National Library of Energy BETA

Sample records for 900 800 700

  1. Obama Administration Announces Additional $14,003,800 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... WV Wheeling City 137,800 WV Berkeley County 329,600 WV Cabell County 206,900 WV Harrison County 219,100 WV Jefferson County 207,900 WV Kanawha County 583,400 WV Mercer ...

  2. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    700 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  3. UC-700 Envi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UC-700 Envi low and Ri Division i l ination unlimi U.S. Department of Energy Nevada Operations Office DOE NV--477 Nevada ronmental Restoration Project Regional Groundwater F and Tritium Transport Modeling sk Assessment of the Underground Test Area, Nevada Test Site, Nevada October 1997 Environmental Restoration Approved for publ c re ease; further dissem ted. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific

  4. Trace 700 | Open Energy Information

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: Trace 700 AgencyCompany Organization: Trane Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Technology characterizations...

  5. 100 LPW 800 Lm Warm White LED

    SciTech Connect (OSTI)

    Decai Sun

    2010-10-31

    An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramic™ and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. Another achievement in the development of the phosphor integration technology is the demonstration of tight color control. The high power WW LED product developed has been proven to have good reliability. The manufacturing of the product will be done in Philips Lumileds’ LUXEON Rebel production line which has produced billions of high power LEDs. The first high power WW LED product will be released to the market in 2011.

  6. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  7. Title 10 CFR 900 Coordination of Federal Authorizations for Electric...

    Open Energy Info (EERE)

    900 Coordination of Federal Authorizations for Electric Transmission Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  8. Obama Administration Announces Additional $56,099,900 for Local...

    Broader source: Energy.gov (indexed) [DOE]

    American tribes. This includes 56,099,900 for state, county and city efforts in Washington. A detailed breakdown is below. Today's announcement builds on an investment of...

  9. Obama Administration Announces Additional $208,759,900 for Local...

    Broader source: Energy.gov (indexed) [DOE]

    American tribes. This includes 208,759,900 for state, county and city efforts in Texas. A detailed breakdown is below. Today's announcement builds on an investment of...

  10. 36 CFR PART 800 - Protection of Historic Preservation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 36 CFR PART 800 - Protection of Historic Preservation 36 CFR PART 800 - Protection of Historic Preservation PDF icon 36 CFR PART 800 - Protection of Historic Preservation More Documents & Publications WPN 10-12: Historic Preservation Implementation NEPA and NHPA: A Handbook for Integrating NEPA and Section 106 South Dakota State Historic Preservation Programmatic Agreement

  11. Obama Administration Announces Additional $63,817,400 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 3,567,800 AZ Mohave County 408,700 AZ Navajo County 473,900 AZ Pima County 3,981,900 ... California & Arizona 56,400 AZNMUT Navajo Nation, Arizona, New Mexico & Utah ...

  12. Departs La Fonda Hotel at 7:00 AM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day 4 Participant and Companion Event Field Trip - Geology of Note in the Santa Fe Area Thursday September 11, 2014 Departs La Fonda Hotel at 7:00 AM Returns to La Fonda Hotel at 7:00 PM Transportation and Box Lunch Provided (Tour Includes busing to locations of interest and walking around those locations. Please wear shoes suitable for walking)

  13. MHK Projects/Oyster 800 Project | Open Energy Information

    Open Energy Info (EERE)

    4 Project Details Operational testing of Oyster 800 commenced in June 2012 when the machine produced first electrical power to the grid. Project Installed Capacity (MW) 1...

  14. Webinar: Update to the 700 bar Compressed Hydrogen Storage System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time. ...

  15. Obama Administration Announces Additional $13,969,700 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 41,700 AK Native Village of Minto 42,400 AK Native Village of Nanwalek (aka English Bay) 40,100 AK Native Village of Napaimute 34,500 AK Native Village of Napakiak ...

  16. V-141: HP ElitePad 900 Secure Boot Bug Lets Local Users Boot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: HP ElitePad 900 Secure Boot Bug Lets Local Users Boot to Other Operating Systems V-141: HP ElitePad 900 Secure Boot Bug Lets Local Users Boot to Other Operating Systems April...

  17. Title 36 CFR 800 Protection of Historic Properties | Open Energy...

    Open Energy Info (EERE)

    PropertiesLegal Abstract Part 800, Protection of Historic Properties under Title 36: Parks, Forests, and Public Property of the U.S. Code of Federal Regulations, current as of...

  18. 800,000 Jobs by 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    800,000 Jobs by 2012 800,000 Jobs by 2012 August 16, 2010 - 6:21pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? ZBB Energy is a clean energy manufacturing company specializing in the production of advanced zinc bromide flow batteries and intelligent power control platforms for renewable energy storage. It's also a prime example of how the Recovery Act is helping new clean energy industries bolster the manufacturing economies of

  19. Long-Term Oxidation of Candidate Cast Iron and Advanced Austenitic Stainless Steel Exhaust System Alloys from 650-800 C in Air with Water Vapor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Michael P; Muralidharan, Govindarajan; Leonard, Donovan N; Haynes, James A

    2014-01-01

    The oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 C in air with 10% H2O. At 650 C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 C and higher, whereas the oxide scales formed on SiMo cast iron remained adherentmore » from 700-800 C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 C compared to 650-700 C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  20. Replacement of alloy 800H superheated steam line

    SciTech Connect (OSTI)

    Barbier, R.A.; Bullock, J.W. [Sterling Chemicals, Texas City, TX (United States)

    1996-07-01

    Sterling Chemicals utilizes alloy 800HT (UNS N08811) piping for superheated steam service in its styrene dehydrogenation unit. An engineering project to replace these lines was recently completed. Material acquisition, shop fabrication, inspection requirements, and field erection will be highlighted in this paper.

  1. Tritium Permeability of Incoloy 800H and Inconel 617

    SciTech Connect (OSTI)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2011-09-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950 C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm) - three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  2. Tritium Permeability of Incoloy 800H and Inconel 617

    SciTech Connect (OSTI)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2012-07-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm)three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  3. Hydrological conditions at the 800 Area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Patton, T.L.; Pearl, R.H.; Tsai, S.Y.

    1990-08-01

    This study examined the hydrological conditions of the glacial till underlying the 800 Area sanitary landfill at Argonne National Laboratory (ANL) near Lemont, Illinois. The study's purpose was to review and summarize hydrological data collected by ANL's Environment, Safety, and Health Department and to characterize, on the basis of these data, the groundwater movement and migration of potential contaminants in the area. Recommendations for further study have been made based on the findings of this review. The 800 Area landfill is located on the western edge of ANL, just south of Westgate Road. It has been in operation since 1966 and has been used for the disposal of sanitary, general refuse. From 1969 through 1978, however, substantial quantities of liquid organic and inorganic wastes were disposed of in a French drain'' at the northeast corner of the landfill. The 800 Area landfill is underlain by a silty clay glacial till. Dolomite bedrock underlies the till at an average depth of about 45.6 m. Trace levels of organic contaminants and radionuclides have been detected in groundwater samples from wells completed in the till. Fractures in the clay as well as sand and gravel lenses present in the till could permit these contaminants to migrate downward to the dolomite aquifer. When this report was prepared, no chemical quality analysis have been made on groundwater samples from the dolomite. The study found that existing information about subsurface characteristics at the site is inadequate to identify potential pathways for contaminant migration. Recommended actions include installation of five new well clusters and one background well, thorough record-keeping, sample collection and analysis during borehole drilling, slug testing to measure hydraulic conductivity, topographic mapping, continued monitoring of groundwater levels and quality, and monitoring of the unsaturated zone. 17 refs., 13 figs., 4 tabs.

  4. Hospital to save $71,800/year burning trash

    SciTech Connect (OSTI)

    Hume, M.

    1984-01-01

    A waste-to-steam dual-fuel boiler system will save the Geisinger Medical Center in Pennsylvania $71,800 a year in avoided natural gas, trash-hauling, and incinerating costs. In operation less than a year, the system currently generates 6.3% of hospital steam for an anticipated three-year payback. A waste-heat-recovery system, with a net cost of $360,000, will pay for itself in an estimated five years. The case-history report describes how the system fits into hospital operations. (DCK)

  5. Metric Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Electricity Delivery and Energy Reliability MODERN ... 6.00 7.00 8.00 9.00 10.00 1995 1996 1997 1998 1999 2000 ... Transmission congestion costs Cost of interruptions and ...

  6. Energy Department Expands Gas Gouging Reporting System to Include 1-800

    Energy Savers [EERE]

    Number: 1-800-244-3301 | Department of Energy Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 Energy Department Expands Gas Gouging Reporting System to Include 1-800 Number: 1-800-244-3301 September 6, 2005 - 9:50am Addthis Washington, DC - Energy Secretary Samuel W. Bodman announced today that the Department of Energy has expanded its gas gouging reporting system to include a toll-free telephone hotline. The hotline is available to American consumers starting

  7. Appendix B Surface Infiltration and Aquifer Test Data

    Office of Legacy Management (LM)

    B Surface Infiltration and Aquifer Test Data This page intentionally left blank Infiltration Tests This page intentionally left blank 0 50 100 150 200 250 300 350 400 450 TIME (MIN) 200 250 TIME (MIN) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 TIME (MIN) zoo 800 1000 TIME (MIN) 0 150 300 450 600 750 , 900 1050 1200 1350 1500 1650 1800 TIME (MIN) TIME (MIN) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 TIME (MIN) INF-8 TEST I 300 400 TIME (MIN) INF-8 TEST 2 200 250

  8. About 900 High School Students, Educators Attend Third Annual DOE Science Alliance

    Broader source: Energy.gov [DOE]

    PIKETON, OH – The U.S. Department of Energy (DOE) welcomed about 900 high school juniors and educators for its third annual Science Alliance, a science fair that took place September 25-26, 2012, at the Portsmouth Gaseous Diffusion Plant.

  9. Motor System Upgrades Smooth the Way to Savings of $700,000 at Chevron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery | Department of Energy System Upgrades Smooth the Way to Savings of $700,000 at Chevron Refinery Motor System Upgrades Smooth the Way to Savings of $700,000 at Chevron Refinery Chevron, the largest U.S. refiner operating six gasoline-producing refineries, completed a motor system efficiency improvement project in 1997 at its Richmond, California, refinery that resulted in savings of $700,000 annually. This two-page fact sheet describes how they achieved the savings. PDF icon Motor

  10. Webinar: Update to the 700 bar Compressed Hydrogen Storage System Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projection | Department of Energy Update to the 700 bar Compressed Hydrogen Storage System Cost Projection Webinar: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection January 26, 2016 12:00PM to 1:00PM EST The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time. Strategic Analysis will present results of its cost analysis

  11. Motor System Upgrades Smooth the Way to Savings of $700,000 at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Motor Systems Upgrades Smooth the Way to Savings of 700,000 at Chevron Refinery (January 1999) More Documents & Publications Variable Speed Pumping: A Guide to Successful ...

  12. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.4

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.2.4 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  13. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.8

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.2.8 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  14. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.7

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.2.7 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  15. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.6

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.2.6 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  16. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.5

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.2.5 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  17. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.9

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.2.9 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  18. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.2

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.1.2 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  19. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.1.0

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.1.1.0 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  20. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.0.0

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.1.0.0 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  1. Fact #700: November 7, 2011 Biodiesel Consumption is on the Rise for 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 700: November 7, 2011 Biodiesel Consumption is on the Rise for 2011 Fact #700: November 7, 2011 Biodiesel Consumption is on the Rise for 2011 The U.S. Energy Information Administration began tracking biodiesel consumption in 2001. For the first few years biodiesel consumption remained relatively low - well under one thousand barrels per year. Beginning with 2005 the consumption of biodiesel began to increase dramatically and peaked at a high of 8.5 million barrels per

  2. Cryogenic Pressure Vessels for H2 Vehicles Rapidly Refueled by LH2 pump to 700 bar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cryogenic Pressure Vessels for H 2 Vehicles Rapidly Refueled by LH 2 pump to 700 bar Salvador Aceves, Gene Berry, Guillaume Petitpas, Vernon Switzer Lawrence Livermore National Laboratory CAMX meeting October 29 th , 2015 LLNL-PRES-678629 * Cryogenic H 2 Onboard Storage * Temperature as a Degree of Freedom in H 2 storage * LLNL Cryocompressed Project History * 350 Bar Test Vehicle Park & Drive Results * Current Project * 700 bar prototype (cryogenic) vessels * Refueling with LH 2 Pump * Test

  3. Obama Administration Announces Additional $13,969,700 for Local Energy

    Energy Savers [EERE]

    Efficiency Improvements in Alaska | Department of Energy 969,700 for Local Energy Efficiency Improvements in Alaska Obama Administration Announces Additional $13,969,700 for Local Energy Efficiency Improvements in Alaska March 26, 2009 - 12:00am Addthis WASHINGTON DC - Vice President Joe Biden and Energy Secretary Steven Chu today announced plans to invest $3.2 billion in energy efficiency and conservation projects in U.S. cities, counties, states, territories, and Native American tribes.

  4. Obama Administration Announces Additional $16,956,700 for Local Energy

    Energy Savers [EERE]

    Efficiency Improvements in Idaho | Department of Energy 6,956,700 for Local Energy Efficiency Improvements in Idaho Obama Administration Announces Additional $16,956,700 for Local Energy Efficiency Improvements in Idaho March 26, 2009 - 12:00am Addthis WASHINGTON DC - Vice President Joe Biden and Energy Secretary Steven Chu today announced plans to invest $3.2 billion in energy efficiency and conservation projects in U.S. cities, counties, states, territories, and Native American tribes.

  5. Kahuku Wind to Power 7,700 Oahu Homes | Department of Energy

    Office of Environmental Management (EM)

    Kahuku Wind to Power 7,700 Oahu Homes Kahuku Wind to Power 7,700 Oahu Homes July 27, 2010 - 4:52pm Addthis Turbine blades being delivered to Kahuku. | Courtesy of First Wind Turbine blades being delivered to Kahuku. | Courtesy of First Wind Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Today, the Department of Energy's Loan Programs Office announced a $117 million loan guarantee through the Recovery Act for the Kahuku Wind

  6. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect (OSTI)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  7. Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Installed Under the Recovery Act | Department of Energy More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act May 13, 2011 - 12:00am Addthis LOS ANGELES - As part of the Obama Administration's comprehensive plan to address rising gas prices and reduce oil imports one-third by 2025, U.S. Energy Secretary Steven Chu today announced that to date, more than 1,800 electric

  8. Charitable Giving by EM Employees, Contractors Tops $800,000 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Charitable Giving by EM Employees, Contractors Tops $800,000 Charitable Giving by EM Employees, Contractors Tops $800,000 February 29, 2012 - 12:00pm Addthis Shown here are some of the thousands of items employees at the Savannah River Site collected for Toys for Tots. Shown here are some of the thousands of items employees at the Savannah River Site collected for Toys for Tots. WASHINGTON, D.C. - EM employees and their contractor counterparts donated more than $800,000 and other

  9. 800 to 1000 New Jobs Coming to Piketon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    800 to 1000 New Jobs Coming to Piketon 800 to 1000 New Jobs Coming to Piketon July 28, 2009 - 12:00am Addthis (Washington, D.C.) The Department of Energy announced today that it will further expand and accelerate cleanup efforts of cold-war era contamination at the Portsmouth site in Piketon, Ohio - an investment worth about $150 to $200 million per year for the next four years that is expected to create 800 to 1000 new jobs. At the same time, the Department has encouraged USEC to withdraw its

  10. Fact #900: November 23, 2015 States Tax Gasoline at Varying Rates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: November 23, 2015 States Tax Gasoline at Varying Rates Fact #900: November 23, 2015 States Tax Gasoline at Varying Rates SUBSCRIBE to the Fact of the Week In addition to the 18.4 cents per gallon federal gasoline tax, the states also tax gasoline at varying rates and for varying reasons. Some states have sales taxes added to gasoline taxes while others have inspection fees, environmental fees, leaking underground storage tank (LUST) taxes, etc. The Federation of Tax

  11. Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    he introduction in 1992 of an American-made truck with a fully factory-installed/war- ranted liquefied petroleum gas (LPG) engine represents another "Ford first" in the alternative fuel arena. Now the company has introduced an LPG- powered F-700, a medium/heavy- duty truck. According to Tom Steckel, Ford's medium-duty marketing man- ager, Ford's latest sales figures already prove the alternative fuel F-700's popularity. With a little more than 10 months of the model year finished, Ford

  12. West Valley Demonstration Project Food Drive Delivers Food for 700 Families

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – EM employees at West Valley Demonstration Project (WVDP) helped collect and deliver 114,843 pounds of food, including 360 turkeys, to nine food pantries in the West Valley area, just in time to benefit about 700 families in need during the holidays.

  13. POSTPONED: Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Broader source: Energy.gov [DOE]

    This webinar has been postponed until further notice. The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time.

  14. Webinar February 25: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Thursday, February 25, from 12 to 1 p.m. Eastern Standard Time (EST). Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  15. Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. EST. Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  16. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. For further information concerning sanctions and data protections see the ...

  17. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    0 and 100,000." "GP190","'Parts1-2'R37","Whole number: 0 - 100,000","Value must be between 0 and 100,000." "GP191","'Parts1-2'R38:U38","Whole number: 0 - ...

  18. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    050","'Parts1-3'R36:W36","Whole number: 0 - 100,000","Value must be a whole number 0 - 100,000." "050P1","'Parts1-3'R36","Whole number: 0 - 100,000","Value must be a ...

  19. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "WEEKLY BULK TERMINAL AND BLENDER REPORT",,,..."CO","Co... "FORM EIA-805" "WEEKLY BULK TERMINAL AND BLENDER REPORT" "REPORTING PERIOD: Month: Day: ...

  20. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    FORM EIA-805 WEEKLY BULK TERMINAL AND BLENDER REPORT This report is mandatory under the ... PART 3. BULK TERMINAL AND BLENDER ACTIVITY (Thousand Barrels) FORM EIA-805 WEEKLY BULK ...

  1. EIA-800

    Gasoline and Diesel Fuel Update (EIA)

    1. RESPONDENT IDENTIFICATION DATA PART 2. SUBMISSION/RESUBMISSION INFORMATION Year REPORT PERIOD: If this is a resubmission, enter an "X" in the box: EIA ID NUMBER: If any Respondent Identification Data has changed since the last report, enter an "X" in the box: Company Name: Doing Business As: Site Name: Email: Terminal Control Number (TCN): Fax: (202) 586-1076 Physical Address of Contact (e.g., Street Address, Building Number, Secure File Transfer: Floor, Suite): City:

  2. EIA-800

    Gasoline and Diesel Fuel Update (EIA)

    Email: Floor, Suite): Fax: (202) 586-1076 City: State: Zip: - Secure File Transfer: Electronic Transmission: City: State: Zip: - Contact Name: Phone No.: Ext: Fax No.: Questions? Call: 202-586-3307 Email address: PADD 2 PADD 3 PADD 4 PADD 5 Mailing Address of Contact (e.g., PO Box, RR): If the physical and mailing addresses are the same, only complete the physical address. Comments: Identify any unusual aspects of your reporting week's operations. (To separate one comment from another, press

  3. EIA-800

    Gasoline and Diesel Fuel Update (EIA)

    Please complete all date fields. FALSE 2 End of Week Stocks Production Forms may be submitted using one of the following methods: PART 3. OXYGENATE ACTIVITY (Thousand Barrels) A completed form must be received by 5 p.m. Eastern Time on the Monday following the end of the report period. For the PC Electronic Data Reporting Option (PEDRO) software, call (202) 586-9659. (See Form instructions, pg 1.) FORM EIA-809 WEEKLY OXYGENATE REPORT This report is mandatory under the Federal Energy

  4. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ...312016" ,,,,,"Version No.:2013.01" "FORM EIA-810 MONTHLY REFINERY REPORT SEMI-ANNUAL STORAGE CAPACITY SUPPLEMENT" "Report storage capacity twice each year with monthly reports ...

  5. EIA-800

    Gasoline and Diesel Fuel Update (EIA)

    ... REPORT PART 5. REFINERY OPERATIONS (Thousand Barrels) OMB No. 1905-0165 Expiration Date: 05312016 Version ... Report storage capacity twice each year with monthly reports ...

  6. 36 CFR Part 800 Protection of Historic Properties (2000, amended 2004)

    Broader source: Energy.gov [DOE]

    Section 106 of the National Historic Preservation Act requires federal agencies to take into account the effects of their undertakings on historic properties and afford the Advisory Council on Historic Preservation (ACHP) a reasonable opportunity to comment on these undertakings. The ACHP's regulations at 36 CFR Part 800 establish the process that federal agencies must follow to comply with Section 106.

  7. EIA-800, Weekly Refinery and Fractionator Report Page 1 U. S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    00, Weekly Refinery and Fractionator Report Page 1 U. S. DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION Washington, D. C. 20585 OMB No. 1905-0165 Expiration Date: 05/31/2016 (Revised 2013) EIA-800 WEEKLY REFINERY AND FRACTIONATOR REPORT INSTRUCTIONS ............................................................................................................................................................................................................ QUESTIONS If you have any questions

  8. Secretary Chu Announces Nearly $800 Million from Recovery Act to Accelerate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Research and Commercialization | Department of Energy 0 Million from Recovery Act to Accelerate Biofuels Research and Commercialization Secretary Chu Announces Nearly $800 Million from Recovery Act to Accelerate Biofuels Research and Commercialization May 5, 2009 - 12:00am Addthis WASHINGTON, D.C. - As part of the ongoing effort to increase the use of domestic renewable fuels, U.S. Secretary of Energy Steven Chu today announced plans to provide $786.5 million from the American

  9. Relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    SciTech Connect (OSTI)

    Angel, G.C.; Samson, J.A.R.; Williams, G.

    1986-01-01

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138 -15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  10. DOE/NV/11718-036 UC-700 FEDERAL RADIOLOGICAL RESPONSE IN THE UNITED STATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11718-036 UC-700 FEDERAL RADIOLOGICAL RESPONSE IN THE UNITED STATES by Daryl J. Thomé Bechtel Nevada Remote Sensing Laboratory P.O. Box 98521 Las Vegas, Nevada, USA 89193-8521 Bruce W. Hurley, Ph.D. U.S. Department of Energy Nevada Operations Office P.O. Box 98518 Las Vegas, Nevada, USA 89193 ABSTRACT The Federal Radiological Monitoring and Assessment Center (FRMAC) is authorized by the Federal Radiological Emergency Response Plan (FRERP) to coordinate all off-site radiological response

  11. Florida Power & Light Company, 700 Universe Blvd. Juno Beach 33408

    Office of Environmental Management (EM)

    Florida Power & Light Company, 700 Universe Blvd. Juno Beach 33408 Telephone: (561)691-2790, Fax: (561)691-7577 Page 1 of 19 November 1, 2010 U.S. Department of Energy Office of Electricity Delivery & Energy Reliability 1000 Independence Ave., S.W. Room 8H033 Washington, DC 20585 Via E-mail: smartgridpolicy@hq.doe.gov Re: Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges Florida Power & Light Company ("FPL") appreciates the opportunity

  12. Fact #800: October 21, 2013 Characteristics of New Light Vehicles over Time

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 0: October 21, 2013 Characteristics of New Light Vehicles over Time Fact #800: October 21, 2013 Characteristics of New Light Vehicles over Time From model years 1980 to 2012, there have been significant gains in automotive technology. For new light vehicles, horsepower has more than doubled and "0-to-60" acceleration times have dropped from 14.3 to 9.3 seconds. The average weight grew to a high of 4,111 pounds in 2004 and has dropped slightly since then

  13. Parity Nonconservation in Proton-water Scattering at 800 MeV

    DOE R&D Accomplishments [OSTI]

    Nagle, D. E.; Bowman, J. D.; Carlini, R.; Mischke, R. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R.

    1982-01-01

    A search has been made for parity nonconservation in the scattering of 800 MeV polarized protons from an unpolarized water target. The result is for the longitudinal asymmetry, A{sub L} = +(6.6 +- 3.2) x 10{sup -7}. Control runs with Pb, using a thickness which gave equivalent beam broadening from Coulomb multiple scattering, but a factor of ten less nuclear interactions than the water target, gave A{sub L} = -(0.5 +- 6.0) x 10{sup -7}.

  14. DOE/NV--471 UC-700 U.S. Department of Energy Nevada Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    471 UC-700 U.S. Department of Energy Nevada Operations Office on on on on : ed : 2 Approved for public release; further distribution is authorized. E nv i r onm ent a l R es t or a t i D i v i s i N ev ada E nv i r onm ent al R es t or at i P r oj ect C or r ect i v e A ct i on D eci s i D ocu m ent , S econd Ga s S t a t i on, Tonopa h Tes t R a nge, N ev a da ( C or r ect i v e A ct i on U ni t N o. 403) C ont r ol l ed C opy N o.U ncont r ol l R ev i s i on N o. N ov em ber 1997 This report

  15. A Comparison of New TATBs, FK-800 binder and LX-17-like PBXs to Legacy Materials

    SciTech Connect (OSTI)

    Willey, T M; DePiero, S C; Hoffman, D M

    2009-05-01

    Two newly synthesized versions of the insensitive high explosive (IHE) 1,3,5-triamino-2,4,6-trinitrobenzenes (TATBs) were compared to two legacy explosives currently used by the Department of Energy. Except for thermal analysis, small scale safety tests could not distinguish between the different synthetic routes. Morphologies of new TATBs were less faceted and more spherical. The particle size distribution of one new material was similar to legacy TATBs, but the other was very fine. Densities and submicron structure of the new TATBs were also significantly different from the legacy explosives. Pressed pellets of the new explosives were less dense. New FK-800 binder was used to prepare LX-17-like plastic bonded explosives (PBXs) from new and wet aminated TATB. Some mechanical, thermal and performance characterization of the new binder and LX-17-like PBXs was done. Significant differences were found. The reason for a number of these differences is not well understood.

  16. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    they use it, and what it costs Manage energy costs Investment in new devices Sell resources ... 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 1995 1996 1997 1998 1999 2000 2001 2002 2003 ...

  17. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    they use it, and what it costs Manage energy costs Invest in new devices Sell resources for ... 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 1995 1996 1997 1998 1999 2000 2001 2002 2003 ...

  18. A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion

    SciTech Connect (OSTI)

    Baer, M.R.; Gross, R.J.

    1998-10-02

    In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scale tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.

  19. EXPO 2014 Exhibitor Information Exhibitor Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Attachment 1 EXPO 2014 Exhibitor Information Exhibitor Schedule Exhibitor set up Monday, May 12 7:00 a.m. to 4:00 p.m. EXPO exhibitor hours Tuesday, May 13 7:00 a.m. to 7:00 p.m. Wednesday, May 14 7:00 a.m. to 7:00 p.m. Exhibit removal Wednesday, May 14 7:00 p.m. to 8:00 p.m. Thursday, May 15 7:00 a.m. to 9:00 a.m. Standard 10' x 10' exhibitor booths are free of charge* and include one skirted table and two chairs. *Charges will be assessed for booth phone service or any electrical needs in

  20. Predicting Fracture Toughness of TRIP 800 using Phase Properties Characterized by In-Situ High Energy X-Ray Diffraction

    SciTech Connect (OSTI)

    Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Ren, Yang; Wang, Yan-Dong

    2010-05-01

    TRansformation Induced Plasticity (TRIP) steel is a typical representative of 1st generation advanced high strength steel (AHSS) which exhibits a combination of high strength and excellent ductility due to its multiphase microstructure. In this paper, we study the crack propagation behavior and fracture resistance of a TRIP 800 steel using a microstructure-based finite element method with the various phase properties characterized by in-situ high energy Xray diffraction (HEXRD) technique. Uniaxial tensile tests on the notched TRIP 800 sheet specimens were also conducted, and the experimentally measured tensile properties and R-curves (Resistance curves) were used to calibrate the modeling parameters and to validate the overall modeling results. The comparison between the simulated and experimentally measured results suggests that the micromechanics based modeling procedure can well capture the overall complex crack propagation behaviors and the fracture resistance of TRIP steels. The methodology adopted here may be used to estimate the fracture resistance of various multiphase materials.

  1. Performance of Diffusion Aluminide Coatings Applied on Alloy CF8C-Plus at 800oC

    SciTech Connect (OSTI)

    Kumar, Deepak; Dryepondt, Sebastien N; Zhang, Ying; Haynes, James A; Pint, Bruce A; Armstrong, Beth L; Shyam, Amit; Lara-Curzio, Edgar

    2012-01-01

    High performance cast stainless steel, CF8C-Plus, is a low cost alloy with prospective applications ranging from covers and casings of small and medium size gas turbines to turbocharger housing and manifolds in internal combustion engines. Diffusion aluminide coatings were applied on this alloy as a potential strategy for improved oxidation resistance, particularly in wet air and steam. In this paper the performance of the aluminide coatings evaluated by cyclic oxidation experiments in air containing 10 vol.% H2O at 800 C and conventional tension-compression low-cycle-fatigue tests in air at 800 C with a strain range of 0.5% is presented. The results show that specimens coated by a chemical vapor deposition process provide better oxidation resistance than those coated by an Al-slurry coating process. The application of a coating by pack cementation reduced the fatigue life by 15%.

  2. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  3. Evaluation of anticipatory signal to steam generator pressure control program for 700 MWe Indian pressurized heavy water reactor

    SciTech Connect (OSTI)

    Pahari, S.; Hajela, S.; Rammohan, H. P.; Malhotra, P. K.; Ghadge, S. G.

    2012-07-01

    700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG and PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)

  4. The Department of Energy's $700 Million Smart Grid Demonstration Program Funded through the American Recovery and Reinvestment Act of 2009, OAS-RA-13-08

    Energy Savers [EERE]

    $700 Million Smart Grid Demonstration Program Funded through the American Recovery and Reinvestment Act of 2009 OAS-RA-13-08 January 2013 Department of Energy Washington, DC 20585 January 17, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's $700 Million Smart Grid Demonstration Program Funded through the American Recovery and Reinvestment Act of 2009" INTRODUCTION AND OBJECTIVE The Department

  5. Energy Provisions of the ICC-700, LEED for Homes, and ENERGY STAR Mapped to the 2009 IECC

    SciTech Connect (OSTI)

    Britt, Michelle L.; Sullivan, Robin S.; Kora, Angela R.; Makela, Eric J.; Makela, Erin

    2011-05-06

    This document provides the results of a comparison of building energy efficient elements of the ICC-700 National Green Building Standard, LEED for Homes, and ENERGY STAR versions 2, 2.5, and 3.0 to the 2009 International Energy Conservation Code (2009 IECC). This comparison will provide a tool for states and local municipalities as they consider adoption of these programs. The comparison is presented in a series of appendices. The first appendix provides a summary chart that visually represents the comprehensive comparison of the programs to the 2009 IECC topic areas. Next there are a series of individual tables (one appendix for each program) that include the specific program mapping to the 2009 IECC elements with comments that briefly discuss how well the elements mapped. Finally, a comprehensive table is included that shows all five of the programs mapped to the 2009 IECC elements to allow a detailed comparison.

  6. Characterization of the Fracture Toughness of TRIP 800 Sheet Steels Using Microstructure-Based Finite Element Analysis

    SciTech Connect (OSTI)

    Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    Recently, several studies conducted by automotive industry revealed the tremendous advantages of Advanced High Strength Steels (AHSS). TRansformation Induced Plasticity (TRIP) steel is one of the typical representative of AHSS. This kind of materials exhibits high strength as well as high formability. Analyzing the crack behaviour in TRIP steels is a challenging task due to the microstructure level inhomogeneities between the different phases (Ferrite, Bainite, Austenite, Martensite) that constitute these materials. This paper aims at investigating the fracture resistance of TRIP steels. For this purpose, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. Uniaxial tensile tests on TRIP 800 sheet notched specimens were also conducted and tensile properties and R-curves (Resistance curves) were determined. The comparison between simulation and experimental results leads us to the conclusion that the method using microstructure-based representative volume element (RVE) captures well enough the complex behavior of TRIP steels. The effect of phase transformation, which occurs during the deformation process, on the toughness is observed and discussed.

  7. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    SciTech Connect (OSTI)

    Su'ud, Zaki; Sekimoto, H.

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000C and the maximum cladding temperature can be managed below 700C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  8. Microsoft PowerPoint - Slide 060112_Cogdell.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heterogeneous case where variation comes from different apoproteins * Rings contain multiple types of alpha and beta apoproteins Rings contain multiple types of alpha and beta apoproteins - - seen as different sight energies in the 'B850' manifold - - site energies vary within an alpha/beta dimer Variability in B800 LH2 complexes from C. vinosum 0 8 1.0 CV_LH2 800/820 CV_LH2 800/840 CV_LH2 800/850 CV_LH2 LL800/850 0.4 0.6 0.8 absorbance 650 700 750 800 850 900 950 0.0 0.2 wavelength (nm)

  9. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    SciTech Connect (OSTI)

    Scarcella, Carmelo; Tosi, Alberto Villa, Federica; Tisa, Simone; Zappa, Franco

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 ?m active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  10. SRC burn test in 700-hp oil-designed boiler. Volume 1. Integrated report. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    This burn test program was conducted during the period of August 1982 to February 1983 to demonstrate that Solvent Refined Coal (SRC) products can displace petroleum as a boiler fuel in oil- and gas-designed boilers. The test program was performed at the U.S. Department of Energy's Pittsburgh Energy Technology Center (PETC). Three forms of SRC (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) and No. 6 Fuel Oil were evaluated in the 700-hp (30 x 10/sup 6/ Btu/hour) watertube, oil-designed boiler facility at PETC. The test program was managed by the International Coal Refining Company (ICRC) and sponsored by the Department of Energy. Other organizations were involved as necessary to provide the expertise required to execute the test program. This final report represents an integrated overview of the test program conducted at PETC. More detailed information with preliminary data can be obtained from separate reports prepared by PETC, Southern Research Institute, Wheelabrator-Frye, Babcock and Wilcox, and Combustion Engineering. These are presented as Annex Volumes A-F. 25 references, 41 figures, 15 tables.

  11. Niche Application Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Niche Application Opportunities Bart A. van Hassel United Technologies Research Center (UTRC), East Hartford, Connecticut, USA DOE Materials-Based Hydrogen Storage Summit Defining pathways for onboard automotive applications Golden, CO, USA January 27-28, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 10 100 1000 10000 0 100 200 300 400 500 600 700 800 900 1000 Useful Specific Power [W/kg] Useful Specific Energy [Wh/kg] Automotive 80

  12. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  13. Mesa Grande Band of Mission Indians Tribal Energy Project Feasibility Study

    Office of Environmental Management (EM)

    Mesa Grande Band of Mission Indians Tribal Energy Project Feasibility Study The Land The Land The Land Reservation consists of 1820 acres Historically as low as 120 acres Acquisition of 800+ acres in 1988 Purchase of 900 acres in 1998 The People 700 members today 130 living on Reservation 90% people on Reservation below poverty line Long waiting list of people wanting to live on Reservation Challenges Facing the Tribe Quality, Affordable Housing Decent, Living Wage Jobs Sustainable Growth Upper

  14. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; et al

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  15. Current

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dollars in Thousands) FY 2014 Current FY 2015 Enacted FY 2016 Request Enhanced Geothermal Systems (EGS) 27,100 32,100 45,000 Hydrothermal 10,300 12,500 36,500 Low Temperature and Coproduced 4,700 6,000 9,000 Systems Analysis 3,700 3,900 5,000 NREL Sitewide 0 500 500 Total, Geothermal Technologies 45,800 55,000 96,000 The Geothermal Technologies Office (GTO) accelerates deployment of clean, domestic geothermal energy by supporting innovative technologies that reduce the cost and risks of

  16. 2014 PV Performance Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 PV Performance Modeling Workshop Photo courtesy of Sempra Energy 8:00 AM to 9:00 PM Monday, May 5, 2014 At Biltmore Hotel, Santa Clara, California 4/30/2014 Agenda: Start Time Title Presenter 7:00 AM Badging and Registration Opens 8:00 AM Welcome, Purpose, and What to Expect Joshua Stein (SNL) 8:15 AM Solar Resource (Measurements and Datasets) 8:20:AM Ground Irradiance Data Justin Robinson (GroundWork Renewables) 8:40 AM Satellite Irradiance Models and Datasets Adam Kankiewicz (Clean Power

  17. Biomass 2014: Growing the Future Bioeconomy Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014: Growing the Future Bioeconomy Agenda Biomass 2014: Growing the Future Bioeconomy Agenda Tuesday, July 29, 2014 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:20 a.m. Welcome and Introduction Jonathan Male, Director, Bioenergy Technologies Office, U.S. Department of Energy 8:20 a.m.-9:00 a.m. Morning Keynotes David Danielson, Assistant Secretary for Energy Efficiency & Renewable Energy, U.S. Department of Energy Byron Paez, Deputy Director for Deputy Assistant

  18. Application of MELCOR Code to a French PWR 900 MWe Severe Accident Sequence and Evaluation of Models Performance Focusing on In-Vessel Thermal Hydraulic Results

    SciTech Connect (OSTI)

    De Rosa, Felice [ENEA, Italian National Agency for New Technologies, Energy and the Environment (Italy)

    2006-07-01

    In the ambit of the Severe Accident Network of Excellence Project (SARNET), funded by the European Union, 6. FISA (Fission Safety) Programme, one of the main tasks is the development and validation of the European Accident Source Term Evaluation Code (ASTEC Code). One of the reference codes used to compare ASTEC results, coming from experimental and Reactor Plant applications, is MELCOR. ENEA is a SARNET member and also an ASTEC and MELCOR user. During the first 18 months of this project, we performed a series of MELCOR and ASTEC calculations referring to a French PWR 900 MWe and to the accident sequence of 'Loss of Steam Generator (SG) Feedwater' (known as H2 sequence in the French classification). H2 is an accident sequence substantially equivalent to a Station Blackout scenario, like a TMLB accident, with the only difference that in H2 sequence the scram is forced to occur with a delay of 28 seconds. The main events during the accident sequence are a loss of normal and auxiliary SG feedwater (0 s), followed by a scram when the water level in SG is equal or less than 0.7 m (after 28 seconds). There is also a main coolant pumps trip when {delta}Tsat < 10 deg. C, a total opening of the three relief valves when Tric (core maximal outlet temperature) is above 603 K (330 deg. C) and accumulators isolation when primary pressure goes below 1.5 MPa (15 bar). Among many other points, it is worth noting that this was the first time that a MELCOR 1.8.5 input deck was available for a French PWR 900. The main ENEA effort in this period was devoted to prepare the MELCOR input deck using the code version v.1.8.5 (build QZ Oct 2000 with the latest patch 185003 Oct 2001). The input deck, completely new, was prepared taking into account structure, data and same conditions as those found inside ASTEC input decks. The main goal of the work presented in this paper is to put in evidence where and when MELCOR provides good enough results and why, in some cases mainly referring to its specific models (candling, corium pool behaviour, etc.) they were less good. A future work will be the preparation of an input deck for the new MELCOR 1.8.6. and to perform a code-to-code comparison with ASTEC v1.2 rev. 1. (author)

  19. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Bioenergy 2015 Agenda Below is an agenda overview of the Bioenergy 2015 schedule of events. A more detailed agenda with session descriptions and speakers (as they become available) is also available. Tuesday, June 23, 2015 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:15 a.m. Welcome Keynote 8:15 a.m.-8:30 a.m. Congressional Keynote(s) 8:30 a.m.-8:40 a.m. Introductory Keynote 8:40 a.m.-9:00 a.m. BETO Keynote 9:00 a.m.-10:30 a.m. Plenary I: Policy and Market Overview 10:30

  20. Biomass 2014 Draft Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014 Draft Agenda All topics and times are tentative and subject to change. Page | 1 BIOMASS 2014: Growing the Future Bioeconomy July 29-30, 2014, Washington Convention Center Day 1: Tuesday, July 29, 2014 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:30 a.m. Welcome and Introduction U.S. Department of Energy's (DOE's) Bioenergy Technology Office (BETO) Director Jonathan Male 8:30 a.m.-9:00 a.m. Morning Keynote/VIP 9:00 a.m.-9:30 a.m. Morning Keynote/VIP 9:30 a.m.-10:45 a.m.

  1. Effect of postdeposition annealing on the electrical properties of ?-Ga{sub 2}O{sub 3} thin films grown on p-Si by plasma-enhanced atomic layer deposition

    SciTech Connect (OSTI)

    Altuntas, Halit; Donmez, Inci; Ozgit-Akgun, Cagla; Biyikli, Necmi

    2014-07-01

    Ga{sub 2}O{sub 3} dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga{sub 2}O{sub 3} thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900?C for 30?min under N{sub 2} ambient, films crystallized into ?-form monoclinic structure. Electrical properties of the ?-Ga{sub 2}O{sub 3} thin films were then investigated by fabricating and characterizing Al/?-Ga{sub 2}O{sub 3}/p-Si metaloxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Q{sub eff}) were calculated from the capacitancevoltage (C-V) curves using the flat-band voltage shift and were found as 2.6??10{sup 12}, 1.9??10{sup 12}, and 2.5??10{sup 12} cm{sup ?2} for samples annealed at 700, 800, and 900?C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO{sub 2} layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900?C, and by the FrenkelPoole emission model for film annealed at 800?C. Leakage current density was found to improve with annealing temperature. ?-Ga{sub 2}O{sub 3} thin film annealed at 800?C exhibited the highest reverse breakdown field value.

  2. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO2-elimination channels yielding conjugated cyclic coproducts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; Osborn, David L.; Taatjes, Craig A.

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C5H8O), cyclohexanone (CHO; C6H10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH3–C5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in the R + O2 reactions is chain-terminating HO2-eliminationmore » yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  3. Analysis of gamma-ray spectra from foils activated in a range-thick lead target by 800-MeV protons. Final technical report

    SciTech Connect (OSTI)

    Laird, C.E.; Mullins, D.H.

    1995-06-12

    Approximately 400 gamma-ray spectra have been analyzed to obtain the types and quantities of radioisotopes produced when 800-MeV protons interact with a range-thick lead target. These spectra were obtained from the radioactive decay of product isotopes in lead disks placed at various depths and radial positions within the target. These spectra were analyzed with the computer code HYPERMET and the photopeak areas were reduced to nuclei produced per incident proton per cubic centimeter of material. Product nuclei ranged from atomic mass 160 to mass 206 and over a range of half lives from a few minutes to several weeks. The results of this analysis have been outlined in this report and transmitted on computer disk to Los Alamos National Laboratory. The consistency of these analyses have been confirmed by a comparison of photopeak areas obtained at LANL with the computer code GAMANAL with those from HYPERMET for two gamma-ray spectra. Also, the nuclear production per proton per cm{sub 3} obtained from these two spectra analyzed both at LANL and at EKU have been found to agree to within the statistical accuracy of the peak-fitting programs. This analysis of these 400 gamma-ray spectra has determined the nuclear production per incident proton per cm{sub 3} at five regularly-spaced radial positions and depths up to 40 cm into a range-thick lead target.

  4. Sandia National Laboratories and the Electric Power Research Institute (EPRI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nd PV Performance Modeling Workshop Photo courtesy of Sempra Energy Dates: 1:00 PM to 5:00 PM on Wednesday, May 1, 2013 with special evening session 7:00 to 9:00 pm 8:00 AM to 5:00 PM on Thursday, May 1, 2013 Location: The Biltmore Hotel, 2151 Laurelwood Road, Santa Clara, CA Credible estimates of PV system output are critical to successful development of large-scale PV projects. This workshop will provide information on advances in modeling, on pathways to reducing variability in model input

  5. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Solar Energy What Have We Learned Thomas Bialek, PhD PE Chief Engineer October 29, 2015 PV Intermittency Measure Measure Nominal Voltage Upper ANSI Range Upper ANSI Range Nominal Voltage Data Analysis 4 500 600 700 800 900 1,000 2010 2011 2012 2013 2014 2015 2016 Number of Circuits SDG&E PV Penetration by Circuit > 30% 20% to 29% 10% to 19% < 10% 5 Modeling DER Integration 6 Modeling DER Integration 7 Modeling - Detailed PSCad Modeling 8 Modeling - RTDS 9 Modeling -

  6. Microsoft Word - Document2

    Open Energy Info (EERE)

    min, average, and max average CO 2 emissions by month for AZNM subregion (lbs CO 2 MWh load) 800 1,100 1,400 1,700 January 800 1,100 1,400 1,700 February 800 1,100 1,400 1,700...

  7. STATE OF THE HANFORD SITE Public Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7:00 - 9:00 p.m. April 17, 2014 - Hood River Best Western Hotel: Gorge Room 1108 E. Marina Dr. Hood River 6:00 - 7:00 p.m. Open House 7:00 - 9:00 p.m. April 29, 2014 - Richland...

  8. Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program

    SciTech Connect (OSTI)

    Britt, Michelle L.; Makela, Eric J.

    2011-01-30

    Adhering to Delawares Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

  9. Temperature dependence of structural parameters in oxide-ion-conducting Nd{sub 9.33}(SiO{sub 4}){sub 6}O{sub 2}: single crystal X-ray studies from 295 to 900K

    SciTech Connect (OSTI)

    Okudera, Hiroki [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart (Germany)]. E-mail: h.okudera@fkf.mpg.de; Yoshiasa, Akira [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Masubuchi, Yuuji [Material Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Higuchi, Mikio [Material Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Kikkawa, Shinichi [Material Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2004-12-01

    Crystallographic space group, structural parameters and their thermal changes in oxide-ion-conducting Nd{sub 9.33}(SiO{sub 4}){sub 6}O{sub 2} were investigated using high-temperature single-crystal X-ray diffraction experiments in the temperature range of 295=900K. The title compound has the apatite structure (space group P6{sub 3}/m), and no notable structural change occurred over the temperature range examined. Observed anisotropy in thermal motions of oxide ions which belong to SiO{sub 4} tetrahedron indicated high rigidity of the tetrahedron in the structure, indicating that they form sp3 hybrid orbitals and the ligand oxygens do not take part in oxide-ion conductivity. Virtually full occupation of the 6h Nd site and highly anisotropic displacements of oxide ion inside the hexagonal channel were maintained over the temperature range examined. This result confirms that oxide-ion transport inside the hexagonal channel is the dominant process of conduction in the title compound.

  10. Evidence of incomplete annealing at 800 °C and the effects of 120 °C baking on the crystal orientation and the surface superconducting properties of cold-worked and chemically polished Nb

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sung, Z. -H.; Dzyuba, A.; Lee, P. J.; Larbalestier, D C; Cooley, L. D.

    2015-07-01

    High-purity niobium rods were cold-worked by wire-drawing, followed by various combinations of chemical polishing and high-vacuum baking at 120 °C or annealing at 800 °C in order to better understand changes to the surface superconducting properties resulting from typical superconducting radio-frequency cavity processing. AC susceptibility measurements revealed an enhanced upper transition Tc at ~ 9.3–9.4 K in all samples that was stable through all annealing steps, a value significantly above the accepted Tc of 9.23 K for pure annealed niobium. Corresponding elevations were seen in the critical fields, the ratio of the surface critical field Hc3 to the bulk uppermore » critical field Hc2 rising to 2.3, well above the Ginzburg–Landau value of 1.695. Orientation imaging revealed an extensive dislocation rich sub-grain structure in the as-drawn rods, a small reduction of the surface strain after baking at 120 °C, and a substantial but incomplete recrystallization near the surface after annealing at 800 °C. We interpret these changes in surface superconducting and structural properties to extensive changes in the near-surface interstitial contamination produced by baking and annealing and to synergistic interactions between H and surface O introduced during electropolishing and buffered chemical polishing.« less

  11. Hacking Photosynthesis: Growing Plants to Power Our Engines and Feed the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World 07, 2015 7:00 PM - 9:00 PM WHERE: Museum of Natural History and Science, Albuquerque

  12. Hacking Photosynthesis: Growing Plants to Power Our Engines and Feed the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World 11, 2015 7:00 PM - 9:00 PM WHERE: Duane Smith Auditorium, Los Alamos High School

  13. 100 Hour test of the pressurized woodchip-fired gravel bed combustor

    SciTech Connect (OSTI)

    Ragland, K.W.; Aerts, D.J.

    1992-08-01

    In this project a downdraft, packed bed combustor for a gas turbine cogeneration system using woodchips is being developed. The combustor is designed to promote intense combustion in a thin reaction zone and to control particulate growth by using high excess air. The combustor contains a magnesia and alumina gravel bed on top of which woodchips are fed. The following test objectives were established for the 100 hr test: (a) demonstrate preliminary durability of the combustor; (b) demonstrate steady operation of the system; (c) investigate combustor pressure drop; (d) investigate bed ash cake buildup; (e) expose metal alloy coupons for corrosion examination; (f) obtain closure within 10% on mass and energy balances; and (g) obtain emissions data. The plan for the 100 hr test was to operate the combustor at the following conditions: day 1, 4 atm (absolute) pressure and 700--800 C outlet temperature; day 2, 4 atm pressure and 800--900 C outlet temperature; day 3, 5 atm pressure and 800--900 C outlet temperature; days 4 and 5, repeat day 3. The inlet air was not preheated. The paper gives test results and discusses fuel characterization, combustor performance, mass and energy balance, emissions, composition of ash and deposits, and metal coupons representing turbine blade material.

  14. PNNL: Publications: Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1366x768 1440x900 1600x900 1680x1050 1920x1080 1920x1200 2560x1440 Desktop Wallpaper Electronic Wallpaper 1280x720 1280x800 1280x1024 1366x768 1440x900 1600x900 1680x1050...

  15. Meadville, Pennsylvania's Allegheny College Highlighted by U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commitment and Association for the Advancement of Sustainability in Higher Education. ... processes between 800 and 900 pounds of food and compostable paper and plastic each day. ...

  16. Central Texas Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesCentral-Texas-Electric-Cooperative520773011297941?reftntnmn Outage Hotline: 1-800-900-2832 References: EIA Form EIA-861 Final Data File for...

  17. The 800-meter sample toroidal field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ship at the port of Charleston, S.C., on May 28, 2014 for its voyage to La Spezia, Italy. ... S.C. and then on to La Spezia, Italy, where the European conductor winding ...

  18. Thermal-shock behavior of advanced ceramic/composite hot-gas filters

    SciTech Connect (OSTI)

    Singh, J.P.; Sutaria, M.; Bielke, W.

    1997-02-01

    The thermal shock/fatigue behavior of monolithic and composite hot-gas candle filters obtained from various manufacturers was evaluated. The composite filters were made of both oxide and nonoxide materials; the monolithic filters were made only of nonoxide materials. During single-cycle thermal shock tests, composite filters show little or no strength degradation when quenched from temperatures between 900 and 1000{degrees}C. At higher quenching temperatures, slow strength degradation was observed. Regular monolithic SiC filters showed no strength degradation when quenched from temperatures up to {approx}700-900{degrees}C, whereas at higher quenching temperatures, the strength decreased at a relatively sharper rate. On the other hand, recrystallized monolithic SiC filters showed higher initial strength and retained this strength to higher quenching temperatures when compared with regular SiC filters. This finding may be related to the difference in the strength of grain boundary phases in the two filters. For thermal cycles between room temperature and 800-1000{degrees}C, composite filters show little (18-24%) strength degradation up to three cycles, beyond which the strength remains unchanged. Similar behavior, with an initial strength drop of 15-28%, was observed for monolithic filter specimens that were thermally cycled between room temperature and 800{degrees}C.

  19. S3TEC Annual Workship | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Workship Workshop Saturday Feb 13, 2016 9:00am to 8:00pm Location: MIT Faculty Club Annual Workshop - Solid State Solar Thermal Energy Conversion February 13, 2016 9:00 am-8:00 pm Location: MIT Faculty Club and Conference Center, 50 Memorial Drive, Cambridge, MA

  20. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOE Patents [OSTI]

    Huang, Kevin (Export, PA); Ruka, Roswell J. (Pittsburgh, PA)

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  1. Catalysts for conversion of methane to higher hydrocarbons

    DOE Patents [OSTI]

    Siriwardane, Ranjani V. (Morgantown, WV)

    1993-01-01

    Catalysts for converting methane to higher hydrocarbons such as ethane and ethylene in the presence of oxygen at temperatures in the range of about 700.degree. to 900.degree. C. are described. These catalysts comprise calcium oxide or gadolinium oxide respectively promoted with about 0.025-0.4 mole and about 0.1-0.7 mole sodium pyrophosphate. A preferred reaction temperature in a range of about 800.degree. to 850.degree. C. with a preferred oxygen-to-methane ratio of about 2:1 provides an essentially constant C.sub.2 hydrocarbon yield in the range of about 12 to 19 percent over a period of time greater than about 20 hours.

  2. 900 F embrittlement of alloy UNS N06625

    SciTech Connect (OSTI)

    Neubert, V.W.M.; Doelling, R.

    1998-12-31

    Different impellers made of nickel base alloy UNS N06625 have failed after 5000 h and 15000 h in service at high temperatures ({approx_equal} 500 C, 932 F) in 1994. The impellers were used in petrochemical industries. The failures were induced by stress corrosion cracking and stress corrosion fatigue. Material of the impellers showed a high susceptibility to intergranular corrosion and stress corrosion attack. Formation of a newly, not yet identified, super lattice within the nickel matrix has been discovered by transmission electron microscopy. The formation of the super lattice was caused by the service conditions, temperature and time. Based on these findings, influence of ageing time at 500 C (932 F) on the mechanical properties and the corrosion resistance of UNS N06625 was investigated. The specimen investigated showed strong differences in mechanical properties and corrosion behavior in standard corrosion test solutions, as well as a strong ageing dependence.

  3. About 900 High School Students, Educators Attend Third Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tim Williams of Fluor-B&W Portsmouth gives a pop quiz to students for prizes, asking ... Tim Williams of Fluor-B&W Portsmouth gives a pop quiz to students for prizes, asking ...

  4. Obama Administration Announces Additional $351,658,900 for Local...

    Broader source: Energy.gov (indexed) [DOE]

    of 411,904,061 in California weatherization and energy funding announced by the Administration on March 12th and detailed at energy.govrecovery. "These investments will save...

  5. Dismantling Approval. I-900-904-1.01.

    Office of Legacy Management (LM)

  6. Interim Response Actions (IRS's). I-900-901-1.01.

    Office of Legacy Management (LM)

  7. Obama Administration Announces Additional $16,956,700 for Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on government buildings, energy efficient traffic signals and street lights, deployment of Combined Heat and Power and district heating and cooling systems, and others. ...

  8. 14,700 tons of silver at Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calutron magnets was because of a shortage of copper during the war. As you will recall, Gen. Groves sent Col. Nichols to arrange for the purchase of as much uranium ore as could...

  9. Florida Power & Light Company, 700 Universe Blvd. Juno Beach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In the latter case, technological advances in the world of digital "bits" have enabled not ... of specific pricing programs and marketing tactics; (iv) the impact of social norms ...

  10. Title 11 Alaska Administrative Code 84.700 Geothermal Leasing...

    Open Energy Info (EERE)

    Abstract Implementing regulations in Alaska governing geothermal leasing procedures including competitive and non-competitive leasing. Published NA Year Signed or Took...

  11. Obama Administration Announces Additional $37,157,700 for Local...

    Broader source: Energy.gov (indexed) [DOE]

    of 196,990,133 in Wisconsin weatherization and energy funding announced by the Administration on March 12 th and detailed at energy.govrecovery. "These investments will save...

  12. SANDIA REPORT SAND95-2049 UC-700 Unlimited Release

    Office of Scientific and Technical Information (OSTI)

    Problems Micheal W. Glass Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United S t a t e s Department of Energy...

  13. SANDIA REPORT SAND95-2049 UC-700 Unlimited Release

    Office of Scientific and Technical Information (OSTI)

    constitute or imply its endorsement, recommendation, or favoring by the United States ... CPU and memory requirements for a job, but the mem- ory savings can be substantial. ...

  14. Interim Response Actions (IRA's). IR-700-703-1.01.

    Office of Legacy Management (LM)

  15. Auli Technology | Open Energy Information

    Open Energy Info (EERE)

    Auli Technology Jump to: navigation, search Name: Auli Technology Place: Brazil Zip: 12.223.900 Sector: Wind energy Product: 500kW to 800kW wind turbine designer and manufacturer...

  16. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 GHz: A comparison of measurements and theory. IEEE Trans. Ant. & Prop, 38(10), 15,690-15,800...

  17. March 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    viewing via video archive. * Agenda .pdf file (74KB) * Minutes (Not yet available) * Web Cast Link External link AGENDA Tuesday, March 22, 2011 8:00 AM 9:00 AM PUBLIC ...

  18. Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...

    Open Energy Info (EERE)

    layer and a basement layer of less than 100 ohm.m (Kauahikaua and Mattice, 1981). The depth of penetration of these soundings was estimated to be about 800 m to 900 m b.s.1....

  19. Fact #800: October 21, 2013 Characteristics of New Light Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101 98 1982 21.1 3,202 14.4 103 110 99 101 99 1983 21.0 3,257 14.1 107 109 101 99 103 1984 21.0 3,262 14.0 109 109 101 98 105 1985 21.3 3,271 13.5 114 111 101 94 110 1986 21.8 ...

  20. Well cored to 9,800 ft in Paraguay

    SciTech Connect (OSTI)

    Gunn, K.B. )

    1991-05-13

    The mining industry's slim hole drilling rigs have proven applicable to primary oil exploration. These machines are smaller than conventional drilling rigs and can be transported with relative ease to remote locations. A typical rig drills an entire well by coring, with the cores retrieved by wire line without tripping the pipe. The core drilling system is specially suited to drilling hard rock formations. This paper reports on the project which evaluated the geological aspects of the Parana basin and determined the applicability of slim hole, core drilling techniques as an exploration tool. The Parana basin is found in the eastern third of Paraguay, part of northeastern Argentina, and part of southern Brazil. Much of the basin is overlaid by basalt flows up to 5,000-ft thick, and there are numerous igneous intrusions and dikes within the sedimentary section. This combination makes seismic quality poor and interpretation extremely difficult. The formations are relatively old, with Triassic red beds occurring only a few feet below the surface or immediately below the basalt. Beneath the Triassic are Permian marine deposits, Permo-Carboniferous tillites, and then Devonian, Silurian, and Ordovician deposits to the basement. The section outcrops 100 miles west of the Mallorquin Well No. 1 site. The Parana basin has been only randomly explored. To date, success has been limited to a minor gas find near Sao Paulo, Brazil.

  1. 36CFRPart800_as_amended2004_web.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The Council, on its own initiative or at the request of another party, may establish ... borough, or other general purpose political subdivision of a State. (o) Memorandum ...

  2. FAQs for Survey Forms 800, 810, and 820

    Gasoline and Diesel Fuel Update (EIA)

    0, 810, and 820 Is natural gas feedstock for hydrogen production included when reporting natural gas quantity used as fuel (EIA product Code 105) on the EIA 820? Exclude natural gas feedstock for hydrogen production under Code 105 on EIA 820. Report only the quantity of natural gas consumed as fuel at the refinery. Report natural gas used for hydrogen production under Code 107. On the EIA-810 survey, where is hydrogen reported? Report receipts and inputs of hydrogen as "Hydrogen" (line

  3. Secretary Chu Announces Nearly $800 Million from Recovery Act...

    Broader source: Energy.gov (indexed) [DOE]

    be outsourced," Secretary Chu said. "With American investment and ingenuity -- and resources grown right here at home -- we can lead the way toward a new green energy economy." ...

  4. Dismantling of Building 409. IR-800-803-1.01.

    Office of Legacy Management (LM)

  5. Europe

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7,900 Mongolia 3 - 3,400 Thailand 152 453 0 South Asia 396 5,802 12,900 8,211 26,913 India 361 5,476 3,800 Pakistan 23 248 9,100 Middle East and North Africa 10,986 867,463...

  6. Deutsche Gesellschaft fr Internationale Zusammenarbeit (GIZ...

    Open Energy Info (EERE)

    14,700 staff, about 11,200 of whom are national personnel. 1,800 people are employed at Head Office in Eschborn near Frankfurt am Main and at various locations within Germany....

  7. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    600 700 800 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 new-well oil production per rig rig count New-well oil production per rig barrelsday Niobrara Region Rig count rigs ...

  8. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    600 700 800 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 new-well oil production per rig rig count New-well oil production per rig barrelsday Bakken Region Rig count rigs ...

  9. MIT Plasma Science & Fusion Center: research, alcator, pubs,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pm Executive SessionDiscussions with C-Mod team as desired * Priorities Marmar * 8 Tesla Wolfe 7:00 pm PAC Dinner (if desired) Wednesday, February 25, 2004 8:00 am Executive...

  10. K C Electric Association | Open Energy Information

    Open Energy Info (EERE)

    K C Electric Association Jump to: navigation, search Name: K C Electric Association Place: Colorado Website: www.kcelectric.coop Outage Hotline: 1-800-700-3123 Outage Map:...

  11. Advanced Manufacturing Office Peer Review Final Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 28-29, 2015 Washington Marriott Wardman Park 2660 Woodley Road NW Washington, DC 20008 FINAL AGENDA Day 1 (May 28) 8:00 - 8:45 am Peer Reviewer Briefing Breakfast Mark Johnson, Isaac Chan, Mark Shuart, and Jay Wrobel, DOE-AMO 8:45 - 9:00 am BREAK 8:00 - 9:00 am REGISTRATION FOR ATTENDEES 9:00 - 9:30 am Welcome and AMO Overview Mark Johnson, DOE-AMO 9:30 - 9:50 am Sustainable Manufacturing via Multi-Scale Third Wave Systems Inc. Physics-Based Process

  12. 2011 Workshop Agenda_Ver_21.xlsx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7:00 AM 8:00 AM 60 Workshop Registration 8:00 AM 8:05 AM 5 Welcome and Workshop Logistics John Makepeace, Office of Engineering and Construction Management 8:05 AM 8:20 AM 15...

  13. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); McCollister, Howard L. (Albuquerque, NM); Phifer, Carol C. (Albuquerque, NM); Day, Delbert E. (Rolla, MO)

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  14. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  15. Isolated polypeptide having arabinofuranosidase activity

    DOE Patents [OSTI]

    Foreman, Pamela (Palo Alto, CA); Van Solingen, Pieter (Naaldwijk, NL); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (Palo Alto, CA)

    2010-02-23

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry. TABLE-US-00001 cip1 cDNA sequence (SEQ ID NO: 1) GACTAGTTCA TAATACAGTA GTTGAGTTCA TAGCAACTTC 50 ACTCTCTAGC TGAACAAATT ATCTGCGCAA ACATGGTTCG CCGGACTGCT 100 CTGCTGGCCC TTGGGGCTCT CTCAACGCTC TCTATGGCCC AAATCTCAGA 150 CGACTTCGAG TCGGGCTGGG ATCAGACTAA ATGGCCCATT TCGGCACCAG 200 ACTGTAACCA GGGCGGCACC GTCAGCCTCG ACACCACAGT AGCCCACAGC 250 GGCAGCAACT CCATGAAGGT CGTTGGTGGC CCCAATGGCT ACTGTGGACA 300 CATCTTCTTC GGCACTACCC AGGTGCCAAC TGGGGATGTA TATGTCAGAG 350 CTTGGATTCG GCTTCAGACT GCTCTCGGCA GCAACCACGT CACATTCATC 400 ATCATGCCAG ACACCGCTCA GGGAGGGAAG CACCTCCGAA TTGGTGGCCA 450 AAGCCAAGTT CTCGACTACA ACCGCGAGTC CGACGATGCC ACTCTTCCGG 500 ACCTGTCTCC CAACGGCATT GCCTCCACCG TCACTCTGCC TACCGGCGCG 550 TTCCAGTGCT TCGAGTACCA CCTGGGCACT GACGGAACCA TCGAGACGTG 600 GCTCAACGGC AGCCTCATCC CGGGCATGAC CGTGGGCCCT GGCGTCGACA 650 ATCCAAACGA CGCTGGCTGG ACGAGGGCCA GCTATATTCC GGAGATCACC 700 GGTGTCAACT TTGGCTGGGA GGCCTACAGC GGAGACGTCA ACACCGTCTG 750 GTTCGACGAC ATCTCGATTG CGTCGACCCG CGTGGGATGC GGCCCCGGCA 800 GCCCCGGCGG TCCTGGAAGC TCGACGACTG GGCGTAGCAG CACCTCGGGC 850 CCGACGAGCA CTTCGAGGCC AAGCACCACC ATTCCGCCAC CGACTTCCAG 900 GACAACGACC GCCACGGGTC CGACTCAGAC ACACTATGGC CAGTGCGGAG 1000 GGATTGGTTA CAGCGGGCCT ACGGTCTGCG CGAGCGGCAC GACCTGCCAG 1050 GTCCTGAACC CATACTACTC CCAGTGCTTA TAAGGGGATG AGCATGGAGT 1100 GAAGTGAAGT GAAGTGGAGA GAGTTGAAGT GGCATTGCGC TCGGCTGGGT 1150 AGATAAAAGT CAGCAGCTAT GAATACTCTA TGTGATGCTC ATTGGCGTGT 1200 ACGTTTTAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 1250 AAAAAAAAAA AAAAAAAAAG GGGGCGGCCG C 1271

  16. Effect of calcination temperature on electrical properties of Nd{sub 0.7}Ba{sub 0.3}MnO{sub 3}

    SciTech Connect (OSTI)

    Lim, K. P.; Halim, S. A.; Chen, S. K.; Ng, S. W.; Chew, Z. Y.

    2015-04-24

    In this work, Nd{sub 0.7}Ba{sub 0.3}MnO{sub 3} was synthesized via cryo-milling method to investigate the effect of calcination temperature on the structure, microstructure, magnetic and electrical properties. XRD analysis revealed all samples can be indexed to orthorhombic structure systems with Imma space group accompany with some minor phases of Mn{sub 2}O{sub 4} and BaMnO{sub 3}. FESEM analysis confirmed that a slight increase in the grain size from 117.4 nm (600C), 119.5 nm (700C), 121.0 nm (800C), 123.1 nm (900C) to 138.4 nm (1000C) was observed when different calcination temperature was applied. Four Point Probe measurements showed that all samples are in paramagnetic insulating region and T{sub MIT} is lower than 20K. Resistivity increase when grain size reduces due to increase of effective grain boundary that weakens the electron hopping process via double exchange mechanism. Beside, a drastic increase of resistivity also observed due to present of minor secondary phase (BaMnO{sub 3}) in sample C9.

  17. World pipeline work set for rapid growth

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This paper reports on international pipeline construction which has entered a fast-growth period, accelerated by the new political and economic realities around the world and increasing demand for natural gas, crude oil and refined petroleum products. Many projects are under way or in planning for completion in the mid- to late 1990s in Europe, South America, Asia and the Middle East. Pipeline And Gas Journal's projection calls for construction or other work on 30,700 miles of new natural gas, crude oil and refined products pipelines in the 1992-93 period outside Canada and the U.S. These projects will cost an estimated $30 billion-plus. Natural gas pipelines will comprise most of the mileage, accounting for almost 23,000 miles at an estimated cost of $26.3 billion. Products pipelines, planned or under construction, will add another 5,800 miles at a cost of $2.8 billion. Crude oil pipelines, at a minimum, will total 1,900 new miles at a cost of slightly under $1 billion.

  18. Plasmids encoding therapeutic agents

    DOE Patents [OSTI]

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  19. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    SciTech Connect (OSTI)

    Uedono, Akira; Yoshihara, Nakaaki; Mizushima, Yoriko; Kim, Youngsuk; Nakamura, Tomoji; Ohba, Takayuki; Oshima, Nagayasu; Suzuki, Ryoichi

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500C. After 600700C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900C), oxygen-related defects were the major point defects and they were located at <25 nm.

  20. First Steps Toward Tribal Weatherization - Human Capacity Development: DE-PA36-09GO99022

    Office of Environmental Management (EM)

    Toward Tribal Weatherization - Human Capacity Development (DE-PA36-09GO99022) © 2006 All Rights Reserved 1 The Global View © 2006 All Rights Reserved 2 Bishop Paiute Reservation © 2006 All Rights Reserved 3 Inyo County, California © 2006 All Rights Reserved 4 Basic Demographics * 600 Households * 1600 Residents * 900 Acres © 2006 All Rights Reserved 5 Basic Demographics * 461 Households * 1600 Residents * 900 Acres * Reservation housing is projected to increase to nearly 700 homes and over

  1. Genepool Quarterly Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genepool Quarterly Maintenance Genepool Quarterly Maintenance November 7, 2012 by Kirsten Fagnan The Genepool cluster will be offline for maintenance next Tuesday, November 13th from 7:00 am to 7:00 pm (PST). During this time staff will upgrade the Genepool compute nodes to Debian 6. Also, the firmware for /projectb and /house will be updated. /projectb will be unavailable from 7:00 am to 7:00 pm (PST) and /house will be unavailable from 8:00 am to 1:00 pm (PST). Any webservices or workflows

  2. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 6, 2011 National Electric Transmission Congestion Study Workshop - December 6, 2011 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator

  3. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Electric Transmission Congestion Study Workshop - December 13, 2011 Sheraton Portland Airport Hotel, 8235 Northeast Airport Way, Portland, OR 97220 Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:20 am - 10:15 am Panel I - Regulators * John Savage, Commissioner, Oregon Public Utilities Commission * Marsha Smith, Commissioner, Idaho Public Utilities Commission * Steve Oxley, Deputy Chairman,

  4. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Electric Transmission Congestion Study Workshop - December 15, 2011 Sheraton San Diego Hotel & Marina, 1380 Harbor Island Drive, San Diego, California 92101 Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:15 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:15 am - 10:30 am Panel I - Regulators * Rebecca D. Wagner, Commissioner, Nevada Public Utilities Commission * Charles Hains, Chief Counsel, Arizona Corporation Commission * Keith D.

  5. 1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion

    SciTech Connect (OSTI)

    Hall, D.

    1982-07-01

    Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

  6. Time and spectrum-resolving multiphoton correlator for 300900 nm

    SciTech Connect (OSTI)

    Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas; Kolenderski, Piotr; Scarcella, Carmelo; Tosi, Alberto

    2014-10-14

    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  7. C/O HELP PLLC, 750 SEVENTEETH STREET N.W. SUITE 900 Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... infrastructure, and to generate significant job growth in the electric transmission sector. WIRES qualifies its recommendation for a strong, central role for DOE, in two ways. ...

  8. USEPA Comments on Interim Response Actions (IRAs). I-900-904-1.02.

    Office of Legacy Management (LM)

  9. MDNR Comments on Interim Response Actions (IRAs). I-900-904-1.03.

    Office of Legacy Management (LM)

  10. Event Archives | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Archives Seminar S3TEC Seminar - Dr. Cliff Ho, Sandia National Laboratories Wednesday, Mar 2, 2016 12:00 pm 1-150 S3TEC welcomes Dr. Cliff Ho for our monthly seminar Workshop S3TEC Annual Workship Saturday, Feb 13, 2016 9:00 am to 8:00 pm MIT Faculty Club Annual Workshop - Solid State Solar Thermal Energy Conversion February 13, 2016 9:00 am-8:00 pm Location: MIT Faculty Club and Conference Center, 50 Memorial Drive, Cambridge, MA Seminar S3TEC Pre-Workshop Seminar Friday, Feb 12, 2016

  11. Studying some mechanical properties of MgO with used neon bulb glass

    SciTech Connect (OSTI)

    Issa, Tarik Talib; Khaleel, Saba Mahdi; Abdul Kareem, Noura Ammar

    2013-12-16

    Ceramic compact of MgO +WT% of UNBG were sintered at different sintering temperature (700, 900, 1100, 1300)c, under static air for 3 hours. X-ray diffraction and some mechanical properties were conducted. The maximum sintered density, compression; fracture strength and hardness were indicated for the compilation of MgO ?20 WT % UNBG, sintered at 1300 c.

  12. Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1977 29,100 1978 29,000 1979 28,500 1980 27,900 1981 26,350 1982 25,700 1983 24,725 1984 24,725 1985 24,725 1986 24,825 1987 25,150 1988 25,025 1989 25,000 1990 24,825 1991 ...

  13. Mid-Tier Advocacy Business Focused Breakfast Discussion 2016 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Mid-Tier Advocacy Business Focused Breakfast Discussion 2016 Mid-Tier Advocacy Business Focused Breakfast Discussion 2016 January 14, 2016 7:00AM to 9:00AM EST Mid-Tier Advocacy (MTA) Business Focused Breakfast Discussion

  14. Hurricane Katrina Situation Report #6, August 28, 2005 (7:00 PM EDT)

    SciTech Connect (OSTI)

    2005-08-28

    Highlights are provided reflecting the current status of the impacts of Hurricane Katrina on power grids.

  15. MHK ISDB/Instruments/Vaisala WINDCAP Ultrasonic Wind Sensor WMT700...

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  16. Third Carbon Sequestration Atlas Estimates Up to 5,700 Years...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    element in carbon capture and storage (CCS) technology, considered by many experts as ... international carbon capture and storage (CCS) collaborations, as well as worldwide CCS ...

  17. MHK ISDB/Instruments/MTi-G-700 GPS/INS | Open Energy Information

    Open Energy Info (EERE)

    updates occur. Search Related Instruments Related Measurement 3-axis Acceleration (Translation) (6) AirMar 42183 Heading Sensor Dynamic Motion Sensors 0.05 RMS AIRMAR 150WX...

  18. Letter: EPA Comments on Interim Response Actions (IRA's). IR-700-704-1.02.

    Office of Legacy Management (LM)

  19. Responsiveness Summary to EPA Comments on Debris Consolidation. IR-700-704-1.01

    Office of Legacy Management (LM)

  20. Office of Small and Disadvantaged Business Utilization Events...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 2015 NREL Industry Growth Forum 9:00AM to 5:00PM MST ChallengeHER 8:00AM to 12:30PM EST Society of American...

  1. Hugoniot Measurements at Low Pressures in Tin Using 800 MeV proton Radiography

    SciTech Connect (OSTI)

    Schwartz, Cynthia; Hogan, Gary E; King, Nicholas S. P.; Kwiathowski, Kris K.; Mariam, Fesseha G.; Marr-Lyon, Mark; McNeil, Wendy Vogan; Merrill, Frank E.; Morris, Christopher; Rightley, Paul; Saunders, Alexander

    2009-08-05

    A 2cm long 8 mm diameter cylindrical tin target has been shocked to a pressure in the region of the {beta} {yields} {gamma} phase change using a small, low density PETN charge mounted on the opposite side of a stainless steel diaphragm. The density jump and shock velocity were measured radiographically as the shock wave moved through the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record of the equations of state along the Hugoniot for the P1 wave from a shock velocity of 3.25 km/sec down to near the sound speed. Edge release effects were removed from the data using tomographic techniques. The data show evidence for a phase transition that extends over a broad pressure range. The data and analysis will be presented.

  2. HUGONIOT MEASUREMENTS AT LOW PRESSURES IN TIN USING 800 MeV PROTON RADIOGRAPHY

    SciTech Connect (OSTI)

    Schwartz, C. L.; Hogan, G. E.; King, N. S. P.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.; Marr-Lyon, M.; Rightley, P. M.; McNeil, W. V.

    2009-12-28

    A 20 mm long 8 mm diameter cylindrical tin target has been shocked to a pressure just below the beta->gamma phase change, using a small, low density PETN charge mounted on the opposite side of a thin stainless steel diaphragm. The density jump and shock velocity were measured radiographically at multiple points as the shock wave moved though the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record along the principal Hugoniot from a peak shock velocity of 3.27 km/sec to a minimum of 3.09 km/sec. Edge release effects were removed from the data using simple tomographic reconstruction techniques. The data and analysis are presented.

  3. Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chu. "Building energy-saving electric cars and trucks, and the infrastructure to power them, will help Americans save money at the pump and improve the nation's energy security." ...

  4. EIA-800, Weekly Refinery and Fractionator Report Page 1 U. S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    noticeoog.jsp. * Electronic Filing Option: The PC Electronic Data Reporting Option (PEDRO) is a Windows-based application that will enable you to enter data interactively,...

  5. Production of J/{Psi} in 800 GeV/c p-Si interactions

    SciTech Connect (OSTI)

    Fermilab E771 Collaboration

    1994-07-01

    The authors report on the analysis of high mass opposite sign dimuon states produced in pSi interactions at {radical}s = 38.7 GeV. These data have been collected with an open geometry fixed target spectrometer in the Fermilab Experiment E771. J/{psi} and {psi}(2S) total cross section sand J/{psi} x{sub f} and p{sub t} differential cross sections have been measured and compared with extrapolations from data at lower energies. Evidence for {Upsilon} meson production is also presented.

  6. MO-G-BRE-02: A Survey of IMRT QA Practices for More Than 800 Institutions

    SciTech Connect (OSTI)

    Pulliam, K; Kerns, J; Howell, R; Followill, D; Kry, S; O'Daniel, J

    2014-06-15

    Purpose: A wide range of techniques and measurement devices are employed for IMRT QA, causing a large variation of accepted action limits and potential follow up for failing plans. Such procedures are not well established or accepted in the medical physics community. To achieve the goal of proving insight into current IMRT QA practices, we created an electronic IMRT QA survey. The survey was open to a variety of the most common QA devices and assessed the type of comparison to measurement, action limits, delivery methods, and clinical action for failing QA plans. Methods: We conducted an online survey through the Radiological Physics Center's (RPC) annual survey with the goal of ascertaining elements of routine patient-specific IMRT QA. A total of 874 institutions responded to the survey. The questions ranged from asking for action limits, dosimeter type(s) used, delivery techniques, and actions taken when a plan fails IMRT QA. Results: The most common (52%) planar gamma criteria was 3%/3 mm with a 95% of pixels passing criteria. The most common QA device were diode arrays (48%). The most common first response to a plan failing QA was to re-measure at the same point the point dose (89%), second was to re-measure at a new point (13%), and third was to analyze the plan in relative instead of absolute mode (10%) (Does not add to 100% as not all institutions placed a response for each QA follow-up option). Some institutions, however, claimed that they had never observed a plan failure. Conclusion: The survey provided insights into the way the community currently performs IMRT QA. This information will help in the push to standardize action limits among dosimeters.

  7. EPA Approval for Dismantling of Building 409. IR-800-804-1.01.

    Office of Legacy Management (LM)

  8. Modifications to Building 409 Dismantling. IR-800-805-1.01

    Office of Legacy Management (LM)

  9. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymericmore » pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.« less

  10. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    SciTech Connect (OSTI)

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; Gruar, Robert I.; Tighe, Christopher J.; Chang, Kee-Chul; Ilavsky, Jan; Darr, Jawwad A.; Brandon, Nigel

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceriagadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymeric pore formers. The scaffolds were heat-treated at either 1000 or 1300 C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 9001000 C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of NiCGO/200 ?m YSZ/CGO-LSCF performed better at 700 C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm-2 at 800 C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.

  11. Evolution of titania nanotubes-supported WO{sub x} species by in situ thermo-Raman spectroscopy, X-ray diffraction and high resolution transmission electron microscopy

    SciTech Connect (OSTI)

    Cortes-Jacome, M.A.; Angeles-Chavez, C.; Morales, M.; Lopez-Salinas, E.; Toledo-Antonio, J.A.

    2007-10-15

    Structural evolution of WO{sub x} species on the surface of titania nanotubes was followed by in situ thermo-Raman spectroscopy. A total of 15 wt% of W atoms were loaded on the surface of a hydroxylated titania nanotubes by impregnation with ammonium metatungstate solution and then, the sample was thermally treated in a Linkam cell at different temperatures in nitrogen flow. The band characteristic of the W=O bond was observed at 962 cm{sup -1} in the dried sample, which vanished between 300 and 700 deg. C, and reappear again after annealing at 800 deg. C, along with a broad band centered at 935 cm{sup -1}, attributed to the v{sub 1} vibration of W=O in tetrahedral coordination. At 900 and 1000 deg. C, the broad band decomposed into four bands at 923, 934, 940 and 950 cm{sup -1}, corresponding to the symmetric and asymmetric vibration of W=O bonds in Na{sub 2}WO{sub 4} and Na{sub 2}W{sub 2}O{sub 7} phases as determined by X-ray diffraction and High resolution transmission electron microscopy (HRTEM). The structure of the nanotubular support was kept at temperatures below 450 deg. C, thereafter, it transformed into anatase being stabilized at temperatures as high as 900 deg. C. At 1000 deg. C, anatase phase partially converted into rutile. After annealing at 1000 deg. C, a core-shell model material was obtained, with a shell of ca. 5 nm thickness, composed of sodium tungstate nanoclusters, and a core composed mainly of rutile TiO{sub 2} phase. - Graphical abstract: Titania nanotubes loaded with 15 wt% W atoms were characterized from room temperature (rt) to 1000 deg. C by thermo-Raman spectroscopy in N{sub 2}. At 1000 deg. C, a core-shell model material was obtained, with a shell thickness of ca. 5 nm composed by nanoclusters of sodium tungstate, and a core composed mainly of rutile TiO{sub 2} phase.

  12. Oxazine laser dyes

    DOE Patents [OSTI]

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  13. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  14. Production of aluminum metal by electrolysis of aluminum sulfide

    DOE Patents [OSTI]

    Minh, Nguyen Q. (Woodridge, IL); Loutfy, Raouf O. (Tucson, AZ); Yao, Neng-Ping (Clarendon Hills, IL)

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  15. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - diffusion capacitance C T (V) - transition capacitance V ac - arcing AC voltage - signal frequency -8.00E+03 -7.00E+03 -6.00E+03 -5.00E+03 -4.00E+03 -3.00E+03 -2.00E+03...

  16. Fact #649: November 15, 2010 Number of New Light Vehicle Dealerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Light Vehicle Dealerships, 1988-2009 Year Dealerships 1988 25,025 1989 25,000 1990 24,825 1991 24,200 1992 23,500 1993 22,950 1994 22,850 1995 22,800 1996 22,750 1997 22,700 ...

  17. PRODUCTION OF PLUTONIUM METAL

    DOE Patents [OSTI]

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  18. New York Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,303,342 4,308,592 4,335,006 4,353,668 4,364,169 4,387,456 1987-2013 Sales 3,603,700 3,552,891 3,478,107 3,465,943 1997-2013 Transported 731,306 800,777 886,062 921,513 1997-2013...

  19. Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - National Training Program 8:00AM to 6:00PM EDT Multi-Agency Veterans Hiring Event 1:00PM to 5:00PM EDT 19 20 21 22 23 24 25 2015 Women's Policy STEM Fair 5:00PM to 7:00PM EDT...

  20. Nuclear Material Transaction Report nrc741_1

    National Nuclear Security Administration (NNSA)

    XXX VVV 000001 A A 1 1 1 1 COMPANY NAME COMPANY ADDRESS CITY, STATE ZIP CODE CONTACT WASTE COMPANY NAME COMPANY ADDRESS CITY, STATE ZIP CODE CONTACT 1 VVV XXX 03 31 2008 1 LD WASTE 1 20 776 J 8.00 93.000 7.00 2041 Example 5-a 227

  1. Modifications to the Building 409 Dismantling and Building 401 Dismantling EE and CAs. I-900-905-1.01

    Office of Legacy Management (LM)

  2. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 8, 2011 National Electric Transmission Congestion Study Workshop - December 8, 2011 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy,

  3. STEAB April Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APRIL MEETING AGENDA April 28 - 29, 2015 Hilton Garden Inn Downton Austin 500 N Interstate 35, Austin, TX 78701 Rio Grande Conference Room DAY 1 - April 28 th 8:00 - 8:45 Breakfast, hotel meeting room 8:45 - 9:00 Agenda and Tour Overview Monica and Frank 9:00 - 9:45 Overview of the Office of Technology Transitions (teleconference) Jetta Wong, DOE 9:45 - 10:00 Austin, TX Overview and Highlights Dub Taylor 10:00 - 10:30 HUD Follow-up (teleconference) Kevin Bush, HUD 10:30 - 10:45 Break 10:45 -

  4. STEAB August 2014 Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB AUGUST MEETING AGENDA August 20 - 21, 2014 Washington Marriott Georgetown, 1221 22 nd Street, NW, Washington, DC Dupont Salon F/G DAY 1 - August 20 th 8:00 - 9:00 Breakfast, hotel meeting room 9:00 - 9:30 Welcome and Meeting Overview Julie and Frank 9:30 - 10:45 Discussion with EERE's Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan 10:45 - 11:00 Break 11:00 - 12:00 Discussion and Follow-up to STEAB's Recommendations on a National Lab Voucher Program Joyce Yang and

  5. STEAB January Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JANUARY MEETING AGENDA January 13 - 14, 2015 Renaissance Washington DC Dupont Circle Hotel 1143 New Hampshire Ave, NW, Washington, DC 20037 DAY 1 January 13th 8:00 - 9:00 Breakfast, hotel meeting room 9:00 - 9:30 Welcome and Meeting Overview Monica and Frank 9:30 - 10:15 Discussion with EERE's Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan 10:15 - 11:00 Update on new HUD EE incentives and efforts Arah Schuur (DOE) 11:00 - 11:15 Break 11:15 - 12:00 Discussion on Year 1 QER

  6. STEAB October 2015 Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB OCTOBER MEETING AGENDA October 6-7, 2015 Renaissance Hotel, 1143 New Hampshire Ave NW, Washington, DC 20037 DAY 1 - October 6 8:00 - 9:00 Breakfast, hotel meeting room 9:00 - 9:30 Welcome and Meeting Overview Mike and Frank 9:30 - 10:15 Discussion with EERE's Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan 10:15 - 11:00 State Energy & Weatherization Programs - Update Anna Maria Garcia 11:00 - 11:15 Break 11:15 - 12:00 STEAB Priorities for 2016 Part 1 - Discussion

  7. Project Presentations for ITP Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ADVANCED MANUFACTURING OFFICE SMART MANUFACTURING INSTITUTE INDUSTRY DAY WORKSHOP FEBRUARY 25, 2015 FINAL AGENDA Georgia Tech Hotel and Conference Center 800 Spring Street NW Atlanta, GA 30308 7:30 - 9:00 am REGISTRATION AND CONTINENTAL BREAKFAST 9:00 - 9:05 am Welcome Mark Shuart, DOE-AMO 9:05 - 9:30 am Remarks from the DOE Advanced Manufacturing Office Mark Johnson, DOE-AMO 9:30 - 10:15 am Smart Manufacturing Institute: Overview, Goals and Activities Isaac Chan, DOE-AMO 10:15 am - 10:45 pm

  8. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and Renewable Energy U.S. Department of Energy eere.energy.gov Critical Materials Workshop 8:00 am - 9:00 am Registration and Continental Breakfast Time (EDT) Activity Speaker Dr. Leo Christodoulou 9:00 am - 9:05 am Welcome and Overview of Workshop Program Manager EERE Advanced Manufacturing Office 9:05 am - 9:35 am Welcome and

  9. Critical Materials Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Sheraton Crystal City 1800 Jefferson Davis Highway, Arlington, VA April 3, 2012, 8 am - 5 pm Time (EDT) Activity Speaker 8:00 am - 9:00 am Registration and Continental Breakfast Welcome and Overview of 9:00 am - 9:05 am Workshop Welcome and Overview of Energy 9:05 am - 9:35 am Innovation Hubs 9:35 am - 9:45 am DOE and Critical Materials National Academies Criticality 9:45 am - 9:55 am Methodology and Assessment Department of Energy Critical 9:55 am - 10:10 am

  10. Microsoft Word - School Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TH SSRL SCHOOL ON SYNCHROTRON X-RAY SCATTERING TECHNIQUES IN MATERIALS AND ENVIRONMENTAL SCIENCES: THEORY AND APPLICATION TUESDAY 03 JUNE / THURSDAY 05 JUNE 2014 Tuesday, 03 June 2014 Building 040, Sycamore Conference Room (195) 8:00 - 8:50 AM Registration - Coffee and Light Refreshments 8:50 - 9:00 AM Introductory Remarks - Michael Toney 9:00 - 10:00 AM Introduction - TBD 10:00 - 10:45 AM What Does a Scattering Pattern Say About a Sample (Peak Shape, Position, and Intensities)? - Apurva Mehta

  11. Tevatron status

    SciTech Connect (OSTI)

    Dugan, G.

    1989-03-01

    The Fermilab Tevatron is both the world's highest energy accelerator system and first large-scale superconducting synchrotron. Since Tevatron commissioning in July 1983, the accelerator has operated in 1984, 1985 and 1987 with extracted beams of 800 GeV for three runs of fixed target physics, and in 1987, and 1988, with proton-antiproton colliding beams at 900 /times/ 900 GeV. This paper will focus on the collider operation of the Tevatron: its present status and the outlook for its longer-term future evolution. 18 refs., 3 figs., 2 tabs.

  12. July 10-11, 2012, HSS Focus Group Training Work Group - Agenda

    Office of Environmental Management (EM)

    HSS Focus Group Training Working Group (TWG) Subcommittee Meeting July 10, 2012 9:00 AM - 5:00 PM 8:30 a.m. Meet Visitors at Gazebo Evan Dunne 8:00 a.m. Pre-meeting for Co-Chairs to discuss how Co-Chairs will operate together:  Roles and Responsibilities  Co-Chair Conference Calls  Working Group Calls  Meetings, etc. Pete Stafford, Julie Johnston, Karen Boardman 9:00 a.m. Co-Chairs meet with TWG Subcommittee (HAMMER, NTC, NIEHS)  Discuss Expectations of Subcommittee ALL 10:00 a.m.

  13. 2013 December STEAB Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB Meeting: December 3-4, 2013 AGENDA Tuesday, December 3 8:00 - 8:30 Breakfast (provided) 8:30 - 9:00 Welcome, Introductions, and Meeting Objectives Julie Hughes & Frank Murray 9:00 - 10:00 Discussion of EERE Priorities, 2014 Opportunities from STEAB's Perspective, and Potential Synergies Dr. Dave Danielson 10:00 - 11:00 DOE State & Local Engagement Efforts: How STEAB Can Assist Alice Madden 11:00 - 11:15 Break 11:15 - 12:15 Opportunities for DOE to Assist in State Discussions on

  14. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  15. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  16. Agenda: The Water-Energy Nexus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda: The Water-Energy Nexus Agenda: The Water-Energy Nexus A Public Meeting on the Quadrennial Energy Review, Hosted by the United States Department of Energy Thursday, June 19th, 2014 Doors Open 8:00 A.M. PST San Francisco City Hall 1 Dr. Carlton B. Goodlett Place San Francisco, CA 94102 8:00 AM - Doors Open 9:00 AM - 9:30 AM - Opening Remarks Dr. John Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy Mike

  17. Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » News & Blog » Events Events Upcoming events in Indian Country. MIE Regional Climate Change Impact Webinar Series: Southwest January 7, 2016 1:00PM to 2:30PM EST AHFC Energy Efficiency NOW Conference 2016 January 12, 2016 8:00AM AKST to January 13, 2016 5:00PM AKST Alaska Energy Efficiency Finance Forum January 14, 2016 9:00AM to 4:00PM AKST 3rd Annual Arctic Encounter Symposium Seattle January 15, 2016 8:00AM PST to January 16, 2016 5:00PM PST Tribal Water in Arizona Conference

  18. DRAFT/PRELIMINARY MEETING AGENDA

    Office of Environmental Management (EM)

    DEPARTMENT OF ENERGY TRANSPORTATION EXTERNAL COORDINATION WORKING GROUP (TEC) SEPTEMBER 13-14, 2006 GREEN BAY, WISCONSIN DAY 1 -Wednesday, September 13, 2006 THREE CLANS COMPLEX - TURTLE/BEAR ROOMS 7:30 a.m. - 8:00 a.m. Continental Breakfast and Registration 8:00 a.m. - 9:00 a.m. Welcome and Meeting Overview - Posting of the Colors/Flag Song - Oneida Veterans' Color Guard/Oneida Drummers, Sovereign Oneida Nation of Wisconsin - Welcome - Councilman Paul Ninham, Sovereign Oneida Nation of

  19. Wafer characteristics via reflectometry

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    2010-10-19

    Various exemplary methods (800, 900, 1000, 1100) are directed to determining wafer thickness and/or wafer surface characteristics. An exemplary method (900) includes measuring reflectance of a wafer and comparing the measured reflectance to a calculated reflectance or a reflectance stored in a database. Another exemplary method (800) includes positioning a wafer on a reflecting support to extend a reflectance range. An exemplary device (200) has an input (210), analysis modules (222-228) and optionally a database (230). Various exemplary reflectometer chambers (1300, 1400) include radiation sources positioned at a first altitudinal angle (1308, 1408) and at a second altitudinal angle (1312, 1412). An exemplary method includes selecting radiation sources positioned at various altitudinal angles. An exemplary element (1650, 1850) includes a first aperture (1654, 1854) and a second aperture (1658, 1858) that can transmit reflected radiation to a fiber and an imager, respectfully.

  20. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    SciTech Connect (OSTI)

    Meng, Yujie; Yang, Timothy M; Peizhi, Liu; Contescu, Cristian I; Biao, Huang; Siqun, Wang

    2015-01-01

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149 static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 oC (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Carbon aerogel s ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.

  1. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Yujie; Yang, Timothy M; Peizhi, Liu; Contescu, Cristian I; Biao, Huang; Siqun, Wang

    2015-01-01

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149 static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 oC (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacitymore » (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Carbon aerogel s ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.« less

  2. Dissolution of surface oxide layers on titanium and titanium subhydride between 25/sup 0/ and 700/sup 0/C

    SciTech Connect (OSTI)

    Wittberg, T.N.; Wang, P.S.

    1981-01-01

    The surface-sensitive, spectroscopic techniques of Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) have been applied to the study of oxide dissolution on titanium and titanium subhydride. In an earlier study it was shown, using AES, that the rate of oxygen dissolution into titanium increased sharply at about 350/sup 0/C. These data correlated well with physical property measurements that indicated that at these temperatures an exothermic reaction, corresponding to the reaction of free titanium with atmospheric oxygen, was occurring. In the present study the work has been expanded to include studies of TiH/sub x/ (x = 1.15, 1.62). It has been found that dissolution of the native oxide on titanium subhydride occurs at a substantially higher temperature (about 500/sup 0/C) than for titanium. It appears that the outward diffusion of hydrogen is inhibiting the inward diffusion of oxygen on the subhydride samples at temperatures below 500/sup 0/C. Further studies of the dissolution of oxides on titanium at fixed temperatures in the range of 300 to 350/sup 0/C have shown that there is a semi-logarithmic relationship between the surface oxygen level and the time at temperature. This is in agreement with earlier gravimetric studies on titanium oxidation in this temperature range.

  3. Missouri Department of Natural Resources (MDNR) Comments on Interim Response Actions (IRA's). IR-700-704-1.03.

    Office of Legacy Management (LM)

  4. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  5. Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Workshop Agenda Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research ASCR / NERSC Workshop January 5-6, 2011 >> Download and View these presentations Wednesday, January 5 Time Topic Presenter 8:00 Arrive, informal discussions 8:30 Welcome, introductions, workshop goals, charge to committee Yukiko Sekine, DOE-SC/ASCR 8:50 Workshop outline, logistics, format Harvey Wasserman, NERSC 9:00 ASCR Program Office Research Directions Karen Pao, DOE / ASCR

  6. Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Workshop Agenda Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Location: Hilton Washington DC/Rockville Executive Meeting Center. 1750 Rockville Pike, Rockville, Maryland, 20852 Thursday, May 7 8:00 am - Arrive, informal discussions 8:30 am - Welcome, introductions, workshop goals, charge to committee (Yukiko Sekine, DOE-SC/ASCR) 8:45 am - Workshop outline, logistics, format, procedures (Harvey Wasserman, NERSC) 9:00 am - BER Program

  7. Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Workshop Agenda Large Scale Computing and Storage Requirements for Fusion Energy Sciences FES / ASCR / NERSC Workshop August 3-4, 2010 >> Download and View these presentations Tuesday, August 3 Time Topic Presenter 8:00 Arrive, informal discussions 8:30 Welcome, introductions, workshop goals, charge to committee Yukiko Sekine, DOE-SC/ASCR 8:50 Workshop outline, logistics, format, procedures Harvey Wasserman, NERSC 9:00 FES Program Office Research Directions John Mandrekas , DOE /

  8. Workshop Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Workshop Agenda Large Scale Computing and Storage Requirements for High Energy Physics An HEP / ASCR / NERSC Workshop November 12-13, 2009 >> Download and View these Presentations. Thursday, November 12 8:00 am Arrive, informal discussions 8:30 am Welcome, introductions, workshop goals, charge to committee Yukiko Sekine, DOE-SC/ASCR 8:45 am Workshop outline, logistics, format, procedures Harvey Wasserman, NERSC 9:00 am HEP Program Office Research Directions Amber Boehnlein, DOE /

  9. Microsoft Word - All Discounts updated January 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2016 Amusement Parks & Resorts Get Away Today Vacations 1650 E 5700 S, South Ogden, UT 84403 (800) 523-6116 Get Away Today Vacations is pleased to offer HDC members discounted attraction tickets, hotel accommodations, transportation options, and more to the Disneyland Resort, San Diego, Las Vegas, Hawaii, cruises, the Caribbean, Mexico and more than 1,900 other destinations worldwide. Visit the web page at http://www.getawaytoday.com/partners/FluorHanfordInc.aspx. Recreation

  10. STEAB Meeting Agenda August 2008

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 23 rd - 25 th , 2009 Final Agenda (6-22-09) STEAB Strategic Direction Focus Areas: Energy Efficiency Market Transformation Technology Commercialization / Deployment Renewable Energy Advancement Federal / State Synergies Tuesday - June 23 rd (Renoir room, second floor) 8:00 - Breakfast (Provided in the room for members and participants) 9:00 - EERE's Vision for the States Cathy Zoi (Invited) Assistant Secretary, EERE 9:30 - Dialogue with OMB Staff Rob Sandoli EERE Examiner, OMB 10:00 -

  11. STEAB Meeting Agenda March 2009

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 17 th - 19 th , 2009 Final Agenda (3-13-09) STEAB Strategic Direction Focus Areas: Energy Efficiency Market Transformation Technology Commercialization / Deployment Renewable Energy Advancement Federal / State Synergies Tuesday - March 17 th (Renoir- Second Level) 8:00 - Breakfast (Provided in the Room for Members and Participants) 9:00 - Stimulus Overview Gil Sperling 9:30 - Dialogue with OMB Staff Rob Sandoli & Uday Varadarajan 10:15 - Break 10:30 - Stimulus Package: a.

  12. Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Agenda Large Scale Production Computing and Storage Requirements for Advanced Computer Science Research A DOE Technical Program Review January 15, 2014 Lawrence Berkeley National Laboratory Building 15-253 Conference Room Final Agenda Time Topic Speaker 8:00 AM Informal discussions 8:30 AM Welcome, Overview of Requirements Reviews Dave Goodwin, ASCR (NERSC Program Manager); Richard Gerber (NERSC) 8:45 AM The View from ASCR Barbara Helland, ASCR 9:00 AM ASCR Program Office Research

  13. Microsoft Word - STIP 2015 Working Meeting Agenda final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy 2015 Scientific and Technical Information Program (STIP) Working Meeting April 22-23, 2015 Santa Fe, NM STIP - Advancing Science and Technology through Public Access & MORE ______________________________________ Wednesday, April 22, 8:30-5:00 8:00 Meet and Greet All 8:30 Welcome and Introductions Judy Gilmore, Office of Scientific and Technical Information (OSTI); Dee Magnoni & Frances Knudson, Los Alamos National Laboratory (LANL) 9:00 The Public Access Landscape:

  14. AWEA WINDPOWER 2016 | Department of Energy

    Energy Savers [EERE]

    WINDPOWER 2016 AWEA WINDPOWER 2016 May 23, 2016 8:00AM EDT to May 26, 2016 5:00PM EDT New Orleans, Louisiana Ernest N. Morial Convention Center 900 Convention Center Boulevard New Orleans, Louisiana 70130 The American Wind Energy Association(AWEA)WINDPOWER 2016 is the largest annual gathering of wind energy industry professionals in the United States. Stakeholders from all over the world attend to network, learn, and view industry exhibits. Learn more about AWEA WINDPOWER.

  15. AWEA WINDPOWER 2016 | Department of Energy

    Energy Savers [EERE]

    WINDPOWER 2016 AWEA WINDPOWER 2016 May 23, 2016 8:00AM EDT to May 26, 2016 5:00PM EDT New Orleans, Louisiana Ernest N. Morial Convention Center 900 Convention Center Boulevard New Orleans, Louisiana 70130 The American Wind Energy Association (AWEA) WINDPOWER 2016 is the largest annual gathering of wind energy industry professionals in the United States. Stakeholders from all over the world attend to network, learn, and view industry exhibits. Learn more about AWEA WINDPOWER.

  16. AMO Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AMO Events AMO Events Below you will find information on the Advanced Manufacturing Office's upcoming events, sessions, and webinars. WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 January 6, 2016 8:00AM EST to January 7, 2016 4:00PM EST EVENT: BETTER BUILDINGS SUMMIT, MAY 9-11, 2016 May 9, 2016 9:00AM EDT to May 11, 2016 5:00PM EDT Advanced Manufacturing Home Key Activities Research & Development Projects Facilities Technical Assistance

  17. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Events Wind Events Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. KidWind Challenge Workshop - Lowell, Massachusetts January 8, 2016 9:00AM to 4:00PM EST AWEA Wind Project O&M and Safety Conference 2016 February 8, 2016 8:00AM PST to February 10, 2016 5:00PM PST

  18. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    Transportation Stakeholders Forum May 14-16, 2013 Tuesday, May 14 7:00 am - 5:00 pm Registration Niagara Foyer 7:00 am - 7:45 am Breakfast and Networking Grand A 8:00 am - 10:00 am National Updates for Transportation Stakeholder Groups and Guests - Panel Grand BC Moderator: John Giarrusso Jr., MA Emergency Management Agency / Northeast High-Level Radioactive Waste Transportation Task Force Co-Chair US Department of Energy, Office of Environmental Management - Steve O'Connor, Director, Office of

  19. Verification of Allowable Stresses In ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H

    SciTech Connect (OSTI)

    R. W. Swindeman; M. J. Swindeman; B. W. Roberts; B. E. Thurgood; D. L. Marriott

    2007-11-30

    The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S{sub t}, for coverage in ASME Section III Subsection NH (ASME III-NH) to 650 C (1200 F) and 600,000 hours. The accumulated database included over 300 tests for 1% total strain, nearly 400 tests for tertiary creep, and nearly 1700 tests to rupture. Procedures for analyzing creep and rupture data for ASME III-NH were reviewed and compared to the procedures used to develop the current allowable stress values for Gr 91 for ASME II-D. The criteria in ASME III-NH for estimating S{sub t} included the average strength for 1% total strain for times to 600,000 hours, 80% of the minimum strength for tertiary creep for times to 600,000 hours, and 67% of the minimum rupture strength values for times to 600,000 hours. Time-temperature-stress parametric formulations were selected to correlate the data and make predictions of the long-time strength. It was found that the stress corresponding to 1% total strain and the initiation of tertiary creep were not the controlling criteria over the temperature-time range of concern. It was found that small adjustments to the current values in III-NH could be introduced but that the existing values were conservative and could be retained. The existing database was found to be adequate to extend the coverage to 600,000 hours for temperatures below 650 C (1200 F).

  20. Dismantling of Building 409. Missouri Department of Natural Resources (MDNR) on Interim Response Actions. IR-800-804-1.03

    Office of Legacy Management (LM)

  1. FINAL_Agenda_2016 PM Workshop_v20.xlsx

    Energy Savers [EERE]

    2016 DOE Project Management Workshop "Enhancing Project Management" Time Topic Speaker 7:00 - 8:00 Registration 8:00 - 8:05 Welcome & Workshop Logistics Melvin Frank, Office of Project Management Oversight & Assessments 8:05 - 8:15 Opening Remarks Paul Bosco, Director, Office of Project Management Oversight and Assessments 8:15 - 8:45 View from the Top Elizabeth Sherwood-Randall, Deputy Secretary, Department of Energy 8:45 - 9:15 The Project Management Risk Committee and You

  2. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S. (Corvallis, OR); Alman, David E. (Salem, OR)

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  3. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  4. US MidAtl NJ Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    MidAtl NJ Site Consumption million Btu $0 $700 $1,400 $2,100 $2,800 $3,500 US MidAtl NJ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NJ Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US MidAtl NJ Expenditures dollars ELECTRICITY ONLY average per household * Average energy consumption (127 million Btu per year) in New Jersey homes and average household energy expenditures ($3,065 per year) are among the

  5. US MidAtl NJ Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MidAtl NJ Site Consumption million Btu $0 $700 $1,400 $2,100 $2,800 $3,500 US MidAtl NJ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NJ Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US MidAtl NJ Expenditures dollars ELECTRICITY ONLY average per household * Average energy consumption (127 million Btu per year) in New Jersey homes and average household energy expenditures ($3,065 per year) are among the

  6. Bioenergy 2015 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015: Opportunities in a Changing Energy Landscape Conference Agenda Tuesday and Wednesday, June 23-24, 2015 Walter E. Washington Convention Center, Washington, D.C. Breakout Session Tracks Rooms Track A: Feedstocks Track Room 209 Track B: Conversion Track Room 208 Track C: Integrated Biorefineries and Waste-to-Energy Track Room 204 Track D: Finance, Policy, and Communications Track Room 206 Tuesday, June 23, 2015 7:00 a.m.-8:00 a.m. Breakfast and Registration Concourse 8:00 a.m.-8:15 a.m.

  7. Coal Markets

    Gasoline and Diesel Fuel Update (EIA)

    Coal Markets Release date: March 14, 2016 | Next release date: March 21, 2016 | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown

  8. Bluebirds

    Office of Legacy Management (LM)

    Bluebirds Friday, March 4, 7:00 p.m. to 8:00 p.m. Learn how to attract bluebirds by providing the preferred food, water, shelter, and nesting sites. The bluebird's color, musical warbling song, and insectivorous diet make them welcome guests to any backyard! Salamander Meander Saturday, March 5, 6:00 p.m. to 8:00 p.m. Salamanders spend the majority of their lives hidden under forest soils and leaf litter. However, this time of year they are moving from their wintering sites to wetlands where

  9. DOE Shipment Activities: What We Accomplished and a Look Forward

    Office of Environmental Management (EM)

    Shipment Activities: What We Accomplished And A Look Forward. Presented to: National Transportation Stakeholders Forum Stephen O'Connor, Director Office of Packaging and Transportation May 11, 2011 Shipments by the numbers. . . . FY 2009 FY 2010 FY 2011* TRU Waste 970 1,180 450 LLW 4,800 16,150 7,170 MLLW 530 420 170 Other 400 250 10 Total 6,700 18,000 7,800 2 Anticipate shipment numbers to continue upward trend thru end of CY 2011 ARRA funding pushed shipment numbers up in FY 2010 * *Thru 2 nd

  10. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

  11. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

  12. Argonne Distinguished Fellows | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Distinguished Fellows Argonne's world-class scientists have achieved national and international recognition, including: Three Nobel Prizes, 119 R&D 100 Awards, More than 700 national and international awards and honors, and More than 800 patents. The Argonne Distinguished Fellow is the highest scientific/engineering rank at the laboratory, and this distinction is held by only a small fraction (approximately 3 percent) of the research staff. Staff members who achieve this rank have a

  13. Emeritus Scientists and Engineers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emeritus Scientists and Engineers Argonne's world-class researchers have achieved national and international recognition, including: Three Nobel Prizes, 119 R&D 100 Awards, More than 700 national and international awards and honors, and More than 800 patents. In 2006, Argonne created a new honorary status for qualified staff. The title of "Emeritus," conferred at the time of retirement, recognizes the individual's important contributions to the laboratory. This title is granted

  14. Session Chair: John Boyes, SNL TIME PROJECT SPEAKER

    Energy Savers [EERE]

    Session Chair: John Boyes, SNL TIME PROJECT SPEAKER 7:00 am Registration (all day) & Complimentary Breakfast 8:00 Welcome Imre Gyuk - US Department of Energy / Office of Electricity Delivery & Energy Reliability 8:10 DOE Perspective Pat Hoffman & Arun Majumdar - US Department of Energy 8:30 DOE / OE Program Overview Imre Gyuk - US Department of Energy / Office of Electricity Delivery & Energy Reliability 8:40 DOE / ARRA Program Overview Eddie Christy - National Energy Technology

  15. Day/Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day/Time Mon, 12:00 - 6:00 pm Mon, 5:00 pm Mon, 7:00 pm Tues, 7:00 am Tues, 8:00 am Tues, 8:10 am Tues, 8:25 am Tues, 9:25 am Tues, 9:45 am Tues, 11:15 am Tues, 3:45 pm Tues, 4:05 pm Tues, 6:00 pm Wednesday, March 30th Wed, 7:00 am Tues, 7:45 am Tues, 8:00 am Wed, 8:30 am Wed, 12:20 pm Wed, 4:10 pm Wed, 4:30 pm Thursday, March 31st Thurs, 7:00 am Thurs, 11:00 am Thurs, 11:20 am Thurs, 12:30 pm Thurs, 1:00 pm - 4:00 pm P o s t e r s D i s p l a y e d Continental Breakfast / Posters (Salon Del Ray

  16. Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study

    SciTech Connect (OSTI)

    Sogabe, Tomah Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka; Mulder, Peter; Schermer, John

    2014-09-15

    We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

  17. Grain size effect on the giant dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} nanoceramics prepared by mechanosynthesis and spark plasma sintering

    SciTech Connect (OSTI)

    Ahmad, Mohamad M.; Yamada, Koji

    2014-04-21

    In the present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80?nm to ?200?nm for the ceramics sintered at 800?C and 975?C, respectively. Further increase of SPS temperature to 1050?C leads to micro-sized ceramics of 23??m. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed in CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3??10{sup 3}, 2.4??10{sup 4}, and 3.2??10{sup 4} for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14??10{sup 4}. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.

  18. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, September 13--December 12, 1997

    SciTech Connect (OSTI)

    1998-07-01

    The eighteen 10-acre infill wells which were drilled as part of the field demonstration portion of the project are all currently in service with no operational problems. These wells consist of fourteen producing wells and four injection wells. The producing wells are currently producing a total of approximately 450 bopd, down from a peak rate of 900 bopd. Unit production is currently averaging approximately 2,700 bopd, 12,000 bwpd and 18,000 bwipd. The paper describes progress on hydraulic fracture design, reservoir surveillance, data analysis procedures, and deterministic modeling and simulation.

  19. Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy

    DOE Patents [OSTI]

    Bischoff, Brian L.; Sutton, Theodore G.; Judkins, Roddie R.; Armstrong, Timothy R.; Adcock, Kenneth D.

    2010-11-09

    A method for treating a porous item constructed of metal powder, such as a powder made of Series 400 stainless steel, involves a step of preheating the porous item to a temperature of between about 700 and 900.degree. C. degrees in an oxidizing atmosphere and then sintering the body in an inert or reducing atmosphere at a temperature which is slightly below the melting temperature of the metal which comprises the porous item. The thermal stability of the resulting item is enhanced by this method so that the item retains its porosity and metallic characteristics, such as ductility, at higher (e.g. near-melting) temperatures.

  20. Salt-soda sinter process for recovering aluminum from fly ash

    SciTech Connect (OSTI)

    Mcdowell, W.J.; Seeley, F.G.

    1981-03-03

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na2CO3 to a temperature in the range 700*-900* C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  1. Salt-soda sinter process for recovering aluminum from fly ash

    DOE Patents [OSTI]

    McDowell, William J. (Oak Ridge, TN); Seeley, Forest G. (Oak Ridge, TN)

    1981-01-01

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na.sub.2 CO.sub.3 to a temperature in the range 700.degree.-900.degree. C. for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  2. Office of Small and Disadvantaged Business Utilization Events | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy About Us » Office of Small and Disadvantaged Business Utilization Events Office of Small and Disadvantaged Business Utilization Events January 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mid-Tier Advocacy Business Focused Breakfast Discussion 2016 7:00AM to 9:00AM EST 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 News & Blog Events Organization Chart

  3. Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent

    DOE Patents [OSTI]

    Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

    2014-12-30

    The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

  4. Microsoft Word - FINAL TEC Agenda.doc

    Office of Environmental Management (EM)

    1 U.S. DEPARTMENT OF ENERGY TRANSPORTATION EXTERNAL COORDINATION WORKING GROUP (TEC) SEPTEMBER 20-21, 2005 PUEBLO, COLORADO DAY 1 - TUESDAY, SEPTEMBER 20 Optional Tour of the Transportation Technology Center, Inc. (TTCI)* Itinerary 7:30 a.m. - 7:45 a.m. Meet in the lobby of the Pueblo Marriott Hotel 8:00 a.m. - 8:15 a.m. Board Charter Bus' in South Parking lot of Convention Center 8:15 a.m. - 9:00 a.m. Travel to TTCI-AAR Site in Pueblo, Colorado 9:00 a.m. - 11:30 a.m. TTCI-AAR Operation Tour

  5. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Events Calendar Events Calendar January 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 27 28 29 30 31 1 2 3 4 5 6 7 8 9 WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 8:00AM to 4:00PM EST KidWind Challenge Workshop - Lowell, Massachusetts 9:00AM to 4:00PM EST MIE Regional Climate Change Impact Webinar Series: Southwest 1:00PM to 2:30PM MST 10 11 12 13 14 15 16 Cutting Edge Building Technologies - Join the fun! 3:00PM to 4:00PM EST Alaska Energy Efficiency Finance Forum 9:00AM to

  6. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm³

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; Mattsson, T. R.; French, M.; Nettelmann, N.; Redmer, R.

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findingsmore » advocate that this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets and should improve our understanding of these types of planets.« less

  7. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm

    SciTech Connect (OSTI)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; Mattsson, T. R.; French, M.; Nettelmann, N.; Redmer, R.

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findings advocate that this water model be used as the standard for modeling Neptune, Uranus, and hot Neptune exoplanets and should improve our understanding of these types of planets.

  8. Engineering Evaluation Costs Analysis (EE/CA) for the Proposed Management of Contaminated Structures at the Weldon Spring Chemical Plant. IR-700-703-1.02.

    Office of Legacy Management (LM)

  9. Diffusion Welding of Compact Heat Exchangers for Nuclear Applications

    SciTech Connect (OSTI)

    Denis Clark; Ron Mizia; Dr. Michael V. Glazoff; Mr. Michael W. Patterson

    2012-06-01

    The next--generation nuclear plant (NGNP) is designed to be a flexible source of energy, producing various mixes of electrical energy and process heat (for example, for hydrogen generation) on demand. Compact heat exchangers provide an attractive way to move energy from the helium primary reactor coolant to process heat uses. For process heat efficiency, reactor outlet temperatures of 750--900C are desirable. There are minor but deleterious components in the primary coolant; the number of alloys that can handle this environment is small. The present work concentrates on Alloys 800H and 617.

  10. agenda-april-8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda TRANSIMS Workshop, Thursday, April 8 8:00 Registration 9:00 David Weber Introduction and Welcoming Remarks 9:15 Fred Ducca Key-Note Address: Historical Remarks on TRANSIMS 9:55 David Roden Development Plans and Design Concepts for TRANSIMS Version 5 10:30 Tea/Coffee 10:45 Hubert Ley Advanced TRANSIMS User Interfaces - TRANSIMS Studio and the RTE Run Time Environment 11:15 Michael Hope Parallelization of the TRANSIMS Microsimulator - Design, Development, and Performance 11:45 Reinaldo

  11. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Events Wind Events Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. KidWind Challenge Workshop - Lowell, Massachusetts January 8, 2016 9:00AM to 4:00PM EST Renewable Portfolio Standards Benefits and Impacts January 13, 2016 10:00AM to 11:30AM PST AWEA Wind Project O&M and Safety Conference 2016 February 8, 2016 8:00AM PST to February 10, 2016 5:00PM PST Wind Program Home About the Program Research &

  12. STEAB Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marriott at Metro Center 775 12 th Street, NW Washington, DC 20005 March 9 - 11, 2010 Tuesday - March 9 th 8:00 - Breakfast (Provided in the Room for Members and Speakers) 8:30 - Swearing-in for new SGE Dan S. Carol 9:00 - Welcoming Remarks Kathleen Hogan Deputy Assistant Secretary for EERE 9:15 - Topics of Interest with EE-1: Cathy Zoi (by Claire Johnson) a. EERE's Vision for the States Assistant Secretary EERE b. Discussion of Resolution 10-01 c. Summary of Governors' Calls 9:30 - Update on

  13. STEAB Meeting Agenda March 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 12 - 13, 2013 Monday - March 11 th Arrive in Arlington, VA Check-in to the hotel: DoubleTree Hotel Crystal City 300 Army Navy Drive Arlington, Virginia, 22202 6:30 pm - STEAB Un-Official Group Dinner Ted's Montana Grill 2200 Crystal Drive Arlington, VA 22202 703-416-8337 (Reservation is under "State Energy Advisory Board") Tuesday - March 12 th Jefferson Meeting Room - 15 th Floor of the Hotel 8:00 - Breakfast (Provided in the Room) 9:00 - Welcome and Review of Meeting

  14. STEAB Meeting Agenda November 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB Meeting Hilton Knoxville 501 West Church Avenue Knoxville, TN 37902 November 15- 17, 2011 Monday - November 14 th Arrive in Knoxville, TN Check-in to the hotel: Hilton Knoxville 501 West Church Avenue Knoxville, TN 37902 Tuesday - November 15 th 8:00 - Breakfast (Provided in the Room for Members and Speakers) 9:00 - Welcome and Review of Agenda and Meeting Purpose Janet Streff Chair, STEAB 9:30 - Weatherization Task Force Update Elliott Jacobson a) Review of WAP letter to DOE/Dr. Hogan

  15. HEC-DPSSL 2012 Workshop, Agenda: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Agenda TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up Agenda - Click to Download Time Session Title First Name Last Name Talk Title 9/12/2012 8:00 Registration / Breakfast 9:00 Welcome Andy Bayramian 9:15 Introduction Mike Dunne 9:30 Overview session Paul Mason DiPOLE - An Efficient and Scalable HEC-DPSSL System 10:00 Marco Hornung Status of the POLARIS laser system 10:30 Mathias Siebold

  16. US SoAtl VA Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Coal Production, 1949-2011 Total By Rank By Mining Method By Location 200 U.S. Energy Information Administration / Annual Energy Review 2011 Anthracite Lignite¹ Subbituminous Coal¹ ¹ Subbituminous coal and lignite are included in bituminous coal prior to 1969. Source: Table 7.2. 1950 1960 1970 1980 1990 2000 2010 0 300 600 900 1,200 1,500 Million Short Tons Bituminous Coal¹ 1950 1960 1970 1980 1990 2000 2010 0 200 400 600 800 Million Short Tons 1950 1960 1970 1980 1990 2000 2010 0 300 600

  18. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1993-10-19

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 [mu]m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO[sub 3]; and then indurating it at 800 to 900 C for a time sufficient to produce attrition-resistant granules.

  19. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1993-01-01

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 .mu.m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO.sub.3 ; and then indurating it at 800.degree. to 900.degree. C. for a time sufficient to produce attrition-resistant granules.

  20. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per

  1. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are

  2. Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Agenda Large Scale Computing and Storage Requirements for Nuclear Physics (NP): Target 2017 April 29-30, 2014 Bethesda, MD Final Agenda Tuesday, April 29 Time Topic Speaker 8:00 AM Informal discussions 8:30 AM Welcome, Overview of Requirements Reviews Richard Gerber, NERSC 8:45 AM The View from ASCR Barbara Helland, Dave Goodwin, ASCR 9:00 AM NP Program Office Research Directions Ted Barnes, NP 9:30 AM NERSC Ten-Year Plan Sudip Dosanjh, NERSC Director 10:00 AM AM Break Lattice QCD Case

  3. LANSCE | Users | LUG | EC Meeting March 23, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 LUG EC Onsite Meeting | Agenda Download agenda >> Tuesday, April 7 LANSCE (TA-53) Building 622 | Conference Room A-218 Lujan Center Auditorium Please note: Presentations and formal materials from LANSCE facilities are not necessary. However be prepared to discuss, expect to give a brief overview of issues during the year, and any new developments planned, with a focus on users. If presenting, plan on a 5-10 minute presentation with 10-15 minutes left for discussion. 8:00 - 9:00am Arrival

  4. Silicon fiber with p-n junction

    SciTech Connect (OSTI)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900??m and core diameters of 20800??m. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  5. APS March Meeting (Baltimore, MD) - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS March Meeting (Baltimore, MD) APS March Meeting (Baltimore, MD) Mon, Mar 14, 2016 8:00am 08:00 Fri, Mar 18, 2016 9:00am 09:00 Baltimore Convention Center 1 W Pratt St Baltimore, MD 21201 United States Bryan Beckingham and Daniel Miller, "Quantitative Monitoring of Membrane Permeation via In-Situ ATR FT-IR Spectroscopy" Abstract: Ion conducting membranes are of interest for various energy applications including fuel cells and artificial photosynthesis systems. Within the context of

  6. INCREASE Agenda | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities Awareness Workshop Agenda "Scientific research is one of the most exciting and rewarding of occupations." - Frederick Sanger Thursday, September 17, 2015 Location - Advance Photon Source (APS) Building 401, Seminar Room A1100 Time Activity Speaker 8:00 - 8:30 Participant Check-In APS Building 401 Seminar Room A1100 8:30 - 8:40 Welcome Stephen Streiffer, Associate Labortory Director for Photon Science Argonne National Laboratory 8:40 - 9:00 Introduction to INCREASE Dr.

  7. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect (OSTI)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  8. Environmental Management Site-Specific Advisory Board Chairs Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management Site-Specific Advisory Board Chairs Meeting September 2-3, 2015 La Fonda on the Plaza, 100 E. San Francisco St., Santa Fe, NM 87501 Wednesday, September 2 8:00 am Registration 8:30 am Welcome and Opening Remarks  David Borak, EM SSAB Designated Federal Officer  Mayor Javier Gonzales, City of Santa Fe  Christine Gelles, Acting Manager, EM Los Alamos Field Office  Douglas Sayre, Chair, Northern New Mexico Citizens' Advisory Board 9:00 am Meeting Overview 

  9. Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel

    SciTech Connect (OSTI)

    Karimi, M.; Najafizadeh, A.; Kermanpur, A.; Eskandari, M.

    2009-11-15

    The martensite to austenite reversion behavior of 90% cold rolled AISI 301 stainless steel was investigated in order to refine the grain size. Cold rolled specimens were annealed at 600-900 deg. C, and subsequently characterized by scanning electron microscopy, X-ray diffraction, Feritscope, and hardness measurements. The effects of annealing parameters on the formation of fully-austenitic nano/submicron grained structure and the mechanisms involved were studied. It was found that annealing at 800 deg. C for 10 s exhibited the smallest average austenite grain size of 240 {+-} 60 nm with an almost fully-austenitic structure.

  10. Renewable and Distributed Systems Integration Peer Review

    Energy Savers [EERE]

    4 Denver Marriott West Golden, Colorado AGENDA Tuesday, November 2, 2010 8:00 am Registration and Continental Breakfast 9:00 am-9:10 am Welcome Dr. Robert Hawsey, Associate Laboratory Director for Renewable Electricity and End Use Systems, US DOE-National Renewable Energy Laboratory 9:10 am-9:25 am Overview of Smart Grid Program Eric Lightner, U.S. Department of Energy 9:25 am-9:40 am Overview of Smart Grid Research and Development Activities Dan Ton, U.S. Department of Energy Moderator -

  11. Enhance Your Home Inspection Business with the Home Energy Score |

    Energy Savers [EERE]

    Department of Energy Enhance Your Home Inspection Business with the Home Energy Score Enhance Your Home Inspection Business with the Home Energy Score March 17, 2016 8:00PM to 9:00PM EDT Wouldn't your customers like to know how their homes stack up in terms of energy efficiency? Now, using the U.S. Department of Energy's (DOE) free Home Energy Score, you can provide a miles-per-gallon type rating along with your home inspections. Better yet, by offering the rating and accompanying

  12. Near-Final Agenda

    Office of Environmental Management (EM)

    09 26 2014 Near-Final Agenda Workshop on Estimating the Benefits and Costs of Distributed Energy Technologies September 30 - October 1, 2014 Washington, DC September 30 - Day One 8:00 a.m. Coffee and Registration 8:30 Welcome and Opening Remarks * Overview and purpose of the workshop o Comments by senior DOE Officials o Q&A (time permitting) * Around-the-room introductions 9:00 Framing the Issues * Three presentations on key issues * Facilitated discussion 10:15 BREAK 10:30 Estimating the

  13. DOE Natural Phenomena Hazards (NPH) Workshop

    Office of Environmental Management (EM)

    5-26, 2011 Germantown, MD S S National Nuclear Security Administration Office of the Chief of Nuclear Safety October 25 Agenda Tuesday, October 25 7:30 a.m. Registration; coffee and bagels will be served 8:00 a.m. Welcome and introductions 8:10 a.m. Workshop Overview - Chip Lagdon, CNS Theme 1: Soil-structure interaction issues 8:30 a.m. SASSI Subtraction Method Effects at Various DOE Projects Greg Mertz, Michael Costantino, Thomas Houston, and Andrew Maham 9:00 a.m. Application of the Computer

  14. Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule- Workers Shipped 1,800 Cubic Meters for Treatment and Disposal

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. Today, the Department of Energy Hanford Site announced it reached a cleanup goal more than two months ahead of schedule at the Hanford Site in southeast Washington State.

  15. Method for creating high carbon content products from biomass oil

    DOE Patents [OSTI]

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  16. New Mexico Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 2003 96,600 96,600 96,600 96,600 96,600 89,800 89,800 89,800 89,800 89,800 89,800 89,800 2004 89,800 89,800 89,800 89,800 89,800 89,800 89,800 89,800 89,800 83,800 83,800 83,800 2005 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 2006 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,124 83,124 83,124

  17. New Mexico Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 2003 96,600 96,600 96,600 96,600 96,600 89,800 89,800 89,800 89,800 89,800 89,800 89,800 2004 89,800 89,800 89,800 89,800 89,800 89,800 89,800 89,800 89,800 83,800 83,800 83,800 2005 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 2006 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,124 83,124 83,124

  18. Oxidation resistant high creep strength austenitic stainless steel

    DOE Patents [OSTI]

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  19. Vacancy defects in as-grown and neutron irradiated GaP studied by positrons

    SciTech Connect (OSTI)

    Dlubek, G.; Bruemmer, O.; Polity, A.

    1986-08-18

    Positron lifetime and Doppler-broadening measurements have been used to study vacancy defects in n-italic-type GaP. Vacancies in the P sublattice with a concentration of some 10/sup 17/ cm/sup -3/ were observed in as-grwon GaP. The vacancies disappear during annealing at 500--800 /sup 0/C. In neutron-irradiated GaP positrons are trapped by Ga vacancies which anneal out in two stages situated at 300--550 /sup 0/C and 550--700 /sup 0/C.

  20. Cheniere Energy, Inc. CHENIERE

    Energy Savers [EERE]

    Energy, Inc. CHENIERE 3 700 llarn Street a 'Salta 800 H ust an T6 as 7" 002 1 phone:71 .7..5.00Q fax. 713.375.6000 October 19, 2012 The Office of Fossil Energy Natural Gas Regulatory Activities U.S. Department of Energy Attention: Lazne Moore, Docket Room Manager Docket Room FE-34 P. 0. Box 44375 Washington, DC 20026-4375 RE: Sabine Pass Liquefaction, LLC DOE Semi-annual Report DOE/FE Order Nos. 2833 and 2961 FE Docket Nos. 10-85-LNG and 10-111-LNG Dear Ms. Moore: Pursuant to the

  1. ALASKA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HERO for the Best of NW Cruise One Time Only - May 16-20, 2016 (Round-trip Seattle) Day Port Arrive Depart May 16 Seattle 6:00 PM May 17 Cruising May 18 Nanaimo, BC 7:00 AM 5:00 PM May 19 Victoria, BC 8:00 AM 5:00 PM May 20 Seattle 6:00 AM Number of Nights: 4 Interior Ocean view Balcony * Prices are based on double occupancy * 3 rd and/or 4 th passenger pay a reduced rate. * Tax/port fees $127 per person * Gratuities not included * Book early for best rates * Suites available * Passport or WA

  2. STEAB Meeting Agenda August 2007

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arrive at Laboratory Welcome and Introductions / Continental Breakfast Meeting Agenda State Energy Advisory Board Meeting ♦ August 14-16, 2007 Hotel Durant ♦ 2600 Durant Ave. ♦ Berkeley, CA 94704 Phone (510) 845-8981 Time Proceeding Venue/Presenter Monday, August 13 7:00 p.m. Kick-Off Dinner / Adagia Restaurant Meet in Hotel Lobby at 6:45 p.m. Tuesday, August 14 LBNL 8:00 a.m. Depart Hotel for LBNL LBNL shuttle bus to be provided 8:15 a.m. 8:45 a.m. STEAB Overview and Reason for Lab Visit

  3. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Cell Materials and Design for 300 Mile Range EVs Yimin Zhu, PD/PI OneD Material, LLC (former Nanosys Energy Storage) Palo Alto, California June 16 ~20, 2014 DOE Vehicle Technologies AMR 2014 ES130_zhu_2014_p This presentation does not contain any proprietary, confidential, or otherwise restricted information TM * Barriers addressed - Performance: Low Wh/kg & Wh/L - Life: Poor deep discharge cycles - Cost: High $/kWh * Targets Anode: >700 mAh/g 1,600 mAh/g >800 cycles

  4. Centrifugal pyrocontactor

    DOE Patents [OSTI]

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  5. DNP 2015: APS Division of Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Registration and Accommodation request The companion fee covers the reception and companions program that is held in parallel with the plenary session. Non-member registration is for non APS members who wish to attend the sessions or be a vendor at the meeting. DNP 2015 Registration fee schedule Date Members Non-Members Students/Unemployed Companion Before Sept. 2 $275 $600 $100 $50 After Sept. 2 $350 $700 $175 $60 On-Site $400 $800 $200 $75 Registration and hotel accommodations will be handled

  6. Fleet DNA Project Data Summary Report for School Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 39 45 20 Deployment ID 0 100 200 300 400 500 600 700 800 857 Number of days Breakdown of Total Operational Days Collected by Deployment for School Buses 0% 20% 40% 60% 80% 100% # of Vehicles Reporting: 204 # of Days Included: 857 Generated: Thu Aug 07, 2014 42 39 45 20 Deployment ID 0 50 100 150 200 204 Number of Vehicles Breakdown of Total Vehicles by Deployment for School Buses 0% 20% 40% 60% 80% 100% # of Vehicles Reporting: 204 # of Days Included: 857 Generated: Thu Aug 07, 2014 39 42 45

  7. Fuel Injection Strategy for Soot-Filter Regeneration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy for Soot-Filter Regeneration Fuel Injection Strategy for Soot-Filter Regeneration Fuel injection is optimized to allow both fast soot removal and temperatures below 700-800oC in case of drop-to-idle event. A 1-D mathematical model was used to simulate soot loading and temperature variations as a function of time and axial position in the filter during active regenerations and drop-to-idle events. The fact that the maximum temperature reached in a soot filter is a function of the soot

  8. Microsoft PowerPoint - DOE Tank Removal Study Vinces presentation Final.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T k R l S d DOE Tank Removal Study Hanford Advisory Board Tank Waste Committee Vince Panesko November 3, 2011 Concept Sketch for Tank Removal Concept Sketch for Tank Removal Page 3-3 of RPP-RPT-47167 Concept Sketch - Deep Soil Excavation Concept Sketch Deep Soil Excavation Page 3-3 of RPP-RPT-47167 Soil removal to 5 feet below tanks Soil removal to 5 feet below tanks 5 5 19,700 Ci Cs 137 5 feet below tank 25,100 Ci Cs 137 59,000 Ci Cs 137 CONCERNS CONCERNS 1. Does it make sense to spend $800

  9. Microsoft Word - 2015 NTSF Agenda public Feb 10.docx

    Office of Environmental Management (EM)

    5 NTSF Draft Agenda (subject to change) May 11 ---- Arrivals Noon - 5:00 pm Registration Sandia Ballroom Foyer - Registration Desk Tuesday, May 12 7:00 am - 5:00 pm Registration Sandia Ballroom Foyer - Registration Desk 8:00 - 8:15 am Tribal Welcome Sandia V 8:15 - 8:30 am Welcome to Albuquerque Sandia V 8:30 - 8:45 am State of the NTSF Sandia V 8:45 - 9:45 am Opening Keynote: The role of technology - and technological advances in DOE's cleanup mission Sandia V 9:45 - 10:00 am Break 10:00 am -

  10. Performance of Single Electrode-Supported Cells Operating in the Electrolysis Mode

    SciTech Connect (OSTI)

    J. E. O'Brien; G. K. Housley; D. G. Milobar

    2009-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900C. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 m thick), nickel-YSZ steam/hydrogen electrodes (~1400 m thick), and manganite (LSM) air-side electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented.

  11. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    SciTech Connect (OSTI)

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55 Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.

  12. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal

    SciTech Connect (OSTI)

    Siriwardane, Ranjani V.; Ksepko, Ewelina; Tian, Hanging

    2013-01-01

    The objective of this work was to prepare supported bimetallic FeCu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with FeCu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most FeCu/support oxygen carriers. Bimetallic FeCu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 C to 900 C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported FeCu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800900 C and might be successfully used up to 900 C for coal CLC reaction in the presence of steam.

  13. Washington Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    39,210 41,309 43,673 46,900 46,900 46,900 1988-2014 Aquifers 39,210 41,309 43,673 46,900 46,900 46,900 1999-2014 Depleted Fields 0 0 1999-2014 Total Working Gas Capacity 23,514...

  14. Control rods in LMFBRs: a physics assessment

    SciTech Connect (OSTI)

    McFarlane, H.F.; Collins, P.J.

    1982-08-01

    This physics assessment is based on roughly 300 control rod worth measurements in ZPPR from 1972 to 1981. All ZPPR assemblies simulated mixed-oxide LMFBRs, representing sizes of 350, 700, and 900 MWe. Control rod worth measurements included single rods, various combinations of rods, and Ta and Eu rods. Additional measurements studied variations in B/sub 4/C enrichment, rod interaction effects, variations in rod geometry, neutron streaming in sodium-filled channels, and axial worth profiles. Analyses were done with design-equivalent methods, using ENDF/B Version IV data. Some computations for the sensitivities to approximations in the methods have been included. Comparisons of these analyses with the experiments have allowed the status of control rod physics in the US to be clearly defined.

  15. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 4,638 4,335 5,324 4,912 4,912

  16. Tennessee Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 58 48 57 1970's 64 89 25 20 17 27 47 263 468 941 1980's 1,241 1,719 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 4,851 5,825 5,400 5,294

  17. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOE Patents [OSTI]

    Carey, III, James Edward; Mazur, Eric

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  18. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  19. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  20. Soviet delays raise prices

    SciTech Connect (OSTI)

    Young, I.

    1992-01-15

    The breakup of the Soviet Union is causing massive disruptions to methanol exports. The changeover to a Commonwealth of independent States has created logistical problems which have led some shipments of Russian methanol to be cancelled and delayed other deliveries by up to two weeks. In recent years the Soviet Union has exported 700,000 m.t./year-900,000 m.t./year of methanol, mainly to Western Europe. The product is made at 750,000-m.t./year plants at Tomsk and Gubakha in Russia and transported by rail for shipment from the ports of Ventspils, Latvia, on the Baltic Sea and Yuzhnyy in Ukraine, on the Black Sea. The exports were handled by state export agency Soyuzagrochim, mainly under contract to West European traders and consumers in areas like Scandinavia and France.

  1. Project SUNN solar home (APTECH AZ-81-54). Final report

    SciTech Connect (OSTI)

    Birkey, R.C.

    1983-01-01

    The design and construction of the SUNN solar home utilizing energy conservation relevant to the constuction needs of the Navajo Nation has met with success, most particularly in its initial student and Navajo leadership training programs. The overall size of the structural concept was increased dramatically (from the modest 700 to 900 square foot model to an 1856 sq. ft. structure) in order to accommodate the Window Rock School District with a practical building and the placement of SUNN home in a highly visible area of the school grounds. A cooperation was formed with the school district with intentions to increase the potential for publicity, community involvement, utilize students in the construction process, and develop professional interest in the utilization and transfer of SUNN home technologies for other Navajo communities.

  2. Short-Term Oxidation Studies on Nicrofer- 6025HT in Air at Elevated Temperatures for Advanced Coal Based Power Plants

    SciTech Connect (OSTI)

    Joshi, Vineet V.; Meier, Alan; Darsell, Jens T.; Nachimuthu, Ponnusamy; Bowden, Mark E.; Weil, K. Scott

    2013-04-01

    Several advanced air separation unit (ASU) designs being considered for use in coal gasification rely on the use of solid state mixed ionic and electronic conductors. Nicrofer-6025HT, a nickel-based alloy, has been identified as a potential manifold material to transport the hot gases into the ASUs. In the current study, isothermal oxidation tests were conducted on Nicrofer-6025HT in the temperature range of 700900 C for up to 24 h. The evolution of oxide scale was evaluated using SEM, XRD, and XPS. The composite surface oxide layer that formed consisted of an outer chromia-rich scale and an inner alumina scale. For the longer times at the higher temperatures evaluated, a NiCr2O4 spinel phase was located at the interface between the alumina and chromia. Based on the experimental results a four-step oxidation model was proposed.

  3. Development and characterization of PCDTBT:CdSe QDs hybrid solar cell

    SciTech Connect (OSTI)

    Dixit, Shiv Kumar Bhatnagar, Chhavi Kumari, Anita Madhwal, Devinder Bhatnagar, P. K. Mathur, P. C.

    2014-10-15

    Solar cell consisting of low band gap polymer poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10, 30-benzothiadiazole)] (PCDTBT) as donor and cadmium selenide/zinc sulphide (CdSe/ZnS) core shell quantum dots (QDs) as an acceptor has been developed. The absorption measurements show that the absorption coefficient increases in bulk heterojunction (BHJ) structure covering broad absorption spectrum (200nm700nm). Also, the photoluminescence (PL) of the PCDTBT:QDs film is found to decrease by an order of magnitude showing a significant transfer of electrons to the QDs. With this approach and under broadband white light with an irradiance of 8.19 mW/cm{sup 2}, we have been able to achieve a power conversion efficiency (PCE) of 3.1 % with fill factor 0.42 for our typical solar cell.

  4. Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 32,119 36,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 4,638 4,335 5,324 4,912 4,912

  6. Tennessee Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Tennessee Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 - = No Data Reported; --

  7. Tennessee Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 497 205 185 393 612 532 855 1,482 1,605 1980's 1,241 1,719 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 4,851 5,825 5,400 5,294

  8. Tennessee Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 58 48 57 1970's 64 89 25 20 17 27 47 263 468 941 1980's 1,241 1,719 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 4,851 5,825 5,400 5,294

  9. Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 724 908 700 1980's 649 953 1,103 932 900 892 868 834 783 703 1990's 776 738 670 688 728 738 705 794 734 1,137 2000's 1,626 2,289 2,877 3,309 4,221 4,328 6,218 7,476 9,037 10,904 2010's 12,464 10,115 8,894 9,195 8,791 - = No Data Reported; -- = Not

  10. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  11. Decarbonization process for carbothermically produced aluminum

    DOE Patents [OSTI]

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  12. Hydrogen passivation of interstitial iron in boron-doped multicrystalline silicon during annealing

    SciTech Connect (OSTI)

    Liu, AnYao; Sun, Chang; Macdonald, Daniel

    2014-11-21

    Effective hydrogenation of interstitial iron in boron-doped multicrystalline silicon wafers is reported. The multicrystalline silicon wafers were annealed with plasma-enhanced chemical vapour deposited silicon nitride films, at temperatures of 400?C??900?C and for times from minutes to hours. At low temperatures where a combined effect of hydrogenation and precipitation of dissolved Fe is expected, results show that the hydrogenation process dominates the effect of precipitation. The concentrations of dissolved interstitial iron reduce by more than 90% after a 30-min anneal at temperatures between 600 and 900?C. The most effective reduction occurs at 700?C, where 99% of the initial dissolved iron is hydrogenated after 30?min. The results show that the observed reductions in interstitial Fe concentrations are not caused by the internal gettering of Fe at structural defects or by an enhanced diffusivity of Fe due to the presence of hydrogen. The hydrogenation process is conjectured to be the pairing of positively charged iron with negatively charged hydrogen, forming less recombination active Fe-H complexes in silicon.

  13. Catalyst regeneration process including metal contaminants removal

    DOE Patents [OSTI]

    Ganguli, Partha S. (Lawrenceville, NJ)

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  14. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    SciTech Connect (OSTI)

    Mousa, Sahar; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh ; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 C and calcined at 600 C and 900 C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  15. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect (OSTI)

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  16. Flash pyrolysis and hydropyrolysis of biomass

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Process chemistry data on the flash pyrolysis and hydropyrolysis of wood is being obtained in a 1'' downflow entrained tubular reactor. The data indicates that at residence times of <1 second, and 900 to 1000/sup 0/C and 500 psi pressure, the flash hydropyrolysis of wood yields mainly methane and water. As the residence time increases to >3 seconds, the products are methane and CO. Almost complete conversion of the carbon to methane and CO are obtained in these experiments. At lower temperatures, in the order of 800/sup 0/C, 500 psi and residence times <4 seconds, significant amounts of benzene and ethane are produced. The experimental process chemistry data have been used to design and evaluate two processes in a preliminary manner. One process converts wood to high BTU pipeline gas and the other to methanol and chemical feedstocks consisting of benzene and ethylene. Reasonable plant investments which compare favorably with coal conversion plant estimates are derived.

  17. Argonne_map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ROADS & PARKING BUILDINGS 603 1 2 3 4 5 A B C D E F G 360 - E4 361 - E4 362 - E3 363 - E4 366 - E4 369 - E4 370 - E4 371 - E4 376 - E4 399 - E4 600 Area 600 - E3 617 - E3 800 Area 891 - B2 900 Area 950 - G3 951 - G2 952 - G2 953 - G2 East Area 046 - F2 091 - G3 100 Area 108 - E2 145 - F2 146 - F2 200 Area 200 - C2 201 - D2 202 - D2 203 - D2 204 - E2 205 - D2, D3 300 Area 302 - D3 306 - D4 308 - D3 309 - D3 206 - C2 208 - C2 211 - C2 212 - D2 213 - D2 214 - D3 216 - D2 314 - D4 315 - D4 316 -

  18. Missouri Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    1967-1997 Pipeline and Distribution Use 1967-2005 Citygate 6.17 5.85 5.27 4.99 5.76 4.65 1984-2015 Residential 11.66 12.02 12.25 10.88 10.83 11.59 1967-2015 Commercial 10.28 9.99 9.54 9.00 8.96 9.10 1967-2015 Industrial 8.70 8.54 7.85 8.19 8.00 7.75 1997-2015 Vehicle Fuel 6.34 6.11 5.64 1994-2012 Electric Power W W W W W W 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 0 53 100 26 28 1989-2014 Gross Withdrawals NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA 8 8

  19. Radiometric characterization of a high temperature blackbody in the visible and near infrared

    SciTech Connect (OSTI)

    Taubert, R. D.; Hollandt, J.

    2013-09-11

    At the Physikalisch-Technische Bundesanstalt the radiance temperature in the range from 962 C to 3000 C is disseminated by applying a high temperature blackbody (HTBB) with a directly heated pyrolytic graphite cavity. The thermodynamic radiance temperature of the HTBB was measured in the temperature range from 1000 C to 3000 C by applying almost simultaneously absolutely calibrated silicon photodiode based filter radiometers with centre wavelengths at 476 nm, 676 nm, 800 nm, 900 nm and 1000 nm and InGaAs photodiode based filter radiometers with centre wavelengths at 1300 nm, 1550 nm and 1595 nm. The results demonstrate that, expressed in terms of irradiance, within an uncertainty of 0.1 % (k=1) in a broad wavelength range the thermodynamic radiance temperature of the HTBB is wavelength independent in the investigated temperature interval.

  20. U.S. Imports of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    9,511 9,768 9,335 8,800 9,126 9,726 1973-2015 Crude Oil 7,331 7,638 7,222 7,121 7,371 7,900 1920-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 117 133 102 130 163 180 1981-2015 Pentanes Plus 0 10 0 10 22 10 1981-2015 Liquefied Petroleum Gases 117 123 101 120 141 170 1973-2015 Ethane 1993-2006 Ethylene 1993-2015 Propane 74 80 65 80 104 124 1995-2015 Propylene 22 23 14 11 13 20 1993-2015 Normal Butane 5 2 6 17 10 7 1995-2015 Butylene 4 4 5 3 2 4 1993-2015 Isobutane 12 13 11 8 12 15

  1. Missouri Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    1967-1997 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.17 5.85 5.27 4.99 5.76 4.65 1984-2015 Residential Price 11.66 12.02 12.25 10.88 10.83 11.59 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 10.28 9.99 9.54 9.00 8.96 9.10 1967-2015 Percentage of Total Commercial Deliveries included in Prices 76.5 73.1 69.2 72.3 70.5 71.1 1990-2015 Industrial Price 8.70 8.54 7.85 8.19 8.00 7.75 1997-2015

  2. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2013 - 2015 (Barrels per Calendar Day) Reformers Capacity Inputs 2013 2,596,369 5,681,643 1,887,024 2,302,764 4,810,611 1,669,540 2,600,518 3,405,017 74,900 543,800 41,500 47,537 387,148 33,255 PADD I 162,249 240,550 450,093 1,196,952 303,000 414,732 1,028,003 263,238 PADD II 648,603 818,718 1,459,176 2,928,673 981,114

  3. Method of processing aluminous ores

    DOE Patents [OSTI]

    Loutfy, Raouf O. (Naperville, IL); Keller, Rudolf (Murrysville, PA); Yao, Neng-Ping (Clarendon Hills, IL)

    1981-01-01

    A method of producing aluminum chloride from aluminous materials containing compounds of iron, titanium and silicon comprising reacting the aluminous materials with carbon and a chlorine-containing gas at a temperature of about 900.degree. K. to form a gaseous mixture containing chlorides of aluminum, iron, titanium and silicon and oxides of carbon; cooling the gaseous mixture to a temperature of about 400.degree. K. or lower to condense the aluminum chlorides and iron chlorides while titanium chloride and silicon chloride remain in the gas phase to effect a separation thereof; heating the mixture of iron chlorides and aluminum chlorides to a temperature of about 800.degree. K. to form gaseous aluminum chlorides and iron chlorides; passing the heated gases into intimate contact with aluminum sulfide to precipitate solid iron sulfide and to form additional gaseous aluminum chlorides; and separating the gaseous aluminum chloride from the solid iron sulfide.

  4. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect (OSTI)

    Chen, Kevin

    2014-08-31

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  5. Partially-reflected water-moderated square-piteched U(6.90)O2 fuel rod lattices with 0.67 fuel to water volume ratio (0.800 CM Pitch)

    SciTech Connect (OSTI)

    Harms, Gary A.

    2015-09-01

    The US Department of Energy (DOE) Nuclear Energy Research Initiative funded the design and construction of the Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories. The start-up of the experiment facility and the execution of the experiments described here were funded by the DOE Nuclear Criticality Safety Program. The 7uPCX is designed to investigate critical systems with fuel for light water reactors in the enrichment range above 5% 235U. The 7uPCX assembly is a water-moderated and -reflected array of aluminum-clad square-pitched U(6.90%)O2 fuel rods.

  6. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    DOE Patents [OSTI]

    Iyer, Vivekanantan S. (Delft, NL); Vollhardt, K. Peter C. (Oakland, CA)

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  7. Effects of aluminum on epitaxial graphene grown on C-face SiC

    SciTech Connect (OSTI)

    Xia, Chao Johansson, Leif I.; Hultman, Lars; Virojanadara, Chariya; Niu, Yuran

    2015-05-21

    The effects of Al layers deposited on graphene grown on C-face SiC substrates are investigated before and after subsequent annealing using low energy electron diffraction (LEED), photoelectron spectroscopy, and angle resolved photoemission. As-deposited layers appear inert. Annealing at a temperature of about 400?C initiates migration of Al through the graphene into the graphene/SiC interface. Further annealing at temperatures from 500?C to 700?C induces formation of an ordered compound, producing a two domain ?7??7R19 LEED pattern and significant changes in the core level spectra that suggest formation of an Al-Si-C compound. Decomposition of this compound starts after annealing at 800?C, and at 1000?C, Al is no longer possible to detect at the surface. On Si-face graphene, deposited Al layers did not form such an Al-Si-C compound, and Al was still detectable after annealing above 1000?C.

  8. 13C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 2006JO11 13C(α, n): deduced S(E) ~ 0 - 1 from (1993BR17), from (1993DR08) X4 08/04/2011 2001HE22 13C(α, n): S(E) 0 - 2 S-factor 11/15/2011 2003KA51 13C(α, n): deduced S-factors, reaction rate Ecm ~ 200 - 800 keV X4 05/01/2012 1993DR08 13C(α, n): excitation function and S(E) ~ 275 - 1075 keV σ, S-factor X4 08/04/2011 2008HE11 13C(α, n): σ, reaction yields and S(E) Ecm = 320 - 700 keV σ, Table

  9. Study of the thermal transformations of Co- and Fe-exchanged zeolites A and X by 'in situ' XRD under reducing atmosphere

    SciTech Connect (OSTI)

    Ronchetti, Silvia; Turcato, Elisa Aurelia; Delmastro, Alessandro; Esposito, Serena; Ferone, Claudio; Pansini, Michele; Onida, Barbara; Mazza, Daniele

    2010-06-15

    'In situ' high temperature X-ray diffraction under reducing atmosphere is used for the first time to study the thermal stability and transformations of Co- and Fe-exchanged A and X zeolites. TG-DTA and 'ex situ' XRD characterization were also carried out. The temperature of incipient crystallization of metallic phase was found to be 700 {sup o}C in Fe-zeolites and 800 {sup o}C in Co-zeolites. Moreover, ex situ X-ray experiments, after thermal treatment both under inert and reducing atmosphere, revealed the formation of ceramic phases upon the thermal collapse of the zeolitic framework. Metal nanoparticles were obtained by reduction and the size of metal clusters was found to range between 24 and 40 nm.

  10. A Financial Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Workshop: A Financial Perspective Todd Glass Wilson Sonsini Goodrich & Rosati, PC Presented to the US DOE's Sunshot PV Manufacturing Initiative 25 March 2011 DOC#5049157 2 Source: 4Q 10 / FY 2010 Cleantech Investment Monitor Venture Capital In E&CT Continues to Rise... $0.96 B $1.32 B $1.36 B $2.09 B $4.74 B $6.55 B $8.83 B $6.04 B $7.86 B 191 322 356 415 440 511 586 622 729 0 100 200 300 400 500 600 700 800 $0.0 $1.0 $2.0 $3.0 $4.0 $5.0 $6.0 $7.0 $8.0 $9.0 $10.0 2002 2003

  11. Catalytic two-stage coal liquefaction process having improved nitrogen removal

    DOE Patents [OSTI]

    Comolli, Alfred G. (Yardley, PA)

    1991-01-01

    A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.

  12. Next Update: October 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    a . Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2007 and Projected 2008 through 2012 (Megawatts and 2007 Base Year) 2007 782,227 46,676 41,684 58,314 181,700 209,109 43,167 62,188 139,389 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE (ERCOT) WECC (U.S.) 789,915 47,364 41,222 61,779 184,000 204,791 43,800 64,927 142,032 806,672 48,181 43,208 62,647 187,100 209,288 44,784 66,247 145,217 822,889 49,093 44,737 63,399

  13. U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Offshore (Million Cubic Feet) U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,932,196 5,111,413 5,603,025 1980's 5,650,097 5,693,432 5,466,050 4,734,843 5,220,061 4,631,756 4,588,565 5,078,178 5,180,875 5,231,028 1990's 5,509,312 5,308,457 5,324,039 5,373,300 5,700,666 5,431,665 5,843,661 5,906,329 5,800,561 5,689,438 2000's 5,699,377 5,815,542 5,312,348 5,215,683 4,736,252

  14. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report

    SciTech Connect (OSTI)

    None

    1980-07-01

    This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

  15. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect (OSTI)

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  16. Austin's Home Performance with Energy Star Program: Making a Compelling Offer to a Financial Institution Partner

    SciTech Connect (OSTI)

    Zimring, Mark

    2011-03-18

    Launched in 2006, over 8,700 residential energy upgrades have been completed through Austin Energy's Home Performance with Energy Star (HPwES) program. The program's lending partner, Velocity Credit Union (VCU) has originated almost 1,800 loans, totaling approximately $12.5 million. Residential energy efficiency loans are typically small, and expensive to originate and service relative to larger financing products. National lenders have been hesitant to deliver attractive loan products to this small, but growing, residential market. In response, energy efficiency programs have found ways to partner with local and regional banks, credit unions, community development finance institutions (CDFIs) and co-ops to deliver energy efficiency financing to homeowners. VCU's experience with the Austin Energy HPwES program highlights the potential benefits of energy efficiency programs to a lending partner.

  17. 1-2-3 - Economic Indicators.123

    National Nuclear Security Administration (NNSA)

    Economic Indicators Indicator Date Latest Period Previous Period Year Ago Change Month Ago Change Year Ago New Residents (Drivers License Count) December 2009 4,311 4,031 4,656 6.9% -7.4% Active Residential Electric Meter Count January 2010 725,094 724,986 727,892 0.0% -0.4% Total Employment December 2009 833,000 842,800 899,700 -1.2% -7.4% Unemployment Rate December 2009 13.1% 12.1% 8.7% 8.3% 50.6% New Home Sales* January 2010 240 477 284 -49.7% -15.5% New Home Permits January 2010 380 355 179

  18. Alabama Natural Gas Industrial Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14,252 13,534 14,746 13,227 12,911 11,989 11,891 12,319 12,134 13,613 11,767 12,672 2002 14,069 13,875 14,404 13,433 13,224 12,875 12,442 12,540 12,721 13,268 12,690 14,398 2003 15,463 14,505 13,359 12,784 12,651 11,707 11,923 12,800 12,339 13,365 13,235 14,381 2004 15,170 14,489 13,878 13,567 12,955 12,878 12,557 12,722 12,800 13,906 13,521 14,812 2005 14,959 13,377 14,398 12,900 12,229 11,710 12,259 11,816 11,009 11,518 11,913 13,013

  19. Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment

    SciTech Connect (OSTI)

    Tylczak, Joseph

    2014-05-02

    This paper reports on the results of a study that compares the erosion-corrosion behavior of a variety of alloys (Fe- 2Cr 1Mo, 304 SS, 310 SS, Incoloy 800, Haynes 230 and a Fe3Al) in a combustion environment. Advanced coal combustion environments, with higher temperatures, are driving re-examination of traditional and examination of new alloys in these hostile environments. In order to simulate conditions in advanced coal combustion boilers, a special erosion apparatus was used to allow for impingement of particles under a low abrasive flux in a gaseous environment comprised of 20 % CO2, 0.05 % HCl, 77 % N2, 3 % O2, and 0.1 % SO2. Tests were conducted at room temperature and 700 C with ~ 270 ?m silica, using an impact velocity of 20 m/s in both air and the simulated combustion gas environment. The erosion-corrosion behavior was characterized by gravimetric measurements and by examination of the degraded surfaces optically and by scanning electron microscopy (SEM). At room temperature most of the alloys had similar loss rates. Not surprisingly, at 700 C the lower chrome-iron alloy had a very high loss rate. The nickel alloys tended to have higher loss rates than the high chrome austenitic alloys.

  20. Rate of reaction of hydrogen sulfide-carbonyl sulfide mixtures with fully calcined dolomite

    SciTech Connect (OSTI)

    Kamath, V.S.; Petrie, T.W.

    1981-01-01

    Kinetic data are obtained by a gravimetric technique for rates of reaction of calcium oxide in fully calcined dolomite with hydrogen sulfide and hydrogen sulfide-carbonyl sulfide mixtures. The data are presented as values for a factor k defined by d(CAO) = -k (CAO) dt. At 600, 700, and 800 degrees C with (H/sub 2/S) from 0.5% to 5.0% by volume and (H/sub 2/S)/(COS) = 20 for mixtures, expressions for k show apparent rate constants and the dependence on sulfurous gas concentration. For example, at 700 degrees C, k = 1.43 x 10/sup -4/ (h2s) 1.06/S and k = 1.70 x 10/sup -4/ (H/sub 2/S + COS) 1.00/s. Since the date show first-order dependence on calcium oxide, k's for H/sub 2/S alone as the sulfurous gas and h2s-cos mixtures can be obtained for the same sample, free from scatter due to variations from sample to sample. Addition of values for k from runs with H/sub 2/S as the only sulfurous gas and runs with COS as the only sulfurous gas are compared to measurements with actual mixtures. K's for the mixtures are approximately 30% higher than the sum of the appropriate separate values.

  1. Electroplated L1{sub 0} CoPt thick-film permanent magnets

    SciTech Connect (OSTI)

    Oniku, Ololade D. Qi, Bin; Arnold, David P.

    2014-05-07

    The fabrication and magnetic characterization of 15-?m-thick electroplated L1{sub 0} CoPt hard magnets with good magnetic properties is reported in this paper. Experimental study of the dependence of the magnets' properties on annealing temperature reveals that an intrinsic coercivity H{sub ci}?=??800?kA/m (10 kOe), squareness >0.8, and energy product of >150?kJ/m{sup 3} are obtained for photolithographically patterned structures (250??m??2?mm stripes; 15??m thickness) electroplated on silicon substrates and annealed in hydrogen forming gas at 700?C. Scanning electron microscopy is used to inspect the morphology of both the as-deposited and annealed magnetic layers, and X-ray Diffractometer analysis on the magnets annealed at 700?C confirm a phase transformation to an ordered L1{sub 0} CoPt structure, with a minor phase of hcp Co. These thick films are intended for microsystems/MEMS applications.

  2. Two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  3. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective YSZ coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-03-15

    Recently, compliant sealing glass has been proposed as a potential candidate sealant for solid oxide fuel cell (SOFC) applications. In a previous paper, the thermal stability and chemical compatibility were reported for a compliant alkali-containing silicate glass sealed between anode supported YSZ bi-layer and YSZ-coated stainless steel interconnect. In this paper, we will report the electrical stability of the compliant glass under a DC load and dual environment at 700-800 degrees C. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two plain SS441 metal coupons or YSZ-coated aluminized substrates. The results showed instability with plain SS441 at 800 degrees C, but stable behavior of increasing resistivity with time was observed with the YSZ coated SS441. In addition, results of interfacial microstructure analysis with scanning electron microscopy will be correlated with the measured resistivity results. Overall, the YSZ coating demonstrated chemically stability with the alkali-containing compliant silicate sealing glass under electrical field and dual environments.

  4. Electrochemical, Structural and Surface Characterization of Nickel/Zirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Antimony

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    2011-02-27

    The interaction of antimony with the nickel-zirconia solid oxide fuel cell (SOFC) anode has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800oC in synthetic coal gas containing 10 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5 % power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1500 hours depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni5Sb2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer.

  5. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-01-01

    An alkali-containing silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass contains about 17 mole% alkalis (K+Na) and has low glass transition and softening temperatures. It remains vitreous and compliant around 750-800oC after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealants, which experience rapid crystallization after the sealing process. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with YSZ coating during short term testing. In the current study, the compliant glass was further evaluated in a more realistic way in that the sealed glass couples were first isothermally aged for 1000h followed by thermal cycling. High temperature leakage was measured. The chemical compatibility was also investigated with powder mixtures at 700 and 800oC to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results.

  6. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  7. Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS

    SciTech Connect (OSTI)

    Palmero, P.; Bonelli, B.; Fantozzi, G.; Spina, G.; Bonnefont, G.; Montanaro, L.; Chevalier, J.

    2013-07-15

    Graphical abstract: - Highlights: • Ultrasonication as effective, un-polluting dispersion route for YAG powders. • Annealing in the 700900 °C range to increase the transparency. • Oxygen vacancies more crucial on the transmittance than C contamination. • SPS reliable method for transparent and ultra-fine polycrystalline YAG. • Very high hardness (16.5–17 GPa) for the fully dense, fine materials. - Abstract: YAG powder was synthesised by reverse-strike co-precipitation, calcined at 1000 °C and dispersed by either ball-milling with α-alumina (BM{sub A}) or zirconia (BMz) spheres or by ultrasonication (US). All the dispersed powders were consolidated by SPS to nearly theoretical density, but only the US powder gave rise to a transparent material (transmittance of about 60% at 600 nm, 1 mm thickness), characterised by an ultra-fine microstructure (average size of 330 nm). In the BM materials, Raman spectroscopy allowed to evidence some phonon vibrational shifts due to secondary phases deriving from pollution by the milling media, not detectable by XRD because present in small amounts. The transmittance of the as-sintered US sample was further increased by annealing in air at 900 °C; this was assigned to the restoration of some oxygen vacancies created in the reducing environment of the SPS chamber, as evidenced by XPS (X-ray photoelectron spectroscopy). Finally, US samples sintered in the 1250–1400 °C were submitted to a basic mechanical characterisation, showing a very good hardness, in spite of a moderate fracture toughness, especially for the fully dense and fine-grained materials sintered at 1300–1350 °C.

  8. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report

    SciTech Connect (OSTI)

    Hill, B.E.

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  9. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon

    SciTech Connect (OSTI)

    Hill, B.E. (ed.)

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  10. Effect of vitrification temperature upon the solar average absorptance properties of Pyromark Series 2500 black paint

    SciTech Connect (OSTI)

    Nelson, C.; Mahoney, A.R.

    1986-06-01

    A significant drop in production efficiency has occurred over time at the Solar One facility at Barstow, California, primarily as a result of the degradation of the Pyromark Series 2500 black paint used as the absorptive coating on the receiver panels. As part of the investigation of the problem, the solar-averaged adsorptance properties of the paint were determined as a function of vitrification temperature, since it is known that a significant amount of the panel surface area at Solar One was vitrified at temperatures below those recommended by the paint manufacturer (540/sup 0/C, 1000/sup 0/F). Painted samples initially vitrified at 230/sup 0/C (450/sup 0/F), 315/sup 0/C (600/sup 0/F), 371/sup 0/C (700/sup 0/F), and 480/sup 0/C (900/sup 0/F) exhibited significantly lower solar-averaged absorptance values (0.02 absorptance units) compared to samples vitrified at 540/sup 0/C (1000/sup 0/F). Thus, Solar One began its service life below optimal levels. After 140 h of thermal aging at 370/sup 0/C (700/sup 0/F) and 540/sup 0/C (1000/sup 0/F), all samples regardless of their initial vitrification temperatures, attained the same solar-averaged absorptance value (..cap alpha../sub s/ = 0.973). Therefore, both the long-term low-temperature vitrification and the short-term high-temperature vitrification can be used to obtain optimal or near-optimal absorptance of solar flux. Futher thermal aging of vitrified samples did not result in paint degradation, clearly indicating that high solar flux is required to produce this phenomenon. The panels at Solar One never achieved optimal absorptance because their exposure to high solar flux negated the effect of long-term low-temperature vitrification during operation. On future central receiver projects, every effort should be made to properly vitrify the Pyromark coating before its exposure to high flux conditions.

  11. Boots to Business Reboot | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1, 2015 9:00AM to 5:00PM EST Upton

  12. Optical characteristics of nanocrystalline Al{sub x}Ga{sub 1?x}N thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    SciTech Connect (OSTI)

    Goldenberg, Eda; Ozgit-Akgun, Cagla; Biyikli, Necmi; Kemal Okyay, Ali

    2014-05-15

    Gallium nitride (GaN), aluminum nitride (AlN), and Al{sub x}Ga{sub 1?x}N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200?C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and Al{sub x}Ga{sub 1?x}N films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2?nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4?nm when the annealing duration increased from 30?min to 2?h (800?C). For all films, the average optical transmission was ?85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and Al{sub x}Ga{sub 1?x}N were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (??=?550?nm) with the increased Al content x (0???x???1), while the extinction coefficients (k) were approximately zero in the VIS spectrum (>400?nm). Postdeposition annealing at 900?C for 2?h considerably lowered the refractive index value of GaN films (2.331.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95?eV, and it decreased to 3.90?eV for films annealed at 800?C for 30?min and 2?h. On the other hand, this value increased to 4.1?eV for GaN films annealed at 900?C for 2?h. This might be caused by Ga{sub 2}O{sub 3} formation and following phase change. The optical bandgap value of as-deposited Al{sub x}Ga{sub 1?x}N films decreased from 5.75 to 5.25?eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not affect the bandgap of Al-rich films.

  13. A modified method for barium titanate nanoparticles synthesis

    SciTech Connect (OSTI)

    Ashiri, R.; Nemati, Ali; Sasani Ghamsari, M.; Sanjabi, S.; Aalipour, M.

    2011-12-15

    Graphical abstract: TEM micrograph of BaTiO{sub 3} powders synthesized at 800 Degree-Sign C for 1 h and SAED pattern (inset) of BaTiO{sub 3} powders. In this research, a modified, cost efficient and quick sol-gel procedure was used for preparation of BaTiO{sub 3} nanoparticles. Highlights: Black-Right-Pointing-Pointer A modified process was used for preparation. Black-Right-Pointing-Pointer The modified process led to preparation of finer BaTiO{sub 3} nanoparticles in shorter period of time and lower temperature contrary to previous researches. Black-Right-Pointing-Pointer The proposed procedure seems to be more preferable for mass production. -- Abstract: In this research, a modified, cost effective sol-gel procedure applied to synthesize BaTiO{sub 3} nanoparticles. XRD and electron microscopy (SEM and TEM) applied for microstructural characterization of powders. The obtained results showed that the type of precursors, their ratio and the hydrolysis conditions had a great effect on time, temperature and therefore the costs of the synthesis process. By selection, utilization of optimized precursor's type, hydrolysis conditions, fine cubic BaTiO{sub 3} nanoparticles were synthesized at low temperature and in short time span (1 h calcination at 800 Degree-Sign C). The proposed procedure seems to be more preferable for mass production. The result indicated that the polymorphic transformation to tetragonal (ferroelectric characteristic) occurred at 900 Degree-Sign C, which might be an indication of being nanosized.

  14. Novel Low Temperature Solid State Fuel Cells

    SciTech Connect (OSTI)

    Chen, Chonglin; Nash, Patrick; Liu, Jian; Collins, Gregory

    2009-12-15

    We have successfully fabricated (PrBa)Co{sub 2}O{sub 5+{delta}} and (LaBa)Co{sub 2}O{sub 5+{deleta}} epitaxial thin film on various single crystal substrates. Physical and electrochemical properties characterizations were carried out. Highly conductive oxygen-deficient double perovskite LnBaCo2O5+? thin films were grown on single crystal (001) SrTiO{sub 3} (STO), (001) MgO, (001) LaAlO{sub 3} and (110) NdGaO{sub 3} substrate by pulsed laser deposition. Microstructure studies from synchrotron X-ray diffraction and Transmission electron microscopy. High temperature transport properties was carried in different atmosphere (O{sub 2},Air, N{sub 2}) up to ~900K. Resistance response of (LaBa)Co{sub 2}O{sub 5+{delta}} epitaxial thin film was characterized in oxygen, nitrogen and 4% hydrogen over a wide range of temperature from 400?C up to 800?C. To determine the electrode performance and oxygen exchange kinetics of PrBaCo{sub 2}O{sub 5+{delta}}, multi-layered thin film based half cell was deposited on LaAlO{sub 3}(001) substrate. The temperature dependence of the resistance of this half ?cell structure was characterized by electrochemical impedance spectroscopy (EIS) within different temperature and gas environments. Anode supported fuel cells, with GCO:YSZ multilayer thin film as electrolyte and PBCO thin film as electrode, are fabricated on tape casted NiO/YSZ substrate. Full cell performance is characterized up to 800?C.

  15. Oklahoma Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 5,526 7,239 2,427 -885 -10,341 -8,861 -10,616 -7,700 -7,151 -5,802 -3,986 25,852 1991 35,547 5,078 -5,298 -14,900 -15,187 -10,455 -1,095 -4,757 -10,249 -4,702 26,655 11,502 1992 17,866 8,339 3,738 -5,813 -8,448 -11,329 -16,356 -5,444 -12,709 -7,728 16,578 31,363 1993 25,220 20,310 8,195 -14,656 -21,410 -19,631 -15,116 -10,830 -14,976 -7,313 17,378 18,294 1994 34,379 26,584 3,144 -18,906 -26,542 -14,012 -17,293 -13,744 -9,237

  16. Rhode Island Price of Natural Gas Delivered to Residential Consumers

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6.56 7.00 6.98 7.13 7.26 8.25 8.44 8.65 8.55 7.49 7.10 6.84 1990 6.84 6.94 6.89 7.08 7.35 7.75 8.35 8.36 8.19 8.02 7.45 7.22 1991 7.08 7.09 7.30 7.63 8.02 8.92 9.17 9.06 9.18 8.26 7.76 7.47 1992 7.32 7.33 7.36 7.45 7.77 8.45 8.71 9.53 9.00 8.28 7.85 7.62 1993 7.59 7.54 7.57 7.75 8.38 9.35 9.60 9.96 9.96 8.87 8.93 8.81 1994 8.62 8.56 8.77 9.32 9.35 10.50 11.51 11.60 11.44 9.42 9.36 8.73 1995 8.28 8.27

  17. Glass-ceramic hermetic seals to high thermal expansion metals

    DOE Patents [OSTI]

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  18. Mutual passivation of group IV donors and isovalent nitrogen in diluted GaN{sub x}As{sub 1-x} alloys

    SciTech Connect (OSTI)

    Yu, K.M.; Wu, J.; Walukiewicz, W.; Shan, W.; Beeman, J.; Mars, D.E.; Chamberlin, D.R.; Scarpulla, M.A.; Dubon, O.D.; Ridgway, M.C.; Geisz, J.F.

    2003-07-23

    We demonstrate the mutual passivation of electrically active group IV donors and isovalent N atoms in the GaN{sub x}As{sub 1-x} alloy system. This phenomenon occurs through the formation of a donor-nitrogen bond in the nearest neighbor IV{sub Ga}-N{sub As} pairs. In Si doped GaInN{sub 0.017}As{sub 0.983} the electron concentration starts to decrease rapidly at an annealing temperature of 700 C from {approx} 3 x 10{sup 19}cm{sup -3} in the as-grown state to less than 10{sup 16}cm{sup -3} after an annealing at 900 C for 10 s. At the same time annealing of this sample at 950 C increases the gap by about 35 meV, corresponding to a reduction of the concentration of the active N atoms by an amount very close to the total Si concentration. We also show that the formation of Si{sub Ga}-N{sub As} pairs is controlled by the diffusion of Si via Ga vacancies to the nearest N{sub As} site. The general nature of this mutual passivation effect is confirmed by our study of Ge doped GaN{sub x}As{sub 1-x} layers formed by N and Ge co-implantation in GaAs followed by pulsed laser melting.

  19. High temperature phase stabilities and electrochemical properties of InBaCo4-xZnxO7 cathodes for intermediate temperature solid oxide fuel cells

    SciTech Connect (OSTI)

    Kim, Jung-Hyun; Young Nam, Kim; Bi, Zhonghe; Manthiram, Arumugam; Paranthaman, Mariappan Parans; Huq, Ashfia

    2011-01-01

    InBaCo4-xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4-xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 oC and 700 oC for 100 h, and chemical stability against a Gd0.2Ce0.8O1.9 (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo4-xZnxO7 (x = 1, 1.5, 2) specimens were determined to be 8.6 10-6 9.6 10-6 /oC in the range of 80 900 oC, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4-xZnxO7 + GDC (50:50 wt. %) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4-xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites.

  20. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    DOE R&D Accomplishments [OSTI]

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  1. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    SciTech Connect (OSTI)

    Steiner, S A; Baumann, T F; Kong, J; Satcher, J H; Dresselhaus, M S

    2007-02-15

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  2. (Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells

    SciTech Connect (OSTI)

    Young Nam, Kim; Kim, Jung-Hyun; Paranthaman, Mariappan Parans; Manthiram, Arumugam; Huq, Ashfia

    2012-01-01

    (Y0.5In0.5)BaCo4-xZnxO7 (1.0 x 2.0) oxides crystallizing in a trigonal P31c structure have been synthesized and explored as cathode materials for solid oxide fuel cells (SOFC). At a given Zn content, the (Y0.5In0.5)BaCo4-xZnxO7 sample with 50 % Y and 50 % In exhibits much improved phase stability at intermediate temperatures (600 - 800 oC) compared to the samples with 100 % Y or In. However, the substitution of Zn for Co in (Y0.5In0.5)Ba(Co4-xZnx)O7 (1.0 x 2.0) decreases the amount of oxygen loss on heating, total electrical conductivity, and cathode performance in SOFC while providing good long-term phase stability at high temperatures. Among the various chemical compositions investigated in the (Y0.5In0.5)Ba(Co4-xZnx)O7 system, the (Y0.5In0.5)BaCo3ZnO7 sample offers a combination of good electrochemical performance and low thermal expansion coefficient (TEC) while maintaining superior phase stability at 600 800 oC for 100 h. Fuel cell performances of the (Y0.5In0.5)Ba(Co3Zn)O7 + Ce0.8Gd0.2O1.9 (GDC) (50 : 50 wt. %) composite cathodes collected with anode-supported single cell reveal a maximum power density value of 521 mW cm-2 at 700 oC.

  3. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; et al

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infermore » the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  4. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; R.C. O'Brien; G.L. Hawkes

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cell development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.

  5. Effects of phosphorus doping by plasma immersion ion implantation on the structural and optical characteristics of Zn{sub 0.85}Mg{sub 0.15}O thin films

    SciTech Connect (OSTI)

    Saha, S.; Nagar, S.; Chakrabarti, S.

    2014-08-11

    ZnMgO thin films deposited on ?100? Si substrates by RF sputtering were annealed at 800, 900, and 1000?C after phosphorus plasma immersion ion implantation. X-ray diffraction spectra confirmed the presence of ?101{sup }0? and ?101{sup }3? peaks for all the samples. However, in case of the annealed samples, the ?0002? peak was also observed. Scanning electron microscopy images revealed the variation in surface morphology caused by phosphorus implantation. Implanted and non-implanted samples were compared to examine the effects of phosphorus implantation on the optical properties of ZnMgO. Optical characteristics were investigated by low-temperature (15?K) photoluminescence experiments. Inelastic excitonexciton scattering and localized, and delocalized excitonic peaks appeared at 3.377, 3.42, and 3.45?eV, respectively, revealing the excitonic effect resulting from phosphorus implantation. This result is important because inelastic excitonexciton scattering leads to nonlinear emission, which can improve the performance of many optoelectronic devices.

  6. Production of hydrogen by thermocatalytic cracking of natural gas. Task 4 report; Annual report

    SciTech Connect (OSTI)

    1995-10-01

    The conventional methods of hydrogen production from natural gas, for example, steam reforming (SR), are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere. One alternative is the single-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. The comparative assessment of SR and TCC processes was conducted. Thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500--900 C) and flow rates was conducted. Two types of fix bed catalytic reactors were designed, built and tested: continuous flow and pulse reactors. Ni-Mo/Alumina and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at the range of temperatures 600--800 C. Fe-catalyst demonstrated fairly good stability, whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity. Methane decomposition reaction over Ni-Mo/alumina was studied over wide range of space velocities in a continuous flow fixed bed catalytic reactor. The experimental results indicate that the hydrogen yield decreases noticeably with an increase in the space velocity of methane. The pulse type catalytic reactor was used to test the activity of the catalysts. It was found that induction period on the kinetic curve of hydrogen production corresponded to the reduction of metal oxide to metallic form of the catalyst. SEM method was used to study the structure of the carbon deposited on the catalyst surface.

  7. Isothermal kinetic of phase transformation and mixed electrical conductivity in Bi{sub 3}NbO{sub 7}

    SciTech Connect (OSTI)

    Wang, X.P.; Corbel, G.; Kodjikian, S.; Fang, Q.F.; Lacorre, P. . E-mail: Philippe.Lacorre@univ-lemans.fr

    2006-11-15

    Bismuth niobate (Bi{sub 3}NbO{sub 7}) exists under two crystallographic modifications, a tetragonal (type-III) phase between 800 and 900 deg. C, and a pseudocubic (type-II) phase above and below this thermal range. The quenching at room temperature of pseudocubic type-II phase made it possible to carry out a detailed study of the transformation kinetics of this metastable type-II phase to the stable type-III phase, using isothermal in situ X-ray diffraction. The obtained Avrami exponent and activation energy for the transition are around 2.5 and 3.25 eV, respectively. The value of the Avrami exponent is consistent with a three-dimensional diffusion-controlled transformation with constant nucleation rate. Investigations of electrical properties using AC impedance spectroscopy and Wagner polarization method show that the tetragonal phase exhibits higher ionic and electronic conductivities than those of the pseudocubic form. Such a deviation is likely to originate from different distributions of cations/electronic-lone-pairs and oxygen vacancies. - Graphical abstract: The metastable type-II form of Bi{sub 3}NbO{sub 7}, whose phase transformation kinetics to type-III form is studied in isothermal conditions, is shown to have a larger volume and a lower anionic (and electronic) conductivity than the type-III form of thisorite-type bismuth niobate.

  8. Technology Pathway Partnership Final Scientific Report

    SciTech Connect (OSTI)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at the photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.

  9. Advanced Cell Development and Degradation Studies

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; R. C. O'Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900C. From 2003 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  10. Reprocessing of used tires into activated carbon and other products

    SciTech Connect (OSTI)

    Teng, H.; Serio, M.A.; Wojtowicz, M.A.; Bassilakis, R.; Solomon, P.R.

    1995-09-01

    Landfilling used tires which are generated each year in the US is increasingly becoming an unacceptable solution. A better approach, from an environmental and economic standpoint, is to thermally reprocess the tires into valuable products such as activated carbon, other solid carbon forms (carbon black, graphite, and carbon fibers), and liquid fuels. In this study, high surface area activated carbons (> 800 m{sup 2}/g solid product) were produced in relatively high yields by pyrolysis of tires at up to 900 C, followed by activation in CO{sub 2} at the same temperature. The surface areas of these materials are comparable with those of commercial activated carbons. The efficiency of the activation process (gain in specific surface area/loss in mass) was greatest (up to 138 m{sup 2}/g original tire) when large pieces of tire material were used ({approximately} 170 mg). Oxygen pretreatment of tires was found to enhance both the yield and the surface area of the carbon product. High-pressure treatment of tires at low temperatures (< 400 C) is an alternative approach if the recovery of carbon black or fuel oils is the primary objective.

  11. Long-term materials test program. Quarterly report, January-March 1983

    SciTech Connect (OSTI)

    1984-03-01

    Exposure of gas turbine materials to a PFBC effluent under the Long-Term Materials Test Program has reached 1507 hours. Unprotected nickel and cobalt base blade and vane alloys show susceptibility to hot corrosion at 1500/sup 0/F (gas temperature), 1300/sup 0/F, and 1100/sup 0/F (air-cooled pins). Precious metal aluminide and M (Co,Fe) CrAlY overlay coatings continue to show good resistance to corrosion above 1450/sup 0/F, but are susceptible to varying degrees of pitting attack between 1050 and 1300/sup 0/F. Significant erosion/corrosion degradation of both base alloys and protective coatings/claddings has been observed on airfoil specimens exposed at 1350/sup 0/F, 800 to 900 fps and dust loadings less than 100 ppM for 1085 hours. Corrosion predominately occurred in areas of direct particle impaction; i.e., leading edge and pressure surface, indicating an erosion/corrosion synergism. At gas velocities of 1200 to 1400 fps, a platinum-aluminide coated IN-738 pin experienced a metal recession rate of 8 mils/1000-hours. The PFBC facility continues to show excellent operational reliability, accumulating over 1100 test hours this quarter. The only concern from an operations standpoint is the gradual thinning of the in-bed heat exchanger tubing at a rate of about 5 mils/100 hours off the diameter.

  12. Smart repeater system for communications interoperability during multi-agency law enforcement operations

    SciTech Connect (OSTI)

    Crutcher, R.I.; Jones, R.W.; Moore, M.R.; Smith, S.F.; Tolley, A.L.; Rochelle, R.W.

    1996-12-31

    A prototype smart repeater that provides interoperability capabilities for radio communication systems in multi-agency and multi-user scenarios is being developed by the Oak Ridge National Laboratory. The smart repeater functions as a deployable communications platform that can be dynamically reconfigured to cross-link the radios of participating federal, state, and local government agencies. This interconnection capability improves the coordination and execution of multi-agency operations, including coordinated law enforcement activities and general emergency or disaster response scenarios. The repeater provides multiple channels of operation in the 30--50, 118--136, 138--174, and 403--512 MHz land mobile communications and aircraft bands while providing the ability to cross-connect among multiple frequencies, bands, modulation types, and encryption formats. Additionally, two telephone interconnects provide links to the fixed and cellular telephone networks. The 800- and 900-MHz bands are not supported by the prototype, but the modular design of the system accommodates future retrofits to extend frequency capabilities with minimal impact to the system. Configuration of the repeater is through a portable personal computer with a Windows-based graphical interface control screen that provides dynamic reconfiguration of network interconnections and formats.

  13. Maryland Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,488 3,622 1,519 1,056 57 186 27 162 78 827 2,528 1,526 1991 3,068 3,378 2,172 511 76 16 100 0 7,558 163 940 2,674 1992 4,800 5,417 3,599 1,531 15 19 211 20 106 448 189 2,814 1993 4,469 5,170 3,818 1,217 48 352 54 71 40 158 901 4,120 1994 8,123 4,195 1,281 0 65 79 0 0 119 0 1,212 2,333 1995 3,205 4,966 1,721 1,682 0 0 1,412 739 169 345 1,519 3,900 1996 4,986 4,291 3,340 1,366 64 - - - - 69 1,611 1,744 1997 6,114 3,038 2,195 844 0 0 0 0 0

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Michigan (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 107,796 117,124 130,062 1970's 132,708 146,217 159,970 180,274 189,192 181,949 178,220 131,266 142,935 182,316 1980's 190,268 174,722 170,269 159,916 160,952 157,758 135,592 185,956 167,900 176,182 1990's 159,429 165,558 173,802 180,230 183,068 194,078 201,390 192,258 163,368 179,351 2000's 186,800 173,734 176,010 186,129 175,190 174,625 153,896 163,740 172,108

  15. Preparation and characterization of Ni(111)/graphene/Y{sub 2}O{sub 3}(111) heterostructures

    SciTech Connect (OSTI)

    Dahal, Arjun; Coy-Diaz, Horacio; Addou, Rafik; Lallo, James; Batzill, Matthias; Sutter, Eli

    2013-05-21

    Integration of graphene with other materials by direct growth, i.e., not using mechanical transfer procedures, is investigated on the example of metal/graphene/dielectric heterostructures. Such structures may become useful in spintronics applications using graphene as a spin-filter. Here, we systematically discuss the optimization of synthesis procedures for every layer of the heterostructure and characterize the material by imaging and diffraction methods. 300 nm thick contiguous (111) Ni-films are grown by physical vapor deposition on YSZ(111) or Al{sub 2}O{sub 3}(0001) substrates. Subsequently, chemical vapor deposition growth of graphene in ultra-high vacuum (UHV) is compared to tube-furnace synthesis. Only under UHV conditions, monolayer graphene in registry with Ni(111) has been obtained. In the tube furnace, mono- and bilayer graphene is obtained at growth temperatures of {approx}800 Degree-Sign C, while at 900 Degree-Sign C, non-uniform thick graphene multilayers are formed. Y{sub 2}O{sub 3} films grown by reactive molecular beam epitaxy in UHV covers the graphene/Ni(111) surface uniformly. Annealing to 500 Degree-Sign C results in crystallization of the yttria with a (111) surface orientation.

  16. Beryllium disease

    SciTech Connect (OSTI)

    Not Available

    1991-12-20

    After two workers at the nuclear weapons plant at Oak Ridge National Laboratory in Tennessee were diagnosed earlier this year with chronic beryllium disease (CBD), a rare and sometimes fatal scarring of the lungs, the Department of Energy ordered up a 4-year probe. Now, part of that probe has begun - tests conducted by the Oak Ridge Associated Universities' Center for Epidemiological Research measuring beryllium sensitivity in 3,000 people who've been exposed to the metal's dust since Manhattan Project managers opened the Y-12 plant at Oak Ridge in 1943. Currently, 119 Y-12 employees process beryllium, which has a number of industrial uses, including rocket heat shields and nuclear weapon and electrical components. The disease often takes 20 to 25 years to develop, and the stricken employees haven't worked with beryllium for years. There is no cure for CBD, estimated to strike 2% of people exposed to the metal. Anti-inflammatory steroids alleviate such symptoms as a dry cough, weight loss, and fatigue. Like other lung-fibrosis diseases that are linked to lung cancer, some people suspect CBD might cause some lung cancer. While difficult to diagnose, about 900 cases of CBD have been reported since a Beryllium Case Registry was established in 1952. The Department of Energy (DOE) estimates that about 10,000 DOE employees and 800,000 people in private industry have worked with beryllium.

  17. Basic properties of a liquidt in anode solid oxide fuel cell

    SciTech Connect (OSTI)

    Harry Abernathy; RandallGemmen; KirkGerdes; Mark Koslowske; ThomasTao

    2010-12-17

    An unconventional high temperature fuel cell system, the liquidt in anode solid oxide fuel cell(LTA-SOFC), is discussed. A thermodynamic analysis of a solid oxide fuel cell with a liquid metal anode is developed. Pertinent thermo chemical and thermo physical properties of liquid tin in particular are detailed. An experimental setup for analysis of LTA-SOFC anode kinetics is described, and data for a planar cell under hydrogen indicated an effective oxygen diffusion coefficient of 5.310?5 cm2 s?1 at 800 ?C and 8.910?5 cm2 s?1 at 900 ?C. This value is similar to previously reported literature values for liquid tin. The oxygen conductivity through the tin, calculated from measured diffusion coefficients and theoretical oxygen solubility limits, is found to be on the same order of thatofyttria-stabilizedzirconia(YSZ), a traditional SOFC electrolyte material. As such,the ohmicloss due to oxygen transport through the tin layer must be considered in practical system cell design since the tin layer will usually be at least as thick as the electrolyte.

  18. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018

  19. Department of Energy Offers First Conditional Commitment for a Loan Guarantee for Advanced Biofuels Plant

    Broader source: Energy.gov [DOE]

    Project Expected to Create Over 700 Jobs and Nearly Triple Amount of Renewable Diesel Produced Domestically

  20. Riverland Energy Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Cooperative Place: Wisconsin Phone Number: Arcadia: (608) 323-3381(800) 411-9115 -- Alma: (608) 685-4440(800) 685-4415 -- Onalaska: (608) 783-2238(800) 411-9115 Twitter:...

  1. Glacial Energy Holdings (California) | Open Energy Information

    Open Energy Info (EERE)

    Gas & Electric - 800-734-5002 -- San Diego Gas and Electric - 800-611-7343 -- So. Cal Edison - 800-611-1911 References: EIA Form EIA-861 Final Data File for 2010 -...

  2. Rutherford Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    1-800-521-0920 or 1-800-228-9756 or 1-800-228-5331 Outage Map: www.remc.comstorm-centerouta References: EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy...

  3. Norris Public Power District | Open Energy Information

    Open Energy Info (EERE)

    Nebraska Phone Number: 1-800-858-4707 Website: www.norrisppd.com Twitter: @NorrisPPD Facebook: https:www.facebook.comNorrisPPD Outage Hotline: 1-800-827-8099 or 1-800-743-3899...

  4. Meriwether Lewis Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Lewis Electric Coop Jump to: navigation, search Name: Meriwether Lewis Electric Coop Place: Tennessee Phone Number: 1-800-482-6553 or 1-800-316-2342 or 1-800-650-6814 or...

  5. Structural and magnetic characterization of as-prepared and annealed FeCoCu nanowire arrays in ordered anodic aluminum oxide templates

    SciTech Connect (OSTI)

    Rodrguez-Gonzlez, B.; Bran, C.; Warnatz, T.; Vazquez, M.; Rivas, J.

    2014-04-07

    Herein, we report on the preparation, structure, and magnetic characterization of FeCoCu nanowire arrays grown by DC electrodeposition inside self-assembled ordered nanopores of anodic aluminum oxide templates. A systematic study of their structure has been performed both in as-prepared samples and after annealing in the temperature range up to 800?C, although particular attention has been paid to annealing at 700?C after which maximum magnetic hardening is achieved. The obtained nanowires have a diameter of 40?nm and their Fe{sub 0.28}Co{sub 0.67}Cu{sub 0.05} composition was confirmed by energy dispersive X-ray spectroscopy (EDS). Focused ion-beam lamellas of two samples (as-prepared and annealed at 700?C) were prepared for their imaging in the high-resolution transmission electron microscopy (HRTEM) perpendicularly to the electron beam, where the obtained EDS compositional mappings show a homogeneous distribution of the elements. X-ray diffraction analysis, and selected area electron diffraction (SAED) patterns confirm that nanowires exhibit a bcc cubic structure (space group Im-3m). In addition, bright-dark field images show that the nanowires have a polycrystalline structure that remains essentially the same after annealing, but some modifications were observed: (i) an overall increase and sharpening of recrystallized grains, and (ii) an apparent shrinkage of the nanowires diameter. Obtained SAED patterns also show strong textured components with determined <111> and <112> crystalline directions parallel to the wires growth direction. The presence of both directions was also confirmed in the HRTEM images doing Fourier transform analyses. Magnetic measurements show strong magnetic anisotropy with magnetization easy axis parallel to the nanowires in as-prepared and annealed samples. The magnetic properties are tuned by suitable thermal treatments so that, maximum enhanced coercivity (?2.7 kOe) and normalized remanence (?0.91 Ms) values are achieved after annealing at temperature of 700?C. The contribution of the changes in the crystalline structure, induced by the heat treatment, to the magnetic hardening of the FeCoCu nanowires is discussed.

  6. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    SciTech Connect (OSTI)

    King, Sean W. Tanaka, Satoru; Davis, Robert F.; Nemanich, Robert J.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 7001000?C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200550?C) as well as higher temperatures (>700?C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ?750?C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800?C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700?C remain terminated by some surface CO and SiO bonding, they may still exhibit significant chemical reactivity due to the creation of surface dangling bonds resulting from H{sub 2} desorption from previously undetected silicon hydride and surface hydroxide species.

  7. Bluebonnet Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Territory: Texas Phone Number: 800-949-4414 Website: www.bluebonnetelectric.coop Outage Hotline: 800-949-4414 Outage Map: outage.bluebonnetelectric.coop References: EIA Form...

  8. SEMO Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Phone Number: 800.813.5230 Website: www.semoelectric.coop Twitter: @SEMOelectric Facebook: https:twitter.comSEMOelectric Outage Hotline: 800.813.5230 Outage Map:...

  9. Wisconsin Public Service Corp | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin Public Service Corp Place: Wisconsin Phone Number: 800-450-7260 Website: www.wisconsinpublicservice.com Twitter: @WPSStorm Outage Hotline: 800-450-7240 Outage Map:...

  10. Kenergy Corp | Open Energy Information

    Open Energy Info (EERE)

    Phone Number: 800.844.4832 Website: www.kenergycorp.com Twitter: @kenergycorp Facebook: https:www.facebook.comkenergycorp Outage Hotline: (800) 844-4832 Outage Map:...

  11. Structural and spectroscopic analyses of europium doped yttrium oxyfluoride powders prepared by combustion synthesis

    SciTech Connect (OSTI)

    Rakov, Nikifor; Guimares, R. B.; Maciel, Glauco S.; Lozano B, W.

    2013-07-28

    A facile widely spread technique employed to produce low-cost high-yield oxide powders, combustion synthesis, was used to prepare yttrium oxyfluoride crystalline ceramic powders. The structure of the powders was analyzed by X-ray powder diffraction and Rietveld refinement. Samples heat treated at 700 C had a predominance of vernier orthorhombic Y{sub 6}O{sub 5}F{sub 8} phase, while samples heat treated at 800 C crystallized in stoichiometric rhombohedral YOF phase. The samples were doped with luminescent europium trivalent ions (Eu{sup 3+}) in different concentrations (115 wt.%) and Judd-Ofelt theory was used to probe the distortion from the inversion symmetry of the local crystal field and the degree of covalency between the rare-earth ion and the surrounding ligands. The luminescence lifetime was measured and the luminescence quantum efficiency (LQE) was estimated. We observed that Eu{sup 3+}:Y{sub 6}O{sub 5}F{sub 8} samples presented higher LQE in spite of the larger local crystal field anisotropy found for Eu{sup 3+}:YOF samples.

  12. The influence of nano-architectured CeOx supports in RhPd/CeO? for the catalytic ethanol steam reforming reaction

    SciTech Connect (OSTI)

    Divins, N. J.; Senanayake, S. D.; Casanovas, A.; Xu, W.; Trovarelli, A.; Llorca, J.

    2015-01-19

    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO? cubes and CeO? rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO?-cubes > RhPd/CeO? -rods > RhPd/CeO?- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO?-cubes and RhPd/CeO? -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic - oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria

  13. Commercial scale demonstration enhanced oil recovery by micellar-polymer flood. Annual report, October 1979-September 1980

    SciTech Connect (OSTI)

    Howell, J.C.; Snyder, W.O.

    1981-04-01

    This commercial scale test, known as the M-1 Project, is located in Crawford County, Illinois. It encompasses 407 acres of Robinson sand reservoir and covers portions of several waterflood projects that were approaching economic limit. The project includes 248 acres developed on a 2.4-acre five-spot pattern and 159 acres developed on a 5.0-acre five-spot pattern. Development work commenced in late 1974 and has previously been reported. Micellar solution (slug) injection was initiated on February 10, 1977, and is now completed. After 10% of a pore volume of micellar slug was injected, injection of 11% pore volume of Dow 700 Pusher polymer was conducted at a concentration of 1156 ppM. At the end of this reporting period, 625 ppM polymer was being injected into the 2.5-acre pattern and 800 ppM polymer was being injected into the 5.0-acre pattern. The oil cut of the 2.5 and 5.0-acre patterns increased from 8.6% and 5.2%, respectively in September 1979, to 11.0% and 5.9% in September 1980. The oil cut performance has consistently exceeded that predicted for the project. This Fourth Annual Report is organized under the following three Work Breakdown Structures: fluid injection; production; and performance monitoring.

  14. Conversion of alkali metal sulfate to the carbonate

    DOE Patents [OSTI]

    Sheth, Atul C. (Woodridge, IL)

    1982-01-01

    A process for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700.degree. C. and about 800.degree. C. with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. The sulfur-containing compounds are further treated.

  15. Effect of carbonization temperature on the physical and electrochemical properties of supercapacitor electrode from fibers of oil palm empty fruit bunches

    SciTech Connect (OSTI)

    Ishak, M. M.; Deraman, M. Talib, I. A.; Basri, N. H.; Omar, R.; Nor, N. S. M.; Dolah, B. N. M.; Awitdrus,; Farma, R.; Taer, E.

    2015-04-16

    Self-adhesive carbon grains (SACG) was prepared from fibers of oil palm empty fruit bunches. The SACG green monoliths were carbonized in N{sub 2} environment at 400, 500, 600 and 700C to produce carbon monoliths labeled as CM1, CM2, CM3 and CM4 respectively. The CMs were activated in CO{sub 2} surrounding at 800C for 1 hour to produce activated carbon monolith electrodes (ACM1, ACM2, ACM3 and ACM4). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy (FESEM) and N{sub 2} adsorption-desorption isotherm techniques. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells performances were investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) standard techniques. In this paper we report the physical and electrochemical properties of the ACM electrodes by analyzing the influence of the carbonization temperature on these properties.

  16. Influence of processing on the microstructure and mechanical properties of 14YWT

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoelzer, David T.; Unocic, Kinga A.; Sokolov, Mikhail A.; Byun, Thak Sang

    2015-12-15

    In this study, the investigation of the mechanical alloying (MA) conditions for producing the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy led to significant improvements in balancing the strength, ductility and fracture toughness properties while still maintaining the salient microstructural features consisting of ultra-fine grains and high concentration of Y-, Ti- and O-enriched nanoclusters. The implemented changes to the processing conditions included reducing the contamination of the powder during ball milling, applying a pre-extrusion annealing treatment on the ball milled powder and exploring different extrusion temperatures at 850 °C (SM170 heat), 1000 °C (SM185) and 1150 °C (SM200). Themore » microstructural studies of the three 14YWT heats showed similarities in the dispersion of nanoclusters and sub-micron size grains, indicating the microstructure was insensitive to the different extrusion conditions. Compared to past 14YWT heats, the three new heats showed lower strength, but higher ductility levels between 25 and 800 °C and significantly higher fracture toughness values between 25 °C and 700 °C. The lower contamination levels of O, C and N achieved with improved ball milling conditions plus the slightly larger grain size were identified as important factors for improving the balance in mechanical properties of the three heats of 14YWT.« less

  17. 120 years of U.S. residential housing stock and floor space

    SciTech Connect (OSTI)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.

  18. Solenoid-free Plasma Start-up in NSTX using Transient CHI

    SciTech Connect (OSTI)

    Raman, R; Jarboe, T; Nelson, B; Mueller, D; Soukhanovskii, V A

    2009-01-05

    Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively-generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

  19. Creep Effects on Design below the Temperature Limits of ASME Section III Subsection NB

    SciTech Connect (OSTI)

    Sham, Sam; Jetter, Robert I; Eno, D.R.

    2010-01-01

    Some recent studies of material response have identified an issue that crosses over and blurs the boundary between ASME Boiler and Pressure Vessel Code Section III Subsection NB and Subsection NH. For very long design lives, the effects of creep show up at lower and lower temperature as the design life increases. Although true for the temperature at which the allowable stress is governed by creep properties, the effect is more apparent, e.g. creep effects show up sooner, at local structural discontinuities and peak thermal stress locations. This is because creep is a function of time, temperature and stress and the higher the localized stress, the lower in temperature creep begins to cause damage. If the threshold is below the Subsection NB to NH temperature boundary, 700 F for ferritic steels and 800 F for austenitic materials, then this potential failure mode will not be considered. Unfortunately, there is no experience base with very long lives at temperatures close to but under the Subsection NB to NH boundary to draw upon. This issue is of particular interest in the application of Subsection NB rules of construction to some High Temperature Gas Reactor (HTGR) concepts. The purpose of this paper is, thus, twofold; one part is about statistical treatment and extrapolation of sparse data for a specific material of interest, A533B; the other part is about how these results could impact current design procedures in Subsection NB.

  20. The influence of nano-architectured CeOx supports in RhPd/CeO₂ for the catalytic ethanol steam reforming reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Divins, N. J.; Senanayake, S. D.; Casanovas, A.; Xu, W.; Trovarelli, A.; Llorca, J.

    2015-01-19

    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO₂ cubes and CeO₂ rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO₂-cubes > RhPd/CeO₂ -rods > RhPd/CeO₂- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO₂-cubes and RhPd/CeO₂ -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic -more » oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria« less

  1. New Hampshire Price of Natural Gas Delivered to Residential Consumers

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6.66 6.75 6.75 6.91 6.32 7.00 7.50 7.94 7.43 6.86 7.28 6.83 1990 6.76 7.60 7.63 7.77 7.08 7.51 8.32 8.53 8.07 7.77 7.37 7.14 1991 6.97 6.97 7.05 7.22 6.72 7.40 7.88 8.12 7.70 7.15 7.38 7.16 1992 6.90 6.87 6.98 6.94 7.83 8.58 9.09 9.16 8.97 8.09 9.10 8.00 1993 7.86 7.48 7.66 5.91 6.59 7.53 8.60 9.29 8.45 7.09 8.93 8.52 1994 8.15 8.19 8.37 6.57 6.90 7.95 9.42 10.24 8.69 7.76 8.36 7.62 1995 7.31 7.33

  2. Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 5.54 W 7.00 6.28 W 6.35 5.61 5.30 W W 4.75 6.48 2004 5.76 W W 6.12 6.88 6.56 6.28 6.08 5.44 W W 7.50 2005 6.67 W W W W 7.61 7.80 9.49 13.52 14.90 12.76 14.05 2006 10.47 9.13 7.73 7.96 6.98 6.81 7.12 7.74 6.56 6.25 6.99 7.37 2007 6.75 8.00 6.97 7.38 7.45 7.76 6.81 7.01 6.44 6.77 7.75 7.64 2008 8.83 10.01 W W W 13.64 12.44 9.52 9.16 6.03 8.45 7.29 2009 5.89 5.20 4.46 3.93 4.03 4.00 3.69

  3. Development of a plasma driven permeation experiment for TPE

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; Donovan, David; Youchison, Dennis; Merrill, Brad

    2014-04-18

    Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 ?C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 ?C, a new TPE membrane holder has been built to hold test specimens (=1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ionmore » chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE’s vacuum chamber has been demonstrated by sealing tests performed up to 1000 ?C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (~700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 ?C are expected at the highest TPE fluxes.« less

  4. Thermal Systems Process and Components Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

  5. Manufacture of Alumina-Forming Austenitic Stainless Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect (OSTI)

    Brady, M.P.; Yamamoto, Y.; Magee, J.H. (Carpenter Technol. Corp.)

    2009-03-23

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 30lb heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(1-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions.

  6. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective alumina coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-12-01

    An alkali-containing silicate glass was recently proposed as a potential sealant for solid oxide fuel cells (SOFC). The glass contains appreciable amount of alkalis and retains its glassy microstructure at elevated temperatures over time. It is more compliant as compared to conventional glass-ceramics sealants and could potentially heal cracks during thermal cycling. In previous papers the thermal cycle stability, thermal stability and chemical compatibility were reported with yttria-stabilized zirconia (YSZ) electrolyte and YSZ-coated ferritic stainless steel interconnect. In this paper, we report the electrical stability of the compliant glass with aluminized AISI441 interconnect material under DC load in dual environment at 700-800oC. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two aluminized AISI441 metal coupons as well as plain AISI441 substrates. The results showed good electrical stability with the aluminized AISI441 substrate, while unstable behavior was observed for un-coated substrates. In addition, interfacial microstructure was examined with scanning electron microscopy and correlated with the measured resistivity results. Overall, the alumina coating demonstrated good chemical stability with the alkali-containing silicate sealing glass under DC loading.

  7. Agenda

    Broader source: Energy.gov (indexed) [DOE]

    (Nov. 15, 2011) 8:15 - 9:00 Breakfast 9:00 - 9:15 Introduction and Welcome Patricia Hoffman, Assistant Secretary for the Office of Electricity Delivery and Energy Reliability...

  8. Secretary of Energy Advisory Board Meeting Agenda Argonne National...

    Broader source: Energy.gov (indexed) [DOE]

    Building 401 9700 S. Cass Avenue Lemont, IL 60439 April 17, 2012 8:30 AM-9:00 AM Closed Tour of Advanced Photon Source Eric Isaacs, Director of Argonne National Laboratory 9:00...

  9. Northwestern School Corp | Open Energy Information

    Open Energy Info (EERE)

    900,000 W 900,000,000 mW 9.0e-4 GW Number of Units 1 Commercial Online Date 2012 Wind Turbine Manufacturer PowerWind References AWEA 2012 Market Report1 Loading map......

  10. North Newton School Corp | Open Energy Information

    Open Energy Info (EERE)

    900,000 W 900,000,000 mW 9.0e-4 GW Number of Units 1 Commercial Online Date 2012 Wind Turbine Manufacturer PowerWind References AWEA 2012 Market Report1 Loading map......

  11. West Central School Corp | Open Energy Information

    Open Energy Info (EERE)

    900,000 W 900,000,000 mW 9.0e-4 GW Number of Units 1 Commercial Online Date 2012 Wind Turbine Manufacturer PowerWind References AWEA 2012 Market Report1 Loading map......

  12. SPO Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    9:00AM to 4:30PM EDT International Conference on Surface Transportation System Resilience to Climate Change and Extreme Weather Events 9:00AM to 2:30PM EDT Placing UESC Task...

  13. U.S. Department of Energy Smart Grid R&D Peer Review Brookhaven...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakfast Moderator - 0HUULOO 6PLWK, DOE 8:30 am - 9:00 am Networked Microgrids (GG 7ULQNOHLQ Michigan Technological University 9:00 am - 9:30 am GWAC Transactive Energy ...

  14. Office of Small and Disadvantaged Business Utilization Events...

    Broader source: Energy.gov (indexed) [DOE]

    Coordination Office (GACO) training event NETL hosting 9:00AM to 5:00PM EDT 19 20 21 22 23 24 25 Astra Women's Business Alliance - Economic Summit & Matchmaker 9:00AM to...

  15. PROJECT PROFILE: Sunrun Inc. (Incubator 10)

    Broader source: Energy.gov [DOE]

    Funding Opportunity: SunShot Technology to Market (Incubator 10)SunShot Subprogram: Technology to MarketLocation: San Francisco, CAAmount Awarded: $900,000Awardee Cost Share: $900,000

  16. Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture

    SciTech Connect (OSTI)

    Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David A.

    2013-08-15

    We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst-capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst-capture agents on (1) the syngas composition, (2) CO2 and H2S capture, and (3) the steam-coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO-CaCO3 chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO3 was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO-CaCO3 cycles. The increased steam-coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2-4% per CaO-CaCO3 cycle. We also discuss an important application of this combined gasifier-calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO4 and ash in the precalcined feedstock.

  17. Tribological properties of self-lubricating NiAl/Mo-based composites containing AgVO{sub 3} nanowires

    SciTech Connect (OSTI)

    Liu, Eryong; Gao, Yimin; Bai, Yaping; Yi, Gewen; Wang, Wenzhen; Zeng, Zhixiang; Jia, Junhong

    2014-11-15

    Silver vanadate (AgVO{sub 3}) nanowires were synthesized by hydrothermal method and self-lubricating NiAl/Mo-AgVO{sub 3} composites were fabricated by powder metallurgy technique. The composition and microstructure of NiAl/Mo-based composites were characterized and the tribological properties were investigated from room temperature to 900 C. The results showed that NiAl/Mo-based composites were consisted of nanocrystalline B2 ordered NiAl matrix, Al{sub 2}O{sub 3}, Mo{sub 2}C, metallic Ag and vanadium oxide phase. The appearance of metallic Ag and vanadium oxide phase can be attributed to the decomposition of AgVO{sub 3} during sintering. Wear testing results confirmed that NiAl/Mo-based composites have excellent tribological properties over a wide temperature range. For example, the friction coefficient and wear rate of NiAl/Mo-based composites containing AgVO{sub 3} were significantly lower than the composites containing only metallic Mo or AgVO{sub 3} lubricant when the temperature is above 300 C, which can be attributed to the synergistic lubricating action of metallic Mo and AgVO{sub 3} lubricants. Furthermore, Raman results indicated that the composition on the worn surface of NiAl-based composites was self-adjusted after wear testing at different temperatures. For example, Ag{sub 3}VO{sub 4} and Fe{sub 3}O{sub 4} lubricants were responsible for the improvement of tribological properties at 500 C, AgVO{sub 3}, Ag{sub 3}VO{sub 4} and molybdate for 700 C, and AgVO{sub 3} and molybdate for 900 C of NiAl-based composites with the addition of metallic Mo and AgVO{sub 3}. - Highlights: NiAl/Mo-AgVO{sub 3} nanocomposites were prepared by mechanical alloying and sintering. AgVO{sub 3} decomposed to metallic Ag and vanadium oxide during the sintering process. NiAl/Mo-AgVO{sub 3} exhibited superior tribological properties at a board temperature range. Phase composition on the worn surface was varied with temperatures. Self-adjusted action was responsible for the improvement of tribological properties.

  18. Energy Department Announces $1.2 Billion Loan Guarantee to Support California Concentrating Solar Power Plant

    Broader source: Energy.gov [DOE]

    Project Will Fund More Than 900 Jobs and Deploy Innovative Technologies Expected to Drive Down Cost of Solar

  19. 7 Tips for Communicating Your Research to a General Audience

    SciTech Connect (OSTI)

    Labios, Liezel AN

    2014-10-15

    This ~900-word article provides useful tips for scientists (especially early career scientists) to communicate their research.

  20. Riveside Resource Recovery LLC Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    (MW) 0.90.9 MW 900 kW 900,000 W 900,000,000 mW 9.0e-4 GW Commercial Online Date 1997 Heat Rate (BTUkWh) 12739.4 References EPA Web Site1 Loading map......

  1. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

  2. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 m) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 m) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 C/min up to 900 C, and the samples were annealed at 900 C for 0.5 hour. These procedures were repeated three (for 100 and 200 C samples) and four (for 500 C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 C to 600 C after 1st annealing for the sample exposed to TPE at 500 C. Tritium Migration Analysis Program (TMAP) analysis reveals that the detrapping energy decreases from 1.8 eV to 1.4 eV, indicating the changes in trapping mechanisms. This paper also summarizes deuterium behavior studies in HFIR neutron-irradiated tungsten under US-Japan TITAN program.

  3. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect (OSTI)

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  4. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)

  5. max kwh | OpenEI Community

    Open Energy Info (EERE)

    This is likely due to users not understanding the meaning of "Max kWh"--often I see things like: "300, 700, 1000" (derived from "first 300, next 700, greater than 1000") which...

  6. tiers | OpenEI Community

    Open Energy Info (EERE)

    This is likely due to users not understanding the meaning of "Max kWh"--often I see things like: "300, 700, 1000" (derived from "first 300, next 700, greater than 1000") which...

  7. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Kenai ...... Arkansas 90,500 0 92,700 0 48,850 0 0 0 0 Cross Oil Refining & Marketing Inc 7,500 0 7,700 0 3,850 0 0 0 0 ...

  8. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect (OSTI)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol beers in 6 to 12 hours using either a consecutive batch or continuous cascade implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The consecutive batch technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  9. Continuous production of granular or powder Ti, Zr and Hf or their alloy products

    DOE Patents [OSTI]

    White, Jack C.; Oden, Laurance L.

    1993-01-01

    A continuous process for producing a granular metal selected from the group consisting of Ti, Zr or Hf under conditions that provide orderly growth of the metal free of halide inclusions comprising: a) dissolving a reducing metal selected from the group consisting of Na, Mg, Li or K in their respective halide salts to produce a reducing molten salt stream; b) preparing a second molten salt stream containing the halide salt of Ti, Zr or Hf; c) mixing and reacting the two molten streams of steps a) and b) in a continuous stirred tank reactor; d) wherein steps a) through c) are conducted at a temperature range of from about 800.degree. C. to about 1100.degree. C. so that a weight percent of equilibrium solubility of the reducing metal in its respective halide salt varies from about 1.6 weight percent at about 900.degree. C. to about 14.4 weight percent at about 1062.degree. C.; and wherein a range of concentration of the halide salt of Ti, Zn or Hf in molten halides of Na, Mg, Li or K is from about 1 to about 5 times the concentration of Na, Mg, Li or K; e) placing the reacted molten stream from step c) in a solid-liquid separator to recover an impure granular metal product by decantation, centrifugation, or filtration; and f) removing residual halide salt impurity by vacuum evaporator or inert gas sweep at temperatures from about 850.degree. C. to 1000.degree. C. or cooling the impure granular metal product to ambient temperature and water leaching off the residual metal halide salt.

  10. Characteristics of degenerately doped silicon for spectral control in thermophotovoltaic systems

    SciTech Connect (OSTI)

    Ehsani, H.; Bhat, I.; Borrego, J.; Gutmann, R.; Brown, E.; Dzeindziel, R.; Freeman, M.; Choudhury, N.

    1995-07-01

    Heavily doped Si was investigated for use as spectral control filter in thermal photovoltaic (TPV) system. These filters should reflect radiation at 4 {micro}m and above and transmit radiation at 2 {micro}m and below. Two approaches have been used for introducing impurities into Si to achieve high doping concentration. One was the diffusion technique, using spin-on dopants. The plasma wavelength ({lambda}{sub p}) of these filters could be adjusted by controlling the diffusion conditions. The minimum plasma wavelength achieved was 4.8 {micro}m. In addition, a significant amount of absorption was observed for the wavelength 2 {micro}m and below. The second approach was doping by ion implantation followed by thermal annealing with a capped layer of doped glass. Implantation with high dosage of B and As followed by high temperature annealing (> 1,000 C) resulted in a plasma wavelength that could be controlled between 3.5 and 6 {micro}m. The high temperature annealing (> 1,000 C) that was necessary to activate the dopant atoms and to heal the implantation damage, also caused significant absorption at 2 {micro}m. For phosphorus implanted Si, a moderate temperature (800--900 C) was sufficient to activate most of the phosphorus and to heal the implantation damage. The position of the plasma turn-on wavelength for an implantation dose of 2 {times} 10{sup 16} cm{sup {minus}2} of P was at 2.9 {micro}m. The absorption at 2 {micro}m was less than 20% and the reflection at 5 {micro}m was about 70%.

  11. Percent of Commercial Natural Gas Deliveries in Ohio Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 87.4 88.1 87.1 86.0 81.2 74.4 75.5 75.0 78.9 85.1 87.8 90.3 1990 89.9 89.2 89.9 86.4 82.4 78.5 77.0 75.6 77.7 83.0 87.9 91.4 1991 91.6 90.0 87.2 83.6 78.6 74.7 75.5 73.7 75.6 82.6 87.8 89.8 1992 89.1 88.0 88.4 85.7 78.9 73.9 72.0 73.5 73.1 84.2 85.7 88.5 1993 89.4 87.0 86.9 83.8 76.1 73.9 74.6 69.4 72.6 82.8 84.5 86.3 1994 87.4 86.5 84.9 78.4 75.9 70.5 66.7 67.5 66.5 75.1 78.7 81.5 1995 81.0 80.0 78.6 76.8 67.8 61.4

  12. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  13. Effect of calcination temperature on structural and photocatalyst properties of nanofibers prepared from low-cost natural ilmenite mineral by simple hydrothermal method

    SciTech Connect (OSTI)

    Simpraditpan, Athapon; Wirunmongkol, Thanakorn; Pavasupree, Sorapong; Pecharapa, Wisanu

    2013-09-01

    Graphical abstract: - Highlights: Nanofibers were prepared from low-cost ilmenite mineral via simple hydrothermal. High photocatalyst nanofibers were prepared via post heat treatment method. The nanofibers calcined at 100700 C for 2 h maintained nanofiber structure. The calcined nanofibers at 400 C showed the highest photocatalytic activity. - Abstract: Titanate nanofibers were synthesized via the hydrothermal method (120 C for 72 h) using natural ilmenite mineral (FeTiO{sub 3}) as the starting material. The samples were characterized by X-ray diffraction (XRD), X-ray fluorescent (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BrunauerEmmettTeller (BET) for specific surface area. The nanofibers were 2090 nm in diameter and 27 ?m in length. The as-synthesized nanofibers calcined at 300400 C showed TiO{sub 2} (B) whereas the nanofibers calcined at 500 C revealed a mixture of two phases of TiO{sub 2} (B) and anatase. The nanofibers calcined at high temperature of 6001000 C showed a mixture of tri-crystalline of anatase, rutile, and Fe{sub 2}O{sub 3}. The rutile phase increased with increasing calcination temperature. The nanofibers calcined at 300700 C maintained their structure while the morphology of the nanofibers calcined at 8001000 C transformed into submicron rod-like structure. This increase of calcination temperature led to the phase transformation from thermodynamically metastable anatase to the most stable form of rutile phase. The crystallite size of prepared samples increased with increasing calcination temperature. Interestingly, with increasing calcination temperature, the absorption edge of the prepared samples shows an obvious shift to visible light region due to the change of crystallite phase and increased crystallite size. Therefore, the band gap energy of the prepared samples became narrower with increasing calcination temperature. Furthermore, the photocatalytic activity of the nanofibers calcined at 400 C for 2 h was found to be not merely higher than those of the commercially available TiO{sub 2} nanoparticles powders (P-25, JRC-01, and JRC-03) but also the highest of all the samples in this study.

  14. Beyond Pluto: The Search for the Edge of the Solar System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    05, 2015 7:00 PM - 8:30 PM WHERE: Duane W. Smith Auditorium, Los Alamos High School

  15. Boralex Beaver Livermore Falls Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    MW 34,700 kW 34,700,000 W 34,700,000,000 mW 0.0347 GW Commercial Online Date 1992 Heat Rate (BTUkWh) 14308.9 References EPA Web Site1 Loading map......

  16. Winnebago County Landfill Gas Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    2.72.7 MW 2,700 kW 2,700,000 W 2,700,000,000 mW 0.0027 GW Commercial Online Date 2000 Heat Rate (BTUkWh) 9350.0 References EPA Web Site1 Loading map... "minzoom":false,"map...

  17. HMDC Kingsland Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2.72.7 MW 2,700 kW 2,700,000 W 2,700,000,000 mW 0.0027 GW Commercial Online Date 1999 Heat Rate (BTUkWh) 13405.9 References EPA Web Site1 Loading map......

  18. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect (OSTI)

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

  19. Sigma meson in pole-dominated QCD sum rules

    SciTech Connect (OSTI)

    Kojo, Toru; Jido, Daisuke

    2008-12-01

    The properties of the {sigma} meson are studied using the QCD sum rules for tetraquark operators. In the SU(3) chiral limit, we separately investigate SU(3) singlet and octet tetraquark states as constituents of the {sigma} meson and discuss their roles for the classification of the light scalar nonets {sigma}, f{sub 0}, a{sub 0}, and {kappa} as candidates of tetraquark states. All of our analyses are performed in the suitable Borel window which is indispensable to avoid the pseudopeak artifacts outside of the Borel window. We can set up acceptably wide Borel windows after preparing favorable linear combinations of operators and including the dimension 12 terms in the operator-product expansion. Taking into account the possible large widths, we evaluate masses for singlet and octet states as 700-850 and 600-750 MeV, respectively, although the octet operators have a smaller overlap with the tetraquark states than the singlet case, which requires careful interpretations. The splitting of the singlet and octet states emerges from the number of the qq annihilation diagrams, which include the color singlet annihilation processes qqqq{yields}(qq){sub 1} and the color octet annihilation processes qqqq{yields}G(qq){sub 8}. The mass of the {sigma} meson is evaluated as 600-800 MeV, which is much closer to the experimental value {approx}500 MeV than the mass evaluated by 2-quark correlator analyses, {approx}1.0 GeV. This indicates that the tetraquark state shares a larger fraction in the {sigma} meson than ordinary two quark meson states.

  20. Assessment of gas accumulation and retention -- Tank 241-SY-101

    SciTech Connect (OSTI)

    Alleman, R.T.; Burke, T.M.; Reynolds, D.A.; Simpson, D.E.

    1993-03-01

    An approximate analysis has been carried out to assess and estimate the maximum quantity of gas that is likely to be accumulated within waste tank 241-SY-101, and the maximum quantity which is likely to be retained after gas release events (GRE). According to the phenomenological models used for this assessment, based on interpretation of current and recent operational data, the estimated gas generation rate in the tank is approximately 4 m{sup 3}/day (147 ft{sup 3}/day). About half of this gas is released as it is generated, which is (essentially) continuously. The remainder is accumulated within the slurry layer of settled solids at the bottom of the tank, and released episodically in GREs, known as ``burps,`` that are induced by unstable buoyant conditions which develop when sufficient gas accumulates in the slurry. Calculations based on gas volumes to cause neutral buoyancy in the slurry predict the following: the maximum gas accumulation (at 1 atm pressure) that can occur without triggering a GRE is in the range of 606 to 1,039 m{sup 3} (21,400 to 36,700 ft{sup 3}); and the maximum gas retention immediately after a GRE is equal to the maximum accumulation minus the gas released in the GRE. GREs do not necessarily involve all of the slurry. In the largest GREs, which are assumed to involve all of the slurry, the minimum gas release (at 1 atm pressure) is calculated to be in the range of 193 to 328 m{sup 3} (6,800 to 11,600 ft{sup 3}). The corresponding maximum gas retention would be 413 to 711 m{sup 3} (14,600 to 25,100 ft{sup 3}).

  1. Tunable magnetic and magnetocaloric properties of La{sub 0.6}Sr{sub 0.4}MnO{sub 3} nanoparticles

    SciTech Connect (OSTI)

    Ehsani, M. H.; Kameli, P.; Ghazi, M. E.; Razavi, F. S.; Taheri, M.

    2013-12-14

    Nanoparticles of La{sub 0.6}Sr{sub 0.4}MnO{sub 3} with different particle sizes are synthesized by the nitrate-complex auto-ignition method. The structural and magnetic properties of the samples are investigated by X-Ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, transmission electron microscopy (TEM), and DC magnetization measurements. The XRD study coupled with the Rietveld refinement shows that all samples crystallize in a rhombohedral structure with the space group of R-3 C. The FT-IR spectroscopy and TEM images indicate formation of the perovskite structure with the average sizes of 20, 40, and 100 nm for the samples sintered at 700, 800, and 1100 °C, respectively. The DC magnetization measurements confirm tuning of the magnetic properties due to the particle size effects, e.g., reduction in the ferromagnetic moment and increase in the surface spin disorder by decreasing the particle size. The magnetocaloric effect (MCE) study based on isothermal magnetization vs. filed measurements in all samples reveals a relatively large MCE around the Curie temperature of the samples. The peak around the Curie temperature gradually broadens with reduction of the particle size. The data obtained show that although variations in the magnetic entropy and adiabatic temperature decrease by lowering the particle size, variation in the relative cooling power values are the same for all samples. These results make this material a proper candidate in the magnetic refrigerator application above room temperature at moderate fields.

  2. Tall Tower Wind Energy Monitoring and Numerical Model Validation in Northern Nevada

    SciTech Connect (OSTI)

    Koracin, D.; Kaplan, M.; Smith, C.; McCurdy, G.; Wolf, A.; McCord, T.; King, K.; Belu, R.; Horvath, K.

    2015-10-01

    The main objectives of this project were to conduct a tall-tower and sodar field campaign in complex terrain, investigate wind properties relevant to wind energy assessment, and evaluate high-resolution models with fixed and adaptive grid structures. Two 60-m towers at Virginia Peak ridges near Washoe Valley, Nevada, were instrumented with cup and vane anemometers as well as sonic anemometers, and an acoustic sounder (hereafter sodar) was installed near one of the towers. The towers were located 2,700 m apart with a vertical distance of 140 m elevation between their bases. Each tower had a downhill exposure of rolling complex terrain, with the nearby valley floor 3,200 m to the west and 800 m below the summit. Cup anemometers were installed at both towers at 20, 40, and 60 m, wind vanes at 20 and 60 m, and sonic anemometers at 20 and 60 m. The sodar measurements were nominally provided every 10 m in vertical distance from 40 to 200 m with the quality of the data generally decreasing with height. Surface air temperature, atmospheric pressure, and radiation measurements were conducted at 1.5 m AGL at both of the towers. Although the plan was to conduct a 1-year period of data collection, we extended the period (October 5, 2012 through February 24, 2014) to cover for possible data loss from instrument or communication problems. We also present a preliminary analysis of the towers and sodar data, including a detailed inventory of available and missing data as well as outliers. The analysis additionally includes calculation of the Weibull parameters, turbulence intensity, and initial computation of wind power density at various heights.

  3. New geothermal site identification and qualification. Final report

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This study identifies remaining undeveloped geothermal resources in California and western Nevada, and it estimates the development costs of each. It has relied on public-domain information and such additional data as geothermal developers have chosen to make available. Reserve estimation has been performed by volumetric analysis with a probabilistic approach to uncertain input parameters. Incremental geothermal reserves in the California/Nevada study area have a minimum value of 2,800 grosss MW and a most-likely value of 4,300 gross MW. For the state of California alone, these values are 2,000 and 3,000 gross MW, respectively. These estimates may be conservative to the extent that they do not take into account resources about which little or no public-domain information is available. The average capital cost of incremental generation capacity is estimated to average $3,100/kW for the California/Nevada study area, and $2,950/kW for the state of California alone. These cost estimates include exploration, confirmation drilling, development drilling, plant construction, and transmission-line costs. For the purposes of this study, a capital cost of $2,400/kW is considered competitive with other renewable resources. The amount of incremental geothermal capacity available at or below $2,400/kW is about 1,700 gross MW for the California/Nevada study area, and the same amount (within 50-MW rounding) for the state of California alone. The capital cost estimates are only approximate, because each developer would bring its own experience, bias, and opportunities to the development process. Nonetheless, the overall costs per project estimated in this study are believed to be reasonable.

  4. Impact on thin steel plates by tumbling projectiles

    SciTech Connect (OSTI)

    Li, K.; Goldsmith, W.

    1995-12-31

    An experimental, analytical, and numerical investigation into the effects of tumbling projectiles on the impact response of thin 4130 steel target plates was performed. Deformation patterns and failure phenomena as well as the final velocities and trajectories of the projectiles are correlated with initial conditions such as the initial velocity and impact angle (or yaw angle with a zero oblique angle) of the projectile and plate thickness. In the experiments, tumbling motion of the projectiles was induced by impact of a portion of the front face of the projectile with the edge of a massive block placed along the trajectory. Cylinders with a diameter of 12.7 mm, a length of 38.1 mm, and a hardness of R{sub c} 54 were fired at velocities from 400 m/s - 800 m/s. The forward speed of the projectile after tumbling production ranged from 300 m/s-700 m/s. Rotational speeds ranged from 0 rad/s - 3000 rad/s and concomitant impact angles varied from 0{degrees} to 60{degrees}. These parameters were determined from high speed photographic records. The targets were 1.6 mm and 3.2 mm thick. An analytical model developed for thin aluminum target plates was employed in the present study. The model divides the penetration process into three stages: (1) plugging; (2) hole enlargement; and (3) frontal petaling. The processes are quantified using energy dissipation descriptions of the various deformation mechanisms. Numerical simulations of the penetration processes were performed by employment of the program DYNA3D, a nonlinear, three-dimensional finite element code. The material of the target was modeled as elasto-plastic with failure, while the projectile was assumed to be undeformable. The failure criterion of the target is based on the ultimate tensile strain.

  5. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 84.0 82.5 89.4 90.6 83.8 86.2 55.5 83.6 78.9 84.4 78.4 85.7 1990 86.9 82.1 80.0 76.8 74.9 79.8 76.8 73.3 76.5 78.0 69.7 81.4 1991 82.2 87.0 87.9 83.2 84.0 85.4 85.7 81.3 75.8 74.4 75.5 81.7 1992 83.7 86.8 84.0 83.2 79.0 77.6 75.3 74.7 74.4 73.2 74.2 80.6 1993 84.1 85.3 85.8 84.0 79.8 76.8 75.9 74.0 74.4 71.3 74.7 79.3 1994 86.1 87.7 84.1 83.1 78.0 76.5 74.8 71.8 64.7 70.0 73.6 76.7 1995 82.5 85.7 85.8 81.4 77.5 75.7

  6. Lessons learned in implementing a demand side management contract at the Presidio of San Francisco

    SciTech Connect (OSTI)

    Sartor, D.; Munn, M.

    1998-06-01

    The National Park Service (NSP) recently completed the implementation phase of its Power Saving Partners (PSP) Demand Side Management (DSM) contract with the local utility, Pacific Gas and Electric (PG&E). Through the DSM contract, NPS will receive approximately $4.1 million over eight years in payment for saving 61 kW of electrical demand, 179,000 km of electricity per year, and 1.1 million therms of natural gas per year. These payments are for two projects: the installation of high-efficiency lighting systems at the Thoreau Center for Sustainability and the replacement of an old central boiler plant with new, distributed boilers. Although these savings and payments are substantial, the electrical savings and contract payments fall well short of the projected 1,700 kW of electrical demand, 8 million kwh of annual electricity savings, and $11 million in payments, anticipated at the project's onset. Natural gas savings exceeded the initial forecast of 800,000 therms per year. The DSM contract payments did not meet expectations for a variety of reasons which fall into two broad categories: first, many anticipated projects were not constructed, and second, some of the projects that were constructed were not included in the program because the cost of implementing the DSM program's measurement and verification (M&V) requirements outweighed anticipated payments. This paper discusses the projects implemented, and examines the decisions made to withdraw some of them from the DSM contract. It also presents the savings that were realized and documented through M&V efforts. Finally, it makes suggestions relative to M&V protocols to encourage all efficiency measures, not just those that are easy to measure.

  7. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  8. Manufacture of Alumina-Forming Austenitic Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect (OSTI)

    Brady, M.P.; Yamamoto, Y.; Magee, J.H.

    2009-03-10

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 301b heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(l-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions. AFA alloy properties to date have been obtained from small laboratory scale arc-castings made at ORNL. The goal of the ORNL-CarTech CRADA was to establish the viability for producing plate, sheet and foil of the AFA alloys by conventional casting and hot working approaches as a first step towards scale up and commercialization of the AFA alloys. The AFA alloy produced under this effort will then be evaluated in related CRADAs with two gas turbine engine manufacturers for gas turbine recuperator applications.

  9. Synthesis of High Surface Area Alumina Aerogels without the Use of Alkoxide Precursors

    SciTech Connect (OSTI)

    Baumann, T F; Gash, A E; Chinn, S C; Sawvel, A M; Maxwell, R S; Satcher Jr., J H

    2004-06-25

    Alumina aerogels were prepared through the addition of propylene oxide to aqueous or ethanolic solutions of hydrated aluminum salts, AlCl{sub 3} {center_dot} 6H{sub 2}O or Al(NO{sub 3}){sub 3} {center_dot} 9H{sub 2}O, followed by drying with supercritical CO{sub 2}. This technique affords low-density (60-130 kg/m{sup 3}), high surface area (600-700 m{sup 2}/g) alumina aerogel monoliths without the use of alkoxide precursors. The dried alumina aerogels were characterized using elemental analysis, high-resolution transmission electron microscopy, powder X-ray diffraction, solid state NMR, acoustic measurements and nitrogen adsorption/desorption analysis. Powder X-ray diffraction and TEM analysis indicated that the aerogel prepared from hydrated AlCl{sub 3} in water or ethanol possessed microstructures containing highly reticulated networks of pseudoboehmite fibers, 2-5 nm in diameter and of varying lengths, while the aerogels prepared from hydrated Al(NO{sub 3}){sub 3} in ethanol were amorphous with microstructures comprised of interconnected spherical particles with diameters in the 5-15 nm range. The difference in microstructure resulted in each type of aerogel displaying distinct physical and mechanical properties. In particular, the alumina aerogels with the weblike microstructure were far more mechanically robust than those with the colloidal network, based on acoustic measurements. Both types of alumina aerogels can be transformed to {gamma}-Al{sub 2}O{sub 3} through calcination at 800 C without a significant loss in surface area or monolithicity.

  10. 120 years of U.S. residential housing stock and floor space

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; Zhou, Wei -Xing

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less

  11. Preparation and lithium intercalation behavior of TiO{sub 2} in aqueous solutions

    SciTech Connect (OSTI)

    Li, Yunjiao, E-mail: yunjiaoli6601@hotmail.com; Li, Lin; Chen, Lingpeng; Wang, Xuanyu; Xu, Cang

    2014-04-01

    Highlights: The poor crystalline anatase phase or amorphous TiO{sub 2} was prepared by TiCl{sub 4} hydrolysis under different pH conditions. Phase transition behavior and lithium intercalation ability of the obtained TiO{sub 2} were found to be related to TiO{sub 2} property. The results indicate that TiO{sub 2} products obtained from TiCl{sub 4} hydrolysis at lower pH are favorable for lithium intercalation. - Abstract: The low crystalline or amorphous TiO{sub 2} was prepared by TiCl{sub 4} hydrolysis in aqueous solutions under different pH conditions at 45 C. The products obtained at lower pH (1.233.10) appear to be nano-sized particles with poor crystalline anatase structure and an uniform particle size distribution, while the product prepared at pH 4.10 presents in a poor crystalline anatase structure and the regular morphology starts to disappear, and the products obtained at higher pH (>6.00) are amorphous and irregular morphology. The hydrolysis products obtained at pH 2.60 and 8.80 were heat-treated at 300, 400, 600, 700 and 800 C for 3 h, respectively, to figure out the phase transition. The differences in phase transition process were observed, which verified the properties difference. The lithium intercalation abilities of the obtained TiO{sub 2} were studied. The results indicated that the TiO{sub 2} obtained at lower pH are more favorable for lithium intercalation and are better precursors.

  12. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  13. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    SciTech Connect (OSTI)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  14. Meetings - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings SRSCRO Meetings Schedule PLEASE CALL THE SRSCRO OFFICE AT 803-508-7401 FOR MEETING DETAILS 2016 Board Meeting Dates January 28, 2016, 10:00 A.M. March 24, 2016, 10:00 A.M. May 26, 2016, 10:00 A.M. July 28, 2016, 10:00 A.M. September 22, 2016, 10:00 A.M December 1, 2016, 10:00 A.M. 2016 Executive Committee Meeting Dates January 7, 2016, 9:00 A.M. February 4, 2016, 9:00 A.M. March 3, 2016, 9:00 A.M. April 14, 2016, 9:00 A.M. May 5, 2016, 9:00 A.M. June 2, 2016, 9:00 A.M. July 7, 2016,

  15. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter with New 900 Volt Silicon Carbide MOSFET Technology | Department of Energy 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Presentation given by Cree at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 88 kilowatt automotive inverter with new

  16. Waukesha VHP5108GL | Open Energy Information

    Open Energy Info (EERE)

    VHP5108GL Jump to: navigation, search Manufacturer Waukesha Technology Type Internal Combustion Engine Engine Type Synchronous Generator Power Output 800 kW0.8 MW 800,000 W...

  17. Roanoke Electric Member Corp | Open Energy Information

    Open Energy Info (EERE)

    1-800-358-9437 Website: www.roanokeelectric.com Outage Hotline: 1-800-358-9437 Outage Map: www.roanokeelectric.comconten References: EIA Form EIA-861 Final Data File for 2010...

  18. Topic Area 1: Technology Demonstration Projects | Open Energy...

    Open Energy Info (EERE)

    Source Heat Pumps Nashville, TN 1,800,000 1,800,000 3,600,000 New School & Performing Arts Theater Pennsylvania 1001 South 15th Street Associates, LLC Recovery Act - Geothermal...

  19. TransCanada Power Mktg Ltd (New Hampshire) | Open Energy Information

    Open Energy Info (EERE)

    Place: New Hampshire Phone Number: 1.800.661.3805 Website: www.transcanada.comindex.html Twitter: @TransCanada Outage Hotline: 1-800-447-8066 References: EIA Form EIA-861 Final...

  20. TransCanada Power Mktg Ltd (New York) | Open Energy Information

    Open Energy Info (EERE)

    York Phone Number: 1.800.661.3805 or 1.403.920.2000 Website: www.transcanada.com4779.html Outage Hotline: 1.800.661.3805 or 1.403.920.2000 References: EIA Form EIA-861 Final...

  1. NUG Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-800-66-NERSC, option 2 or 510-486-8612 Consulting http:help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home For Users NERSC...

  2. NERSC-8 Procurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-800-66-NERSC, option 2 or 510-486-8612 Consulting http:help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home For Users ...

  3. Retired Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-800-66-NERSC, option 2 or 510-486-8612 Consulting http:help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home For Users ...

  4. Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-800-66-NERSC, option 2 or 510-486-8612 Consulting http:help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home For Users NERSC...

  5. Questions about Cori II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-800-66-NERSC, option 2 or 510-486-8612 Consulting http:help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home For Users ...

  6. San Bernard Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop, Inc Place: Texas Phone Number: 800-364-3171 Website: www.sbec.org Outage Hotline: 800-364-3171 Outage Map: 66.63.235.29Outages References: EIA Form EIA-861...

  7. Central Florida Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Florida Phone Number: 1-800-227-1302 or 352-493-2511 Website: www.cfec.com Outage Hotline: 1-800-227-1302 or 352-493-2511 Outage Map: www.cfec.comoutage-mapsite...

  8. Douglas Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Oregon Phone Number: 541-673-6616 or 1-800-233-2733 Website: www.douglaselectric.com Outage Hotline: 541-673-6616 or 1-800-233-2733 Outage Map: ebill.douglaselectric.comwoVi...

  9. Southwestern Electric Coop Inc (New Mexico) | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: New Mexico Phone Number: (800) 637-8667 Website: www.sweci.comHome.aspx Outage Hotline: (800) 637-8667 Outage Map: ebill.sweci.comwoViewermapvi References: EIA...

  10. ConocoPhillips Company (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    search Name: ConocoPhillips Company Place: Illinois Phone Number: (800) 927-9801 Outage Hotline: (800) 927-9801 References: EIA Form EIA-861 Final Data File for 2010 -...

  11. Electrical Dist No2 Pinal Cnty | Open Energy Information

    Open Energy Info (EERE)

    No2 Pinal Cnty Jump to: navigation, search Name: Electrical Dist No2 Pinal Cnty Place: Arizona Phone Number: (800) 259-1306 Website: ed2.com Outage Hotline: 800-668-8079...

  12. Gulf Coast Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop, Inc Jump to: navigation, search Name: Gulf Coast Electric Coop, Inc Place: Florida Phone Number: 1-800-568-3667 Website: www.gcec.com Outage Hotline: 1-800-568-3667...

  13. Okefenoke Rural El Member Corp (Florida) | Open Energy Information

    Open Energy Info (EERE)

    Florida) Jump to: navigation, search Name: Okefenoke Rural El Member Corp Place: Florida Phone Number: 1-800-432-4770 Website: www.oremc.com Outage Hotline: 1.800.262.5131 Outage...

  14. Little Ocmulgee El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Ocmulgee El Member Corp Jump to: navigation, search Name: Little Ocmulgee El Member Corp Place: Georgia Phone Number: 1-800-342-1290; 912-568-7171; 1-800-342-1290 Website:...

  15. Okefenoke Rural El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Okefenoke Rural El Member Corp Place: Georgia Phone Number: 1-800-262-5131 Website: www.oremc.com Outage Hotline: 1-800-262-5131 References: EIA Form EIA-861 Final Data File for...

  16. Empire Electric Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Empire Electric Assn, Inc Place: Utah Phone Number: 970-565-4444 or 800-709-3726 Website: www.eea.coop Outage Hotline: 970-565-4444 or 800-709-3726 References:...

  17. Volunteer Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    1-800-362-9684 Website: vec.org Facebook: https:www.facebook.comvolunteerenergycoop?refhl Outage Hotline: 1-800-362-9684 References: EIA Form EIA-861 Final Data File for 2010...

  18. Dixie Electric Membership Corp | Open Energy Information

    Open Energy Info (EERE)

    1-800-262-0221 Website: www.demco.org Facebook: https:www.facebook.comDEMCOLouisiana?refhl Outage Hotline: (225) 261-1160 or 1-800-262-1160 Outage Map: demco.maps.sienatech.co...

  19. THE EI'IVIRONMENTAL QUALITY COMPANY CORPCl~V\\TE OFFICE

    Office of Environmental Management (EM)

    EI'IVIRONMENTAL QUALITY COMPANY CORPClVTE OFFICE Ill 36255 MICIat:l;1 '1 J.VENIJE WAYNE , IVICHICA148 '184 te800-5925489 tit fax 800-592-5329 February 20, 2013...

  20. Taylor County Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    Taylor County Rural E C C Jump to: navigation, search Name: Taylor County Rural E C C Place: Kentucky Phone Number: 1-800-931-4551 Website: www.tcrecc.com Outage Hotline: (800)...