciTech Connect (OSTI)

    Downer, Michael C.

    2015-03-23

    We report on the organization and outcome of the 2012 Advanced Accelerator Concepts Workshop, held in Austin, Texas in June 2012.

  3. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ACCESS) for High Efficiency Light Duty Vehicles Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for ...

  4. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation Advanced ...

  5. Tribal Renewable Energy Advanced Course: Project Financing Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concepts Tribal Renewable Energy Advanced Course: Project Financing Concepts Watch the DOE Office of Indian Energy's advanced renewable energy course entitled "Tribal Renewable ...

  6. Introduction to DMFCs - Advanced Materials and Concepts for Portable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Download the ...

  7. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC...

    Energy Savers [EERE]

    Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Through the Solar ...

  8. Update; Sodium advanced fast reactor (SAFR) concept

    SciTech Connect (OSTI)

    Oldenkamp, R.D.; Brunings, J.E. ); Guenther, E. ); Hren, R. )

    1988-01-01

    This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

  9. Advanced Accelerator Concepts Final Report

    SciTech Connect (OSTI)

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

  10. Sandia National Laboratories: Advanced Pulsed Power Concepts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Pulsed Power Concepts Sandia's Pulsed Power Research Programs Sandia Research Sandia has become the undisputed leader in fast pulsed power science and technology. Beginning in the 1960s, our pulsed power devices have helped assure the performance of every nuclear system in the stockpile. In July 2014's issue of Sandia Research, learn more about the amazing capabilities of the Z Machine and our Pulsed Power technologies and the critical work we perform here at the laboratories. Linear

  11. Advance Reactor Concepts Technical Review Panel Public Report | Department

    Energy Savers [EERE]

    of Energy Advance Reactor Concepts Technical Review Panel Public Report Advance Reactor Concepts Technical Review Panel Public Report The Office of Nuclear Energy supports research and development for advanced reactor technologies. This report documents the results of the 2014 Technical Review Panel (TRP) review of seven advanced reactor concepts. The intent of the process was to identify research and development needs for advanced reactor concepts in order to inform Department of Energy

  12. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect (OSTI)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  13. Tribal Renewable Energy Advanced Course: Project Financing Concepts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concepts Tribal Renewable Energy Advanced Course: Project Financing Concepts Watch the DOE Office of Indian Energy's advanced renewable energy course entitled "Tribal Renewable Energy Project Development: Advanced Financing Concepts" by clicking on the .swf link below. You can also download a PDF of the PowerPoint slides. This course covers the following concepts for financing renewable energy projects on tribal lands: Levelized Cost of Energy Business

  14. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles -

    Office of Scientific and Technical Information (OSTI)

    12477 (Conference) | SciTech Connect Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477 Citation Details In-Document Search Title: Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477 A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S.

  15. Introduction to DMFCs - Advanced Materials and Concepts for Portable Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells | Department of Energy DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Download the presentation slides from Piotr Zelenay, Los Alamos National Laboratory, at the July 17, 2012, Fuel Cell Technologies Program webinar "Fuel Cells for Portable Power." PDF icon Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Webinar Slides More

  16. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity | Department of Energy Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) Funding Opportunity Through the Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more interactive systems and components so that solar energy can be integrated into the electric power

  17. Advanced Materials and Concepts for Portable Power Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 9_lanl_zelenay.pdf More Documents & Publications Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts New MEA Materials for Improved DMFC Performance, Durability and Cos

  18. Tribal Renewable Energy Advanced Course: Project Development Concepts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project Development: Advanced Concept Topics" by clicking on the .swf file below. You can also download a PDF of the PowerPoint slides. This course provides in-depth information on project development concepts for renewable energy projects on tribal lands, including: Risk and uncertainty

  19. Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Light Duty Vehicles | Department of Energy Discusses development highly capable and flexible advanced control concepts and enabling system to manage multi-mode/multi-fuel combustion events and achieve an up to 30 percent fuel economy improvement PDF icon deer11_yilmaz.pdf More Documents & Publications Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Vehicle Technologies Office Merit Review 2014: Advanced

  20. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    SciTech Connect (OSTI)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  1. SERI Advanced and Innovative Wind-Energy-Concepts Program

    SciTech Connect (OSTI)

    Mitchell, R.L.; Jacobs, E.W.

    1983-06-01

    In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

  2. Renewable Energy Project Development: Advanced Concept Topics

    Energy Savers [EERE]

    Concept Topics An Introduction to Risk, Tribal Roles, and Support Policies in the Renewable Energy Project Development Process Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Concepts and Policies for Understanding Renewable Energy Projects on Tribal Lands - Risk and Uncertainty - Tribal Project Roles - Policies and Incentives  Additional Information and Resources 2 Introduction The U.S. Department of Energy (DOE) Office of Indian Energy

  3. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles. Citation Details In-Document Search Title: Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles. Abstract not provided. Authors: Hardin, Ernest L. ; Blink, James ; LLNL ; Carter, Joe ; SRNL ; Fratoni, Massimiliano ; LLNL ; Greenberg, Harris ; LLNL ; Howard, Rob ; ORNL Publication Date: 2011-11-01 OSTI Identifier: 1118425 Report Number(s): SAND2011-8419C 481535 DOE

  4. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Opportunities for the Metal Casting Industry | Department of Energy Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry PDF icon advancedmeltingtechnologies.pdf More Documents & Publications ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcasting Operations ITP Metal Casting: Energy and

  5. Solar Energy Grid Integration Systems-Advanced Concepts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Integration » Solar Energy Grid Integration Systems-Advanced Concepts Solar Energy Grid Integration Systems-Advanced Concepts On September 1, 2011, DOE announced $25.9 million to fund eight solar projects that are targeting ways to develop power electronics and build smarter, more interactive systems and components so that solar energy can be integrated into the electric power distribution and transmission grid at higher levels. Part of the SunShot Systems Integration

  6. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect (OSTI)

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  7. Advanced progress concepts for direct coal liquefaction

    SciTech Connect (OSTI)

    Anderson, R.; Derbyshire, F.; Givens, E.

    1995-09-01

    Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

  8. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect (OSTI)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  9. Development of environmentally advanced hydropower turbine system design concepts

    SciTech Connect (OSTI)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  10. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  11. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    SciTech Connect (OSTI)

    Hoffman, M.A.; Campbell, R.; Logan, B.G.; Lawrence Livermore National Lab., CA )

    1988-10-01

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  12. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang; Akli, Kramer U.; Beg, Farhat N.; Sentoku, Yasuhiko; Schumacher, Douglass W.; Wei, Mingsheng

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-μm after >100-μm propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser at the University of Texas, Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing simulations codes developed by the National Nuclear Security Administration ICF program. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. This project generated an impressive forty articles in high quality journals including nine (two under review) in Physical Review Letters during the three years of this grant and five graduate students completed their doctoral dissertations.

  13. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation

    Broader source: Energy.gov [DOE]

    In 2008, DOE issued the Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA) managed by the SunShot Initiative. The following projects were selected under this competitive solicitation.

  14. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  15. Organization of the 16th Advanced Accelerator Concepts (AAC) Workshop by

    Office of Scientific and Technical Information (OSTI)

    Stanford University (Technical Report) | SciTech Connect Technical Report: Organization of the 16th Advanced Accelerator Concepts (AAC) Workshop by Stanford University Citation Details In-Document Search Title: Organization of the 16th Advanced Accelerator Concepts (AAC) Workshop by Stanford University Essentially all we know today and will learn in the future about the fundamental nature of matter is derived from probing it with directed beams of particles such as electrons, protons,

  16. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect (OSTI)

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  17. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  18. An advanced bioprocessing concept for the conversion of wastepaper to ethanol

    SciTech Connect (OSTI)

    Scott, C.D.; Davison, B.H.; Scott, T.C.; Woodward, J.; Dees, C.; Rothrock, D.S.

    1993-06-01

    Wastepaper is a plentiful and low-cost lignocellulosic feed material that may represent the most direct way to penetrate the market with an advanced bioprocessing system. Innovative bioprocessing concepts integrated into such a system for the production of ethanol should be economically viable. Several of the proposed processing advances for such a system have only been studied on a laboratory scale, so a more thorough process development and scale-up effort will be required.

  19. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  20. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    SciTech Connect (OSTI)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  1. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    SciTech Connect (OSTI)

    Naus, D.J

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development.

  2. Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors

    SciTech Connect (OSTI)

    Hugo, Jacques

    2015-05-01

    This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method was adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.

  3. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    SciTech Connect (OSTI)

    Jacques Hugo; David Gertman

    2014-04-01

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

  4. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    SciTech Connect (OSTI)

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  5. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    SciTech Connect (OSTI)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-08-01

    This report presents preliminary research results from the investigation into the development of new models and guidance for Concepts of Operations in advanced small modular reactor (AdvSMR) designs. AdvSMRs are nuclear power plants (NPPs), but unlike conventional large NPPs that are constructed on site, AdvSMRs systems and components will be fabricated in a factory and then assembled on site. AdvSMRs will also use advanced digital instrumentation and control systems, and make greater use of automation. Some AdvSMR designs also propose to be operated in a multi-unit configuration with a single central control room as a way to be more cost-competitive with existing NPPs. These differences from conventional NPPs not only pose technical and operational challenges, but they will undoubtedly also have regulatory compliance implications, especially with respect to staffing requirements and safety standards.

  6. Thermal-hydraulic analysis of advanced reactor concepts: The Gas Core Nuclear Rocket

    SciTech Connect (OSTI)

    Banjac, V.; Heger, A.S.

    1995-12-31

    The Gas Core Nuclear Rocket (GCNR), a design first proposed in the 1960s for fast round-trip missions to Mars and the outer planets, is generally considered to be the most advanced, and therefore the most complex, iteration of the fission reactor concept. The GCNR technology involves the extraction of fission energy, by means of thermal radiation, from a high-temperature plasma core to a working fluid. A specific derivative of GCNR technology is the nuclear fight bulb (NLB) rocket engine, first proposed by the then United Aircraft Research Laboratories (UARL) in the early 1960s. The potential operating parameters provided the motivation for a detailed thermal hydraulics analysis.

  7. Advanced integration concepts for oxygen plants and gas turbines in gasification/IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Klosek, J.; Woodward, D.W.

    1996-12-31

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. Other processes, such as coal-based ironmaking and combined power and industrial gas production facilities, can benefit from the integration of these two units. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NOx emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper will review basic integration principles and describe advanced concepts based on emerging high compression ratio gas turbines. Humid Air Turbine (HAT) cycles, and integration of compression heat and refrigeration sources from the ASU. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  8. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    SciTech Connect (OSTI)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-04-01

    This report presents preliminary research results from the investigation in to the development of new models and guidance for concepts of operations (ConOps) in advanced small modular reactor (aSMR) designs. In support of this objective, three important research areas were included: operating principles of multi-modular plants, functional allocation models and strategies that would affect the development of new, non-traditional concept of operations, and the requiremetns for human performance, based upon work domain analysis and current regulatory requirements. As part of the approach for this report, we outline potential functions, including the theoretical and operational foundations for the development of a new functional allocation model and the identification of specific regulatory requirements that will influence the development of future concept of operations. The report also highlights changes in research strategy prompted by confirmationof the importance of applying the work domain analysis methodology to a reference aSMR design. It is described how this methodology will enrich the findings from this phase of the project in the subsequent phases and help in identification of metrics and focused studies for the determination of human performance criteria that can be used to support the design process.

  9. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    SciTech Connect (OSTI)

    Faybishenko, B.

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  10. Innovative concept for an advanced hadron facility based on a 2 GeV H/sup -/ linac

    SciTech Connect (OSTI)

    Thiessen, H.A.

    1987-01-01

    This report presents parameters for an innovative new concept for the design of an advanced hadron facility. We propose combining a cold neutron source with a kaon factory. We also discuss the possibility of a shared target for neutron and neutrino experiments. An initial cost estimate is presented.

  11. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    SciTech Connect (OSTI)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-07-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% {delta}k. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% {delta}k. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  12. Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.

    SciTech Connect (OSTI)

    Baldwin, T.; Gasper, W.; Lacher, L.; Newsom, D.; Yantosik, G.

    1999-07-06

    The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) the adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.

  13. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    SciTech Connect (OSTI)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung and x-ray line radiation from K-shell fluorescence. Integrated experiments, which combine target compression with short-pulse laser heating, yield additional information on target heating efficiency. This indirect way of studying the underlying behavior of the electrons must be validated with computational modeling to understand the physics and improve the design. This program execution required a large, well-organized team and it was managed by a joint Collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). The Collaboration was formed 8 years ago to understand the physics issues of the Fast Ignition concept, building on the strengths of each partner. GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). Since RHED physics is pursued vigorously in many countries, international researchers have been an important part of our efforts to make progress. The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser (TPW) at UT Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing supercomputer codes developed by the NNSA ICF program. This Consortium brought together all the components—resources, facilities, and personnel—necessary to accomplish its aggressive goals. The ACE Program has been strongly collaborative, taking advantage of the expertise of the participating institutions to provide a research effort that is far greater than the sum of its parts. The results of this work have firmly strengthened the scientific foundation from which the viability of FI and other applications can be evaluated. Program execution has also led to improved diagnostics for probing dense, hot plasmas, detailed understanding of high-current, relativistic electron energy generation and transport across boundaries and into dense plasmas, and greatly enhanced predictive modeling capabilities. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. During the entire 8 years of FI and ACE project period since 2005, more than fifteen graduate students completed their doctoral dissertations including three from OSU and two from UCSD in last three years. This project generated an impressive forty articles in high quality journals including nine (including two under review) in Physical Review Letters during the last funding period since 2011.

  14. Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010

    SciTech Connect (OSTI)

    DOE, EERE

    2010-12-01

    This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  15. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    SciTech Connect (OSTI)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  16. Development of Proof-of-Concept Units for the Advanced Medium-Sized Mobile Power Sources (AMMPS) Program

    SciTech Connect (OSTI)

    Andriulli, JB

    2002-04-03

    The purpose of this report is to document the development of the proof-of-concept units within the Advanced Medium-sized Mobile Power Sources (AMMPS) program. The design used a small, lightweight diesel engine, a permanent magnet alternator, power electronics and digital controls as outlined in the philosophy detailed previously. One small proof-of-concept unit was completed and delivered to the military. The unit functioned well but was not optimized at the time of delivery to the military. A tremendous amount of experience was gained during this phase that can be used in the development of any follow-on AMMPS production systems. Lessons learned and recommendations for follow-on specifications are provided. The unit demonstrated that significant benefits are possible with the new design philosophy. Trade-offs will have to be made but many of the advantages appear to be within the technical grasp of the market.

  17. Energy Level Diagrams A=16

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Available in the following years: (1993), (1986), (1982), (1977), (1971), (1959) A=16 Energy Level Diagrams from (1993TI07) GIF (Graphic Interchange Format): 16C (223 KB) 16N (274 KB) 16O (176 KB) 16F (106 KB) Isobar diagram (190 KB) PDF (Portable Document Format): 16C (154 KB) 16N (71 KB) 16O (178 KB) 16F (108 KB) Isobar diagram (266 KB) EPS (Encapsulated Postscript): 16C (542 KB) 16N (430 KB) 16O (178 KB) 16F (357 KB) Isobar diagram (190 KB) A=16 Energy Level Diagrams from (1986AJ04) GIF

  18. Project Profile: Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept

    Broader source: Energy.gov [DOE]

    SkyFuel, under the CSP R&D FOA, is developing a commercial linear-Fresnel-based advanced CSP system called Linear Power Tower (LPT). The company aims to make significant improvements in the cost and viability of utility-scale dispatchable solar power.

  19. Evaluation of ADAM/1 model for advanced coal-extraction concepts

    SciTech Connect (OSTI)

    Deshpande, G. K.; Gangal, M. D.

    1982-01-15

    The Advanced Coal Extraction Project is sponsored by the Department of Energy at the Jet Propulsion Laboratory to define and develop advanced underground coal extraction systems which: (1) are suitable for significant remaining resources after the year 2000, and (2) promise a significant improvement in production cost and miner safety, with no degradation in miner health, environmental quality and resource recovery. System requirements in the five performance areas have been defined by Goldsmith and Lavin (1980). Several existing computer programs for estimating life-cycle cost of mining systems have been evaluated. A commercially available program ADAM/1 was found to be satisfactory in relation to the needs of the Advanced Coal Extraction Project. Two test cases were run to confirm the ability of the program to handle non-conventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs. Since the model is commercially available, data preparation instructions are not reproduced in this document; instead the reader is referred to the original documents for this information.

  20. Final Report: Advanced Concepts for Ultrahigh Brightness and Low Temperature Beams Progress Report

    SciTech Connect (OSTI)

    Wurtele, Jonathan S.; Fajans, Joel

    2015-06-01

    This grant supported research on techniques to manipulate and combine positrons and antiprotons to synthesize, and to probe, antihydrogen. The majority of the research was conducted as part of the ALPHA Collaboration at CERN. Using ideas and techniques from accelerator physics, we proposed a new method for measuring the the gravitational attraction of antihydrogen to the Earth's field. ALPHA reported the first precision charge measurement on antihydrogen and a crude bound on its gravitational dynamics in the Earth's field. We proposed using a stochastic acceleration method to measure any putative charge of antihydrogen and built numerical models of the mixing of antiprotons and positrons. Further research included proposing the radiator-first concept for operating an X-ray free electron laser driven by a high repetition rate bunch source and studying scattering in passive foil-based ion focusing systems.

  1. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    SciTech Connect (OSTI)

    Klein, Andrew; Matthews, Topher; Lenhof, Renae; Deason, Wesley; Harter, Jackson

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  2. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

  3. Development of advanced NO[sub x] control concepts for coal-fired utility boilers

    SciTech Connect (OSTI)

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1992-09-15

    All three of the CombiNO[sub x] NO[sub x] control technologies were performed simultaneously for the first time. Tests were performed while firing coal as the primary fuel, and natural gas and coal as reburn fuels. The results for the complete CombiNO[sub x] process for coal firing and natural gas reburning are displayed in Figure 3-1. NO/NO[sub x] measurements were taken with the new sample system. The filter and line were cleaned periodically throughout testing to avoid ash build-up; ash has also been shown to convert NO[sub 2] to NO. Reduction due to natural gas reburning was 54% with burnout air injected at a downstream location of approximately 1600[degree]F. Advanced Gas Reburning produced a 79% reduction -- although it is suspected that better reduction would have been possible if injection resolution in the furnace allowed the urea to be injected at a more optimum temperature of 1850[degree]F. The methanol injection step converted 45% of the existing NO to NO[sub 2], achieving an overall CombiNO[sub x] NO reduction of 89%. The coal reburning CombiNO[sub x] test results are displayed in Figure 3-2. Results are similar to those obtained for natural gas reburning. Reduction due to urea injection was better while reburning with coal than for natural gas, probably due to the more optimum urea injection temperature. The methanol injection step converted 40% of the NO to NO[sub 2], similar to the 45% NO conversion that occurred for natural gas reburning. An overall CombiNO[sub x] NO reduction of 93% was achieved, resulting in a final NO concentration of 61 ppM at 3% O[sub 2].

  4. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    SciTech Connect (OSTI)

    Afjeh, Abdollah A.; Windpower, Nautica; Marrone, Joseph; Wagner, Thomas

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method was developed and implemented in FAST to extend its capability for ice load modeling.Both upwind and downwind 2-bladed rotor wind turbine designs were developed and studied. The new rotor blade uses a new twist angle distribution design and a new pitch control algorithm compared with the baseline model. The coning and tilt angles were selected for both the upwind and downwind configurations to maximize the annual energy production. The risk of blade-tower impact is greater for the downwind design, particularly under a power grid fault; however, this risk was effectively reduced by adjusting the tilt angle for the downwind configuration.

  5. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect (OSTI)

    Zelenay, Piotr

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  6. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advances in neutral-beam-based diagnostics on the Madison Symmetric Torus reversed-field pinch "invited... D. J. Den Hartog, a͒ D. Craig, D. A. Ennis, G. Fiksel, S. Gangadhara, D. J. Holly, and J. C. Reardon Department of Physics, and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 V. I. Davydenko, A. A. Ivanov, and A. A. Lizunov Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia M. G.

  7. A=16-17, 1993 evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 - 17 (1993TI07) (Revised Manuscript from 1993) An evaluation of A = 16 - 17 was published in Nuclear Physics A564 (1993) p.1. The version here lacks the introduction and overview tables that appeared in the full version, and is arranged in a different manner. The figures are now present in the pdf documents, and are also available elsewhere on this server (see below). PDF HTML Figures A = 16 16He, 16Li, 16Be, 16B, 16C, 16N, 16O, 16F, 16Ne, 16Na, 16Mg, 16Al, 16Si A = 16 A = 17 17He, 17Li, 17Be,

  8. Advanced Target Effects Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies » Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear

  9. A=16Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (CE68A: 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV. See also (GO60K, GO60P, BA61F, GO61N, GO62N, GO62O, GA64A,...

  10. A=16Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (1968CE1A); 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV: see (1971AJ02) for the earlier work. See also (1972WA07)...

  11. Enabling Technologies/Innovative Concepts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Technologies/Innovative Concepts Enabling Technologies / Innovative Concepts: R&D supporting the evaluation and development of advanced concepts and innovative new options for oxy-fuel combustion, as well as enabling technologies for oxy-combustion and chemical looping combustion. Enabling Technologies/Innovative Concepts R&D is supporting the evaluation and development of advanced concepts which could provide innovative new options for oxy-fuel combustion, as well as enabling

  12. Advanced HEV/PHEV Concepts

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  13. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    SciTech Connect (OSTI)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payload’s communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods – the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.

  14. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and ...

  15. Advanced Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative

  16. Advanced Simulation Capability

    Office of Environmental Management (EM)

    Energy Reactor Concepts Technical Review Panel Report Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and

  17. Tribal Renewable Energy Advanced Course: Project Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy ...

  18. Advanced Reactor Technology Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D

  19. New Compressor Concept Improves Efficiency and Operation Range...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressor Concept Improves Efficiency and Operation Range New Compressor Concept Improves Efficiency and Operation Range Advanced turbocharger compressor design with active casing ...

  20. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect (OSTI)

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  1. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report no. 6, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1992-09-15

    All three of the CombiNO{sub x} NO{sub x} control technologies were performed simultaneously for the first time. Tests were performed while firing coal as the primary fuel, and natural gas and coal as reburn fuels. The results for the complete CombiNO{sub x} process for coal firing and natural gas reburning are displayed in Figure 3-1. NO/NO{sub x} measurements were taken with the new sample system. The filter and line were cleaned periodically throughout testing to avoid ash build-up; ash has also been shown to convert NO{sub 2} to NO. Reduction due to natural gas reburning was 54% with burnout air injected at a downstream location of approximately 1600{degree}F. Advanced Gas Reburning produced a 79% reduction -- although it is suspected that better reduction would have been possible if injection resolution in the furnace allowed the urea to be injected at a more optimum temperature of 1850{degree}F. The methanol injection step converted 45% of the existing NO to NO{sub 2}, achieving an overall CombiNO{sub x} NO reduction of 89%. The coal reburning CombiNO{sub x} test results are displayed in Figure 3-2. Results are similar to those obtained for natural gas reburning. Reduction due to urea injection was better while reburning with coal than for natural gas, probably due to the more optimum urea injection temperature. The methanol injection step converted 40% of the NO to NO{sub 2}, similar to the 45% NO conversion that occurred for natural gas reburning. An overall CombiNO{sub x} NO reduction of 93% was achieved, resulting in a final NO concentration of 61 ppM at 3% O{sub 2}.

  2. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace066yilmaz2011

  3. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace066yilmaz2012

  4. Renewable Energy Project Development: Advanced Concept Topics

    Office of Environmental Management (EM)

    ... control for safetysecurity purposes Permitting * Tribally adopted codes and permitting requirements * Utility interconnection requirements Finance * Capital availability * ...

  5. Project Profile: Commercial Development of an Advanced Linear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept Project Profile: Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept SkyFuel logo SkyFuel, ...

  6. Advanced Reactor Research and Development Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate...

  7. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  8. AdvancedBPA_jk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A DVA N C E D B L O O D S TA I N P A T T E R N A NA LY S I S WORKSHOP S E P T E M B E R 2 3 - 2 7 , 2 0 1 3 Advanced Bloodstain Pattern Analysis Workshop This advanced level course is designed for practitioners who have successfully completed basic instruction in Bloodstain Pattern Analysis and desire to build on that fundamental knowledge while working toward expertise in the discipline. This workshop will begin with a brief review of the basic concepts and will continue with the student

  9. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  10. Organic Photovoltaics Experiments Showcase 'Superfacility' Concept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Collaboration Key to Enabling On-The-Fly HPC Data Analysis at Multiple Sites March 17, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov A collaborative effort linking the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (Berkeley Lab) with supercomputing resources at the National Energy Research Scientific Computing Center (NERSC)

  11. Advanced Gasificatioin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Gasification Research Team Members Key Contacts Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to meet a number of operational goals could create roadblocks to widespread acceptance and commercialization of advanced gasification technologies. We must, for example, achieve gasifier online availability of 85-95 percent in utility applications, and 95 percent for

  12. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty...

  13. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Fact Sheet Key Contacts Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies. Oxy-combustion comes with an efficiency loss, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture,

  14. Advanced steel reheat furnace

    SciTech Connect (OSTI)

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  15. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, ... The DOE Office of Science's Advanced Scientific Computing Research (ASCR) program ...

  16. ENR Concept | Open Energy Information

    Open Energy Info (EERE)

    ENR Concept Jump to: navigation, search Name: ENR Concept Place: France Sector: Solar Product: Solar power engineering firm. References: ENR Concept1 This article is a stub. You...

  17. Generic repository design concepts and thermal analysis (FY11). (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Generic repository design concepts and thermal analysis (FY11). Citation Details In-Document Search Title: Generic repository design concepts and thermal analysis (FY11). Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced

  18. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to todays implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  19. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M The Energy Department intends to issue a Funding Opportunity Announcement for approximately $70 million entitled "Clean Energy Manufacturing Innovation Institute for Reducing EMbodied-energy And Decreasing

  20. advanced manufacutring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacutring - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  1. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  2. Organization of the 16th Advanced Accelerator Concepts (AAC)...

    Office of Scientific and Technical Information (OSTI)

    Today, particle accelerators are essential tools of modern science and technology. The ... for discussion and development of the most promising acceleration physics and technology. ...

  3. Energy Department to Invest in Advanced Reactor Concept Development |

    Energy Savers [EERE]

    Paducah Site | Department of Energy Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy announced today that it will open negotiations with Global

  4. Advanced Reactor Concepts Technical Review Panel Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    one light water-cooled reactor, one lead-bismuth-cooled reactor and one salt-cooled reactor. Four reactors use uranium oxide or uranium metal fuel, one proposes use of ...

  5. Renewable Energy Project Development and Finance: Advanced Development Concepts

    Energy Savers [EERE]

    Process and Structures Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Project Financing Structures - Direct Ownership - Partnership Flip - Sale Leaseback - Inverted Lease/Lease Pass-Through  Additional Information and Resources 2 Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and

  6. Introduction to DMFCs - Advanced Materials and Concepts for Portable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H 2 -Air PEMFC: Fuel Cell Polarization Plots M. P. Hogarth and T. R. Ralph, Platinum ... research; MEA integration N. Cabello-Moreno (PI), G. Hards, G. Spikes - MEA ...

  7. Evolutionary developments advancing the floating production, storage, and offloading concept

    SciTech Connect (OSTI)

    Carter, J.H.T.; Foolen, J.

    1982-01-01

    Tanker-based floating production, storage and offloading (FPSO) systems have been in operation since Aug. 1977, when a single-well FPSO was put into production by Shell Espana in the Mediterranean. The overall operational experience with this system at this field is reviewed. Special attention is directed to the wireline workover facilities which have proven to be satisfactory. A subsequent evolutionary step, a FPSO accommodating multiple wells, necessitated development of a multiple-bore product swivel. A design program for this swivel was initiated in 1978, a prototype was built and fullscale testing finalized in 1980. A summary of the test results is presented. Simultaneous with the multiple-bore swivel development, detailed engineering for an 8-well FPSO was begun. This sytem includes gas lift a

  8. Generic Repository Concepts and Thermal Analysis for Advanced...

    Office of Scientific and Technical Information (OSTI)

    Enclosed modes have less capacity to dissipate heat than open modes such as that proposed ... internationally and previously in the U.S. Open modes (such as that proposed for a ...

  9. Advanced concepts for controlled combustion in engines. Final report

    SciTech Connect (OSTI)

    Oppenheim, A.K.

    1991-12-15

    Studies carried out at the University of California, Berkeley, over a period of four years were concerned with fluid mechanical properties of turbulent pulsed jet plumes - systems that are of particular relevance to the initiation and control of combustion in engines. The eventual purpose of this program was to provide a rational background for a fundamental refinement of stratified charge diesel engines - the development of a combustion system where the formation of pollutants is minimized, fuel economy is maximized, while fuel tolerance is optimized. The results demonstrated that this goal is attainable by means of appropriate Pulsed Jet Combustion (PJC) generators. The exothermic process of combustion is executed thereby in the form of a fireball taking place in a stratified charge generated by turbulent plumes of a PJC system.

  10. Characterization of emissions from advanced automotive power plant concepts

    SciTech Connect (OSTI)

    Montalvo, D.A.; Hare, C.T.

    1984-11-01

    Emissions from three diesel cars using two fuel formulations were assessed. The three diesel cars included a prototype naturally-aspirated Fiat 131, a prototype turbocharged Fiat 131, and a 1981 Oldsmobile Cutlass Supreme. Each Fiat was tested with and without a prototype catalytic trap. Vehicle operating procedures used for test purposes included the 1981 Federal Test Procedures as well as the Highway Fuel Economy Test, the New York City Cycle, and an 85 km/hr steady-state cruise. Both regulated and unregulated gaseous and particulate emissions were measured. Organic solubles in particulate were analyzed for various constituents and characteristics including fractionation by relative polarity, benzo(a)pyrene (BaP), and mutagenic activity by Ames bioassay. Application of the catalytic trap oxidizer system to the Fiat prototypes resulted in significant reductions of organic and carbon monoxide emissions under all transient driving conditions examined. Total particulate emissions were reduced an average of 55 percent with the turbocharged engine and 65 percent with the naturally-aspirated engine. The Ames assay mutagenic response (revertants/microgram) of the particulate-phase organics was elevated by the catalytic exhaust aftertreatment device, however the emission rates (revertants/km) were reduced an average of 66 percent with the turbocharged and 73 percent with the naturally-aspirated engines.

  11. Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Light Duty Vehicles | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace066_yilmaz_2012

  12. Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Light Duty Vehicles | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace066_yilmaz_2011

  13. Generic Repository Concepts and Thermal Analysis for Advanced...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Waste Management Conference 2012 ?Improving the Future in Waste Management%22 held ...

  14. Common tester platform concept.

    SciTech Connect (OSTI)

    Hurst, Michael James

    2008-05-01

    This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

  15. Manufacturing Innovation Institute for Smart Manufacturing: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Controls, Platforms, and Modeling for Manufacturing | Department of Energy Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing September 23, 2015 - 2:38pm Addthis Posted Date: Sep 15, 2015 Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due

  16. Concept of Operations: Essence

    SciTech Connect (OSTI)

    Hutton, William J.

    2014-04-01

    This concept of operations is designed to give the reader a brief overview of the National Rural Electric Cooperative Association’s Essence project and a description of the Essence device design. The data collected by the device, how the data are used, and how the data are protected are also discussed in this document.

  17. Separations innovative concepts: Project summary

    SciTech Connect (OSTI)

    Lee, V.E.

    1988-05-01

    This project summary includes the results of 10 innovations that were funded under the US Department's Innovative Concept Programs. The concepts address innovations that can substantially reduce the energy used in industrial separations. Each paper describes the proposed concept, and discusses the concept's potential energy savings, market applications, technical feasibility, prior work and state of the art, and future development needs.

  18. Advanced Reactor Research and Development Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the...

  19. ATAC Process Proof of Concept Final Report

    SciTech Connect (OSTI)

    Bri Rolston; Sarah Freeman

    2014-03-01

    Researchers at INL with funding from the Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) evaluated a novel approach for near real-time consumption of threat intelligence. Demonstration testing in an industry environment supported the development of this new process to assist the electric sector in securing their critical networks. This report provides the reader with an understanding of the methods used during this proof of concept project. The processes and templates were further advanced with an industry partner during an onsite assessment. This report concludes with lessons learned and a roadmap for final development of these materials for use by industry.

  20. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect (OSTI)

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  1. AdvAnced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AdvAnced test reActor At the InL advanced Unlike large, commercial power reactors, ATR is ... What makes the Advanced test reactor, located at the Idaho national Laboratory, unique ...

  2. Advanced engineering environment pilot project.

    SciTech Connect (OSTI)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  3. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  4. advanced radiographic capability | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    advanced radiographic capability

  5. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research & Development Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Advanced Research & Development Advanced Research & DevelopmentCoryne...

  6. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets

    Office of Scientific and Technical Information (OSTI)

    2-3486 Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization Reactor Concepts Ehud Greenspan University of California, Berkeley Thomas Sowinski, Federal POC Michael Todosow, Technical POC Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics an Resource Utilization Summary Report NEUP Project 12-3486 University of California, Berkeley November 4, 2015 Advanced Burner Reactor with Breed-and-Burn Thorium Blankets

  7. Steady State Advanced Tokamak (SSAT): The mission and the machine

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Steady State Advanced Tokamak (SSAT): The mission and the machine Citation Details In-Document Search Title: Steady State Advanced Tokamak (SSAT): The mission and the machine Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting

  8. Steady State Advanced Tokamak (SSAT): The mission and the machine

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Steady State Advanced Tokamak (SSAT): The mission and the machine Citation Details In-Document Search Title: Steady State Advanced Tokamak (SSAT): The mission and the machine Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting

  9. Proliferation resistance and the advanced fuel cycle facility (AFCF)

    SciTech Connect (OSTI)

    DeMuth, Scott; Thomas, Kenneth; Tobin, Stephen

    2007-07-01

    The planned Advanced Fuel Cycle Facility (AFCF) is intended to support the Global Nuclear Energy Partnership (GNEP) by demonstrating separation and fuel fabrication processes required to support an Advanced Burner Reactor. The processes, materials and safeguards will be selected and designed to enhance proliferation resistance beyond that of the existing plutonium based mixed oxide (MOX) fuel cycle. This paper explores the concept of proliferation resistance and how the AFCF will advance the related state of the art. (authors)

  10. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  11. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction of combined cycle cost from the baseline. A customer advisory board was instituted during Phase 1 to obtain important feedback regarding the future direction of the project. he technologies being developed for the Hydrogen Turbine will also be utilized, as appropriate, in the 2010 time frame engine and the FutureGen Plant. These new technologies and concepts also have the potential to accelerate commercialization of advanced coal-based IGCC plants in the U. S. and around the world, thereby reducing emissions, water use, solid waste production and dependence on scarce, expensive and insecure foreign energy supplies. Technology developments accomplished in Phase 1 provide a solid foundation for ensuring successful completion in Phase 2 and providing that the challenging program goals will be achieved.

  12. Energy Concepts | Open Energy Information

    Open Energy Info (EERE)

    Energy Concepts Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Hudson WI Coordinates 44.942933, -92.701608 Show Map Loading map......

  13. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be caused by electrical effects. Subsequently, extensive theoretical, bench-scale, and pilot-scale investigations were completed to find an approach to prevent bag damage without compromising AHPC performance. Results showed that the best bag protection and AHPC performance were achieved by using a perforated plate installed between the discharge electrodes and bags. This perforated-plate design was then installed in the 2.5-MW AHPC at Big Stone Power Plant in Big Stone City, South Dakota, and the AHPC was operated from March to June 2001. Results showed that the perforated-plate design solved the bag damage problem and offered even better AHPC performance than the previous design. All of the AHPC performance goals were met, including ultrahigh collection efficiency, high air-to-cloth ratio, reasonable pressure drop, and long bag-cleaning interval.

  14. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion FAQs faq-header-big.jpg ADVANCED COMBUSTION SYSTEMS - BASICS Q: What is advanced combustion? A: State-of-the-art, coal-fired boilers use air for the combustion of fuel. However, advanced combustion power generation burns fossil fuels in a high-oxygen concentration environment, rather than air. This strategy eliminates most, if not all, of the nitrogen found in air from the combustion process, resulting in flue gas composed of carbon dioxide (CO2), water, contaminants from the

  15. Advanced Combustion Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Turbines The Advanced Turbines program at NETL is focused on R&D activities to develop technologies that will accelerate turbine performance and efficiency beyond current state-of-the-art and reduce the risk to market for novel and advanced turbine-based power cycles. Advanced Combustion Turbines for Combined Cycle Applications area is focused on components and combustion systems for advanced combustion turbines in combined cycle operation that can achieve greater than 65 %

  16. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  17. Advanced Critical Advanced Energy Retrofit Education and Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and ...

  18. Innovation Concepts in Healthcare

    SciTech Connect (OSTI)

    2011-01-06

    AbstractDemographic change and advances in medical science pose increased challenges to healthcare systems globally: The economic basis is aging and thus health is becoming more and more a productivity factor. At the same time, with today’s new communication possibilities the demand and expectations of effective medical treatment have been increased. This presentation will illustrate the need for the “industrialization” of healthcare in order to achieve highest results at limited budgets. Thereby, industrialization is not meaning the medical treatment based on the assembly line approach. Rather it is to recognize the cost of medical care as an investment with respective expectations on the return of the investment. Innovations in imaging and pharmaceutical products as well as in processes - that lead to similar medical results, but with lower efforts - are keys in such scenarios.BiographyProf. Dr. Hermann Requardt, 54, is a member of the Managing Board of Siemens AG and Chief Executive Officer of the Healthcare Sector. In addition he is the CTO of Siemens AG and Head of Corporate Technology, the central research department at Siemens.After completing his studies in physics and philosophy at the Darmstadt University of Technology and Johann Wolfgang Goethe University in Frankfurt and receiving a doctorate in biophysics, he worked at the Institute of Aerospace Medicine at the German Aerospace Center.In 1984 he joined the Medical Technology Group of Siemens AG, where he was responsible for projects in the Magnetic Resonance (MR) division. He was appointed head of the division in 1995. From 2001 to 2006, as a member of the Executive Management of the Medical Solutions Group, he was responsible for several areas, including technological development.In 2006 he became a Member of the Siemens’ Managing Board and head of Corporate Technology. He was additionally appointed as the Sector Healthcare CEO in 2008.Since 2006 he is an honorary professor in physics of the Johann Wolfgang Goethe University in Frankfurt.                                                                                

  19. Innovation Concepts in Healthcare

    ScienceCinema (OSTI)

    None

    2011-04-25

    AbstractDemographic change and advances in medical science pose increased challenges to healthcare systems globally: The economic basis is aging and thus health is becoming more and more a productivity factor. At the same time, with today?s new communication possibilities the demand and expectations of effective medical treatment have been increased. This presentation will illustrate the need for the ?industrialization? of healthcare in order to achieve highest results at limited budgets. Thereby, industrialization is not meaning the medical treatment based on the assembly line approach. Rather it is to recognize the cost of medical care as an investment with respective expectations on the return of the investment. Innovations in imaging and pharmaceutical products as well as in processes - that lead to similar medical results, but with lower efforts - are keys in such scenarios.BiographyProf. Dr. Hermann Requardt, 54, is a member of the Managing Board of Siemens AG and Chief Executive Officer of the Healthcare Sector. In addition he is the CTO of Siemens AG and Head of Corporate Technology, the central research department at Siemens.After completing his studies in physics and philosophy at the Darmstadt University of Technology and Johann Wolfgang Goethe University in Frankfurt and receiving a doctorate in biophysics, he worked at the Institute of Aerospace Medicine at the German Aerospace Center.In 1984 he joined the Medical Technology Group of Siemens AG, where he was responsible for projects in the Magnetic Resonance (MR) division. He was appointed head of the division in 1995. From 2001 to 2006, as a member of the Executive Management of the Medical Solutions Group, he was responsible for several areas, including technological development.In 2006 he became a Member of the Siemens? Managing Board and head of Corporate Technology. He was additionally appointed as the Sector Healthcare CEO in 2008.Since 2006 he is an honorary professor in physics of the Johann Wolfgang Goethe University in Frankfurt.                                                                                

  20. An introduction to the concept of profiles

    SciTech Connect (OSTI)

    Fogel, G.; Doll, D.

    1997-09-01

    There has been limited general acceptance of lubricant analysis as a predictive maintenance tool in industry as compared to say vibration monitoring. There is perhaps a perception within industry that Lubricant analysis has failed to deliver on some of the promises that it has made. However, when one looks at so called benchmark programs that exhibit the practices of industry leaders, and measures the achievements of such programs there is no doubt that if applied correctly that lubricant analysis is an invaluable tool in the development of an advanced approach to maintenance. There are many issues which create a successful lubricant analysis program, one of which is the appropriate use of existing technologies to ensure optimum value in the implementation of a program. This paper introduces the concept of Profiles as a framework for the effective utilization of the correct lubricant analysis technologies.

  1. Advanced wind turbine design studies: Advanced conceptual study. Final report

    SciTech Connect (OSTI)

    Hughes, P.; Sherwin, R.

    1994-08-01

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  2. Promethus Hot Leg Piping Concept

    SciTech Connect (OSTI)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  3. Integrated Distribution Planning Concept Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Planning Concept Paper www.irecusa.org A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources May 2013 Integrated Distribution Planning Concept Paper A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources Tim Lindl and Kevin Fox Interstate Renewable Energy Council, Inc. Abraham Ellis and Robert Broderick Sandia National Laboratories May 2013 IREC enables greater use of clean energy in a sustainable way by

  4. TAPS design concepts: environmental concerns

    SciTech Connect (OSTI)

    Turner, M.J.

    1981-05-01

    The engineering concepts used in the design, construction, and operation of the Trans-Alaska Pipeline System (TAPS) were often new and in many cases in the state of the art. To accommodate environmental concerns for operating a hot oil pipeline in permafrost soil, unique features were incorporated into TAPS. Design concepts include a sophisticated leak detection and internal pipeline monitoring system. Additional features for accommodating thaw-unstable soils, earthquakes, and river systems are described. (23 references)

  5. Institute for Advanced Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Collaboration » Education Opportunities » Institute for Advanced Studies Institute for Advanced Studies NMC leverages the strengths of three research universities to build joint programs, develop strategic partnerships, provide common organization and facilities. Contact Leader TBD LANL Program Administrator Pam Hundley (505) 663-5453 Email Building regional partnerships in education, leveraging strengths of three research universities The Institute for Advanced Studies (IAS) works with

  6. Advanced Nuclear Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key

  7. Advanced Usage Examples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Examples Advanced Usage Examples Transferring Data from Batch Jobs Once you have set up your automatic HPSS authentication you can access HPSS within batch scripts. Read More ...

  8. Beamlines | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamlines Beamlines Home Beamlines Directory Research Techniques Sectors Directory Status and Schedule Safety and Training Beamlines The Advanced Photon Source consists of 34...

  9. Advances in Performance Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safety of geologic repositories for radioactive waste disposal called "performance assessment", PA. The discipline of PA continues to advance within the Defense Waste Management...

  10. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this professional development experience to help aspiring young researchers advance and excel in the next stage of their careers in academia or at a national laboratory. For...

  11. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  12. Overview | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Overview: Introduction APS Systems Map LINAC Booster Synchrotron Storage Ring Insertion Devices Experiment Hall LOMs & Beamlines Overview of the APS The Advanced Photon Source...

  13. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  14. Advanced Optical Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffractive Membrane Optic The first diffractive membrane optic, designed for a Defense Advanced Research Projects Agency (DARPA) project, was completed on July 25, 2011. The ...

  15. An Advanced Liquid Centrifuge Using Differentially Rotating Cylinders and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Boundary Conditions --- Inventor(s) Hantao Ji, Adam Cohen, Phil Efthimion and Eric Edlund | Princeton Plasma Physics Lab An Advanced Liquid Centrifuge Using Differentially Rotating Cylinders and Optimized Boundary Conditions --- Inventor(s) Hantao Ji, Adam Cohen, Phil Efthimion and Eric Edlund This invention discloses a concept for an advanced centrifugal contactor which can be used for (1) mixing of two or more component fluid substances to produce a uniform mixture or enhance the

  16. A16_ISO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  17. A=16 Nuclides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A short list of corrections to mistakes found after the evaluation was published Elsevier Electronic Online: Elsevier (Nuclear Physics A) has made available PDF versions of A...

  18. Advanced uranium enrichment technologies

    SciTech Connect (OSTI)

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  19. Supercritical CO2 direct cycle Gas Fast Reactor (SC-GFR) concept.

    SciTech Connect (OSTI)

    Wright, Steven Alan; Parma, Edward J., Jr.; Suo-Anttila, Ahti Jorma; Al Rashdan, Ahmad; Tsvetkov, Pavel Valeryevich; Vernon, Milton E.; Fleming, Darryn D.; Rochau, Gary Eugene

    2011-05-01

    This report describes the supercritical carbon dioxide (S-CO{sub 2}) direct cycle gas fast reactor (SC-GFR) concept. The SC-GFR reactor concept was developed to determine the feasibility of a right size reactor (RSR) type concept using S-CO{sub 2} as the working fluid in a direct cycle fast reactor. Scoping analyses were performed for a 200 to 400 MWth reactor and an S-CO{sub 2} Brayton cycle. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this report show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The concept is based largely on the Advanced Gas Reactor (AGR) commercial power plants operated in the United Kingdom and other GFR concepts.

  20. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect (OSTI)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  1. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect (OSTI)

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  2. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  3. Validated SCR Concept Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validated SCR Concept Development Validated SCR Concept Development Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 ...

  4. System Design - Lessons Learned, Generic Concepts, Characteristics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design - Lessons Learned, Generic Concepts, Characteristics & Impacts System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Presented at the DOE-DOD ...

  5. Energy Literacy: Essential Principles and Fundamental Concepts...

    Energy Savers [EERE]

    Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education Energy...

  6. Energy Concepts Corporation | Open Energy Information

    Open Energy Info (EERE)

    by expanding it. Energy Concepts Corporation is a company located in Sapello, New Mexico. Energy Concepts Corporation is an electrical company specializing in solar electric (PV)...

  7. Engineering development of advanced froth flotation. Volume 2, Final report

    SciTech Connect (OSTI)

    Ferris, D.D.; Bencho, J.R.; Torak, E.R.

    1995-03-01

    This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

  8. An Amplifier Concept for Spintronics

    SciTech Connect (OSTI)

    Acremann, Y.; Yu, X.W.; Tulapurkar, A.A.; Scherz, A.; Chembrolu, V.; Katine, J.A.; Carey, M.J.; Siegmann, H.C.; Stohr, J.

    2009-05-11

    Typical spin-dependent devices proposed for information processing lack one of the most important features provided by charge based logic: they do not provide gain. In this letter we show the basic concept of a spin amplifier and propose ways to amplify a spin current at room temperature.

  9. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. PDF icon The Advanced Manufacturing Partnership and

  10. Joining of Advanced Thermoplastics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3, 2012 Joining of Advanced Thermoplastics Ed Herderick, PhD George Ritter, PhD Applications Engineer Principal Engineer Materials Group EWI 614.688.5111 Sean Flowers ...

  11. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, developing, and deploying computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to the Department of Energy. Get Expertise Pieter Swart (505) 665 9437 Email Pat McCormick (505) 665-0201 Email Dave Higdon (505) 667-2091 Email Fulfilling the potential of emerging computing systems and architectures beyond today's tools and techniques to deliver

  12. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration Programs Advanced Simulation and Computing and Institutional R&D Programs The Advanced Simulation and Computing (ASC) Program supports the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Defense Programs' use of simulation-based evaluation of the nation's nuclear weapons stockpile. The ASC Program is responsible for providing the simulation tools and computing environments required to qualify and certify the nation's nuclear

  13. Advances in Lithography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advances in Lithography Advances in Lithography Print Tuesday, 16 December 2014 11:40 Work featured on Applied Optics cover from ALS Beamline 11.3.2. Field-dependent wavefront aberration distribution of an extreme ultraviolet single-lens zone-plate microscope, recovered by the gradient descent algorithm customized for partially coherent imaging and targeted for fast and accurate retrieval. For information, see Yamazoe et al., pp. B34-B43, part of the Applied Optics-JOSA A cohosted feature,

  14. Advanced Simulation and Computing

    National Nuclear Security Administration (NNSA)

    NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction

  15. Advanced CSP Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    America | Department of Energy Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars

  16. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Advanced Materials Laboratory Home/Tag:Advanced Materials Laboratory Structures of the zwitterionic coatings synthesized for this study. Permalink Gallery Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Analysis, Capabilities, Energy, News, News & Events, Renewable Energy, Research & Capabilities, Water Power Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Sandia's Marine

  17. Advanced Ultraviolet Spectroradiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Ultraviolet Spectroradiometer A specialized instrument used to measure a portion of the ultraviolet (UV) spectrum was recently installed at the SGP central facility. The instrument, called an advanced UV spectroradiometer, was developed by Dr. Lee Harrison of the State University of New York at Albany and is funded by the United States Department of Agriculture (USDA). The sun emits a vast amount of energy in the form of electro- magnetic radiation. We see some of this energy as visible

  18. Challenges in the Development of Advanced Reactors

    SciTech Connect (OSTI)

    P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

    2012-08-01

    Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

  19. Steam turbine development for advanced combined cycle power plants

    SciTech Connect (OSTI)

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  20. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  1. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  2. Bistatic SAR: Proof of Concept.

    SciTech Connect (OSTI)

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  3. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    SciTech Connect (OSTI)

    Hadgu, Teklu; Hardin, Ernest; Matteo, Edward N.

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  4. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    SciTech Connect (OSTI)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  5. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  6. MPACT Fast Neutron Multiplicity System Design Concepts

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most detecting volume. However, operational limitations guide a) the maximum acceptable size of each detector cell (due to PSD performance and maximum-acceptable per-channel data throughput rates, limited by pulse pile-up and the processing rate of the electronics components of the system) and b) the affordability of a system due to the number of total channels of data to be collected and processed. As a first estimate, it appears that a system comprised of two rows of detectors 5" Ø ? 3" would yield a working prototype system with excellent performance capabilities for assaying Pu-containing items and capable of handling high signal rates likely when measuring items with Pu and other actinides. However, it is still likely that gamma-ray shielding will be needed to reduce the total signal rate in the detectors. As a first step prior to working with these larger-sized detectors, it may be practical to perform scoping studies using small detectors, such as already-on-hand 3" Ø ? 3" detectors.

  7. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  8. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  9. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  10. Evolution of the core physics concept for the Canadian supercritical water reactor

    SciTech Connect (OSTI)

    Pencer, J.; Colton, A.; Wang, X.; Gaudet, M.; Hamilton, H.; Yetisir, M.

    2013-07-01

    The supercritical water cooled reactor (SCWR) is one of the advanced reactor concepts chosen by the GEN-IV International Forum (GIF) for research and development efforts. Canada's contribution is the Canadian SCWR, a heavy water moderated, pressure tube supercritical light water cooled reactor. Recent developments in the SCWR lattice and core concepts, primarily the introduction of a large central flow tube filled with coolant combined with a two-ring fuel assembly, have enabled significant improvements compared to earlier concepts. These improvements include a reduction in coolant void reactivity (CVR) by more than 10 mk, and an almost 40% increase in fuel exit burnup, which is achieved via balanced power distribution between the fuel pins in the fuel assembly. In this paper the evolution of the physics concept is reviewed, and the present lattice and core physics concepts are presented.

  11. Dual arm master controller concept

    SciTech Connect (OSTI)

    Kuban, D.P.; Perkins, G.S.

    1984-01-01

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures.

  12. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  13. Advanced servomanipulator development

    SciTech Connect (OSTI)

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world.

  14. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  15. Advanced Bioeconomy Feedstocks Conference

    Broader source: Energy.gov [DOE]

    The Advanced Bioeconomy Feedstocks Conference will be held in Miami, Florida, from June 7–8, 2016. The conference will allow leaders across the feedstocks and supply fields to gather and discuss the latest advances, innovations, and opportunities in the industry. Bioenergy Technologies Office Director Jonathan Male will be giving a presentation, “The U.S. Department of Energy Update on Policies and Programs,” and Terrestrial Feedstocks Program Manager Alison Goss Eng will be participating in the “Supporting the Bioeconomy” panel.

  16. Advanced Reciprocating Engine Systems (ARES)

    Broader source: Energy.gov [DOE]

    Advanced Natural Gas Reciprocating Engines Increase Efficiency and Reduce Emissions for Distributed Power Generation Applications

  17. Advanced Bioeconomy Feedstocks Conference

    Broader source: Energy.gov [DOE]

    This year’s Advanced Bioeconomy Feedstocks Conference will be held from June 9–10, 2015 in New Orleans, Louisiana. The conference will gather supply chain leaders of the bioeconomy to examine supply chain technologies, business models, and partnerships. BETO Director Jonathan Male and Technology Manager Steve Thomas will be speaking at the conference.

  18. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  19. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    SciTech Connect (OSTI)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

  20. BMW Diesel- Engine Concepts for Efficient Dynamics

    Broader source: Energy.gov [DOE]

    Overview of technical concepts to resolve conflicting targets of maximum power, less weight, and reduced fuel consumption and emissions.

  1. Maturity Model for Advancing Smart Grid Interoperability

    SciTech Connect (OSTI)

    Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

    2013-10-28

    AbstractInteroperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

  2. Advanced Separation Consortium

    SciTech Connect (OSTI)

    2006-01-01

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  3. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  4. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  5. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  6. Advanced Simulation Capability

    Office of Environmental Management (EM)

    4 Status Report The Advanced Simulation Capability for Environmental Management Initiative is funded by the U.S. Department of Energy Office of Environmental Management Responding to the Challenge 4 Capability Development 4 References 14 Appendix: FY14 Publications 15 and Presentations Contents Cover photo courtesy of Daniel Scott, Savannah River Ecology Laboratory. L-Lake is a 1,000-acre, man-made lake, created to disperse and cool water in L-Reactor when it was operating. Message from the

  7. Advanced Simulation Capability for

    Office of Environmental Management (EM)

    for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced

  8. Advanced Conversion Roadmap Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leslie Pezzullo Office of the Biomass Program U.S. Department of Energy Conversion Technologies for Advanced Biofuels - Biomass Program Introduction Report-Out Webinar February 9, 2012 Energy Efficiency & Renewable Energy eere.energy.gov 2 3 2 1 The need to reduce dependence on foreign oil and lower greenhouse gas (GHG) emissions has renewed the urgency for developing sustainable biofuels, bioproducts, and biopower. The transportation sector accounts for about two- thirds of U.S. oil

  9. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  10. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Kristin Persson is one of the founding scientists behind the Materials Project, a computational tool aimed at taking the guesswork out of new materials discoveries, especially those aimed at energy applications like batteries. (Roy Kaltschmidt, LBNL) New materials are crucial to building a clean energy

  11. Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Source - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  12. TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TTU Advanced Doppler Radar - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  13. Advanced Critical Advanced Energy Retrofit Education and Training and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Credentialing - 2014 BTO Peer Review | Department of Energy Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Presenter: David Riley, Penn State Targeting professionals, employers, and education program leaders in selected advanced energy retrofit (AER) project fields (including energy auditors, building operators, energy managers, and

  14. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Lindberg, Laura

    2005-04-29

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  15. Modeling Spatial Dependencies and Semantic Concepts in Data Mining

    SciTech Connect (OSTI)

    Vatsavai, Raju

    2012-01-01

    Data mining is the process of discovering new patterns and relationships in large datasets. However, several studies have shown that general data mining techniques often fail to extract meaningful patterns and relationships from the spatial data owing to the violation of fundamental geospatial principles. In this tutorial, we introduce basic principles behind explicit modeling of spatial and semantic concepts in data mining. In particular, we focus on modeling these concepts in the widely used classification, clustering, and prediction algorithms. Classification is the process of learning a structure or model (from user given inputs) and applying the known model to the new data. Clustering is the process of discovering groups and structures in the data that are ``similar,'' without applying any known structures in the data. Prediction is the process of finding a function that models (explains) the data with least error. One common assumption among all these methods is that the data is independent and identically distributed. Such assumptions do not hold well in spatial data, where spatial dependency and spatial heterogeneity are a norm. In addition, spatial semantics are often ignored by the data mining algorithms. In this tutorial we cover recent advances in explicitly modeling of spatial dependencies and semantic concepts in data mining.

  16. Advanced Reciprocating Engine System (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Reciprocating Engine Systems (ARES) C L E A N C I T I E S ADVANCED MANUFACTURING OFFICE Raising the Bar on Engine Technology with Increased Efficiency and Reduced ...

  17. Health Monitoring to Support Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs) are based on advanced reactor concepts, some of which were promoted by the Generation IV International Forum, and are being considered for diverse missions including desalination of water, production of hydrogen, etc. While the existing fleet of commercial nuclear reactors provides baseload electricity, it is conceivable that aSMRs could be implemented for both baseload and load following applications. The effect of diverse operating missions and unit modularity on plant operations and maintenance (O&M) is not fully understood and limiting these costs will be essential to successful deployment of aSMRs. Integrated health monitoring concepts are proposed to support the safe and affordable operation of aSMRs over their lifetime by enabling management of significant in-vessel and in-containment active and passive components.

  18. Hydrogen Materials Advanced Research Consortium

    Broader source: Energy.gov [DOE]

    An overview of the organization and scientific activities of the Hydrogen Materials—Advanced Research Consortium (HyMARC).

  19. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  20. Drip Shield Emplacement Gantry Concept

    SciTech Connect (OSTI)

    Silva, R.A.; Cron, J.

    2000-03-29

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made, further refinements of this analysis are needed as the project parameters change. The designs of the drip shield, the Emplacement Drift, and the other drip shield emplacement equipment all have a direct effect on the overall design feasibility.

  1. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. PDF icon apu2011_6_roychoudhury.pdf More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  2. Horizontal Advanced Tensiometer

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  3. Advanced Bioeconomy Leadership Conference

    Broader source: Energy.gov [DOE]

    This year’s Advanced Bioeconomy Leadership Conference will be held from Feb. 17–19, 2016, in Washington, D.C. The conference will gather leaders of the bioeconomy to examine supply chain technologies, business models, and partnerships. Bioenergy Technologies Office (BETO) Director Jonathan Male and Senior Executive Advisor Harry Baumes will be speaking on a panel titled “Federal Activities in the Bioeconomy I,” and Program Manager Alison Goss Eng will be moderating. The Biomass Research and Development Board Operations Committee will also be hosting alistening session on the federal bioeconomy.

  4. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  5. Guiding SSL Technology Advances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding SSL Technology Advances Guiding SSL Technology Advances PDF icon Guiding Solid-State Lighting Technology Advances More Documents & Publications Doing Business with DOE's ...

  6. 2011 Grants for Advanced Hydropower Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies Click on an Awardee or Project Site...

  7. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  8. Energy Literacy: Essential Principles and Fundamental Concepts...

    Broader source: Energy.gov (indexed) [DOE]

    Literacy: Essential Principles and Fundamental Concepts for Energy Education News and Updates Check out our new Energy Literacy video series The Energy Literacy Framework is also ...

  9. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, January 1993--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Progress in a number of laboratory projects supporting direct liquefaction are described. There are too many different topics to be accommodated in a single abstract.

  10. Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts.

    SciTech Connect (OSTI)

    Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard; Chaplya, Pavel Mikhail; Clough, Roger Lee; Elliott, Julie M.; Martin, Jeffrey W.; Mowery, Daniel Michael; Celina, Mathew Christopher

    2005-11-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. The overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.

  11. Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process

    SciTech Connect (OSTI)

    Piyush Sabharwall; Eung Soo Kim

    2012-07-01

    The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

  12. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    SciTech Connect (OSTI)

    Wilson, Dane F.

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  13. Feasibility Study of Secondary Heat Exchanger Concepts for the Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall

    2011-09-01

    The work reported herein represents a significant step in the preliminary design of heat exchanger options (material options, thermal design, selection and evaluation methodology with existing challenges). The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production using either a subcritical or supercritical Rankine cycle.

  14. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Advanced direct coal liquefaction concepts. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1993-12-31

    Six runs on the bench unit were successfully completed this quarter. The runs covered twenty five different operating conditions and yield periods, and involved 336 hours of operation. In the bench unit, increased temperature of first stage operation (410{degree}C) and direct addition of the powdered solid sodium aluminate to the feed as first stage catalyst improved both coal and carbon monoxide conversion. To achieve 90%+ overall coal conversion, temperatures of 430{degree}C+ were required in the second stage. Oil yields (pentane soluble liquid product) in excess of 65 wt % based on MAF Black Thunder coal, were achieved both with iron oxide/dimethyl disulfide and ammonium molybdate/carbon disulfide second stage catalysts. C{sub l}-C{sub 3} hydrogen gas yields were modest, generally 7-8 wt % on MAF coal, and overall hydrogen consumption (including first stage shift hydrogen) was in the order of 7-8 wt % on MAF coal. The ammonium molybdate catalyst system appeared to give slightly higher oil yields and hydrogen consumption, as was expected, but the differences may not be significant.

  16. Commercial Development of an Advanced, High-Temperature, Linear-Fresnel Based Concentrating Solar Power Concept

    SciTech Connect (OSTI)

    Viljoen, Nolan; Schuknecht, Nathan

    2012-05-28

    Included herein is SkyFuel’s detailed assessment of the potential for a direct molten salt linear Fresnel collector. Linear Fresnel architecture is of interest because it has features that are well suited for use with molten salt as a heat transfer fluid: the receiver is fixed (only the mirrors track), the receiver diameter is large (reducing risk of freeze events), and the total linear feet of receiver can be reduced due to the large aperture area. Using molten salt as a heat transfer fluid increases the allowable operating temperature of a collector field, and the cost of thermal storage is reduced in proportion to that increase in temperature. At the conclusion of this project, SkyFuel determined that the cost goals set forth in the contract could not be reasonably met. The performance of a Linear Fresnel collector is significantly less than that of a parabolic trough, in particular due to linear Fresnel’s large optical cosine losses. On an annual basis, the performance is 20 to 30% below that of a parabolic trough per unit area. The linear Fresnel collector and balance of system costs resulted in an LCOE of approximately 9.9¢/kWhre. Recent work by SkyFuel has resulted in a large aperture trough design (DSP Trough) with an LCOE value of 8.9 ¢/kWhre calculated with comparative financial terms and balance of plant costs (White 2011). Thus, even though the optimized linear Fresnel collector of our design has a lower unit cost than our optimized trough, it cannot overcome the reduction in annual performance.

  17. Advanced Fuels for LWRs: Fully-Ceramic Microencapsulated and Related Concepts FY 2012 Interim Report

    SciTech Connect (OSTI)

    R. Sonat Sen; Brian Boer; John D. Bess; Michael A. Pope; Abderrafi M. Ougouag

    2012-03-01

    This report summarizes the progress in the Deep Burn project at Idaho National Laboratory during the first half of fiscal year 2012 (FY2012). The current focus of this work is on Fully-Ceramic Microencapsulated (FCM) fuel containing low-enriched uranium (LEU) uranium nitride (UN) fuel kernels. UO2 fuel kernels have not been ruled out, and will be examined as later work in FY2012. Reactor physics calculations confirmed that the FCM fuel containing 500 mm diameter kernels of UN fuel has positive MTC with a conventional fuel pellet radius of 4.1 mm. The methodology was put into place and validated against MCNP to perform whole-core calculations using DONJON, which can interpolate cross sections from a library generated using DRAGON. Comparisons to MCNP were performed on the whole core to confirm the accuracy of the DRAGON/DONJON schemes. A thermal fluid coupling scheme was also developed and implemented with DONJON. This is currently able to iterate between diffusion calculations and thermal fluid calculations in order to update fuel temperatures and cross sections in whole-core calculations. Now that the DRAGON/DONJON calculation capability is in place and has been validated against MCNP results, and a thermal-hydraulic capability has been implemented in the DONJON methodology, the work will proceed to more realistic reactor calculations. MTC calculations at the lattice level without the correct burnable poison are inadequate to guarantee zero or negative values in a realistic mode of operation. Using the DONJON calculation methodology described in this report, a startup core with enrichment zoning and burnable poisons will be designed. Larger fuel pins will be evaluated for their ability to (1) alleviate the problem of positive MTC and (2) increase reactivity-limited burnup. Once the critical boron concentration of the startup core is determined, MTC will be calculated to verify a non-positive value. If the value is positive, the design will be changed to require less soluble boron by, for example, increasing the reactivity hold-down by burnable poisons. Then, the whole core analysis will be repeated until an acceptable design is found. Calculations of departure from nucleate boiling ratio (DNBR) will be included in the safety evaluation as well. Once a startup core is shown to be viable, subsequent reloads will be simulated by shuffling fuel and introducing fresh fuel. The PASTA code has been updated with material properties of UN fuel from literature and a model for the diffusion and release of volatile fission products from the SiC matrix material . Preliminary simulations have been performed for both normal conditions and elevated temperatures. These results indicated that the fuel performs well and that the SiC matrix has a good retention of the fission products. The path forward for fuel performance work includes improvement of metallic fission product release from the kernel. Results should be considered preliminary and further validation is required.

  18. Advanced concepts for high power RF generation using solid state materials

    SciTech Connect (OSTI)

    Fazio, M.V.; Erickson, G.A. [Los Alamos National Laboratory (United States)

    1999-05-01

    Traditionally, high power radio frequency and microwave energy have been generated using electron beam driven hard-vacuum tubes such as klystrons and magnetrons. High-power solid-state sources of RF have not been available. It is well known that a non-linear, dispersive system can convert a pulse into an array of solitons. Although this effect has been exploited in the optical field, using non-linear optical materials, little work has been done in the field of high voltage electronics. It is the goal of this work, which is just beginning, to develop sources of RF in the few hundreds of megahertz to gigahertz range with power levels in the hundreds of megawatts to the gigawatt level. To generate solitons a high voltage pulse is fed onto a transmission line that is periodically loaded with a non-linear ceramic dielectric in the paraelectric phase. The combination of the non-linearity and dispersion causes the pulse to break up into an array of solitons. A soliton-based system has several components: the solid state, high voltage, high current switch to provide the initial high voltage pulse; a shock line to decrease the rise time of the initial pulse to less than a few nanoseconds; and the soliton generating transmission line where the high power RF is generated when driven by the fast rising pulse from the shock line. The approach and progress to date will be described. {copyright} {ital 1999 American Institute of Physics.}

  19. Virtual Advanced Power Training Environments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Advanced Power Training Environments

  20. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  1. LBB application in the US operating and advanced reactors

    SciTech Connect (OSTI)

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  2. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  3. Demonstration of an advanced superconducting generator: Interim report, May 16, 1981--August 15, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-10-23

    The objective of this program, ''Demonstration of an Advanced Superconducting Generator'', is to demonstrate advanced concepts in a prototype superconducting generator. Starting in August 1976, concept study and analysis lead in December 1977 to the selection of concepts for the experimental generator. Continued analysis and design optimization of the selected concepts lead to a design selection for the 10 MVA experiment in November 1978. Iteration with detail design and the application of more accurate analysis resulted in a freeze of the ''fine tuned'' design in September 1979. By May 1980 all secondary design decisions had been made and all major components and materials had been ordered. By December 1980 the installation of the gas turbine prime mover and the helium refrigerator/liquefier had been completed and fabrication had commenced on the stator core and the armature of the experimental generator. Work during this reporting period has been concentrated on the fabrication of the generator and on component development and testing.

  4. Demonstration of an advanced superconducting generator: Interim report, August 16, 1979--December 15, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-04-11

    The objective of this program, ''Demonstration of an Advanced Superconducting Generator,'' is to demonstrate advanced concepts in a prototype superconducting generator. Starting in August 1976, concept study and analysis lead in December 1977 to the selection of concepts for the experimental generator. Continued analysis and design optimization of the selected concepts lead to a design selection for the 10 MVA experiment in November 1978. Iteration with detail design and the application of more accurate analysis resulted in a freeze of the ''fine tuned'' design in September 1979. During this reporting period the emphasis has shifted to the detailed design of major components, construction methods and assembly sequences. An overall construction plan has been worked out. All major components will be completed in 1980 and assembled in 1981. A balanced and cold tested rotor should be ready for generator tests in early 1982. Procurement of major components is proceeding according to the plan.

  5. Demonstration of an advanced superconducting generator: Interim report, May 16, 1980--August 15, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-12-04

    The objective of this program, ''Demonstration of an Advanced Superconducting Generator'', is to demonstrate advanced concepts in a prototype superconducting generator. Starting in August 1976, concept study and analysis lead in December 1977 to the selection of concepts for the experimental generator. Continued analysis and design optimization of the selected concepts lead to a design selection for the 10 MVA experiment in November 1978. Iteration with detail design and the application of more accurate analysis resulted in a freeze of the ''fine tuned'' design in September 1979. By May 1980 all secondary design decisions had been made and all major components and materials had been ordered. During this reporting period fabrication of the 10 MVA generator has progressed and final design iterations for the rotor cooling system have been completed. Design details have been filled in and field winding tests have been completed. 22 refs.

  6. Demonstration of an advanced superconducting generator: Interim report, August 16, 1981--December 15, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-03-16

    The objective of this program, ''Demonstration of an Advanced Superconducting Generator,'' is to demonstrate advanced concepts in a prototype superconducting generator. Starting in August 1976, concept study and analysis lead in December 1977 to the selection of concepts for the experimental generator. Continued analysis and design optimization of the selected concepts lead to a design selection for the 10 MVA experiment in November 1978. Iteration with detail design and the application of more accurate analyses resulted in a freeze of the ''fine tuned'' design in September 1979. By May 1980 all secondary design decisions had been made and all major components and materials had been ordered. By December 1980 the installation of the gas turbine prime mover and the helium refrigerator/liquefier had been completed and fabrication had commenced on the stator core and the armature of the experimental generator. Work during this reporting period has been concentrated on the fabrication of the generator and on component development and testing.

  7. Advanced servo manipulator

    DOE Patents [OSTI]

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  8. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  9. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  10. Advanced engineering analysis

    SciTech Connect (OSTI)

    Freeman, W.R.

    1992-11-01

    The Advanced Engineering Analysis project is being used to improve the breadth of engineering analysis types, the particular phenomena which may be simulated, and also increase the accuracy and usability of the results of both new and current types of simulations and analyses. This is an interim report covering several topics under this project. Information on two new implementations of failure criteria for metal forming, the implementation of coupled fluid flow/heat transfer analysis capabilities, the integration of experimental shock and vibration test data with analyses, a correction to a contact solution problem with a 3-D parabolic brick finite element, and the development and implementation of a file translator to link IDEAS to DYNA3D is provided in this report.

  11. TOOLKIT FOR ADVANCED OPTIMIZATION

    Energy Science and Technology Software Center (OSTI)

    2000-10-13

    The TAO project focuses on the development of software for large scale optimization problems. TAO uses an object-oriented design to create a flexible toolkit with strong emphasis on the reuse of external tools where appropriate. Our design enables bi-directional connection to lower level linear algebra support (for example, parallel sparse matrix data structures) as well as higher level application frameworks. The Toolkist for Advanced Optimization (TAO) is aimed at teh solution of large-scale optimization problemsmore » on high-performance architectures. Our main goals are portability, performance, scalable parallelism, and an interface independent of the architecture. TAO is suitable for both single-processor and massively-parallel architectures. The current version of TAO has algorithms for unconstrained and bound-constrained optimization.« less

  12. Advanced servo manipulator

    DOE Patents [OSTI]

    Holt, William E.; Kuban, Daniel P.; Martin, H. Lee

    1988-01-01

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.

  13. Advanced isotope separation

    SciTech Connect (OSTI)

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  14. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

  15. Advanced Accessory Power Supply Topologies

    SciTech Connect (OSTI)

    Marlino, L.D.

    2010-06-15

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power. Two studies were conducted at ORNL. One was to put an additional winding in the motor slots to magnetically link with the high frequency of the controllable zero-sequence stator currents that do not produce any zero-sequence harmonic torques. The second approach was to utilize the corners of the square stator punching for the high-frequency transformers of the dc/dc inverter. Both approaches were successful. This CRADA validated the feasibility of GM’s desire to use the motor’s magnetic core and windings to produce bidirectional accessory power supply. Three joint U.S. patents with GM were issued to ORNL and GM by the U.S. Patent Office for the research results produced by this CRADA.

  16. Revolutionizing Clean Energy Technology with Advanced Composites |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  17. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005 ...

  18. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  19. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency...

  20. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact ...

  1. Application of advanced hydrocarbon characterization and its...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    characterization and its consequences on future fuel properties and advanced combustion research Application of advanced hydrocarbon characterization and its consequences ...

  2. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & evaluate ...

  3. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & Evaluate ...

  4. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  5. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ctabwebinarcarbohydratesupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap ...

  6. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ctabwebinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - ...

  7. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  8. Advanced Technology Center Overview 2015

    Energy Savers [EERE]

    Advanced Supply System Validation Workshop Advanced Supply System Validation Workshop The Bioenergy Technologies Office (BETO) hosted the Advanced Supply System Validation Workshop on February 3-4, 2015, in Golden, Colorado. The purpose of the workshop was to bring together a diverse group of stakeholders to examine, discuss, and validate analysis assumptions used to move beyond current feedstock supply systems designed to support the agriculture and forestry industries. Participants discussed

  9. Advanced Modeling & Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches

  10. Advance Electronics | Open Energy Information

    Open Energy Info (EERE)

    transient suppressors, automatic voltage stablisers, voltmeters oscilloscopes, and signal generators. References: Advance Electronics1 This article is a stub. You can help...

  11. APS Science | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science APS Science features articles on Advanced Photon Source research and engineering highlights that are written for the interested public as well as the synchrotron x-ray,...

  12. Advanced Telemetry | Open Energy Information

    Open Energy Info (EERE)

    search Name: Advanced Telemetry Place: San Diego, California Zip: 92131-2435 Sector: Buildings Product: San Diego-based provider of energy management software, communication and...

  13. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Library Related Links: APS Colloquium APS Podcasts APS Today More videos: Introduction to the APS Physics of the Blues Now Playing: Building the Advanced Photon Source This...

  14. Advanced Leds | Open Energy Information

    Open Energy Info (EERE)

    Place: Coventry, England, United Kingdom Zip: CV5 6SP Product: Advanced Leds develops LED technology for outdoor lighting, including street lighting applications. Coordinates:...

  15. Media Center | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distributed to all APS users and others interested in the APS. Research Highlights Books Articles on Advanced Photon Source research and engineering highlights that are written...

  16. Advanced Bioeconomy Leadership Conference 2015

    Broader source: Energy.gov [DOE]

    The Advanced Bioeconomy Leadership Conference was held on March 11–13, at the Capital Hilton in Washington, D.C.

  17. Advanced LWR Nuclear Fuel Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Instrumentation, Information, and Control Systems ... and Scope * Develop the fundamental scientific basis to ... the plan to deliver on the vision of the pathway. * Strategy ...

  18. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  19. Advanced Neutron Source (ANS) Project

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1991-02-01

    This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)

  20. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archives APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Featured Videos: Introduction to the Advanced Photon...

  1. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archives APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Now Playing: The Advanced Photon Source More videos:...

  2. ESnet: Advanced Networking for Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... centers of Energy Research, but then also began providing international connectivity in collaboration with the NSF, NASA, and the Defense Advanced Research Projects Agency (DARPA). ...

  3. Advanced Materials Manufacturing (AMM) Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 WELCOME & THANK YOU from your friendly support staff: Eric Miller, David Forrest, Fred Crowson, Jessica Savell... ...

  4. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect (OSTI)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  5. Advances in geotectural design

    SciTech Connect (OSTI)

    Boyer, L.L. (ed.)

    1986-01-01

    Although the price of oil dropped well below $20 US earlier this year from a previous high above $35 US, the interest and participation shown in this conference does not seem to have been materially affected. Perhaps energy, although not unimportant, is no longer the driving force behind the continuing development and exploration of the earth shelter idiom in architecture. Rather, the thrust of most papers seems to seek an understanding of the adaptation of earth shelter into varied types of settings, especially urban applications, and also the understanding of the physical phenomenon of how an earth shelter works. The paper have been grouped into three basic categories with several subsections in each category. First, vernacular approaches are documented from the viewpoint of habitation, and followed by other types of utilization. Then, recent theoretical developments are reviewed in terms of materials, occupant studies, and heat transfer and air flow analyses. The final section deals with contemporary practice, where design concepts and case studies are presented, followed by building systems and urban planning aspects. All 54 papers have been abstracted separately for inclusion on the Energy Data Base.

  6. Advanced Pressure Boundary Materials

    SciTech Connect (OSTI)

    Santella, Michael L; Shingledecker, John P

    2007-01-01

    Increasing the operating temperatures of fossil power plants is fundamental to improving thermal efficiencies and reducing undesirable emissions such as CO{sub 2}. One group of alloys with the potential to satisfy the conditions required of higher operating temperatures is the advanced ferritic steels such as ASTM Grade 91, 9Cr-2W, and 12Cr-2W. These are Cr-Mo steels containing 9-12 wt% Cr that have martensitic microstructures. Research aimed at increasing the operating temperature limits of the 9-12 wt% Cr steels and optimizing them for specific power plant applications has been actively pursued since the 1970's. As with all of the high strength martensitic steels, specifying upper temperature limits for tempering the alloys and heat treating weldments is a critical issue. To support this aspect of development, thermodynamic analysis was used to estimate how this critical temperature, the A{sub 1} in steel terminology, varies with alloy composition. The results from the thermodynamic analysis were presented to the Strength of Weldments subgroup of the ASME Boiler & Pressure Vessel Code and are being considered in establishing maximum postweld heat treatment temperatures. Experiments are also being planned to verify predictions. This is part of a CRADA project being done with Alstom Power, Inc.

  7. Advanced robot locomotion.

    SciTech Connect (OSTI)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  8. Advanced fossil fuel combustor

    SciTech Connect (OSTI)

    Rogers, B.

    1995-05-01

    Charged with enhancing the use of US fossil energy resources, the Morgantown Energy Technology Center (METC) is a federal Department of Energy research center that performs its own research and also manages the work of contractors. One interesting recent METC project is the effort to develop a ``multiannular swirl burner`` (MSB) for use in an advanced fossil fuel combustion system. The design is being developed by an outside contractor with funding and technical assistance from METC. Recently, EG and G Technical Services of West Virginia was asked to provide analytical support to the contractor developing the MSB. Design projects like this usually require building and testing a series of very expensive prototypes. Recent success with computational fluid dynamic (CFD) design techniques, however, have generated a great deal of excitement because of its ability to reduce research and development costs. Using FLUENT, a CFD package from Fluent Inc., EG and G was able to predict, with a high degree of accuracy, the performance of one of the MSB combustor prototypes. Furthermore, the model provided researchers with a more detailed understanding of the proposed design`s performance characteristics.

  9. Screening analysis of solar thermochemical hydrogen concepts.

    SciTech Connect (OSTI)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  10. Development of a Technical Basis and Guidance for Advanced SMR Function Allocation

    SciTech Connect (OSTI)

    Jacques Hugo; David Gertman; Jeffrey Joe; Ronal Farris; April Whaley; Heather Medema

    2013-09-01

    This report presents the results from three key activities for FY13 that influence the definition of new concepts of operations for advanced Small Modular Reactors (AdvSMR: a) the development of a framework for the analysis of the functional environmental, and structural attributes, b) the effect that new technologies and operational concepts would have on the way functions are allocated to humans or machines or combinations of the two, and c) the relationship between new concepts of operations, new function allocations, and human performance requirements.

  11. Advanced Hydrogen Liquefaction Process

    SciTech Connect (OSTI)

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  12. Advanced solar panel designs

    SciTech Connect (OSTI)

    Ralph, E.L.; Linder, E.

    1995-10-01

    This paper describes solar cell panel designs that utilize new high efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  13. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  14. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

  15. Ford Debuts Solar Energy Concept Car

    Broader source: Energy.gov [DOE]

    The Ford Motor Company unveiled the C-MAX Solar Energi Concept, a sun-powered vehicle with the potential to deliver what a plug-in hybrid offers without depending on the electric grid for fuel.

  16. Clean Power Concepts | Open Energy Information

    Open Energy Info (EERE)

    Concepts Place: Vancouver, British Columbia, Canada Zip: V6B 1G1 Sector: Hydro, Solar, Wind energy Product: Clean Power aims to be a one-stop shop for retail, business-to-business...

  17. Narration for Communicating the JHA concept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JHA Concept Communication 052308 All work at the Berkeley Lab must be analyzed and authorized before work can begin. In the past Workers were required to take the Job Hazard...

  18. Current status of the advanced high temperature reactor

    SciTech Connect (OSTI)

    Holcomb, D. E.; Iias, D.; Quails, A. L.; Peretz, F. J.; Varma, V. K.; Bradley, E. C.; Cisneros, A. T.

    2012-07-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Dept. of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. (authors)

  19. Review of alternative concepts for magnetic fusion

    SciTech Connect (OSTI)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given.

  20. Chapter 10: Concepts in Integrated Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Concepts in Integrated Analysis September 2015 Quadrennial Technology Review 10 Concepts in Integrated Analysis Issues and RDD&D Opportunities The goal of energy technology development programs, whether in the private sector or in government institutions, is to maximize the positive impact of research, development, demonstration, and deployment (RDD&D) portfolio investments. To evaluate total impacts, research institutions must consider multiple impact metrics that address

  1. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect (OSTI)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D.; Li, X.

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  2. Advanced Conversion Roadmap Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Conversion Roadmap Workshop Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. PDF icon ctab_webinar_doe.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presentations-Bio-oil

  3. Advanced converter technology. Technical progress report, May 23, 1979-May 22, 1980

    SciTech Connect (OSTI)

    Banic, C. V.; Eckhouse, S. A.; Kornbrust, F. J.; Lipman, K.; Peterson, J. L.; Rosati, R. W.

    1980-01-01

    The overall objective of this program is to define an advanced converter system employing 1980's technology in all subsystem and component areas for use in electrochemical energy storage systems. Additional experimental effort will validate elements of the advanced commutation circuitry on a full-scale breadboard basis. Improved models of battery electrical characteristics are beng defined and experimental apparatus is being designed to measure these characteristics and to enable better definition of the battery-power conditioner interface. Improvement of energy-storage system performance through modification of battery converter characteristics will also be investigated. During this first year of the contract, a new more advanced concept for power conditioning based on a concept defined by United Technologies Corporation for fuel cell use was evaluated. This high switching frequency concept has the potential for significantly reducing the size and cost of battery plant power conditioners. As a result, the Department of Energy authorized redirection of the program to first evaluate this new concept and then to reorient the program to adopt this concept as the primary one. Progress is reported. (WHK)

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  5. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  6. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology metric or a system-output metric. A common form for the technology metric is in the units of PPM {at} 15% O2. In this case the metric reflects the molar fraction of the pollutant in the powerplant exhaust when corrected to a standard exhaust condition as containing 15% (molar) oxygen, assuring that the PPM concentrations are not altered by subsequent air addition or dilution. Since fuel combustion consumes oxygen, the output oxygen reference is equivalent to a fuel input reference. Hence, this technology metric reflects the moles of pollutant per mole of fuel input, but not the useful output of the powerplant-i.e. the power. The system-output metric does embrace the useful output and is often termed an output-based metric. A common form for the output-based metric is in the units of lb/MWh. This is a system metric relating the pounds of pollutant to output energy (e.g., MWh) of the powerplant.

  7. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

  8. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  9. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI has recently commercialized.

  10. Advanced Supply System Validation Workshop

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting the Advanced Supply System Validation Workshop on February 3-4, 2015, in Golden, Colorado. The purpose of the workshop is to bring together a...

  11. Advanced Collaborative Emissions Study (ACES)

    Broader source: Energy.gov [DOE]

    ACES is a cooperative multi-party effort to characterize emissions and possible health effects of new, advanced heavy duty engine and control systems and fuels in the market 2007 - 2010.

  12. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  13. National Advanced Biofuels Consortium Overview

    Broader source: Energy.gov [DOE]

    This PDF gives an overview of the National Advanced Biofuels Consortium (NABC). It shows the prior focus of NABC as well as the future focus, and it discusses objectives, funding, research, and the organizational structure of the NABC.

  14. ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 - 2013 2014 2015 2016 ADVANCED RESEARCH PROJECTS AGENCY - ENERGY Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Jan Feb Mar Apr...

  15. Solar and wind power advancing

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar and wind power advancing U.S. electricity generation from wind and solar energy show no signs of slowing down. In its new monthly forecast, the U.S. Energy Information ...

  16. APS Podcasts | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Art Preservation and Connoisseurship August 14, 2007; mp3 - 1.88MB Franceska Casadio, Art Institute of Chicago: November 3, 2004 The Advanced Photon Source (videomp4) August...

  17. Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers

  18. Advanced R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research spans generation, storage, and load management at the component and systems levels and examines advanced materials, controls, and communications to achieve the Lab's vision of a reliable, low-carbon electric infrastructure. DETL research is conducted on behalf of the U.S. Department of Energy, the U.S. Department of Defense, and other customers, often in collaboration with industry and academic partners. Advanced R&D Expertise and Partnerships The DETL's reconfigurable

  19. Advancing Women in Clean Energy

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Ministerial, C3E and its ambassadors have made it their mission to advance the leadership of women in clean energy around the world. In this series, we will leverage the experience and wisdom of some of the amazing C3E ambassadors who will share advice or suggestions that may be helpful for women seeking to advance their careers in clean energy.

  20. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect (OSTI)

    Dan Davis

    2006-09-30

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

  1. Advanced Gearless Drivetrain - Phase I Technical Report

    SciTech Connect (OSTI)

    Sandy Butterfield; Jim Smith; Derek Petch; Brian Sullivan; Peter Smith; Kirk Pierce

    2012-08-31

    Boulder Wind Power (“BWP”) collaborated with the National Renewable Energy Laboratory (NREL) in Golden, Colorado, to demonstrate the economics of scaling an advanced gearless drivetrain technology to 6MW (and larger) turbine applications. The project goal was to show that this advanced drivetrain technology enables a cost of energy of less than $0.10/kWH in offshore applications. This drivetrain technology achieves this Cost of Energy (“COE”) advantage via a 70% greater torque density versus current state-of-the-art drivetrain technologies. In addition, a new dynamically compliant design strategy is required to optimize turbine system-level COE. The BWP generator is uniquely suited for this new design strategy. This project developed a concept design for a 6MW drivetrain and culminated in a plan for a system-level test of this technology at 3MW scale. The project further demonstrated the advantage of the BWP drivetrain with increasing power ratings, with conceptual designs through 10 MW.

  2. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  3. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    SciTech Connect (OSTI)

    Wagner, Terrance

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  4. Joining teleoperation with robotics for advanced manipulation in hostile environments

    SciTech Connect (OSTI)

    Martin, H.L.; Hamel, W.R.

    1984-01-01

    Manipulators have been used for many years to perform remote handling tasks in hazardous environments. The development history of teleoperators is reviewed, and applications around the world are summarized. The effect of computer supervisory control is discussed, and similarities between robots and teleoperator research activities are delineated. With improved control strategies and system designs, combination of positive attributes of robots with teleoperators will lead to advanced machines capable of autonomy in unstructured environments. This concept of a telerobot is introduced as a goal for future activities.

  5. Advanced Nuclear Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects ADVANCED NUCLEAR ENERGY 1 PROJECT in 1 LOCATION 2,200 MW GENERATION CAPACITY 17,200,000 MWh PROJECTED ANNUAL GENERATION * 10,000,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL Technology specific capacity factors. For cases in which NREL's capacity

  6. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test and alignment of trough or dish reflectors. • Ten full size (2.5 m2) cylindrically curved reflectors, molded in 950 seconds and measured with the laser test facility, show shape repeatability to 0.5 mrad rms. These replicas met the Phase I Go/No-Go targets for speed (1000 sec), accuracy (< 5 mrad) and reproducibility (< 2 mrad). • Our research and tests show that the hoped-for improvements in mirror reflectivity achievable with titania antisoil coatings are not very effective in dry climates and are therefore unlikely to be economically worthwhile, and that glass with iron in the Fe+3 state to achieve very low absorption cannot be made economically by the float process.

  7. British architectural concepts of natural ventilation

    SciTech Connect (OSTI)

    Cook, J.

    1997-12-31

    Recent large buildings in Britain are reviewed for their demonstration of programmatic determinates and architectural concepts of natural ventilation, systems that reduce electric use because they use natural convection. In size they range from the 5,000 square feet of Darwin College at Cambridge to the Inland Revenue Center at Nottingham with 400,000 square feet. The mix of passive and conventional mechanical systems of Ionica Office Building, Cambridge suggests the newest strategy of deliberate redundancy in what might better be called assisted natural ventilation. Daylighting, a distinctly different technique is typically coincident. Among the programmatic concepts are unsealed buildings, displacement ventilation, and user preference for immediate environmental control and strong contact with the outdoor environment. Architectural concepts include atriums, exhaust towers, and exposed structural concrete ceilings. These applications reinforce green policies and involve leadership from prominent architects and clients.

  8. Concept for Management of the Future Electricity System (Smart...

    Open Energy Info (EERE)

    Concept for Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System...

  9. Neutronic Analysis of Candidate Accident-tolerant Cladding Concepts...

    Office of Scientific and Technical Information (OSTI)

    Concepts in Light Water Reactors Citation Details In-Document Search Title: Neutronic Analysis of Candidate Accident-tolerant Cladding Concepts in Light Water Reactors Authors: ...

  10. Checkerboard seed-blanket thorium fuel core concepts for heavy...

    Office of Scientific and Technical Information (OSTI)

    concepts for heavy water moderated reactors Citation Details In-Document Search Title: Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors ...

  11. Modified Microgrid Concept for Rural Electrification in Africa...

    Open Energy Info (EERE)

    Modified Microgrid Concept for Rural Electrification in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Modified Microgrid Concept for Rural Electrification in...

  12. Integrated Concepts and Research Corporation ICRC | Open Energy...

    Open Energy Info (EERE)

    Concepts and Research Corporation ICRC Jump to: navigation, search Name: Integrated Concepts and Research Corporation (ICRC) Place: Madison Heights, Michigan Zip: 48071 Sector:...

  13. RENERCO Renewable Energy Concepts AG | Open Energy Information

    Open Energy Info (EERE)

    RENERCO Renewable Energy Concepts AG Jump to: navigation, search Name: RENERCO Renewable Energy Concepts AG Place: Munich, Germany Zip: D-80336 Sector: Renewable Energy Product:...

  14. Chapter 5. Basic Concepts for Clean Energy Unsecured Lending...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds ...

  15. MaRIE: An experimental facility concept revolutionizing materials...

    Office of Scientific and Technical Information (OSTI)

    MaRIE: An experimental facility concept revolutionizing materials in extremes Citation Details In-Document Search Title: MaRIE: An experimental facility concept revolutionizing...

  16. Vehicle Technologies Office Merit Review 2015: A Disruptive Concept...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Disruptive Concept for a Whole Family of New Battery Systems Vehicle Technologies Office Merit Review 2015: A Disruptive Concept for a Whole Family of New Battery Systems...

  17. MITEE: A new nuclear engine concept for ultra fast, lightweight...

    Office of Scientific and Technical Information (OSTI)

    MITEE: A new nuclear engine concept for ultra fast, lightweight solar system exploration missions Citation Details In-Document Search Title: MITEE: A new nuclear engine concept for ...

  18. Generic disposal concepts and thermal load management for larger...

    Office of Scientific and Technical Information (OSTI)

    Generic disposal concepts and thermal load management for larger waste packages. Citation Details In-Document Search Title: Generic disposal concepts and thermal load management...

  19. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  20. Evaluation of Generic EBS Design Concepts and Process Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design...

  1. Renewable Energy Concepts Solar Inc REC Solar | Open Energy Informatio...

    Open Energy Info (EERE)

    Concepts Solar Inc REC Solar Jump to: navigation, search Name: Renewable Energy Concepts Solar Inc (REC Solar) Place: San Luis Obispo, California Zip: 93401 Sector: Solar Product:...

  2. MaRIE: An experimental facility concept revolutionizing materials...

    Office of Scientific and Technical Information (OSTI)

    concept revolutionizing materials in extremes Citation Details In-Document Search Title: MaRIE: An experimental facility concept revolutionizing materials in extremes Authors: ...

  3. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle ...

  4. Vehicle Technologies Office: 2015 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2015 ... low emissions advanced internal combustion engines for passenger and commercial vehicles. ...

  5. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 ... low emissions advanced internal combustion engines for passenger and commercial vehicles. ...

  6. Advanced Plant Pharmaceuticals Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc. Place: New York, New York Product: String representation "Advanced Plant ... f its business." is too long. References: Advanced Plant Pharmaceuticals, Inc.1 This...

  7. Advanced Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Advanced Energy Company Place: Japan Product: Established March 19, 2010, Advanced Energy Company (AEC) aims to install EV power stations...

  8. Advanced Materials Partners Inc | Open Energy Information

    Open Energy Info (EERE)

    Materials Partners Inc Jump to: navigation, search Logo: Advanced Materials Partners Inc Name: Advanced Materials Partners Inc Address: 45 Pine Street Place: New Canaan,...

  9. International safeguards recommendations for the Indian advanced...

    Office of Scientific and Technical Information (OSTI)

    advanced heavy water reactor (AHWR) Citation Details In-Document Search Title: International safeguards recommendations for the Indian advanced heavy water reactor (AHWR) ...

  10. 2012 Advanced Applications Research & Development Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Method - Yuri Makarov, PNNL PDF icon 2012 Advanced Applications R&D Peer Review - Modal Analysis for Grid Operations (MANGO) - Henry Huang, PNNL PDF icon 2012 Advanced ...

  11. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

  12. Energy Efficiency, Renewable Energy and Advanced Transmission...

    Energy Savers [EERE]

    Renewable Energy and Advanced Transmission and Distribution Technologies Issued: July 29, 2009 Energy Efficiency, Renewable Energy and Advanced Transmission and Distribution ...

  13. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic ...

  14. Funding Opportunity Webinar - Advancing Solutions to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Funding Opportunity Webinar - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings View ...

  15. Advanced Energy Retrofit Guides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The ... Advanced Energy Retrofit Guide for Healthcare Facilities Buildings Home About ...

  16. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  17. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection...

  18. Advances in understanding solar energy collection materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

  19. Advanced Solar Photonics | Open Energy Information

    Open Energy Info (EERE)

    Advanced Solar Photonics Place: Lake Mary, Florida Zip: 32746 Product: Florida-based thin film PV module manufacturer. References: Advanced Solar Photonics1 This article is...

  20. Current trends in the Advanced Bioindustry

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry State of Technology—Michael McAdams, President, Advanced Biofuels Association

  1. Tribal Renewable Energy Advanced Course: Project Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course webinar entitled "Tribal Renewable ...

  2. TRC Advanced Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Logo: TRC Advanced Technologies Inc Name: TRC Advanced Technologies Inc Address: 8700 Commerce Park Place: Houston, Texas Zip: 77036 Region: Texas Area Sector: Solar Product:...

  3. Proliferation resistance of advanced nuclear energy systems ...

    Office of Scientific and Technical Information (OSTI)

    Proliferation resistance of advanced nuclear energy systems Citation Details In-Document Search Title: Proliferation resistance of advanced nuclear energy systems A methodology for ...

  4. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Reciprocating Engine System (ARES) Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Integration of Diesel Engine Technology ...

  5. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating ...

  6. Butamax Advanced Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  7. Steven Winter Associates (Consortium for Advanced Residential...

    Open Energy Info (EERE)

    Steven Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name: Steven Winter Associates (Consortium for Advanced Residential Buildings)...

  8. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  9. APS Organization Chart | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Organization Chart The Advanced Photon Source (APS) organization comprises three divisions and one project office. Advanced Photon Source Organization Photon Sciences Overview...

  10. Advanced Green Technologies | Open Energy Information

    Open Energy Info (EERE)

    Green Technologies Jump to: navigation, search Name: Advanced Green Technologies Place: Fort Lauderdale, Florida Zip: 33311 Product: Advanced Green Technologies is a US-based...

  11. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers [EERE]

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  12. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  13. Advanced Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search Name: Advanced Renewable Energy Place: Italy Sector: Biomass, Renewable Energy, Wind energy Product: Advanced Renewable Energy Ltd...

  14. Partnering with Industry to Develop Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnering with Industry to Develop Advanced Biofuels > David C. Carroll GTI President and CEO Biomass 2014 July 29, 2014 2 Advanced Biofuels Tenets > Converting indigenous ...

  15. Advanced Biofuels Industry Roundtable - List of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Industry Roundtable - List of Participants Advanced Biofuels Industry Roundtable - List of Participants List of Participants from the May 18 Advanced Biofuels Industry ...

  16. Voluntary Protection Program Onsite Review, Advanced Technologies...

    Office of Environmental Management (EM)

    Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014...

  17. novel-concepts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Volume Carbon Dioxide Compression Novel Concepts for the Compression of Large Volumes of Carbon Dioxide Project No.: FC26-05NT42650 The Southwest Research Institute (SwRI) will design an efficient and cost-effective compression system to reduce the overall cost of carbon dioxide (CO2) capture and storage for coal-based power plants. SwRI will develop two novel concepts that have the potential to reduce CO2 compression power requirements by 35 percent compared to conventional compressor

  18. Materials and Component Development for Advanced Turbine Systems

    SciTech Connect (OSTI)

    Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

    2008-10-01

    In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

  19. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect (OSTI)

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  20. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect (OSTI)

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  1. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  2. Advanced ignition and propulsion technology program

    SciTech Connect (OSTI)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  3. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  4. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

  5. DOE - Office of Legacy Management -- Westinghouse Advanced Reactors...

    Office of Legacy Management (LM)

    Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL LAB ...

  6. Process for producing advanced ceramics

    DOE Patents [OSTI]

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  7. Advanced Bioeconomy Leadership Conference NEXT

    Broader source: Energy.gov [DOE]

    In San Francisco, November 2–5, 2015, the Advanced Bioeconomy Leadership Conference NEXT will be gathering experts and stakeholders at every stage of development and deployment of advanced biofuels and bioproducts. Bioenergy Technologies Office (BETO) Director Jonathan Male will give a keynote address, Senior Executive Advisor Harry Baumes will speak on a panel on bioenergy funding and finance, and Technology Manager Prasad Gupte will be in attendance. In addition, representatives from several Energy Department national laboratories will highlight and showcase new bioenergy technologies.

  8. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  9. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  10. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  11. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. PDF icon ctab_webinar_carbohydrates_production.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  12. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. PDF icon ctab_webinar_carbohydrates_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels

  13. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  14. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  15. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    SciTech Connect (OSTI)

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  16. Prototype design of an advanced ceramic receiver. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    The purpose of the activities described in this report is to investigate an advanced gas receiver design concept. The advanced gas reactor design concept utilizes a translucent ceramic tube packed with a solar absorbing, porous material. A gas is pumped through the tube and is heated to a high temperature by direct solar energy incident on the tube surface. The basic energy exchange mechanisms are the transfer of the incoming solar flux through the translucent tube, the absorption of the solar energy by the packing material, and the convective transfer of the absorbed solar energy from the packing material to the gas. The approach taken for this activity was to develop a conceptual design of a commercial size receiver, investigate critical design elements of the commercial receiver, develop a preliminary design of a prototype, and identify the appropriate facility for testing the prototype. In order to develop the conceptual design of the commercial size receiver a thermo/hydraulic numerical model of the tube was devised. This model yields predictions of the thermal performance of the tube along with estimates of the tube pressure drops. A detailed description of the model is given in section IIIA of this report. Using the model it was possible to establish an optimum tube diameter and length for a commercial size receiver. With the tube dimensions known it was then possible to perform design studies to determine tube stresses and attachment schemes.

  17. Advanced Computing Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Computing Tech Team Advanced Computing Tech Team Advanced Computing Tech Team The Advanced Computing Tech Team is working with the DOE Energy Technology Offices, the Office of Science, and the National Nuclear Security Administration to deliver technologies that will be used to create new scientific insights into complex physical systems. Advanced computing technologies have been used for decades to provide better understanding of the performance and reliability of the nuclear stockpile

  18. Advanced House Framing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  19. Progress Report for Advanced Automotive Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of

  20. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  1. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect (OSTI)

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  2. TECHNOLOGIES TO OPTIMIZE ADVANCED TOKAMAK

    SciTech Connect (OSTI)

    SIMONEN, TC

    2004-01-01

    OAK-B135 Commercial fusion power systems must operate near the limits of the engineering systems and plasma parameters. Achieving these objectives will require real time feedback control of the plasma. This paper describes plasma control systems being used in the national DIII-D advanced tokamak research program.

  3. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  4. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  5. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  6. Hybrid and Advanced Air Cooling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. This project will identify and analyze advanced air cooling strategies thatallow air-cooled geothermal power plants to maintain a high electric power output during periods of high air dry bulb temperatures while minimizing water consumption.

  7. A new target concept for production of slow positrons

    SciTech Connect (OSTI)

    Qian, Y.L; White, M.

    1995-01-01

    Slow positrons in the energy range up to a few keV are useful for material sciences and surface studies. The Advanced Photon Source (APS) linear accelerator (linac) was designed to produce 8-mA of 450-MeV positrons. A 200-MeV, 1.7-Ampere electron beam impinges on a 7-mm-thick (2 radiation lengths) tungsten target, resulting in bremsstrahlung pair production of electrons and positrons. The existing target was optimized for high energy positron production, and most slow positrons produced by the electron-gamma shower remain trapped inside. The linac could also be used to produce slow positrons, and a modified target could increase the low energy positron yield. Use of a multilayer or segmented target reduces self-absorption by the target, and thus more fully utilizes the incident beam power for slow positron production. A slow positron yield of 10{sup 9}/sec is expected from the existing incident electron beam. Multilayer targets could probably be used by other accelerator-based slow positron sources to improve slow positron yield without increasing the incident beam power. Two variations of a multilayer target concept are presented and discussed in this paper.

  8. Electric Bike Sharing--System Requirements and Operational Concepts

    SciTech Connect (OSTI)

    Cherry, Christopher; Worley, Stacy; Jordan, David

    2010-08-01

    Bike sharing is an exciting new model of public-private transportation provision that has quickly emerged in the past five years. Technological advances have overcome hurdles of early systems and cities throughout the globe are adopting this model of transportation service. Electric bikes have simultaneously gained popularity in many regions of the world and some have suggested that shared electric bikes could provide an even higher level of service compared to existing systems. There are several challenges that are unique to shared electric bikes: electric-assisted range, recharging protocol, and bike and battery checkout procedures. This paper outlines system requirements to successfully develop and deploy an electric bike sharing system, focusing on system architecture, operational concepts, and battery management. Although there is little empirical evidence, electric bike sharing could be feasible, depending on demand and battery management, and can potentially improve the utility of existing bike sharing systems. Under most documented bike sharing use scenarios, electric bike battery capacity is insufficient for a full day of operation, depending on recharging protocol. Off-board battery management is a promising solution to address this problem. Off-board battery management can also support solar recharging. Future pilot tests will be important and allow empirical evaluation of electric bikesharing system performance. (auth)

  9. Pebble Bed Boiling Water Reactor Concept With Superheated Steam

    SciTech Connect (OSTI)

    Tsiklauri, G.; Newman, D.; Meriwether, G.; Korolev, V. [Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352 (United States)

    2002-07-01

    An Advanced Nuclear Reactor concept is presented which extends Boiling Water Reactor technology with micro-fuel elements (MFE) and produces superheated steam. A nuclear plant with MFE is highly efficient and safe, due to ceramic-clad nuclear fuel. Water is used as both moderator and coolant. The fuel consists of spheres of about 1.5 mm diameter of UO{sub 2} with several external coatings of different carbonaceous materials. The outer coating of the particles is SiC, manufactured with chemical vapor disposition (CVD) technology. Endurance of the integrity of the SiC coating in water, air and steam has been demonstrated experimentally in Germany, Russia and Japan. This paper describes a result of a preliminary design and analysis of 3750 MWt (1500 MWe) plant with standard pressure of 16 MPa, which is widely achieved in the vessel of pressurized-water type reactors. The superheated steam outlet temperature of 550 deg. C elevates the steam cycle to high thermal efficiency of 42%. (authors)

  10. Concept of Operations for Data Fusion Visualization

    SciTech Connect (OSTI)

    T.R. McJunkin; R.L. Boring; M.A. McQueen; L.P. Shunn; J.L. Wright; D.I. Gertman; O. Linda; K. McCarty; M. Manic

    2011-09-01

    Situational awareness in the operations and supervision of a industrial system means that decision making entity, whether machine or human, have the important data presented in a timely manner. An optimal presentation of information such that the operator has the best opportunity accurately interpret and react to anomalies due to system degradation, failures or adversaries. Anticipated problems are a matter for system design; however, the paper will focus on concepts for situational awareness enhancement for a human operator when the unanticipated or unaddressed event types occur. Methodology for human machine interface development and refinement strategy is described for a synthetic fuels plant model. A novel concept for adaptively highlighting the most interesting information in the system and a plan for testing the methodology is described.

  11. Future Computing Needs for Innovative Confinement Concepts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Plasma Science and Innovation Center Current Computing Utilization and Resources Near Term Needs Concluding Comments Future Computing Needs for Innovative Confinement Concepts Charlson C. Kim charlson@aa.washington.edu Plasma Science and Innovation Center University of Washington, Seattle August 3, 2010 Large Scale Computing Needs for Fusion Energy Science Workshop Rockville, MD Charlson C. Kim, PSI-Center Future Computing Needs of ICC's Introduction of Plasma Science and Innovation Center

  12. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  13. Alternate design concept for the SSC dipole magnet cryogenic support post

    SciTech Connect (OSTI)

    Lipski, A.; Nicol, T.H.; Richardson, R.

    1991-03-01

    New materials and developments in the field of advanced composites have created the opportunity to take a fresh look into the design of the cryogenic supports for SSC collider dipole cryostats. Although the present reentrant post design meets the structural and thermal requirements, its assembly requires precision and proficiency. The objective of the proposed alternate concept is to reduce the overall cost of the support post by means of simplifying and optimizing its component design and assembly process. The present shrink fitted tube assembly may potentially be replaced by injection molded parts. New resin systems with lower thermal conductivity and high strength properties enable the utilization of automated production techniques such as injection molding and filament winding. This paper will provide analysis and design information for the alternate support post concept and compare its test performance and cost to the present support post. 3 refs., 12 figs., 4 tabs.

  14. Advanced LWR Nuclear Fuel Development

    Energy Savers [EERE]

    LWRS Overview and Select Research Highlights J. Busby and K. Leonard Oak Ridge National Laboratory with a host of contributors Overview Presentation for the Nuclear Energy Enabling Technologies September 15, 2015 Video Conference FY16 - Consolidated Innovative Nuclear Research * Light water reactor sustainability (LWRS) is one of the four technical areas in the Reactor Concepts Research, Development and Demonstration Program sections in the FOA. * Activities in LWRS also overlap with NEET

  15. Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization

    Broader source: Energy.gov [DOE]

    The assessment of generic EBS concepts and design optimization to harbor various disposal configurations and waste types needs advanced approaches and methods to analyze barrier performance. The report addresses: 1) Overview of the importance of THMC processes to barrier performance, and international collaborations; 2) THMC processes in clay barriers; 3) experimental studies of clay stability and clay-metal interactions at high temperatures and pressures; 4) thermodynamic modeling and database development; 5) Molecular Dynamics (MD) study of clay hydration at ambient and elevated temperatures; and 6) coupled thermal-mechanical (TM) and thermo-hydrological (TH) modeling in salt.

  16. Realizing novel accelerator concepts in an X-band photo-injector

    SciTech Connect (OSTI)

    Marsh, R

    2010-04-13

    In this project we propose to investigate the use of novel accelerator structure cell geometry to enhance the performance of X-band photo-injectors. Making novel accelerator concepts possible involves fabrication and testing of components to ensure that the performance predicted by simulation is robustly achievable. This work is important because photo-injectors are increasingly used to provide high brightness electron beams for light sources, pushing their performance to the limits, but also requiring them to be user-facility stable. Careful investigation in both computer simulation and design, and low power testing of piece parts will enable the successful fabrication of an advanced X-band photo-injector.

  17. Subsea completion technology needs advances

    SciTech Connect (OSTI)

    Ledbetter, R.

    1995-09-18

    Subsea technology needs further advances to reduce operational costs before operators will expand the use of subsea well completions in the Gulf of Mexico. They will continue to choose surface completion-oriented systems as long as these are more economical operationally than subsea system. Designs of subsea equipment such as trees, connectors, control pods, umbilicals, and flow lines, must bring about reductions in the cost of both installation and workover compatibility. Remote operated vehicle (ROV) manipulation is one avenue that should be exploited. The bottom line is that significant cooperation between equipment manufacturers and ROV companies is needed to develop advanced ROV technology, and operators should be involved to help guide operational strategies.

  18. MaRIE: Probing Dynamic Processes in Soft Materials Using Advanced Light

    Office of Scientific and Technical Information (OSTI)

    Sources (Technical Report) | SciTech Connect MaRIE: Probing Dynamic Processes in Soft Materials Using Advanced Light Sources Citation Details In-Document Search Title: MaRIE: Probing Dynamic Processes in Soft Materials Using Advanced Light Sources Los Alamos National Laboratory has developed a concept for a new research facility, MaRIE: Matter-Radiation Interactions in Extremes. The key motivation for MaRIE is to develop new experimental capabilities needed to fill the existing gaps in our

  19. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  20. Advanced LWR Nuclear Fuel Development

    Energy Savers [EERE]

    Department of Energy Ground Source Heat Pump Technology for Very-Low-Energy Buildings Advanced Ground Source Heat Pump Technology for Very-Low-Energy Buildings Three new/under-utilized ground loop designs being evaluated for their ground loop cost reduction potential<br /> Credit: Oak Ridge National Lab Three new/under-utilized ground loop designs being evaluated for their ground loop cost reduction potential Credit: Oak Ridge National Lab Cumulative GSHP conditioned building floor

  1. Grid Integration & Advanced Inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration & Advanced Inverters - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  2. Advanced Thermally Stable Jet Fuels

    SciTech Connect (OSTI)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  3. Advanced Simulation and Computing Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Simulation and Computing (ASC) Program Unstable intermixing of heavy (sulfur hexafluoride) and light fluid (air). Show Caption Turbulence generated by unstable fluid flow. Show Caption Examining the effects of a one-megaton nuclear energy source detonated on the surface of an asteroid. Show Caption Los Alamos National Laboratory is home to two of the world's most powerful supercomputers, each capable of performing more than 1,000 trillion operations per second. The newer one, Cielo, was

  4. Consortium for Advanced Battery Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  5. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect (OSTI)

    Not Listed

    2013-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nations current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of goal-oriented science-based approach. In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  6. Landfill aeration worldwide: Concepts, indications and findings

    SciTech Connect (OSTI)

    Ritzkowski, M.; Stegmann, R.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Different landfill aeration concepts and accordant application areas are described. Black-Right-Pointing-Pointer Examples of full scale projects are provided for Europe, North-America and Asia. Black-Right-Pointing-Pointer Major project findings are summarised, including prospects and limitations. Black-Right-Pointing-Pointer Inconsistencies between laboratory and full scale results have been elaborated. Black-Right-Pointing-Pointer An explanatory approach in connection with the inconsistencies is provided. - Abstract: The creation of sustainable landfills is a fundamental goal in waste management worldwide. In this connection landfill aeration contributes towards an accelerated, controlled and sustainable conversion of conventional anaerobic landfills into a biological stabilized state associated with a minimised emission potential. The technology has been successfully applied to landfills in Europe, North America and Asia, following different strategies depending on the geographical region, the specific legislation and the available financial resources. Furthermore, methodologies for the incorporation of landfill aeration into the carbon trade mechanisms have been developed in recent years. This manuscript gives an overview on existing concepts for landfill aeration; their application ranges and specifications. For all of the described concepts examples from different countries worldwide are provided, including details regarding their potentials and limitations. Some of the most important findings from these aeration projects are summarised and future research needs have been identified. It becomes apparent that there is a great demand for a systematisation of the available results and implications in order to further develop and optimise this very promising technology. The IWWG (International Waste Working Group) Task Group 'Landfill Aeration' contributes towards the achievement of this goal.

  7. Report on sodium compatibility of advanced structural materials.

    SciTech Connect (OSTI)

    Li, M.; Natesan, K.; Momozaki, Y.; Rink, D.L.; Soppet, W.K.; Listwan, J.T.

    2012-07-09

    This report provides an update on the evaluation of sodium compatibility of advanced structural materials. The report is a deliverable (level 3) in FY11 (M3A11AN04030403), under the Work Package A-11AN040304, 'Sodium Compatibility of Advanced Structural Materials' performed by Argonne National Laboratory (ANL), as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing corrosion and tensile data from the standpoint of sodium compatibility of advanced structural alloys. The scope of work involves exposure of advanced structural alloys such as G92, mod.9Cr-1Mo (G91) ferritic-martensitic steels and HT-UPS austenitic stainless steels to a flowing sodium environment with controlled impurity concentrations. The exposed specimens are analyzed for their corrosion performance, microstructural changes, and tensile behavior. Previous reports examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design, fabrication, and construction of a forced convection sodium loop for sodium compatibility studies of advanced materials. This report presents the results on corrosion performance, microstructure, and tensile properties of advanced ferritic-martensitic and austenitic alloys exposed to liquid sodium at 550 C for up to 2700 h and at 650 C for up to 5064 h in the forced convection sodium loop. The oxygen content of sodium was controlled by the cold-trapping method to achieve {approx}1 wppm oxygen level. Four alloys were examined, G92 in the normalized and tempered condition (H1 G92), G92 in the cold-rolled condition (H2 G92), G91 in the normalized and tempered condition, and hot-rolled HT-UPS. G91 was included as a reference to compare with advanced alloy, G92. It was found that all four alloys showed weight loss after sodium exposures at 550 and 650 C. The weight loss of the four alloys was comparable after sodium exposures at 550 C; the weight loss of ferritic-martensitic steels, G92 and G91 is more significant than that of austenitic stainless steel, HT-UPS after sodium exposures at 650 C. Sodium exposures up to 2700 h at 550 C had no significant influence on tensile properties, while sodium exposures up to 5064 h at 650 C dramatically lowered the tensile strengths of the four alloys. The ultimate tensile strength of H1 G92, H2 G92, and G91 ferritic-martensitic steels was reduced to as much as nearly half of its initial value after sodium exposures at 650 C. Though the uniform elongation was recovered to some extent, these three ferritic-martensitic steels showed considerable strain softening after sodium exposures. The yield stress of HT-UPS austenitic stainless steel increased, the ultimate tensile strength decreased, and the total elongation was reduced after sodium exposures at 650 C. The dynamic strain aging effect observed in the as-received HT-UPS specimens became less pronounced after sodium exposures at 650 C. Microstructural characterization of sodium-exposed specimens showed no appreciable surface deterioration or grain structure changes under an optical microscope, except for the H2 G92 steel, in which the martensite structure transformed to large grain ferrite after sodium exposures at 650 C. TEM observations of the sodium-exposed H2 G92 steel showed significant recrystallization after sodium exposure for 2700 h at 550 C, and transformation of martensite to ferrite and high density of precipitates in nearly dislocation-free matrix after sodium exposures at 650 C. Further microstructural analysis and evaluation of decarburization/carburization behavior is needed to understand the dramatic changes in the tensile strengths of advanced ferritic-martensitic and austenitic steels after sodium exposures at 650 C.

  8. New technology, concepts aim at lower costs

    SciTech Connect (OSTI)

    Moritis, G.

    1996-10-07

    New technologies both at the application stage and at the concept stage aim at reducing costs for producing and developing offshore fields. At the center of many of these new technologies are floating production, storage, offloading, and drilling vessels. These vessels are tied to subsea completions that take advantage of smaller and lighter wellheads, and such emerging technologies as subsea multiphase meters and pumps, and subsea separators and boosters. The paper discusses floating production, the inclusion of a drilling/workover rig on the turret of a ship-shaped FPSO, the use of smaller turrets, and subsea systems (wellheads, flowmeters, composite materials).

  9. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  10. 2012 Advanced Applications Research & Development Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid PMU Data - Ning Zhou, PNNL PDF icon 2012 Advanced Applications R&D Peer Review - IEEE-IEC Harmonization - Ken Martin, EPG PDF icon 2012 Advanced Applications R&D Peer Review ...

  11. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  12. Center for Advanced Separation Technology (Technical Report)...

    Office of Scientific and Technical Information (OSTI)

    DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be ... in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. ...

  13. Advanced Nuclear Supplement_November 2015

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Supplement_November 2015 SECOND SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FEDERAL LOAN GUARANTEES FOR ADVANCED NUCLEAR ENERGY PROJECTS Solicitation Number: DE-SOL- DE-SOL-0007791

  14. Assessment of Advanced Measurement and Verification Methods ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Advanced Measurement and Verification Methods (M&V 2.0) Assessment of Advanced Measurement and Verification Methods (M&V 2.0) Automated M&V from Noesis Automated M&V ...

  15. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Overview Advanced Manufacturing Office Overview PDF icon mw_rf_workshop_july2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  16. Evaluation of integral continuing experimental capability (CEC) concepts for light water reactor research: PWR scaling concepts

    SciTech Connect (OSTI)

    Condie, K G; Larson, T K; Davis, C B; McCreery, G E

    1987-02-01

    In this report reactor transients and thermal-hydraulic phenomena of importance (based on probabilistic risk assessment and the International Code Assessment Program) to reactor safety were examined and identified. Established scaling methodologies were used to develop potential concepts for integral thermal-hydraulic testing facilities. Advantages and disadvantages of each concept are evaluated. Analysis is conducted to examine the scaling of various phenomena in each of the selected concepts. Results generally suggest that a facility capable of operating at typical reactor operating conditions will scale most phenomena reasonably well. Although many phenomena in facilities using Freon or water at nontypical pressure will scale reasonably well, those phenomena that are heavily dependent on quality (heat transfer or critical flow for example) can be distorted. Furthermore, relation of data produced in facilities operating with nontypical fluids or at nontypical pressures to large plants will be a difficult and time consuming process.

  17. F S solar concept GmbH | Open Energy Information

    Open Energy Info (EERE)

    S solar concept GmbH Jump to: navigation, search Name: F & S solar concept GmbH Place: Euskirchen, Germany Zip: 53879 Product: German EPC company focusing on large scale...

  18. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  19. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carrier Multiplication: Experimental Aspects and Practical Implications Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National...

  20. Champions of Change: Veterans Advancing Clean Energy

    Broader source: Energy.gov [DOE]

    Yesterday, Secretary Moniz honored veterans advancing clean energy and climate security at a White House "Champions of Change" event.

  1. Advanced Facades, Daylighting, and Complex Fenestration Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facades, Daylighting, and Complex Fenestration Systems Advanced Facades, Daylighting, and Complex Fenestration Systems Emerging Technologies Project for the 2013 Building ...

  2. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart ...

  3. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the ...

  4. Advanced Energy Design Guides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Design & Decision Support Tools » Advanced Energy Design Guides Advanced Energy Design Guides Cover of Advanced Energy Design Guide for Small to Medium Office Buildings The 50% AEDGs provide practical approaches to achieve 50% energy savings compared to base code requirements. Download them free from ASHRAE: Small to Medium Office Buildings K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals Grocery Stores The Advanced Energy Design Guides

  5. Advanced Grid Integration (AGI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mission » Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by

  6. Advanced Electrocatalysts for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, held February 12, 2013.

  7. The Future is Now for Advanced Vehicles

    Broader source: Energy.gov [DOE]

    Go behind the scenes at the Washington Auto Show, where the next generation of advanced vehicles is here today.

  8. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal Quantum Dots: Electronic Structures and Relaxation Pathways Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National...

  9. Revolutionizing Clean Energy Technology with Advanced Composites

    SciTech Connect (OSTI)

    Hockfield, Susan; Holliday Jr, Charles O.; Markell, Brad

    2015-01-13

    Energy conservation and manufacturing leaders discuss manufacturing products with advance composites to revolutionize the future with clean energy technology.

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  11. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & evaluate materials & additives that enhance thermal & overcharge abuse ...

  12. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Specific ...

  13. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  14. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  15. Gas Technology Institute (Partnership for Advanced Residential...

    Open Energy Info (EERE)

    Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name: Gas Technology Institute Place: Des Plaines, IL Website:...

  16. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  17. Advanced Chlorophyll Fluorometer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower, Wave and Tidal Hydropower, Wave and Tidal Advanced Materials Advanced Materials Find More Like This Return to Search Advanced Chlorophyll Fluorometer Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 12-G00203_2485.pdf (672 KB) Technology Marketing SummaryTo advance miniaturization of the AquaSentinel environmental monitoring technology, ORNL and the University of Tennessee researchers developed a microfluidics-based pulse

  18. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect (OSTI)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  19. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect (OSTI)

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  20. Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (AMO) | Department of Energy Day, Advanced Manufacturing Office (AMO) Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO) PDF icon imi_recogitionday_leo_june2012.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  1. Energy Efficiency, Renewables, Advanced Transmission and Distribution

    Energy Savers [EERE]

    Technologies (2008) | Department of Energy Renewables, Advanced Transmission and Distribution Technologies (2008) Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) PDF icon Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) More Documents & Publications Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Nuclear Power Facilities (2008)

  2. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt071_vss_cesiel_2011_o.pdf More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  3. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon DOE's Advanced Manufacturing Office More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  4. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect (OSTI)

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  5. Self advancing mine roof supports

    SciTech Connect (OSTI)

    Seddon, J.; Jones, F.

    1985-03-19

    A self-advancing mine-roof-support for use in or aligned with a main roadway or gate has a floor-engaging part and a roof engaging part spaced apart by extensible load-bearing prop or jack means, and engagement means for a face-conveyor and a transversely acting transfer conveyor whereby their relative positions are constrained to facilitate discharge of mineral from one conveyor to the other. The engagement means for the face conveyor comprises sliding anchor beams that assure maintenance of the relative attitudes of the support and the face conveyor and the transfer conveyor is held fore and aft of the support.

  6. Advanced Analytics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE Predictivity(tm) Industrial Internet Solutions Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Predictivity(tm) Industrial Internet Solutions As a key player in GE's commitment to advance the Industrial Internet, the GE Software Center is at work helping industrial organizations use data, analytics, data

  7. Extended Plate and Beam Wall System: Concept Investigation and Initial Evaluation

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2015-08-01

    A new and innovative High-R wall design, referred to as the Extended Plate & Beam (EP&B), is under development. The EP&B system uniquely integrates foam sheathing insulation with wall framing such that wood structural panels are installed exterior of the foam sheathing, enabling the use of standard practices for installation of drainage plane, windows and doors, claddings, cavity insulation, and the standard exterior foam sheathing installation approach prone to damage of the foam during transportation of prefabricated wall panels. As part of the ongoing work, the EP&B wall system concept has undergone structural verification testing and has been positively vetted by a group of industry stakeholders. Having passed these initial milestone markers, the advanced wall system design has been analyzed to assess cost implications relative to other advanced wall systems, undergone design assessment to develop construction details, and has been evaluated to develop representative prescriptive requirements for the building code. This report summarizes the assessment steps conducted to-date and provides details of the concept development.

  8. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  9. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    SciTech Connect (OSTI)

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-07-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  10. Advanced Patent Waivers | Department of Energy

    Energy Savers [EERE]

    Advanced Patent Waivers Advanced Patent Waivers March 31, 2014 Advance Patent Waiver W(A)2013-014 This is a request by W.R GRACE AND CO for a DOE waiver of domestic and foreign patent rights under agreement DE- EE0005991. March 31, 2014 Advance Patent Waiver W(A)2013-027 This is a request by ELECTRICORE INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0005968 February 27, 2014 Advance Patent Waiver W(A)2013-031 This is a request by WESTINGHOUSE ELECTRIC COMPANY

  11. Basic concepts of contaminant sorption. Summary paper

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of issue papers and briefing documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attempt to make the content of these documents available to a wider audience, RSKERL is developing a series of summary papers which are condensed versions of the original documents. Understanding the processes which dictate transport and fate characteristics of contaminants in soil and ground water is of paramount importance in designing and implementing remediation systems at hazardous waste sites. Sorption is often the most significant of these processes. The summary paper addresses the basic concepts of sorption in soil and ground water with an emphasis on organic contaminants having the characteristics of those often found at existing hazardous waste sites.

  12. PID Control Effectiveness for Surface Reactor Concepts

    SciTech Connect (OSTI)

    Dixon, David D.; Marsh, Christopher L.; Poston, David I.

    2007-01-30

    Control of space and surface fission reactors should be kept as simple as possible, because of the need for high reliability and the difficulty to diagnose and adapt to control system failures. Fortunately, compact, fast-spectrum, externally controlled reactors are very simple in operation. In fact, for some applications it may be possible to design low-power surface reactors without the need for any reactor control after startup; however, a simple proportional, integral, derivative (PID) controller can allow a higher performance concept and add more flexibility to system operation. This paper investigates the effectiveness of a PID control scheme for several anticipated transients that a surface reactor might experience. To perform these analyses, the surface reactor transient code FRINK was modified to simulate control drum movements based on bulk coolant temperature.

  13. Values and the quantum conception of man

    SciTech Connect (OSTI)

    Stapp, H.P.

    1995-06-01

    Classical mechanics is based upon a mechanical picture of nature that is fundamentally incorrect. It has been replaced at the basic level by a radically different theory: quantum mechanics. This change entails an enormous shift in one`s basic conception of nature, one that can profoundly alter the scientific image of man himself. Self-image is the foundation of values, and the replacement of the mechanistic self-image derived from classical mechanics by one concordant with quantum mechanics may provide the foundation of a moral order better suited to today`s times, a self-image that endows human life with meaning, responsibility, and a deeper linkage to nature as a whole.

  14. Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Azoulay, Jason; Ford, Alexandra Caroline; Foster, Michael E.; El Gabaly Marquez, Farid; Leonard, Francois Leonard; Leong-Hau, Kirsty; Stavila, Vitalie; Talin, Albert Alec; Wong, Brian M.; Brumbach, Michael T.; Van Gough, D.; Lambert, Timothy N.; Rodriguez, Mark A.; Spoerke, Erik David; Wheeler, David R.; Deaton, Joseph C.; Centrone, Andrea; Haney, Paul; Kinney, R.; Szalai, Veronika; Yoon, Heayoung P.

    2014-09-01

    Electro-optical organic materials hold great promise for the development of high-efficiency devices based on exciton formation and dissociation, such as organic photovoltaics (OPV) and organic light-emitting devices (OLEDs). However, the external quantum efficiency (EQE) of both OPV and OLEDs must be improved to make these technologies economical. Efficiency rolloff in OLEDs and inability to control morphology at key OPV interfaces both reduce EQE. Only by creating materials that allow manipulation and control of the intimate assembly and communication between various nanoscale excitonic components can we hope to first understand and then engineer the system to allow these materials to reach their potential. The aims of this proposal are to: 1) develop a paradigm-changing platform for probing excitonic processes composed of Crystalline Nanoporous Frameworks (CNFs) infiltrated with secondary materials (such as a complimentary semiconductor); 2) use them to probe fundamental aspects of excitonic processes; and 3) create prototype OPVs and OLEDs using infiltrated CNF as active device components. These functional platforms will allow detailed control of key interactions at the nanoscale, overcoming the disorder and limited synthetic control inherent in conventional organic materials. CNFs are revolutionary inorganic-organic hybrid materials boasting unmatched synthetic flexibility that allow tuning of chemical, geometric, electrical, and light absorption/generation properties. For example, bandgap engineering is feasible and polyaromatic linkers provide tunable photon antennae; rigid 1-5 nm pores provide an oriented, intimate host for triplet emitters (to improve light emission in OLEDs) or secondary semiconducting polymers (creating a charge-separation interface in OPV). These atomically engineered, ordered structures will enable critical fundamental questions to be answered concerning charge transport, nanoscale interfaces, and exciton behavior that are inaccessible in disordered systems. Implementing this concept also creates entirely new dimensions for device fabrication that could both improve performance, increase durability, and reduce costs with unprecedented control of over properties. This report summarizes the key results of this project and is divided into sections based on publications that resulted from the work. We begin in Section 2 with an investigation of light harvesting and energy transfer in a MOF infiltrated with donor and acceptor molecules of the type typically used in OPV devices (thiophenes and fullerenes, respectively). The results show that MOFs can provide multiple functions: as a light harvester, as a stabilizer and organizer or the infiltrated molecules, and as a facilitator of energy transfer. Section 3 describes computational design of MOF linker groups to accomplish light harvesting in the visible and facilitate charge separation and transport. The predictions were validated by UV-visible absorption spectroscopy, demonstrating that rational design of MOFs for light-harvesting purposes is feasible. Section 4 extends the infiltration concept discussed in Section to, which we now designate as %22Molecule%40MOF%22 to create an electrically conducting framework. The tailorability and high conductivity of this material are unprecedented, meriting publication in the journal Science and spawning several Technical Advances. Section 5 discusses processes we developed for depositing MOFs as thin films on substrates, a critical enabling technology for fabricating MOF-based electronic devices. Finally, in Section 6 we summarize results showing that a MOF thin film can be used as a sensitizer in a DSSC, demonstrating that MOFs can serve as active layers in excitonic devices. Overall, this project provides several crucial proofs-of- concept that the potential of MOFs for use in optoelectronic devices that we predicted several years ago [ 3 ] can be realized in practice.

  15. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect (OSTI)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  16. Advanced Framing Systems and Packages - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Framing Systems and Packages - Building America Top Innovation Advanced Framing Systems and Packages - Building America Top Innovation This photo shows advanced framing ...

  17. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results PDF icon...

  18. US DRIVE Advanced Combustion and Emission Control Technical Team...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion and Emission Control Technical Team Roadmap US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap The ACEC focuses on advanced engine and ...

  19. PIA - Advanced Test Reactor National Scientific User Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor ...

  20. Advanced Research Projects Agency - Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    recovery act Advanced Research Projects Agency - Energy More Documents & Publications Advanced Research Projects Agency -EnergyDepartment A presentation by the Advanced Research...

  1. DOE Perspectives on Advanced Hydrocarbon-based Biofuels | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Hydrocarbon-based Biofuels DOE Perspectives on Advanced Hydrocarbon-based Biofuels Zia Haq, DPA Coordinator, presentation on DOE Perspectives on Advanced Hydrocarbon-based ...

  2. The Role of Advancements in Photovoltaic Efficiency, Reliability...

    Office of Environmental Management (EM)

    The Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs The Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs The Role of Advancements in ...

  3. MIT - Center for Advanced Nuclear Energy Systems | Open Energy...

    Open Energy Info (EERE)

    - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name: MIT - Center for Advanced Nuclear Energy...

  4. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced Diesel Particulate Filtration (DPF) Systems 2011 DOE Hydrogen and ... Development of Advanced Particulate Filters Development of Advanced Diesel Particulate ...

  5. Process Development and Scale up of Advanced Electrolyte Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale up of Advanced Electrolyte Materials Process Development and Scale up of Advanced ... More Documents & Publications Process Development and Scale up of Advanced Electrolyte ...

  6. Webtrends Archives by Fiscal Year - Advanced Manufacturing Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office Webtrends Archives by Fiscal Year - Advanced Manufacturing Office From the EERE Web Statistics Archive: Advanced Manufacturing Office, Webtrends ...

  7. Innovative Topics for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Bio-Oil ...

  8. Demonstration of an advanced superconducting generator: Interim report, December 16, 1981--May 15, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-11-03

    The objective of this program, ''Demonstration of an Advanced Superconducting Generator,'' is to demonstrate advanced concepts in a prototype superconducting generator. Starting in August 1976, concept study and analysis lead in December 1977 to the selection of concepts for the experimental generator. Continued analysis and design optimization of the selected concepts lead to a design selection for the 10 MVA experiment in November 1978. Iteration with detail design and the application of more accurate analysis resulted in a freeze of the ''fine tuned'' design in September 1978. By May 1980 all secondary design decisions had been made and all major components and materials had been ordered. By December 1980 the installation of the gas turbine prime mover and the helium refrigerator/liquefier had been completed and fabrication had commenced on the stator core and the armature of the experimental generator. Detail designs were completed and component development and fabrication was carried out during 1981. Work during this report period includes fabrication of the armature and rotor as well as the completion of additional component development tests.

  9. Demonstration of an advanced superconducting generator: Interim report, December 16, 1980--May 15, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-08-10

    The objective of this program, ''Demonstration of an Advanced Superconducting Generator'', is to demonstrate advanced concepts in a prototype superconducting generator. Starting in August 1976, concept study and analysis lead in December 1977 to the selection of concepts for the experimental generator. Continued analysis and design optimization of the selected concepts lead to a design selection for the 10 MVA experiment in November 1978. Iteration with detail design and the application of more accurate analysis resulted in a freeze of the ''fine tuned'' design in September 1979. By May 1980 all secondary design decisions had been made and all major components and materials had been ordered. By December 1980 the installation of the gas turbine prime mover and the helium refrigerator/liquefier had been completed and fabrication had commenced on the stator core and the armature of the experimental generator. Work during this reporting period has been concentrated on the fabrication of the generator and on component development and testing. Mockups of the damper winding and the rotor assembly were fabricated and development and testing of thermal isolation layer material and armature electrical insulation was carried out.

  10. SciDAC Advances and Applications in Computational Beam Dynamics

    SciTech Connect (OSTI)

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-06-26

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  11. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  12. Fundamental Concepts of Digital Image Processing

    DOE R&D Accomplishments [OSTI]

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  13. Futuristic concepts in engines and components

    SciTech Connect (OSTI)

    1995-12-31

    This publication includes papers on two-stroke engines and components, Brayton Stirling and Otto Cycles, alternative cycles, advanced combustion, and other related topics. Contents include: Paving the way to controlled combustion engines (CCE); A new class of stratified-charge internal combustion engine; Internal combustion (IC) engine with minimum number of moving parts; New type of heat engine -- externally heated air engine; A porous media burner for reforming methanol for fuel cell powered electric vehicles; Using a Stirling engine simulation program as a regenerator design aid; In-cylinder regenerated engines; High speed electronic fuel injection for direct injected rotary engine; and The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine.

  14. The Concept of Goals-Driven Safeguards

    SciTech Connect (OSTI)

    R. Wigeland; T Bjornard; B. Castle

    2009-02-01

    The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organizations purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

  15. Concept of an inherently-safe high temperature gas-cooled reactor

    SciTech Connect (OSTI)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro

    2012-06-06

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

  16. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70, Taurus 65, Titan 130, Titan 250 and Mercury 50). This TBC coating system significantly outperformed all other TBC systems evaluated under the program. The initial field unit, with the 40 mil advanced TBC developed under this program, has far exceeded the 4,000-hour requirement of the program, accumulating over 20,000 hours of commercial operation at Qualcomm Inc. in San Diego, CA. The 40 mil advanced TBC remains in excellent condition, with no evidence of chipping or spalling. The engine will continue operation until the unit is due for overhaul at approximately 30,000 hours. The Oxide Dispersion Strengthened (ODS) alloy injector tip testing and evaluation was also successful, however, the ODS injector tip development on this program was terminated, primarily due to the fact that the Mercury 50 injector tip was redesigned (Generation 3) by Combustion Engineering.

  17. Advances in Manufactured Home Energy Efficient Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design" Concept * Goal: Reduce space conditioning energy use by at least 50% ... efficiency * Factory installed * Interior space saving (no furnace) 10 Other Home Features ...

  18. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  19. Advanced gray rod control assembly

    DOE Patents [OSTI]

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  20. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2011-09-01

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.