Sample records for a1 a9 a11

  1. Data:44982de6-4f89-47a9-abe9-59a11e22f951 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revision has been approved fore9907a8f25abe9-59a11e22f951 No

  2. Data:B2001d19-d7a9-47c5-a1c9-dac3bafa6e86 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has been approvededdfdcc009c No-6f65bc929730 No7c5-a1c9-dac3bafa6e86

  3. Data:79a9c50a-1aa8-4f45-96f0-d59bed2b08c5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revisionc5a53c0de No revision has beenac-2ac8ddb775e4

  4. Data:A70a3b17-71a2-4c42-a9f4-b220dc42a4a1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44f-4cd6-87d8-e9253aab8d9c No revision has been-46a8-ae07-5ab18084c579b220dc42a4a1 No

  5. Application Note (A9) Revision: A

    E-Print Network [OSTI]

    Johnsen, Sönke

    measurements of light falling onto a flat surface. Such studies vary from solar UV exposure limitsApplication Note (A9) Revision: A AUGUST 1995 OPTRONIC LABORATORIES, INC. 4632 36TH STREET Orlando on the wavelength of light so the bluer wavelengths are scattered more strongly than redder. This leads

  6. WINTER, 19a9 Academic quality

    E-Print Network [OSTI]

    de Lijser, Peter

    - I WINTER, 19a9 Academic quality and accreditation: A case of good news and bad news? liThe good.ICATION OF THE ACADEMIC SENATE, CALIFORNIA STATE UNIVERSITY, FUL.LERTON #12;2 · Senate Forum #12 accreditation. On the following pages are articles of how one de- partment was seen by others to be holding its

  7. Data:A11c4a9c-647d-495c-aa51-8b323b4001bd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision hasdb5-b05c-76b1be5a4007ad8-8e5c-a300c92ae7d1 No3f28b90059d7

  8. Renewable Energies program (6 credit hour) Option A: 11

    E-Print Network [OSTI]

    Simaan, Nabil

    Renewable Energies program (6 credit hour) Option A: 11 Option B: The program is organized by t Spanish Institute and the Asso program on renewable energy will provide students with advanced knowledge. opportunities: option A- two renewable energies; option B include on-site visits to renewable energy generation

  9. Categorical Exclusion Determinations: A9 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 2014 CX-100126A5 Categorical ExclusionA6A7A8A9

  10. Data:Faa585a9-8a29-4c76-89a1-ad691a73fc07 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for thisd785796ade47 No revisionc-f4d242f648c4 No revision

  11. Data:755c3504-1615-4e9a-9b0a-1d836f68b646 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b No revision has6dcc3af95b Noda29209151a4826c6b3dcf35ee505baeaae1f7f8

  12. Data:1d776772-3a9c-48b5-a1c2-463fbaa010f3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been-9b29bec4d26e Noc3ca4208e363e56a97b86 No63fbaa010f3 No

  13. Data:22a1debf-5651-43a9-8ca0-9ed01353521b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c098f5e77d9 No6eee65cb81db No-afe5-98419c22f2d2 No revision

  14. Data:2b1a500e-ee59-4d69-bffc-a9a1d36b35df | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8 No revision has been approvedbc14a3f33 No revision

  15. Data:B8a1a9c7-880d-4382-bc63-dacf49225b56 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 Nocadf-323f-4b6f-9089-15e8154a5fd9 No2f77263b6 No82fac23333dacf49225b56 No

  16. Data:5477a1a9-d874-4070-bce0-9b573285d43c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has beena332-b9f7c233624becb2995dad7773285d43c No revision

  17. Data:030830a1-8a5f-4741-a9b9-9cae3f030acb | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLCd32fc5a84 No revision has been

  18. Data:08b76cd3-a1c9-4427-a9bc-462d341169e4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fbc9b253bedd No7-e86f2fd7b7e6 No revision has

  19. Data:1524a00e-2e97-41d0-88a1-a9f12fef9639 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 No revision78ced93e0 No52ca No5d8683238 No revision has

  20. Data:1b5a73cd-ca7a-414d-9a9e-9dd1a154a1da | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision hasfcd92f-8652-45c0-96f0-a73be7466ef5efeb2958a4e35576efcf No revision

  1. Data:9f0c55af-3663-456e-a3ed-e351a3a9a1dd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision hasdb5-b05c-76b1be5a4007 No revision has been approved for this page. It

  2. Data:A05abc26-488d-446e-8c7d-7661ac71a1a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision hasdb5-b05c-76b1be5a4007 Nof7ffd374e Nobb006fc1899 No revisiond4e249a741b

  3. Data:A9a1fa08-5a94-41f8-97cd-469664680bfc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44f-4cd6-87d8-e9253aab8d9c No0a794995 No revision has7259dda3da

  4. Data:A9feada0-5fb2-4a1d-b4ed-5ffbaece788b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44f-4cd6-87d8-e9253aab8d9c No0a794995 Noaf5f-795951ea1924 No revision has been approved

  5. Data:D757572a-9ffa-42a1-9dbf-33f095d1a22f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6d-b16b-9fabe37583c1

  6. Data:E3f81776-ab00-4c28-a9a1-4c81c2932922 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approved for-1837723ccd6b No revision has beenebc-209b0fea3076 Nof80f3ad2d

  7. GFMC calculations of electromagnetic moments and M1 transitions in A {<=} 9 nuclei

    SciTech Connect (OSTI)

    Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Pieper, Steven C. [Argonne National Laboratory; Schiavilla, Rocco [JLAB, Old Dominion U.; Wiringa, Robert Bruce [Physics Division, Argonne National Laboratory, Argonne, Illinois

    2013-08-01T23:59:59.000Z

    We present recent Green?s function Monte Carlo calculations of magnetic moments and M1 transitions in A{<=}#20;9 nuclei, which include corrections arising from two-body meson-exchange electromagnetic currents. Two-body effects provide significant corrections to the calculated observables, bringing them in excellent agreement with the experimental data. In particular, we find that two body corrections are especially large in the A = 9, T = 3/2 systems, in which they account for up to ~#24; 20% (~#24; 40%) of the total predicted value for the {sup 9}Li ({sup 9}C) magnetic moment.

  8. Table A9. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " " (EstimatesA9.

  9. Saskatchewan Centre of Excellence of Transportation and Infrastructure 57 Campus Drive, Saskatoon, SK, Canada, S7N 5A9

    E-Print Network [OSTI]

    Saskatchewan, University of

    Saskatchewan Centre of Excellence of Transportation and Infrastructure 57 Campus Drive, Saskatoon, SK, Canada, S7N 5A9 The Saskatchewan Centre of Excellence for Transportation and Infrastructure parking) Regina About SCETI The Saskatchewan Centre of Excellence for Transportation and Infrastructure

  10. CX-001770: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    0: Categorical Exclusion Determination CX-001770: Categorical Exclusion Determination Colorado-City-Pueblo Energy Efficiency and Conservation Strategy CX(s) Applied: A1, A9, A11,...

  11. A=11 Nuclides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL strategystudyA.J.

  12. A=11, 2012 evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams for74AJ01)8AJ01) (Not79AJ01)8AJ01)11

  13. Data:3b2a84a9-6b00-43b8-8e50-a9cb8a930831 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation,f31366697 No revision has been6d-e2d07f7aa031 No0-a9cb8a930831

  14. Conserved genomic structure of the Cyp1a1 and Cyp1a2 loci and their dioxin responsive elements cluster

    E-Print Network [OSTI]

    Bradfield, Christopher A.

    Review Conserved genomic structure of the Cyp1a1 and Cyp1a2 loci and their dioxin responsivea2 DRE AHR Dioxin a b s t r a c t A thorough DNA sequence analysis reveals that the mouse Cyp1a11_1a2 junction, eight consensus dioxin responsive elements (DREs) are present and seven of the eight

  15. Data:61261986-fa6d-4857-b775-5017834c34a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for thisbade-2c5cfacaa2ee No revision hasf3-972e-1e98b4fcb0a0 No7834c34a9

  16. Data:37549466-45e9-4eb4-8018-8868c84715a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97e No revision has been approved for this5ccca8 No revision68c84715a9 No

  17. Appendix A-1 Contract Performance Reports ARRA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes LaboratoryAntonyaAppeals Appeals FOIAA4.A7.A8.A9.AAA-1

  18. A = 9 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 General Tables9

  19. A=9 Nuclides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL3 Publications:9

  20. A9_ISO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.November

  1. Data:F9e47de0-a209-408a-a9a3-a1ea44a63e39 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for thisd785796ade47 No revision has beenfac0d8ae78af7-ab04c24a144e No

  2. Data:6f495ab8-56d7-4c68-a3a9-a1c8b154c756 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision9-abd1-c3e1b33869bc No revision has been

  3. Data:5a1a09e7-46a9-44b1-b86c-881e77dc55c8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d437 No revision hascf040cccab8e No

  4. Data:A8a9f920-3074-483c-a5d4-81d7e47a1f7a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44f-4cd6-87d8-e9253aab8d9c No revision82e6036a7 No revision has

  5. Data:D71fe59f-f8a9-46fe-a1e8-6a076be47889 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6d-b16b-9fabe37583c1 Nof7bb0b7d4f25 No

  6. Data:Db1ac73b-74a7-414d-bb92-a1c5a9c2d2ec | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision hasDafcf4ac-ca67-414f-9d31-84001343bbeb No revision has been approved for this page.

  7. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-?B and MAPK signaling pathways

    SciTech Connect (OSTI)

    Omar, Hany A. [Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Arafa, El-Shaimaa A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Salama, Samir A. [Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11511 (Egypt); Arab, Hany H. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Wu, Chieh-Hsi, E-mail: chhswu@mail.cmu.edu.tw [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Weng, Jing-Ru, E-mail: columnster@gmail.com [Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2013-11-01T23:59:59.000Z

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-?B) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-?B and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-?B and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9 targeted signaling pathways mediated by Akt-NF-kB, VEGF, and MMP-2. • The anti-angiogenic activity of OSU-A9 supports its clinical promise.

  8. Data:7ab37377-dd8b-47a2-b4ca-0d6a9a002149 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No809d65569c0 No revision has beenca-0d6a9a002149 No revision

  9. Reliability assessment of a 1 MV LTD.

    SciTech Connect (OSTI)

    Portillo, Salvador; Chavez, Raymond (Ktech Corporation, Albuquerque, NM); Molina, Isidro; Kim, Alexandre A. (High Current Electronics Institute, Tomsk, Russia); Johnson, David L. (Titan Pulsed Sciences Division, San Leandro, CA); Maenchen, John Eric; Leckbee, Joshua J.; Ziska, Derek Raymond (Ktech Corporation, Albuquerque, NM)

    2005-07-01T23:59:59.000Z

    A 1 MV linear transformer driver (LTD) is being tested with a large area e-beam diode load at Sandia National Laboratories (SNL). The experiments will be utilized to determine the repeatability of the output pulse and the reliability of the components. The 1 MV accelerator is being used to determine the feasibility of designing a 6 MV LTD for radiography experiments. The peak voltage, risetime, and pulse width as well as the cavity timing jitter are analyzed to determine the repeatability of the output pulse.

  10. Contributions of the S100A9 C-Terminal Tail to High-Affinity Mn(II) Chelation by the Host-Defense Protein Human Calprotectin

    E-Print Network [OSTI]

    Nolan, Elizabeth M.

    Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present ...

  11. PLC Software Program for Leak Detector Station A1 SALW-LD-ST-A1

    SciTech Connect (OSTI)

    KOCH, M.R.

    2001-01-25T23:59:59.000Z

    This document describes the software program for the programmable logic controller for the leak detector station ''SALW-LD-ST-A1''. The appendices contains a copy of the printout of the software program.

  12. Decommissioning Project of Bohunice A1 NPP

    SciTech Connect (OSTI)

    Stubna, M.; Pekar, A.; Moravek, J.; Spirko, M.

    2002-02-26T23:59:59.000Z

    The first (pilot) nuclear power plant A1 in the Slovak Republic, situated on Jaslovske Bohunice site (60 km from Bratislava) with the capacity of 143 MWel, was commissioned in 1972 and was running with interruptions till 1977. A KS 150 reactor (HWGCR) with natural uranium as fuel, D2O as moderator and gaseous CO2 as coolant was installed in the A1 plant. Outlet steam from primary reactor coolant system with the temperature of 410 C was led to 6 modules of steam generators and from there to turbine generators. Refueling was carried out on-line at plant full power. The first serious incident associated with refueling occurred in 1976 when a locking mechanism at a fuel assembly failed. The core was not damaged during that incident and following a reconstruction of the damaged technology channel, the plant continued in operation. However, serious problems were occurring with the integrity of steam generators (CO2 gas on primary side, water and steam on secondary side) when the plant had to be shut down frequently due to failures and subsequent repairs. The second serious accident occurred in 1977 when a fuel assembly was overheated with a subsequent release of D2O into gas cooling circuit due to a human failure in the course of replacement of a fuel assembly. Subsequent rapid increase in humidity of the primary system resulted in damages of fuel elements in the core and the primary system was contaminated by fission products. In-reactor structures had been damaged, too. Activity had penetrated also into certain parts of the secondary system via leaking steam generators. Radiation situation in the course of both events on the plant site and around it had been below the level of limits specified. Based on a technical and economical justification of the demanding character of equipment repairs for the restoration of plant operation, and also due to a decision made not to continue with further construction of gas cooled reactors in Czechoslovakia, a decision was made in 1977 to terminate plant operation. The decision on the A1 plant decommissioning was issued in 1979.

  13. Data:F9b8ef53-c572-4ac1-a76f-880185036a11 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for thisd785796ade47 No revision has beenfac0d8ae78 Noac1-a76f-880185036a11 No revision

  14. Data:66b4b0c5-b702-4324-b24f-06c896f3a11c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3 No revision has been approved ford32648f87 No06c896f3a11c No

  15. Data:Bcfd1c1f-01b6-4a11-8667-d236d8565086 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revision has been approved for this page. It is currently

  16. Data:552fc369-7cf0-4f9c-b245-9fab3a11edae | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has2fea1047f348bf8a-400a6a445753 No revision hasfab3a11edae

  17. Data:11d48e1b-18f7-4012-a944-a8e5b7a11d0c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approved for720c8ec90dbaf6-4962-b5dd-6741a324e875 No revisionb7a11d0c No

  18. A 1-D dusty plasma photonic crystal

    SciTech Connect (OSTI)

    Mitu, M. L.; Tico?, C. M. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania)] [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Toader, D.; Banu, N.; Scurtu, A. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania) [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Department of Physics, University of Bucharest, 077125 Bucharest (Romania)

    2013-09-21T23:59:59.000Z

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 ?m to about 1350 ?m, depending on the rf power fed into the discharge.

  19. US 2012025425 1A1 (19) United States

    E-Print Network [OSTI]

    Palpanas, Themis

    /0254251 A1 15a FIG. 2B #12;Patent Application Publication Oct. 4, 2012 Sheet 4 0f 17 US 2012/0254251 A1 w

  20. Data:Bd685be9-09e3-4105-8a36-49bc6a9e21df | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revision has been approvedc2e653ec8652 No revision has

  1. Data:Bd89b540-bda4-4bfb-9256-4e037b5532a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revision has been approvedc2e653ec8652 No

  2. Data:Be5fe887-2e8e-4549-8213-0a9cf2df8fa8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 Nobdddf01a916d No revision has beenb75a54a8ea9cf2df8fa8 No

  3. Data:7d6597e6-815e-4ea5-a11f-201737267fd5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88cc1e8c1443c No revisionec72d2ae94e-024e27e25c1be-dc7963ccbbf7

  4. Energy Level Diagrams A=11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecondCareerFebruary 2005 1Energy Kits Energy Kits101

  5. A11_ISO.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharm thatA8AA.A/CONF.15/P/2390

  6. Data:Ec262e8c-a51a-4cbd-b601-b2b875ef39a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revisionEc01d6d9-0b5c-46e0-8010-da811753d74a No revision has been approved1-b2b875ef39a9 No

  7. Data:F2da6662-d4a8-4f19-b5a9-c2d69c18cadb | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It ise7c5ddfdbf9 No revision hasb369afd08a7b5a9-c2d69c18cadb No revision

  8. Data:F532263c-df1d-44a9-aa8a-c997f3f8ebf4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It6d-bcfb5222116e Noe0e2fa091ee4 No-ac94-299f9c7dae4efba-2a5e0a9d12c3

  9. Data:691e5131-4f95-4a90-8fb6-252db5c460a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3 Nob05268d8cd No revision has been approvede27f0 Nodb5c460a9 No

  10. Data:71fa0c1b-06d3-46ba-b53b-779a9a2a3278 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b No revision has been approved for this779a9a2a3278 No revision has been

  11. Data:71fde4e1-62a9-448e-8651-4ef5de2f8a26 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b No revision has been approved for this779a9a2a3278 No revision hasde2f8a26 No

  12. Data:720229fa-4def-4aff-a9ea-d618d5d26d85 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b No revision has been approved for this779a9a2a3278 No revision

  13. Data:7864f012-ff4c-41c9-a976-9f667a9d7d88 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revision has been approved for this page. It is currently

  14. Data:1de466cb-fa84-4445-ab38-d68c544a9e31 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision hasbbd6-4aa8-8927-629604d047e05f02da6ab No revision8c544a9e31

  15. Data:2588a0d5-6dec-406b-a182-e40a9aebe06a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved for this page. Ite40a9aebe06a No revision has been

  16. Data:258fab06-1408-40a9-b166-f618c236b5ad | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved for this page. Ite40a9aebe06a No revision has

  17. Data:B22be334-8162-4bb6-aa1c-de00a9e5b921 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has been approvededdfdcc009ca85ec81a3 No revision0a9e5b921 No

  18. Data:B278b711-feff-43d5-8240-65b3a9fe03c7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has been approvededdfdcc009ca85ec81a3feff-43d5-8240-65b3a9fe03c7 No

  19. Data:C2f79bb9-170f-408f-bf2b-d38595bd85a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has beena032db6d83 Noc-56029b877feeb-d38595bd85a9 No revision has been

  20. Data:5380a4ea-4bab-4118-b5a9-4197f3123fd0 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has been approved for this page.a9-4197f3123fd0 No revision

  1. Data:4d502c4a-7480-45f7-a4bd-3bbc282db6a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision has beenb745-9ab1009e842882db6a9 No revision has been

  2. Data:4d6d7486-a9ec-4c69-83ad-6b60d9890c15 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision has beenb745-9ab1009e842882db6a9 No

  3. Data:52c5ee44-b663-48cb-bd5c-a092a6ac00a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf74865627f783 Noaad3-ec22188355fac30654210ad7bd5c-a092a6ac00a9 No revision

  4. Data:52c6ab9b-4a9c-4a78-80c8-aebfb6163b27 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf74865627f783 Noaad3-ec22188355fac30654210ad7bd5c-a092a6ac00a9 No

  5. Data:0af630cd-0e42-407f-9f2e-c348d70a9fb4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable-1a29da98863b No revision hasd22b56e No8d70a9fb4 No revision has been approved

  6. Data:10c28040-698e-4ba1-8f2d-8e51f7180a9e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approved for720c8ec90dba No revision66-bdd48a68f346 No revision has1f7180a9e

  7. Data:16f4c926-5999-4996-93f1-110a9de6d945 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 Nob97eb4d202d0 No8827bff3a72 No revisione89df7d5a490a9de6d945 No

  8. Data:Fbc7a7bd-03ca-42ce-a9de-795a5d445ab2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for thisd785796ade4709e636e4428 NoFbc7a7bd-03ca-42ce-a9de-795a5d445ab2 No revision has

  9. Data:8ec740ba-c301-41e8-b6a9-ec4b36cc3c02 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No18fed1db58-e7b51f638865 No revision has beenb6a9-ec4b36cc3c02 No revision has

  10. Data:94bb266a-77b0-462b-be1e-9896c2a9a0f7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf35248292f1 No789501c8a3b5 No revision hase-9896c2a9a0f7 No revision has been

  11. Data:9db2d411-bd2c-432d-9456-bd74299e78a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision has4299e78a9 No revision has been approved

  12. Data:Ca36075e-72ee-48a7-9ec2-da25d52a9ac1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision617ab3133c917-f9f8e1916066 No revision hasdc5d911f6f2 Noda25d52a9ac1 No

  13. Data:Cb3fd5bf-7aba-457b-9f11-e2333cfe73a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742e80b26cc4 No revision has been approved for this page.aba-457b-9f11-e2333cfe73a9 No

  14. Data:D77f7826-0bd2-4e85-8425-2ec97a9d92d3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6d-b16b-9fabe37583c10d943651 No revision hasb42c300c1a6592d7a9d92d3 No

  15. Data:E39e1371-99e7-4836-b320-c8a9e817b26b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approved for thisc4d368cd00cab702d7555d8d01408 Noc8a9e817b26b No revision has

  16. Data:E63551fe-56d6-4012-959a-a9ec6b91021d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approvedfcfd-fe97-4342-8248-2959f3ac61fa9a-a9ec6b91021d No revision has been

  17. Data:78d3f9df-98b3-43a9-9fd6-14c265e09420 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revision has beenbf-8ab0-88fc3bae3f73 No2731e315e130

  18. Data:79abcecb-edf6-4b75-93a9-f9bf0c03222d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revisionc5a53c0de No revision has

  19. Data:7a180355-4a9b-4fd9-ac22-86b5737f68a8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revisionc5a53c0de Noc498c25355d Nob5737f68a8 No revision has

  20. Data:7a687952-a9c0-4f0f-a05b-4f9fb28b91ea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revisionc5a53c0de-477c-81a3-ff95ff4e4ac0 No

  1. Data:7a9dec35-316c-454e-9b50-758a6bac94be | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No809d65569c0 No revision has been approved

  2. Data:7b73791c-5271-475a-9b39-b6d206a658c3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No809d65569c0 Nob6a1826b076 No3812d1d0ec14a57e1611d206a658c3 No

  3. Data:7cc040f5-3c5f-4349-971c-b7df1a9cfeeb | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88cc1e8c1443c No revision has-f30bc4c366f2 No revision

  4. Data:7dcb749f-8d32-4e46-a77b-38437a9f2254 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88cc1e8c1443c Nod-5000bbb042b0ad-77b5cc7f2d23 No revision has

  5. Data:836e7240-8724-4fc7-8925-9dd9d3e233a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revision has9-c45258b300ac Noc1e69d7992f-3f3dd886bf1c1dc0188f0dd9d3e233a9 No

  6. Data:31ad0a32-c355-4594-a400-269daced2a9c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 Noddb932b8a3f1f38825451 No revision has been-199661b50ec2daced2a9c No

  7. CX-012262: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-012262: Categorical Exclusion Determination Reconciling Unconventional Gas Emission Estimates (SUMMARY) CX(s) Applied: A1, A9, A11, B3.1 Date: 07022014 Location(s):...

  8. CX-004063: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Reinvestment Act: Pilot Testing of a Membrane System for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 10012010 Location(s): Wilsonville,...

  9. CX-004064: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Reinvestment Act: Pilot Testing of a Membrane System for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 10012010 Location(s): Holbrook,...

  10. CX-002070: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002070: Categorical Exclusion Determination New York-City-Albany CX(s) Applied: A1, A9, A11, B1.32, B5.1 Date: 04132010 Location(s):...

  11. CX-003501: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    Determination Community-Wide Public Facilities Energy Efficiency Retrofit and Biomass Space Heating Conversion Project CX(s) Applied: A1, A9, A11, B5.1 Date: 07302010...

  12. CX-005325: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005325: Categorical Exclusion Determination Boeing Distribution Management System (BDMS) CX(s) Applied: A1, A9, A11, B1.2, B1.7 Date: 02242011...

  13. CX-005324: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005324: Categorical Exclusion Determination Boeing Distribution Management System (BDMS) CX(s) Applied: A1, A9, A11, B1.2, B1.7 Date: 02242011...

  14. CX-005326: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005326: Categorical Exclusion Determination Boeing Distribution Management System (BDMS) CX(s) Applied: A1, A9, A11, B1.2, B1.7 Date: 02242011...

  15. CX-005321: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005321: Categorical Exclusion Determination Boeing Distribution Management System (BDMS) CX(s) Applied: A1, A9, A11, B1.2, B1.7 Date: 02242011...

  16. CX-000113: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mashantucket Pequot Tribe Energy Efficiency and Conservation StrategyCX(s) Applied: A9, A1, A11Date: 12/07/2009Location(s): ConnecticutOffice(s): Energy Efficiency and Renewable Energy

  17. CX-005919: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-005919: Categorical Exclusion Determination Workforce Development Initiative ? Student Intern and Fellowship Program CX(s) Applied: A1, A9, A11, B1.12, B5.1 Date: 0523...

  18. CX-003655: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003655: Categorical Exclusion Determination Oklahoma - Tribe - Cherokee Nation, Oklahoma CX(s) Applied: A1, A9, A11, B1.15, B2.5, B4.12, B5.1 Date: 0903...

  19. CX-012286: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Marine Vibrator Prototype Demonstration Test CX(s) Applied: A1, A8, A9, A11, B3.11 Date: 06/12/2014 Location(s): CX: none Offices(s): National Energy Technology Laboratory

  20. CX-006030: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    of CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 06132011 Location(s): Orland Park, Illinois Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and...

  1. CX-005793: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 05022011 Location(s): Arlington Heights, Illinois Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and...

  2. CX-003253: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 07262010 Location(s): Wheaton, Illinois Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and...

  3. CX-011802: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    South Louisiana EOR/Sequestration Research and Development Project CX(s) Applied: A1, A9, A11, B3.6 Date: 01/28/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  4. CX-001780: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Iowa-City-DubuqueCX(s) Applied: A1, A9, A11, B1.32, B5.1Date: 04/22/2010Location(s): Dubuque, IowaOffice(s): Energy Efficiency and Renewable Energy

  5. CX-008429: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tennessee-City-Chattanooga CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 07/18/2012 Location(s): Tennessee Offices(s): Energy Efficiency and Renewable Energy

  6. CX-010705: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    National Laser Facility Program Funding Opportunity CX(s) Applied: A1, A9, A11, B3.6 Date: 02/08/2013 Location(s): CX: none Offices(s): NNSA-Headquarters

  7. CX-007104: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination NovaThermal Energy Waste Heat Geothermal Heat Pump System CX(s) Applied: A1, A9, A11, B5.1 Date: 10132011 Location(s): Philadelphia,...

  8. CX-012125: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pressure Prediction and Hazard Avoidance Through Improved Seismic Imaging CX(s) Applied: A1, A9, A11 Date: 05/29/2014 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  9. CX-012161: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pressure Prediction and Hazard Avoidance Through Improved Seismic Imaging CX(s) Applied: A1, A9, A11 Date: 05/29/2014 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

  10. CX-012124: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pressure Prediction and Hazard Avoidance Through Improved Seismic Imaging CX(s) Applied: A1, A9, A11 Date: 05/29/2014 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

  11. CX-012421: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Low-Leakage Shaft End Seals for Utility-Scale SCO2 Turbo Expanders CX(s) Applied: A1, A9, A11Date: 41880 Location(s): TexasOffices(s): National Energy Technology Laboratory

  12. CX-000298: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000298: Categorical Exclusion Determination Maryland Revision 1 - EmPOWERing Financing Initiative CX(s) Applied: A1, A7, A9, A11, B1.3, B1.4,...

  13. CX-000302: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000302: Categorical Exclusion Determination Maryland Revision 1 - State Agency Loans Programs CX(s) Applied: A1, A7, A9, A11, B1.3, B1.4, B1.5,...

  14. CX-000325: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    5: Categorical Exclusion Determination CX-000325: Categorical Exclusion Determination Kentucky Revision 2 - Utility Smart Grid Initiative CX(s) Applied: A1, A9, A11, B1.7, B1.24,...

  15. CX-010811: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-010811: Categorical Exclusion Determination South Louisiana Enhanced Oil Recovery (EOR)Sequestration Research and Development (R&D) Project CX(s) Applied: A1, A9, A11 Date:...

  16. CX-011803: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011803: Categorical Exclusion Determination South Louisiana EORSequestration Research and Development Project CX(s) Applied: A1, A9, A11, B3.6 Date:...

  17. CX-012440: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Syngas Combustor Development for High-Pressure, Oxy-Fuel SCO2 Cycles CX(s) Applied: A1, A9, A11Date: 41878 Location(s): North CarolinaOffices(s): National Energy Technology Laboratory

  18. CX-007834: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Florida -City - North Port CX(s) Applied: A1, A9, A11, B5.1., B5.23 Date: 02/23/2011 Location(s): Florida Offices(s): Energy Efficiency and Renewable Energy

  19. CX-003649: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California - City - RichmondCX(s) Applied: A1, A9, A11, B2.5, B5.1Date: 09/02/2010Location(s): Richmond, CaliforniaOffice(s): Energy Efficiency and Renewable Energy

  20. CX-001267: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency and Conservation Strategy, Energy Efficient Retrofits, and Building Codes CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 12152009 Location(s): Charles, Maryland...

  1. CX-004993: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Applied: A1, A9, A11, B2.5, B3.6, B5.1 Date: 01102011 Location(s): Washtenaw County, Michigan Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and...

  2. CX-004242: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX(s) Applied: A1, A9, A11 Date: 10182010 Location(s): San Antonio, Texas Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory Purpose...

  3. CX-010481: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Differential Absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide CX(s) Applied: A1, A9, A11, B3.6 Date: 05/29/2013 Location(s): Montana Offices(s): National Energy Technology Laboratory

  4. Energy Level Diagrams A=9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecondCareerFebruary 2005 1Energy Kits7 Available in89

  5. A9R7296.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  6. A9R7298.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  7. A9_ISO.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.November

  8. A9_iso.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.November

  9. US 20120080646A1 (12) Patent Application Publication (10) Pub. No.: US 2012/0080646 A1

    E-Print Network [OSTI]

    Geohegan, David B.

    US 20120080646A1 (12) Patent Application Publication (10) Pub. No.: US 2012/0080646 A1 (19) United;Patent Application Publication Apr. 5, 2012 Sheet 1 0f 15 US 2012/0080646 A1 v` . . . . . , . . . . . . . v , . , . , . , , , . , , , , , , , , , ,. #12;Patent Application Publication Apr. 5, 2012 Sheet 2 0

  10. US 20020062089A1 (12) Patent Application Publication (10) Pub. No.: US 2002/0062089 A1

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    US 20020062089A1 (12) Patent Application Publication (10) Pub. No.: US 2002/0062089 A1 (19) United deception. #12;Patent Application Publication May 23, 2002 Sheet 1 of 110 US 2002/0062089 A1 #12;Patent OLD "" RL500 OPP2 OLD -- RL500 RAN2 OLD-T '"' RL500 RAN2 OLD-D #12;Patent Application Publication FIG

  11. Data:Be94f0dc-d925-4083-93ea-f85294893a1b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 Nobdddf01a916d No14ad9aca1a24 No revision has been5294893a1b No

  12. Data:21155e69-e7b6-4380-a114-2d0a9a6e57c9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No529a57c00c0 Noe-ed85d9cb7f6fcc928be348 No revisiond0a9a6e57c9 No

  13. Data:2d616a7c-22e4-427e-91c6-c1eebd3a9a7d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revisionbeb-403f-b787-2700a3b20e2e No557a75c4 No revision has beenc6-c1eebd3a9a7d

  14. Data:57a7c6b5-bbc0-4a9c-b0ae-29f580053df1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 No revision has been-4a9c-b0ae-29f580053df1 No

  15. Data:588469d3-5d8a-442d-b11c-7dd07a9e8c05 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 Noaa727c9ff358 No revisiondd07a9e8c05 No

  16. Data:58d1cb94-136f-4893-8746-6b3a72a9a41a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 Noaa727c9ff358b3a72a9a41a No revision has been

  17. Data:5bc2006d-a831-4c66-a9c0-0667cab1a899 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d4379-e4cca9d37856 Noff-cdf31599c2c5 Noc66-a9c0-0667cab1a899

  18. Data:3549f3b5-25eb-49b8-b42d-fb2bef6a9de7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4ae-5b31d61e0d79 No revisionbef6a9de7 No revision has been

  19. Data:3c42138a-7a21-41f8-9b48-b5ac19eb7a9b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97ebecdcfa-6fb6-40ac-bf5c-d48387b933279ef4875b8 No revisionac19eb7a9b No

  20. a1 adenosinergic agonist: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jean-Luc Guermond a,,1 , Richard Article history: Available online xxxx Keywords: Entropy viscosity Conservation laws Euler equations class of high-order numerical methods for...

  1. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    SciTech Connect (OSTI)

    Chen, Yue; Zhang, Shunfen [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Zhou, Tianyan [Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083 (China); Huang, Chaoqun; McLaughlin, Alicia [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Chen, Guangping, E-mail: guangping.chen@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States)

    2013-04-15T23:59:59.000Z

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXR?) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXR? mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXR? binding to the hSULT2A1 promoter. These results suggest that hLXR? plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ? Liver X receptor ? mediated genistein induction of hSULT2A1 in Hep G2 cells. ? LXR? and RXR? dimerization further activated this induction. ? Western blot results agreed well with luciferase reporter gene assay results. ? LXRs gene silencing significantly decreased hSULT2A1 expression. ? ChIP analysis suggested that genistein enhances hLXR? binding to the hSULT2A1 promoter.

  2. Data:714e7301-a4ad-4e58-9ba3-151c70d065a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63cfd4f0-e47e-4d0c-bf46-09878b282c9064de77e8a1a1 No-118f52ea32e2

  3. US 20130194134A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0194134 A1

    E-Print Network [OSTI]

    Vellekoop, Michel

    US 20130194134A1 (12) Patent Application Publication (10) Pub. No.: US 2013/0194134 A1 (19) United _> Beamformers 3igna| l > To Satelhte | * Elements Combiners l Recelvers | m m : l #12;Patent Application_ _225200a2582M%_ A|_6&5Teméesmwm538912:25__268m2:995smsoam_ _ #12;Patent Application Publication Aug. 1

  4. Data:9dc1b412-eb8e-4e9e-aa27-d7a140a1ef32 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision has4299e78a9 No revision hasa140a1ef32 No

  5. Data:7ba2123f-2737-42ef-b5a1-d3ea10518812 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No809d65569c0 Nob6a1826b0769-618d86decfd3a1-d3ea10518812 No

  6. Data:Efd37d4b-a11e-4be1-a34c-5e72e4b29282 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1ccEeae2669-ec94-4cc4-bbae-0108084310ccEfcc6fef-a1a2-48fa-97fb-77024e4bb2b5 No revision hase4b29282 No

  7. Data:2b58a9bc-4710-4add-a58e-84c45ea02f53 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8 No revision has beend3de3fd4a1a7 No revision hasea02f53

  8. Data:4149fe99-91c5-4c81-97ac-89c824a9ccf4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498 No revisionae70f6f3080b0791d18 No

  9. Data:41a9d455-7b37-45ae-9ed3-e0cabce462bd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498 No9272891a285 Nocabce462bd No revision has

  10. Data:42a4fa92-23e4-4662-815a-9fc79061049e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498ed9aae Nobbe81d2e6 No revision79a4f6ff No1049e

  11. Data:43238fa8-a5a7-48d7-aeb2-f7196a7a9c9f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498ed9aae6b1ccc67 No49487c85d Nof69b4dd

  12. Data:464a9d9d-b930-426b-b728-f4bc67c17c9e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 No revisione18fe97c No revision has been167a1 No revision

  13. Data:D4b3f204-1717-4c9f-aa33-7a9bf112237e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6 No revision has993fca7f315dd308151 No revision has-8d4b092cd4a1

  14. Data:D5b141ec-ce49-437a-9a01-1888aca9f3c5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6 Nob2d2-b9d0456a138a No revisionafa075-e887-4728-97a1-2a2bc811845d

  15. Data:7f7c673d-af29-4646-84a9-ae0673a3e42c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revision has been approved for this page.eca-85a1-474a5732a091 No revision

  16. Data:7f82ae55-25de-465b-84b1-a9dbf9b21d15 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revision has been approved for this page.eca-85a1-474a5732a091 No

  17. Data:3d0331c1-5fbe-46a9-bbf7-5ee1341cb968 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved for thisa059-35c31077a1d8 No revision has been

  18. Data:3d4797ed-f60c-463a-b1a9-df0c5bcea047 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved for thisa059-35c31077a1d8cee8-4a2f-b1a4-8aff0e6ac960

  19. Data:3de131c8-8f5e-4116-97a9-4873df735868 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved64ec514 No revision has been approved forc6a1a5fdf735868 No

  20. Data:3de64e55-2d08-48a9-a8f1-66830062c4e3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved64ec514 No revision has been approved forc6a1a5fdf735868

  1. Data:3f66dba2-4d5c-4340-88a9-eee287a12674 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1d No revision has been approved for this

  2. Data:3fcceac2-a4bf-447a-9b97-e92af5e671df | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1d No revision-4180-98e7-bd8326f55cec No

  3. A simple model for laser drilling Jeb Collins a,1

    E-Print Network [OSTI]

    A simple model for laser drilling Jeb Collins a,1 , Pierre Gremaud b,2, aDepartment of Mathematics drilling is proposed. Assuming axi-symmetry of the process around the axis of the laser beam, a one, implemented and validated for drilling using lasers with intensities in the GW/cm2 range and microsecond

  4. Products information interoperability in manufacturing Tursi A.1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    Products information interoperability in manufacturing systems Tursi A.1,2 , Dassisti M.1 , Panetto (France), herve.panetto@cran.uhp-nancy.fr. Abstract Information flows and products traceability a system able to trace all relevant information related to the product lifecycle. This information is quite

  5. Influence of moving breathers on vacancies J Cuevas a,1

    E-Print Network [OSTI]

    Eilbeck, Chris

    Influence of moving breathers on vacancies migration J Cuevas a,1 , C Katerji a , JFR ArchillaDepartment of Mathematics. Heriot-Watt University. Edinburgh EH14 4AS (UK) Abstract A vacancy defect is described by a Frenkel­Kontorova model with a discommen- suration. This vacancy can migrate when interacts with a moving

  6. (12) United States Patent Roichman et a1.

    E-Print Network [OSTI]

    Grier, David

    (12) United States Patent Roichman et a1. US008472094B2 US 8,472,094 B2 *Jun. 25, 2013 (10) Patent N0.: (45) Date of Patent: (54) (75) (73) (*) (21) (22) (65) (60) (60) (51) (52) (58) VOLUMETRIC) Notice: Subject to any disclaimer, the term ofthis patent is extended or adjusted under 35 U.S.C. 154(b

  7. Data:Cbe82cd8-a6a4-4342-a9ba-7c73147d3a8e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742e80b26cc4 No revision has been approved833fa2307Cbe1d1a1-d591-4e01-8f17-6e87f4613f31

  8. A1-homotopy invariants of dg orbit categories.

    E-Print Network [OSTI]

    Goncalo Tabuada

    Let A be a dg category, F:A->A a dg functor which induces an equivalence of categories in degree-zero cohomology, and A/F the associated dg orbit category. For every A1-homotopy invariant (e.g. homotopy K-theory, etale K-theory and periodic cyclic homology), we construct a distinguished triangle expressing E(A/F) as the cone of the endomorphism E(F)-Id of E(A). In the particular case where F is the identity dg functor, this triangle splits and gives rise to the fundamental theorem. As a first application, we compute the A1-homotopy invariants of cluster (dg) categories in terms of the Coxeter matrix. As a second application, we compute the homotopy K-theory and periodic cyclic homology of the dg orbit categories associated to Fourier-Mukai autoequivalences.

  9. Data:C59a70b9-324a-493d-8f35-4bed1a11c2b9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has4dc5b1450a No revision873cfacc637 No revisionbed1a11c2b9 No revision has

  10. Lessons Learned in Decommissioning of NPP A-1 After Accident

    SciTech Connect (OSTI)

    Prazska, M.; Rezbarik, J.; Majersky, D.; Sekely, S.; Solcanyi, S.

    2002-02-25T23:59:59.000Z

    Decommissioning of the NPP A-1 in Jaslovske Bohunice is encountered with great variation of the problems connected primarily with the high radiation fields and the high activity of the contaminated materials. Decontamination of the contaminated objects and the thorough radiological protection of decontamination workers are therefore the tasks of top priority. The successful realization of these jobs is based on the experience, good working practice and the utilization of all proven methods together with the newly developed ones. Since 1996, AllDeco Ltd. has applied the decontamination methods and processes in a wide scale in the decommissioning and dismantling of the NPP A-1 in the cooperation with SE-VYZ Inc. The monitoring of the radiation situation and the investigation of the type and character of the radioactive waste were first steps in the decontamination of all objects. For this works, remote controlled mechanical manipulators and remote controlled electrical carriage equipped with instruments recording the levels of dose rates and with telemetric data transmission system were used. The recorded data were used for the modeling and 3D visualization of the radiation fields and for following planning and preparation of the decontamination projects or ''working programs'' based on the ALARA principle. The minimization of the radioactive waste was also taken into consideration. A lot of time and energy was spent on the preparation and training of the staff including non-active trials of planned procedures. The gained experience was evaluated and lessons learned were given in the final reports.

  11. Interaction of a 1 psec laser pulse with solid matter

    SciTech Connect (OSTI)

    Chaker, M.; Kieffer, J.C.; Matte, J.P.; Pepin, H. (INRS-Energie, Universite du Quebec, 1650, montee Ste-Julie, C. P. 1020, Varennes, Quebec J3X 1S2, Canada (CA)); Audebert, P. (Laboratoire PMI, Ecole Polytechnique, 91128 Palaiseau, (France)); Maine, P.; Strickland, D.; Bado, P.; Mourou, G. (Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14620 (USA))

    1991-01-01T23:59:59.000Z

    Absorption and x-ray emission results obtained with a 1 psec pulse incident on solid targets with an intensity between 10{sup 11} and 10{sup 16} W/cm{sup 2} are presented and discussed. For {ital I}{lt}5{times}10{sup 14} W/cm{sup 2}, submicron density gradient scale lengths ({ital L}/{lambda}{le}0.2) are measured and the comparison of calculated and experimental values of absorption for aluminum indicates a relatively good agreement for {ital p} polarization and noticeable differences for {ital s} polarization. X-ray conversion efficiencies have been obtained in the sub-keV and keV range. At high intensities ({ital I}{gt}10{sup 15} W/cm{sup 2}) an evaluation of the plasma parameters is obtained from high resolution keV spectra. Finally, the results are discussed in the light of 1-D hydrodynamic simulations with time-dependent atomic physics.

  12. Photofragmentation in linked donor-acceptor molecules. Intramolecular single electron transfer induced cleavage of a 1,2-diamine

    SciTech Connect (OSTI)

    Leon, J.W.; Whitten, D.G. (Univ. of Rochester, NY (United States))

    1993-09-08T23:59:59.000Z

    Two intramolecular donor-acceptor molecules which fragment by a single electron transfer initiated cation radical carbon-carbon bond cleavage have been synthesized and their photoreactivity studied. The intramolecular [open quotes]diads[close quotes] consist of a 1,2-diamine linked via an ester bond to either an anthraquinone or a 9,10-dicyanoanthracene electron-acceptor chromophore. As the covalent linkage between the donor and acceptor chromophores prevents solvent separation of the photogenerated radical ion pair, these systems provide a [open quotes]clock[close quotes] to examine directly competition between fragmentation and back electron transfer. The linked anthraquinone molecule fragments efficiently, with quantum yields approaching 80%, despite the inability of the photoproduced radical ions to separate. These high yields may be attributed to a slow, spin-forbidden back electron transfer and a rapid fragmentation. In contrast, the quantum yields for the dicyanoanthracene diad (reactive singlet) are markedly lower, less than 0.001 in benzene. The reactivity of comparable intermolecular donor-acceptor combinations is also reported. 54 refs., 3 figs., 2 tabs.

  13. A = 11B (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year DatasetA 3D1068AJ02)

  14. A11_1975iso.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharm thatA8AA.A/CONF.15/P/2390

  15. A=11-12, 1990 evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams for74AJ01)8AJ01)

  16. A=11B (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams for74AJ01)8AJ01)0AJ01) (See Energy

  17. A=11B (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams for74AJ01)8AJ01)0AJ01) (See

  18. A=11B (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams for74AJ01)8AJ01)0AJ01) (See90AJ01)

  19. A=11B (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams for74AJ01)8AJ01)0AJ01)

  20. A=11B (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams for74AJ01)8AJ01)0AJ01)59AJ76) (See

  1. A=11B (75AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams for74AJ01)8AJ01)0AJ01)59AJ76)

  2. A=11Be (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams for74AJ01)8AJ01)0AJ01)59AJ76)0AJ01)

  3. A=11Be (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams

  4. A=11Be (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy Level Diagrams

  5. A=11Be (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy Level

  6. A=11Be (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy Level59AJ76) (Not

  7. A=11Be (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy Level59AJ76)

  8. A=11Be (75AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy

  9. A=11C (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy0AJ01) (See Energy

  10. A=11C (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy0AJ01) (See

  11. A=11C (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy0AJ01) (See90AJ01)

  12. A=11C (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy0AJ01)

  13. A=11C (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy0AJ01)59AJ76) (See

  14. A=11C (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See Energy0AJ01)59AJ76)

  15. A=11C (75AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See

  16. A=11F (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See0AJ01) (Not illustrated)

  17. A=11F (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See0AJ01) (Not

  18. A=11F (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See0AJ01) (Not90AJ01) (Not

  19. A=11F (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See0AJ01) (Not90AJ01)

  20. A=11F (75AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See0AJ01) (Not90AJ01)75AJ02)

  1. A=11He (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See0AJ01)

  2. A=11He (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See0AJ01)5AJ01) (Not

  3. A=11He (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See0AJ01)5AJ01)

  4. A=11He (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01) (See0AJ01)5AJ01)2012KE01)

  5. A=11He (75AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)

  6. A=11Li (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01) (See the Isobar

  7. A=11Li (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01) (See the

  8. A=11Li (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01) (See the90AJ01) (See

  9. A=11Li (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01) (See the90AJ01)

  10. A=11Li (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01) (See

  11. A=11Li (75AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01) (See75AJ02) (See the

  12. A=11N (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01) (See75AJ02) (See

  13. A=11N (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01) (See75AJ02)

  14. A=11N (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01) (See75AJ02)90AJ01)

  15. A=11N (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01)

  16. A=11N (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01)68AJ02) (Not

  17. A=11N (75AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01)68AJ02) (Not75AJ02)

  18. A=11Ne (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01)68AJ02)

  19. A=11Ne (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01)68AJ02)5AJ01) (Not

  20. A=11Ne (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level Diagrams90AJ01)1980AJ01)68AJ02)5AJ01)

  1. A=11Ne (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level

  2. A=11O (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level1980AJ01) (Not illustrated) These nuclei have

  3. A=11O (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level1980AJ01) (Not illustrated) These nuclei

  4. A=11O (75AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy Level1980AJ01) (Not illustrated) These

  5. Data:25b7f6d5-f073-4c84-96b2-723f754aa8a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved for this page. Ite40a9aebe06a

  6. Data:0bdc796b-f0f8-4ed9-a9a3-5b8c9a71cf43 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable-1a29da98863b No revision50528468dc1bc215f6a80ed9-a9a3-5b8c9a71cf43 No

  7. Data:8f2c3d0f-9982-4aaf-bec7-0a9c28ca4eb5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No18fed1db58-e7b51f638865 No revisiona572-f89b4a666945a9c28ca4eb5 No revision has

  8. Data:3d5c490c-687b-4b0c-a736-0b7d81a327a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved for5-4287-ac79-15c98d33017c No revision hasd81a327a9 No

  9. A9RB1B5.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inventories U.S. Energy Information Administration | Short-Term Energy Outlook - November 2014 2013 2014 2015 Year - no data available OECD Organization for Economic...

  10. A9RB1B5.tmp

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerr g0@ :·~~dlRNovember

  11. SNOiioaroad A9U3N3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446Smalln n u a l r e p o r t 2

  12. A9RF71D.tmp

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof EnergyA Strategic FrameworkA

  13. A9R729A.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  14. A9R729C.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  15. A9R729E.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  16. A9R72A0.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  17. A9R72A2.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  18. A9R72A4.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  19. A9R72A6.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  20. A9R72A8.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  1. A9R72AA.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  2. A9R72AC.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  3. A9R72AE.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  4. A9R72B0.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharmA3-4 Table A3-1.

  5. A=9B (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li (66LA04)8AJ01)79AJ01)

  6. A=9B (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li

  7. A=9B (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01) (See Energy Level

  8. A=9B (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01) (See Energy

  9. A=9B (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01) (See Energy59AJ76)

  10. A=9B (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01) (See

  11. A=9B (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01) (See74AJ01) (See

  12. A=9Be (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01) (See74AJ01)

  13. A=9Be (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01) (See74AJ01)4AJ01)

  14. A=9Be (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01)

  15. A=9Be (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01)2004TI06) (See

  16. A=9Be (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01)2004TI06)

  17. A=9Be (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See 8Li8AJ01)2004TI06)66LA04)

  18. A=9Be (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See

  19. A=9C (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01) (See the Isobar

  20. A=9C (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01) (See the Isobar4AJ01)

  1. A=9C (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01) (See the

  2. A=9C (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01) (See the2004TI06)

  3. A=9C (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01) (See

  4. A=9C (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01) (See66LA04) (See the

  5. A=9C (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01) (See66LA04) (See

  6. A=9He (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01) (See66LA04)

  7. A=9He (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01) (See66LA04)4AJ01)

  8. A=9He (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01)

  9. A=9He (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01)2004TI06) (See the

  10. A=9He (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01)2004TI06) (See

  11. A=9Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01)2004TI06) (See79AJ01)

  12. A=9Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01)2004TI06)

  13. A=9Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01)2004TI06)8AJ01) (See

  14. A=9Li (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01)2004TI06)8AJ01)

  15. A=9Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76) (See79AJ01)2004TI06)8AJ01)59AJ76)

  16. A=9Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76)

  17. A=9Li (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76)74AJ01) (See Energy Level Diagrams

  18. A=9N (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76)74AJ01) (See Energy Level

  19. A=9N (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76)74AJ01) (See Energy Level4AJ01)

  20. A=9N (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76)74AJ01) (See Energy

  1. A=9N (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76)74AJ01) (See Energy2004TI06) (Not

  2. A=9n (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76)74AJ01) (See Energy2004TI06)

  3. A=9n (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76)74AJ01) (See Energy2004TI06)8AJ01)

  4. Data:F529ed74-15a0-4cfa-8fba-2a5e0a9d12c3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It6d-bcfb5222116e Noe0e2fa091ee4 No-ac94-299f9c7dae4efba-2a5e0a9d12c3 No

  5. Data:A577e4c9-7aaf-486a-b7f5-f473e0a9ad9c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 Noddefe0-db39-48c0-ac98-7941b3451e3c No revision-8d52bc60b99f9d9dfe7e16b73e0a9ad9c No

  6. Data:Aa9d9975-a7b3-4af3-85d7-ec0a9e8e6544 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44f-4cd6-87d8-e9253aab8d9c No0a794995ed1-8279-0f89b49fba667-de7c1a3d7818a9e8e6544 No

  7. Data:3c1daf5b-0c65-45a9-8d2e-26e6a3f688e3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97ebecdcfa-6fb6-40ac-bf5c-d48387b93327 Nodaf5b-0c65-45a9-8d2e-26e6a3f688e3

  8. E-Print Network 3.0 - a1 protease gene Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    studies. 2. S8, C1A and A1 proteases... tree of (A) 89 plant S8 proteases (B) 138 plant CIA proteases and (C) 92 plant A1 ... Source: Jones, Alan M. - Department of Biology,...

  9. Photochemistry of 1 and 2-(2-methylphenyl)-1,6-heptadiene. [4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene

    SciTech Connect (OSTI)

    Barrows, R.D.; Hornback, J.M.

    1982-01-01T23:59:59.000Z

    In an attempt to synthesize partially saturated phenanthrene derivatives by an intramolecular Diels-Alder reaction between a photochemically produced o-xylylene (diene) and a tethered dienophile, it was found that 1 and 2 underwent a photochemically allowed (2 + 2) cycloaddition. Irradiation of 1 gave 6-(2-methylphenyl)bicyclo(3.2.0)heptane in 86% yield. Upon irradiation of 2, a benzvalene rearrangement of 2 first took place, producing the meta isomer 2-(3-methylphenyl)-1,6-heptadiene, followed by a (2 + 2) photocycloaddition giving 1-(3-methylphenyl)bicyclo(3.2.0)heptane in 15% yield. Direct irradiation of 2-(3-methylphenyl)-1,6-heptadiene gave the same bicyclo derivative as 2 in 34% yield. Examination of the fluorescence spectra of 1 and 2 in comparison with 1-(2-methylphenyl)propene and 2-(2-methylphenyl)-1-butene, respectively, has shown that 1 may be biased toward (2 + 2) cycloaddition where 2 is not biased toward (2 + 2) photocycloization. Attempts to produce 4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene by an intramolecular Diels-Alder reaction of the o-xylylene produced by irradiation of 3 will also be described.

  10. a1 iga1 cleaved: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jean-Luc Guermond a,,1 , Richard Article history: Available online xxxx Keywords: Entropy viscosity Conservation laws Euler equations class of high-order numerical methods for...

  11. The Minimum Rank of Sign Pattern Matrices with a 1-Separation.

    E-Print Network [OSTI]

    Zhou, Wenyan

    2013-01-01T23:59:59.000Z

    ?? Given a sign pattern matrix M composed of two sub-patterns A and B connected by a 1-separation, we provide a formula that relates the… (more)

  12. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 401 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  13. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Information Administration Petroleum Marketing Annual 1995 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  14. Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Mrittunjai Srivastava a,1

    E-Print Network [OSTI]

    Ma, Lena

    and environmental concern in many countries (Smith et al., 2002). Remediation of As-contaminated soil and water Srivastava a,1 , Lena Q. Ma a,*, Bala Rathinasabapathi b , Pratibha Srivastava a,1 a Soil and Water Science is necessary for protecting both human life and agricultural produc- tion. Phytoremediation of As

  15. (19) United States (12) Patent Application Publication (10) pub. NO.:US 200410267456A1

    E-Print Network [OSTI]

    Karney, Charles

    (19) United States (12) Patent Application Publication (10) pub. NO.:US 200410267456A1 Brunner et://charles.karney.info/biblio/brunner04.html #12;Patent Application Publication Dec. 30,2004 Sheet 1 of 8 US 200410267456A1 START 110 . i model /V 120 1 RETURN 160 'I FIG. 1 Assemble fragments Into drug leads L 150 #12;Patent Application

  16. CX-001302: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Temecula Valley Unified School District Compressed Natural Gas Fueling Station (Administrative Tasks)CX(s) Applied: A1, A9, A11Date: 03/19/2010Location(s): Temecula, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  17. CX-009929: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    South Louisiana Enhanced Oil Recovery/Sequestration Research and Development Project CX(s) Applied: A1, A9, A11, B3.1, B3.6 Date: 03/26/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  18. CX-004591: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Re-Utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change MaterialCX(s) Applied: A1, A9, A11Date: 11/23/2010Location(s): Wooster, OhioOffice(s): Fossil Energy, National Energy Technology Laboratory

  19. CX-008420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Louisiana-City-Lafayette CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 06/08/2012 Location(s): Louisiana Offices(s): Energy Efficiency and Renewable Energy

  20. CX-010301: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A 1,000 Level Drill Pipe Deployed Fiber Optic 3C Receiver Array for Deep Boreholes CX(s) Applied: A9, A11, B3.6 Date: 04/30/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  1. CX-010300: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A 1,000 Level Drill Pipe Deployed Fiber Optic 3C Receiver Array for Deep Boreholes CX(s) Applied: A9, A11, B3.6 Date: 04/30/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  2. CX-001684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - ManagementCX(s) Applied: A1, A9, A11Date: 04/08/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. Atlas Finding Aid Contents/Index

    E-Print Network [OSTI]

    Ward, Karen

    Atlas Finding Aid Contents/Index A (1) City & State Atlas A (2) Astronomy Atlas A (3) U.S. Atlas A (4) Water Atlas A (5) South America & Central America A (6) Africa, Asia, &, Antarctica A (7) Mexico A (8) Geologic Atlases A (9) Environment / Forest & Desert A (10) Historic Atlases A (11) World Atlases

  4. CX-006019: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency and Conservation Block Grant Program - Michigan-City-WarrenCX(s) Applied: A1, A9, A11, B2.5, B5.1Date: 06/01/2011Location(s): Warren, MichiganOffice(s): Energy Efficiency and Renewable Energy

  5. CX-002018: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Michigan-City-Southfield Energy Office and Other ProjectsCX(s) Applied: B1.32, B2.5, A1, A9, A11, B5.1Date: 04/26/2010Location(s): Southfield, MichiganOffice(s): Energy Efficiency and Renewable Energy

  6. CX-008424: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    New York-City-Mount Vernon CX(s) Applied: A1, A9, A11, B3.6, B5.1, B5.16 Date: 06/28/2012 Location(s): New York Offices(s): Energy Efficiency and Renewable Energy

  7. CX-000318: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000318: Categorical Exclusion Determination Massachusetts Revision 1 - Leading By Example CX(s) Applied: A1, A9, A11, B1.3, B1.4, B1.5, B1.7, B1.15,...

  8. CX-003839: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficient Innovations for Healthy BuildingsCX(s) Applied: A1, A9, A11, B2.1, B3.1, B3.6, B5.1Date: 09/10/2010Location(s): Syracuse, New YorkOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  9. CX-007075: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Bay CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 09272011 Location(s): Green Bay, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Savannah River...

  10. CX-006103: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California-City-San ClementeCX(s) Applied: A1, A9, A11, B1.32, B5.1Date: 03/05/2010Location(s): San Clemente, CaliforniaOffice(s): Energy Efficiency and Renewable Energy

  11. CX-010800: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 08/13/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  12. CX-003771: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Combined Heat and Power Systems Technology Development and DemonstrationCX(s) Applied: A1, A9, A11, B3.6, B5.1Date: 09/03/2010Location(s): Waukesha, WisconsinOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  13. Ultrasound-modulated optical tomography

    E-Print Network [OSTI]

    Nam, Haewon

    2004-09-30T23:59:59.000Z

    a0a2a1a4a3a6a5a2a7a2a8a10a9a11a0a13a12a13a14a16a15a18a17a19a9a11a14a20a0a13a1a21a7a22a3a24a23a25a14 a9a11a26a27a3a6a28a30a29a24a7a13a1a31a3a6a9a11a17a19a9a11a32a11a5a2a7a2a26a27a33a27a34 a7a35a14a37a36a39a38a40a38a18a41a43a42a45a44a47a46a48a44a47a36... a39a49a51a50 a52a54a53 a33a13a7a13a23a56a55a57a9a11a12a58a12a2a7a13a17 a8a10a59 a52a10a60 a36a61a44a62a44a47a41a43a63a64a44a47a49a20a44a54a65a10a41a66a9a11a67a69a68a43a41a11a49a51a70a71a32a66a42a62a46a51a63a10a59a10a46a72a44a54a41a66a8a73a44a54a59a10...

  14. Fusion and singular vectors in A1{(1)} highest weight cyclic modules

    E-Print Network [OSTI]

    M. Bauer; N. Sochen

    1992-01-31T23:59:59.000Z

    We show how the interplay between the fusion formalism of conformal field theory and the Knizhnik--Zamolodchikov equation leads to explicit formulae for the singular vectors in the highest weight representations of A1{(1)}.

  15. Experimental study of a 1.5-MW, 110-GHz gyrotron oscillator

    E-Print Network [OSTI]

    Anderson, James P. (James Paul), 1972-

    2005-01-01T23:59:59.000Z

    This thesis reports the design, construction and testing of a 1.5 MW, 110 GHz gyrotron oscillator. This high power microwave tube has been proposed as the next evolutionary step for gyrotrons used to provide electron ...

  16. A 1:52-Approximation Algorithm for the Uncapacitated Facility Location Problem

    E-Print Network [OSTI]

    Ye, Yinyu

    A 1:52-Approximation Algorithm for the Uncapacitated Facility Location Problem Mohammad Mahdian #3: Approximation Algorithms for UFLP 2 Algorithm In [5], Jain, Mahdian, and Saberi proposed a greedy algorithm

  17. E-Print Network 3.0 - a-1 polymer chemistry Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polymer chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: a-1 polymer chemistry Page: << < 1 2 3 4 5 > >> 1 Water-Soluble Polymers from...

  18. Formation of nano-crystalline todorokite from biogenic Mn Xiong Han Feng a,1

    E-Print Network [OSTI]

    Sparks, Donald L.

    Formation of nano-crystalline todorokite from biogenic Mn oxides Xiong Han Feng a,1 , Mengqiang Zhu oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano

  19. E-Print Network 3.0 - a1 b8 dr3 Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Considerations on Quality Metrics for Self-localization Algorithms Summary: in a simulation model. In the following, we use identifiers A1 to A4 to describe the different self-...

  20. Theory and Applications of Categories, Vol. 20, No. 13, 2008, pp. 405-496. QUOTIENTS OF UNITAL A1 -CATEGORIES

    E-Print Network [OSTI]

    Chapman, Robin

    words and phrases: A1 -categories, A1 -functors, A1 -transformations, 2-* *categories, 2-functors and Verdier [Ver77]. The second answer - a differential graded category D - is given by Drinfeld * *[Dri-construction type - is given by Ly* *ubashenko and Ovsienko [LO06]. This A1 -category is especially useful when

  1. Data:Ac285e51-34b3-48fb-a1a1-d5983205c131 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186Aade79ec-8628-4e5e-a921-24d1b399e432Abfc02b7-5501-4885-811d-4083ecf1a854a1-d5983205c131 No revision has

  2. Termination and hydration of forsteritic olivine (010) surface Hongping Yan a,,1

    E-Print Network [OSTI]

    Shen, Guoyin

    Termination and hydration of forsteritic olivine (010) surface Hongping Yan a,,1 , Changyong Park a; accepted in revised form 1 September 2014; Available online 16 September 2014 Abstract Termination termination and hydration. The basic silica paste polished surface turned out too rough to measure with X

  3. Effect of plastic deformation on the formation of acicular ferrite C.H. Lee a,1

    E-Print Network [OSTI]

    Cambridge, University of

    Effect of plastic deformation on the formation of acicular ferrite C.H. Lee a,1 , H deformation on the transformation of austenite to acicular ferrite in a FeĂ/MnĂ/SiĂ/C alloy steel containing non-metallic inclusions was investigated. The transformation to acicular ferrite is retarded

  4. MTTF of a 1 out of n system with preventive maintenance Christiane CocozzaThivent

    E-Print Network [OSTI]

    Cocozza-Thivent, Christiane

    MTTF of a 1 out of n system with preventive maintenance Christiane Cocozza­Thivent Universit´e de. The working item is submitted to an age preventive maintenance: when this item reachs age a, it is replaced by a waiting item if there is one. If not the system fails. The duration of the preventive maintenance is equal

  5. Theme: A: Restoration Thematic Session (LeS): ThS_A1: Footprint assessment

    E-Print Network [OSTI]

    Boyer, Edmond

    · A sustainability framework to compare remediation technologies The methodology was developed within a global framework taking into account sustainability principles. Remediation strategies and technologies wereTheme: A: Restoration Thematic Session (LeS): ThS_A1: Footprint assessment SUSTAINABLE REMEDIATION

  6. Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1 , Horacio J. Marquez b, and the concept is applied to a boiler-turbine unit to analyze its dynamics. It is shown that the unit shows. Keywords: Boiler-turbine unit; Nonlinearity measure; Gap metric; Anti-windup bumpless transfer techniques

  7. THE CLASSIFICATION OF DEHN FILLINGS ON THE OUTER TORUS OF A 1-BRIDGE BRAID

    E-Print Network [OSTI]

    Wu, Ying-Qing

    SOLID TORI Ying-Qing Wu1 Abstract. Let K = K(w, b, t) be a 1-bridge braid in a solid torus V , and let #DMS 0203394 1 #12;2 YING-QING WU Figure 1.1 Let be a (p, q) curve on T with respect to the standard

  8. Spatial data mining and geographic knowledge discovery--An introduction Diansheng Guo a,1

    E-Print Network [OSTI]

    Spatial data mining and geographic knowledge discovery--An introduction Diansheng Guo a,1 , Jeremy methods to extract unknown and unexpected information from spatial data sets of unprecedentedly large size, high dimensionality, and complexity. To address these challenges, spatial data mining and geographic

  9. Transition metal co-precipitation mechanisms in silicon T. Buonassisi a,*, M. Heuer a,1

    E-Print Network [OSTI]

    -temperature annealing, co-localized single-metal silicide phases are observed, consistent with classical models, upon supersaturation, precipitate into their solid equilibrium metal silicide phase (e.g., FeSi2 [6Transition metal co-precipitation mechanisms in silicon T. Buonassisi a,*, M. Heuer a,1 , A

  10. Phylogeny and Nucleomorph Karyotype Diversity of Chlorarachniophyte Algae TIA D. SILVER,a,1

    E-Print Network [OSTI]

    Archibald, John

    Phylogeny and Nucleomorph Karyotype Diversity of Chlorarachniophyte Algae TIA D. SILVER,a,1 SAYAKA/or reticulopod-forming marine algae with chlorophyll a- and b-containing plastids of secondary endosymbiotic. THE chlorarachniophytes are an enigmatic group of unicellular marine algae with diverse morphologies and a widespread

  11. Local Limit Theorems for Random Walks in a 1D Random Environment

    E-Print Network [OSTI]

    Dolgopyat, Dmitry

    Local Limit Theorems for Random Walks in a 1D Random Environment D. Dolgopyat and I. Goldsheid Abstract. We consider random walks (RW) in a one-dimensional i.i.d. random environment with jumps to the nearest neighbours. For almost all environments, we prove a quenched Local Limit Theorem (LLT

  12. Characterization of a -1,3-Glucanase Encoded by Chlorella Virus PBCV-11 Liangwu Sun,*,2

    E-Print Network [OSTI]

    Graves, Michael V.

    Characterization of a -1,3-Glucanase Encoded by Chlorella Virus PBCV-11 Liangwu Sun,*,2 James R of the 330-kb chlorella virus PBCV-1 genome revealed an open-reading frame, A94L, that encodes a protein.i. postinfection, respectively, indicating that a94l is an early gene. Twenty-seven of 42 chlorella viruses

  13. Super-Elastic and Plastic Shock Waves Generated by Lasers N.A. Inogamov a,1

    E-Print Network [OSTI]

    Fominov, Yakov

    Super-Elastic and Plastic Shock Waves Generated by Lasers N.A. Inogamov a,1 , V.V. Zhakhovsky b,3 fortov@ihed.ras.ru, i oleynik@usf.edu Keywords: Femtosecond laser-matter interactions, elastic-plastic there is an elastic shock wave (SW), which propagates before the strong plastic shock with plastic pressures of up

  14. 1. ABSTRACT A 1.4-GHz LC voltage-controlled oscillator has

    E-Print Network [OSTI]

    Lee, Thomas H.

    1. ABSTRACT A 1.4-GHz LC voltage-controlled oscillator has been implemented in a MOSIS 0.5-µm CMOS integrated, low noise, low power voltage-controlled oscillator (VCO). For higher quality receivers, an LC the overall phase noise. In this paper, we present such an LC voltage-controlled oscillator fabricated through

  15. Health damages from air pollution in China Kira Matus a,1

    E-Print Network [OSTI]

    Health damages from air pollution in China Kira Matus a,1 , Kyung-Min Nam b,1, *, Noelle E. Selin c in negative health outcomes, such as contaminated water and high levels of air pollution, also incur real of air pollution arising from its negative impact on human health (Nielsen and Ho, 2007). Most of them (e

  16. CIS 330: Database Management Systems Course Number & Title (A.1) CIS 330: Database Management Systems

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    CIS 330: Database Management Systems Course Number & Title (A.1) CIS 330: Database Management & Johannes Gehrke, Database Management Systems (third edition), McGraw Hill. Additional materials as handouts, e.g., research papers Catalog Description (A.5a) Introduction to database management systems

  17. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated

    E-Print Network [OSTI]

    Mather, Ian

    secretion of milk­lipid droplets Sherry L. Ogg*, Anne K. Weldon*, Lorraine Dobbie , Andrew J. H. Smith expressed in the lactating mammary gland and is secreted into milk in association with lipid droplets expression of Btn1a1 was either disrupted or eliminated, respectively. The regulated secretion of milk­lipid

  18. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    71.6 92.3 78.2 101.8 83.6 87.5 74.7 See footnotes at end of table. A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District, and State, 1984-Present 452 Energy Information...

  19. Analytical study of the propagation of acoustic waves in a 1D weakly disordered lattice

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analytical study of the propagation of acoustic waves in a 1D weakly disordered lattice O. Richoux of the propagation of an acoustic wave through a normally distributed disordered lattice made up of Helmholtz propagation in random media, waveguide, scattering of acoustic waves. PACS 11.80.La ; 42.25.Dd ; 43.20.Mv ; 43

  20. A new approach to the subcritical cracking of ceramic Pierre Ladev`eze,a,1

    E-Print Network [OSTI]

    A new approach to the subcritical cracking of ceramic fibers Pierre Ladev`eze,a,1 , Martin Geneta a Cachan Cedex, France Abstract A new modeling approach to subcritical crack propagation (i.e. static fa, the result comes down to the widely-used Paris-like subcritical crack propagation law. For the general case

  1. Sub-lethal ammonia toxicity in largemouth bass C.D. Suski a,,1

    E-Print Network [OSTI]

    Suski, Cory David

    . Exposure to 100 M Tamm impaired the ability of largemouth bass to recover from exercise relative to fishSub-lethal ammonia toxicity in largemouth bass C.D. Suski a,,1 , J.D. Kieffer b , S.S. Killen a,2 Available online 24 November 2006 Abstract Guidelines for ammonia toxicity in fish are often determined

  2. Hubble Space Telescope FOS Optical and Ultraviolet Spectroscopy of the Bow Shock HH 47A 1

    E-Print Network [OSTI]

    Hartigan, Patrick

    Hubble Space Telescope FOS Optical and Ultraviolet Spectroscopy of the Bow Shock HH 47A 1 Patrick Telescope of the HH 47A bow shock and Mach disk that cover the entire spectral range between 2220 š that the Fe II line broadening must exceed that expected from thermal motions. Excitation of ultraviolet Fe II

  3. Layered silicate by proton exchange and swelling of AMH-3 Sunho Choi a,1

    E-Print Network [OSTI]

    Nair, Sankar

    Layered silicate by proton exchange and swelling of AMH-3 Sunho Choi a,1 , Joaquin Coronas a,b,1 August 2007 Accepted 10 December 2007 Available online 4 March 2008 Keywords: Layered silicate Molecular exchange of interlayer cations of the layered silicate AMH-3 using an aqueous solution of amino acid

  4. DRAFT MANAGEMENT PLAN APPENDIX A-1 Contract Entities and Plan Participants

    E-Print Network [OSTI]

    Province (USP) Plan in addition to those contracted by the Northwest Power and Conservation Council (NPCC of three primary elements: Part I. An Assessment of the current and potential physical and biological AND PLAN PARTICIPANTS BOI043620001.DOC/KG A1-2 IDFG organized a technical team of natural resource

  5. The twofold emergence of the $a_1$ axial vector meson in high energy hadronic production

    E-Print Network [OSTI]

    Basdevant, Jean-Louis

    2015-01-01T23:59:59.000Z

    The high statistics COMPASS results on diffractive dissociation $\\pi N \\rightarrow \\pi \\pi \\pi N$ suggest that the isospin $I=1$ spin-parity $J^{PC}= 1^{++}$ $a_1(1260)$ resonance could be split into two states: $a_1(1260)$ decaying into an S-wave $\\rho\\pi$ system, and $a_1^\\prime(1420)$ decaying into a P-wave $f_0(980)\\pi$ system. We analyse the reaction by incorporating our previous treatment of resonant re-scattering corrections in the Drell-Deck forward production process. Our results show that the COMPASS results are fully consistent with the existence of a single axial-vector $a_1$ resonance. The characteristic structure of the production process, which differs in the two orbital angular momentum states, plays a crucial role in this determination. Provided the theoretical analysis of the reaction is done in a consistent manner, this single resonance produces two peaks at different locations in the two channels, with a rapid increase of the phase difference between their amplitudes arising mainly from th...

  6. CIS 380 Operating Systems Course Number & Title (A.1) CIS 380 Operating Systems

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    CIS 380 Operating Systems Course Number & Title (A.1) CIS 380 Operating Systems Credit Units (A.2 Operating Systems (3/e). Prentice Hall, Supplementary text: W. Richard Stevens and Stephen A. Rago. Advanced) This course is an introduction to the theory and practice behind modern computer operating systems. Topics

  7. Vesicle Formation of a 1:1 Catanionic Surfactant Mixture in Ethanol Solution

    E-Print Network [OSTI]

    Huang, Jianbin

    Vesicle Formation of a 1:1 Catanionic Surfactant Mixture in Ethanol Solution J.-B. Huang,* B on the liposome of natural phospho- lipids.10,11 As for the situation in ethanol solution, early studies showed that ethanol addition deteriorates the molecular order in lipid bilayers,12-16 although a small amount

  8. Parental allelic variation at COL6A1 and congenital heart defects in trisomy 21

    SciTech Connect (OSTI)

    Kessling, A.M.; Howard, C.M.; Farrer, M.J. [St. Mary`s Hospital Medical School, London (United Kingdom)] [and others

    1994-09-01T23:59:59.000Z

    Overt congenital heart defects (CHD) affect over 40% of newborns with Down syndrome. On the hypothesis that genetic variation on chromosome 21 determines this clinical variability, we studied a CHD candidate locus (COL6A1) on 21q22.3. We studied three RFLP loci in COL6A1 in 37 families of known British/Irish population of ancestral origin, and in population-matched controls. Each family had a child with trisomy 21 with or without accompanying congenital heart defect (CHD). Parental and meiotic origin of nondisjunction were determined using peri-centromeric markers. For the analysis, we considered groups of families with trisomic children with and without CHD, and subsets of nondisjoining and disjoining parents. Parental genotypes at nine control RFLP loci on chromosome 21 showed no association with CHD in the trisomic child. By contrast, parental genotypes at all three individual RFLP loci within COL6A1 showed statistically significant association with the trisomic child`s CHD status. Pairwise consideration of these loci in groups of families of trisomic children with and without CHD showed subsets of nondisjoining and disjoining parents to have different linkage disequilibrium patterns at these loci than population-matched controls. This suggests that the COL6A1 alleles of the parents are not representative of the population as a whole. Consideration of all three loci together as haplotypes supports this conclusion. Four results suggest that a functional mutation within, or in linkage disequilibrium with COL6A1 influences CHD outcome in trisomy 21.

  9. Class Title Instructor Day Start Stop Instructor Class ENG EC311 A1 Intr Log Design Karpovsky Mon,Wed 12:00pm 2:00pm Bellotti ENG EC575 A1

    E-Print Network [OSTI]

    Vlsi Cir Des Hubbard Mon,Wed 12:00pm 2:00pm Knepper ENG EC582 A1 ENG EC573 A1 Solar Enrgy Sys Mazumder Mon,Wed 12:00pm 2:00pm Konrad ENG EC720 A1 ENG EC573 DL Solar Enrgy Sys Mazumder Mon,Wed 12:00pm 2

  10. Precision Measurements of $A_1^n$ in the Deep Inelastic Regime

    E-Print Network [OSTI]

    D. S. Parno; D. Flay; M. Posik; K. Allada; W. Armstrong; T. Averett; F. Benmokhtar; W. Bertozzi; A. Camsonne; M. Canan; G. D. Cates; C. Chen; J. -P. Chen; S. Choi; E. Chudakov; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; X. Deng; A. Deur; C. Dutta; L. El Fassi; G. B. Franklin; M. Friend; H. Gao; F. Garibaldi; S. Gilad; R. Gilman; O. Glamazdin; S. Golge; J. Gomez; L. Guo; O. Hansen; D. W. Higinbotham; T. Holmstrom; J. Huang; C. Hyde; H. F. Ibrahim; X. Jiang; G. Jin; J. Katich; A. Kelleher; A. Kolarkar; W. Korsch; G. Kumbartzki; J. J. LeRose; R. Lindgren; N. Liyanage; E. Long; A. Lukhanin; V. Mamyan; D. McNulty; Z. -E. Meziani; R. Michaels; M. Mihovilovi?; B. Moffit; N. Muangma; S. Nanda; A. Narayan; V. Nelyubin; B. Norum; Nuruzzaman; Y. Oh; J. C. Peng; X. Qian; Y. Qiang; A. Rakhman; S. Riordan; A. Saha; B. Sawatzky; M. H. Shabestari; A. Shahinyan; S. Širca; P. Solvignon; R. Subedi; V. Sulkosky; W. A. Tobias; W. Troth; D. Wang; Y. Wang; B. Wojtsekhowski; X. Yan; H. Yao; Y. Ye; Z. Ye; L. Yuan; X. Zhan; Y. Zhang; Y. -W. Zhang; B. Zhao; X. Zheng

    2014-12-14T23:59:59.000Z

    We have performed precision measurements of the double-spin virtual-photon asymmetry $A_1$ on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer. Our data cover a wide kinematic range $0.277 \\leq x \\leq 0.548$ at an average $Q^2$ value of 3.078~(GeV/c)$^2$, doubling the available high-precision neutron data in this $x$ range. We have combined our results with world data on proton targets to extract the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous observation of an $A_1^n$ zero crossing near $x=0.5$. We find no evidence of a transition to a positive slope in $(\\Delta d + \\Delta \\bar{d})/(d + \\bar{d})$ up to $x=0.548$.

  11. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose

    SciTech Connect (OSTI)

    Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.; Shanmugam, K.T.; Ingram, L.O. (Univ. of Florida, Gainesville (United States))

    1991-10-01T23:59:59.000Z

    The efficient diversion of pyruvate from normal fermentative pathways to ethanol production in Klebsiella oxytoca M5A1 requires the expression of Zymomanas mobilis genes encoding both pyruvate decarboxylase and alcohol dehydrogenase. Final ethanol concentrations obtained with the best recombinant, strain M5A1 (pLOI555), were in excess of 40 g/liter with an efficiency of 0.48 g of ethanol (xylose) and 0.50 g of ethanol (glucose) per g of sugar, as compared with a theoretical maximum of 0.51 of ethanol per g of sugar. The maximal volumetric productivity per hour for both sugars was 2.0 g/liter. This volumetric productivity with xylose is almost twice that previously obtained with ethanologenic Escherichia coli. Succinate was also produced as a minor product during fermentation.

  12. Temperature Width and Spin Structure of Superfluid 3He-A1 in Aerogel

    E-Print Network [OSTI]

    G. A. Baramidze; G. A. Kharadze

    2003-07-24T23:59:59.000Z

    The influence of spin-exchange scattering centers on the triplet Cooper pairing is considered to explore the behavior of superfluid 3He in high porosity aerogel containing 3He atoms localized at the surface of silica strands. The homogeneously located and isotropically scattering system of spin-polarized ``impurity'' centers is adopted as a simple model to investigate the contribution of spin-exchange scattering chanel for quasiparticles to the formation of non-unitary superfluid A1-phase in aerogel environment. It is demonstrated that an interference between the potential and exchange parts of quasiparticle scattering against spin-polarized ``impurity'' centers can change considerably the temperature width and the spin structure of A_{1}-phase in aerogel.

  13. Observation of B0 Meson Decay to a1(1260)+- pi-+

    E-Print Network [OSTI]

    Aubert, B; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugčs-Pous, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, Yu K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, C; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F

    2006-01-01T23:59:59.000Z

    We present a measurement of the branching fraction of the decay B0 --> a1(1260)^{+-} pi^{-+} with a1(1260)^{+-} --> pi^{-+} pi^{+-} pi^{+-}. The data sample consists of 218 million B B-bar pairs collected at the Y(4S) resonance and recorded by the BaBar detectorat the PEP-II asymmetric-energy e+e- collider at SLAC. The analysis is based on unbinned multivariate maximum likelihood fit. The measured branching fraction is: (16.6 +/- 1.9 +/- 1.5) 10^{-6}. The decay mode, observed for the first time, is seen with a significance of 9.2 sigma (systematic uncertainties included).

  14. Memria Anual de Seguiment Any 2010 P g i n a | 1 PLA ESTRATGIC

    E-Print Network [OSTI]

    Escolano, Francisco

    Memòria Anual de Seguiment Any 2010 P à g i n a | 1 PLA ESTRAT�GIC DE LA UNIVERSITAT D'ALACANT 2008. INTRODUCCI� 3 2. SITUACI� GENERAL DEL PLA ESTRAT�GIC 3 3. AVAN� DE LES ACCIONS DEL PLA ESTRAT�GIC 6 3 a | 3 1. INTRODUCCI� En aquest document es presenta la Memòria anual de seguiment del pla estratègic

  15. Memria Anual de Seguiment Any 2009 P g i n a | 1 PLA ESTRATGIC

    E-Print Network [OSTI]

    Escolano, Francisco

    Memòria Anual de Seguiment Any 2009 P à g i n a | 1 PLA ESTRAT�GIC DE LA UNIVERSITAT D ÍNDEX 1. INTRODUCCI� 3 2. SITUACI� GENERAL DEL PLA ESTRAT�GIC 3 3. AVAN� DE LES ACCIONS DEL PLA a | 3 1. INTRODUCCI� En aquest document es presenta la Memòria Anual de Seguiment del Pla Estratègic

  16. Testing and performance characteristics of a 1-kW free piston Stirling engine

    SciTech Connect (OSTI)

    Schreiber, J.

    1983-04-01T23:59:59.000Z

    A 1 kW single cylinder free piston Stirling engine, configured as a research engine, was tested with helium working gas. The engine features a posted displacer and dashpot load. The test results show the engine power output and efficiency to be lower than those observed during acceptance tests by the manufacturer. Engine tests results are presented for operation at the two heater head temperatures and with two regenerator porosities, along with flow test results for the heat exchangers.

  17. Influence of the conditions of preparation on the catalytic properties of A1-pillared montmorillonites

    SciTech Connect (OSTI)

    Tichit, D.; Fajula, F.; Figueras, F.; Gueguen, C.; Bousquet, J. (CNRS ENSCM, Montpellier (France))

    1987-08-01T23:59:59.000Z

    Pillared clays (PILC) are obtained by exchanging the original cations of a smectite by inorganic cationic polymers. The size of the pillaring species determines the porosity of the resulting material. Pore openings of 8-17 {angstrom} can me obtained with many cations, including A1, Zr, Cr, and Ti. The interest in PILC was heightened by the report that they are more active than Y zeolites for bulky molecules. Indeed, Lussier et al. observed good activity for cracking of heavy gas oil. Clays produced less gasoline than zeolites, but the octane number was higher. Occelli reports a gasoline yield comparable to that of zeolites using a lighter charge stock. The high selectivity for coke was attributed to iron impurities by Lussier et al., but Occelli found no influence of the iron content of the clay on the coke make. The thermal stability is apparently controlled by small details of the preparation, since clear differences appear between A1-PILC or Zr-PILC, according to the authors. We present here a synthesis concerning our work on preparation, characterization and testing of montmorillonites pillared by A1{sub 13} polymers, including the influence of particle size of the original clay on the properties of the resulting PILC.

  18. Impact of a 1,000-foot thermal mixing zone on the steam electric power industry

    SciTech Connect (OSTI)

    Veil, J.A.

    1994-04-01T23:59:59.000Z

    Thermal discharge requirements for power plants using once-through cooling systems are based on state water quality standards for temperatures that must be met outside of designated mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones to no more than 1,000 feet from the discharge point. Data were collected from 79 steam electric plants. Of the plants currently using once-through cooling systems, 74% could not meet current thermal standards at the edge of a 1,000-foot mixing zone. Of this total, 68% would retrofit cooling towers, and 6% would retrofit diffusers. The estimated nationwide capital cost for retrofitting plants that could not meet current thermal standards at the edge of a 1,000-foot mixing zone is $21.4 billion. Conversion of a plant from once-through cooling to cooling towers or addition of diffusers would result in a lower energy output from that plant. For the affected plants, the total estimated replacement cost would be $370 to $590 million per year. Some power companies would have to construct new generating capacity to meet the increased energy demand. The estimated nationwide cost of this additional capacity would be $1.2 to $4.8 billion. In addition to the direct costs associated with compliance with a 1,000-foot mixing zone limit, other secondary environmental impacts would also occur. Generation of the additional power needed would increase carbon dioxide emissions by an estimated 8.3 million tons per year. In addition, conversion from once-through cooling systems to cooling towers at affected plants would result in increased evaporation of about 2.7 million gallons of water per minute nationwide.

  19. Thermopowers of Ca1 xA1x metallic glasses

    E-Print Network [OSTI]

    Erwin, James Hoyle

    1982-01-01T23:59:59.000Z

    of the resistivity, the temperature coeffi- cient of resi sti vi ty and the fi rst peak in the structure factor plotted against aluminum composi- tion for amorphous Ca-Al alloys An idealized representation of the experimental thermopower stage of the cryostat... = 0. 20 and x = 0. 40 31 40 8. Absolute thermopower of Ca 80A1 20 vs. temperature at low temperature . 41 The f4ooij correlation; temperature coefficient of resistance vs. resistivity for selected amorphous alloys 50 10. Slope...

  20. Fiber with Intrinsic Action on a 1+1 Dimensional Spacetime

    E-Print Network [OSTI]

    Robert W. Johnson

    2000-02-24T23:59:59.000Z

    I construct an algebraic model for a typical fiber on a 1+1 dimensional spacetime. The vector space comprising the fiber is composed of elements formed from the direct product of two copies of an element x in the D2=C2xC2 finite group algebra over the real numbers. The fiber contains subspaces whose elements are associated with the tangent and momentum vectors of trajectories in the manifold. The fiber also contains a subspace whose elements are associated with the local flow of action of each trajectory. The condition of minimum action translates into a constraint on the original vector x in the direct product structure.

  1. Data:7dba46ce-0497-4366-aca3-a501a1aaacd9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88cc1e8c1443c Nod-5000bbb042b0

  2. Observation of a new narrow axial-vector meson $a_1(1420)$

    E-Print Network [OSTI]

    C. Adolph; R. Akhunzyanov; M. G. Alexeev; G. D. Alexeev; A. Amoroso; V. Andrieux; V. Anosov; A. Austregesilo; C. Azevedo; B. Badelek; F. Balestra; J. Barth; R. Beck; Y. Bedfer; J. Bernhard; K. Bicker; E. R. Bielert; R. Birsa; J. Bisplinghoff; M. Bodlak; M. Boer; P. Bordalo; F. Bradamante; C. Braun; A. Bressan; M. Buechele; E. Burtin; W. -C. Chang; M. Chiosso; I. Choi; S. U. Chung; A. Cicuttin; M. L. Crespo; Q. Curiel; S. Dalla Torre; S. S. Dasgupta; S. Dasgupta; O. Yu. Denisov; L. Dhara; S. V. Donskov; N. Doshita; W Duennweber; V. Duic; M. Dziewiecki; A. Efremov; P. D. Eversheim; W. Eyrich; M. Faessler; A. Ferrero; M. Finger; M. Finger jr.; H. Fischer; C. Franco; N. du Fresne von Hohenesche; J. M. Friedrich; V. Frolov; F. Gautheron; O. P. Gavrichtchouk; S. Gerassimov; I. Gnesi; M. Gorzellik; S. Grabmueller; A. Grasso; M. Grosse-Perdekamp; B. Grube; T. Grussenmeyer; A. Guskov; F. Haas; D. Hahne; D. von Harrach; R. Hashimoto; F. H. Heinsius; F. Herrmann; F. Hinterberger; N. Horikawa; N. d'Hose; C. -Yu Hsieh; S. Huber; S. Ishimoto; A. Ivanov; Yu. Ivanshin; T. Iwata; R. Jahn; V. Jary; P. Joerg; R. Joosten; E. Kabuss; B. Ketzer; G. V. Khaustov; Yu. A. Khokhlov; Yu. Kisselev; F. Klein; K. Klimaszewski; J. H. Koivuniemi; V. N. Kolosov; K. Kondo; K. Koenigsmann; I. Konorov; V. F. Konstantinov; A. M. Kotzinian; O. Kouznetsov; M. Kraemer; P. Kremser; F. Krinner; Z. V. Kroumchtein; N. Kuchinski; F. Kunne; K. Kurek; R. P. Kurjata; A. A. Lednev; A. Lehmann; M. Levillain; S. Levorato; J. Lichtenstadt; A. Maggiora; A. Magnon; N. Makins; N. Makke; G. K. Mallot; C. Marchand; A. Martin; J. Marzec; J. Matousek; H. Matsuda; T. Matsuda; G. Meshcheryakov; W. Meyer; T. Michigami; Yu. V. Mikhailov; Y. Miyachi; A. Nagaytsev; T. Nagel; F. Nerling; D. Neyret; V. I. Nikolaenko; J. Novy; W. -D. Nowak; A. S. Nunes; A. G. Olshevsky; I. Orlov; M. Ostrick; D. Panzieri; B. Parsamyan; S. Paul; J. -C. Peng; F. Pereira; M. Pesek; D. V. Peshekhonov; S. Platchkov; J. Pochodzalla; V. A. Polyakov; J. Pretz; M. Quaresma; C. Quintans; S. Ramos; C. Regali; G. Reicherz; C. Riedl; E. Rocco; N. S. Rossiyskaya; D. I. Ryabchikov; A. Rychter; V. D. Samoylenko; A. Sandacz; C. Santos; S. Sarkar; I. A. Savin; G. Sbrizzai; P. Schiavon; K. Schmidt; H. Schmieden; K. Schoenning; S. Schopferer; T. Schlueter; A. Selyunin; O. Yu. Shevchenko; L. Silva; L. Sinha; S. Sirtl; M. Slunecka; F. Sozzi; A. Srnka; M. Stolarski; M. Sulc; H. Suzuki; A. Szabelski; T. Szameitat; P. Sznajder; S. Takekawa; J. ter Wolbeek; S. Tessaro; F. Tessarotto; F. Thibaud; V. Tskhay; S. Uhl; J. Veloso; M. Virius; S. Wallner; T. Weisrock; M. Wilfert; K. Zaremba; M. Zavertyaev; E. Zemlyanichkina; M. Ziembicki; A. Zink

    2015-01-23T23:59:59.000Z

    The COMPASS collaboration at CERN has measured diffractive dissociation of 190 GeV$/c$ pions into the $\\pi^-\\pi^-\\pi^+$ final state using a stationary hydrogen target. A partial-wave analysis (PWA) was performed in bins of $3\\pi$ mass and four-momentum transfer using the isobar model and the so far largest PWA model consisting of 88~waves. A narrow $J^{PC} = 1^{++}$ signal is observed in the $f_0(980)\\,\\pi$ channel. We present a resonance-model study of a subset of the spin-density matrix selecting $3\\pi$ states with $J^{PC} = 2^{++}$ and $4^{++}$ decaying into $\\rho(770)\\,\\pi$ and with $J^{PC} = 1^{++}$ decaying into $f_0(980)\\,\\pi$. We identify a new $a_1$ meson with mass $(1414^{+15}_{-13})$ MeV$/c^2$ and width $(153^{+8}_{-23})$ MeV$/c^2$. Within the final states investigated in our analysis, we observe the new $a_1(1420)$ decaying only into $f_0(980)\\,\\pi$, suggesting its exotic nature. To our knowledge, such a state has never been predicted.

  3. Categorical Exclusion Determinations: A11 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy-ChevronSeveral salesCarolyn L.inJanuary 6,9,: Routine1:

  4. Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141

    SciTech Connect (OSTI)

    Kravarik, K.; Medved, J.; Pekar, A.; Stubna, M. [VUJE, Inc., Okruzna 5, 918 64 Trnava (Slovakia); Michal, V. [IAEA, Wagramer Strasse 5, P.O.Box 100, A-1400 Vienna (Austria); Vargovcik, L. [ZTS VVU Kosice, Inc., Juzna Trieda 95, 041 24 Kosice (Slovakia)

    2012-07-01T23:59:59.000Z

    The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementation of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design of manipulator, their operation and control systems as well as tools of manipulators. Precise planning of decontamination and dismantling tasks is necessary for its successful performance by remotely controlled manipulator. The example of the heavy water evaporator demonstrates typical procedure for decommissioning of contaminated technological equipment by remotely controlled manipulators - planning of decommissioning tasks, preparatory tasks, modification of applied tools and design of specific supporting constructions for manipulator and finally decontamination and dismantling themselves. Due to the particularly demanding conditions in highly contaminated A1 NPP, a team of experts with special know-how in the field of decommissioning has grown up, and unique technological equipment enabling effective and safe work in environment with a high radiation level has been developed. (authors)

  5. Small-angle scattering instruments on a 1 MW long pulse spallation source

    SciTech Connect (OSTI)

    Olah, G.A.; Hjelm, R.P.; Seeger, P.A.

    1995-12-01T23:59:59.000Z

    Two small-angle neutron scattering instruments have been designed and optimized for installation at a 1 MW long pulse spallation source. The first of these instruments allows access to length scales in materials from 10 to 400 {angstrom}, and the second instrument from 40 to 1200 {angstrom}. Design characteristics were determined and optimization was done using the MCLIB Monte Carlo instrument simulation package. The code has been {open_quote}benchmarked{close_quote} by simulating the {open_quote}as-built{close_quote} D11 spectrometer at ILL and a performance comparison of the three instruments was made. Comparisons were made by evaluating the scattered intensity for {delta} scatterers at different Q values for various instrument configurations needed to span a Q-range of 0.0007 - 0.44 {angstrom}{sup {minus}1}.

  6. Autonomous Observing and Control Systems for PAIRITEL, a 1.3m Infrared Imaging Telescope

    E-Print Network [OSTI]

    J. S. Bloom; Dan L. Starr; Cullen H. Blake; M. F. Skrutskie; Emilio E. Falco

    2005-11-30T23:59:59.000Z

    The Peters Automated Infrared Imaging Telescope (PAIRITEL) is the first meter-class telescope operating as a fully robotic IR imaging system. Dedicated in October 2004, PAIRITEL began regular observations in mid-December 2004 as part of a 1.5 year commissioning period. The system was designed to respond without human intervention to new gamma-ray burst transients: this milestone was finally reached on November 9, 2005 but the telescope had a number of semi-automated sub-10 minute responses throughout early commissioning. When not operating in Target of Opportunity mode, PAIRITEL performs a number of queue scheduled transient monitoring campaigns. To achieve this level of automation, we have developed communicating tools to connect the various sub-systems: an intelligent queue scheduling database, run-time configurable observation sequence software, a data reduction pipeline, and a master state machine which monitors and controls all functions within and affecting the observatory.

  7. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    SciTech Connect (OSTI)

    Summers, D.J.; Cremaldi, L.M.; Hart, T.L.; Perera, L.P.; Reep, M.; /Mississippi U.; Witte, H.; /Brookhaven; Hansen, S.; Lopes, M.L.; /Fermilab; Reidy Jr., J.; /Oxford High School

    2012-05-01T23:59:59.000Z

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  8. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    E-Print Network [OSTI]

    D. J. Summers; L. M. Cremaldi; T. L. Hart; L. P. Perera; M. Reep; H. Witte; S. Hansen; M. L. Lopes; J. Reidy, Jr.

    2012-07-28T23:59:59.000Z

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  9. A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1

    E-Print Network [OSTI]

    basin, and of late the Eagle Ford shale located in southwest Texas. Figure A1 illustrates the growth reservoir pressure, total organic content, thermal maturity, porosity, the presence of natural fractures Eagle Ford Marcellus Haynesville Woodford Fayetteville Barnett Figure A1. Growth in natural gas

  10. Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics for the alluvium (Stephens et al.).

    E-Print Network [OSTI]

    A-1 Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics Deviation .1708 4.274 28.95 Harmonic Mean Number of Observations 9 8 8 2 2 2 2 2 Table A2. Hydraulic.3×10-5 Number of Observations 10 10 10 34 34 4 4 4 #12;A-2 Table A3. Hydraulic properties statistics

  11. MNK1 expression increases during cellular senescence and modulates the subcellular localization of hnRNP A1

    SciTech Connect (OSTI)

    Ziaei, Samira, E-mail: ziaeisamira@gmail.com [City College of New York, City University of New York, New York, NY (United States) [City College of New York, City University of New York, New York, NY (United States); The Graduate School and University Center of CUNY, New York, NY (United States); Shimada, Naoko, E-mail: lensdev@yahoo.co.jp [City College of New York, City University of New York, New York, NY (United States)] [City College of New York, City University of New York, New York, NY (United States); Kucharavy, Herman, E-mail: veterduy@yahoo.com [City College of New York, City University of New York, New York, NY (United States)] [City College of New York, City University of New York, New York, NY (United States); Hubbard, Karen, E-mail: khubbard@sci.ccny.cuny.edu [City College of New York, City University of New York, New York, NY (United States) [City College of New York, City University of New York, New York, NY (United States); The Graduate School and University Center of CUNY, New York, NY (United States)

    2012-03-10T23:59:59.000Z

    Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an RNA-binding protein that modulates splice site usage, polyadenylation, and cleavage efficiency. This protein has also been implicated in mRNA stability and transport from the nucleus. We have previously demonstrated that hnRNP A1 had diminished protein levels and showed cytoplasmic accumulation in senescent human diploid fibroblasts. Furthermore, we have shown that inhibition of p38 MAPK, a key regulator of cellular senescence, elevated hnRNP A1 protein levels and inhibited hnRNP A1 cytoplasmic localization. In this study, we have explored the possible involvement of MNK1, one of the downstream effector of p38 MAPK, in the regulation of hnRNP A1. We have demonstrated that pharmacological inhibition of MNK1 by CGP 57380 decreased the phosphorylation levels of hnRNP A1 in young and senescent fibroblast cells and blocked the cytoplasmic accumulation of hnRNP A1 in senescent cells. In addition, MNK1 formed a complex with hnRNP A1 in vivo. The expression levels of MNK1, phospho-MNK1, and phospho-eIF4E proteins were found to be elevated in senescent cells. These data suggest that MNK1 regulates the phosphorylation and the subcellular distribution of hnRNP A1 and that MNK1 may play a role in the induction of senescence. -- Highlights: Black-Right-Pointing-Pointer MNK1 and not MAPKAPK2 phosphorylates hnRNP A1. Black-Right-Pointing-Pointer MNK1 has elevated levels in senescent cells, this has not been reported previously. Black-Right-Pointing-Pointer MNK1 activity induces cytoplasmic accumulation of hnRNP A1 in senescent cells. Black-Right-Pointing-Pointer Altered cytoplasmic localization of hnRNP A1 may alter gene expression patterns. Black-Right-Pointing-Pointer Our studies may increase our understanding of RNA metabolism during cellular aging.

  12. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2.

    SciTech Connect (OSTI)

    Thornton, Peter E [ORNL; Thornton, Michele M [ORNL; Mayer, Benjamin W [ORNL; Wilhelmi, Nate [National Center for Atmospheric Research (NCAR); Wei, Yaxing [ORNL; Devarakonda, Ranjeet [ORNL; Cook, Robert B [ORNL

    2014-01-01T23:59:59.000Z

    More information: http://daymet.ornl.gov Presenter: Ranjeet Devarakonda Environmental Sciences Division Oak Ridge National Laboratory (ORNL) Daymet: Daily Surface Weather Data and Climatological Summaries provides gridded estimates of daily weather parameters for North America, including daily continuous surfaces of minimum and maximum temperature, precipitation occurrence and amount, humidity, shortwave radiation, snow water equivalent, and day length. The current data product (Version 2) covers the period January 1, 1980 to December 31, 2013 [1]. The prior product (Version 1) only covered from 1980-2008. Data are available on a daily time step at a 1-km x 1-km spatial resolution in Lambert Conformal Conic projection with a spatial extent that covers the conterminous United States, Mexico, and Southern Canada as meteorological station density allows. Daymet data can be downloaded from 1) the ORNL Distributed Active Archive Center (DAAC) search and order tools (http://daac.ornl.gov/cgi-bin/cart/add2cart.pl?add=1219) or directly from the DAAC FTP site (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219) and 2) the Single Pixel Tool [2] and THREDDS (Thematic Real-time Environmental Data Services) Data Server [3]. The Single Pixel Data Extraction Tool allows users to enter a single geographic point by latitude and longitude in decimal degrees. A routine is executed that translates the (lon, lat) coordinates into projected Daymet (x,y) coordinates. These coordinates are used to access the Daymet database of daily-interpolated surface weather variables. Daily data from the nearest 1 km x 1 km Daymet grid cell are extracted from the database and formatted as a table with one column for each Daymet variable and one row for each day. All daily data for selected years are returned as a single (long) table, formatted for display in the browser window. At the top of this table is a link to the same data in a simple comma-separated text format, suitable for import into a spreadsheet or other data analysis software. The Single Pixel Data Extraction Tool also provides the option to download multiple coordinates programmatically. A multiple extractor script is freely available to download at http://daymet.ornl.gov/files/daymet.zip. The ORNL DAAC s THREDDS data server (TDS) provides customized visualization and access to Daymet time series of North American mosaics. Users can subset and download Daymet data via a variety of community standards, including OPeNDAP, NetCDF Subset service, and Open Geospatial Consortium (OGC) Web Map/Coverage Service. The ORNL DAAC TDS also exposes Daymet metadata through its ncISO service to facilitate harvesting Daymet metadata records into 3rd party catalogs. References: [1] Thornton, P.E., M.M. Thornton, B.W. Mayer, N. Wilhelmi, Y. Wei, R. Devarakonda, and R.B. Cook. 2014. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. [2] Devarakonda R., et al. 2012. Daymet: Single Pixel Data Extraction Tool. Available on-line [http://daymet.ornl.go/singlepixel.html]. [3] Wei Y., et al. 2014. Daymet: Thematic Real-time Environmental Data Services. Available on-line [http://daymet.ornl.gov/thredds_tiles.html].

  13. Experimental results from pressure testing a 1:6-scale nuclear power plant containment

    SciTech Connect (OSTI)

    Horschel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1992-01-01T23:59:59.000Z

    This report discusses the testing of a 1:6-scale, reinforced-concrete containment building at Sandia National Laboratories, in Albuquerque, New Mexico. The scale-model, Light Water Reactor (LWR) containment building was designed and built to the American Society of Mechanical Engineers (ASME) code by United Engineers and Constructors, Inc., and was instrumented with over 1200 transducers to prepare for the test. The containment model was tested to failure to determine its response to static internal overpressurization. As part of the US Nuclear Regulatory Commission`s program on containment integrity, the test results will be used to assess the capability of analytical methods to predict the performance of containments under severe-accident loads. The scaled dimensions of the cylindrical wall and hemispherical dome were typical of a full-size containment. Other typical features included in the heavily reinforced model were equipment hatches, personnel air locks, several small piping penetrations, and a ihin steel liner that was attached to the concrete by headed studs. In addition to the transducers attached to the model, an acoustic detection system and several video and still cameras were used during testing to gather data and to aid in the conduct of the test. The model and its instrumentation are briefly discussed, and is followed by the testing procedures and measured response of the containment model. A summary discussion is included to aid in understanding the significance of the test as it applies to real world reinforced concrete containment structures. The data gathered during SIT and overpressure testing are included as an appendix.

  14. Use of vegetation for abatement of road traffic noise in a 1:10 scale street model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Use of vegetation for abatement of road traffic noise in a 1:10 scale street model J.Y. Jeona , H was constructed to evaluate the noise abatement by use of vegetation as sustainable means. The model materials

  15. RNAi-Based Screening Identifies Kinases Interfering with Dioxin-Mediated Up-Regulation of CYP1A1 Activity

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RNAi-Based Screening Identifies Kinases Interfering with Dioxin-Mediated Up-Regulation of CYP1A1,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and involved in carcinogenesis and various physiological processes, including with Dioxin-Mediated Up-Regulation of CYP1A1 Activity. PLoS ONE 6(3): e18261. doi:10.1371/journal.pone.0018261

  16. Data:712b7c65-d63e-4ea4-86f1-64de77e8a1a1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63cfd4f0-e47e-4d0c-bf46-09878b282c9064de77e8a1a1 No revision has been

  17. Measurement of positive gain on the 1315 nm transition of atomic iodine pumped by O2,,a1

    E-Print Network [OSTI]

    Carroll, David L.

    state I 2 P3/2 . Conventionally, the O2 1 is produced by a liquid chemistry singlet oxygen generator of gain. © 2004 American Institute of Physics. [DOI: 10.1063/1.1784519] The classic chemical oxygen the metastable excited singlet oxygen molecule, O2 a1 [de- noted O2 1 hereafter], and the iodine atom ground

  18. Robust and fault-tolerant linear parameter-varying control of wind turbines Christoffer Sloth a,,1

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Robust and fault-tolerant linear parameter-varying control of wind turbines Christoffer Sloth a,,1 Keywords: Wind turbine control Linear parameter-varying (LPV) control Fault-tolerant control Robust control a b s t r a c t High performance and reliability are required for wind turbines to be competitive

  19. SP 23.6: A 1.8GHz CMOS Voltage-Controlled Oscillator BehzadRazavi

    E-Print Network [OSTI]

    Razavi, Behzad

    SP 23.6: A 1.8GHz CMOS Voltage-Controlled Oscillator BehzadRazavi University of California, Los that limit the tuning range of monolithic LC voltage-controlled oscillators (VCOs), especially at low supply voltages, and introduces circuit techniques that alle- viate this problem. Incorporating such techniques

  20. Multiobjective Optimization of the Colorado River By Gilmore, A. (1), Magee, T., (2) Fulp, T. (3), and Strzepek, K. (4)

    E-Print Network [OSTI]

    that replicated the 24 Month Study. Using this solution as a base, the hydro- power value of selectively relaxingMultiobjective Optimization of the Colorado River By Gilmore, A. (1), Magee, T., (2) Fulp, T. (3. The application of optimization to policy analysis on the Colorado River has been limited by the ability

  1. CIS 455: Internet and Web Systems Course Number & Title (A.1) CIS 455 Internet and Web Systems

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    CIS 455: Internet and Web Systems Course Number & Title (A.1) CIS 455 Internet and Web Systems and web systems: scalability, interoperability (of data and code), atomicity and consistency models-backed or PHP/JSP/Servlet-based web sites (for this, see CIS 330/550 or MKSE 212). Here, we will learn how

  2. X-Band EPR Spectrometer with Customizable Arbitrary Waveform Generator based on a 1 GHz DAC Board

    E-Print Network [OSTI]

    Martinis, John M.

    X-Band EPR Spectrometer with Customizable Arbitrary Waveform Generator based on a 1 GHz DAC Board-4120 , Email: songi@chem.ucsb.edu Abstract We present an EPR spectrometer featuring an arbitrary waveform of pulsed electron paramagnetic resonance (EPR) and enable new experiments. It generates shaped X

  3. Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas

    E-Print Network [OSTI]

    Ribot, Magali

    Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas. Masson1 , L. Trenty2 , Y. Zhang1 Coupling of a two phase gas liquid compositional 3D Darcy flow #12 analysis K, Brenner1 , R. Masson1 , L. Trenty2 , Y. Zhang1 Coupling of a two phase gas liquid compositional

  4. Bovine SLC11A1: genomic sequence variation and functional analysis in cattle naturally resistant and susceptible to bovine brucellosis

    E-Print Network [OSTI]

    Schutta, Christopher John

    2009-06-02T23:59:59.000Z

    . In this study I set out to identify mutations in the genomic complement of the gene that may be associated with resistance or susceptibility to bovine brucellosis, and to determine if the microsatellite length polymorphism in the 3'UTR of bovine SLC11A1...

  5. Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic (PV) project to supply power

    E-Print Network [OSTI]

    Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic both buildings in Woodland, California, for the 1 MW ground-mounted solar PV system. Energy Analysis by examining the feasibility of installing a solar system, according to information provided by Ray Groom

  6. CIS 277 Introduction to Computer Graphics Techniques Course Number & Title (A.1) CIS 277 Introduction to Computer Graphics Techniques

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    CIS 277 Introduction to Computer Graphics Techniques Course Number & Title (A.1) CIS 277 Introduction to Computer Graphics Techniques Credit Units (A.2) 1 CU (3 hours of lecture per week) Instructor(s)/Required Materials (A.4) Interactive Computer Graphics, by Edward Angel, 5th Edition, Addison-Wesley, 2009. Course

  7. Searching for Dark Matter in Particle Physics Experiments

    E-Print Network [OSTI]

    Geffert, Paul

    2008-05-25T23:59:59.000Z

    a0a2a1a4a3a6a5a8a7a10a9a12a11a14a13a6a15a17a16a19a18a20a5a22a21a23a3a24a5a26a25a28a27a29a3a4a30a8a30a23a1a31a5a32a11a14a13a34a33a35a3a6a5a36a30a8a11a37a7a10a38a39a1a40a33a41a9a8a42a43a0a44a11a37a7a8a0a45a1a47a46a20a33a31a1a31a5a26a11a37a27a48a1a31a...13a26a30a26a0 a3a49a0a44a50a52a51a2a53a55a54a57a56a23a9a26a54a57a51a58a54a57a56a60a59a26a30a8a61a2a50a52a59a62a53a63a59 a64a66a65 a33a35a3a23a67a12a38a69a68a10a5a23a11a70a3a24a13a71a15a72a1a41a16a36a16a47a1a31a5a36a30 a0a74a73 a64a58a75 a53a63a76a62a...

  8. www.sciencemag.org SCIENCE VOL 297 16 AUGUST 2002 1129 of the -hairpin with the base of the A1

    E-Print Network [OSTI]

    Fontana, Walter

    mechanism. As determined by Huizinga et al. (3) and independently by Uff et al. (11), the -switch loop to VWF A1. However, this anionic region does not con- tact A1 in the complex, and Huizinga et al. could

  9. Data:Bd8a1e2d-7489-4cfb-9f16-2e4da2347fe5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revision has been approvedc2e653ec8652 No98a3fbbc8cb

  10. Instruction sheet for the consolidation of the standard NF EN 693 dated September 2001 and its amendment A1 Machine tools : Safety : Hydraulic presses

    E-Print Network [OSTI]

    Association Française de Normalisation. Paris

    2009-01-01T23:59:59.000Z

    Instruction sheet for the consolidation of the standard NF EN 693 dated September 2001 and its amendment A1

  11. Rovibrational dynamics of the strontium molecule in the A1u+, c3u, and a3u+ manifold from state-of-the-art ab initio calculations

    E-Print Network [OSTI]

    Koch, Christiane

    Rovibrational dynamics of the strontium molecule in the A1u+, c3u, and a3u+ manifold from state OF CHEMICAL PHYSICS 136, 194306 (2012) Rovibrational dynamics of the strontium molecule in the A 1 + u , c3 u for the electronic states in the A 1 + u , c3 u, and a 3 + u manifold of the strontium dimer, the spin

  12. Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2,,a1

    E-Print Network [OSTI]

    Carroll, David L.

    oxygen generator. There are many system issues having to do with weight, safety, and the ability.1063/1.1883317 The classic chemical oxygen-iodine laser COIL system1 operates on the I 2 P1/2 I 2 P3/2 electronic transi transfer between the metastable excited singlet oxygen molecule, O2 a1 de- noted as O2 1 hereafter

  13. A's-1.x.

    E-Print Network [OSTI]

    either the Print“: of Ha H13, or Tycho Brahe, m" e:- leefl a: I my jelfe he've deee; and ... ww?ed, whereof that #0515 Tycho Brahe lmrh afordedgrmp. Eyapa) HM!

  14. a1.xls

    Gasoline and Diesel Fuel Update (EIA)

    Tables for publication. Other specialized data reports are available on the CBECS web site at http:www.eia.doe.govemeucbecscbecsreports.html. Microdata files are also...

  15. a1.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million CubicOctober 2006 Next CBECS will

  16. a1.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million CubicOctober 2006 Next CBECS will

  17. a1.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million CubicOctober 2006 Next CBECS will

  18. a1.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million CubicOctober 2006 Next CBECS

  19. Data:2b434a1c-f6d9-48a2-a2b2-d3de3fd4a1a7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8 No revision has beend3de3fd4a1a7 No revision has been

  20. CX-009133: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date:...

  1. CX-008556: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Haiti Renewable Resource Study CX(s) Applied: A9, A11 Date: 07/23/2012 Location(s): Haiti Offices(s): Golden Field Office

  2. CX-008563: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008563: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 06132012...

  3. CX-007873: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007873: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  4. CX-005993: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005993: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.1 Date: 05262011...

  5. CX-005154: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

  6. CX-005151: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

  7. CX-011785: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-011785: Categorical Exclusion Determination Ion Advanced Solvent Carbon Dioxide Capture Pilot Project CX(s) Applied: A9, A11 Date: 02192014 Location(s): Colorado...

  8. CX-011274: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-011274: Categorical Exclusion Determination Ion Advanced Solvent Carbon Dioxide Capture Pilot Project CX(s) Applied: A9, A11 Date: 09262013 Location(s): North Dakota...

  9. CX-010751: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Ready 2 CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Missouri Offices(s): Golden Field Office

  10. CX-011416: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  11. CX-010778: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  12. CX-012472: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

  13. CX-001556: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001556: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Activities Covered by Statement of Work (V3) CX(s) Applied: A9, A11,...

  14. CX-005821: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005821: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service II CX(s) Applied: A9, A11,...

  15. CX-002127: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination American Recovery and Reinvestment Act - State Energy Program - City of Addison Turbine Project CX(s) Applied: A9, A11 Date: 04302010 Location(s):...

  16. CX-002128: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination American Recovery and Reinvestment Act - State Energy Program - City of Seadrift CX(s) Applied: A9, A11 Date: 04302010 Location(s): Seadrift, Texas...

  17. CX-008984: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/29/2012 Location(s): Florida Offices(s): Golden Field Office

  18. CX-007100: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination NovaThermal Energy Waste Heat Geothermal Heat Pump System CX(s) Applied: A9, A11 Date: 10132011 Location(s): Philadelphia,...

  19. CX-009925: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-009925: Categorical Exclusion Determination The Agile Electro-Mechanical Product Accelerator CX(s) Applied: A9, A11 Date: 12142012 Location(s):...

  20. CX-000630: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000630: Categorical Exclusion Determination A Partnership Model to Build Solar Training Capacity in the Midwest CX(s) Applied: A9, A11 Date: 0121...

  1. CX-003936: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003936: Categorical Exclusion Determination Hawaii Energy Sustainability Program (Subtask 2.3.1: Hydrogen Research and Development) CX(s) Applied: A9, A11,...

  2. CX-009462: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  3. CX-009464: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  4. CX-007855: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-007855: Categorical Exclusion Determination The Diablo Regional Distributed Solar Energy Generation Expedited Permit Process CX(s) Applied: A9, A11 Date: 01272012...

  5. CX-007858: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007858: Categorical Exclusion Determination Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01272012 Location(s):...

  6. CX-010739: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-010739: Categorical Exclusion Determination Golden State Solar Impact CX(s) Applied: A9, A11 Date: 08152013 Location(s): California Offices(s):...

  7. CX-010743: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Intra-hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting CX(s) Applied: A9, A11 Date: 08152013 Location(s): California...

  8. CX-004267: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-004267: Categorical Exclusion Determination Pennsylvania Residential Energy Efficiency and Geothermal Fund CX(s) Applied: A9, A11, B5.1 Date: 10222010...

  9. CX-010223: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010223: Categorical Exclusion Determination St. Petersburg Sustainable BiosolidsRenewable Energy Plant CX(s) Applied: A9, A11 Date: 02282013...

  10. CX-000270: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000270: Categorical Exclusion Determination Recovery Act: Milwaukee Shines for a Sustainable Solar Economy CX(s) Applied: A9, A11 Date: 12282009 Location(s): Wisconsin...

  11. CX-005388: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-005388: Categorical Exclusion Determination Sustainable BiosolidsRenewable Energy Plant CX(s) Applied: A9, A11 Date: 03102011...

  12. CX-011256: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-011256: Categorical Exclusion Determination Foundations for Engineer Education for Distributed Energy Resources CX(s) Applied: A9, A11 Date: 09162013...

  13. Microstructural examination of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-09-01T23:59:59.000Z

    Microstructural examination results are reported for four heats of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment to {approximately}4 dpa at {approximately}200 and 300 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment or composition.

  14. Axisymmetric analysis of a 1:6-scale reinforced concrete containment building using a distributed cracking model for the concrete

    SciTech Connect (OSTI)

    Weatherby, J.R.

    1987-09-01T23:59:59.000Z

    Results of axisymmetric structural analyses of a 1:6 scale model of a reinforced concrete nuclear containment building are presented. Both a finite element shell analysis and a simplified membrane analysis were made to predict the structural response and ultimate pressure capacity of the model. Analytical results indicate that the model will fail at an internal pressure of 187 psig when the stress level in the hoop reinforcement at the midsection of the cylinder exceeds the ultimate strength of the bar splices. 5 refs., 34 figs., 6 tabs.

  15. Data:Bfc82aa3-ec17-4926-979a-a1fecaf22186 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has been approved for this page.Bfc82aa3-ec17-4926-979a-a1fecaf22186 No

  16. Data:4dbc4366-1496-4aba-a1e8-cd2ceca96548 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision hasdbc4366-1496-4aba-a1e8-cd2ceca96548 No revision has been

  17. Data:7874b86a-d999-46df-a1da-4c7a5bdd97fd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revision has been approved for this page.

  18. Data:B245736d-b8b4-45a1-8c02-b48f71ee8bfc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has been approvededdfdcc009ca85ec81a3 No revision0a9e5b921f71ee8bfc

  19. Data:8edad296-14de-44ed-9558-ed3b9d00c4a1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No18fed1db58-e7b51f638865 No revision has beenb6a9-ec4b36cc3c02 No

  20. Data:94f0fee4-ebcb-41e0-b5b4-ddfc426fc5a1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf35248292f1 No789501c8a3b5 No revision hase-9896c2a9a0f7

  1. Data:9db55d9a-12a1-49fe-b3d1-8090b2c25aab | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision has4299e78a9 No revision has beenca16d0a8

  2. Data:E3ac8adc-4ae8-44a1-8453-b6304b97ef79 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approved for thisc4d368cd00cab702d7555d8d01408 Noc8a9e817b26b

  3. Data:78dd111f-f356-4af8-84a1-155bb62bd273 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revision has beenbf-8ab0-88fc3bae3f73

  4. Data:79e77c85-baa2-4ed1-a1f2-54ef21f65685 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revisionc5a53c0de No revisionab8dffeb7

  5. Data:7a1edef7-2383-4d8f-bdf3-248ea50ae896 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revisionc5a53c0de Noc498c25355d Nob5737f68a8 No revision

  6. Data:7b78fc47-19f8-48f6-8917-7a1de857bc07 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No809d65569c0 Nob6a1826b076 No3812d1d0ec14a57e1611d206a658c3

  7. Data:7ce71b0b-bdec-4512-be13-c4a7c0a1c8ba | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88cc1e8c1443c No revision has-f30bc4c366f2430ba57f4

  8. Data:7de57a0a-1b18-46e5-a568-a72c6ebeba7c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88cc1e8c1443c

  9. Extreme Climate Event Trends: The Data Mining and Evaluation of the A1FI Scenario for 2000???2100

    SciTech Connect (OSTI)

    Erickson III, David J [ORNL; Ganguly, Auroop R [ORNL; Steinhaeuser, Karsten J K [ORNL; Branstetter, Marcia L [ORNL; Oglesby, Robert [University of Nebraska, Lincoln; Hoffman, Forrest M [ORNL; Buja, Lawrence [National Center for Atmospheric Research (NCAR)

    2008-01-01T23:59:59.000Z

    The authors discuss the implications and resulting alterations of the hydrologic cycle as Earth climate evolves from 2000-2100. Climate simulations based on the assumptions implicit in the A1F1 scenario for the period 2000-2100 using CCSM3 are analyzed. In particular, we will assess the changes in the surface latent and sensible heat energy budget, the Indian regional water budgets including trends in the timing and duration of the Indian monsoon and the resulting impacts on mean river flow and hydroelectric power generation potential. These analyses will also be examined within the context of heat index, droughts, floods and related estimates of societal robustness and resiliency. We will interpret these new A1F1 results within the context of the previous climate simulations based on the SRES A2 and B1 scenarios forced with land cover and atmospheric CO2. Analyses of historical records in the context of the Indian Monsoon Rainfall (IMR) have suggested an evolving relation of IMR with natural climate variability caused by El Nino events. We will report on the combined effects of natural climate variability and global warming on IMR and assess the trend of extreme rain and temperature events in a warming environment.

  10. A harvest failure approach to assess the threat from an invasive species Denys Yemshanov a,*, Daniel W. McKenney a,1

    E-Print Network [OSTI]

    ,*, Daniel W. McKenney a,1 , Peter de Groot a,2 , Dennis Haugen b,3 , John Pedlar a , Derek Sidders c,4

  11. Emulating quantum state transfer through a spin-1 chain on a 1D lattice of superconducting qutrits

    E-Print Network [OSTI]

    Joydip Ghosh

    2014-11-26T23:59:59.000Z

    Spin-1 systems, in comparison to spin-1/2 systems, offer a better security for encoding and transfer of quantum information, primarily due to their larger Hilbert spaces. Superconducting artificial atoms possess multiple energy-levels, thereby capable of emulating higher-spin systems. Here we consider a 1D lattice of nearest-neighbor-coupled superconducting transmon systems, and devise a scheme to transfer an arbitrary qutrit-state (a state encoded in a three-level quantum system) across the chain. We assume adjustable couplings between adjacent transmons, derive an analytic constraint for the control-pulse, and show how to satisfy the constraint to achieve a high-fidelity state-transfer under current experimental conditions. Our protocol thus enables enhanced quantum communication and information processing with promising superconducting qutrits.

  12. Data:Bddd4318-f08d-4223-a1c9-638b515268f9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revision hasBddb7e17-417f-436f-af6f-2b2b21d5413c No

  13. GSTM1 and CYP1A1 polymorphisms, tobacco, air pollution, and lung cancer: a study in rural Thailand

    SciTech Connect (OSTI)

    Pisani, P.; Srivatanakul, P.; Randerson-Moor, J.; Vipasrinimit, S.; Lalitwongsa, S.; Unpunyo, P.; Bashir, S.; Bishop, D.T.

    2006-04-15T23:59:59.000Z

    Incidence rates of lung cancer is high in Lampang Province in northern Thailand, particularly in women. This study was conducted to quantify the risk of lung cancer associated with exposures prevalent in the area and to investigate possible interactions with genetic susceptibility. The presence of several large open-cast coal mines from 1955 close to electricity-generating plants was a particular focus of concern. A point source air pollution exposure index was calculated for each village/ township reported in residential histories based on the linear distance from the Mae Moh Center (the area of the electricity-generating plants), the year-specific gaseous (SO{sub 2} and NO{sub 2}) or total suspended particulate emissions from the Mae Moh Power Plant, and the percentage of wind from the center. Odds ratios for the disease associated with categorical variables were estimated within unconditional logistic regression. Extraction of genomic DNA and genotyping of variants in CYP1A1 and GSTM1 were conducted to assess the extent of modification of risk by these genes that are involved in the metabolism of polycyclic aromatic hydrocarbons. Smoking of local high tar unfiltered products is commonamongst women. None of the three polymorphisms examined increased the risk of lung cancer or modified the risk associated with smoking. 96% of male and 64% of female lung cancer incidence were explained by tobacco smoking. None of the potential sources of air pollution deriving from the combustion of coal and wood, or polymorphisms in the CYP1A1 gene or deletion of the GSTM1 had an effect on the risk of lung cancer, either together or separately.

  14. Texas AgriLife Research Procedure 21.01.03.A1.01 Expenditure of Funds Page 1 of 1 Texas AgriLife Research Procedures

    E-Print Network [OSTI]

    Texas AgriLife Research Procedure 21.01.03.A1.01 Expenditure of Funds Page 1 of 1 Texas AgriLife Research Procedures 21.01.03.A1.01 EXPENDITURE OF FUNDS Approved: May 11, 2012 Next Scheduled Review: May 11, 2014 PROCEDURE STATEMENT This procedure establishes the guidelines for expenditure of Texas Agri

  15. Texas AgriLife Research Procedure 32.02.02.A1.01 Discipline and Dismissal Page 1 of 2 Texas AgriLife Research Procedures

    E-Print Network [OSTI]

    Texas AgriLife Research Procedure 32.02.02.A1.01 Discipline and Dismissal Page 1 of 2 Texas AgriLife Research Procedures 32.02.02.A1.01 DISCIPLINE AND DISMISSAL Approved: June 2, 2000 Revised: November 15, 2001 October 3, 2007 March 21, 2011 Next Scheduled Review: March 21, 2013 PROCEDURE STATEMENT

  16. Texas AgriLife Research Procedure 21.01.10.A1.01 Surplus or Salvage Property Page 1 of 2 Texas AgriLife Research Procedures

    E-Print Network [OSTI]

    Texas AgriLife Research Procedure 21.01.10.A1.01 Surplus or Salvage Property Page 1 of 2 Texas AgriLife Research Procedures 21.01.10.A1.01 SURPLUS OR SALVAGE PROPERTY Approved: February 17, 2011 Next Scheduled Review: February 17, 2013 PROCEDURE STATEMENT This procedure establishes disposal methods for surplus

  17. The Presence of Inducible Cytochrome P450 Types 1A1 and 1A2 in the BeWo Cell Line

    E-Print Network [OSTI]

    Avery, Michael; Meek, C. E.; Audus, Kenneth L.

    2003-01-01T23:59:59.000Z

    The activity and inducibility of cytochrome P450 systems (CYP1A1:1A2) of the human placenta were assessed in a representative human trophoblast-like cell line, BeWo. The activity of CYP1A1 and CYP1A2 in microsome preparations ...

  18. Texas AgriLife Research Procedure 25.99.09.A1 Cellular Communication Devices and Services Page 1 of 3

    E-Print Network [OSTI]

    a personal device. To receive reimbursement, the employee will submit an itemized bill documenting callsTexas AgriLife Research Procedure 25.99.09.A1 Cellular Communication Devices and Services Page 1 of 3 Texas AgriLife Research Procedure 25.99.09.A1.01 CELLULAR COMMUNICATION DEVICES AND SERVICES

  19. Study of a 1?eV GaNAsSb photovoltaic cell grown on a silicon substrate

    SciTech Connect (OSTI)

    Tan, K. H.; Loke, W. K.; Wicaksono, S.; Li, D.; Leong, Y. R.; Yoon, S. F. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)] [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Sharma, P.; Milakovich, T.; Bulsara, M. T.; Fitzgerald, E. A. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)] [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2014-03-10T23:59:59.000Z

    We report the performance of a 1?eV GaNAsSb photovoltaic cell grown on a Si substrate with a SiGe graded buffer grown using molecular beam epitaxy. For comparison, the performance of a similar 1?eV GaN{sub 0.018}As{sub 0.897}Sb{sub 0.085} photovoltaic cell grown on a GaAs substrate was also reported. Both devices were in situ annealed at 700?°C for 5?min, and a significant performance improvement over our previous result was observed. The device on the GaAs substrate showed a low open circuit voltage (V{sub OC}) of 0.42?V and a short circuit current density (J{sub SC}) of 23.4?mA/cm{sup 2} while the device on the Si substrate showed a V{sub OC} of 0.39?V and a J{sub SC} of 21.3?mA/cm{sup 2}. Both devices delivered a quantum efficiency of 50%–55% without any anti-reflection coating.

  20. A 1:1000 scale model of the digital world: Global connectivity can lead to the extinction of local networks

    E-Print Network [OSTI]

    Kleineberg, Kaj-Kolja

    2015-01-01T23:59:59.000Z

    The overwhelming success of online social networks, the key actors in the cosmos of the Web 2.0, has reshaped human interactions on a worldwide scale. To understand the fundamental mechanisms which determine the fate of online social networks at the system level, we recently introduced a general ecological theory of the digital world. In this paper, we discuss the impact of heterogeneity in the network intrinsic fitness and present how the general theory can be applied to understand the competition between an international network, like Facebook, and local services. To this end, we construct a 1:1000 scale model of the digital world enclosing the 80 countries with most Internet users. We find that above a certain threshold the level of global connectivity can lead to the extinction of local networks. In addition, we reveal the complex role the tendency of individuals to engage in more active networks plays for the probability of local networks to become extinct and provide insights into the conditions under w...

  1. DISCOVERY OF A 1.6 YEAR MAGNETIC ACTIVITY CYCLE IN THE EXOPLANET HOST STAR {iota} HOROLOGII

    SciTech Connect (OSTI)

    Metcalfe, T. S.; Judge, P. G.; Knoelker, M.; Mathur, S.; Rempel, M. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Henry, T. J. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Soderblom, D. R. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2010-11-10T23:59:59.000Z

    The Mount Wilson Ca HK survey revealed magnetic activity variations in a large sample of solar-type stars with timescales ranging from 2.5 to 25 years. This broad range of cycle periods is thought to reflect differences in the rotational properties and the depths of the surface convection zones for stars with various masses and ages. In 2007, we initiated a long-term monitoring campaign of Ca II H and K emission for a sample of 57 southern solar-type stars to measure their magnetic activity cycles and their rotational properties when possible. We report the discovery of a 1.6 year magnetic activity cycle in the exoplanet host star {iota} Horologii and obtain an estimate of the rotation period that is consistent with Hyades membership. This is the shortest activity cycle so far measured for a solar-type star and may be related to the short-timescale magnetic variations recently identified in the Sun and HD 49933 from helioseismic and asteroseismic measurements. Future asteroseismic observations of {iota} Hor can be compared to those obtained near the magnetic minimum in 2006 to search for cycle-induced shifts in the oscillation frequencies. If such short activity cycles are common in F stars, then NASA's Kepler mission should observe their effects in many of its long-term asteroseismic targets.

  2. Round-robin pretest analyses of a 1:6-scale reinforced concrete containment model subject to static internal pressurization

    SciTech Connect (OSTI)

    Clauss, D.B. (ed.)

    1987-05-01T23:59:59.000Z

    Analyses of a 1:6-scale reinforced concrete containment model that will be tested to failure at Sandia National Laboratories in the spring of 1987 were conducted by the following organizations in the United States and Europe: Sandia National Laboratories (USA), Argonne National Laboratory (USA), Electric Power Research Institute (USA), Commissariat a L'Energie Atomique (France), HM Nuclear Installations Inspectorate (UK), Comitato Nazionale per la ricerca e per lo sviluppo dell'Energia Nucleare e delle Energie Alternative (Italy), UK Atomic Energy Authority, Safety and Reliability Directorate (UK), Gesellschaft fuer Reaktorsicherheit (FRG), Brookhaven National Laboratory (USA), and Central Electricity Generating Board (UK). Each organization was supplied with a standard information package, which included construction drawings and actual material properties for most of the materials used in the model. Each organization worked independently using their own analytical methods. This report includes descriptions of the various analytical approaches and pretest predictions submitted by each organization. Significant milestones that occur with increasing pressure, such as damage to the concrete (cracking and crushing) and yielding of the steel components, and the failure pressure (capacity) and failure mechanism are described. Analytical predictions for pressure histories of strain in the liner and rebar and displacements are compared at locations where experimental results will be available after the test. Thus, these predictions can be compared to one another and to experimental results after the test.

  3. Charged Higgs Boson Studies in the Channel pp?a1h±?4b+l+MET in the Next-to MSSM (NMSSM) with the ATLAS Experiment.

    E-Print Network [OSTI]

    Zimmer, Stephan

    2010-01-01T23:59:59.000Z

    ?? Next-to-minimal super-symmetric extensions of the Standard Model (SM) predict the existence of several non-SM like Higgs bosons. The process pp?a1h±?4b+W involves the production and… (more)

  4. Design and testing of an internal mode converter for a 1.5 MW, 110 GHz gyrotron with a depressed collector

    E-Print Network [OSTI]

    Tax, David Samuel

    We report experimental results on a 1.5 MW, 110 GHz, 3 microsecond pulsed gyrotron with a single-stage depressed collector. A simplified mode converter with smooth mirror surfaces has been installed in the tube. The converter ...

  5. Data:70fea17e-eda4-4a6a-9e81-5e3a9e785422 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63cfd4f0-e47e-4d0c-bf46-09878b282c90 Nobf6fb693232b No revision

  6. Data:74b96db2-a9fa-46a9-af93-5e8986655f92 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b No revision has6dcc3af95b Noda29209151a4 No revision hase8986655f92 No

  7. Data:28ae0957-3fcf-4a9f-a9ff-ca06b2106019 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved7af2e2cf0e85488a7fe3a3badf5 No revision has

  8. Data:Bb30dde8-a329-49d1-a9ff-9f662a9bab8d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08d442d74d244 NoBaf7195f-f419-4861-9c6a-e1ffda04c71b No3d90b321 Nocac2e736da6

  9. Data:5a9ba39d-0a20-4565-8d1d-a9ca2aa53655 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6dbb-9d4f0845d437 No

  10. Data:19a9ca48-9216-4ec4-a384-cc1a9f1f56a0 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371fdc-b6c0-9cd6b0d70ef9b4eb15e81c7 No

  11. Data:A9e43839-3d1c-426d-97b0-33ed8a9cffdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44f-4cd6-87d8-e9253aab8d9c No0a794995 No revisiona691915d0b41 No

  12. Data:91a9b456-c26d-4d4a-9fa5-366fba1db0f0 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf35248292f1 No revision has been040c1bfd8d No revision has been6294425bb

  13. Data:9b65a9b0-9fae-4a08-a9d9-902236cc8579 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has been approved for thisa44928f0654ed7fc6b6d5a0 No revision has

  14. Data:9c155141-a9cc-4469-ab9e-4a9d62e1d912 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has been approved for7a-a33e-3aa1431a0b90e07303b6b3e1 No revision889f38

  15. Data:30272227-76f2-4518-9e01-7d60caa5a9a9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 No revisionfef0d09-aabf-4bde-8998-61c834c2c231c77543621bdfbcda1f5

  16. Remote measurement of turbidity and chlorophyll through aerial photography

    E-Print Network [OSTI]

    Schwebel, Martin David

    1973-01-01T23:59:59.000Z

    Readings Along Transects . . 55-59 A-1 A-2 A-3 A-5 A-6 'A- 7 A-8 A-9 A-10 Analysis of Variance for Film Density Readings Along Transect Line T-test Values for Transect Readings Film Density Readings for Repetitive Flights Airphoto Data, May 3... Data, July 4, 19 73 70-74 76 79-80 94 95 96 97 98 99 100 101 102 Table ~Pa e A-11 A-12 A-13 A-14 A-15 B-1 B-2 C-1 C-2 C-3 Airphoto Data, July 5, 1973 Airphoto Data, July 11, 1973 Airphoto Data, July 12, 1973 Airphoto Data...

  17. Solar wind oscillations with a 1.3 year period John D. Richardson, Karolen I. Paularena, John W. Belcher, and Alan J. Lazaru

    E-Print Network [OSTI]

    Richardson, John

    Solar wind oscillations with a 1.3 year period s C John D. Richardson, Karolen I. Paularena, John W Abstract. The IMP-8 and Voyager 2 spacecraft have ecently detected a very strong modulation in the solar. Introduction The Sun emits a continuous stream of ionized particles s d called the solar wind. This wind

  18. Semiclassical Molecular Dynamics Simulations of the Excited State Photodissociation Dynamics of H2O in the A1B1 Band

    E-Print Network [OSTI]

    Wu, Yinghua

    Semiclassical Molecular Dynamics Simulations of the Excited State Photodissociation Dynamics of H2O modeled in terms of classical molecular dynamics simulations.9,12 However, the photodissociation from The photodissociation dynamics of H2O in the A1 B1 band is investigated by implementing a recently developed time

  19. ATEC ITS Conference France 2012: Smart mobility: from research to practice ATEC Conference 2012. Versailles, 1-2 February 2012. Workshop A1: Electromobility 1/20

    E-Print Network [OSTI]

    Boyer, Edmond

    . Versailles, 1-2 February 2012. Workshop A1: Electromobility 1/20 Benefits and costs of electric vehicles impacts on the public finances of an electrically powered or petrol fuelled private car. In order to do. We postulate the existence of an activity for the Manufacture of electric vehicles, and we include

  20. The role of the dioxin-responsive element cluster between the Cyp1a1 and Cyp1a2 loci in aryl

    E-Print Network [OSTI]

    Bradfield, Christopher A.

    The role of the dioxin-responsive element cluster between the Cyp1a1 and Cyp1a2 loci in aryl,3,7,8- tetrachlorodibenzo-p-dioxin (dioxin) hepatotoxicity, regulation of xenobiotic metabolism, and hepatovascular development. Each of these processes appears to be dependent on binding of the AHR to dioxin- responsive