National Library of Energy BETA

Sample records for 900 800 700

  1. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  2. Trace 700 | Open Energy Information

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: Trace 700 AgencyCompany Organization: Trane Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Technology characterizations...

  3. Biaxial Thermal Creep of Two Heats of V4Cr4Ti at 700 and 800...

    Office of Scientific and Technical Information (OSTI)

    ORNL National Institute for Fusion Science, Toki, Japan University of Fukui, Fukui, Japan Institute for Materials Research, Tohoku University, Sendai, Japan Tohoku University, ...

  4. 900 backpacks donated to local youth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    900 backpacks donated to kids in need Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit 900 backpacks donated to local youth Area schools benefit from Back to School Drive. September 1, 2016 Many local businesses partnered with Los Alamos National Laboratory for the 2016 Back to School Drive. Marty Cordova and Kika Sanchez collect some of the backpacks that were donated during the Back to

  5. About 900 High School Students, Educators Attend Third Annual...

    Energy Savers [EERE]

    About 900 High School Students, Educators Attend Third Annual DOE Science Alliance About 900 High School Students, Educators Attend Third Annual DOE Science Alliance September 28, ...

  6. 100 LPW 800 Lm Warm White LED

    SciTech Connect (OSTI)

    Sun, Decai

    2010-10-31

    An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramica and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package

  7. 36CFRPart800_as_amended2004_web.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    36 CFR PART 800 -- PROTECTION OF HISTORIC PROPERTIES (incorporating amendments effective August 5, 2004) Subpart A -- Purposes and Participants Sec. 800.1 Purposes. 800.2 ...

  8. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  9. Broadband superluminescent diodes with bell-shaped spectra emitting in the range from 800 to 900 nm

    SciTech Connect (OSTI)

    Andreeva, E V; Il'ichenko, S N; Kostin, Yu O; Lapin, P I; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-08-31

    Quantum-well superluminescent diodes (SLD) with extremely thin active (AlGa)As and (InGa)As layers and centre wavelengths about 810, 840, 860 and 880 nm are experimentally studied. Their emission spectrum possesses the shape close to Gaussian, its FWHM being 30 – 60 nm depending on the length of the active channel and the level of pumping. Under cw injection, the output power of light-emitting modules based on such SLDs can amount to 1.0 – 25 mW at the output of a single-mode fibre. It is demonstrated that the operation lifetime of these devices exceeds 30000 hours. Based on the light-emitting modules the prototypes of combined BroadLighter series light sources are implemented having a bell-shaped spectrum with the width up to 100 nm. (optical radiation sources)

  10. Webinar January 26: Update to the 700 bar Compressed Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection ...

  11. POSTPONED: Webinar January 26: Update to the 700 bar Compressed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POSTPONED: Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection POSTPONED: Webinar January 26: Update to the 700 bar Compressed Hydrogen ...

  12. The Department of Energy's $700 Million Smart Grid Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    700 Million Smart Grid Demonstration Program Funded through the American Recovery and ... of Energy's 700 Million Smart Grid Demonstration Program Funded through the American ...

  13. 800,000 Jobs by 2012

    Broader source: Energy.gov [DOE]

    President Barack Obama visited ZBB Energy Corporation in Wisconsin and declared that our commitment to clean energy is expected to lead to more than 800,000 jobs by 2012.

  14. Title 10 CFR 900 Coordination of Federal Authorizations for Electric...

    Open Energy Info (EERE)

    900 Coordination of Federal Authorizations for Electric Transmission Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  15. Obama Administration Announces Additional $208,759,900 for Local...

    Energy Savers [EERE]

    ... TX TexasTotal Sum City , County, and SEO Allocations All 208,759,900 TX Texas State ... TX Dallas City 12,787,300 TX Del Rio City 156,300 TX Denton City 1,117,000 TX ...

  16. Obama Administration Announces Additional $56,099,900 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Funding for state, city, and county governments in the state includes: WA Washington Total Sum City, County, and SEO Allocations All 56,099,900 WA Washington State Energy Office ...

  17. 36 CFR PART 800 - Protection of Historic Preservation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 36 CFR PART 800 - Protection of Historic Preservation 36 CFR PART 800 - Protection of Historic Preservation 36 CFR PART 800 - Protection of Historic Preservation (145.15 KB) More Documents & Publications WPN 10-12: Historic Preservation Implementation Meeting the "Reasonable and Good Faith" Identification Standard in Section 106 Review (ACHP, 2011) Guidance for Indian Tribes and Native Hawaiian Organizations: What to Ask the Federal Agency in the Section 106 Process

  18. Secretary Chu Announces Nearly $800 Million from Recovery Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act to Accelerate Biofuels Research and Commercialization Secretary Chu Announces Nearly 800 Million from Recovery Act to Accelerate Biofuels Research and ...

  19. MHK Projects/Oyster 800 Project | Open Energy Information

    Open Energy Info (EERE)

    4 Project Details Operational testing of Oyster 800 commenced in June 2012 when the machine produced first electrical power to the grid. Project Installed Capacity (MW) 1...

  20. Charitable Giving by EM Employees, Contractors Tops $800,000...

    Office of Environmental Management (EM)

    donated more than 800,000 and other gifts to people in need in recent months. ... Grace Clinic, which provides free medical treatment to people without medical insurance. ...

  1. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    ... Nevada...... 5 5 0 631,700 631,700 0 657,500 657,500 0 ... Nevada 294,700 82,800 148,400 3,000 65,000 137,900 460,900 24,300 ......

  2. Obama Administration Announces Additional $37,157,700 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Funding for state, city, and county governments in the state includes: WI WisconsinTotal Sum City, County, and SEO Allocations All 37,157,700 WI Wisconsin State Energy Office ...

  3. Webinar: Update to the 700 bar Compressed Hydrogen Storage System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time. ...

  4. V-141: HP ElitePad 900 Secure Boot Bug Lets Local Users Boot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: HP ElitePad 900 Secure Boot Bug Lets Local Users Boot to Other Operating Systems V-141: HP ElitePad 900 Secure Boot Bug Lets Local Users Boot to Other Operating Systems April...

  5. Obama Administration Announces Additional $14,003,800 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Funding for state, city, and county governments in the state includes: WV West VirginiaTotal Sum City , County, and SEO Allocations All 14,003,800 WV West Virginia State Energy ...

  6. Title 36 CFR 800 Protection of Historic Properties | Open Energy...

    Open Energy Info (EERE)

    PropertiesLegal Abstract Part 800, Protection of Historic Properties under Title 36: Parks, Forests, and Public Property of the U.S. Code of Federal Regulations, current as of...

  7. Replacement of alloy 800H superheated steam line

    SciTech Connect (OSTI)

    Barbier, R.A.; Bullock, J.W. [Sterling Chemicals, Texas City, TX (United States)

    1996-07-01

    Sterling Chemicals utilizes alloy 800HT (UNS N08811) piping for superheated steam service in its styrene dehydrogenation unit. An engineering project to replace these lines was recently completed. Material acquisition, shop fabrication, inspection requirements, and field erection will be highlighted in this paper.

  8. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remainedmore » adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  9. Long-Term Oxidation of Candidate Cast Iron and Advanced Austenitic Stainless Steel Exhaust System Alloys from 650-800 C in Air with Water Vapor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Michael P; Muralidharan, Govindarajan; Leonard, Donovan N; Haynes, James A

    2014-01-01

    The oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 C in air with 10% H2O. At 650 C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 C and higher, whereas the oxide scales formed on SiMo cast iron remained adherentmore » from 700-800 C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 C compared to 650-700 C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  10. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    SciTech Connect (OSTI)

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.

  11. New Creep-Resistant Cast Alloys with Improved Oxidation Resistance in Water Vapor at 650–800°C

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dryepondt, Sebastien; Pint, Bruce A.; Maziasz, Philip J.

    2015-08-13

    Cast stainless steel CF8C-Plus (19wt%Cr/12%Ni) has excellent creep properties, but limited oxidation resistance above 700 C in environments containing H2O. One strategy to improve the alloy oxidation performance is to increase the Cr and Ni concentration. Two new alloys, with, respectively, 21wt%Cr 15wt%Ni and 22wt%Cr 17.5wt%Ni were therefore developed and their long-term oxidation behaviors in humid air were compared with the oxidation behavior of five other cast alloys. Also, at 650 C and 700 C, all the alloys formed internal Cr-rich nodules, and outer nodules or layers rich in Fe and Ni, but they grew a protective Cr-rich inner layermore » over time. At 750 C, the lower alloyed steels such as CF8C-Plus showed large metal losses, but the two new alloys still exhibited a protective oxidation behavior. The 21Cr 15Ni alloy was severely oxidized in locations at 800 C, but that was not the case for the 22Cr 17.5Ni alloy. Thus, the two new modified alloys represent a potential operating temperature gain of, respectively, 50 C and 100 C in aggressive environments compared with the CF8C-Plus alloy.« less

  12. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2005-12-15

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation.

  13. Tritium Permeability of Incoloy 800H and Inconel 617

    SciTech Connect (OSTI)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2011-09-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950 C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm) - three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  14. Tritium Permeability of Incoloy 800H and Inconel 617

    SciTech Connect (OSTI)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2012-07-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm)three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  15. Hydrological conditions at the 800 Area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Patton, T.L.; Pearl, R.H.; Tsai, S.Y.

    1990-08-01

    This study examined the hydrological conditions of the glacial till underlying the 800 Area sanitary landfill at Argonne National Laboratory (ANL) near Lemont, Illinois. The study's purpose was to review and summarize hydrological data collected by ANL's Environment, Safety, and Health Department and to characterize, on the basis of these data, the groundwater movement and migration of potential contaminants in the area. Recommendations for further study have been made based on the findings of this review. The 800 Area landfill is located on the western edge of ANL, just south of Westgate Road. It has been in operation since 1966 and has been used for the disposal of sanitary, general refuse. From 1969 through 1978, however, substantial quantities of liquid organic and inorganic wastes were disposed of in a French drain'' at the northeast corner of the landfill. The 800 Area landfill is underlain by a silty clay glacial till. Dolomite bedrock underlies the till at an average depth of about 45.6 m. Trace levels of organic contaminants and radionuclides have been detected in groundwater samples from wells completed in the till. Fractures in the clay as well as sand and gravel lenses present in the till could permit these contaminants to migrate downward to the dolomite aquifer. When this report was prepared, no chemical quality analysis have been made on groundwater samples from the dolomite. The study found that existing information about subsurface characteristics at the site is inadequate to identify potential pathways for contaminant migration. Recommended actions include installation of five new well clusters and one background well, thorough record-keeping, sample collection and analysis during borehole drilling, slug testing to measure hydraulic conductivity, topographic mapping, continued monitoring of groundwater levels and quality, and monitoring of the unsaturated zone. 17 refs., 13 figs., 4 tabs.

  16. Hospital to save $71,800/year burning trash

    SciTech Connect (OSTI)

    Hume, M.

    1984-01-01

    A waste-to-steam dual-fuel boiler system will save the Geisinger Medical Center in Pennsylvania $71,800 a year in avoided natural gas, trash-hauling, and incinerating costs. In operation less than a year, the system currently generates 6.3% of hospital steam for an anticipated three-year payback. A waste-heat-recovery system, with a net cost of $360,000, will pay for itself in an estimated five years. The case-history report describes how the system fits into hospital operations. (DCK)

  17. OSTI's E-print Network content tops 900,000 documents | OSTI...

    Office of Scientific and Technical Information (OSTI)

    than 22,000 scientific e-print Web sites. In addition, the E-print Network provides links to more than 2,900 relevant scientific societies. This Web portal, established as the ...

  18. Geothermal Regulatory Roadmap

    Broader source: Energy.gov (indexed) [DOE]

    ... Workshop FY12 Project Schedule 7 | US DOE Geothermal Office eere.energy.gov OpenEI (Open Energy Information) 0 100 200 300 400 500 600 700 800 900 1000 Aug-12 Sep-12 Oct-12 Nov-12 ...

  19. Fact #900: November 23, 2015 States Tax Gasoline at Varying Rates - Dataset

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 0: November 23, 2015 States Tax Gasoline at Varying Rates - Dataset Fact #900: November 23, 2015 States Tax Gasoline at Varying Rates - Dataset Excel file and dataset for States Tax Gasoline at Varying Rates fotw#900_web.xls (212 KB) More Documents & Publications Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Fact #870: April 27, 2015 Corporate Average

  20. Energy Department Expands Gas Gouging Reporting System to Include 1-800

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number: 1-800-244-3301 | Department of Energy Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 September 6, 2005 - 9:50am Addthis Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone hotline. The hotline is available to American consumers starting

  1. About 900 High School Students, Educators Attend Third Annual DOE Science Alliance

    Broader source: Energy.gov [DOE]

    PIKETON, OH – The U.S. Department of Energy (DOE) welcomed about 900 high school juniors and educators for its third annual Science Alliance, a science fair that took place September 25-26, 2012, at the Portsmouth Gaseous Diffusion Plant.

  2. Motor System Upgrades Smooth the Way to Savings of $700,000 at Chevron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery | Department of Energy System Upgrades Smooth the Way to Savings of $700,000 at Chevron Refinery Motor System Upgrades Smooth the Way to Savings of $700,000 at Chevron Refinery Chevron, the largest U.S. refiner operating six gasoline-producing refineries, completed a motor system efficiency improvement project in 1997 at its Richmond, California, refinery that resulted in savings of $700,000 annually. This two-page fact sheet describes how they achieved the savings. Motor Systems

  3. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.1.0

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.1.1.0 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  4. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.0.0

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.1.0.0 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  5. Webinar: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Thursday, February 25, from 12 to 1 p.m. Eastern Standard Time.

  6. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.2

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.1.2 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  7. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.4

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that TRACE 700 version 6.2.4 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  8. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.5

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that TRACE 700 version 6.2.5 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  9. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.9

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that TRACE 700 version 6.2.9 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  10. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.7

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that TRACE 700 version 6.2.7 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  11. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.6

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that TRACE 700 version 6.2.6 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  12. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.8

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that TRACE 700 version 6.2.8 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  13. Obama Administration Announces Additional $13,969,700 for Local Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvements in Alaska | Department of Energy 3,969,700 for Local Energy Efficiency Improvements in Alaska Obama Administration Announces Additional $13,969,700 for Local Energy Efficiency Improvements in Alaska March 26, 2009 - 12:00am Addthis WASHINGTON DC - Vice President Joe Biden and Energy Secretary Steven Chu today announced plans to invest $3.2 billion in energy efficiency and conservation projects in U.S. cities, counties, states, territories, and Native American tribes.

  14. Obama Administration Announces Additional $16,956,700 for Local Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvements in Idaho | Department of Energy 6,956,700 for Local Energy Efficiency Improvements in Idaho Obama Administration Announces Additional $16,956,700 for Local Energy Efficiency Improvements in Idaho March 26, 2009 - 12:00am Addthis WASHINGTON DC - Vice President Joe Biden and Energy Secretary Steven Chu today announced plans to invest $3.2 billion in energy efficiency and conservation projects in U.S. cities, counties, states, territories, and Native American tribes.

  15. Cryogenic Pressure Vessels for H2 Vehicles Rapidly Refueled by LH2 pump to 700 bar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vessels for H 2 Vehicles Rapidly Refueled by LH 2 pump to 700 bar Salvador Aceves, Gene Berry, Guillaume Petitpas, Vernon Switzer Lawrence Livermore National Laboratory CAMX meeting October 29 th , 2015 LLNL-PRES-678629 * Cryogenic H 2 Onboard Storage * Temperature as a Degree of Freedom in H 2 storage * LLNL Cryocompressed Project History * 350 Bar Test Vehicle Park & Drive Results * Current Project * 700 bar prototype (cryogenic) vessels * Refueling with LH 2 Pump * Test Vessel Cycling

  16. Kahuku Wind to Power 7,700 Oahu Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kahuku Wind to Power 7,700 Oahu Homes Kahuku Wind to Power 7,700 Oahu Homes July 27, 2010 - 4:52pm Addthis Turbine blades being delivered to Kahuku. | Courtesy of First Wind Turbine blades being delivered to Kahuku. | Courtesy of First Wind Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Today, the Department of Energy's Loan Programs Office announced a $117 million loan guarantee through the Recovery Act for the Kahuku Wind

  17. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect (OSTI)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  18. Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Installed Under the Recovery Act | Department of Energy More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act May 13, 2011 - 12:00am Addthis LOS ANGELES - As part of the Obama Administration's comprehensive plan to address rising gas prices and reduce oil imports one-third by 2025, U.S. Energy Secretary Steven Chu today announced that to date, more than 1,800 electric

  19. 800 to 1000 New Jobs Coming to Piketon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    800 to 1000 New Jobs Coming to Piketon 800 to 1000 New Jobs Coming to Piketon July 28, 2009 - 12:00am Addthis (Washington, D.C.) The Department of Energy announced today that it will further expand and accelerate cleanup efforts of cold-war era contamination at the Portsmouth site in Piketon, Ohio - an investment worth about $150 to $200 million per year for the next four years that is expected to create 800 to 1000 new jobs. At the same time, the Department has encouraged USEC to withdraw its

  20. Comparative evaluations of the weldability of modified 800H and other advanced austenitic stainless steels

    SciTech Connect (OSTI)

    Lundin, C.D.; Qiao, C.Y.P.

    1993-07-01

    The weldability of modified 800H was evaluated in terms of HAZ hot cracking susceptibility and HAZ softening tendency. Four other types of austenitic alloys, modified 316, 310Ta, HR3C and NF709, were employed to carry out a comparative study. It was found that modified 800H exhibits good weldability in terms of operability as contrasted to NF709. However, a higher HAZ hot cracking susceptibility for the modified 800H tubing heats was revealed as compared to the commercial tubing heats of HR3C and NF709. The hot cracking test results for the small laboratory prepared modified 800H heats showed an equivalent or better HAZ hot cracking resistance as compared to HR3C and NF709. Thus, it is anticipated that modified 800H tubing can show a hot cracking resistance equivalent to NF709 and HR3C if the base metal grain size is properly controlled and an optimum thermal mechanical treatment has been performed. The preliminary assessment on HAZ softening behavior for modified 800H, modified 316, 310Ta, HR3C and NF709 alloys is discussed.

  1. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    SciTech Connect (OSTI)

    Peyrouty, P.

    1996-12-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible.

  2. Fact #900: November 23, 2015 States Tax Gasoline at Varying Rates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: November 23, 2015 States Tax Gasoline at Varying Rates Fact #900: November 23, 2015 States Tax Gasoline at Varying Rates SUBSCRIBE to the Fact of the Week In addition to the 18.4 cents per gallon federal gasoline tax, the states also tax gasoline at varying rates and for varying reasons. Some states have sales taxes added to gasoline taxes while others have inspection fees, environmental fees, leaking underground storage tank (LUST) taxes, etc. The Federation of Tax

  3. Reconstruction of spatial patterns of climatic anomalies during the medieval warm period (AD 900-1300)

    SciTech Connect (OSTI)

    Diaz, H.F.; Hughes, M.K.

    1992-12-31

    The workshop will focus on climatic variations during the Medieval Warm Period or Little Climatic Optimum. The nominal time interval assigned to this period is AD 900--1300, but climate information available during the century or two preceding and following this episode is welcome. The aims of the workshop will be to: examine the available evidence for the existence of this episode; assess the spatial and temporal synchronicity of the climatic signals; discuss possible forcing mechanisms; and identify areas and paleoenvironmental records where additional research efforts are needed to improve our knowledge of this period. This document consists of abstracts of eighteen papers presented at the meeting.

  4. Effectiveness of 700{degrees}C thermal treatment on primary water stress corrosion sensitivity of Alloy 600 steam generator tubes: Laboratory tests and in field experience

    SciTech Connect (OSTI)

    Cattant, F.; Keroulas, F. de; Garriga-Majo, D.; Todeschini, P.; Van Duysen, J.C.

    1992-12-31

    In France, the steam generators of some 900 MWe reactors, and of all the 1 300 MWe reactors in service are equipped with heat treated Alloy 600 tubes. The purpose of the heat treatment, performed at 700{degrees}C, is to relieve the residual stresses. Generally, it also increases the SCC resistance of the alloy. A laboratory study has been carried out in order to gain a better understanding of the metallurgical factors influencing the PWSCC resistance of Alloy 600 after heat treatment. It has been shown that there are two kinds of tubes for which the heat treatment does not produce a microstructure having a potentially high resistance to SCC: tubes with a high carbon content (over 0.032%) or tubes mill-annealed at high temperatures and heavily cold-worked by the straightening. The analysis of the behaviour of french steam generators reveals that the heat treatment generally had the expected beneficial effect. However, the early cracking in service of some treated tubes led EDF (national power company) to proceed with removals. The majority of the cracked pulled-out tubes exhibit microstructures having a potentially high PWSCC sensibility in laboratory tests. It has been shown that these microstructures can be correlated to a high carbon content.

  5. POSTPONED: Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar has been postponed until further notice. The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time.

  6. Webinar February 25: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Thursday, February 25, from 12 to 1 p.m. Eastern Standard Time (EST). Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  7. Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. EST. Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  8. West Valley Demonstration Project Food Drive Delivers Food for 700 Families

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM employees at West Valley Demonstration Project (WVDP) helped collect and deliver 114,843 pounds of food, including 360 turkeys, to nine food pantries in the West Valley area, just in time to benefit about 700 families in need during the holidays.

  9. Tax Deduction Qualified Software: TRACE 700 version 6.3.3

    Office of Energy Efficiency and Renewable Energy (EERE)

    On this page you'll find information about the TRACE 700 version 6.3.3 Qualified Software for Calculating Commercial Building Tax Deductions | Department of Energy, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  10. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    Email: Floor, Suite): Fax: (202) 586-1076 City: State: Zip: - Secure File Transfer: Electronic Transmission: City: State: Zip: - Contact Name: Phone No.: Ext: Fax No.: Questions? ...

  11. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Residual Fuel Oil 511 Asphalt and Road Oil 931 * Includes propane, propylene, ethane, ethylene, normal butane, butylene, isobutane, isobutylene, and pentanes plus. Quantities ...

  12. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    Greater than 15 ppm to 500 ppm sulfur (incl.) 466 Greater than 500 ppm sulfur 467 Total 999 * Includes propane, propylene, ethane, ethylene, normal butane, butylene, isobutane, ...

  13. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Other Oxygenates 445 Natural Gas Plant Liquids (NGPL) and Liquefied Refinery Gases (LRG): EthaneEthylene, TOTAL 108 Ethane - LRG 641 Ethylene 631 PropanePropylene, TOTAL 246 ...

  14. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Liquids (NGPL) and Liquefied Refinery Gases (LRG):" "EthaneEthylene, TOTAL",108,,,... "Ethane - LRG",641 "Ethylene",631 "PropanePropylene, TOTAL",246,,,... "Propane - ...

  15. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ...Parts1-2'O29","AND(LEN(zip)5,ISNUMBER(VALUE(zip)))","Enter a valid 5 digit zip code." ... methods:",,,..."KY","Kentucky " "Doing Business As:",,,..."LA","Loui...

  16. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ...arts1-2'R29","AND(LEN(zip4)4,ISNUMBER(VALUE(zip4)))","Enter a valid zip code ... methods:",,,..."KY","Kentucky " "Doing Business As:",,,..."LA","Loui...

  17. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ...arts1-3'R27","AND(LEN(zip4)4,ISNUMBER(VALUE(zip4)))","Enter a valid zip code ... methods:",,,..."KY","Kentucky " "Doing Business As:",,,..."LA","Loui...

  18. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other ...

  19. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    down" "PSTRE","'Parts1-2'F25","-","-" ... "PZIP4","'Parts1-2'R26","AND(LEN(PZIP4)4,ISNUMB... 1 - 31." "DBA","'Parts1-2'H21","-","-" ...

  20. Weldability and mechanical property characterization of weld clad alloy 800H tubesheet forging

    SciTech Connect (OSTI)

    King, J.F.; McCoy, H.E.

    1984-09-01

    The weldability of an alloy 800H forging that simulates a steam generator tubesheet is studied. Weldability was of concern because a wide range of microstructures was present in this forging. The top and portions of the bottom were weld clad with ERNiC-3 weld metal to a thickness of 19 mm similar to that anticipated for HTGR steam generators. Examinations of the clad fusion line in various regions revealed no weldability problems except possibly on the bottom portion, which contained large grains and some as-cast structure. A few microfissures were evident in this region, but no excessive hot cracking tendency was observed. The tensile properties in all areas of the clad forging were reasonable and not influenced greatly by the microstructure. The elevated-temperature tests showed strong tendency for fracture in the heat-affected zone of the alloy 800H. Creep failure at 649/sup 0/C consistently occurred in the heat-affected zone of the alloy 800H, but the creep strength exceeded the expected values for alloy 800H.

  1. 36 CFR Part 800: Protection of Historic Properties (2000, amended 2004)

    Broader source: Energy.gov [DOE]

    Section 106 of the National Historic Preservation Act requires federal agencies to take into account the effects of their undertakings on historic properties and afford the Advisory Council on Historic Preservation (ACHP) a reasonable opportunity to comment on these undertakings. The ACHP's regulations at 36 CFR Part 800 establish the process that federal agencies must follow to comply with Section 106.

  2. Secretary Chu Announces Nearly $800 Million from Recovery Act to Accelerate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Research and Commercialization | Department of Energy 0 Million from Recovery Act to Accelerate Biofuels Research and Commercialization Secretary Chu Announces Nearly $800 Million from Recovery Act to Accelerate Biofuels Research and Commercialization May 5, 2009 - 12:00am Addthis WASHINGTON, D.C. - As part of the ongoing effort to increase the use of domestic renewable fuels, U.S. Secretary of Energy Steven Chu today announced plans to provide $786.5 million from the American

  3. Relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    SciTech Connect (OSTI)

    Angel, G.C.; Samson, J.A.R.; Williams, G.

    1986-01-01

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138 -15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  4. Microstructural characterization of dissimilar welds between alloy 800 and HP heat-resistant steel

    SciTech Connect (OSTI)

    Dehmolaei, R.; Shamanian, M. Kermanpur, A.

    2008-10-15

    In this study, dissimilar welds between HP heat-resistant steel and Incoloy 800 were made with four different filler materials including: 309 stainless steel and nickel-based Inconel 82, 182 and 617. The microstructure of the base metals, weld metals and their interfaces were characterized by utilizing optical and scanning electron microscopy. Grain boundaries migration in the weld metals was studied. It was found that the migration of grain boundaries in the Inconel 82 weld metal was very extensive. Precipitates of TiC and M{sub 23}C{sub 6} (M = Cr and Mo) in the Inconel 617 weld metal are identified. The necessary conditions for the formation of cracks close to the fusion line of the 309-HP joints are described. Furthermore unmixed zone near the fusion line between HP steel base metal and Inconel 82 weld metal is discussed. An epitaxial growth is characterized at the fusion line of the 309-Alloy 800 and Inconel 617-Alloy 800 joints.

  5. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    SciTech Connect (OSTI)

    Sayiram, G. Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone near the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.

  6. DOE/NV/11718-036 UC-700 FEDERAL RADIOLOGICAL RESPONSE IN THE UNITED STATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11718-036 UC-700 FEDERAL RADIOLOGICAL RESPONSE IN THE UNITED STATES by Daryl J. Thomé Bechtel Nevada Remote Sensing Laboratory P.O. Box 98521 Las Vegas, Nevada, USA 89193-8521 Bruce W. Hurley, Ph.D. U.S. Department of Energy Nevada Operations Office P.O. Box 98518 Las Vegas, Nevada, USA 89193 ABSTRACT The Federal Radiological Monitoring and Assessment Center (FRMAC) is authorized by the Federal Radiological Emergency Response Plan (FRERP) to coordinate all off-site radiological response

  7. Florida Power & Light Company, 700 Universe Blvd. Juno Beach 33408

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Florida Power & Light Company, 700 Universe Blvd. Juno Beach 33408 Telephone: (561)691-2790, Fax: (561)691-7577 Page 1 of 19 November 1, 2010 U.S. Department of Energy Office of Electricity Delivery & Energy Reliability 1000 Independence Ave., S.W. Room 8H033 Washington, DC 20585 Via E-mail: smartgridpolicy@hq.doe.gov Re: Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges Florida Power & Light Company ("FPL") appreciates the opportunity

  8. DOE/NV--471 UC-700 U.S. Department of Energy Nevada Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    471 UC-700 U.S. Department of Energy Nevada Operations Office on on on on : ed : 2 Approved for public release; further distribution is authorized. E nv i r onm ent a l R es t or a t i D i v i s i N ev ada E nv i r onm ent al R es t or at i P r oj ect C or r ect i v e A ct i on D eci s i D ocu m ent , S econd Ga s S t a t i on, Tonopa h Tes t R a nge, N ev a da ( C or r ect i v e A ct i on U ni t N o. 403) C ont r ol l ed C opy N o.U ncont r ol l R ev i s i on N o. N ov em ber 1997 This report

  9. Gadolinium-148 production cross section measurements for 600-and 800-MEV protons.

    SciTech Connect (OSTI)

    Kelley, K. C.; Devlin, M. J.; Pitcher, E. J.; Mashnik, S. G.; Hertel, N. E.

    2004-01-01

    In a series of experiments at LANSCE's WNR facility, {sup 148}Gd production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 {mu}m thin W, Ta, and Au foils and 10 {mu}m thin Al activation foils. Gadolinium spallation yields were determined from these foils using alpha spectroscopy and compared with the LANL codes CEM2k+GEM2 and MCNPX. When heavy metal targets, such as tungsten, are bombarded with protons greater than a few hundred MeV many different nuclides are produced. These nuclides are both stable and radioactive and are created by spallation, proton activation, or secondary reactions with neutrons and other nuclear particles made in the target. These products are distributed somewhat heterogeneously throughout a thick target because of the energy dependence of the cross sections and energy loss of the proton beam within the target. From this standpoint, it is difficult to measure nuclide production cross sections for a given energy proton in a thick target. At the Los Alamos Neutron Science Center (LANSCE) accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research (WNR) facility and 1L target at the Manuel Lujan Jr. Neutron Scattering Center. DOE requires hazard classification analyses to be performed on these targets and places limits on radionuclide inventories in the target as a means of determining the 'nuclear facility' category level. Presently, WNR's Target 4 is a non-nuclear facility while the Lujan 1L target is classified as a Category 3 nuclear facility. Gadolinium-148 is a radionuclide created from the spallation of tungsten and other heavy elements. Allowable isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of {sup 148}Gd is generally low, but it encompasses almost two-thirds of the total inhalation dose burden in an accident

  10. DOE Physical-Based Hydrogen Storage Workshop: Identifying Potential Pathways for Lower Cost 700 bar Storage Vessels

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office hosted the workshop "Identifying Potential Pathways for Lower Cost 700 bar Storage Vessels" in Southfield, Michigan, on August 24, 2016, at the United States Council for Automotive Research. The objective of the workshop was to identify and prioritize specific and tangible research and development strategies that have high potential to lower the costs of composite overwrapped pressure vessels for 700 bar hydrogen storage to enable wide-spread commercialization of fuel cell electric vehicles.

  11. A Comparison of New TATBs, FK-800 binder and LX-17-like PBXs to Legacy Materials

    SciTech Connect (OSTI)

    Willey, T M; DePiero, S C; Hoffman, D M

    2009-05-01

    Two newly synthesized versions of the insensitive high explosive (IHE) 1,3,5-triamino-2,4,6-trinitrobenzenes (TATBs) were compared to two legacy explosives currently used by the Department of Energy. Except for thermal analysis, small scale safety tests could not distinguish between the different synthetic routes. Morphologies of new TATBs were less faceted and more spherical. The particle size distribution of one new material was similar to legacy TATBs, but the other was very fine. Densities and submicron structure of the new TATBs were also significantly different from the legacy explosives. Pressed pellets of the new explosives were less dense. New FK-800 binder was used to prepare LX-17-like plastic bonded explosives (PBXs) from new and wet aminated TATB. Some mechanical, thermal and performance characterization of the new binder and LX-17-like PBXs was done. Significant differences were found. The reason for a number of these differences is not well understood.

  12. Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution

    SciTech Connect (OSTI)

    Thiesen, B.P.

    1993-01-01

    The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

  13. Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; Crespillo, Miguel L.; Fontana, Cristiano L.; Graham, Joseph T.; Duscher, Gerd; Shannon, Steven C.; Weber, William J.

    2016-02-03

    Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less

  14. A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion

    SciTech Connect (OSTI)

    Baer, M.R.; Gross, R.J.

    1998-10-02

    In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scale tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.

  15. Stress corrosion cracking of alloys 690, 800, and 600 in acid environments containing copper oxides

    SciTech Connect (OSTI)

    Pierson, E.; Stubbe, J.; Deny, G.

    1996-10-01

    Secondary side stress corrosion cracking (SCC) of steam generator (SG) tubes may be due to the formation of an acid environment in crevices, as demonstrated for several Belgian PWR plants. The susceptibility of alloys 600 and 800 in this type of environment, which had been partially evidenced by several laboratory works, has been confirmed by capsule tests performed at Laborelec, whereas the SCC resistance of alloy 690 always appeared excellent. Capsule tests have been recently conducted at 320 C with the same heats of tubings in the same acid solutions (cationic resins + magnetite + sodium silicate, with or without lead, and sodium sulfate + iron sulfate, with or without lead oxide) containing CuO and Cu{sub 2}O. It appeared that the SCC resistance of the three alloys was generally reduced by the addition of copper oxides, at least when the cover gas did not contain hydrogen. The situation was particularly dramatic for the capsules made of alloy 690 tubing: most of them developed deep cracks, sometimes throughwall (the shortest time to failure being less than 50 h) whereas the same solutions without copper oxides had produced no cracking at all in alloy 690 capsules exposed during more than 2,000 h. Although the corrosion is reduced in presence of hydrazine or at lower concentration, copper oxides probably contribute significantly to the degradation of the tubes in alloy 600, at least in SG`s forming acid sulfate crevice environments. This is also an issue for the new SG`s, especially for those equipped with tubes in alloy 690 TT, particularly for the top of the tubesheet which is a critical deposit area since the high stresses and strains resulting from the expansion of the tube in the tubesheet lead to a risk of circumferential cracking at the transition.

  16. Performance of Diffusion Aluminide Coatings Applied on Alloy CF8C-Plus at 800oC

    SciTech Connect (OSTI)

    Kumar, Deepak; Dryepondt, Sebastien N; Zhang, Ying; Haynes, James A; Pint, Bruce A; Armstrong, Beth L; Shyam, Amit; Lara-Curzio, Edgar

    2012-01-01

    High performance cast stainless steel, CF8C-Plus, is a low cost alloy with prospective applications ranging from covers and casings of small and medium size gas turbines to turbocharger housing and manifolds in internal combustion engines. Diffusion aluminide coatings were applied on this alloy as a potential strategy for improved oxidation resistance, particularly in wet air and steam. In this paper the performance of the aluminide coatings evaluated by cyclic oxidation experiments in air containing 10 vol.% H2O at 800 C and conventional tension-compression low-cycle-fatigue tests in air at 800 C with a strain range of 0.5% is presented. The results show that specimens coated by a chemical vapor deposition process provide better oxidation resistance than those coated by an Al-slurry coating process. The application of a coating by pack cementation reduced the fatigue life by 15%.

  17. Predicting Fracture Toughness of TRIP 800 using Phase Properties Characterized by In-Situ High Energy X-Ray Diffraction

    SciTech Connect (OSTI)

    Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Ren, Yang; Wang, Yan-Dong

    2010-05-01

    TRansformation Induced Plasticity (TRIP) steel is a typical representative of 1st generation advanced high strength steel (AHSS) which exhibits a combination of high strength and excellent ductility due to its multiphase microstructure. In this paper, we study the crack propagation behavior and fracture resistance of a TRIP 800 steel using a microstructure-based finite element method with the various phase properties characterized by in-situ high energy Xray diffraction (HEXRD) technique. Uniaxial tensile tests on the notched TRIP 800 sheet specimens were also conducted, and the experimentally measured tensile properties and R-curves (Resistance curves) were used to calibrate the modeling parameters and to validate the overall modeling results. The comparison between the simulated and experimentally measured results suggests that the micromechanics based modeling procedure can well capture the overall complex crack propagation behaviors and the fracture resistance of TRIP steels. The methodology adopted here may be used to estimate the fracture resistance of various multiphase materials.

  18. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  19. Evaluation of anticipatory signal to steam generator pressure control program for 700 MWe Indian pressurized heavy water reactor

    SciTech Connect (OSTI)

    Pahari, S.; Hajela, S.; Rammohan, H. P.; Malhotra, P. K.; Ghadge, S. G.

    2012-07-01

    700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG and PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)

  20. Midtemperature Solar Systems Test Facility predictions for thermal performance of the Solar Kinetics T-700 solar collector with FEK 244 reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1980-11-01

    Thermal performance predictions are presented for the Solar Kinetics T-700 solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

  1. Characterization of the Fracture Toughness of TRIP 800 Sheet Steels Using Microstructure-Based Finite Element Analysis

    SciTech Connect (OSTI)

    Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    Recently, several studies conducted by automotive industry revealed the tremendous advantages of Advanced High Strength Steels (AHSS). TRansformation Induced Plasticity (TRIP) steel is one of the typical representative of AHSS. This kind of materials exhibits high strength as well as high formability. Analyzing the crack behaviour in TRIP steels is a challenging task due to the microstructure level inhomogeneities between the different phases (Ferrite, Bainite, Austenite, Martensite) that constitute these materials. This paper aims at investigating the fracture resistance of TRIP steels. For this purpose, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. Uniaxial tensile tests on TRIP 800 sheet notched specimens were also conducted and tensile properties and R-curves (Resistance curves) were determined. The comparison between simulation and experimental results leads us to the conclusion that the method using microstructure-based representative volume element (RVE) captures well enough the complex behavior of TRIP steels. The effect of phase transformation, which occurs during the deformation process, on the toughness is observed and discussed.

  2. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers

    SciTech Connect (OSTI)

    Leger, Joel D.; Nyby, Clara M.; Varner, Clyde; Tang, Jianan; Rubtsova, Natalia I.; Yue, Yuankai; Kireev, Victor V.; Burtsev, Viacheslav D.; Qasim, Layla N.; Rubtsov, Igor V.; Rubtsov, Grigory I.

    2014-08-15

    A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm{sup −1} to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ∼70 as. The anharmonicity of smaller than 10{sup −4} cm{sup −1} was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 μrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

  3. Energy Provisions of the ICC-700, LEED for Homes, and ENERGY STAR Mapped to the 2009 IECC

    SciTech Connect (OSTI)

    Britt, Michelle L.; Sullivan, Robin S.; Kora, Angela R.; Makela, Eric J.; Makela, Erin

    2011-05-06

    This document provides the results of a comparison of building energy efficient elements of the ICC-700 National Green Building Standard, LEED for Homes, and ENERGY STAR versions 2, 2.5, and 3.0 to the 2009 International Energy Conservation Code (2009 IECC). This comparison will provide a tool for states and local municipalities as they consider adoption of these programs. The comparison is presented in a series of appendices. The first appendix provides a summary chart that visually represents the comprehensive comparison of the programs to the 2009 IECC topic areas. Next there are a series of individual tables (one appendix for each program) that include the specific program mapping to the 2009 IECC elements with comments that briefly discuss how well the elements mapped. Finally, a comprehensive table is included that shows all five of the programs mapped to the 2009 IECC elements to allow a detailed comparison.

  4. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    SciTech Connect (OSTI)

    Su'ud, Zaki; Sekimoto, H.

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  5. Microsoft PowerPoint - Slide 060112_Cogdell.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heterogeneous case where variation comes from different apoproteins * Rings contain multiple types of alpha and beta apoproteins Rings contain multiple types of alpha and beta apoproteins - - seen as different sight energies in the 'B850' manifold - - site energies vary within an alpha/beta dimer Variability in B800 LH2 complexes from C. vinosum 0 8 1.0 CV_LH2 800/820 CV_LH2 800/840 CV_LH2 800/850 CV_LH2 LL800/850 0.4 0.6 0.8 absorbance 650 700 750 800 850 900 950 0.0 0.2 wavelength (nm)

  6. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect (OSTI)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A.

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  7. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect (OSTI)

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; Morley, Deborah J.; Saunders, Alexander

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  8. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  9. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    SciTech Connect (OSTI)

    Scarcella, Carmelo; Tosi, Alberto Villa, Federica; Tisa, Simone; Zappa, Franco

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 ?m active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  10. C/O HELP PLLC, 750 SEVENTEETH STREET N.W. SUITE 900 Washington, D.C. 20006 Tel. Tel. Tel. Tel. 202-378-2300

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C/O HELP PLLC, 750 SEVENTEETH STREET N.W. SUITE 900 Washington, D.C. 20006 Tel. Tel. Tel. Tel. 202-378-2300 February 27, 2012 Submitted via email to: Brian.Mills@hq.doe.gov Mr. Brian Mills Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Re: Coordination of Federal Authorizations for Electric Transmission Facilities, RIN 1901-AB18 Dear Mr. Mills: On behalf of WIRES (www.wiresgroup.com) I am pleased to submit

  11. UC-700 Envi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Modeling sk Assessment of the Underground Test Area, Nevada Test Site, Nevada October 1997 Environmental Restoration Approved for publ c re ease; further dissem ted. ...

  12. SRC burn test in 700-hp oil-designed boiler. Volume 1. Integrated report. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    This burn test program was conducted during the period of August 1982 to February 1983 to demonstrate that Solvent Refined Coal (SRC) products can displace petroleum as a boiler fuel in oil- and gas-designed boilers. The test program was performed at the U.S. Department of Energy's Pittsburgh Energy Technology Center (PETC). Three forms of SRC (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) and No. 6 Fuel Oil were evaluated in the 700-hp (30 x 10/sup 6/ Btu/hour) watertube, oil-designed boiler facility at PETC. The test program was managed by the International Coal Refining Company (ICRC) and sponsored by the Department of Energy. Other organizations were involved as necessary to provide the expertise required to execute the test program. This final report represents an integrated overview of the test program conducted at PETC. More detailed information with preliminary data can be obtained from separate reports prepared by PETC, Southern Research Institute, Wheelabrator-Frye, Babcock and Wilcox, and Combustion Engineering. These are presented as Annex Volumes A-F. 25 references, 41 figures, 15 tables.

  13. Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada

    Broader source: Energy.gov [DOE]

    There could be as much as 5,700 years of carbon dioxide storage potential available in geologic formations in the United States and portions of Canada, according to the latest edition of the U.S. Department of Energy’s Carbon Sequestration Atlas (Atlas III).

  14. Niche Application Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Niche Application Opportunities Bart A. van Hassel United Technologies Research Center (UTRC), East Hartford, Connecticut, USA DOE Materials-Based Hydrogen Storage Summit Defining pathways for onboard automotive applications Golden, CO, USA January 27-28, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 10 100 1000 10000 0 100 200 300 400 500 600 700 800 900 1000 Useful Specific Power [W/kg] Useful Specific Energy [Wh/kg] Automotive 80

  15. Metal-Based, High-Capacity Lithium-Ion Anodes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Grande Band of Mission Indians Tribal Energy Project Feasibility Study The Land The Land The Land Reservation consists of 1820 acres Historically as low as 120 acres Acquisition of 800+ acres in 1988 Purchase of 900 acres in 1998 The People 700 members today 130 living on Reservation 90% people on Reservation below poverty line Long waiting list of people wanting to live on Reservation Challenges Facing the Tribe Quality, Affordable Housing Decent, Living Wage Jobs Sustainable Growth Upper Tract

  16. Appendix 6 of 6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 of 6 Federal Fiscal year 2002 budget related documentation 1. ORP budget requirements 2. President's approved FY2002 budget - Conference Committee Report 3. November 27, 2001 letter from Assistant Secretary Roberson (FY2002 budget allocation) OFFICE OF RIVER PROTECTION FUNDING REQUIREMENTS AS OF FEBRUARY, 2002 Waste Treatment Plant (WTP) Requirements per approved BNI Baseline (Dollars in Millions) 0 100 200 300 400 500 600 700 800 900 1000 Beg. Balance Carryover 0 175 281 60 0 0 0 0 0 0 0

  17. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  18. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; et al

    2013-01-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  19. Experimental Data of Neutron Yields from Thick Targets Bombarded by 100 to 800 MeV / Nucleon Heavy Ions.

    Energy Science and Technology Software Center (OSTI)

    2001-05-15

    Version 02 The recent experimental data by the authors listed above are summarized in this paper on differential neutron yields in energy and angle produced by 100, 155 and 180 MeV/nucleon He, 100, 155, 180 and 400 MeV/nucleon C, 100, 180, 400 MeV/nucleon Ne, 400MeV/nucleon Ar, Xe and Fe, 272 and 435MeV/nucleon Nb and 800 MeV/nucleon Si ions stopping in thick targets of C, Al, Cu, Pb and Nb. The paper referenced above is availablemore » on the RSICC web site. The numerical values of the data, which were used to plot figures in References 3, 4, 5, 6 and 8 of this paper, are available for download at no charge. To get access to the data, complete a RSICC registration form and order form. Both are available by clicking on "Ordering" from the RSICC web pages. You will be contacted with details about how to proceed.« less

  20. Effect of spray parameter on containment depressurization during LOCA in KAPP 3 and 4, 700 MWE IPHWR

    SciTech Connect (OSTI)

    Sharma, S. K.; Bhartia, D. K.; Mohan, N.; Malhotra, P. K.; Ghadge, S. G.

    2012-07-01

    KAPP 3 and 4 is an Indian Pressurized Heavy Water Reactor (IPHWR) of 700 MWe capacities. It is a pressure tube type reactor with heavy water as moderator and coolant and natural Uranium Dioxide as fuel. It consists of 392 horizontal fuel channel assemblies and surrounded by three separate water systems i.e. primary coolant, moderator and calandria vault water system. Containment of Indian PHWR is an ultimate barrier, which is designed to envelope whole reactor systems, to prevent the spread of active air-borne fission products in accident condition. Containment Spray System has been provided for energy as well as activity removal from the Containment system. This paper discusses about the studies done to assess the effect of spray parameters such as spray flow rate, droplets diameter and height of fall on containment peak pressure and temperature, long term containment depressurization and energy removal from the containment during Loss of Coolant Accident (LOCA). The spray flow rate and droplets diameter play an important role in removing residual energy from containment atmosphere, which influences depressurization of containment. It is obvious that faster depressurization of containment during postulated LOCA helps in limiting radiological consequences. From radiological considerations, droplets diameter is required to be kept to the lowest practically possible value and flow rate of spray should be high. Spray water droplets fall height governs the exposure time of droplets, which is the direct indication of energy removal rate. However, it is observed from the sensitivity studies that for a height of spray droplet fall more than 16.5 m, for the range of spray water flow rate and droplets sizes considered in the analyses, there is no significant change in heat removal. (authors)

  1. Low Group Delay Dispersion Optical Coating for Broad Bandwidth High Reflection at 45° Incidence, P Polarization of Femtosecond Pulses with 900 nm Center Wavelength

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bellum, John C.; Field, Ella S.; Winstone, Trevor B.; Kletecka, Damon E.

    2016-03-01

    We describe an optical coating design suitable for broad bandwidth high reflection (BBHR) at 45° angle of incidence (AOI), P polarization (Ppol) of femtosecond (fs) laser pulses whose wavelengths range from 800 to 1000 nm. The design process is guided by quarter-wave HR coating properties. Our design must afford low group delay dispersion (GDD) for reflected light over the broad, 200 nm bandwidth in order to minimize temporal broadening of the fs pulses due to dispersive alteration of relative phases between their frequency components. The design should also be favorable to high laser-induced damage threshold (LIDT). We base the coatingmore » on TiO2/SiO2 layer pairs produced by means of e-beam evaporation with ion-assisted deposition, and use OptiLayer Thin Film Software to explore designs starting with TiO2/SiO2 layers having thicknesses in a reverse chirped arrangement. This approach led to a design with R > 99% from 800 to 1000 nm and GDD < 20 fs2 from 843 to 949 nm (45° AOI, Ppol). The design’s GDD behaves in a smooth way, suitable for GDD compensation techniques, and its electric field intensities show promise for high LIDTs. Reflectivity and GDD measurements for the initial test coating indicate good performance of the BBHR design. Subsequent coating runs with improved process calibration produced two coatings whose HR bands satisfactorily meet the design goals. Lastly, for the sake of completeness, we summarize our previously reported transmission spectra and LIDT test results with 800 ps, 8 ps and 675 fs pulses for these two coatings, and present a table of the LIDT results we have for all of our TiO2/SiO2 BBHR coatings, showing the trends with test laser pulse duration from the ns to sub-ps regimes.« less

  2. Current

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dollars in Thousands) FY 2014 Current FY 2015 Enacted FY 2016 Request Enhanced Geothermal Systems (EGS) 27,100 32,100 45,000 Hydrothermal 10,300 12,500 36,500 Low Temperature and Coproduced 4,700 6,000 9,000 Systems Analysis 3,700 3,900 5,000 NREL Sitewide 0 500 500 Total, Geothermal Technologies 45,800 55,000 96,000 The Geothermal Technologies Office (GTO) accelerates deployment of clean, domestic geothermal energy by supporting innovative technologies that reduce the cost and risks of

  3. Biomass 2014: Growing the Future Bioeconomy Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014: Growing the Future Bioeconomy Agenda Biomass 2014: Growing the Future Bioeconomy Agenda Tuesday, July 29, 2014 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:20 a.m. Welcome and Introduction Jonathan Male, Director, Bioenergy Technologies Office, U.S. Department of Energy 8:20 a.m.-9:00 a.m. Morning Keynotes David Danielson, Assistant Secretary for Energy Efficiency & Renewable Energy, U.S. Department of Energy Byron Paez, Deputy Director for Deputy Assistant

  4. RangeTables.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 35 40 45 eVcm²/mg) LET vs. Range in Si for 40 MeV SEE Beams 14 N 20 Ne 40 Ar 0 3 6 9 0 400 800 1200 1600 2000 2400 1 H 0 0.1 0.2 40 Ar 78 Kr 0 5 10 15 20 0 100 200 300 400 500 600 700 800 900 1000 1100 LET (Me Range in Silicon (µm) After aramica window and 30 mm of air 0 1000 2000 3000 4000 5000 6000 7000 8000

  5. A Multigroup Library of Neutron and Gamma Cross Sections and Response Functions in the Energy Range up to 800 MeV.

    Energy Science and Technology Software Center (OSTI)

    1987-05-20

    Version 00 The energy range of the library, from thermal to 800 MeV is relevant to the solution of shielding, nuclear heating, and other radiation protection problems connected with the accelerator neutron sources e.g. spallation target. The data contains 10 elements of shielding and biological importance. They can be easily implemented to the neutron transport codes like ANISN and DOT by using the activity option.

  6. Application of MELCOR Code to a French PWR 900 MWe Severe Accident Sequence and Evaluation of Models Performance Focusing on In-Vessel Thermal Hydraulic Results

    SciTech Connect (OSTI)

    De Rosa, Felice [ENEA, Italian National Agency for New Technologies, Energy and the Environment (Italy)

    2006-07-01

    In the ambit of the Severe Accident Network of Excellence Project (SARNET), funded by the European Union, 6. FISA (Fission Safety) Programme, one of the main tasks is the development and validation of the European Accident Source Term Evaluation Code (ASTEC Code). One of the reference codes used to compare ASTEC results, coming from experimental and Reactor Plant applications, is MELCOR. ENEA is a SARNET member and also an ASTEC and MELCOR user. During the first 18 months of this project, we performed a series of MELCOR and ASTEC calculations referring to a French PWR 900 MWe and to the accident sequence of 'Loss of Steam Generator (SG) Feedwater' (known as H2 sequence in the French classification). H2 is an accident sequence substantially equivalent to a Station Blackout scenario, like a TMLB accident, with the only difference that in H2 sequence the scram is forced to occur with a delay of 28 seconds. The main events during the accident sequence are a loss of normal and auxiliary SG feedwater (0 s), followed by a scram when the water level in SG is equal or less than 0.7 m (after 28 seconds). There is also a main coolant pumps trip when {delta}Tsat < 10 deg. C, a total opening of the three relief valves when Tric (core maximal outlet temperature) is above 603 K (330 deg. C) and accumulators isolation when primary pressure goes below 1.5 MPa (15 bar). Among many other points, it is worth noting that this was the first time that a MELCOR 1.8.5 input deck was available for a French PWR 900. The main ENEA effort in this period was devoted to prepare the MELCOR input deck using the code version v.1.8.5 (build QZ Oct 2000 with the latest patch 185003 Oct 2001). The input deck, completely new, was prepared taking into account structure, data and same conditions as those found inside ASTEC input decks. The main goal of the work presented in this paper is to put in evidence where and when MELCOR provides good enough results and why, in some cases mainly referring to its

  7. The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800 °C

    SciTech Connect (OSTI)

    Tanis, Elizabeth A.; Simon, Adam; Tschauner, Oliver; Chow, Paul; Xiao, Yuming; Burnley, Pamela; Cline II, Christopher J.; Hanchar, John M.; Pettke, Thomas; Shen, Guoyin; Zhao, Yusheng

    2015-08-26

    Rutile (TiO₂) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 °C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300–500 °C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at ~1 GPa and 700800 °C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 μg/g as temperature increases from 300 to 500 °C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 μg/g at 300 to 500 °C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 μg/g as temperature increases from 300 to 500 °C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 °C at ≥2 GPa, but there is no observed

  8. Effect of postdeposition annealing on the electrical properties of ?-Ga{sub 2}O{sub 3} thin films grown on p-Si by plasma-enhanced atomic layer deposition

    SciTech Connect (OSTI)

    Altuntas, Halit; Donmez, Inci; Ozgit-Akgun, Cagla; Biyikli, Necmi

    2014-07-01

    Ga{sub 2}O{sub 3} dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga{sub 2}O{sub 3} thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900?C for 30?min under N{sub 2} ambient, films crystallized into ?-form monoclinic structure. Electrical properties of the ?-Ga{sub 2}O{sub 3} thin films were then investigated by fabricating and characterizing Al/?-Ga{sub 2}O{sub 3}/p-Si metaloxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Q{sub eff}) were calculated from the capacitancevoltage (C-V) curves using the flat-band voltage shift and were found as 2.6??10{sup 12}, 1.9??10{sup 12}, and 2.5??10{sup 12} cm{sup ?2} for samples annealed at 700, 800, and 900?C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO{sub 2} layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900?C, and by the FrenkelPoole emission model for film annealed at 800?C. Leakage current density was found to improve with annealing temperature. ?-Ga{sub 2}O{sub 3} thin film annealed at 800?C exhibited the highest reverse breakdown field value.

  9. S3TEC Annual Workship | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Saturday Feb 13, 2016 9:00am to 8:00pm Location: MIT Faculty Club Annual Workshop - Solid State Solar Thermal Energy Conversion February 13, 2016 9:00 am-8:00 pm Location: MIT ...

  10. 1,"Coal Creek","Coal","Great River Energy",1144.5 2,"Antelope Valley","Coal","Basin Electric Power Coop",900

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Coal Creek","Coal","Great River Energy",1144.5 2,"Antelope Valley","Coal","Basin Electric Power Coop",900 3,"Milton R Young","Coal","Minnkota Power Coop, Inc",684 4,"Leland Olds","Coal","Basin Electric Power Coop",667

  11. ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Does not include Power Marketing Administrations Environmental Impact Statements . 100 800 800 600 200 200 700 1100 502 Legend Record of Decision (ROD) Final EIS (FEIS) ...

  12. Analysis of gamma-ray spectra from foils activated in a range-thick lead target by 800-MeV protons. Final technical report

    SciTech Connect (OSTI)

    Laird, C.E.; Mullins, D.H.

    1995-06-12

    Approximately 400 gamma-ray spectra have been analyzed to obtain the types and quantities of radioisotopes produced when 800-MeV protons interact with a range-thick lead target. These spectra were obtained from the radioactive decay of product isotopes in lead disks placed at various depths and radial positions within the target. These spectra were analyzed with the computer code HYPERMET and the photopeak areas were reduced to nuclei produced per incident proton per cubic centimeter of material. Product nuclei ranged from atomic mass 160 to mass 206 and over a range of half lives from a few minutes to several weeks. The results of this analysis have been outlined in this report and transmitted on computer disk to Los Alamos National Laboratory. The consistency of these analyses have been confirmed by a comparison of photopeak areas obtained at LANL with the computer code GAMANAL with those from HYPERMET for two gamma-ray spectra. Also, the nuclear production per proton per cm{sub 3} obtained from these two spectra analyzed both at LANL and at EKU have been found to agree to within the statistical accuracy of the peak-fitting programs. This analysis of these 400 gamma-ray spectra has determined the nuclear production per incident proton per cm{sub 3} at five regularly-spaced radial positions and depths up to 40 cm into a range-thick lead target.

  13. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO2-elimination channels yielding conjugated cyclic coproducts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; Osborn, David L.; Taatjes, Craig A.

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C5H8O), cyclohexanone (CHO; C6H10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH3–C5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in the R + O2 reactions is chain-terminating HO2-eliminationmore » yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  14. Spectra of atomic sulfur {sup 1}D in transitions to autoionizing Rydberg states in the region of 75 800-89 500 cm{sup -1}

    SciTech Connect (OSTI)

    Pan, W.-C.; Chen, I-C.; Huang, T.-P.; Yuh, J.-Y.; Lee, Y.-Y.

    2008-10-07

    We recorded photoionization spectra of sulfur atoms in transitions from state {sup 1}D in the range of 75 800-89 500 cm{sup -1}. Dissociation of CS{sub 2} after photolysis at 193 nm produced these sulfur atoms in a singlet excited state; they were then ionized with synchrotron radiation (NSRRC, beamline U9CGM) at resolution of up to 3 cm{sup -1} and detected with a quadruple mass filter. Rydberg series 3s{sup 2}3p{sup 3}({sup 2}D{sub 3/2}{sup 0})nd[3/2] and 3s{sup 2}3p{sup 3}({sup 2}D{sub 5/2}{sup 0})ns[5/2] with n extending to 16 and 32, respectively, to limit {sup 2}D{sup 0} are assigned. New Rydberg series 3s{sup 2}3p{sup 3}({sup 2}D{sub 3/2}{sup 0})nd[1/2]{sub 1}, ({sup 2}D{sub 5/2}{sup 0})nd[5/2], and ({sup 2}D{sub 3/2}{sup 0})nd[5/2] with n from 5-9 for the former two series and 7-13 for the latter are assigned. A new Rydberg line at 85 335 cm{sup -1} is assigned to 3s{sup 2}3p{sup 3}({sup 2}D{sub 3/2}{sup 0})6d {sup 1}P.

  15. Sandia National Laboratories and the Electric Power Research Institute (EPRI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nd PV Performance Modeling Workshop Photo courtesy of Sempra Energy Dates: 1:00 PM to 5:00 PM on Wednesday, May 1, 2013 with special evening session 7:00 to 9:00 pm 8:00 AM to 5:00 PM on Thursday, May 1, 2013 Location: The Biltmore Hotel, 2151 Laurelwood Road, Santa Clara, CA Credible estimates of PV system output are critical to successful development of large-scale PV projects. This workshop will provide information on advances in modeling, on pathways to reducing variability in model input

  16. Optimization of Storage vs. Compression Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100 200 300 400 500 600 700 800 900 0 15 30 45 60 75 90 105 120 135 150 Mass (Kg) Pressure (bar) and Temperature (K) Time (Sec) Low Pressure Cascade Mid Pressure Cascade High Pressure Pressure Mass Temperature Temperature Temperature 2 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 90 0 15 30 45 60 75 90 105 120 135 150 Mass (Kg)

  17. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO2-elimination channels yielding conjugated cyclic coproducts

    SciTech Connect (OSTI)

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; Osborn, David L.; Taatjes, Craig A.

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C5H8O), cyclohexanone (CHO; C6H10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH3–C5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in the R + O2 reactions is chain-terminating HO2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO2 formation in low-temperature oxidation of cyclic ketones suggests little low

  18. Microsoft Word - Document2

    Open Energy Info (EERE)

    min, average, and max average CO 2 emissions by month for AZNM subregion (lbs CO 2 MWh load) 800 1,100 1,400 1,700 January 800 1,100 1,400 1,700 February 800 1,100 1,400 1,700...

  19. Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program

    SciTech Connect (OSTI)

    Britt, Michelle L.; Makela, Eric J.

    2011-01-30

    Adhering to Delaware’s Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: • Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. • Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

  20. Temperature dependence of structural parameters in oxide-ion-conducting Nd{sub 9.33}(SiO{sub 4}){sub 6}O{sub 2}: single crystal X-ray studies from 295 to 900K

    SciTech Connect (OSTI)

    Okudera, Hiroki . E-mail: h.okudera@fkf.mpg.de; Yoshiasa, Akira; Masubuchi, Yuuji; Higuchi, Mikio; Kikkawa, Shinichi

    2004-12-01

    Crystallographic space group, structural parameters and their thermal changes in oxide-ion-conducting Nd{sub 9.33}(SiO{sub 4}){sub 6}O{sub 2} were investigated using high-temperature single-crystal X-ray diffraction experiments in the temperature range of 295=900K. The title compound has the apatite structure (space group P6{sub 3}/m), and no notable structural change occurred over the temperature range examined. Observed anisotropy in thermal motions of oxide ions which belong to SiO{sub 4} tetrahedron indicated high rigidity of the tetrahedron in the structure, indicating that they form sp3 hybrid orbitals and the ligand oxygens do not take part in oxide-ion conductivity. Virtually full occupation of the 6h Nd site and highly anisotropic displacements of oxide ion inside the hexagonal channel were maintained over the temperature range examined. This result confirms that oxide-ion transport inside the hexagonal channel is the dominant process of conduction in the title compound.

  1. Assessment of Recuperator Materials for Microturbines

    SciTech Connect (OSTI)

    Omatete, O.O.

    2001-01-30

    Microturbines in production (or nearly in production) use metal recuperators with gas inlet temperatures of less than 700 C to raise their efficiency to about 30%. To increase their efficiencies to greater than 40% (which is the DOE Advanced Microturbine Program goal) will require operating at higher gas inlet temperatures, if the compression ratio remains less than 6. Even at higher compression ratios, the inlet temperature will increase as the efficiency increases, necessitating the use of new materials of construction. The materials requirement for recuperators used in microturbines may be categorized by their maximum operating temperatures: 700, 800, and {approximately}900 C. These limits are based on the materials properties that determine recuperator failure, such as corrosion, oxidation, creep, and strength. Metallic alloys are applicable in the 700 and 800 C limits; ceramics are applicable in the 900 C range. Most of the heat exchangers in the current microturbines are primary surface recuperators (PSR), compact recuperators fabricated in 347 stainless steel by rolling foil that is a few (>5) mil thick into air cells; the metal recuperators are operated at temperatures below 650 C. Preliminary research indicates that the use of 347 stainless steel can be extended to 700 C. However, additional directed research is required to improve the current properties of 347 stainless steel and to evaluate extended demonstrations on recuperators fabricated from it. Beyond 700 C and up to about 800 C, advanced austenitic stainless steels or other alloys or superalloys become applicable. Their properties must be measured in the expected operational environment, and recuperators fabricated from them must be evaluated for an extended period. Temperatures beyond 900 C exceed the limits of metals, and ceramic materials will be needed. The relevant properties of Si{sub 3} N{sub 4} and SiC, (creep, corrosion, and oxidation) have been studied extensively. Prototype ceramic

  2. {ital p}{sub {ital t}} and {ital x}{sub {ital F}} dependence of the polarization of {Sigma}{sup +} hyperons produced by 800 GeV/{ital c} protons

    SciTech Connect (OSTI)

    Morelos, A.; Albuquerque, I.F.; Bondar, N.F.; Carrigan, R. Jr.; Chen, D.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Luksys, M.; Mahon, J.R.P.; McCliment, E.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Fukun, T.; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Wenheng, Z.; Zheng Shuchen; Zhong Yuanyuan

    1995-10-01

    We utilize the angle and momentum resolution of our apparatus to study the polarization of 375 GeV/{ital c} {Sigma}{sup +} hyperons produced by 800 GeV/{ital c} protons incident on a Cu target. By examining in detail two of our high statistics data samples, we find evidence for structure in the {ital p}{sub {ital t}} dependence of {Sigma}{sup +} polarization and are able to extract the {ital x}{sub {ital F}} dependence of the {Sigma}{sup +} polarization and compare it with {ital x}{sub {ital F}} behavior in the {Lambda}{sup 0} and {Xi}{sup {minus}} systems.

  3. Evidence of incomplete annealing at 800 °C and the effects of 120 °C baking on the crystal orientation and the surface superconducting properties of cold-worked and chemically polished Nb

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sung, Z. -H.; Dzyuba, A.; Lee, P. J.; Larbalestier, D C; Cooley, L. D.

    2015-07-01

    High-purity niobium rods were cold-worked by wire-drawing, followed by various combinations of chemical polishing and high-vacuum baking at 120 °C or annealing at 800 °C in order to better understand changes to the surface superconducting properties resulting from typical superconducting radio-frequency cavity processing. AC susceptibility measurements revealed an enhanced upper transition Tc at ~ 9.3–9.4 K in all samples that was stable through all annealing steps, a value significantly above the accepted Tc of 9.23 K for pure annealed niobium. Corresponding elevations were seen in the critical fields, the ratio of the surface critical field Hc3 to the bulk uppermore » critical field Hc2 rising to 2.3, well above the Ginzburg–Landau value of 1.695. Orientation imaging revealed an extensive dislocation rich sub-grain structure in the as-drawn rods, a small reduction of the surface strain after baking at 120 °C, and a substantial but incomplete recrystallization near the surface after annealing at 800 °C. We interpret these changes in surface superconducting and structural properties to extensive changes in the near-surface interstitial contamination produced by baking and annealing and to synergistic interactions between H and surface O introduced during electropolishing and buffered chemical polishing.« less

  4. Evidence of incomplete annealing at 800 °C and the effects of 120 °C baking on the crystal orientation and the surface superconducting properties of cold-worked and chemically polished Nb

    SciTech Connect (OSTI)

    Sung, Z. -H.; Dzyuba, A.; Lee, P. J.; Larbalestier, D C; Cooley, L. D.

    2015-07-01

    High-purity niobium rods were cold-worked by wire-drawing, followed by various combinations of chemical polishing and high-vacuum baking at 120 °C or annealing at 800 °C in order to better understand changes to the surface superconducting properties resulting from typical superconducting radio-frequency cavity processing. AC susceptibility measurements revealed an enhanced upper transition Tc at ~ 9.3–9.4 K in all samples that was stable through all annealing steps, a value significantly above the accepted Tc of 9.23 K for pure annealed niobium. Corresponding elevations were seen in the critical fields, the ratio of the surface critical field Hc3 to the bulk upper critical field Hc2 rising to 2.3, well above the Ginzburg–Landau value of 1.695. Orientation imaging revealed an extensive dislocation rich sub-grain structure in the as-drawn rods, a small reduction of the surface strain after baking at 120 °C, and a substantial but incomplete recrystallization near the surface after annealing at 800 °C. We interpret these changes in surface superconducting and structural properties to extensive changes in the near-surface interstitial contamination produced by baking and annealing and to synergistic interactions between H and surface O introduced during electropolishing and buffered chemical polishing.

  5. Hacking Photosynthesis: Growing Plants to Power Our Engines and Feed the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World 11, 2015 7:00 PM - 9:00 PM WHERE: Duane Smith Auditorium, Los Alamos High School

  6. 100 Hour test of the pressurized woodchip-fired gravel bed combustor

    SciTech Connect (OSTI)

    Ragland, K.W.; Aerts, D.J.

    1992-08-01

    In this project a downdraft, packed bed combustor for a gas turbine cogeneration system using woodchips is being developed. The combustor is designed to promote intense combustion in a thin reaction zone and to control particulate growth by using high excess air. The combustor contains a magnesia and alumina gravel bed on top of which woodchips are fed. The following test objectives were established for the 100 hr test: (a) demonstrate preliminary durability of the combustor; (b) demonstrate steady operation of the system; (c) investigate combustor pressure drop; (d) investigate bed ash cake buildup; (e) expose metal alloy coupons for corrosion examination; (f) obtain closure within 10% on mass and energy balances; and (g) obtain emissions data. The plan for the 100 hr test was to operate the combustor at the following conditions: day 1, 4 atm (absolute) pressure and 700--800 C outlet temperature; day 2, 4 atm pressure and 800--900 C outlet temperature; day 3, 5 atm pressure and 800--900 C outlet temperature; days 4 and 5, repeat day 3. The inlet air was not preheated. The paper gives test results and discusses fuel characterization, combustor performance, mass and energy balance, emissions, composition of ash and deposits, and metal coupons representing turbine blade material.

  7. STEAB October 2015 Meeting Agenda

    Broader source: Energy.gov (indexed) [DOE]

    STEAB OCTOBER MEETING AGENDA October 6-7, 2015 Renaissance Hotel, 1143 New Hampshire Ave NW, Washington, DC 20037 DAY 1 - October 6 8:00 - 9:00 Breakfast, hotel meeting room 9:00 ...

  8. Central Texas Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesCentral-Texas-Electric-Cooperative520773011297941?reftntnmn Outage Hotline: 1-800-900-2832 References: EIA Form EIA-861 Final Data File for...

  9. The 800-meter sample toroidal field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The team is also improving the cryogenic freezing capability of the pellet extruder and is testing large diameter pellets and combination pellets of deuterium and neon. Long-term ...

  10. DOE Environmental Impact Statement Public Scoping Meeting on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Tuesday, July 13, 2010 7:00 - 9:00 pm Albany, New York The Holiday Inn Albany at Wolf Road 205 Wolf Road Albany, NY12205 Wednesday, July 14, 2010 7:00 - 9:00 pm Glens Falls, New ...

  11. Thermal-shock behavior of advanced ceramic/composite hot-gas filters

    SciTech Connect (OSTI)

    Singh, J.P.; Sutaria, M.; Bielke, W.

    1997-02-01

    The thermal shock/fatigue behavior of monolithic and composite hot-gas candle filters obtained from various manufacturers was evaluated. The composite filters were made of both oxide and nonoxide materials; the monolithic filters were made only of nonoxide materials. During single-cycle thermal shock tests, composite filters show little or no strength degradation when quenched from temperatures between 900 and 1000{degrees}C. At higher quenching temperatures, slow strength degradation was observed. Regular monolithic SiC filters showed no strength degradation when quenched from temperatures up to {approx}700-900{degrees}C, whereas at higher quenching temperatures, the strength decreased at a relatively sharper rate. On the other hand, recrystallized monolithic SiC filters showed higher initial strength and retained this strength to higher quenching temperatures when compared with regular SiC filters. This finding may be related to the difference in the strength of grain boundary phases in the two filters. For thermal cycles between room temperature and 800-1000{degrees}C, composite filters show little (18-24%) strength degradation up to three cycles, beyond which the strength remains unchanged. Similar behavior, with an initial strength drop of 15-28%, was observed for monolithic filter specimens that were thermally cycled between room temperature and 800{degrees}C.

  12. Experimental Determination of Phase Equilibria in the System H{sub 2}O-CO{sub 2}-NaCl at 0.5 Kb from 500 to 800C

    SciTech Connect (OSTI)

    Anovitz, L.M.

    2001-01-09

    An understanding of activity-composition (a/X) relations and phase equilibria for halite-bearing, mixed-species supercritical fluids is critically important to many geological and industrial applications. The authors have performed experiments on the phase equilibria of H{sub 2}O-CO{sub 2}-NaCl fluids from 500 C to 800 C at 500 bars, conditions of significant importance in studies of magma-hydrothermal systems, geothermal reservoirs and some ore deposits, to obtain highly accurate and precise data for this ternary system. These experiments are conducted using a double capsule technique. An excess of NaCl is placed in an inner Pt capsule, which is crimped shut and placed in an outer capsule containing H{sub 2}O and CO{sub 2}. During the experiment NaCl dissolves out of the inner capsule, and is deposited in the outer capsule during the quench. After the experiment the capsule is opened, and the amount of NaCl remaining in the inner capsule determined by dissolution. The difference between the initial and final amounts of NaCl in the inner capsule yields the solubility of NaCl at the P-T conditions of the experiment. At 500 C data from these experiments suggest that the vapor comer of the three-phase field lies near X(H{sub 2}O) = 0.760, X(NaCl) = 0.065, which is a significantly more water-rich composition than suggested by previous models. As expected, increasing temperature increases the solubility of NaCl in the NaCl-vapor field. For example, at intermediate H{sub 2}O/CO{sub 2} ratios the vapor field extends from approximately near X(H{sub 2}O) = 0.66, X(NaCl) = 0.06 at 500 C to near X(H{sub 2}O) = 0.65, X(NaCl) = 0.08 at 600 C.

  13. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOE Patents [OSTI]

    Huang, Kevin; Ruka, Roswell J.

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  14. Catalysts for conversion of methane to higher hydrocarbons

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.

    1993-01-01

    Catalysts for converting methane to higher hydrocarbons such as ethane and ethylene in the presence of oxygen at temperatures in the range of about 700.degree. to 900.degree. C. are described. These catalysts comprise calcium oxide or gadolinium oxide respectively promoted with about 0.025-0.4 mole and about 0.1-0.7 mole sodium pyrophosphate. A preferred reaction temperature in a range of about 800.degree. to 850.degree. C. with a preferred oxygen-to-methane ratio of about 2:1 provides an essentially constant C.sub.2 hydrocarbon yield in the range of about 12 to 19 percent over a period of time greater than about 20 hours.

  15. RangeTables.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MeVcm²/mg) LET vs. Range in Si for 25 MeV SEE Beams (low LET) 4 He 14 N 0 0.5 1 1.5 0 600 1200 1800 2400 3000 3600 4 He 14 N 22 Ne 0 1 2 3 4 5 6 7 8 9 10 0 100 200 300 400 500 600 700 800 900 1000 1100 LET (MeVcm²/mg) Range in Silicon (µm) LET vs. Range in Si for 25 MeV SEE Beams (low LET) After aramica window and 30 mm of air 4 He 14 N 0 0.5 1 1.5 0 600 1200 1800 2400 3000 3600 Range in Silicon (µm) 129 Xe 30 40 50 60 (MeVcm²/mg) LET vs. Range in Si for 25 MeV SEE Beams After aramica

  16. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie; Rader, Jeffrey A.; Saunders, Timothy W.

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  17. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect (OSTI)

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  18. Diffusion Barrier Selection from Refractory Metals (Zr, Mo and Nb) via Interdiffusion Investigation for U-Mo RERTR Fuel Alloy

    SciTech Connect (OSTI)

    K. Huang; C. Kammerer; D. D. Keiser, Jr.; Y. H. Sohn

    2014-04-01

    U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.

  19. Building America Case Study: Singer Village: A Cold Climate Zero...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Purchase Price 474,900 439,000 379,000 329,000 Down Payment (20%) 94,980 87,800 75,800 65,800 Loan Amount 379,920 351,200 303,200 263,200 Length of Mortgage (years) 30 ...

  20. Obama Administration Announces Additional $351,658,900 for Local...

    Broader source: Energy.gov (indexed) [DOE]

    of 411,904,061 in California weatherization and energy funding announced by the Administration on March 12th and detailed at energy.govrecovery. "These investments will save...

  1. 900 F embrittlement of alloy UNS N06625

    SciTech Connect (OSTI)

    Neubert, V.W.M.; Doelling, R.

    1998-12-31

    Different impellers made of nickel base alloy UNS N06625 have failed after 5000 h and 15000 h in service at high temperatures ({approx_equal} 500 C, 932 F) in 1994. The impellers were used in petrochemical industries. The failures were induced by stress corrosion cracking and stress corrosion fatigue. Material of the impellers showed a high susceptibility to intergranular corrosion and stress corrosion attack. Formation of a newly, not yet identified, super lattice within the nickel matrix has been discovered by transmission electron microscopy. The formation of the super lattice was caused by the service conditions, temperature and time. Based on these findings, influence of ageing time at 500 C (932 F) on the mechanical properties and the corrosion resistance of UNS N06625 was investigated. The specimen investigated showed strong differences in mechanical properties and corrosion behavior in standard corrosion test solutions, as well as a strong ageing dependence.

  2. Dismantling Approval. I-900-904-1.01.

    Office of Legacy Management (LM)

  3. Interim Response Actions (IRS's). I-900-901-1.01.

    Office of Legacy Management (LM)

  4. Mid-Tier Advocacy Business Focused Breakfast Discussion 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Tier Advocacy Business Focused Breakfast Discussion 2016 Mid-Tier Advocacy Business Focused Breakfast Discussion 2016 January 14, 2016 7:00AM to 9:00AM EST Mid-Tier Advocacy...

  5. February 2016 Office of Chief Financial Officer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Project Total Estimated Cost (TEC) 99,000 284,100 315,300 234,700 296,900 Other ... system into compliance with National Fire Protection Association (NFPA) code requirements. ...

  6. Electrochemical characterization of B-site cation-excess Pr2Ni0.75Cu0.25Ga0.05O4+δ cathode for IT-SOFCs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Xiangwei; Lü, Shiquan; Liu, Shouxiu; Liu, Xiaoyan; Sui, Yingrui; Li, Xiuyan; Pang, Mingjun; Wang, Biao; Ji, Yuan; Hu, Michael Z.

    2015-06-15

    In this paper, the B-site cation-excess K2NiF4-type structure oxide, Pr2Ni0.75Cu0.25Ga0.05O4+δ (PNCG) is investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD result shows that PNCG cathode is chemically compatible with the electrolyte Gd0.1Ce0.9O2-δ (GDC) at 900 °C for 5 h. The PNCG material exhibits a semiconductor to metal transition around 425 °C. The thermal expansion coefficient (TEC) of the PNCG sample is 12.72×10-6 K-1 between 30 and 850 °C in air. The polarization resistance (Rp) of PNCG cathode on GDC electrolyte is 0.105, 0.197 and 0.300 Ω cm2 at 800, 750, 700 °C, respectively. A maximum powermore » density of 371 mW cm-2 is obtained at 800 °C for single-cell with 300 μm thick GDC electrolyte and PNCG cathode. Finally, the results of this study demonstrate that PNCG can be a promising cathode material for IT-SOFCs.« less

  7. Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh

    2016-02-23

    Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment (TMT) process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 to 1173 K (700 to 900ºC) was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/andmore » above 1073 K (800 ºC). Relatively low volume fraction of M23C6 precipitates was observed after processing at 1073 K (800 ºC). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine grained heat affected zone (FGHAZ) region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard “normalization and tempering” processes. Lastly, the steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room-temperature toughness. The above data is also analysed based on existing theories of creep deformation based on dislocation climb mechanism.« less

  8. Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...

    Open Energy Info (EERE)

    layer and a basement layer of less than 100 ohm.m (Kauahikaua and Mattice, 1981). The depth of penetration of these soundings was estimated to be about 800 m to 900 m b.s.1....

  9. Auli Technology | Open Energy Information

    Open Energy Info (EERE)

    Auli Technology Jump to: navigation, search Name: Auli Technology Place: Brazil Zip: 12.223.900 Sector: Wind energy Product: 500kW to 800kW wind turbine designer and manufacturer...

  10. Project Presentations for ITP Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INSTITUTE INDUSTRY DAY WORKSHOP FEBRUARY 25, 2015 FINAL AGENDA Georgia Tech Hotel and Conference Center 800 Spring Street NW Atlanta, GA 30308 7:30 - 9:00 am...

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Short Tons 1950 1960 1970 1980 1990 2000 2010 0 300 600 900 Million Short Tons Surface 1950 1960 1970 1980 1990 2000 2010 0 200 400 600 800 Million Short Tons Underground ...

  12. STEAB January Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JANUARY MEETING AGENDA January 13 - 14, 2015 Renaissance Washington DC Dupont Circle Hotel 1143 New Hampshire Ave, NW, Washington, DC 20037 DAY 1 January 13th 8:00 - 9:00 ...

  13. Critical Materials Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Sheraton Crystal City 1800 Jefferson Davis Highway, Arlington, VA April 3, 2012, 8 am - 5 pm Time (EDT) Activity Speaker 8:00 am - 9:00 am Registration ...

  14. Minorities in Energy-Year One Anniversary Forum | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minorities in Energy-Year One Anniversary Forum Tuesday, November 18, 2014 Lockheed Martin Global Vision Center 2121 Crystal Drive, Arlington, VA 22202 8:00 a.m. - 9:00 a.m. ...

  15. Jefferson Lab Human Resources - Initial Lab Orientation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    first day 8:00 Arrive in Support Service Center (bldg 28) Lobby; met by Training Consultant 9:00 Initial Paperwork 10:00 JLab's Mission, Culture, Policies 11:00 Training begins ...

  16. Aug 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Hilton, located at 1750 Rockville Pike, Rockville, MD. * Agenda .pdf file (79KB) * Web Cast Link External link AGENDA Tuesday, August 23, 2011 8:00 AM 9:00 AM PUBLIC ...

  17. March 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    viewing via video archive. * Agenda .pdf file (74KB) * Minutes (Not yet available) * Web Cast Link External link AGENDA Tuesday, March 22, 2011 8:00 AM 9:00 AM PUBLIC ...

  18. Florida Power & Light Company, 700 Universe Blvd. Juno Beach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-mail: smartgridpolicy@hq.doe.gov Re: Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges Florida Power & Light Company ("FPL") appreciates the ...

  19. Webinar February 25: Update to the 700 bar Compressed Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eastern Standard Time (EST). Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems. The hydrogen storage systems analyzed are ...

  20. 14,700 tons of silver at Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calutron magnets was because of a shortage of copper during the war. As you will recall, Gen. Groves sent Col. Nichols to arrange for the purchase of as much uranium ore as could...

  1. Departs La Fonda Hotel at 7:00 AM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Departmental Workforce Departmental Workforce Each program office within the Department is expected to set an example to its employees that diversity is a departmental priority, and work collaboratively to develop comprehensive diversity programs. Our office measures success in its effectiveness in aiding the disadvantaged in finding opportunities at the Energy Department and in other Federal programs. Through extensive research and close partnerships, we have been able to specifically target

  2. SANDIA REPORT SAND95-2049 UC-700 Unlimited Release

    Office of Scientific and Technical Information (OSTI)

    ... CHAPARRAL was written to reduce some of these requirements and allow as much flexibility as possible. Traditional view factor algorithms from the heat transfer field have proven to ...

  3. Obama Administration Announces Additional $13,969,700 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in energy efficiency and conservation projects in U.S. cities, counties, states, ... create jobs in communities around the ... Block Grant program, funded by ...

  4. Obama Administration Announces Additional $16,956,700 for Local...

    Office of Environmental Management (EM)

    in energy efficiency and conservation projects in U.S. cities, counties, states, ... create jobs in communities around the ... Block Grant program, funded by ...

  5. Title 11 Alaska Administrative Code 84.700 Geothermal Leasing...

    Open Energy Info (EERE)

    Abstract Implementing regulations in Alaska governing geothermal leasing procedures including competitive and non-competitive leasing. Published NA Year Signed or Took...

  6. SANDIA REPORT SAND95-2049 UC-700 Unlimited Release

    Office of Scientific and Technical Information (OSTI)

    Problems Micheal W. Glass Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United S t a t e s Department of Energy...

  7. Interim Response Actions (IRA's). IR-700-703-1.01.

    Office of Legacy Management (LM)

  8. Well cored to 9,800 ft in Paraguay

    SciTech Connect (OSTI)

    Gunn, K.B. )

    1991-05-13

    The mining industry's slim hole drilling rigs have proven applicable to primary oil exploration. These machines are smaller than conventional drilling rigs and can be transported with relative ease to remote locations. A typical rig drills an entire well by coring, with the cores retrieved by wire line without tripping the pipe. The core drilling system is specially suited to drilling hard rock formations. This paper reports on the project which evaluated the geological aspects of the Parana basin and determined the applicability of slim hole, core drilling techniques as an exploration tool. The Parana basin is found in the eastern third of Paraguay, part of northeastern Argentina, and part of southern Brazil. Much of the basin is overlaid by basalt flows up to 5,000-ft thick, and there are numerous igneous intrusions and dikes within the sedimentary section. This combination makes seismic quality poor and interpretation extremely difficult. The formations are relatively old, with Triassic red beds occurring only a few feet below the surface or immediately below the basalt. Beneath the Triassic are Permian marine deposits, Permo-Carboniferous tillites, and then Devonian, Silurian, and Ordovician deposits to the basement. The section outcrops 100 miles west of the Mallorquin Well No. 1 site. The Parana basin has been only randomly explored. To date, success has been limited to a minor gas find near Sao Paulo, Brazil.

  9. FAQs for Survey Forms 800, 810, and 820

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Liquefied Refinery Gases (LRG) are products of refinery processing (distillation, cracking, etc.) of crude oil and unfinished oils and include the following product Codes: - 641 ...

  10. Fact #800: October 21, 2013 Characteristics of New Light Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101 98 1982 21.1 3,202 14.4 103 110 99 101 99 1983 21.0 3,257 14.1 107 109 101 99 103 1984 21.0 3,262 14.0 109 109 101 98 105 1985 21.3 3,271 13.5 114 111 101 94 110 1986 21.8 ...

  11. Dismantling of Building 409. IR-800-803-1.01.

    Office of Legacy Management (LM)

  12. Europe

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7,900 Mongolia 3 - 3,400 Thailand 152 453 0 South Asia 396 5,802 12,900 8,211 26,913 India 361 5,476 3,800 Pakistan 23 248 9,100 Middle East and North Africa 10,986 867,463...

  13. MIT Plasma Science & Fusion Center: research, alcator, pubs,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pm Executive SessionDiscussions with C-Mod team as desired * Priorities Marmar * 8 Tesla Wolfe 7:00 pm PAC Dinner (if desired) Wednesday, February 25, 2004 8:00 am Executive...

  14. K C Electric Association | Open Energy Information

    Open Energy Info (EERE)

    K C Electric Association Jump to: navigation, search Name: K C Electric Association Place: Colorado Website: www.kcelectric.coop Outage Hotline: 1-800-700-3123 Outage Map:...

  15. Deutsche Gesellschaft fr Internationale Zusammenarbeit (GIZ...

    Open Energy Info (EERE)

    14,700 staff, about 11,200 of whom are national personnel. 1,800 people are employed at Head Office in Eschborn near Frankfurt am Main and at various locations within Germany....

  16. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500 ºC to 800 ºC, and 150 to 300 MPa

    SciTech Connect (OSTI)

    Ulrich, Thomas; Mavrogenes, John

    2008-04-22

    The solubility of molybdenum (Mo) was determined at temperatures from 500 °C to 800 °C and 150 to 300 MPa in KCl-H2O and pure H2O solutions in cold-seal experiments. The solutions were trapped as synthetic fluid inclusions in quartz at experimental conditions, and analyzed by laser ablation inductively coupled plasma mass spectrometry (LA ICPMS). Mo solubilities of 1.6 wt% in the case of KCl-bearing aqueous solutions and up to 0.8 wt% in pure H2O were found. Mo solubility is temperature dependent, but not pressure dependent over the investigated range, and correlates positively with salinity (KCl concentration). Molar ratios of ~1 for Mo/Cl and Mo/K are derived based on our data. In combination with results of synchrotron X-ray absorption spectroscopy of individual fluid inclusions, it is suggested that Mo-oxo-chloride complexes are present at high salinity (>20 wt% KCl) and ion pairs at moderate to low salinity (<11 wt% KCl) in KCl-H2O aqueous solutions. Similarly, in the pure H2O experiments molybdic acid is the dominant species in aqueous solution. The results of these hydrothermal Mo experiments fit with earlier studies conducted at lower temperatures and indicate that high Mo concentrations can be transported in aqueous solutions. Therefore, the Mo concentration in aqueous fluids seems not to be the limiting factor for ore formation, whereas precipitation processes and the availability of sulfur appear to be the main controlling factors in the formation of molybdenite (MoS2).

  17. 2011 Workshop Agenda_Ver_21.xlsx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7:00 AM 8:00 AM 60 Workshop Registration 8:00 AM 8:05 AM 5 Welcome and Workshop Logistics John Makepeace, Office of Engineering and Construction Management 8:05 AM 8:20 AM 15...

  18. US MidAtl NJ Site Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    MidAtl NJ Site Consumption million Btu 0 700 1,400 2,100 2,800 3,500 US MidAtl NJ ... 8,000 10,000 12,000 US MidAtl NJ Site Consumption kilowatthours 0 400 800 1,200 ...

  19. Production and use of activated char for combined SO{sub 2}/NO{sub x} removal. Technical report, September 1--November 30, 1993

    SciTech Connect (OSTI)

    Lizzio, A.A.; DeBarr, J.A.; Rostam-Abadi, M.

    1993-12-31

    Carbon adsorbents have been shown to remove sulfur oxides from flue gas, and also serve as a catalyst for reduction of nitrogen oxides at temperatures between 80 and 150{degrees}C. The overall objective of this project is to determine whether Illinois coal is a suitable feed stock for the production of activated char which could be used as a catalyst for removal of SO{sub 2}/NO{sub x} from combustion flue gas, and to evaluate the potential application of the products in flue gas cleanup. Key production variables will be identified to help design and engineer activated char with the proper pore structure and surface chemistry. During this reporting period, a series of chats was prepared from an Illinois coal (IBC-102). A 48{times}100 mesh size fraction of IBC-102 coal was physically cleaned to reduce its ash content from 5.5 to 3.6%. The clean coal was pyrolyzed in a fluidized-bed reactor at 500, 700 and 900{degrees}C. The surface area and oxygen content of the char was varied either by oxidation in 10% O{sub 2} or by nitric acid treatment. Steam activation or chemical activation using potassium hydroxide was employed to enhance surface area development. Nitrogen BET surface areas of the chars ranged from 1 to 800 M{sup 2}/g.

  20. Plasmids encoding therapeutic agents

    DOE Patents [OSTI]

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  1. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    SciTech Connect (OSTI)

    Uedono, Akira; Yoshihara, Nakaaki; Mizushima, Yoriko; Kim, Youngsuk; Nakamura, Tomoji; Ohba, Takayuki; Oshima, Nagayasu; Suzuki, Ryoichi

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500C. After 600700C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900C), oxygen-related defects were the major point defects and they were located at <25 nm.

  2. Effect of calcination temperature on electrical properties of Nd{sub 0.7}Ba{sub 0.3}MnO{sub 3}

    SciTech Connect (OSTI)

    Lim, K. P.; Halim, S. A.; Chen, S. K.; Ng, S. W.; Chew, Z. Y.

    2015-04-24

    In this work, Nd{sub 0.7}Ba{sub 0.3}MnO{sub 3} was synthesized via cryo-milling method to investigate the effect of calcination temperature on the structure, microstructure, magnetic and electrical properties. XRD analysis revealed all samples can be indexed to orthorhombic structure systems with Imma space group accompany with some minor phases of Mn{sub 2}O{sub 4} and BaMnO{sub 3}. FESEM analysis confirmed that a slight increase in the grain size from 117.4 nm (600C), 119.5 nm (700C), 121.0 nm (800C), 123.1 nm (900C) to 138.4 nm (1000C) was observed when different calcination temperature was applied. Four Point Probe measurements showed that all samples are in paramagnetic insulating region and T{sub MIT} is lower than 20K. Resistivity increase when grain size reduces due to increase of effective grain boundary that weakens the electron hopping process via double exchange mechanism. Beside, a drastic increase of resistivity also observed due to present of minor secondary phase (BaMnO{sub 3}) in sample C9.

  3. High temperature annealing of ion irradiated tungsten

    SciTech Connect (OSTI)

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  4. Compositional inhomogeneityand segregation in (K0.5Na0.5)NbO3 ceramics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Kepi; Tang, Jing; Chen, Yan

    2016-03-11

    The effects of the calcination temperature of (K0.5Na0.5)NbO3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on the densification, the abnormalmore » grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d33=128.3 pC/N, planar electromechanical coupling coefficient kp=32.2%, mechanical quality factor Qm=88, and dielectric loss tan δ=2.1%.« less

  5. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  6. World pipeline work set for rapid growth

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This paper reports on international pipeline construction which has entered a fast-growth period, accelerated by the new political and economic realities around the world and increasing demand for natural gas, crude oil and refined petroleum products. Many projects are under way or in planning for completion in the mid- to late 1990s in Europe, South America, Asia and the Middle East. Pipeline And Gas Journal's projection calls for construction or other work on 30,700 miles of new natural gas, crude oil and refined products pipelines in the 1992-93 period outside Canada and the U.S. These projects will cost an estimated $30 billion-plus. Natural gas pipelines will comprise most of the mileage, accounting for almost 23,000 miles at an estimated cost of $26.3 billion. Products pipelines, planned or under construction, will add another 5,800 miles at a cost of $2.8 billion. Crude oil pipelines, at a minimum, will total 1,900 new miles at a cost of slightly under $1 billion.

  7. Sulfide stress cracking resistance of low-alloy nickel steels

    SciTech Connect (OSTI)

    Yoshino, Y.; Minozaki, Y.

    1986-04-01

    The sulfide stress cracking (SSC) resistance of Ni-containing low-alloy steels was studied using laboratory and commercial heats over the range of 600 to 800 MPa yield strength (700 to 900 MPa tensile strength). The results were interpreted with regard to observations by metallurgical and electrochemical analyses. In steel containing 1% Cr and 0.5% Mo, the SSC resistance is not affected by up to 2% Ni. A commercial steel with 3.7% Ni-1.8% Cr-0.4% Mo exhibits the same K/sub ISSC/ and Ni-free steels. The cracking resistance begins to deteriorate when fresh martensite exceeds 5 vol%. The lattice diffusion of hydrogen is decreased by the additional Ni, whereas the subsurface hydrogen concentration remains constant in 5% NaCl solution and decreases in NACE TM-01-77 solution up to 5% Ni. Thus, nickel has no harmful effect in terms of hydrogen absorption and diffusion. However, nickel enhances the formation of surface trenches in acidified solutions. This is intensified in the anodically polarized slow extension rate test, which results in loss in elongation. Consequently, nickel per se has no effect on the propagation of SSC unless its addition results in the formation of fresh martensite. However, it may or may not enhance crack initiation, depending on a specific combination of solution and steel, by forming surface trenches that subsequently trigger hydrogen cracking from their bottom.

  8. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  9. Isolated polypeptide having arabinofuranosidase activity

    DOE Patents [OSTI]

    Foreman, Pamela; Van Solingen, Pieter; Goedegebuur, Frits; Ward, Michael

    2010-02-23

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry. TABLE-US-00001 cip1 cDNA sequence (SEQ ID NO: 1) GACTAGTTCA TAATACAGTA GTTGAGTTCA TAGCAACTTC 50 ACTCTCTAGC TGAACAAATT ATCTGCGCAA ACATGGTTCG CCGGACTGCT 100 CTGCTGGCCC TTGGGGCTCT CTCAACGCTC TCTATGGCCC AAATCTCAGA 150 CGACTTCGAG TCGGGCTGGG ATCAGACTAA ATGGCCCATT TCGGCACCAG 200 ACTGTAACCA GGGCGGCACC GTCAGCCTCG ACACCACAGT AGCCCACAGC 250 GGCAGCAACT CCATGAAGGT CGTTGGTGGC CCCAATGGCT ACTGTGGACA 300 CATCTTCTTC GGCACTACCC AGGTGCCAAC TGGGGATGTA TATGTCAGAG 350 CTTGGATTCG GCTTCAGACT GCTCTCGGCA GCAACCACGT CACATTCATC 400 ATCATGCCAG ACACCGCTCA GGGAGGGAAG CACCTCCGAA TTGGTGGCCA 450 AAGCCAAGTT CTCGACTACA ACCGCGAGTC CGACGATGCC ACTCTTCCGG 500 ACCTGTCTCC CAACGGCATT GCCTCCACCG TCACTCTGCC TACCGGCGCG 550 TTCCAGTGCT TCGAGTACCA CCTGGGCACT GACGGAACCA TCGAGACGTG 600 GCTCAACGGC AGCCTCATCC CGGGCATGAC CGTGGGCCCT GGCGTCGACA 650 ATCCAAACGA CGCTGGCTGG ACGAGGGCCA GCTATATTCC GGAGATCACC 700 GGTGTCAACT TTGGCTGGGA GGCCTACAGC GGAGACGTCA ACACCGTCTG 750 GTTCGACGAC ATCTCGATTG CGTCGACCCG CGTGGGATGC GGCCCCGGCA 800 GCCCCGGCGG TCCTGGAAGC TCGACGACTG GGCGTAGCAG CACCTCGGGC 850 CCGACGAGCA CTTCGAGGCC AAGCACCACC ATTCCGCCAC CGACTTCCAG 900 GACAACGACC GCCACGGGTC CGACTCAGAC ACACTATGGC CAGTGCGGAG 1000 GGATTGGTTA CAGCGGGCCT ACGGTCTGCG CGAGCGGCAC GACCTGCCAG 1050 GTCCTGAACC CATACTACTC CCAGTGCTTA TAAGGGGATG AGCATGGAGT 1100 GAAGTGAAGT GAAGTGGAGA GAGTTGAAGT GGCATTGCGC TCGGCTGGGT 1150 AGATAAAAGT CAGCAGCTAT GAATACTCTA TGTGATGCTC ATTGGCGTGT 1200 ACGTTTTAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 1250 AAAAAAAAAA AAAAAAAAAG GGGGCGGCCG C 1271

  10. High temperature annealing of ion irradiated tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  11. SHERATON STATION SQUARE FLOOR PLAN FIRST FLOOR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SHERATON STATION SQUARE FLOOR PLAN FIRST FLOOR 3 DETAILED PROG RAM MONDAY, AUGUST 8, 2016 REGISTRATION 7:00 a.m. - 8:00 a.m. Grand Station Foyer CONTINENTAL BREAKFAST 7:00 a.m. - 8:00 a.m. Grand Station III GRAND STATION I & II OPENING SESSION Moderator: Lynn Brickett, U.S. Department of Energy, National Energy Technology Laboratory 8:00 a.m. Welcoming Remarks Lynn Brickett, U.S. Department of Energy, National Energy Technology Laboratory 8:05 a.m. Overview of DOE's Clean Coal Program

  12. Electrochemical characterization of B-site cation-excess Pr2Ni0.75Cu0.25Ga0.05O4+δ cathode for IT-SOFCs

    SciTech Connect (OSTI)

    Meng, Xiangwei; Lü, Shiquan; Liu, Shouxiu; Liu, Xiaoyan; Sui, Yingrui; Li, Xiuyan; Pang, Mingjun; Wang, Biao; Ji, Yuan; Hu, Michael Z.

    2015-06-15

    In this paper, the B-site cation-excess K2NiF4-type structure oxide, Pr2Ni0.75Cu0.25Ga0.05O4+δ (PNCG) is investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD result shows that PNCG cathode is chemically compatible with the electrolyte Gd0.1Ce0.9O2-δ (GDC) at 900 °C for 5 h. The PNCG material exhibits a semiconductor to metal transition around 425 °C. The thermal expansion coefficient (TEC) of the PNCG sample is 12.72×10-6 K-1 between 30 and 850 °C in air. The polarization resistance (Rp) of PNCG cathode on GDC electrolyte is 0.105, 0.197 and 0.300 Ω cm2 at 800, 750, 700 °C, respectively. A maximum power density of 371 mW cm-2 is obtained at 800 °C for single-cell with 300 μm thick GDC electrolyte and PNCG cathode. Finally, the results of this study demonstrate that PNCG can be a promising cathode material for IT-SOFCs.

  13. Genepool Quarterly Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genepool Quarterly Maintenance Genepool Quarterly Maintenance November 7, 2012 by Kirsten Fagnan The Genepool cluster will be offline for maintenance next Tuesday, November 13th from 7:00 am to 7:00 pm (PST). During this time staff will upgrade the Genepool compute nodes to Debian 6. Also, the firmware for /projectb and /house will be updated. /projectb will be unavailable from 7:00 am to 7:00 pm (PST) and /house will be unavailable from 8:00 am to 1:00 pm (PST). Any webservices or workflows

  14. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 6, 2011 National Electric Transmission Congestion Study Workshop - December 6, 2011 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator

  15. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Electric Transmission Congestion Study Workshop - December 13, 2011 Sheraton Portland Airport Hotel, 8235 Northeast Airport Way, Portland, OR 97220 Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:20 am - 10:15 am Panel I - Regulators * John Savage, Commissioner, Oregon Public Utilities Commission * Marsha Smith, Commissioner, Idaho Public Utilities Commission * Steve Oxley, Deputy Chairman,

  16. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Electric Transmission Congestion Study Workshop - December 15, 2011 Sheraton San Diego Hotel & Marina, 1380 Harbor Island Drive, San Diego, California 92101 Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:15 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:15 am - 10:30 am Panel I - Regulators * Rebecca D. Wagner, Commissioner, Nevada Public Utilities Commission * Charles Hains, Chief Counsel, Arizona Corporation Commission * Keith D.

  17. U

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hyatt Regency San Francisco San Francisco, California June 11, 2008 AGENDA 8:00 - 9:00 am Registration 9:00 - 9:20 am DOE Presentation Plans for the 2009 Congestion Study and Objectives of Workshop 9:20 - 10:30 am Panel I Panelists: Dave Areghini, Associate General Manager, Power, Construction & Engineering Services, Salt River Project Tom Carr, Attorney and Economist, Western Interstate Energy Board The Honorable Dian Grueneich, Commissioner, California Public Utilities Commission The

  18. MDNR Comments on Interim Response Actions (IRAs). I-900-904-1.03.

    Office of Legacy Management (LM)

  19. USEPA Comments on Interim Response Actions (IRAs). I-900-904-1.02.

    Office of Legacy Management (LM)

  20. Time and spectrum-resolving multiphoton correlator for 300900 nm

    SciTech Connect (OSTI)

    Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas; Kolenderski, Piotr; Scarcella, Carmelo; Tosi, Alberto

    2014-10-14

    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  1. 1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion

    SciTech Connect (OSTI)

    Hall, D.

    1982-07-01

    Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

  2. High temperature tensile properties of V-4Cr-4Ti

    SciTech Connect (OSTI)

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.

    1998-09-01

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  3. Mississippi Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    32,900 332,958 333,763 334,305 334,937 334,961 2002-2016 Total Working Gas Capacity 202,972 203,085 203,700 204,113 205,004 205,019 2012-2016 Total Number of Existing Fields 12 12 12 12 12 12

  4. U.S. Department of Energy Schedules Regional Workshops to Provide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Las Vegas Wednesday, August 6, 2008 9:00 a.m.-12:30 p.m.; workshop registration opens at 8:00 a.m. Location: Atomic Testing Museum 755 E. Flamingo Rd. (Just East of Paradise Rd.) ...

  5. Office of Small and Disadvantaged Business Utilization Events...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 2015 NREL Industry Growth Forum 9:00AM to 5:00PM MST ChallengeHER 8:00AM to 12:30PM EST Society of American...

  6. Motor System Upgrades Smooth the Way to Savings of $700,000 at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chevron, the largest U.S. refiner operating six gasoline-producing refineries, completed a ... California: California Industries of the Future Program Effective Fouling Minimization ...

  7. MHK ISDB/Instruments/MTi-G-700 GPS/INS | Open Energy Information

    Open Energy Info (EERE)

    updates occur. Search Related Instruments Related Measurement 3-axis Acceleration (Translation) (6) AirMar 42183 Heading Sensor Dynamic Motion Sensors 0.05 RMS AIRMAR 150WX...

  8. Responsiveness Summary to EPA Comments on Debris Consolidation. IR-700-704-1.01

    Office of Legacy Management (LM)

  9. Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... The converted engine uses a state-of- the-art electronic technology (a closed-loop engine management system to equal diesel power and torque, while providing high efficien- cy and ...

  10. Hurricane Katrina Situation Report #6, August 28, 2005 (7:00 PM EDT)

    SciTech Connect (OSTI)

    2005-08-28

    Highlights are provided reflecting the current status of the impacts of Hurricane Katrina on power grids.

  11. Melter Feed Reactions at T ≤ 700°C for Nuclear Waste Vitrification

    SciTech Connect (OSTI)

    Xu, Kai; Hrma, Pavel R.; Rice, Jarrett A.; Riley, Brian J.; Schweiger, Michael J.; Crum, Jarrod V.

    2015-07-23

    Batch reactions and phase transitions in a nuclear waste feed heated at 5 K min-1 up to 600°C were investigated by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometer, and X-ray diffraction. Quenched samples were leached in deionized water at room temperature and 80°C to extract soluble salts and early glass-forming melt, respectively. To determine the content and composition of leachable phases, the leachates were analyzed by the inductively-coupled plasma spectroscopy. By ~400°C, gibbsite and borax lost water and converted to amorphous and intermediate crystalline phases. Between 400°C and 600°C, the sodium borate early glass-forming melt reacted with amorphous aluminum oxide and calcium oxide to form intermediate products containing Al and Ca. At ~600°C, half Na and B converted to the early glass-forming melt, and quartz began to dissolve in the melt.

  12. Fact #700: November 7, 2011 Biodiesel Consumption is on the Rise for 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Energy Information Administration began tracking biodiesel consumption in 2001. For the first few years biodiesel consumption remained relatively low – well under one thousand barrels per...

  13. Letter: EPA Comments on Interim Response Actions (IRA's). IR-700-704-1.02.

    Office of Legacy Management (LM)

  14. MHK ISDB/Instruments/Vaisala WINDCAP Ultrasonic Wind Sensor WMT700...

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  15. Hugoniot Measurements at Low Pressures in Tin Using 800 MeV proton Radiography

    SciTech Connect (OSTI)

    Schwartz, Cynthia; Hogan, Gary E; King, Nicholas S. P.; Kwiathowski, Kris K.; Mariam, Fesseha G.; Marr-Lyon, Mark; McNeil, Wendy Vogan; Merrill, Frank E.; Morris, Christopher; Rightley, Paul; Saunders, Alexander

    2009-08-05

    A 2cm long 8 mm diameter cylindrical tin target has been shocked to a pressure in the region of the {beta} {yields} {gamma} phase change using a small, low density PETN charge mounted on the opposite side of a stainless steel diaphragm. The density jump and shock velocity were measured radiographically as the shock wave moved through the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record of the equations of state along the Hugoniot for the P1 wave from a shock velocity of 3.25 km/sec down to near the sound speed. Edge release effects were removed from the data using tomographic techniques. The data show evidence for a phase transition that extends over a broad pressure range. The data and analysis will be presented.

  16. HUGONIOT MEASUREMENTS AT LOW PRESSURES IN TIN USING 800 MeV PROTON RADIOGRAPHY

    SciTech Connect (OSTI)

    Schwartz, C. L.; Hogan, G. E.; King, N. S. P.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.; Marr-Lyon, M.; Rightley, P. M.; McNeil, W. V.

    2009-12-28

    A 20 mm long 8 mm diameter cylindrical tin target has been shocked to a pressure just below the beta->gamma phase change, using a small, low density PETN charge mounted on the opposite side of a thin stainless steel diaphragm. The density jump and shock velocity were measured radiographically at multiple points as the shock wave moved though the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record along the principal Hugoniot from a peak shock velocity of 3.27 km/sec to a minimum of 3.09 km/sec. Edge release effects were removed from the data using simple tomographic reconstruction techniques. The data and analysis are presented.

  17. Modifications to Building 409 Dismantling. IR-800-805-1.01

    Office of Legacy Management (LM)

  18. MO-G-BRE-02: A Survey of IMRT QA Practices for More Than 800 Institutions

    SciTech Connect (OSTI)

    Pulliam, K; Kerns, J; Howell, R; Followill, D; Kry, S; O'Daniel, J

    2014-06-15

    Purpose: A wide range of techniques and measurement devices are employed for IMRT QA, causing a large variation of accepted action limits and potential follow up for failing plans. Such procedures are not well established or accepted in the medical physics community. To achieve the goal of proving insight into current IMRT QA practices, we created an electronic IMRT QA survey. The survey was open to a variety of the most common QA devices and assessed the type of comparison to measurement, action limits, delivery methods, and clinical action for failing QA plans. Methods: We conducted an online survey through the Radiological Physics Center's (RPC) annual survey with the goal of ascertaining elements of routine patient-specific IMRT QA. A total of 874 institutions responded to the survey. The questions ranged from asking for action limits, dosimeter type(s) used, delivery techniques, and actions taken when a plan fails IMRT QA. Results: The most common (52%) planar gamma criteria was 3%/3 mm with a 95% of pixels passing criteria. The most common QA device were diode arrays (48%). The most common first response to a plan failing QA was to re-measure at the same point the point dose (89%), second was to re-measure at a new point (13%), and third was to analyze the plan in relative instead of absolute mode (10%) (Does not add to 100% as not all institutions placed a response for each QA follow-up option). Some institutions, however, claimed that they had never observed a plan failure. Conclusion: The survey provided insights into the way the community currently performs IMRT QA. This information will help in the push to standardize action limits among dosimeters.

  19. EIA-800, Weekly Refinery and Fractionator Report Page 1 U. S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    noticeoog.jsp. * Electronic Filing Option: The PC Electronic Data Reporting Option (PEDRO) is a Windows-based application that will enable you to enter data interactively,...

  20. Fact #800: October 21, 2013 Characteristics of New Light Vehicles over Time

    Broader source: Energy.gov [DOE]

    From model years 1980 to 2012, there have been significant gains in automotive technology. For new light vehicles, horsepower has more than doubled and "0-to-60" acceleration times have dropped...

  1. Search for exotic baryons in 800-GeV pp ---> p Xi+- pi+- X

    SciTech Connect (OSTI)

    Christian, D.C.; Felix, J.; Gottschalk, E.E.; Hartouni, E.P.; Knapp, B.C.; Kreisler, M.N.; Moreno, G.; Reyes, M.A.; Sosa, M.; Wang, M.H.L.S.; Wehmann, A.; /Fermilab /Guanajuato U. /LLNL, Livermore /Nevis Labs, Columbia U. /Massachusetts U., Amherst

    2005-07-01

    The authors report the results of a high-statistics, sensitive search for narrow baryon resonances decaying to {Xi}{sup -}{pi}{sup -}, {Xi}{sup -}{pi}{sup +}, {bar {Xi}}{sup +}{pi}{sup +}. The only resonances observed are the well known {Xi}{sup 0}(1530) and {bar {Xi}}{sup 0}(1530). No evidence is found for a state near 1862 MeV, previously reported by NA49[11]. At the 95% confidence level, we find the upper limit for the production of a Gaussian enhancement with {sigma} = 7.6 MeV in the {Xi}{sup -}{pi}{sup -} effective mass spectrum to be 0.3% of the number of observed {Xi}{sup 0}(1530 {yields} {Xi}{sup -}{pi}{sup +}). They find similarly restrictive upper limits for an enhancement at 1862 MeV in the {Xi}{sup -}{pi}{sup +}, {bar {Xi}}{sup +}{pi}{sup +} mass spectra.

  2. EIA-800, Weekly Refinery and Fractionator Report Page 1 U. S...

    Gasoline and Diesel Fuel Update (EIA)

    You can also send your Excel files to EIA using a secure method of transmission: HTTPS. This is an industry standard method to send information over the web using secure, encrypted ...

  3. Insider: Ames Lab gets $800k slice of the pie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processing. Also in the issue were stories on the planned construction of TASF, the clearance of the Lab's chemical disposal site by the Iowa Department of Natural Resources, ...

  4. Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers...

    Office of Environmental Management (EM)

    Coulomb Technologies, ECOtality, General Motors and others have been moving forward to install the charging stations as part of the Administration's investments in U.S. electric ...

  5. EPA Approval for Dismantling of Building 409. IR-800-804-1.01.

    Office of Legacy Management (LM)

  6. Production of J/{Psi} in 800 GeV/c p-Si interactions

    SciTech Connect (OSTI)

    Fermilab E771 Collaboration

    1994-07-01

    The authors report on the analysis of high mass opposite sign dimuon states produced in pSi interactions at {radical}s = 38.7 GeV. These data have been collected with an open geometry fixed target spectrometer in the Fermilab Experiment E771. J/{psi} and {psi}(2S) total cross section sand J/{psi} x{sub f} and p{sub t} differential cross sections have been measured and compared with extrapolations from data at lower energies. Evidence for {Upsilon} meson production is also presented.

  7. Attendee Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attendee Resources Attendee Resources Venue Information The Technology Forum (exhibits and poster displays) will be open during hours listed below. May 19 4:00 to 7:00 p.m. May 20 4:00 to 7:00 p.m. May 21 4:00 to 7:00 p.m. Students at the Summit The SunShot Grand Challenge Summit will bring together more than 800 members of the solar community to review the progress made toward the SunShot goal and discuss the challenges ahead to make solar energy more affordable and widespread across America.

  8. Attendees final.xlsx

    Office of Environmental Management (EM)

    Attendee Resources Attendee Resources Venue Information The Technology Forum (exhibits and poster displays) will be open during hours listed below. May 19 4:00 to 7:00 p.m. May 20 4:00 to 7:00 p.m. May 21 4:00 to 7:00 p.m. Students at the Summit The SunShot Grand Challenge Summit will bring together more than 800 members of the solar community to review the progress made toward the SunShot goal and discuss the challenges ahead to make solar energy more affordable and widespread across America.

  9. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    SciTech Connect (OSTI)

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymeric pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.

  10. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymericmore » pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.« less

  11. Evolution of titania nanotubes-supported WO{sub x} species by in situ thermo-Raman spectroscopy, X-ray diffraction and high resolution transmission electron microscopy

    SciTech Connect (OSTI)

    Cortes-Jacome, M.A.; Angeles-Chavez, C.; Morales, M.; Lopez-Salinas, E.; Toledo-Antonio, J.A.

    2007-10-15

    Structural evolution of WO{sub x} species on the surface of titania nanotubes was followed by in situ thermo-Raman spectroscopy. A total of 15 wt% of W atoms were loaded on the surface of a hydroxylated titania nanotubes by impregnation with ammonium metatungstate solution and then, the sample was thermally treated in a Linkam cell at different temperatures in nitrogen flow. The band characteristic of the W=O bond was observed at 962 cm{sup -1} in the dried sample, which vanished between 300 and 700 deg. C, and reappear again after annealing at 800 deg. C, along with a broad band centered at 935 cm{sup -1}, attributed to the v{sub 1} vibration of W=O in tetrahedral coordination. At 900 and 1000 deg. C, the broad band decomposed into four bands at 923, 934, 940 and 950 cm{sup -1}, corresponding to the symmetric and asymmetric vibration of W=O bonds in Na{sub 2}WO{sub 4} and Na{sub 2}W{sub 2}O{sub 7} phases as determined by X-ray diffraction and High resolution transmission electron microscopy (HRTEM). The structure of the nanotubular support was kept at temperatures below 450 deg. C, thereafter, it transformed into anatase being stabilized at temperatures as high as 900 deg. C. At 1000 deg. C, anatase phase partially converted into rutile. After annealing at 1000 deg. C, a core-shell model material was obtained, with a shell of ca. 5 nm thickness, composed of sodium tungstate nanoclusters, and a core composed mainly of rutile TiO{sub 2} phase. - Graphical abstract: Titania nanotubes loaded with 15 wt% W atoms were characterized from room temperature (rt) to 1000 deg. C by thermo-Raman spectroscopy in N{sub 2}. At 1000 deg. C, a core-shell model material was obtained, with a shell thickness of ca. 5 nm composed by nanoclusters of sodium tungstate, and a core composed mainly of rutile TiO{sub 2} phase.

  12. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - diffusion capacitance C T (V) - transition capacitance V ac - arcing AC voltage - signal frequency -8.00E+03 -7.00E+03 -6.00E+03 -5.00E+03 -4.00E+03 -3.00E+03 -2.00E+03...

  13. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  14. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  15. STEAB Meeting Agenda August 2007

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Time Proceeding VenuePresenter Monday, August 13 7:00 p.m. Kick-Off Dinner Adagia Restaurant Meet in Hotel Lobby at 6:45 p.m. Tuesday, August 14 LBNL 8:00 a.m. Depart Hotel for ...

  16. Oxazine laser dyes

    DOE Patents [OSTI]

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  17. Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - National Training Program 8:00AM to 6:00PM EDT Multi-Agency Veterans Hiring Event 1:00PM to 5:00PM EDT 19 20 21 22 23 24 25 2015 Women's Policy STEM Fair 5:00PM to 7:00PM EDT...

  18. PRODUCTION OF PLUTONIUM METAL

    DOE Patents [OSTI]

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  19. Nuclear Material Transaction Report nrc741_1

    National Nuclear Security Administration (NNSA)

    XXX VVV 000001 A A 1 1 1 1 COMPANY NAME COMPANY ADDRESS CITY, STATE ZIP CODE CONTACT WASTE COMPANY NAME COMPANY ADDRESS CITY, STATE ZIP CODE CONTACT 1 VVV XXX 03 31 2008 1 LD WASTE 1 20 776 J 8.00 93.000 7.00 2041 Example 5-a 227

  20. Modifications to the Building 409 Dismantling and Building 401 Dismantling EE and CAs. I-900-905-1.01

    Office of Legacy Management (LM)

  1. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    SciTech Connect (OSTI)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs.

  2. 2012 Peer Review Overview Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 7th, 2012 8:00 am to 9:00 am 9:00 am to 10:30 am 10:30 am to 10:45 am 10:45 am to 11:45 am 11:45 am to 12:15 pm 12:15 pm to 1:30 pm 1:30 pm to 2:00 pm 1:30 pm to 2:00 pm 2:30 pm to 3:00 pm 2:30 pm to 3:00 pm 2:30 pm to 3:00 pm 3:00 pm to 3:15 pm 3:00 pm to 3:15 pm 3:00 pm to 3:15 pm 3:00 pm to 3:15 pm 4:15 pm to 4:45 pm 4:15 pm to 4:45 pm 4:15 pm to 4:45 pm 4:45 pm to 5:15 pm 4:45 pm to 5:15 pm 4:45 pm to 5:15 pm Tuesday, May 8th, 2012 8:00 am to 9:00 am 9:00 am to 9:30 am 9:00 am to 9:30

  3. Effect of chlorine on furnace wall corrosion in utility boilers

    SciTech Connect (OSTI)

    Kung, S.C.; Daniel, P.L.; Seeley, R.R.

    1996-08-01

    The corrosion resistance of several commercial alloys was investigated in laboratory retort tests under a reducing/sulfidizing mixed gas at 700 and 900 F (371 and 482 C) for 1,000 hours. The test conditions were designed to simulate the corrosion of furnace walls in the combustion zone of utility boilers burning sulfur/chlorine-bearing coal substoichiometrically. Corrosion rates of these alloys were determined and compared to those obtained from a previous study in which the same alloys were evaluated under chlorine-free substoichiometric combustion environments. Results of the two studies reveal that the presence of chlorine in the reducing/sulfidizing mixed gas has a negligible effect on the corrosion behavior of these alloys in this gas at 700 F (371 C), whereas a beneficial effect was observed at 900 F (482 C). The beneficial effect implies that the presence of HCl may impede the sulfidation attack by H{sub 2}S under certain substoichiometric combustion environments.

  4. STEAB April Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APRIL MEETING AGENDA April 28 - 29, 2015 Hilton Garden Inn Downton Austin 500 N Interstate 35, Austin, TX 78701 Rio Grande Conference Room DAY 1 - April 28 th 8:00 - 8:45 Breakfast, hotel meeting room 8:45 - 9:00 Agenda and Tour Overview Monica and Frank 9:00 - 9:45 Overview of the Office of Technology Transitions (teleconference) Jetta Wong, DOE 9:45 - 10:00 Austin, TX Overview and Highlights Dub Taylor 10:00 - 10:30 HUD Follow-up (teleconference) Kevin Bush, HUD 10:30 - 10:45 Break 10:45 -

  5. STEAB August 2014 Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB AUGUST MEETING AGENDA August 20 - 21, 2014 Washington Marriott Georgetown, 1221 22 nd Street, NW, Washington, DC Dupont Salon F/G DAY 1 - August 20 th 8:00 - 9:00 Breakfast, hotel meeting room 9:00 - 9:30 Welcome and Meeting Overview Julie and Frank 9:30 - 10:45 Discussion with EERE's Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan 10:45 - 11:00 Break 11:00 - 12:00 Discussion and Follow-up to STEAB's Recommendations on a National Lab Voucher Program Joyce Yang and

  6. State Energy Advisory Board Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MEETING AGENDA March 20 - 21, 2014 Denver West Marriott, Salon E - Golden, Colorado DAY 1 8:00 - 9:00 Breakfast, hotel meeting room 9:00 - 9:30 Welcome and Meeting Overview Julie and Frank 9:30 - 10:30 Discussion with NREL Director, Dan Arvizu on Lab Vision Dan Arvizu 10:30 - 11:15 Advanced Manufacturing Office: Accelerating energy improvements in the manufacturing/industrial sector - Better Plants initiative - Industrial Assessment Centers Jay Wrobel 11:15 - 11:30 Break 11:30 - 12:30 Dr. David

  7. Tevatron status

    SciTech Connect (OSTI)

    Dugan, G.

    1989-03-01

    The Fermilab Tevatron is both the world's highest energy accelerator system and first large-scale superconducting synchrotron. Since Tevatron commissioning in July 1983, the accelerator has operated in 1984, 1985 and 1987 with extracted beams of 800 GeV for three runs of fixed target physics, and in 1987, and 1988, with proton-antiproton colliding beams at 900 /times/ 900 GeV. This paper will focus on the collider operation of the Tevatron: its present status and the outlook for its longer-term future evolution. 18 refs., 3 figs., 2 tabs.

  8. 2013 December STEAB Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB Meeting: December 3-4, 2013 AGENDA Tuesday, December 3 8:00 - 8:30 Breakfast (provided) 8:30 - 9:00 Welcome, Introductions, and Meeting Objectives Julie Hughes & Frank Murray 9:00 - 10:00 Discussion of EERE Priorities, 2014 Opportunities from STEAB's Perspective, and Potential Synergies Dr. Dave Danielson 10:00 - 11:00 DOE State & Local Engagement Efforts: How STEAB Can Assist Alice Madden 11:00 - 11:15 Break 11:15 - 12:15 Opportunities for DOE to Assist in State Discussions on

  9. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 8, 2011 National Electric Transmission Congestion Study Workshop - December 8, 2011 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy,

  10. July 10-11, 2012, HSS Focus Group Training Work Group - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HSS Focus Group Training Working Group (TWG) Subcommittee Meeting July 10, 2012 9:00 AM - 5:00 PM 8:30 a.m. Meet Visitors at Gazebo Evan Dunne 8:00 a.m. Pre-meeting for Co-Chairs to discuss how Co-Chairs will operate together:  Roles and Responsibilities  Co-Chair Conference Calls  Working Group Calls  Meetings, etc. Pete Stafford, Julie Johnston, Karen Boardman 9:00 a.m. Co-Chairs meet with TWG Subcommittee (HAMMER, NTC, NIEHS)  Discuss Expectations of Subcommittee ALL 10:00 a.m.

  11. Hydrogen Sensor Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3a. The Agenda HYDROGEN SENSOR WORKSHOP AGENDA June 8 th , 2011  Chicago, IL 8:00 am - 8:30 am Registration Workshop will take place in a room at the Convention Center. Exact room 21. 8:30 am - 8:50 am Welcome Remarks William Buttner, NREL DOE Fuel Cell and Hydrogen Program; Role of Sensors 8:50 am - 9:00 am Scott McWorter, SRNL; DOE 9:00 am - 9:20 am 2007 Workshop Robert Glass/Lawrence Livermore National Laboratory 2011 Workshop Background and Objectives; Technology Update Robert Burgess,

  12. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J.; Hansen, Leif J.; Evans, David B.

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  13. Studying some mechanical properties of MgO with used neon bulb glass

    SciTech Connect (OSTI)

    Issa, Tarik Talib; Khaleel, Saba Mahdi; Abdul Kareem, Noura Ammar

    2013-12-16

    Ceramic compact of MgO +WT% of UNBG were sintered at different sintering temperature (700, 900, 1100, 1300)°c, under static air for 3 hours. X-ray diffraction and some mechanical properties were conducted. The maximum sintered density, compression; fracture strength and hardness were indicated for the compilation of MgO −20 WT % UNBG, sintered at 1300 °c.

  14. Overview and Update LON and LONMARK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LonMark & ISO/IEC 14908 Barry Haaser Executive Director LonMark International * LonMark International's mission is to enable the easy integration of multi-vendor systems based on ISO/IEC 14908-1 and related standards. * Established in 1994 * Over 300 members worldwide * Certified over 900 interoperable products since 1995 * Certified over 700 professionals Standards Deployment Architecture Key markets served: * Buildings * Quick Service Restaurants * Street Lighting * Oil & Gas * Smart

  15. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  16. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioconjugatable bacteriochlorins for biohybrid antennas Theme 1: Native Antenna Theme 2: Biohybrid Antenna Theme 3: Bioinspired Antenna Jonathan Lindsey and team (NC State University) Paul Loach (Northwestern University) David Bocian ( University of California, Riverside) Dewey Holten (Washington University) The positions indicated enable wavelength tuning (700-900 nm). Features for imparting water- solubility and bioconjugation must either be added onto these sites in an innocent manner (i.e.,

  17. DRAFT/PRELIMINARY MEETING AGENDA

    Office of Environmental Management (EM)

    DEPARTMENT OF ENERGY TRANSPORTATION EXTERNAL COORDINATION WORKING GROUP (TEC) SEPTEMBER 13-14, 2006 GREEN BAY, WISCONSIN DAY 1 -Wednesday, September 13, 2006 THREE CLANS COMPLEX - TURTLE/BEAR ROOMS 7:30 a.m. - 8:00 a.m. Continental Breakfast and Registration 8:00 a.m. - 9:00 a.m. Welcome and Meeting Overview - Posting of the Colors/Flag Song - Oneida Veterans' Color Guard/Oneida Drummers, Sovereign Oneida Nation of Wisconsin - Welcome - Councilman Paul Ninham, Sovereign Oneida Nation of

  18. Wafer characteristics via reflectometry

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2010-10-19

    Various exemplary methods (800, 900, 1000, 1100) are directed to determining wafer thickness and/or wafer surface characteristics. An exemplary method (900) includes measuring reflectance of a wafer and comparing the measured reflectance to a calculated reflectance or a reflectance stored in a database. Another exemplary method (800) includes positioning a wafer on a reflecting support to extend a reflectance range. An exemplary device (200) has an input (210), analysis modules (222-228) and optionally a database (230). Various exemplary reflectometer chambers (1300, 1400) include radiation sources positioned at a first altitudinal angle (1308, 1408) and at a second altitudinal angle (1312, 1412). An exemplary method includes selecting radiation sources positioned at various altitudinal angles. An exemplary element (1650, 1850) includes a first aperture (1654, 1854) and a second aperture (1658, 1858) that can transmit reflected radiation to a fiber and an imager, respectfully.

  19. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Yujie; Yang, Timothy M.; Liu, Peizhi; Contescu, Cristian I.; Huang, Biao; Wang, Siqun

    2014-12-04

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149° static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 °C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacitymore » (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Lastly, carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.« less

  20. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    SciTech Connect (OSTI)

    Meng, Yujie; Yang, Timothy M.; Liu, Peizhi; Contescu, Cristian I.; Huang, Biao; Wang, Siqun

    2014-12-04

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149° static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 °C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Lastly, carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.

  1. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    SciTech Connect (OSTI)

    Meng, Yujie; Yang, Timothy M; Peizhi, Liu; Contescu, Cristian I; Biao, Huang; Siqun, Wang

    2015-01-01

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149 static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 oC (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Carbon aerogel s ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.

  2. Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Workshop Agenda Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research ASCR / NERSC Workshop January 5-6, 2011 >> Download and View these presentations Wednesday, January 5 Time Topic Presenter 8:00 Arrive, informal discussions 8:30 Welcome, introductions, workshop goals, charge to committee Yukiko Sekine, DOE-SC/ASCR 8:50 Workshop outline, logistics, format Harvey Wasserman, NERSC 9:00 ASCR Program Office Research Directions Karen Pao, DOE / ASCR

  3. Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Workshop Agenda Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Location: Hilton Washington DC/Rockville Executive Meeting Center. 1750 Rockville Pike, Rockville, Maryland, 20852 Thursday, May 7 8:00 am - Arrive, informal discussions 8:30 am - Welcome, introductions, workshop goals, charge to committee (Yukiko Sekine, DOE-SC/ASCR) 8:45 am - Workshop outline, logistics, format, procedures (Harvey Wasserman, NERSC) 9:00 am - BER Program

  4. Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Workshop Agenda Large Scale Computing and Storage Requirements for Fusion Energy Sciences FES / ASCR / NERSC Workshop August 3-4, 2010 >> Download and View these presentations Tuesday, August 3 Time Topic Presenter 8:00 Arrive, informal discussions 8:30 Welcome, introductions, workshop goals, charge to committee Yukiko Sekine, DOE-SC/ASCR 8:50 Workshop outline, logistics, format, procedures Harvey Wasserman, NERSC 9:00 FES Program Office Research Directions John Mandrekas , DOE /

  5. Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Workshop Agenda Large Scale Computing and Storage Requirements for High Energy Physics An HEP / ASCR / NERSC Workshop November 12-13, 2009 >> Download and View these Presentations. Thursday, November 12 8:00 am Arrive, informal discussions 8:30 am Welcome, introductions, workshop goals, charge to committee Yukiko Sekine, DOE-SC/ASCR 8:45 am Workshop outline, logistics, format, procedures Harvey Wasserman, NERSC 9:00 am HEP Program Office Research Directions Amber Boehnlein, DOE /

  6. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  7. Microsoft Word - All Discounts updated January 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2016 Amusement Parks & Resorts Get Away Today Vacations 1650 E 5700 S, South Ogden, UT 84403 (800) 523-6116 Get Away Today Vacations is pleased to offer HDC members discounted attraction tickets, hotel accommodations, transportation options, and more to the Disneyland Resort, San Diego, Las Vegas, Hawaii, cruises, the Caribbean, Mexico and more than 1,900 other destinations worldwide. Visit the web page at http://www.getawaytoday.com/partners/FluorHanfordInc.aspx. Recreation

  8. 2013 Peer Review Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4/22-4/25 2013 Peer Review Agenda print date 04/10/13 Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday -- Monday TRACK 1 - Ballroom A TRACK 2 - Ballroom B TRACK 3 - Big Thompson Start End Panel Presentation Presenter Start End Panel Presentation Presenter Start End Panel Presentation Presenter 8:00 AM 9:00 AM Ballroom C&D CONTINENTAL BREAKFAST & REGISTRATION

  9. METHOD OF MAKING WIRE FUEL ELEMENTS

    DOE Patents [OSTI]

    Zambrow, J.L.

    1960-08-01

    A method is given for making a nuclear reactor fuel element in the form of a uranium-bearing wire clad with zirconium. A uranium bar is enclosed in a zirconium sheath which is coated with an oxide of magnesium, beryllium, or zirconium. The sheathed bar is then placed in a steel tube and reduced to the desired diameter by swaging at 800 to 900 deg C, after which the steel and oxide are removed.

  10. Missouri Department of Natural Resources (MDNR) Comments on Interim Response Actions (IRA's). IR-700-704-1.03.

    Office of Legacy Management (LM)

  11. Dissolution of surface oxide layers on titanium and titanium subhydride between 25/sup 0/ and 700/sup 0/C

    SciTech Connect (OSTI)

    Wittberg, T.N.; Wang, P.S.

    1981-01-01

    The surface-sensitive, spectroscopic techniques of Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) have been applied to the study of oxide dissolution on titanium and titanium subhydride. In an earlier study it was shown, using AES, that the rate of oxygen dissolution into titanium increased sharply at about 350/sup 0/C. These data correlated well with physical property measurements that indicated that at these temperatures an exothermic reaction, corresponding to the reaction of free titanium with atmospheric oxygen, was occurring. In the present study the work has been expanded to include studies of TiH/sub x/ (x = 1.15, 1.62). It has been found that dissolution of the native oxide on titanium subhydride occurs at a substantially higher temperature (about 500/sup 0/C) than for titanium. It appears that the outward diffusion of hydrogen is inhibiting the inward diffusion of oxygen on the subhydride samples at temperatures below 500/sup 0/C. Further studies of the dissolution of oxides on titanium at fixed temperatures in the range of 300 to 350/sup 0/C have shown that there is a semi-logarithmic relationship between the surface oxygen level and the time at temperature. This is in agreement with earlier gravimetric studies on titanium oxidation in this temperature range.

  12. Verification of Allowable Stresses In ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H

    SciTech Connect (OSTI)

    R. W. Swindeman; M. J. Swindeman; B. W. Roberts; B. E. Thurgood; D. L. Marriott

    2007-11-30

    The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S{sub t}, for coverage in ASME Section III Subsection NH (ASME III-NH) to 650 C (1200 F) and 600,000 hours. The accumulated database included over 300 tests for 1% total strain, nearly 400 tests for tertiary creep, and nearly 1700 tests to rupture. Procedures for analyzing creep and rupture data for ASME III-NH were reviewed and compared to the procedures used to develop the current allowable stress values for Gr 91 for ASME II-D. The criteria in ASME III-NH for estimating S{sub t} included the average strength for 1% total strain for times to 600,000 hours, 80% of the minimum strength for tertiary creep for times to 600,000 hours, and 67% of the minimum rupture strength values for times to 600,000 hours. Time-temperature-stress parametric formulations were selected to correlate the data and make predictions of the long-time strength. It was found that the stress corresponding to 1% total strain and the initiation of tertiary creep were not the controlling criteria over the temperature-time range of concern. It was found that small adjustments to the current values in III-NH could be introduced but that the existing values were conservative and could be retained. The existing database was found to be adequate to extend the coverage to 600,000 hours for temperatures below 650 C (1200 F).

  13. Dismantling of Building 409. Missouri Department of Natural Resources (MDNR) on Interim Response Actions. IR-800-804-1.03

    Office of Legacy Management (LM)

  14. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown reflect those of relatively high-Btu coal selected in each region

  15. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  16. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  17. 2012 Workshop Agenda_Ver_25.xlsx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    START STOP DUR. (min.) TOPIC SPEAKER Tuesday, April 3 7:00 AM 8:00 AM 60 Workshop Registration 8:00 AM 8:05 AM 5 Welcome and Workshop Logistics John Makepeace, Office of Engineering and Construction Management 8:05 AM 8:20 AM 15 Opening Remarks Ingrid Kolb, Director, Office of Management 8:20 AM 8:40 AM 20 Achieving Management and Operational Excellence Melvin G. Williams, Associate Deputy Secretary 8:40 AM 8:55 AM 15 Break 8:55 AM 9:45 AM 50 Project Management Success: Are We There Yet? Paul

  18. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700

  19. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C

  20. New Types of Unstable Step-Flow Growth on Si(111)-(7x7) during Molecular Beam Epitaxy: Scaling and Universality

    SciTech Connect (OSTI)

    Omi, Hiroo; Homma, Yoshikazu; Tonchev, Vesselin; Pimpinelli, Alberto

    2005-11-18

    New types of unstable homoepitaxial growth of vicinal Si(111)-(7x7) surfaces are studied using ex situ atomic force microscopy. The growth features are two types of step bunching with straight step edges between 700 and 775 deg. C and one type of simultaneous bunching and meandering at 800 deg. C. The results of a quantitative size scaling analysis of the straight steps are discussed from the perspective of universality classes in bunching theory.

  1. Emeritus Scientists and Engineers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emeritus Scientists and Engineers Argonne's world-class researchers have achieved national and international recognition, including: Three Nobel Prizes, 119 R&D 100 Awards, More than 700 national and international awards and honors, and More than 800 patents. In 2006, Argonne created a new honorary status for qualified staff. The title of "Emeritus," conferred at the time of retirement, recognizes the individual's important contributions to the laboratory. This title is granted

  2. Argonne Distinguished Fellows | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Distinguished Fellows Argonne's world-class scientists have achieved national and international recognition, including: Three Nobel Prizes, 119 R&D 100 Awards, More than 700 national and international awards and honors, and More than 800 patents. The Argonne Distinguished Fellow is the highest scientific/engineering rank at the laboratory, and this distinction is held by only a small fraction (approximately 3 percent) of the research staff. Staff members who achieve this rank have a

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 SECTION A. Project Title: High Temperature Tribological Performance of Ni Alloys Under Helium Environment for Very High Temperature Gas Cooled Reactors (VHTRs) [RC-2.3] Helium Tribology for HTGRs - Texas A&M University SECTION B. Project Description Texas A&M University proposes to systematically evaluate the tribological response of 800H and 617 alloys at relevant reactor operating temperatures (700 o -950 o C) and in the presence of helium coolant. To achieve this objective, the

  4. Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study

    SciTech Connect (OSTI)

    Sogabe, Tomah Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka; Mulder, Peter; Schermer, John

    2014-09-15

    We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

  5. Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,207 1990's 1,438 2,620 3,257 5,500 6,000 5,258 5,826 6,825 7,000 6,750 2000's 7,068 7,425 7,700 8,600 8,500 8,900 9,200 9,712 9,995 10,600 2010's 10,100 11,100 10,900 10,550 10,500 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Grain size effect on the giant dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} nanoceramics prepared by mechanosynthesis and spark plasma sintering

    SciTech Connect (OSTI)

    Ahmad, Mohamad M.; Yamada, Koji

    2014-04-21

    In the present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80?nm to ?200?nm for the ceramics sintered at 800?C and 975?C, respectively. Further increase of SPS temperature to 1050?C leads to micro-sized ceramics of 23??m. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed in CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3??10{sup 3}, 2.4??10{sup 4}, and 3.2??10{sup 4} for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14??10{sup 4}. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.

  7. State Overview

    Energy Savers [EERE]

    9 million (3% total U.S.) Housing Units: 4.11 million (3% total U.S.) Business Establishments: 0.22 million (3% total U.S.) Annual Energy Consumption Electric Power: 131 TWh (4% total U.S.) Coal: 21,700 MSTN (2% total U.S.) Natural Gas: 605 Bcf (3% total U.S.) Motor Gasoline: 101,000 Mbarrels (3% total U.S.) Distillate Fuel: 34,900 Mbarrels (3% total U.S.) Annual Energy Production Electric Power Generation: 122.3 TWh (3% total U.S.) Coal: 40.7 TWh, 33% [13.8 GW total capacity] Petroleum: 0.4

  8. Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy

    DOE Patents [OSTI]

    Bischoff, Brian L.; Sutton, Theodore G.; Judkins, Roddie R.; Armstrong, Timothy R.; Adcock, Kenneth D.

    2010-11-09

    A method for treating a porous item constructed of metal powder, such as a powder made of Series 400 stainless steel, involves a step of preheating the porous item to a temperature of between about 700 and 900.degree. C. degrees in an oxidizing atmosphere and then sintering the body in an inert or reducing atmosphere at a temperature which is slightly below the melting temperature of the metal which comprises the porous item. The thermal stability of the resulting item is enhanced by this method so that the item retains its porosity and metallic characteristics, such as ductility, at higher (e.g. near-melting) temperatures.

  9. Salt-soda sinter process for recovering aluminum from fly ash

    DOE Patents [OSTI]

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  10. Salt-soda sinter process for recovering aluminum from fly ash

    DOE Patents [OSTI]

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na.sub.2 CO.sub.3 to a temperature in the range 700.degree.-900.degree. C. for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  11. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, September 13--December 12, 1997

    SciTech Connect (OSTI)

    1998-07-01

    The eighteen 10-acre infill wells which were drilled as part of the field demonstration portion of the project are all currently in service with no operational problems. These wells consist of fourteen producing wells and four injection wells. The producing wells are currently producing a total of approximately 450 bopd, down from a peak rate of 900 bopd. Unit production is currently averaging approximately 2,700 bopd, 12,000 bwpd and 18,000 bwipd. The paper describes progress on hydraulic fracture design, reservoir surveillance, data analysis procedures, and deterministic modeling and simulation.

  12. Salt-soda sinter process for recovering aluminum from fly ash

    SciTech Connect (OSTI)

    Mcdowell, W.J.; Seeley, F.G.

    1981-03-03

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na2CO3 to a temperature in the range 700*-900* C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  13. Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent

    DOE Patents [OSTI]

    Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

    2014-12-30

    The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

  14. State Overview

    Energy Savers [EERE]

    0 million (2% total U.S.) Housing Units: 2.84 million (2% total U.S.) Business Establishments: 0.13 million (2% total U.S.) Annual Energy Consumption Electric Power: 96.4 TWh (3% total U.S.) Coal: 19,900 MSTN (2% total U.S.) Natural Gas: 267 Bcf (1% total U.S.) Motor Gasoline: 70,800 Mbarrels (2% total U.S.) Distillate Fuel: 28,900 Mbarrels (2% total U.S.) Annual Energy Production Electric Power Generation: 77.7 TWh (2% total U.S.) Coal: 35.4 TWh, 46% [9.6 GW total capacity] Petroleum: 0.1 TWh,

  15. U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    6 State Heating Oil and Propane Program (SHOPP) Workshop U.S. Department of Energy Forrestal Building 1000 Independence Avenue SW Washington, DC 20585 Room GH-027 Wednesday, July 13, 2016 9:00 am - 3:15 pm Time Workshop agenda 8:00 - 8:45 am U.S. Department of Energy Visitor Registration** Please see required forms of identification 8:30 - 9:15 am Light breakfast and coffee 9:15 - 9:20 am Welcome - Adam Sieminski, Administrator, U.S. Energy Information Administration 9:20 - 9:45 am Biofuel

  16. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are

  17. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect (OSTI)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  18. State Overview

    Energy Savers [EERE]

    PAGE | 1 Produced by Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability (OE) State Overview Population: 0.63 million (<1% total U.S.) Housing Units: 0.32 million (<1% total U.S.) Business Establishments: 0.02 million (<1% total U.S.) Annual Energy Consumption Electric Power: 5.5 TWh (<1% total U.S.) Coal: 0 MSTN (0% total U.S.) Natural Gas: 392 Bcf (2% total U.S.) Motor Gasoline: 7,800 Mbarrels (<1% total U.S.) Distillate Fuel: 3,900 Mbarrels

  19. U.S. Department of Energy Collegiate Wind Competition 2016 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Department of Energy Collegiate Wind Competition 2016 U.S. Department of Energy Collegiate Wind Competition 2016 May 23, 2016 8:00AM EDT to May 25, 2016 5:00PM EDT New Orleans, Louisiana Ernest N. Morial Convention Center 900 Convention Center Boulevard New Orleans, Louisiana 70130 Held in conjunction with the American Wind Energy Association's WINDPOWER, the U.S. Department of Energy Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a

  20. Diffusion Welding of Compact Heat Exchangers for Nuclear Applications

    SciTech Connect (OSTI)

    Denis Clark; Ron Mizia; Dr. Michael V. Glazoff; Mr. Michael W. Patterson

    2012-06-01

    The next-­-generation nuclear plant (NGNP) is designed to be a flexible source of energy, producing various mixes of electrical energy and process heat (for example, for hydrogen generation) on demand. Compact heat exchangers provide an attractive way to move energy from the helium primary reactor coolant to process heat uses. For process heat efficiency, reactor outlet temperatures of 750-­-900°C are desirable. There are minor but deleterious components in the primary coolant; the number of alloys that can handle this environment is small. The present work concentrates on Alloys 800H and 617.

  1. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1993-10-19

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 [mu]m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO[sub 3]; and then indurating it at 800 to 900 C for a time sufficient to produce attrition-resistant granules.

  2. agenda-april-8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda TRANSIMS Workshop, Thursday, April 8 8:00 Registration 9:00 David Weber Introduction and Welcoming Remarks 9:15 Fred Ducca Key-Note Address: Historical Remarks on TRANSIMS 9:55 David Roden Development Plans and Design Concepts for TRANSIMS Version 5 10:30 Tea/Coffee 10:45 Hubert Ley Advanced TRANSIMS User Interfaces - TRANSIMS Studio and the RTE Run Time Environment 11:15 Michael Hope Parallelization of the TRANSIMS Microsimulator - Design, Development, and Performance 11:45 Reinaldo

  3. Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Agenda Large Scale Computing and Storage Requirements for Nuclear Physics (NP): Target 2017 April 29-30, 2014 Bethesda, MD Final Agenda Tuesday, April 29 Time Topic Speaker 8:00 AM Informal discussions 8:30 AM Welcome, Overview of Requirements Reviews Richard Gerber, NERSC 8:45 AM The View from ASCR Barbara Helland, Dave Goodwin, ASCR 9:00 AM NP Program Office Research Directions Ted Barnes, NP 9:30 AM NERSC Ten-Year Plan Sudip Dosanjh, NERSC Director 10:00 AM AM Break Lattice QCD Case

  4. American Physical Society March Meeting (Baltimore, MD) - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Physical Society March Meeting (Baltimore, MD) American Physical Society March Meeting (Baltimore, MD) Mon, Mar 14, 2016 8:00am 08:00 Fri, Mar 18, 2016 9:00am 09:00 Baltimore Convention Center 1 W Pratt St Baltimore, MD 21201 United States Bryan Beckingham and Daniel Miller, "Quantitative Monitoring of Membrane Permeation via In-Situ ATR FT-IR Spectroscopy" Abstract: Ion conducting membranes are of interest for various energy applications including fuel cells and artificial

  5. STEAB Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marriott at Metro Center 775 12 th Street, NW Washington, DC 20005 March 9 - 11, 2010 Tuesday - March 9 th 8:00 - Breakfast (Provided in the Room for Members and Speakers) 8:30 - Swearing-in for new SGE Dan S. Carol 9:00 - Welcoming Remarks Kathleen Hogan Deputy Assistant Secretary for EERE 9:15 - Topics of Interest with EE-1: Cathy Zoi (by Claire Johnson) a. EERE's Vision for the States Assistant Secretary EERE b. Discussion of Resolution 10-01 c. Summary of Governors' Calls 9:30 - Update on

  6. STEAB Meeting Agenda November 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB Meeting Hilton Knoxville 501 West Church Avenue Knoxville, TN 37902 November 15- 17, 2011 Monday - November 14 th Arrive in Knoxville, TN Check-in to the hotel: Hilton Knoxville 501 West Church Avenue Knoxville, TN 37902 Tuesday - November 15 th 8:00 - Breakfast (Provided in the Room for Members and Speakers) 9:00 - Welcome and Review of Agenda and Meeting Purpose Janet Streff Chair, STEAB 9:30 - Weatherization Task Force Update Elliott Jacobson a) Review of WAP letter to DOE/Dr. Hogan

  7. Environmental Management Site-Specific Advisory Board Chairs Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 20-21, 2016 DoubleTree Hotel, 215 S. Illinois Ave., Oak Ridge, TN Wednesday, April 20 8:00 am Registration 8:30 am Welcome and Opening Remarks  David Borak, EM SSAB Designated Federal Officer  Warren Gooch, Mayor, City of Oak Ridge  Jay Mullis, Deputy Manager for Environmental Management, Oak Ridge  Belinda Price, Chair, Oak Ridge Site Specific Advisory Board 8:50 am Meeting Overview  Eric Roberts, Facilitator 9:00 am EM Program Update  Mark Whitney, Principal Deputy

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Coal Production, 1949-2011 Total By Rank By Mining Method By Location 200 U.S. Energy Information Administration / Annual Energy Review 2011 Anthracite Lignite¹ Subbituminous Coal¹ ¹ Subbituminous coal and lignite are included in bituminous coal prior to 1969. Source: Table 7.2. 1950 1960 1970 1980 1990 2000 2010 0 300 600 900 1,200 1,500 Million Short Tons Bituminous Coal¹ 1950 1960 1970 1980 1990 2000 2010 0 200 400 600 800 Million Short Tons 1950 1960 1970 1980 1990 2000 2010 0 300 600

  9. HEC-DPSSL 2012 Workshop, Agenda: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Agenda TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up Agenda - Click to Download Time Session Title First Name Last Name Talk Title 9/12/2012 8:00 Registration / Breakfast 9:00 Welcome Andy Bayramian 9:15 Introduction Mike Dunne 9:30 Overview session Paul Mason DiPOLE - An Efficient and Scalable HEC-DPSSL System 10:00 Marco Hornung Status of the POLARIS laser system 10:30 Mathias Siebold

  10. 2012 Smart Grid Peer Review - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Delivery and Energy Reliability Page 1 of 3 U.S. Department of Energy Smart Grid R&D Peer Review San Diego Gas & Electric Energy Innovation Center 4760 Clairemont Mesa Blvd San Diego, California June 7-8, 2012 AGENDA Thursday, June 7, 2012 8:00 am Registration and Continental Breakfast 8:30 am - 8:40 am Welcome David Geier, Vice President Electric Operations, San Diego Gas & Electric 8:40 am - 9:00 am OE's R&D Division/Smart Grid R&D Program Hank Kenchington/Dan

  11. U.S. Department of Energy National Nuclear Security Administration Los Alamos Field Office Overview Presentation to: Name Title

    Office of Environmental Management (EM)

    Energy U.S. Department of Energy Collegiate Wind Competition 2016 U.S. Department of Energy Collegiate Wind Competition 2016 May 23, 2016 8:00AM EDT to May 25, 2016 5:00PM EDT New Orleans, Louisiana Ernest N. Morial Convention Center 900 Convention Center Boulevard New Orleans, Louisiana 70130 Held in conjunction with the American Wind Energy Association's WINDPOWER, the U.S. Department of Energy Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a

  12. Silicon fiber with p-n junction

    SciTech Connect (OSTI)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900??m and core diameters of 20800??m. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  13. Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel

    SciTech Connect (OSTI)

    Karimi, M.; Najafizadeh, A.; Kermanpur, A.; Eskandari, M.

    2009-11-15

    The martensite to austenite reversion behavior of 90% cold rolled AISI 301 stainless steel was investigated in order to refine the grain size. Cold rolled specimens were annealed at 600-900 deg. C, and subsequently characterized by scanning electron microscopy, X-ray diffraction, Feritscope, and hardness measurements. The effects of annealing parameters on the formation of fully-austenitic nano/submicron grained structure and the mechanisms involved were studied. It was found that annealing at 800 deg. C for 10 s exhibited the smallest average austenite grain size of 240 {+-} 60 nm with an almost fully-austenitic structure.

  14. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1993-01-01

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 .mu.m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO.sub.3 ; and then indurating it at 800.degree. to 900.degree. C. for a time sufficient to produce attrition-resistant granules.

  15. A 700 year sediment record of black carbon and polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden

    SciTech Connect (OSTI)

    Marie Elmquist; Zdenek Zencak; Oerjan Gustafsson

    2007-10-15

    In view of poor constraints on historical combustion emissions, past environmental loadings of black carbon (BC) and polycyclic aromatic hydrocarbon (PAH) were reconstructed from dated lake sediment cores collected 70 km south of Stockholm, Sweden. Compared to several dramatic variations over the recent 150 years, the preindustrial loadings were steady within {+-}50% through the entire medieval with BC fluxes of 0.071 g m{sup -2} yr{sup -1} and PAH fluxes of 6 g m{sup -2} yr{sup -1}. In the wood-burning dominated century leading up to the industrial revolution around 1850, increasing BC fluxes were leading PAH fluxes. BC fluxes reached their millennial-scale maximum around 1920, whereas PAH fluxes increased exponentially to its record maximum around 1960, 50-fold above preindustrial values. For 1920-1950, BC fluxes consistently decreased as PAH fluxes kept increasing. Coal and coke represented >50% of the Swedish energy market in the 1930s. Combined with sharply decreasing (1,7-)/(1,7{+-}2,6-dimethylphenanthrene), indicative of diminishing wood combustion, and decreasing methylphenanthrenes/phenanthrene, indicative of higher-temperature combustion (coal instead of wood), the sediment archive suggests that the relative BC/PAH emission factors thus are lower for coal than for wood combustion. For the first time, both BC and PAH fluxes decreased after 1960. This trend break is a testament to the positive effects of decreasing reliance on petroleum fuels and a number of legislative actions aimed at curbing emissions and by 1990, the loading of BC was back at preindustrial levels, whereas that of PAH were the lowest since the 1910s. However, for the most recent period (1990-2004) the BC and PAH fluxes are no longer decreasing. 55 refs., 3 figs.

  16. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm³

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; Mattsson, T. R.; French, M.; Nettelmann, N.; Redmer, R.

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findingsmore » advocate that this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets and should improve our understanding of these types of planets.« less

  17. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm

    SciTech Connect (OSTI)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; Mattsson, T. R.; French, M.; Nettelmann, N.; Redmer, R.

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findings advocate that this water model be used as the standard for modeling Neptune, Uranus, and hot Neptune exoplanets and should improve our understanding of these types of planets.

  18. Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

  19. Engineering Evaluation Costs Analysis (EE/CA) for the Proposed Management of Contaminated Structures at the Weldon Spring Chemical Plant. IR-700-703-1.02.

    Office of Legacy Management (LM)

  20. Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule- Workers Shipped 1,800 Cubic Meters for Treatment and Disposal

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Today, the Department of Energy Hanford Site announced it reached a cleanup goal more than two months ahead of schedule at the Hanford Site in southeast Washington State.

  1. Method for creating high carbon content products from biomass oil

    DOE Patents [OSTI]

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  2. DNP 2015: APS Division of Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Registration and Accommodation request The companion fee covers the reception and companions program that is held in parallel with the plenary session. Non-member registration is for non APS members who wish to attend the sessions or be a vendor at the meeting. DNP 2015 Registration fee schedule Date Members Non-Members Students/Unemployed Companion Before Sept. 2 $275 $600 $100 $50 After Sept. 2 $350 $700 $175 $60 On-Site $400 $800 $200 $75 Registration and hotel accommodations will be handled

  3. Centrifugal pyrocontactor

    DOE Patents [OSTI]

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  4. Centrifugal pyrocontactor

    DOE Patents [OSTI]

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  5. Fuel Injection Strategy for Soot-Filter Regeneration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategy for Soot-Filter Regeneration Fuel Injection Strategy for Soot-Filter Regeneration Fuel injection is optimized to allow both fast soot removal and temperatures below 700-800oC in case of drop-to-idle event. A 1-D mathematical model was used to simulate soot loading and temperature variations as a function of time and axial position in the filter during active regenerations and drop-to-idle events. The fact that the maximum temperature reached in a soot filter is a function of

  6. Oxidation resistant high creep strength austenitic stainless steel

    SciTech Connect (OSTI)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  7. Microsoft PowerPoint - DOE Tank Removal Study Vinces presentation Final.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T k R l S d DOE Tank Removal Study Hanford Advisory Board Tank Waste Committee Vince Panesko November 3, 2011 Concept Sketch for Tank Removal Concept Sketch for Tank Removal Page 3-3 of RPP-RPT-47167 Concept Sketch - Deep Soil Excavation Concept Sketch Deep Soil Excavation Page 3-3 of RPP-RPT-47167 Soil removal to 5 feet below tanks Soil removal to 5 feet below tanks 5 5 19,700 Ci Cs 137 5 feet below tank 25,100 Ci Cs 137 59,000 Ci Cs 137 CONCERNS CONCERNS 1. Does it make sense to spend $800

  8. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  9. Vehicle Technologies Office: Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Vehicle Technologies Office » Vehicle Technologies Office: Budget Vehicle Technologies Office: Budget Activities FY 2014* ($K) FY 2015♦ ($K) FY 2016♦ ($K) FY 2017 Request** ($K) Batteries & Electric Drive Technologies $105,449 $103,701 $141,100 $169,000 Vehicle Systems $42,474 $40,393 $30,600 $90,000 Advanced Combustion Engine R&D $48,371 $49,000 $37,141 $74,800 Materials Technology $36,197 $35,602 $26,959 $82,700 Fuel and Lubricant Technologies $15,478 $20,000 $22,500

  10. Vacancy defects in as-grown and neutron irradiated GaP studied by positrons

    SciTech Connect (OSTI)

    Dlubek, G.; Bruemmer, O.; Polity, A.

    1986-08-18

    Positron lifetime and Doppler-broadening measurements have been used to study vacancy defects in n-italic-type GaP. Vacancies in the P sublattice with a concentration of some 10/sup 17/ cm/sup -3/ were observed in as-grwon GaP. The vacancies disappear during annealing at 500--800 /sup 0/C. In neutron-irradiated GaP positrons are trapped by Ga vacancies which anneal out in two stages situated at 300--550 /sup 0/C and 550--700 /sup 0/C.

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ΔpH Wavelength, nm 400 600 800 1000 Wavelength, nm 550 600 650 700 750 Wavelength, nm 600 620 640 660 Blcok copolymer-based nanocomposites for artificial photosynthesis SnTPP ZnPPIX Zn Sn Significance and Impact Scientific Achievement Research Details A B 2 Black: pH 6 Red: pH 12 Blue: pH 2 Responsive quenching in CNT-porphyrin polymer composites * Hydrophobic (SnTTP) NT-wrapped porphyrin polymer micelles exhibit pH responsive flourescence quenching relative to pH. At low pH the pAA-b-pS block

  12. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Cell Materials and Design for 300 Mile Range EVs Yimin Zhu, PD/PI OneD Material, LLC (former Nanosys Energy Storage) Palo Alto, California June 16 ~20, 2014 DOE Vehicle Technologies AMR 2014 ES130_zhu_2014_p This presentation does not contain any proprietary, confidential, or otherwise restricted information TM * Barriers addressed - Performance: Low Wh/kg & Wh/L - Life: Poor deep discharge cycles - Cost: High $/kWh * Targets Anode: >700 mAh/g 1,600 mAh/g >800 cycles

  13. 19F Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Incomplete) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1990WA10 19F(p, n): σ < 30 X4 04/26/2012 2008CO03 19F(p, γ): σ Ecm = 200 - 700 keV X4 05/14/2014 1979SU13 19F(p, γ): σ 0.2 - 1.2 X4 05/06/2014 2006COZY 19F(p, γ1): capture yield 200 - 800 keV thin target 12/08/2014 19F(p, γ): capture yield thick target 19F(p, α2γ): capture yield thin target, thick target 2008CO03 19F(p, γ1): reaction cross section Ecm = 200 - 800 keV thin target, thick target

  14. Elevated temperature stability of a 6% Mo superaustenitic stainless alloy

    SciTech Connect (OSTI)

    Grubb, J.F.

    1996-11-01

    A 6% Mo superaustenitic stainless alloy (UNS N08367) was exposed at temperatures in the 1,000 to 1,900 F (538 to 1,038 C) range for times up to 10,000 hours. The effect of these exposures on mechanical properties and corrosion resistance has been examined. Exposure of N08367 alloy at 1,900 F (1,056 C) for 1 to 10 hours does not result in precipitation of intermetallic phases, does not embrittle it, and does not degrade its corrosion resistance. Exposure of N08367 alloy at 1,300 to 1,800 F (704 to 982 C) does precipitate intermetallic phases, does embrittle it, and does degrade its corrosion resistance. Short-term exposure of N08367 alloy at 1,000 or 1,100 F (538 to 593 C) does not cause precipitation of intermetallic phases, with consequent embrittlement and loss of corrosion resistance, but long-term exposures do. Extrapolation of the embrittlement time vs. temperature curves shows that the current 800 F (427 C) use temperature limit for N08367 alloy is safe.

  15. Performance of Single Electrode-Supported Cells Operating in the Electrolysis Mode

    SciTech Connect (OSTI)

    J. E. O'Brien; G. K. Housley; D. G. Milobar

    2009-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900C. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 m thick), nickel-YSZ steam/hydrogen electrodes (~1400 m thick), and manganite (LSM) air-side electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented.

  16. High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties

    SciTech Connect (OSTI)

    Sharipova, Aliya; Psakhie, Sergey G.; Swain, Sanjaya K.; Gutmanas, Elazar Y. Gotman, Irena

    2015-10-27

    High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na{sub 2}SO{sub 4} and K{sub 2}CO{sub 3} salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy’s law. Scaffolds with 50% and 55% porosity exhibited high compressive strength (18–22 MPa), compressive strength of 8–12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6{sup −6} cm{sup 2}) is close to the range of trabecular bone.

  17. Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment

    SciTech Connect (OSTI)

    Malek, J.; Hnilica, F.; Vesely, J.; Smola, B.; Bartakova, S.; Vanek, J.

    2012-04-15

    The influence of thermo-mechanical treatment on microstructure and mechanical properties of T-35Nb-6Ta has been studied. The thermo-mechanical treatment was chosen to correspond to the production of wire with suitable mechanical properties for dental implants. After casting the alloy was hot forged (700-900 Degree-Sign C), solution treated (850 Degree-Sign C/30 min, water quenched) and cold swaged (reductions up to 91%). The annealing (700 Degree-Sign C/3 h/furnace) or aging (450 Degree-Sign C/8 h/furnace) was used as final heat treatment. The microstructure was studied by using light microscopy, scanning electron microscopy, transmission electron microscopy and XRD analysis. Cold swaging introduces microstructure consisting of highly deformed {beta}-phase grains with dislocation tangles and twins, which ensures high tensile strength about 820 MPa, low Young's modulus ({approx} 50 GPa) and good ductility {approx} 10%. Subsequent aging increases tensile strength (1000 MPa) as well as Young's modulus (75 GPa) without diminishing ductility. Annealing at 700 Degree-Sign C slightly decreases tensile strength (730 MPa) and increases the ductility and Young's modulus (17% and 62 GPa respectively). The mechanical properties attained recommend the thermo-mechanical treatment for production of wires for dental implants. - Highlights: Black-Right-Pointing-Pointer Ti35Nb6Ta alloy prepared via arc melting. Black-Right-Pointing-Pointer Thermo mechanical treatment. Black-Right-Pointing-Pointer Microstructural changes. Black-Right-Pointing-Pointer Mechanical properties.

  18. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    SciTech Connect (OSTI)

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55 Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where

  19. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal

    SciTech Connect (OSTI)

    Siriwardane, Ranjani V.; Ksepko, Ewelina; Tian, Hanging

    2013-01-01

    The objective of this work was to prepare supported bimetallic Fe–Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe–Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe–Cu/support oxygen carriers. Bimetallic Fe–Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 °C to 900 °C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe–Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800900 °C and might be successfully used up to 900 °C for coal CLC reaction in the presence of steam.

  20. Washington Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    39,210 41,309 43,673 46,900 46,900 46,900 1988-2014 Aquifers 39,210 41,309 43,673 46,900 46,900 46,900 1999-2014 Depleted Fields 0 0 1999-2014 Total Working Gas Capacity 23,514...

  1. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  2. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  3. Next Update: December 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    b . Historical Net Energy For Load, Actual by North American Electric Reliability Corporation Region, 2005 through 2009. 2005 3,900,461 226,544 216,633 303,607 1,005,226 962,054 201,548 299,225 685,624 2006 3,911,914 230,115 222,748 294,319 926,279 1,011,173 201,521 305,672 720,087 2007 4,012,728 232,405 217,602 301,766 954,700 1,049,298 210,875 307,064 739,018 2008 3,989,058 226,874 227,536 297,362 936,201 1,035,390 207,603 312,401 745,691 2009 3,832,180 225,966 213,797 285,625 880,377 997,142

  4. Next Update: October 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    b . Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2007 and Projected 2008 through 2012 (Megawatts and 2007 Base Year) 2007/2008 637,905 41,701 33,191 46,795 141,900 179,888 31,322 50,408 112,700 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE (ERCOT) WECC (U.S.) 656,989 49,601 34,100 48,323 147,100 182,055 31,954 47,270 116,586 669,111 50,463 35,085 48,911 149,100 185,850 32,585 48,285 118,832 680,673 51,606 36,298

  5. Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 32,119 36,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOE Patents [OSTI]

    Carey, III, James Edward; Mazur, Eric

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  7. Project SUNN solar home (APTECH AZ-81-54). Final report

    SciTech Connect (OSTI)

    Birkey, R.C.

    1983-01-01

    The design and construction of the SUNN solar home utilizing energy conservation relevant to the constuction needs of the Navajo Nation has met with success, most particularly in its initial student and Navajo leadership training programs. The overall size of the structural concept was increased dramatically (from the modest 700 to 900 square foot model to an 1856 sq. ft. structure) in order to accommodate the Window Rock School District with a practical building and the placement of SUNN home in a highly visible area of the school grounds. A cooperation was formed with the school district with intentions to increase the potential for publicity, community involvement, utilize students in the construction process, and develop professional interest in the utilization and transfer of SUNN home technologies for other Navajo communities.

  8. Control rods in LMFBRs: a physics assessment

    SciTech Connect (OSTI)

    McFarlane, H.F.; Collins, P.J.

    1982-08-01

    This physics assessment is based on roughly 300 control rod worth measurements in ZPPR from 1972 to 1981. All ZPPR assemblies simulated mixed-oxide LMFBRs, representing sizes of 350, 700, and 900 MWe. Control rod worth measurements included single rods, various combinations of rods, and Ta and Eu rods. Additional measurements studied variations in B/sub 4/C enrichment, rod interaction effects, variations in rod geometry, neutron streaming in sodium-filled channels, and axial worth profiles. Analyses were done with design-equivalent methods, using ENDF/B Version IV data. Some computations for the sensitivities to approximations in the methods have been included. Comparisons of these analyses with the experiments have allowed the status of control rod physics in the US to be clearly defined.

  9. Helium Migration Mechanisms in Polycrystalline Uranium Dioxide

    SciTech Connect (OSTI)

    Martin, Guillaume; Desgardin, Pierre; Sauvage, Thierry; Barthe, Marie-France; Garcia, Philippe; Carlot, Gaelle

    2007-07-01

    This study aims at identifying the release mechanisms of helium in uranium dioxide. Two sets of polycrystalline UO{sub 2} sintered samples presenting different microstructures were implanted with {sup 3}He ions at concentrations in the region of 0.1 at.%. Changes in helium concentrations were monitored using two Nuclear Reaction Analysis (NRA) techniques based on the {sup 3}He(d,{alpha}){sup 1}H reaction. {sup 3}He release is measured in-situ during sample annealing at temperatures ranging between 700 deg. C and 1000 deg. C. Accurate helium depth profiles are generated after each annealing stage. Results that provide data for further understanding helium release mechanisms are discussed. It is found that helium diffusion appears to be enhanced above 900 deg. C in the vicinity of grain boundaries possibly as a result of the presence of defects. (authors)

  10. Enhanced oil recovery by CO/sub 2/ miscible displacement in the Little Knife Field, Billings County, North Dakota

    SciTech Connect (OSTI)

    Desch, J.B.; Larsen, W.K.; Lindsay, R.F.; Nettle, R.L.

    1984-09-01

    A CO/sub 2/ minitest involving the miscible displacement process was conducted in the Mission Canyon formation (lower Mississippian) at Little Knife field, ND. The Mission Canyon is a dolomitized carbonate reservoir at approximately 9,700 to 9,900 ft (2957 to 3018 m) subsurface, which is undergoing primary depletion. Four wells were drilled in an inverted four-spot configuration, covering 5 acres (20 234 m/sup 2/). The central well served as the injection well and was surrounded by three nonproducing observation wells. Oriented cores were cut in each well for detailed reservoir characterization and laboratory testing. In addition, a well test program was conducted that involved two pulse tests and injectivity tests on the individual wells. Results from these tests were used to upgrade two reservoir simulation models. Various parameters within the computer models were modified to determine the most efficient injection plan for the specific reservoir characteristics.

  11. Decarbonization process for carbothermically produced aluminum

    DOE Patents [OSTI]

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  12. Measurement and modeling of external radiation during 1984 from LAMPF atmospheric emissions

    SciTech Connect (OSTI)

    Bowen, B.M.; Olsen, W.A.; Van Etten, D.; Chen, I.

    1986-07-01

    An array of three portable, pressurized ionization chambers (PICs) measured short-term external radiation levels produced by air activation products from the Los Alamos Meson Physics Facility (LAMPF). The monitoring was at the closet offsite location, 700-900 m north and northeast of the source, and across a large, deep canyon. A Gaussian-type atmospheric dispersion model, using onsite meteorological and stack release data, was tested during their study. Monitoring results indicate that a persistent, local up-valley wind during the evening and early morning hours is largely responsible for causing the highest radiation levels to the northeast and north-northeast of LAMPF. Comparison of predicted and measured daily external radiation levels indicates a high degree of correlation. The model also gives accurate estimates of measured concentrations over longer periods of time.

  13. Tennessee Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 497 205 185 393 612 532 855 1,482 1,605 1980's 1,241 1,719 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 4,851 5,825 5,400 5,294

  14. Tennessee Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 58 48 57 1970's 64 89 25 20 17 27 47 263 468 941 1980's 1,241 1,719 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 4,851 5,825 5,400 5,294

  15. Short-Term Oxidation Studies on Nicrofer- 6025HT in Air at Elevated Temperatures for Advanced Coal Based Power Plants

    SciTech Connect (OSTI)

    Joshi, Vineet V.; Meier, Alan; Darsell, Jens T.; Nachimuthu, Ponnusamy; Bowden, Mark E.; Weil, K. Scott

    2013-04-01

    Several advanced air separation unit (ASU) designs being considered for use in coal gasification rely on the use of solid state mixed ionic and electronic conductors. Nicrofer-6025HT, a nickel-based alloy, has been identified as a potential manifold material to transport the hot gases into the ASUs. In the current study, isothermal oxidation tests were conducted on Nicrofer-6025HT in the temperature range of 700900 C for up to 24 h. The evolution of oxide scale was evaluated using SEM, XRD, and XPS. The composite surface oxide layer that formed consisted of an outer chromia-rich scale and an inner alumina scale. For the longer times at the higher temperatures evaluated, a NiCr2O4 spinel phase was located at the interface between the alumina and chromia. Based on the experimental results a four-step oxidation model was proposed.

  16. Overview of the gamma reaction history diagnostic for the national ignition facility (NIF)

    SciTech Connect (OSTI)

    Kim, Yong Ho; Evans, Scott C; Herrmann, Hans W; Mack, Joseph M; Young, Carl S; Malone, Robert M; Cox, Brian C; Frogget, Brent C; Kaufman, Morris I; Tunnell, Thomas W; Tibbitts, Aric; Palagi, Martin J

    2010-01-01

    The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 900 off-axis parabolic mirrors to rel ay Cherenkov light from a volume of pressurized gas. This non imaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

  17. Soviet delays raise prices

    SciTech Connect (OSTI)

    Young, I.

    1992-01-15

    The breakup of the Soviet Union is causing massive disruptions to methanol exports. The changeover to a Commonwealth of independent States has created logistical problems which have led some shipments of Russian methanol to be cancelled and delayed other deliveries by up to two weeks. In recent years the Soviet Union has exported 700,000 m.t./year-900,000 m.t./year of methanol, mainly to Western Europe. The product is made at 750,000-m.t./year plants at Tomsk and Gubakha in Russia and transported by rail for shipment from the ports of Ventspils, Latvia, on the Baltic Sea and Yuzhnyy in Ukraine, on the Black Sea. The exports were handled by state export agency Soyuzagrochim, mainly under contract to West European traders and consumers in areas like Scandinavia and France.

  18. METHOD OF MAKING FUEL BODIES

    DOE Patents [OSTI]

    Goeddel, W.V.; Simnad, M.T.

    1962-04-24

    An improved method of making a fuel body containing carbon for reactors is described. Carbides of uranium and thorium having a particle size of from 100 to 500 microns are mixed with carbon having a particle size that will pass a 200 mesh screen but be retained by a 325 mesh screen, and 10 per cent by weight pitch. The mixture is heated to a temperature of about 700 to 900 deg C, at which point bonding is effected while maintaining it under mechanical pressure of over 3,000 pounds per square inch. The entire compact is heated to a uniform temperature during the process, preferably by electrical resistance of the compact itself. (AEC)

  19. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  20. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,388 8,538 9,843 10,150 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Development and characterization of PCDTBT:CdSe QDs hybrid solar cell

    SciTech Connect (OSTI)

    Dixit, Shiv Kumar Bhatnagar, Chhavi Kumari, Anita Madhwal, Devinder Bhatnagar, P. K. Mathur, P. C.

    2014-10-15

    Solar cell consisting of low band gap polymer poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10, 30-benzothiadiazole)] (PCDTBT) as donor and cadmium selenide/zinc sulphide (CdSe/ZnS) core shell quantum dots (QDs) as an acceptor has been developed. The absorption measurements show that the absorption coefficient increases in bulk heterojunction (BHJ) structure covering broad absorption spectrum (200nm–700nm). Also, the photoluminescence (PL) of the PCDTBT:QDs film is found to decrease by an order of magnitude showing a significant transfer of electrons to the QDs. With this approach and under broadband white light with an irradiance of 8.19 mW/cm{sup 2}, we have been able to achieve a power conversion efficiency (PCE) of 3.1 % with fill factor 0.42 for our typical solar cell.

  2. Tennessee Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Tennessee Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 - = No Data Reported; --

  3. Dismantling of the 904 Cell at the HAO/Sud Facility - 13466

    SciTech Connect (OSTI)

    Vaudey, C.E.; Crosnier, S.; Renouf, M.; Gaspard, N.; Pinot, L.

    2013-07-01

    La Hague facility, in France, is the spent fuel recycling plant wherein a part of the fuel coming from some of the French, German, Belgian, Swiss, Dutch and Japanese nuclear reactors is reprocessed before being recycled in order to separate certain radioactive elements. The facility has been successively handled by the CEA (1962-1978), Cogema (1978-2006), and AREVA NC (since 2006). La Hague facility is composed of 3 production units: The UP2-400 production unit started to be operated in 1966 for the reprocessing of UNGG metal fuel. In 1976, following the dropout of the graphite-gas technology by EDF, an HAO workshop to reprocess the fuel from the light water reactors is affiliated and then stopped in 2003. - UP2-400 is partially stopped in 2002 and then definitely the 1 January 2004 and is being dismantled - UP2-800, with the same capacity than UP3, started to be operated in 1994 and is still in operation. And UP3 - UP3 was implemented in 1990 with an annual reprocessing capacity of 800 tons of fuel and is still in operation The combined licensed capacity of UP2-800 and UP3 is 1,700 tons of used fuel. (authors)

  4. Hydrogen passivation of interstitial iron in boron-doped multicrystalline silicon during annealing

    SciTech Connect (OSTI)

    Liu, AnYao; Sun, Chang; Macdonald, Daniel

    2014-11-21

    Effective hydrogenation of interstitial iron in boron-doped multicrystalline silicon wafers is reported. The multicrystalline silicon wafers were annealed with plasma-enhanced chemical vapour deposited silicon nitride films, at temperatures of 400?C??900?C and for times from minutes to hours. At low temperatures where a combined effect of hydrogenation and precipitation of dissolved Fe is expected, results show that the hydrogenation process dominates the effect of precipitation. The concentrations of dissolved interstitial iron reduce by more than 90% after a 30-min anneal at temperatures between 600 and 900?C. The most effective reduction occurs at 700?C, where 99% of the initial dissolved iron is hydrogenated after 30?min. The results show that the observed reductions in interstitial Fe concentrations are not caused by the internal gettering of Fe at structural defects or by an enhanced diffusivity of Fe due to the presence of hydrogen. The hydrogenation process is conjectured to be the pairing of positively charged iron with negatively charged hydrogen, forming less recombination active Fe-H complexes in silicon.

  5. State Overview

    Energy Savers [EERE]

    26 million (3% total U.S.) Housing Units: 3.41 million (3% total U.S.) Business Establishments: 0.19 million (3% total U.S.) Annual Energy Consumption Electric Power: 107.8 TWh (3% total U.S.) Coal: 7,900 MSTN (1% total U.S.) Natural Gas: 8 Bcf (<1% total U.S.) Motor Gasoline: 84,800 Mbarrels (3% total U.S.) Distillate Fuel: 31,500 Mbarrels (2% total U.S.) Annual Energy Production Electric Power Generation: 70.7 TWh (2% total U.S.) Coal: 14.2 TWh, 20% [6.4 GW total capacity] Petroleum: 0.4

  6. High temperature and current density induced degradation of multi-layer graphene

    SciTech Connect (OSTI)

    Wang, Baoming; Haque, M. A.; Mag-isa, Alexander E.; Kim, Jae-Hyun; Lee, Hak-Joo

    2015-10-19

    We present evidence of moderate current density, when accompanied with high temperature, promoting migration of foreign atoms on the surface of multi-layer graphene. Our in situ transmission electron microscope experiments show migration of silicon atoms at temperatures above 800 °C and current density around 4.2 × 10{sup 7} A/cm{sup 2}. Originating from the micro-machined silicon structures that clamp the freestanding specimen, the atoms are observed to react with the carbon atoms in the multi-layer graphene to produce silicon carbide at temperatures of 900–1000 °C. In the absence of electrical current, there is no migration of silicon and only pyrolysis of polymeric residue is observed.

  7. PROCESSING OF RADIOACTIVE WASTE

    DOE Patents [OSTI]

    Allemann, R.T.; Johnson, B.M. Jr.

    1961-10-31

    A process for concentrating fission-product-containing waste solutions from fuel element processing is described. The process comprises the addition of sugar to the solution, preferably after it is made alkaline; spraying the solution into a heated space whereby a dry powder is formed; heating the powder to at least 220 deg C in the presence of oxygen whereby the powder ignites, the sugar is converted to carbon, and the salts are decomposed by the carbon; melting the powder at between 800 and 900 deg C; and cooling the melt. (AEC) antidiuretic hormone from the blood by the liver. Data are summarized from the following: tracer studies on cardiovascular functions; the determination of serum protein-bound iodine; urinary estrogen excretion in patients with arvanced metastatic mammary carcinoma; the relationship between alheroclerosis aad lipoproteins; the physical chemistry of lipoproteins; and factors that modify the effects of densely ionizing radia

  8. Catalyst regeneration process including metal contaminants removal

    DOE Patents [OSTI]

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  9. Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 25, 2006 U.S. Department of Energy Forrestal Building, Room GJ-015 1000 Independence Avenue, SW Washington, DC 20585 F FI IN NA AL L A AG GE EN ND DA A J Ja an nu ua ar ry y 2 25 5, , W We ed dn ne es sd da ay y ( (R Ro oo om m G GJ J- -0 01 15 5) ) (attendance is limited to members of the FreedomCAR & Fuel Partnership Tech Teams and invited presenters) 8:00 am Registration 8:30 am Welcome and Introductions 8:45 am Agenda and Purpose - Mark Paster, DOE-HFCIT 9:00 am On-Board Storage

  10. Flash pyrolysis and hydropyrolysis of biomass

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.

    1982-04-01

    Process chemistry data on the flash pyrolysis and hydropyrolysis of wood is being obtained in a 1'' downflow entrained tubular reactor. The data indicates that at residence times of <1 second, and 900 to 1000/sup 0/C and 500 psi pressure, the flash hydropyrolysis of wood yields mainly methane and water. As the residence time increases to >3 seconds, the products are methane and CO. Almost complete conversion of the carbon to methane and CO are obtained in these experiments. At lower temperatures, in the order of 800/sup 0/C, 500 psi and residence times <4 seconds, significant amounts of benzene and ethane are produced. The experimental process chemistry data have been used to design and evaluate two processes in a preliminary manner. One process converts wood to high BTU pipeline gas and the other to methanol and chemical feedstocks consisting of benzene and ethylene. Reasonable plant investments which compare favorably with coal conversion plant estimates are derived.

  11. Method of processing aluminous ores

    DOE Patents [OSTI]

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    A method of producing aluminum chloride from aluminous materials containing compounds of iron, titanium and silicon comprising reacting the aluminous materials with carbon and a chlorine-containing gas at a temperature of about 900.degree. K. to form a gaseous mixture containing chlorides of aluminum, iron, titanium and silicon and oxides of carbon; cooling the gaseous mixture to a temperature of about 400.degree. K. or lower to condense the aluminum chlorides and iron chlorides while titanium chloride and silicon chloride remain in the gas phase to effect a separation thereof; heating the mixture of iron chlorides and aluminum chlorides to a temperature of about 800.degree. K. to form gaseous aluminum chlorides and iron chlorides; passing the heated gases into intimate contact with aluminum sulfide to precipitate solid iron sulfide and to form additional gaseous aluminum chlorides; and separating the gaseous aluminum chloride from the solid iron sulfide.

  12. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect (OSTI)

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  13. Flash pyrolysis and hydropyrolysis of biomass

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Process chemistry data on the flash pyrolysis and hydropyrolysis of wood is being obtained in a 1'' downflow entrained tubular reactor. The data indicates that at residence times of <1 second, and 900 to 1000/sup 0/C and 500 psi pressure, the flash hydropyrolysis of wood yields mainly methane and water. As the residence time increases to >3 seconds, the products are methane and CO. Almost complete conversion of the carbon to methane and CO are obtained in these experiments. At lower temperatures, in the order of 800/sup 0/C, 500 psi and residence times <4 seconds, significant amounts of benzene and ethane are produced. The experimental process chemistry data have been used to design and evaluate two processes in a preliminary manner. One process converts wood to high BTU pipeline gas and the other to methanol and chemical feedstocks consisting of benzene and ethylene. Reasonable plant investments which compare favorably with coal conversion plant estimates are derived.

  14. Microsoft Word - AgendaforWebsite.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunday, June 19, 2016 17:00-19:00 Registration at Granlibakken, Tahoe City, CA 18:00-20:00 Buffet at Granlibakken Monday, June 20, 2016 8:00 Registration 8:30 Welcome and Introduction 9:00-10:20 Oral session 1: Interesting and/or unexplained behavior Chair: Greg Smallwood 9:00 Talk 1 9:20 Talk 2 9:40 Talk 3 10:00 Talk 4 10:20-10:40 Coffee 10:40-12:00 Oral session 2: LII modeling / Key parameters Chair: Meghdad Saffaripour 10:40 Talk 5 11:00 Talk 6 11:20 Talk 7 11:40 Talk 8 12:00-13:20 Lunch

  15. Radiometric characterization of a high temperature blackbody in the visible and near infrared

    SciTech Connect (OSTI)

    Taubert, R. D.; Hollandt, J.

    2013-09-11

    At the Physikalisch-Technische Bundesanstalt the radiance temperature in the range from 962 C to 3000 C is disseminated by applying a high temperature blackbody (HTBB) with a directly heated pyrolytic graphite cavity. The thermodynamic radiance temperature of the HTBB was measured in the temperature range from 1000 C to 3000 C by applying almost simultaneously absolutely calibrated silicon photodiode based filter radiometers with centre wavelengths at 476 nm, 676 nm, 800 nm, 900 nm and 1000 nm and InGaAs photodiode based filter radiometers with centre wavelengths at 1300 nm, 1550 nm and 1595 nm. The results demonstrate that, expressed in terms of irradiance, within an uncertainty of 0.1 % (k=1) in a broad wavelength range the thermodynamic radiance temperature of the HTBB is wavelength independent in the investigated temperature interval.

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2014 - 2016 (Barrels per Calendar Day) Reformers Capacity Inputs 2014 2,686,917 5,616,015 2,034,689 2,337,425 4,884,975 1,662,603 2,591,992 3,419,407 74,900 475,800 41,500 47,633 407,342 29,849 PADD I 175,036 240,550 520,521 1,213,427 310,950 444,060 1,023,877 267,016 PADD II 645,874 837,754 1,479,496 2,916,764 1,118,239

  17. Argonne_map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ROADS & PARKING BUILDINGS 603 1 2 3 4 5 A B C D E F G 360 - E4 361 - E4 362 - E3 363 - E4 366 - E4 369 - E4 370 - E4 371 - E4 376 - E4 399 - E4 600 Area 600 - E3 617 - E3 800 Area 891 - B2 900 Area 950 - G3 951 - G2 952 - G2 953 - G2 East Area 046 - F2 091 - G3 100 Area 108 - E2 145 - F2 146 - F2 200 Area 200 - C2 201 - D2 202 - D2 203 - D2 204 - E2 205 - D2, D3 300 Area 302 - D3 306 - D4 308 - D3 309 - D3 206 - C2 208 - C2 211 - C2 212 - D2 213 - D2 214 - D3 216 - D2 314 - D4 315 - D4 316 -

  18. Missouri Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    1967-1997 Pipeline and Distribution Use 1967-2005 Citygate 6.17 5.85 5.27 4.99 5.76 4.65 1984-2015 Residential 11.66 12.02 12.25 10.88 10.83 11.59 1967-2015 Commercial 10.28 9.99 9.54 9.00 8.96 9.10 1967-2015 Industrial 8.70 8.54 7.85 8.19 8.00 7.75 1997-2015 Vehicle Fuel 6.34 6.11 5.64 1994-2012 Electric Power W W W W W W 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 0 53 100 26 28 1989-2014 Gross Withdrawals NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA 8 8

  19. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    SciTech Connect (OSTI)

    Mousa, Sahar; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh ; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 C and calcined at 600 C and 900 C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  20. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect (OSTI)

    Chen, Kevin

    2014-08-31

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest

  1. Partially-reflected water-moderated square-piteched U(6.90)O2 fuel rod lattices with 0.67 fuel to water volume ratio (0.800 CM Pitch)

    SciTech Connect (OSTI)

    Harms, Gary A.

    2015-09-01

    The US Department of Energy (DOE) Nuclear Energy Research Initiative funded the design and construction of the Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories. The start-up of the experiment facility and the execution of the experiments described here were funded by the DOE Nuclear Criticality Safety Program. The 7uPCX is designed to investigate critical systems with fuel for light water reactors in the enrichment range above 5% 235U. The 7uPCX assembly is a water-moderated and -reflected array of aluminum-clad square-pitched U(6.90%)O2 fuel rods.

  2. [A renewal proposal for support of hadroproduction of bottom using the 800 GeV/C primary proton beam at the Fermilab Tevatron]. [Prairie View A M Univ. , Prairie View, Texas

    SciTech Connect (OSTI)

    Judd, D.J.

    1992-01-01

    The 1992 status report on Experiment E771 is given. Experiences with the 1991 run and off-line data analysis are described. Preliminary cross sections and resolutions were determined. A 1994 run is proposed. 23 figs.

  3. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    SciTech Connect (OSTI)

    C.M. Stoots; J.E. O'Brien; J.S. Herring; G.K. Housley; D.G. Milobar; M.S. Sohal

    2009-08-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  4. State Overview

    Energy Savers [EERE]

    0 million (3% total U.S.) Housing Units: 4.53 million (3% total U.S.) Business Establishments: 0.22 million (3% total U.S.) Annual Energy Consumption Electric Power: 104.8 TWh (3% total U.S.) Coal: 30,700 MSTN (3% total U.S.) Natural Gas: 762 Bcf (3% total U.S.) Motor Gasoline: 99,800 Mbarrels (3% total U.S.) Distillate Fuel: 26,300 Mbarrels (2% total U.S.) Annual Energy Production Electric Power Generation: 108.2 TWh (3% total U.S.) Coal: 53.1 TWh, 49% [12.6 GW total capacity] Petroleum: 0.3

  5. State Overview

    Energy Savers [EERE]

    93 million (<1% total U.S.) Housing Units: 0.41 million (<1% total U.S.) Business Establishments: 0.02 million (<1% total U.S.) Annual Energy Consumption Electric Power: 11.5 TWh (<1% total U.S.) Coal: 700 MSTN (<1% total U.S.) Natural Gas: 28 Bcf (<1% total U.S.) Motor Gasoline: 8,800 Mbarrels (<1% total U.S.) Distillate Fuel: 2,100 Mbarrels (<1% total U.S.) Annual Energy Production Electric Power Generation: 8.6 TWh (<1% total U.S.) Coal: 1.4 TWh, 16% [0.8 GW total

  6. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    SciTech Connect (OSTI)

    Swindeman, R.W.

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  7. U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Offshore (Million Cubic Feet) U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,932,196 5,111,413 5,603,025 1980's 5,650,097 5,693,432 5,466,050 4,734,843 5,220,061 4,631,756 4,588,565 5,078,178 5,180,875 5,231,028 1990's 5,509,312 5,308,457 5,324,039 5,373,300 5,700,666 5,431,665 5,843,661 5,906,329 5,800,561 5,689,438 2000's 5,699,377 5,815,542 5,312,348 5,215,683 4,736,252

  8. Study of the thermal transformations of Co- and Fe-exchanged zeolites A and X by 'in situ' XRD under reducing atmosphere

    SciTech Connect (OSTI)

    Ronchetti, Silvia; Turcato, Elisa Aurelia; Delmastro, Alessandro; Esposito, Serena; Ferone, Claudio; Pansini, Michele; Onida, Barbara; Mazza, Daniele

    2010-06-15

    'In situ' high temperature X-ray diffraction under reducing atmosphere is used for the first time to study the thermal stability and transformations of Co- and Fe-exchanged A and X zeolites. TG-DTA and 'ex situ' XRD characterization were also carried out. The temperature of incipient crystallization of metallic phase was found to be 700 {sup o}C in Fe-zeolites and 800 {sup o}C in Co-zeolites. Moreover, ex situ X-ray experiments, after thermal treatment both under inert and reducing atmosphere, revealed the formation of ceramic phases upon the thermal collapse of the zeolitic framework. Metal nanoparticles were obtained by reduction and the size of metal clusters was found to range between 24 and 40 nm.

  9. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    DOE Patents [OSTI]

    Iyer, Vivekanantan S. (Delft, NL); Vollhardt, K. Peter C. (Oakland, CA)

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  10. Dynacracking process first commerical application for upgrading heavy oils

    SciTech Connect (OSTI)

    Dawson, F.N. Jr.

    1981-01-01

    The Dynacracking process developed by Hydrocarbon Research, Inc., is a non-catalytic process capable of upgrading heavy oil whose sulfur, metal, and carbon contents may be high. It converts residual stocks to distillates with high naphtha yields, and to synthetic fuel gas of high quality (700-800 Btu/ft/sup 3/). It has esentially no air polution emissions and requires a relatively small amount of water and utilities. The process generates sufficient heat internally such that, except for start-up, no boilers, furnaces, or external heaters are required to operate the plant. Several aspects of the process are discussed: chemistry, hardware, feedstock, flexibility in the product mix, product quality, and economics.

  11. 13C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2006JO11 13C(α, n): deduced S(E) ~ 0 - 1 from (1993BR17), from (1993DR08) X4 08/04/2011 2001HE22 13C(α, n): S(E) 0 - 2 S-factor 11/15/2011 2003KA51 13C(α, n): deduced S-factors, reaction rate Ecm ~ 200 - 800 keV X4 05/01/2012 1993DR08 13C(α, n): excitation function and S(E) ~ 275 - 1075 keV σ, S-factor X4 08/04/2011 2008HE11 13C(α, n): σ, reaction yields and S(E) Ecm = 320 - 700 keV σ, Table

  12. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report

    SciTech Connect (OSTI)

    None

    1980-07-01

    This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

  13. August 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    28 Created on: 8/29/2016 9:05:20 AM Table 12. Net withdrawals from underground storage, by state, 2014-2016 (million cubic feet) State 2016 2015 June May April March February January Total Alabama 1,486 -1,536 -3,383 -323 -713 4,787 -3,817 Alaska a -1,468 -1,957 -1,441 -451 -459 -50 782 Arkansas -724 -801 -444 438 328 434 -1,046 California -7,766 -16,700 -17,261 -4,805 7,203 40,217 -2,698 Colorado -5,842 -5,548 1,334 3,688 2,412 9,800 -5,930 Illinois -32,072 -26,284 4,551 26,092 50,274 69,604

  14. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect (OSTI)

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  15. Effects of aluminum on epitaxial graphene grown on C-face SiC

    SciTech Connect (OSTI)

    Xia, Chao Johansson, Leif I.; Hultman, Lars; Virojanadara, Chariya; Niu, Yuran

    2015-05-21

    The effects of Al layers deposited on graphene grown on C-face SiC substrates are investigated before and after subsequent annealing using low energy electron diffraction (LEED), photoelectron spectroscopy, and angle resolved photoemission. As-deposited layers appear inert. Annealing at a temperature of about 400?C initiates migration of Al through the graphene into the graphene/SiC interface. Further annealing at temperatures from 500?C to 700?C induces formation of an ordered compound, producing a two domain ?7??7R19 LEED pattern and significant changes in the core level spectra that suggest formation of an Al-Si-C compound. Decomposition of this compound starts after annealing at 800?C, and at 1000?C, Al is no longer possible to detect at the surface. On Si-face graphene, deposited Al layers did not form such an Al-Si-C compound, and Al was still detectable after annealing above 1000?C.

  16. Austin's Home Performance with Energy Star Program: Making a Compelling Offer to a Financial Institution Partner

    SciTech Connect (OSTI)

    Zimring, Mark

    2011-03-18

    Launched in 2006, over 8,700 residential energy upgrades have been completed through Austin Energy's Home Performance with Energy Star (HPwES) program. The program's lending partner, Velocity Credit Union (VCU) has originated almost 1,800 loans, totaling approximately $12.5 million. Residential energy efficiency loans are typically small, and expensive to originate and service relative to larger financing products. National lenders have been hesitant to deliver attractive loan products to this small, but growing, residential market. In response, energy efficiency programs have found ways to partner with local and regional banks, credit unions, community development finance institutions (CDFIs) and co-ops to deliver energy efficiency financing to homeowners. VCU's experience with the Austin Energy HPwES program highlights the potential benefits of energy efficiency programs to a lending partner.

  17. Catalytic two-stage coal liquefaction process having improved nitrogen removal

    DOE Patents [OSTI]

    Comolli, Alfred G.

    1991-01-01

    A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.

  18. Alabama Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14,252 13,534 14,746 13,227 12,911 11,989 11,891 12,319 12,134 13,613 11,767 12,672 2002 14,069 13,875 14,404 13,433 13,224 12,875 12,442 12,540 12,721 13,268 12,690 14,398 2003 15,463 14,505 13,359 12,784 12,651 11,707 11,923 12,800 12,339 13,365 13,235 14,381 2004 15,170 14,489 13,878 13,567 12,955 12,878 12,557 12,722 12,800 13,906 13,521 14,812 2005 14,959 13,377 14,398 12,900 12,229 11,710 12,259 11,816 11,009 11,518 11,913 13,013

  19. Flash hydropyrolysis of coal. Quarterly report No. 13, April 1-September 30, 1980

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.; Bhatt, B.L.

    1980-12-01

    The emphasis for the program at this time is to obtain results for specific process conditions of short residence time (< 2 sec.) and low H/sub 2//coal feed ratio (< 1.0) for select coals. The following conclusions can be drawn from this work: (1) The hydropyrolysis of New Mexico sub-bituminous coal produced considerable tar and less gaseous yields at short (< 1 second) residence times than at longer residence times. (2) The hydropyrolysis of Montana Rosebud sub-bituminous coal at 900/sup 0/C, 1000 psi, H/sub 2//coal ratios of approximately 0.8 to 0.6 and a residence time of 0.8 seconds produce yields of 23% gaseous hydrocarbons and 12% liquids. (3) Decreasing the H/sub 2//coal ratio to 0.25 at the same conditions results in a higher gaseous hydrocarbon yield and a reduced liquid yield. (4) Decreasing the residence time to 0.5 seconds, at the same conditions, decreases both the liquid and gaseous yields. (5) The liquid yield from the hydropyrolysis of the Montana Rosebud at 1000 psi maximizes as 12 to 14% at approximately 900/sup 0/C while the gaseous yield appears to continue to increase with temperature beyond the 27% measured at 940/sup 0/C. (6) Kentucky No. 9 coal produces approximately equal yields of liquids and gases (17%) at 900/sup 0/C and 1000 psi. (7) Carbon balances continue to improve but need further attention. (8) The calculated activation energy for the initial formation of hydrocarbons from both the lignite and sub-bituminous coals are almost identical (42,700 and 43,200 cal/gmole, respectively). (9) The correlation of the lignite data gave a slightly better overall correlation coefficient than the sub-bituminous data at the same 95% confidence limit (0.83 vs 0.78). (10) The free fall velocity of the coal particle at 900/sup 0/C and 1000 psi (0.8 ft/sec) becomes less significant at residence times less than 1 second.

  20. Electroplated L1{sub 0} CoPt thick-film permanent magnets

    SciTech Connect (OSTI)

    Oniku, Ololade D. Qi, Bin; Arnold, David P.

    2014-05-07

    The fabrication and magnetic characterization of 15-?m-thick electroplated L1{sub 0} CoPt hard magnets with good magnetic properties is reported in this paper. Experimental study of the dependence of the magnets' properties on annealing temperature reveals that an intrinsic coercivity H{sub ci}?=??800?kA/m (10 kOe), squareness >0.8, and energy product of >150?kJ/m{sup 3} are obtained for photolithographically patterned structures (250??m??2?mm stripes; 15??m thickness) electroplated on silicon substrates and annealed in hydrogen forming gas at 700?C. Scanning electron microscopy is used to inspect the morphology of both the as-deposited and annealed magnetic layers, and X-ray Diffractometer analysis on the magnets annealed at 700?C confirm a phase transformation to an ordered L1{sub 0} CoPt structure, with a minor phase of hcp Co. These thick films are intended for microsystems/MEMS applications.

  1. Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment

    SciTech Connect (OSTI)

    Tylczak, Joseph

    2014-05-02

    This paper reports on the results of a study that compares the erosion-corrosion behavior of a variety of alloys (Fe- 2¼Cr 1Mo, 304 SS, 310 SS, Incoloy 800, Haynes 230 and a Fe3Al) in a combustion environment. Advanced coal combustion environments, with higher temperatures, are driving re-examination of traditional and examination of new alloys in these hostile environments. In order to simulate conditions in advanced coal combustion boilers, a special erosion apparatus was used to allow for impingement of particles under a low abrasive flux in a gaseous environment comprised of 20 % CO2, 0.05 % HCl, 77 % N2, 3 % O2, and 0.1 % SO2. Tests were conducted at room temperature and 700 °C with ~ 270 μm silica, using an impact velocity of 20 m/s in both air and the simulated combustion gas environment. The erosion-corrosion behavior was characterized by gravimetric measurements and by examination of the degraded surfaces optically and by scanning electron microscopy (SEM). At room temperature most of the alloys had similar loss rates. Not surprisingly, at 700 °C the lower chrome-iron alloy had a very high loss rate. The nickel alloys tended to have higher loss rates than the high chrome austenitic alloys.

  2. Sintered Cr/Pt and Ni/Au ohmic contacts to B12P2

    SciTech Connect (OSTI)

    Frye, Clint D.; Kucheyev, Sergei O.; Edgar, James H.; Voss, Lars F.; Conway, Adam M.; Shao, Qinghui; Nikolic, Rebecca J.

    2015-04-09

    With this study, icosahedral boron phosphide (B12P2) is a wide-bandgap semiconductor possessing interesting properties such as high hardness, chemical inertness, and the reported ability to self-heal from irradiation by high energy electrons. Here, the authors developed Cr/Pt and Ni/Au ohmic contacts to epitaxially grown B12P2 for materials characterization and electronic device development. Cr/Pt contacts became ohmic after annealing at 700 °C for 30 s with a specific contact resistance of 2×10–4 Ω cm2, as measured by the linear transfer length method. Ni/Au contacts were ohmic prior to any annealing, and their minimum specific contact resistance was ~l–4 × 10–4 Ω cm2 after annealing over the temperature range of 500–800 °C. Rutherford backscattering spectrometry revealed a strong reaction and intermixing between Cr/Pt and B12P2 at 700 °C and a reaction layer between Ni and B12P2 thinner than ~25 nm at 500 °C.

  3. Sintered Cr/Pt and Ni/Au ohmic contacts to B12P2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frye, Clint D.; Kucheyev, Sergei O.; Edgar, James H.; Voss, Lars F.; Conway, Adam M.; Shao, Qinghui; Nikolic, Rebecca J.

    2015-04-09

    With this study, icosahedral boron phosphide (B12P2) is a wide-bandgap semiconductor possessing interesting properties such as high hardness, chemical inertness, and the reported ability to self-heal from irradiation by high energy electrons. Here, the authors developed Cr/Pt and Ni/Au ohmic contacts to epitaxially grown B12P2 for materials characterization and electronic device development. Cr/Pt contacts became ohmic after annealing at 700 °C for 30 s with a specific contact resistance of 2×10–4 Ω cm2, as measured by the linear transfer length method. Ni/Au contacts were ohmic prior to any annealing, and their minimum specific contact resistance was ~l–4 × 10–4 Ωmore » cm2 after annealing over the temperature range of 500–800 °C. Rutherford backscattering spectrometry revealed a strong reaction and intermixing between Cr/Pt and B12P2 at 700 °C and a reaction layer between Ni and B12P2 thinner than ~25 nm at 500 °C.« less

  4. Rate of reaction of hydrogen sulfide-carbonyl sulfide mixtures with fully calcined dolomite

    SciTech Connect (OSTI)

    Kamath, V.S.; Petrie, T.W.

    1981-01-01

    Kinetic data are obtained by a gravimetric technique for rates of reaction of calcium oxide in fully calcined dolomite with hydrogen sulfide and hydrogen sulfide-carbonyl sulfide mixtures. The data are presented as values for a factor k defined by d(CAO) = -k (CAO) dt. At 600, 700, and 800 degrees C with (H/sub 2/S) from 0.5% to 5.0% by volume and (H/sub 2/S)/(COS) = 20 for mixtures, expressions for k show apparent rate constants and the dependence on sulfurous gas concentration. For example, at 700 degrees C, k = 1.43 x 10/sup -4/ (h2s) 1.06/S and k = 1.70 x 10/sup -4/ (H/sub 2/S + COS) 1.00/s. Since the date show first-order dependence on calcium oxide, k's for H/sub 2/S alone as the sulfurous gas and h2s-cos mixtures can be obtained for the same sample, free from scatter due to variations from sample to sample. Addition of values for k from runs with H/sub 2/S as the only sulfurous gas and runs with COS as the only sulfurous gas are compared to measurements with actual mixtures. K's for the mixtures are approximately 30% higher than the sum of the appropriate separate values.

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Instituto de Fsica, Universidade de Braslia, 70910-900 Braslia" Name Name ORCID ... CreatorsAuthors contains: "Instituto de Fsica, Universidade de Braslia, 70910-900 ...

  6. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt ...

  7. Net Withdrawals of Natural Gas from Underground Storage (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    728,447 403,093 58,851 -164,475 -327,069 -223,800 1973-2016 Alabama 4,787 -713 -323 -3,383 -1,536 1,486 1993-2016 Alaska -50 -459 -451 -1,441 -1,957 -1,468 2013-2016 Arkansas 434 328 438 -444 -801 -724 1990-2016 California 40,217 7,203 -4,805 -17,261 -16,700 -7,766 1990-2016 Colorado 9,800 2,412 3,688 1,334 -5,548 -5,842 1990-2016 Illinois 69,604 50,274 26,092 4,551 -26,284 -32,072 1990-2016 Indiana 6,106 5,259 1,694 527 -2,905 -2,226 1990-2016 Iowa 19,427 10,674 4,762 2,150 -2,349 -2,856

  8. Two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  9. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  10. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  11. Two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  12. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective YSZ coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-03-15

    Recently, compliant sealing glass has been proposed as a potential candidate sealant for solid oxide fuel cell (SOFC) applications. In a previous paper, the thermal stability and chemical compatibility were reported for a compliant alkali-containing silicate glass sealed between anode supported YSZ bi-layer and YSZ-coated stainless steel interconnect. In this paper, we will report the electrical stability of the compliant glass under a DC load and dual environment at 700-800 degrees C. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two plain SS441 metal coupons or YSZ-coated aluminized substrates. The results showed instability with plain SS441 at 800 degrees C, but stable behavior of increasing resistivity with time was observed with the YSZ coated SS441. In addition, results of interfacial microstructure analysis with scanning electron microscopy will be correlated with the measured resistivity results. Overall, the YSZ coating demonstrated chemically stability with the alkali-containing compliant silicate sealing glass under electrical field and dual environments.

  13. Electrochemical, Structural and Surface Characterization of Nickel/Zirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Antimony

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    2011-02-27

    The interaction of antimony with the nickel-zirconia solid oxide fuel cell (SOFC) anode has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800oC in synthetic coal gas containing 10 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5 % power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1500 hours depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni5Sb2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer.

  14. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-01-01

    An alkali-containing silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass contains about 17 mole% alkalis (K+Na) and has low glass transition and softening temperatures. It remains vitreous and compliant around 750-800oC after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealants, which experience rapid crystallization after the sealing process. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with YSZ coating during short term testing. In the current study, the compliant glass was further evaluated in a more realistic way in that the sealed glass couples were first isothermally aged for 1000h followed by thermal cycling. High temperature leakage was measured. The chemical compatibility was also investigated with powder mixtures at 700 and 800oC to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results.

  15. Hydropyrolysis of biomass

    SciTech Connect (OSTI)

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

  16. Examination of the mechanism for the reversible aging behavior at open circuit when changing the operating temperature of (La0.8Sr0.2)0.95 MnO3 electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abernathy, Harry; Finklea, Harry O.; Mebane, David S.; Song, Xueyan; Chen, Yun; Gerdes, Kirk

    2015-02-17

    The aging behavior of symmetrical cells, consisting of either (La0.8Sr0.2)0.95 MnO3 (LSM) or La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) electrodes screen printed on either 8 mol% yttria-stabilized zirconia (YSZ) or Ce0.8Gd0.2O2 (GDC) electrolyte substrates, is reported as the symmetrical cell is thermally cycled between 700 °C and 800 °C. For LSM, between 700 °C and 850 °C, the polarization resistance exhibits slow increases or decreases with time (on the order of days) after a quick change in temperature. When increasing the temperature, the polarization resistance decreases with time, and when decreasing the temperature, the polarization resistance slowly increases with time. In a previous work,more » the authors had explained these results with LSM by connecting the testing conditions to literature reports of surface analysis of LSM thin films which demonstrated a change in the amount of surface cation segregation as a function of temperature. In this work, TEM/EDS/XPS analysis of dense LSM pellets thermally cycled under the same conditions as the symmetrical cells does not indicate any significant reversible change in the surface composition of the LSM pellet between 700 °C and 800 °C. An alternative hypothesis is proposed to explain the relationship between polarization resistance and the LSM cation/anion vacancy concentrations controlled by the Schottky reaction. The timescale of aging behavior is related to the time necessary for the cations to move to or from the LSM surface to adjust to the new equilibrium at each temperature. Furthermore, the relevance in understanding the mechanism behind the aging behavior is emphasized with respect to fuel cell sample/stack modeling as well as to proper testing procedures for reaching reliable conclusions when comparing different electrode samples.« less

  17. Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Base Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,300 21,300 21,300 21,300 0 21,300 21,300 21,300 21,300 21,300 21,300 1991 21,300 21,300 21,300 21,300 21,300 21,300 21,300 21,300 21,300 18,800 18,800 18,800 1992 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 1993 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800

  18. Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS

    SciTech Connect (OSTI)

    Palmero, P.; Bonelli, B.; Fantozzi, G.; Spina, G.; Bonnefont, G.; Montanaro, L.; Chevalier, J.

    2013-07-15

    Graphical abstract: - Highlights: • Ultrasonication as effective, un-polluting dispersion route for YAG powders. • Annealing in the 700900 °C range to increase the transparency. • Oxygen vacancies more crucial on the transmittance than C contamination. • SPS reliable method for transparent and ultra-fine polycrystalline YAG. • Very high hardness (16.5–17 GPa) for the fully dense, fine materials. - Abstract: YAG powder was synthesised by reverse-strike co-precipitation, calcined at 1000 °C and dispersed by either ball-milling with α-alumina (BM{sub A}) or zirconia (BMz) spheres or by ultrasonication (US). All the dispersed powders were consolidated by SPS to nearly theoretical density, but only the US powder gave rise to a transparent material (transmittance of about 60% at 600 nm, 1 mm thickness), characterised by an ultra-fine microstructure (average size of 330 nm). In the BM materials, Raman spectroscopy allowed to evidence some phonon vibrational shifts due to secondary phases deriving from pollution by the milling media, not detectable by XRD because present in small amounts. The transmittance of the as-sintered US sample was further increased by annealing in air at 900 °C; this was assigned to the restoration of some oxygen vacancies created in the reducing environment of the SPS chamber, as evidenced by XPS (X-ray photoelectron spectroscopy). Finally, US samples sintered in the 1250–1400 °C were submitted to a basic mechanical characterisation, showing a very good hardness, in spite of a moderate fracture toughness, especially for the fully dense and fine-grained materials sintered at 1300–1350 °C.

  19. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon

    SciTech Connect (OSTI)

    Hill, B.E. (ed.)

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  20. Nanostructured aluminium titanate (Al{sub 2}TiO{sub 5}) particles and nanofibers: Synthesis and mechanism of microstructural evolution

    SciTech Connect (OSTI)

    Azarniya, Abolfazl; Azarniya, Amir; Hosseini, Hamid Reza Madaah; Simchi, Abdolreza

    2015-05-15

    In this study, aluminium titanate (AT) particles and nanofibers were synthesized through citrate sol gel and sol gel-assisted electrospinning methods in both nanostructured powder and nanofiber forms. The results of X-ray diffraction analysis, field-emission scanning electron microscopy and differential thermal analysis showed that the synthetic products benefit a nanostructured nature with a grain size less than 70 nm. The optimal values for time and temperature at which a roughly pure AT is attained were determined as 2 h and 900 °C, respectively. It was found that the sol gel precursor bears an amorphous structure till 700 °C and begins to be crystallized to alumina, anatase and AT at higher temperatures. Moreover, AT tends to decompose into rutile and alumina at temperatures higher than 900 °C and its degradation rate reaches a maximum at temperatures near to 1100 °C. In this synthesis, citric acid was used as a chelating agent for Al{sup 3} {sup +} and Ti{sup 4} {sup +} ions and it was shown that a low citric acid-to-metal cation ratio leads to larger numbers of nuclei during crystallization and smaller grain size. Finally, a model was suggested to describe the microstructural evolution of AT compound based on a nucleation and growth regime. - Graphical abstract: Display Omitted - Highlights: • We synthesized aluminium titanate ceramic in both powder and nanofiber forms. • The methods in use were citrate sol gel and sol gel-assisted electrospinning. • Powders and nanofibers bear a nanostructured nature with a grain size less than 70 nm. • A model is suggested to describe microstructural evolution of synthetic products.

  1. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report

    SciTech Connect (OSTI)

    Hill, B.E.

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  2. Characterization and thermal behavior of PrMO{sub 3} (M = Co or Ni) ceramic materials obtained from gelatin

    SciTech Connect (OSTI)

    Aquino, F.M.; Melo, D.M.A.; Pimentel, P.M.; Braga, R.M.; Melo, M.A.F.; Martinelli, A.E.; Costa, A.F.

    2012-09-15

    Graphical abstract: The micrograph in figure shows sample calcined at temperature 900 °C. The sample exhibits morphology with considerable porosity and the formation of agglomerated nanometric particles. Gelatin provides the system with a large amount of organic matter, which is then removed during calcinations, favoring the appearance of pores in the material. Highlights: ► Oxides with PrNiO{sub 3} and PrCoO{sub 3} were prepared by new method synthesis. ► The gelatin, through its carboxylate groups and amine, is an efficient director. ► The obtained materials have magnetic properties and application in catalysis. ► The decomposition kinetic study of bonding groups of gelatin with metallic ions that takes part in the synthesis of PrMO{sub 3}. -- Abstract: Metal oxides with perovskite-type structure have attracted considerable interest in recent years due to their magnetic and electrical properties, as well as their catalytic activity. In this study, oxides with PrNiO{sub 3} and PrCoO{sub 3} composition were prepared by using gelatin powder as a precursor agent for its use as a catalyst. The powders obtained were calcined at 700 °C and 900 °C and characterized using the X-ray diffraction, thermal analysis (thermogravimetry and differential thermal analysis), infrared spectroscopy, temperature programed reduction and scanning electron microscopy techniques. Thermogravimetric data using the non-isothermal kinetic models of Flynn and Wall and “Model-free Kinetics” were used to determine the activation energy to study the decomposition kinetics of the ligand groups with system's metallic ions that takes part in the synthesis of PrMO{sub 3} (M = Ni or Co).

  3. Effect of vitrification temperature upon the solar average absorptance properties of Pyromark Series 2500 black paint

    SciTech Connect (OSTI)

    Nelson, C.; Mahoney, A.R.

    1986-06-01

    A significant drop in production efficiency has occurred over time at the Solar One facility at Barstow, California, primarily as a result of the degradation of the Pyromark Series 2500 black paint used as the absorptive coating on the receiver panels. As part of the investigation of the problem, the solar-averaged adsorptance properties of the paint were determined as a function of vitrification temperature, since it is known that a significant amount of the panel surface area at Solar One was vitrified at temperatures below those recommended by the paint manufacturer (540/sup 0/C, 1000/sup 0/F). Painted samples initially vitrified at 230/sup 0/C (450/sup 0/F), 315/sup 0/C (600/sup 0/F), 371/sup 0/C (700/sup 0/F), and 480/sup 0/C (900/sup 0/F) exhibited significantly lower solar-averaged absorptance values (0.02 absorptance units) compared to samples vitrified at 540/sup 0/C (1000/sup 0/F). Thus, Solar One began its service life below optimal levels. After 140 h of thermal aging at 370/sup 0/C (700/sup 0/F) and 540/sup 0/C (1000/sup 0/F), all samples regardless of their initial vitrification temperatures, attained the same solar-averaged absorptance value (..cap alpha../sub s/ = 0.973). Therefore, both the long-term low-temperature vitrification and the short-term high-temperature vitrification can be used to obtain optimal or near-optimal absorptance of solar flux. Futher thermal aging of vitrified samples did not result in paint degradation, clearly indicating that high solar flux is required to produce this phenomenon. The panels at Solar One never achieved optimal absorptance because their exposure to high solar flux negated the effect of long-term low-temperature vitrification during operation. On future central receiver projects, every effort should be made to properly vitrify the Pyromark coating before its exposure to high flux conditions.

  4. Workplace Charging Challenge Partner: Pentair Water Pool and Spa, Inc.

    Broader source: Energy.gov [DOE]

    Joined the Challenge: June 2014Headquarters: Sanford, NCCharging Location: Sanford, NCDomestic Employees: 8,900

  5. Workplace Charging Challenge Partner: University at Albany: State University of New York

    Broader source: Energy.gov [DOE]

    Joined the Challenge: October 2015Headquarters: Albany, NYCharging Location: Albany, NYDomestic Employees: 5,900

  6. Optical characteristics of nanocrystalline Al{sub x}Ga{sub 1?x}N thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    SciTech Connect (OSTI)

    Goldenberg, Eda; Ozgit-Akgun, Cagla; Biyikli, Necmi; Kemal Okyay, Ali

    2014-05-15

    Gallium nitride (GaN), aluminum nitride (AlN), and Al{sub x}Ga{sub 1?x}N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200?C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and Al{sub x}Ga{sub 1?x}N films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2?nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4?nm when the annealing duration increased from 30?min to 2?h (800?C). For all films, the average optical transmission was ?85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and Al{sub x}Ga{sub 1?x}N were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (??=?550?nm) with the increased Al content x (0???x???1), while the extinction coefficients (k) were approximately zero in the VIS spectrum (>400?nm). Postdeposition annealing at 900?C for 2?h considerably lowered the refractive index value of GaN films (2.331.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95?eV, and it decreased to 3.90?eV for films annealed at 800?C for 30?min and 2?h. On the other hand, this value increased to 4.1?eV for GaN films annealed at 900?C for 2?h. This might be caused by Ga{sub 2}O{sub 3} formation and following phase change. The optical bandgap value of as-deposited Al{sub x}Ga{sub 1?x}N films decreased from 5.75 to 5.25?eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not affect the bandgap of Al-rich films.

  7. Audit Report: OAS-RA-13-08 | Department of Energy

    Office of Environmental Management (EM)

    The Department of Energy's 700 Million Smart Grid Demonstration Program Funded through ... nearly 700 million to the Smart Grid Demonstration Program (Program) to fund 32 regional ...

  8. Novel Low Temperature Solid State Fuel Cells

    SciTech Connect (OSTI)

    Chen, Chonglin; Nash, Patrick; Liu, Jian; Collins, Gregory

    2009-12-15

    We have successfully fabricated (PrBa)Co{sub 2}O{sub 5+{delta}} and (LaBa)Co{sub 2}O{sub 5+{deleta}} epitaxial thin film on various single crystal substrates. Physical and electrochemical properties characterizations were carried out. Highly conductive oxygen-deficient double perovskite LnBaCo2O5+? thin films were grown on single crystal (001) SrTiO{sub 3} (STO), (001) MgO, (001) LaAlO{sub 3} and (110) NdGaO{sub 3} substrate by pulsed laser deposition. Microstructure studies from synchrotron X-ray diffraction and Transmission electron microscopy. High temperature transport properties was carried in different atmosphere (O{sub 2},Air, N{sub 2}) up to ~900K. Resistance response of (LaBa)Co{sub 2}O{sub 5+{delta}} epitaxial thin film was characterized in oxygen, nitrogen and 4% hydrogen over a wide range of temperature from 400?C up to 800?C. To determine the electrode performance and oxygen exchange kinetics of PrBaCo{sub 2}O{sub 5+{delta}}, multi-layered thin film based half cell was deposited on LaAlO{sub 3}(001) substrate. The temperature dependence of the resistance of this half ?cell structure was characterized by electrochemical impedance spectroscopy (EIS) within different temperature and gas environments. Anode supported fuel cells, with GCO:YSZ multilayer thin film as electrolyte and PBCO thin film as electrode, are fabricated on tape casted NiO/YSZ substrate. Full cell performance is characterized up to 800?C.

  9. A modified method for barium titanate nanoparticles synthesis

    SciTech Connect (OSTI)

    Ashiri, R.; Nemati, Ali; Sasani Ghamsari, M.; Sanjabi, S.; Aalipour, M.

    2011-12-15

    Graphical abstract: TEM micrograph of BaTiO{sub 3} powders synthesized at 800 Degree-Sign C for 1 h and SAED pattern (inset) of BaTiO{sub 3} powders. In this research, a modified, cost efficient and quick sol-gel procedure was used for preparation of BaTiO{sub 3} nanoparticles. Highlights: Black-Right-Pointing-Pointer A modified process was used for preparation. Black-Right-Pointing-Pointer The modified process led to preparation of finer BaTiO{sub 3} nanoparticles in shorter period of time and lower temperature contrary to previous researches. Black-Right-Pointing-Pointer The proposed procedure seems to be more preferable for mass production. -- Abstract: In this research, a modified, cost effective sol-gel procedure applied to synthesize BaTiO{sub 3} nanoparticles. XRD and electron microscopy (SEM and TEM) applied for microstructural characterization of powders. The obtained results showed that the type of precursors, their ratio and the hydrolysis conditions had a great effect on time, temperature and therefore the costs of the synthesis process. By selection, utilization of optimized precursor's type, hydrolysis conditions, fine cubic BaTiO{sub 3} nanoparticles were synthesized at low temperature and in short time span (1 h calcination at 800 Degree-Sign C). The proposed procedure seems to be more preferable for mass production. The result indicated that the polymorphic transformation to tetragonal (ferroelectric characteristic) occurred at 900 Degree-Sign C, which might be an indication of being nanosized.

  10. Oxidation of selected alloys during 25,000 h in superheated steam at 482 and 538/sup 0/C

    SciTech Connect (OSTI)

    Griess, J.C.; Maxwell, W.A.

    1980-03-01

    The corrosion of several ferritic and austenitic materials in flowing superheated steam at 482 and 538/sup 0/C (900 and 1000/sup 0/F) were studied. Results obtained during the first 12,000 h of the test were presented previously. Results obtained during the first 25,000 h are summarized. The test specimens are mounted in a nonrecirculating loop that receives steam from the superheater circuit of a fossil-fired power plant. At both temperatures all materials exhibited parabolic oxidation kinetics during the first year and subsequently have oxidized at low constant rates. The ferritic steels containing 2 1/4 and 9% Cr have oxidized at about the same rates, averaging 4.2 and 8.6 ..mu..m/year (0.17 and 0.34 mils/year) at 482 and 538/sup 0/C, respectively, after the first year. Sandvik HT-9 (11.4% Cr) has corroded at slightly lower rates. Annealed and Cold-worked surfaces of these alloys have exhibited identical behavior. At 482/sup 0/C all materials have retained their corrosion products completely, but at 538/sup 0/C some began experiencing exfoliation after 12,000 h. Data suggest that a high silicon content in the alloy minimizes exfoliation. Cold-worked surfaces of alloy 800 are corroding at lower rates than annealed and pickled ones, but in both cases the rates are very low. Alloy 800 specimens that had been intergranularly corroded before exposure to steam are oxidizing at much higher rates, but intergranular penetration has not progressed. Type 304 stainless steel is corroding nonuniformly, but the attack rates are low at both temperatures. Alloy 617 is corroding at the lowest rate of any material in the loop; even after 25,000 h surface films are thin enough to show interference colors.

  11. Glass-ceramic hermetic seals to high thermal expansion metals

    DOE Patents [OSTI]

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  12. High temperature phase stabilities and electrochemical properties of InBaCo4-xZnxO7 cathodes for intermediate temperature solid oxide fuel cells

    SciTech Connect (OSTI)

    Kim, Jung-Hyun; Young Nam, Kim; Bi, Zhonghe; Manthiram, Arumugam; Paranthaman, Mariappan Parans; Huq, Ashfia

    2011-01-01

    InBaCo4-xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4-xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 oC and 700 oC for 100 h, and chemical stability against a Gd0.2Ce0.8O1.9 (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo4-xZnxO7 (x = 1, 1.5, 2) specimens were determined to be 8.6 10-6 9.6 10-6 /oC in the range of 80 900 oC, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4-xZnxO7 + GDC (50:50 wt. %) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4-xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites.

  13. Michigan Natural Gas Underground Storage Net Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,681 58,564 23,810 7,859 -48,468 -64,734 -75,437 -70,900 -52,873 -19,714 10,727 70,637 1991 116,396 63,462 23,719 -25,279 -47,963 -57,062 -58,225 -46,233 -27,703 -32,872 56,578 74,384 1992 82,535 72,236 62,627 -507 -43,850 -66,808 -73,161 -67,079 -67,401 -28,345 47,094 84,911 1993 96,216 101,700 65,333 -20,104 -73,928 -83,810 -83,481 -80,825 -65,972 -33,332 50,196 88,975 1994 144,758 89,081 30,657 -41,245 -71,525 -72,789

  14. Mutual passivation of group IV donors and isovalent nitrogen in diluted GaN{sub x}As{sub 1-x} alloys

    SciTech Connect (OSTI)

    Yu, K.M.; Wu, J.; Walukiewicz, W.; Shan, W.; Beeman, J.; Mars, D.E.; Chamberlin, D.R.; Scarpulla, M.A.; Dubon, O.D.; Ridgway, M.C.; Geisz, J.F.

    2003-07-23

    We demonstrate the mutual passivation of electrically active group IV donors and isovalent N atoms in the GaN{sub x}As{sub 1-x} alloy system. This phenomenon occurs through the formation of a donor-nitrogen bond in the nearest neighbor IV{sub Ga}-N{sub As} pairs. In Si doped GaInN{sub 0.017}As{sub 0.983} the electron concentration starts to decrease rapidly at an annealing temperature of 700 C from {approx} 3 x 10{sup 19}cm{sup -3} in the as-grown state to less than 10{sup 16}cm{sup -3} after an annealing at 900 C for 10 s. At the same time annealing of this sample at 950 C increases the gap by about 35 meV, corresponding to a reduction of the concentration of the active N atoms by an amount very close to the total Si concentration. We also show that the formation of Si{sub Ga}-N{sub As} pairs is controlled by the diffusion of Si via Ga vacancies to the nearest N{sub As} site. The general nature of this mutual passivation effect is confirmed by our study of Ge doped GaN{sub x}As{sub 1-x} layers formed by N and Ge co-implantation in GaAs followed by pulsed laser melting.

  15. Oklahoma Natural Gas Underground Storage Net Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 5,526 7,239 2,427 -885 -10,341 -8,861 -10,616 -7,700 -7,151 -5,802 -3,986 25,852 1991 35,547 5,078 -5,298 -14,900 -15,187 -10,455 -1,095 -4,757 -10,249 -4,702 26,655 11,502 1992 17,866 8,339 3,738 -5,813 -8,448 -11,329 -16,356 -5,444 -12,709 -7,728 16,578 31,363 1993 25,220 20,310 8,195 -14,656 -21,410 -19,631 -15,116 -10,830 -14,976 -7,313 17,378 18,294 1994 34,379 26,584 3,144 -18,906 -26,542 -14,012 -17,293 -13,744 -9,237

  16. Rhode Island Price of Natural Gas Delivered to Residential Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6.56 7.00 6.98 7.13 7.26 8.25 8.44 8.65 8.55 7.49 7.10 6.84 1990 6.84 6.94 6.89 7.08 7.35 7.75 8.35 8.36 8.19 8.02 7.45 7.22 1991 7.08 7.09 7.30 7.63 8.02 8.92 9.17 9.06 9.18 8.26 7.76 7.47 1992 7.32 7.33 7.36 7.45 7.77 8.45 8.71 9.53 9.00 8.28 7.85 7.62 1993 7.59 7.54 7.57 7.75 8.38 9.35 9.60 9.96 9.96 8.87 8.93 8.81 1994 8.62 8.56 8.77 9.32 9.35 10.50 11.51 11.60 11.44 9.42 9.36 8.73 1995 8.28 8.27

  17. Tennessee Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Citygate Price 3.21 3.09 3.09 2.97 3.02 3.19 1989-2016 Residential Price 7.42 7.28 7.90 9.55 12.52 14.85 1989-2016 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2016 Commercial Price 6.93 7.00 7.01 7.58 7.60 8.28 1989-2016 Percentage of Total Commercial Deliveries included in Prices 91.2 92.5 90.0 86.1 83.7 79.9 1989-2016 Industrial Price 4.52 4.59 4.12 3.69 3.64 3.55 2001-2016

  18. Magnetic shielding of Hall thrusters at high discharge voltages

    SciTech Connect (OSTI)

    Mikellides, Ioannis G. Hofer, Richard R.; Katz, Ira; Goebel, Dan M.

    2014-08-07

    A series of numerical simulations and experiments have been performed to assess the effectiveness of magnetic shielding in a Hall thruster operating in the discharge voltage range of 300–700 V (I{sub sp} ≈ 2000–2700 s) at 6 kW, and 800 V (I{sub sp} ≈ 3000) at 9 kW. At 6 kW, the magnetic field topology with which highly effective magnetic shielding was previously demonstrated at 300 V has been retained for all other discharge voltages; only the magnitude of the field has been changed to achieve optimum thruster performance. It is found that magnetic shielding remains highly effective for all discharge voltages studied. This is because the channel is long enough to allow hot electrons near the channel exit to cool significantly upon reaching the anode. Thus, despite the rise of the maximum electron temperature in the channel with discharge voltage, the electrons along the grazing lines of force remain cold enough to eliminate or reduce significantly parallel gradients of the plasma potential near the walls. Computed maximum erosion rates in the range of 300–700 V are found not to exceed 10{sup −2} mm/kh. Such rates are ∼3 orders of magnitude less than those observed in the unshielded version of the same thruster at 300 V. At 9 kW and 800 V, saturation of the magnetic circuit did not allow for precisely the same magnetic shielding topology as that employed during the 6-kW operation since this thruster was not designed to operate at this condition. Consequently, the maximum erosion rate at the inner wall is found to be ∼1 order of magnitude higher (∼10{sup −1} mm/kh) than that at 6 kW. At the outer wall, the ion energy is found to be below the sputtering yield threshold so no measurable erosion is expected.

  19. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    SciTech Connect (OSTI)

    Steiner, S A; Baumann, T F; Kong, J; Satcher, J H; Dresselhaus, M S

    2007-02-15

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  20. Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9.54 8.44 9.52 7.96 6.35 8.08 5.35 5.74 5.26 3.87 4.25 3.42 2002 4.97 4.57 4.89 4.97 5.35 5.37 5.22 4.93 5.11 5.69 6.24 7.14 2003 6.43 6.25 7.71 5.55 6.61 6.87 7.22 5.12 6.15 5.92 6.32 7.20 2004 7.17 6.68 6.80 6.97 7.87 8.32 8.60 8.21 7.12 6.42 7.00 8.44 2005 8.17 7.80 8.09 7.66 8.11 7.65 7.92 9.24 10.27 11.53 12.18 12.05 2006 10.95 10.21 9.20 8.62 8.00 8.28 6.83 8.45 7.83 6.39 7.26 8.31 2007 8.87 9.39 9.28 8.58 8.00 8.58 8.61 7.88 7.48

  1. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    DOE R&D Accomplishments [OSTI]

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  2. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; et al

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infermore » the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  3. Effects of rapid thermal annealing on properties of Ga-doped Mg{sub x}Zn{sub 1−x}O films and Ga-doped Mg{sub x}Zn{sub 1−x}O/AlGaN heterojunction diodes

    SciTech Connect (OSTI)

    Hsueh, Kuang-Po E-mail: kphsueh@mail.vnu.edu.tw; Cheng, Po-Wei

    2014-08-14

    This study investigated the thermal annealing effects of Ga-doped Mg{sub x}Zn{sub 1−x}O (GMZO) films and GMZO/AlGaN heterojunction diodes. GMZO films were deposited using a radio-frequency magnetron sputtering system with a 4-in. ZnO/MgO/Ga{sub 2}O{sub 3} target. In addition, the Hall results, X-ray diffraction, transparent performance, and X-ray photoelectron spectroscopy (XPS) spectra were measured. The as-grown GMZO film deposited in this study exhibited a high transparency with transmittances over 95% in the visible region (360–700 nm) and a sharp absorption edge in the UV region (275–350 nm). The phenomenon of phase separation in the GMZO films was investigated based on the XPS spectra, revealing that an increase in the O-Zn signal accompanied a decline in the O-Ga signal after the thermal annealing. Moreover, the current-voltage (I-V) characteristics of the GMZO/AlGaN n-p junction diodes were examined at different annealing temperatures. The light emission derived from the forward-biased junction and near-ultraviolet (near-UV) light emission was evident at all p-n junctions. The n-GMZO/p-AlGaN diode annealed at 800 °C exhibited a brighter near-UV emission compared with the other diodes. In addition, the spectrum of diode annealed at 800 °C exhibited a broad peak at 474 nm (2.62 eV) and a tail of the emission spectrum extending to 850 nm. Based on these findings, the GMZO films are suitable for forming transparent contact layers in optoelectronic devices, and the n-GMZO/p-AlGaN junction diode is a feasible alternative in near-UV light emission devices.

  4. (Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells

    SciTech Connect (OSTI)

    Young Nam, Kim; Kim, Jung-Hyun; Paranthaman, Mariappan Parans; Manthiram, Arumugam; Huq, Ashfia

    2012-01-01

    (Y0.5In0.5)BaCo4-xZnxO7 (1.0 x 2.0) oxides crystallizing in a trigonal P31c structure have been synthesized and explored as cathode materials for solid oxide fuel cells (SOFC). At a given Zn content, the (Y0.5In0.5)BaCo4-xZnxO7 sample with 50 % Y and 50 % In exhibits much improved phase stability at intermediate temperatures (600 - 800 oC) compared to the samples with 100 % Y or In. However, the substitution of Zn for Co in (Y0.5In0.5)Ba(Co4-xZnx)O7 (1.0 x 2.0) decreases the amount of oxygen loss on heating, total electrical conductivity, and cathode performance in SOFC while providing good long-term phase stability at high temperatures. Among the various chemical compositions investigated in the (Y0.5In0.5)Ba(Co4-xZnx)O7 system, the (Y0.5In0.5)BaCo3ZnO7 sample offers a combination of good electrochemical performance and low thermal expansion coefficient (TEC) while maintaining superior phase stability at 600 800 oC for 100 h. Fuel cell performances of the (Y0.5In0.5)Ba(Co3Zn)O7 + Ce0.8Gd0.2O1.9 (GDC) (50 : 50 wt. %) composite cathodes collected with anode-supported single cell reveal a maximum power density value of 521 mW cm-2 at 700 oC.

  5. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    SciTech Connect (OSTI)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Friedrich, S.; Bionta, R.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Hopkins, L. Berzak; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dixit, S.; Döppner, T.; Edgell, D.; Edwards, M. J.; Johnson, M. Gatu; Glenn, S.; Glenzer, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kritcher, A.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Macphee, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moody, J.; Moses, E.; Nagel, S. R.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Rosen, M.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Springer, P.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Zacharias, R.

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.

  6. Technology Pathway Partnership Final Scientific Report

    SciTech Connect (OSTI)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at the photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.

  7. Properties of nitrogen implanted and electron beam annealed bulk ZnO

    SciTech Connect (OSTI)

    Kennedy, J.; Carder, D. A.; Markwitz, A.; Reeves, R. J.

    2010-05-15

    The optical properties of bulk ZnO ion implanted with nitrogen ions, at an energy of 23 keV have been studied as a function of implantation fluence and electron beam (EB) annealing conditions. Nuclear reaction analysis and Raman results have revealed the implanted N concentration and its structural changes with respect to various nitrogen ion fluences. The optical properties of nitrogen implanted bulk ZnO were investigated by low temperature photoluminescence measurements. An enhanced peak at 3.235 eV has been attributed to donor-accepter pair (DAP) emission involving the implanted N acceptor in ZnO. The emission near 3.3085 eV is attributed to a free electron to acceptor transition. We also report a broad band emission feature at {approx}3.09 eV in the nitrogen implanted with 1-2x10{sup 15} ions cm{sup -2} and EB annealed at 800-900 deg. C. This is assigned to a thermally activated nitrogen acceptor transition as it is unique only to nitrogen implanted samples. An ionization energy of 377 meV indicates that this line may correspond to a significantly less shallow acceptor level. In addition an increase in the intensity and dominance of this DAP line in nitrogen implanted samples over the other acceptor transitions was observed with increasing annealing time and temperatures. It is shown that EB annealing offers a method of enhanced nitrogen activation when compared to a more conventional furnace approach.

  8. Isothermal kinetic of phase transformation and mixed electrical conductivity in Bi{sub 3}NbO{sub 7}

    SciTech Connect (OSTI)

    Wang, X.P.; Corbel, G.; Kodjikian, S.; Fang, Q.F.; Lacorre, P. . E-mail: Philippe.Lacorre@univ-lemans.fr

    2006-11-15

    Bismuth niobate (Bi{sub 3}NbO{sub 7}) exists under two crystallographic modifications, a tetragonal (type-III) phase between 800 and 900 deg. C, and a pseudocubic (type-II) phase above and below this thermal range. The quenching at room temperature of pseudocubic type-II phase made it possible to carry out a detailed study of the transformation kinetics of this metastable type-II phase to the stable type-III phase, using isothermal in situ X-ray diffraction. The obtained Avrami exponent and activation energy for the transition are around 2.5 and 3.25 eV, respectively. The value of the Avrami exponent is consistent with a three-dimensional diffusion-controlled transformation with constant nucleation rate. Investigations of electrical properties using AC impedance spectroscopy and Wagner polarization method show that the tetragonal phase exhibits higher ionic and electronic conductivities than those of the pseudocubic form. Such a deviation is likely to originate from different distributions of cations/electronic-lone-pairs and oxygen vacancies. - Graphical abstract: The metastable type-II form of Bi{sub 3}NbO{sub 7}, whose phase transformation kinetics to type-III form is studied in isothermal conditions, is shown to have a larger volume and a lower anionic (and electronic) conductivity than the type-III form of thisorite-type bismuth niobate.

  9. Production of hydrogen by thermocatalytic cracking of natural gas. Task 4 report; Annual report

    SciTech Connect (OSTI)

    1995-10-01

    The conventional methods of hydrogen production from natural gas, for example, steam reforming (SR), are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere. One alternative is the single-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. The comparative assessment of SR and TCC processes was conducted. Thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500--900 C) and flow rates was conducted. Two types of fix bed catalytic reactors were designed, built and tested: continuous flow and pulse reactors. Ni-Mo/Alumina and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at the range of temperatures 600--800 C. Fe-catalyst demonstrated fairly good stability, whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity. Methane decomposition reaction over Ni-Mo/alumina was studied over wide range of space velocities in a continuous flow fixed bed catalytic reactor. The experimental results indicate that the hydrogen yield decreases noticeably with an increase in the space velocity of methane. The pulse type catalytic reactor was used to test the activity of the catalysts. It was found that induction period on the kinetic curve of hydrogen production corresponded to the reduction of metal oxide to metallic form of the catalyst. SEM method was used to study the structure of the carbon deposited on the catalyst surface.

  10. Type B accident investigation board report of the July 2, 1997 curium intake by shredder operator at Building 513 Lawrence Livermore National Laboratory, Livermore, California. Final report

    SciTech Connect (OSTI)

    1997-08-01

    On July 2, 1997 at approximately 6:00 A.M., two operators (Workers 1 and 2), wearing approved personal protective equipment (PPE), began a shredding operation of HEPA filters for volume reduction in Building 513 (B-513) at Lawrence Livermore National Laboratory (LLNL). The waste requisitions indicated they were shredding filters containing {le} 1 {micro}Ci of americium-241 (Am-241). A third operator (Worker 3) provided support to the shredder operators in the shredding area (hot area) from a room that was adjacent to the shredding area (cold area). At Approximately 8:00 A.M., a fourth operator (Worker 4) relieved Worker 2 in the shredding operation. Sometime between 8:30 A.M. and 9:00 A.M., Worker 3 left the cold area to make a phone call and set off a hand and foot counter in Building 514. Upon discovering the contamination, the shredding operation was stopped and surveys were conducted in the shredder area. Surveys conducted on the workers found significant levels of contamination on their PPE and the exterior of their respirator cartridges. An exit survey of Worker 1 was conducted at approximately 10:05 A.M., and found contamination on his PPE, as well as on the exterior and interior of his respirator. Contamination was also found on his face, chest, back of neck, hair, knees, and mustache. A nose blow indicated significant contamination, which was later determined to be curium-244.

  11. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect (OSTI)

    Yamamoto, Yukinori; Brady, Michael P; Santella, Michael L; Bei, Hongbin; Maziasz, Philip J; Pint, Bruce A

    2008-01-01

    Work in fiscal year 2008 focused on the development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of an excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides [1-8]. High levels of Nb additions (> 1 wt.% Nb) and/or Ni additions (25-30 wt.%), at Al levels of 2.5-4 wt.%, were found to correlate with increased upper-temperature limit for Al2O3 scale formation in air ( 900 aC) and air with 10% water vapor ( 800 aC). Creep resistance also showed a strong dependence on the level of Nb additions, and was correlated with volume fraction of MC-type carbides using thermodynamic computational tools. A trial heat of a 50 lb AFA alloy ingot was made using conventional single-melt vacuum techniques, and the alloy was successfully hot-rolled without any cracking [2]. This heat showed good weldability, using filler material of the same alloy.

  12. Long-term materials test program. Quarterly report, January-March 1983

    SciTech Connect (OSTI)

    1984-03-01

    Exposure of gas turbine materials to a PFBC effluent under the Long-Term Materials Test Program has reached 1507 hours. Unprotected nickel and cobalt base blade and vane alloys show susceptibility to hot corrosion at 1500/sup 0/F (gas temperature), 1300/sup 0/F, and 1100/sup 0/F (air-cooled pins). Precious metal aluminide and M (Co,Fe) CrAlY overlay coatings continue to show good resistance to corrosion above 1450/sup 0/F, but are susceptible to varying degrees of pitting attack between 1050 and 1300/sup 0/F. Significant erosion/corrosion degradation of both base alloys and protective coatings/claddings has been observed on airfoil specimens exposed at 1350/sup 0/F, 800 to 900 fps and dust loadings less than 100 ppM for 1085 hours. Corrosion predominately occurred in areas of direct particle impaction; i.e., leading edge and pressure surface, indicating an erosion/corrosion synergism. At gas velocities of 1200 to 1400 fps, a platinum-aluminide coated IN-738 pin experienced a metal recession rate of 8 mils/1000-hours. The PFBC facility continues to show excellent operational reliability, accumulating over 1100 test hours this quarter. The only concern from an operations standpoint is the gradual thinning of the in-bed heat exchanger tubing at a rate of about 5 mils/100 hours off the diameter.

  13. Microstructural studies of advanced austenitic steels

    SciTech Connect (OSTI)

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  14. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    SciTech Connect (OSTI)

    Laali, A.R.; Meyer, J.L.; Bellot, C.; Louche, A.

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  15. Growth-induced electron mobility enhancement at the LaAlO{sub 3}/SrTiO{sub 3} interface

    SciTech Connect (OSTI)

    Fête, A.; Cancellieri, C.; Li, D.; Stornaiuolo, D.; Caviglia, A. D.; Gariglio, S.; Triscone, J.-M.

    2015-02-02

    We have studied the electronic properties of the 2D electron liquid present at the LaAlO{sub 3}/SrTiO{sub 3} interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650 °C exhibit the highest low temperature mobility (≈10 000 cm{sup 2} V{sup −1} s{sup −1}) and the lowest sheet carrier density (≈5×10{sup 12} cm{sup −2}). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800900 °C) display carrier densities in the range of ≈2−5×10{sup 13} cm{sup −2} and mobilities of ≈1000 cm{sup 2} V{sup −1} s{sup −1} at 4 K. Reducing their carrier density by field effect to 8×10{sup 12} cm{sup −2} lowers their mobilities to ≈50 cm{sup 2} V{sup −1} s{sup −1} bringing the conductance to the weak-localization regime.

  16. Reprocessing of used tires into activated carbon and other products

    SciTech Connect (OSTI)

    Teng, H.; Serio, M.A.; Wojtowicz, M.A.; Bassilakis, R.; Solomon, P.R.

    1995-09-01

    Landfilling used tires which are generated each year in the US is increasingly becoming an unacceptable solution. A better approach, from an environmental and economic standpoint, is to thermally reprocess the tires into valuable products such as activated carbon, other solid carbon forms (carbon black, graphite, and carbon fibers), and liquid fuels. In this study, high surface area activated carbons (> 800 m{sup 2}/g solid product) were produced in relatively high yields by pyrolysis of tires at up to 900 C, followed by activation in CO{sub 2} at the same temperature. The surface areas of these materials are comparable with those of commercial activated carbons. The efficiency of the activation process (gain in specific surface area/loss in mass) was greatest (up to 138 m{sup 2}/g original tire) when large pieces of tire material were used ({approximately} 170 mg). Oxygen pretreatment of tires was found to enhance both the yield and the surface area of the carbon product. High-pressure treatment of tires at low temperatures (< 400 C) is an alternative approach if the recovery of carbon black or fuel oils is the primary objective.

  17. Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy

    SciTech Connect (OSTI)

    Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

    1983-01-01

    Detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At leat 30 percent of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feet of methane in solution in this water. Only 10 percent of the water and methane (1 billion barrels of water and 40 billion cubic feet of methane) will be produced without reinjection of the waste water into the producing formation. Reservoir simulation studies indicate that 90 percent of the methane can be produced with reinjection. 106 figures.

  18. Fabrication of nanoscale patterns in lithium fluoride crystal using a 13.5 nm Schwarzschild objective and a laser produced plasma source

    SciTech Connect (OSTI)

    Wang Xin; Mu Baozhong; Jiang Li; Zhu Jingtao; Yi Shengzhen; Wang Zhanshan; He Pengfei

    2011-12-15

    Lithium fluoride (LiF) crystal is a radiation sensitive material widely used as EUV and soft x-ray detector. The LiF-based detector has high resolution, in principle limited by the point defect size, large field of view, and wide dynamic range. Using LiF crystal as an imaging detector, a resolution of 900 nm was achieved by a projection imaging of test meshes with a Schwarzschild objective operating at 13.5 nm. In addition, by imaging of a pinhole illuminated by the plasma, an EUV spot of 1.5 {mu}m diameter in the image plane of the objective was generated, which accomplished direct writing of color centers with resolution of 800 nm. In order to avoid sample damage and contamination due to the influence of huge debris flux produced by the plasma source, a spherical normal-incidence condenser was used to collect EUV radiation. Together with a description of experimental results, the development of the Schwarzschild objective, the influence of condenser on energy density and the alignment of the imaging system are also reported.

  19. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; R.C. O'Brien; G.L. Hawkes

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cell development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.

  20. Advanced Cell Development and Degradation Studies

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; R. C. O'Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  1. A novel broadband emission phosphor Ca{sub 2}KMg{sub 2}V{sub 3}O{sub 12} for white light emitting diodes

    SciTech Connect (OSTI)

    Li, Junfu; Qiu, Kehui; Li, Junfeng; Li, Wei; Yang, Qian; Li, Junhan

    2010-05-15

    A novel broadband emission phosphor Ca{sub 2}KMg{sub 2}V{sub 3}O{sub 12} was first synthesized by solution combustion method. The X-ray diffraction showed that Ca{sub 2}KMg{sub 2}V{sub 3}O{sub 12} phase can be obtained at 600-900 {sup o}C through combustion route. The crystal structure of this material was refined by Rietveld method using powder X-ray diffraction. It crystallizes in cubic system and belongs to space group Ia3d with z = 8, a = 0.12500 nm. The excitation band of Ca{sub 2}KMg{sub 2}V{sub 3}O{sub 12} peaks at 320 nm in a region between 260 nm and 425 nm, and the emission spectrum exhibits an intense band centered at about 528 nm covering from 400 nm to 800 nm. The colour coordinates of samples prepared at different ignition temperatures are in a range of x = 0.323-0.339, y = 0.430-0.447.

  2. Effects of phosphorus doping by plasma immersion ion implantation on the structural and optical characteristics of Zn{sub 0.85}Mg{sub 0.15}O thin films

    SciTech Connect (OSTI)

    Saha, S.; Nagar, S.; Chakrabarti, S.

    2014-08-11

    ZnMgO thin films deposited on ?100? Si substrates by RF sputtering were annealed at 800, 900, and 1000?C after phosphorus plasma immersion ion implantation. X-ray diffraction spectra confirmed the presence of ?101{sup }0? and ?101{sup }3? peaks for all the samples. However, in case of the annealed samples, the ?0002? peak was also observed. Scanning electron microscopy images revealed the variation in surface morphology caused by phosphorus implantation. Implanted and non-implanted samples were compared to examine the effects of phosphorus implantation on the optical properties of ZnMgO. Optical characteristics were investigated by low-temperature (15?K) photoluminescence experiments. Inelastic excitonexciton scattering and localized, and delocalized excitonic peaks appeared at 3.377, 3.42, and 3.45?eV, respectively, revealing the excitonic effect resulting from phosphorus implantation. This result is important because inelastic excitonexciton scattering leads to nonlinear emission, which can improve the performance of many optoelectronic devices.

  3. Hydrogen-based power generation from bioethanol steam reforming

    SciTech Connect (OSTI)

    Tasnadi-Asztalos, Zs. Cormos, C. C. Agachi, P. S.

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  4. Beryllium disease

    SciTech Connect (OSTI)

    Not Available

    1991-12-20

    After two workers at the nuclear weapons plant at Oak Ridge National Laboratory in Tennessee were diagnosed earlier this year with chronic beryllium disease (CBD), a rare and sometimes fatal scarring of the lungs, the Department of Energy ordered up a 4-year probe. Now, part of that probe has begun - tests conducted by the Oak Ridge Associated Universities' Center for Epidemiological Research measuring beryllium sensitivity in 3,000 people who've been exposed to the metal's dust since Manhattan Project managers opened the Y-12 plant at Oak Ridge in 1943. Currently, 119 Y-12 employees process beryllium, which has a number of industrial uses, including rocket heat shields and nuclear weapon and electrical components. The disease often takes 20 to 25 years to develop, and the stricken employees haven't worked with beryllium for years. There is no cure for CBD, estimated to strike 2% of people exposed to the metal. Anti-inflammatory steroids alleviate such symptoms as a dry cough, weight loss, and fatigue. Like other lung-fibrosis diseases that are linked to lung cancer, some people suspect CBD might cause some lung cancer. While difficult to diagnose, about 900 cases of CBD have been reported since a Beryllium Case Registry was established in 1952. The Department of Energy (DOE) estimates that about 10,000 DOE employees and 800,000 people in private industry have worked with beryllium.

  5. Thermal upgrading of residual oil to light product and heavy residual fuel

    SciTech Connect (OSTI)

    Yan, T.Y.; Shu, P.

    1986-08-05

    The method is described of upgrading residual oil boiling in the range of 1050/sup 0/F+ comprising: thermally cracking the residual oil at a temperature of 650/sup 0/-900/sup 0/F, a pressure of 0-100 psig, and a residence time of 0.1 to 5 hours at the highest severity in the range between about 1,000-18,000 seconds, as expressed in equivalent reaction time at 800/sup 0/F, sufficient to convert at least about 50 wt% of the residual oil to light products, substantially without the formation of solid coke; recovering separate fractions of light product and emulsifiable heavy bottom product which has a fusion temperature below about 150/sup 0/C and a quinoline-insoluble content between about 10 wt% and 30 wt% and wherein the highest severity is determined by a functional relationship between the asphaltene content of the residual oil feedstock and the heavy bottom product yield and quinoline-insoluble content.

  6. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018

  7. Maryland Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,488 3,622 1,519 1,056 57 186 27 162 78 827 2,528 1,526 1991 3,068 3,378 2,172 511 76 16 100 0 7,558 163 940 2,674 1992 4,800 5,417 3,599 1,531 15 19 211 20 106 448 189 2,814 1993 4,469 5,170 3,818 1,217 48 352 54 71 40 158 901 4,120 1994 8,123 4,195 1,281 0 65 79 0 0 119 0 1,212 2,333 1995 3,205 4,966 1,721 1,682 0 0 1,412 739 169 345 1,519 3,900 1996 4,986 4,291 3,340 1,366 64 - - - - 69 1,611 1,744 1997 6,114 3,038 2,195 844 0 0 0 0 0

  8. Smart repeater system for communications interoperability during multi-agency law enforcement operations

    SciTech Connect (OSTI)

    Crutcher, R.I.; Jones, R.W.; Moore, M.R.; Smith, S.F.; Tolley, A.L.; Rochelle, R.W.

    1996-12-31

    A prototype smart repeater that provides interoperability capabilities for radio communication systems in multi-agency and multi-user scenarios is being developed by the Oak Ridge National Laboratory. The smart repeater functions as a deployable communications platform that can be dynamically reconfigured to cross-link the radios of participating federal, state, and local government agencies. This interconnection capability improves the coordination and execution of multi-agency operations, including coordinated law enforcement activities and general emergency or disaster response scenarios. The repeater provides multiple channels of operation in the 30--50, 118--136, 138--174, and 403--512 MHz land mobile communications and aircraft bands while providing the ability to cross-connect among multiple frequencies, bands, modulation types, and encryption formats. Additionally, two telephone interconnects provide links to the fixed and cellular telephone networks. The 800- and 900-MHz bands are not supported by the prototype, but the modular design of the system accommodates future retrofits to extend frequency capabilities with minimal impact to the system. Configuration of the repeater is through a portable personal computer with a Windows-based graphical interface control screen that provides dynamic reconfiguration of network interconnections and formats.

  9. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-07-02

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructure changes exhibitedmore » a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  10. Basic properties of a liquidt in anode solid oxide fuel cell

    SciTech Connect (OSTI)

    Harry Abernathy; RandallGemmen; KirkGerdes; Mark Koslowske; ThomasTao

    2010-12-17

    An unconventional high temperature fuel cell system, the liquidt in anode solid oxide fuel cell(LTA-SOFC), is discussed. A thermodynamic analysis of a solid oxide fuel cell with a liquid metal anode is developed. Pertinent thermo chemical and thermo physical properties of liquid tin in particular are detailed. An experimental setup for analysis of LTA-SOFC anode kinetics is described, and data for a planar cell under hydrogen indicated an effective oxygen diffusion coefficient of 5.310?5 cm2 s?1 at 800 ?C and 8.910?5 cm2 s?1 at 900 ?C. This value is similar to previously reported literature values for liquid tin. The oxygen conductivity through the tin, calculated from measured diffusion coefficients and theoretical oxygen solubility limits, is found to be on the same order of thatofyttria-stabilizedzirconia(YSZ), a traditional SOFC electrolyte material. As such,the ohmicloss due to oxygen transport through the tin layer must be considered in practical system cell design since the tin layer will usually be at least as thick as the electrolyte.

  11. Preparation and characterization of Ni(111)/graphene/Y{sub 2}O{sub 3}(111) heterostructures

    SciTech Connect (OSTI)

    Dahal, Arjun; Coy-Diaz, Horacio; Addou, Rafik; Lallo, James; Batzill, Matthias; Sutter, Eli

    2013-05-21

    Integration of graphene with other materials by direct growth, i.e., not using mechanical transfer procedures, is investigated on the example of metal/graphene/dielectric heterostructures. Such structures may become useful in spintronics applications using graphene as a spin-filter. Here, we systematically discuss the optimization of synthesis procedures for every layer of the heterostructure and characterize the material by imaging and diffraction methods. 300 nm thick contiguous (111) Ni-films are grown by physical vapor deposition on YSZ(111) or Al{sub 2}O{sub 3}(0001) substrates. Subsequently, chemical vapor deposition growth of graphene in ultra-high vacuum (UHV) is compared to tube-furnace synthesis. Only under UHV conditions, monolayer graphene in registry with Ni(111) has been obtained. In the tube furnace, mono- and bilayer graphene is obtained at growth temperatures of {approx}800 Degree-Sign C, while at 900 Degree-Sign C, non-uniform thick graphene multilayers are formed. Y{sub 2}O{sub 3} films grown by reactive molecular beam epitaxy in UHV covers the graphene/Ni(111) surface uniformly. Annealing to 500 Degree-Sign C results in crystallization of the yttria with a (111) surface orientation.

  12. New York Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 16,162 16,176 17,930 17,686 27,910 36,706 41,800 52,220 39,717 35,309 26,679 29,115 2002 26,059 23,831 24,629 24,408 23,869 33,762 47,533 48,900 37,923 30,298 23,132 21,361 2003 18,688 16,711 19,294 18,315 17,100 21,724 33,099 37,688 28,053 19,738 15,746 14,577 2004 14,733 15,958 16,095 15,431 24,268 25,128 26,901 29,436 31,803 20,491 20,010 18,395 2005 18,089 16,484 21,312 19,399 22,143 35,084 45,765 44,111 30,741 18,807 15,476

  13. Department of Energy Offers First Conditional Commitment for a Loan Guarantee for Advanced Biofuels Plant

    Broader source: Energy.gov [DOE]

    Project Expected to Create Over 700 Jobs and Nearly Triple Amount of Renewable Diesel Produced Domestically

  14. Norris Public Power District | Open Energy Information

    Open Energy Info (EERE)

    Nebraska Phone Number: 1-800-858-4707 Website: www.norrisppd.com Twitter: @NorrisPPD Facebook: https:www.facebook.comNorrisPPD Outage Hotline: 1-800-827-8099 or 1-800-743-3899...

  15. Riverland Energy Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Cooperative Place: Wisconsin Phone Number: Arcadia: (608) 323-3381(800) 411-9115 -- Alma: (608) 685-4440(800) 685-4415 -- Onalaska: (608) 783-2238(800) 411-9115 Twitter:...

  16. Meriwether Lewis Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Lewis Electric Coop Jump to: navigation, search Name: Meriwether Lewis Electric Coop Place: Tennessee Phone Number: 1-800-482-6553 or 1-800-316-2342 or 1-800-650-6814 or...

  17. Glacial Energy Holdings (California) | Open Energy Information

    Open Energy Info (EERE)

    Gas & Electric - 800-734-5002 -- San Diego Gas and Electric - 800-611-7343 -- So. Cal Edison - 800-611-1911 References: EIA Form EIA-861 Final Data File for 2010 -...

  18. PVMRW 2016 Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sheraton West, Lakewood, CO) PV Module Reliability Continental Breakfast (7:30 - 8:00 am) The Connection Between Cost and PV Reliability (8:00 - 9:40 am) 8:00 - Welcome to ...

  19. Rutherford Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    1-800-521-0920 or 1-800-228-9756 or 1-800-228-5331 Outage Map: www.remc.comstorm-centerouta References: EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy...

  20. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    SciTech Connect (OSTI)

    King, Sean W. Tanaka, Satoru; Davis, Robert F.; Nemanich, Robert J.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 7001000?C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200550?C) as well as higher temperatures (>700?C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ?750?C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800?C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700?C remain terminated by some surface CO and SiO bonding, they may