Powered by Deep Web Technologies
Note: This page contains sample records for the topic "686-g l-lake sluice" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The limnology of L Lake: Results of the L-Lake monitoring program, 1986--1989  

SciTech Connect (OSTI)

L Lake was constructed in 1985 on the upper regions of Steel Creek, SRS to mitigate the heated effluents from L Reactor. In addition to the NPDES permit specifications (Outfall L-007) for the L-Reactor outfall, DOE-SR executed an agreement with the South Carolina Department of Health and Environmental Control (SCDHEC), that thermal effluents from L-Reactor will not substantially alter ecosystem components in the approximate lower half of L Lake. This region should be inhabited by Balanced (Indigenous) Biological Communities (BBCs) in accordance with Section 316(a) of the Pollution Control (Clean Water) Act (Public Law 92-500). In response to this requirement the Environmental Sciences Section/Ecology Group initiated a comprehensive biomonitoring program which documented the development of BBCs in L Lake from January 1986 through December 1989. This report summarizes the principal results of the program with regards to BBC compliance issues and community succession in L Lake. The results are divided into six sections: water quality, macronutrients, and phytoplankton, aquatic macrophytes, zooplankton, benthic macroinvertebrates, fish, and community succession. One of the prime goals of the program was to detect potential reactor impacts on L Lake.

Bowers, J.A.

1991-12-15T23:59:59.000Z

2

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

685-G PAR Pond and 686-G L-Lake Sluice Gate Conduit Cleanouts/Inspections 685-G PAR Pond and 686-G L-Lake Sluice Gate Conduit Cleanouts/Inspections Savannah River Site Aiken/Aiken/South Carolina The purpose of this activity is to perform gate checks and clear weeds and other debris from the conduits at Par Pond Dam and Steel Creek Dam (L-Lake), in part to facilitate Federal Energy Regulatory Commission inspection requirements. This will be accomplished at Par Pond by opening the sluice gate and increasing the flow from the normal 10 CFS incrementally to a fully open flow of 2000 CFS. Flow will be increased by opening the sluice gate in stages of 50% per hour until the gate is fully open. The gate will remain fully open for 5 minutes, whereupon the gate will be closed to its normal position and flow of 10 CFS. At Steel Creek Dam, this will be accomplished in the same manner except normal flow is 4.5

3

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

685-G PAR Pond and 686-G L-Lake Sluice Gate Conduit Cleanouts/Inspections 685-G PAR Pond and 686-G L-Lake Sluice Gate Conduit Cleanouts/Inspections Savannah River Site Aiken/Aiken/South Carolina The purpose of this activity is to perform gate checks and clear weeds and other debris from the conduits at Par Pond Dam and Steel Creek Dam (L-Lake), in part to facilitate Federal Energy Regulatory Commission inspection requirements. This will be accomplished at Par Pond by opening the sluice gate and increasing the flow from the normal 10 CFS incrementally to a fully open flow of 2000 CFS. Flow will be increased by opening the sluice gate in stages of 50% per hour until the gate is fully open. The gate will remain fully open for 5 minutes, whereupon the gate will be closed to its normal position and flow of 10 CFS. At Steel Creek Dam, this will be accomplished in the same manner except normal flow is 4.5

4

CX-010121: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

21: Categorical Exclusion Determination 21: Categorical Exclusion Determination CX-010121: Categorical Exclusion Determination 685-G Par Pond and 686-G L-Lake Sluice Gate Conduit Cleanouts/Inspections CX(s) Applied: B1.3 Date: 03/21/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office The purpose of this activity is to perform gate checks and clear weeds and other debris from the conduits at Par Pond Dam and Steel Creek Dam (L-Lake), in part to facilitate Federal Energy Regulatory Commission inspection requirements. This will be accomplished at Par Pond by opening the sluice gate and increasing the flow from the normal 10 CFS incrementally to a fully open flow of 2000 CFS. Flow will be increased by opening the sluice gate in stages of 50% per hour until the gate is fully

5

CX-002205: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

205: Categorical Exclusion Determination 205: Categorical Exclusion Determination CX-002205: Categorical Exclusion Determination 686-G Steel Creek Dam (L-Lake) Inspection CX(s) Applied: B1.3 Date: 04/16/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office The purpose of this activity is to perform gate checks and inspect the operating mechanisms of the gates at Steel Creek Dam (L-Lake). This will be accomplished by opening the sluice gate and increasing the flow from the normal 4.5 cubic feet per second (CFS) incrementally to a fully open flow of 1400 CFS. Flow will be increased by opening the sluice gate in stages of 50% per hour until the gate is fully open. The gate will remain fully open for 5 minutes, whereupon the gate will be closed to its normal position and

6

Waste retrieval sluicing system data acquisition system acceptance test report  

SciTech Connect (OSTI)

This document describes the test procedure for the Project W-320 Tank C-106 Sluicing Data Acquisition System (W-320 DAS). The Software Test portion will test items identified in the WRSS DAS System Description (SD), HNF-2115. Traceability to HNF-2115 will be via a reference that follows in parenthesis, after the test section title. The Field Test portion will test sensor operability, analog to digital conversion, and alarm setpoints for field instrumentation. The W-320 DAS supplies data to assist thermal modeling of tanks 241-C-106 and 241-AY-102. It is designed to be a central repository for information from sources that would otherwise have to be read, recorded, and integrated manually. Thus, completion of the DAS requires communication with several different data collection devices and output to a usable PC data formats. This test procedure will demonstrate that the DAS functions as required by the project requirements stated in Section 3 of the W-320 DAS System Description, HNF-2115.

Bevins, R.R.

1998-07-31T23:59:59.000Z

7

Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2  

SciTech Connect (OSTI)

A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

Phillips, D.R.

1994-07-01T23:59:59.000Z

8

Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991  

SciTech Connect (OSTI)

The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

1992-04-01T23:59:59.000Z

9

Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991  

SciTech Connect (OSTI)

The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

1992-02-01T23:59:59.000Z

10

Imaging through obscurations for sluicing operations in the waste storage tanks  

SciTech Connect (OSTI)

Waste remediators have identified that surveillance of waste remediation operations and periodic inspections of stored waste are required under very demanding and difficult viewing environments. In many cases, obscurants such as dust or water vapor are generated as part of the remediation activity. Methods are required for viewing or imaging beyond the normal visual spectrum. Work space images guide the movement of remediation equipment, creating a need for rapidly updated, near real-time imaging capability. In addition, there is a need for three-dimensional topographical data to determine the contours of the wastes, to plan retrieval campaigns, and to provide a three-dimensional map of a robot`s work space as basis for collision avoidance. Three basic imaging techniques were evaluated: optical, acoustic and radar. The optical imaging methods that were examined used cameras which operated in the visible region and near-infrared region and infrared cameras which operated in the 3--5 micron and 8--12 micron wavelength regions. Various passive and active lighting schemes were tested, as well as the use of filters to eliminate reflection in the visible region. Image enhancement software was used to extend the range where visual techniques could be used. In addition, the operation of a laser range finder, which operated at 0.835 microns, was tested when fog/water droplets were suspended in the air. The acoustic technique involved using commercial acoustic sensors, operating at approximately 50 kHz and 215 kHz, to determine the attenuation of the acoustic beam in a high-humidity environment. The radar imaging methods involved performing millimeter wave (94 GHz) attenuation measurement sin the various simulated sluicing environments and performing preliminary experimental imaging studies using a W-Band (75--110 GHz) linearly scanned transceiver in a laboratory environment. The results of the tests are discussed.

Peters, T.J.; McMakin, D.L.; Sheen, D.M.; Chieda, M.A.

1994-08-01T23:59:59.000Z

11

 

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

purpose of this activity is to perform gate checks and inspect the operating mechanisms of the gates at Steel Creek Dam (L-Lake). This will be purpose of this activity is to perform gate checks and inspect the operating mechanisms of the gates at Steel Creek Dam (L-Lake). This will be accomplished by opening the sluice gate and increasing the flow from the normal 4.5 CFS incrementally to a fully open flow of 1400 CFS. Flow will be increased by opening the sluice gate in stages of 50% per hour until the gate is fully open. The gate will remain fully open for 5 minutes, whereupon the gate will be closed to its normal position and flow of 4.5 CFS. After fully open flow for 5 minutes, the gate will be returned to its normal position, reestablishing the 4.5 CFS flow. During the periods of increased flow, water samples will be collected to monitor sediment transport. Any ecological impacts to the receiving stream is expected to be minimal and temporary.

12

 

Broader source: Energy.gov (indexed) [DOE]

The purpose of this activity is to perform gate checks and inspect the operating mechanisms of the gates at Steel Creek Dam (L-Lake). This will be The purpose of this activity is to perform gate checks and inspect the operating mechanisms of the gates at Steel Creek Dam (L-Lake). This will be accomplished by opening the sluice gate and increasing the flow from the normal 4.5 CFS incrementally to a fully open flow of 1400 CFS. Flow will be increased by opening the sluice gate in stages of 50% per hour until the gate is fully open. The gate will remain fully open for 5 minutes, whereupon the gate will be closed to its normal position and flow of 4.5 CFS. After fully open flow for 5 minutes, the gate will be returned to its normal position, reestablishing the 4.5 CFS flow. During the periods of increased flow, water samples will be collected to monitor sediment transport. Any ecological

13

Project management plan for Project W-320, Tank 241-C-106 sluicing  

SciTech Connect (OSTI)

This Project Management Plan establishes the organization, plans, and systems for management of Project W-320 as defined in DOE Order 4700.1, Project Management System (DOE 1987).

Phillips, D.R.

1994-12-01T23:59:59.000Z

14

Project W-320, 241-C-106 sluicing: Civil/structural calculations. Volume 3  

SciTech Connect (OSTI)

This supporting document has been prepared to make the FDNW civil/structural calculations for Project W-320 readily retrievable. The Equipment Removal System (ERS) has been identified by WHC as not having any safety class 1 items present in the tank pits during equipment removal activities, Documentation of this finding is provided in Letter of Instruction 3/1 Analysis Requirements for Project W-320 Equipment Removal System (REF: LOI KGS-94-013). Based on this specific direction from WHC, 3/1 analysis for any component of the Project W-320 ERS is required. No further documentation of non-safety impacting safety items is required per DOE-RL Audit finding No.90-02, and filing of this memorandum in the W-320 project files satisfies the intent of the referenced DOE observation.

Bailey, J.W.

1998-07-24T23:59:59.000Z

15

Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4  

SciTech Connect (OSTI)

This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.

Bailey, J.W.

1998-07-24T23:59:59.000Z

16

Project W-320, 241-C-106 sluicing electrical calculations, Volume 2  

SciTech Connect (OSTI)

This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. These calculations are required: To determine the power requirements needed to power electrical heat tracing segments contained within three manufactured insulated tubing assemblies; To verify thermal adequacy of tubing assembly selection by others; To size the heat tracing feeder and branch circuit conductors and conduits; To size protective circuit breaker and fuses; and To accomplish thermal design for two electrical heat tracing segments: One at C-106 tank riser 7 (CCTV) and one at the exhaust hatchway (condensate drain). Contents include: C-Farm electrical heat tracing; Cable ampacity, lighting, conduit fill and voltage drop; and Control circuit sizing and voltage drop analysis for the seismic shutdown system.

Bailey, J.W.

1998-08-07T23:59:59.000Z

17

Mess(ge)rinne f, (n)  

Science Journals Connector (OSTI)

Mess(ge)rinne f, (n), Messkanal m ? flume, sluice, measuring flume, measuring sluice, meter flume, measurement flume, launder, measurement sluice, meter sluice [A channel in which water i...

2013-01-01T23:59:59.000Z

18

Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste - 14206 (DRAFT)  

SciTech Connect (OSTI)

A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.

Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

2013-11-11T23:59:59.000Z

19

STATE OF MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI CLEAN...  

National Nuclear Security Administration (NNSA)

of the flood protection levee sluice gate Hydrostatic testing of new piping and tanks using city watercondensate from building heating and cooling units. Flows are...

20

Slowing the Flow at Pickering PROGRAMME DELIVERY GROUP MEETING  

E-Print Network [OSTI]

Trotter, Mike Potter, Gordon Clitheroe, Howard Keal, Linda Cowling, Nick Odoni, Stuart Lane, Mick Hoban proposal as it stands proves its worth. (general discussion follows over weirs and sluices, merits

Note: This page contains sample records for the topic "686-g l-lake sluice" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

HOSPITAL LAUNDRY STANDARDS AND ENERGY CONSERVATION: A PROGRAM PLAN  

E-Print Network [OSTI]

Fighting cross infection in hospital linen. Service Bulletina marker organism in a hospital ward. Br. Med. J. ii: 282-E.R. (1959). Sluicing of hospital linen in automatic washing

Battles, Donald R.

2014-01-01T23:59:59.000Z

22

Safety equipment list for 241-C-106 waste retrieval, Project W-320: Revision 1  

SciTech Connect (OSTI)

The goals of the C-106 sluicing operation are: (1) to stabilize the tank by reducing the heat load in the tank to less than 42 MJ/hr (40,000 Btu/hour), and (2) to initiate demonstration of single-shell tank (SST) retrieval technology. The purpose of this supporting document (SD) is as follows: (1) to provide safety classifications for items (systems, structures, equipment, components, or parts) for the waste retrieval sluicing system (WRSS), and (2) to document and methodology used to develop safety classifications. Appropriate references are made with regard to use of existing systems, structures, equipments, components, and parts for C-106 single-shell transfer tank located in the C Tank Farm, and 241-AY-102 (AY-102) double shell receiver tanks (DST) located in the Aging Waste Facility (AWF). The Waste Retrieval Sluicing System consists of two transfer lines that would connect the two tanks, one to carry the sluiced waste slurry to AY-102, and the other to return the supernatant liquid to C-106. The supernatant, or alternate fluid, will be used to mobilize waste in C-106 for the sluicing process. The equipment necessary for the WRSS include pumps in each tank, sluicers to direct the supernatant stream in C-106, a slurry distributor in AY-102, HVAC for C-106, instrumentation and control devices, and other existing components as required.

Conner, J.C.

1994-11-15T23:59:59.000Z

23

Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data  

SciTech Connect (OSTI)

This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

2010-06-18T23:59:59.000Z

24

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

NONE

1997-11-01T23:59:59.000Z

25

What's in Season from the Garden State To receive these reports by e-mail: njfarmfresh@rcre.rutgers.edu  

E-Print Network [OSTI]

brilliant red skin. A fruit native to New Jersey, the cranberry thrives in the acidic peat soil of the Pines reservoirs are made. The waters are recycled through the bogs through a system of canals, sluice gates://www.jerseyfresh.nj.gov/. Lest one think the cranberry industry is as back- woods and slow-paced as a lazy river through

Goodman, Robert M.

26

AU1: Use authority names upon first mention in the abstract and first mention in the text. AU2: The citation "Tribe Cillie 2004" matches the reference "Tribe Cillie 2004", but an accent  

E-Print Network [OSTI]

brilliant red skin. A fruit native to New Jersey, the cranberry thrives in the acidic peat soil of the Pines reservoirs are made. The waters are recycled through the bogs through a system of canals, sluice gates://www.jerseyfresh.nj.gov/. Lest one think the cranberry industry is as back- woods and slow-paced as a lazy river through

Parry, Dylan

27

Tank 241-C-106 in-tank imaging system operational test report  

SciTech Connect (OSTI)

This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106.

Pedersen, L.T.

1998-07-07T23:59:59.000Z

28

EA-1070: Revised Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

70: Revised Finding of No Significant Impact 70: Revised Finding of No Significant Impact EA-1070: Revised Finding of No Significant Impact Natural Fluctuation of Water Level in Par Pond and Reduced Water Flow in Steel Creek below L Lake at the Savannah River Site The Department of Energy (DOE) has prepared an environmental assessment (EA) for the proposed natural fluctuation of water level in Par Pond, and reduced water flow in Steel Creek below L Lake at the Savannah River Site near Aiken, South Carolina. Based on analyses in the EA, DOE determined that the proposed action was not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act. Revised Finding of No Significant Impact for the Natural Fluctuation of Water Level in Par Pond and Reduced Water Flow in Steel Creek below L Lake

29

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 6720 of 28,905 results. 11 - 6720 of 28,905 results. Download CX-005773: Categorical Exclusion Determination Paint Removal/Disturbance Involved Work in K-Area Complex Facilities CX(s) Applied: B1.3 Date: 04/12/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-005773-categorical-exclusion-determination Download CX-005775: Categorical Exclusion Determination Synthesis of Inorganic Materials Using Microwave Reactor CX(s) Applied: B3.6 Date: 04/07/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-005775-categorical-exclusion-determination Download CX-005777: Categorical Exclusion Determination Excavate and Replace Drain Pipe at 686-G Steel Creek Dam

30

Tanks Focus Area retrieval process development and enhancements FY96 technology development summary report  

SciTech Connect (OSTI)

The Retrieval Process Development and Enhancements (RPD&E) activities are part of the Retrieval and Closure Program of the U.S. Department of Energy (DOE) EM-50 Tanks Focus Area. The purposes of RPD&E are to understand retrieval processes, including emerging and existing technologies, and to gather data on those processes, so that end users have the requisite technical basis to make retrieval decisions. Work has been initiated to support the need for multiple retrieval technologies across the DOE complex. Technologies addressed during FY96 focused on enhancements to sluicing, borehole mining, confined sluicing retrieval end effectors, the lightweight scarifier, and pulsed air mixing. Furthermore, a decision tool and database have been initiated to link retrieval processes with tank closure to assist end users in making retrieval decisions.

Rinker, M.W.; Bamberger, J.A.; Hatchell, B.K. [and others

1996-09-01T23:59:59.000Z

31

Preliminary safety evaluation for 241-C-106 waste retrieval, project W-320  

SciTech Connect (OSTI)

This document presents the Preliminary Safety Evaluation for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). The US DOE has been mandated to develop plans for response to safety issues associated with the waste storage tanks at the Hanford Site, and to report the progress of implementing those plans to Congress. The objectives of Project W-230 are to design, fabricate, develop, test, and operate a new retrieval system capable of removing a minimum of about 75% of the high-heat waste contained in C-106. It is anticipated that sluicing operations can remove enough waste to reduce the remaining radiogenic heat load to levels low enough to resolve the high-heat safety issue as well as allow closure of the tank safety issue.

Conner, J.C.

1994-10-18T23:59:59.000Z

32

Repository of not readily available documents for project W-320  

SciTech Connect (OSTI)

The purpose of this document is to provide a readily available source of the technical reports needed for the development of the safety documentation provided for the waste retrieval sluicing system (WRSS), designed to remove the radioactive and chemical sludge from tank 241-C-106, and transport that material to double-shell tank 241-AY-102 via a new, temporary, shielded, encased transfer line.

Conner, J.C.

1997-04-18T23:59:59.000Z

33

Acceptance test report for the Tank 241-C-106 in-tank imaging system  

SciTech Connect (OSTI)

This document presents the results of Acceptance Testing of the 241-C-106 in-tank video camera imaging system. The purpose of this imaging system is to monitor the Project W-320 sluicing of Tank 241-C-106. The objective of acceptance testing of the 241-C-106 video camera system was to verify that all equipment and components function in accordance with procurement specification requirements and original equipment manufacturer`s (OEM) specifications. This document reports the results of the testing.

Pedersen, L.T.

1998-05-22T23:59:59.000Z

34

EM-50 Tanks Focus Area retrieval process development and enhancements. FY97 technology development summary report  

SciTech Connect (OSTI)

The Retrieval Process Development and Enhancements (RPD and E) activities are part of the US Department of Energy (DOE) EM-50 Tanks Focus Area, Retrieval and Closure program. The purpose of RPD and E is to understand retrieval processes, including emerging and existing technologies, and to gather data on these processes, so that end users have requisite technical bases to make retrieval decisions. Technologies addressed during FY97 include enhancements to sluicing, the use of pulsed air to assist mixing, mixer pumps, innovative mixing techniques, confined sluicing retrieval end effectors, borehole mining, light weight scarification, and testing of Russian-developed retrieval equipment. Furthermore, the Retrieval Analysis Tool was initiated to link retrieval processes with tank waste farms and tank geometric to assist end users by providing a consolidation of data and technical information that can be easily assessed. The main technical accomplishments are summarized under the following headings: Oak Ridge site-gunite and associated tanks treatability study; pulsed air mixing; Oak Ridge site-Old Hydrofracture Facility; hydraulic testbed relocation; cooling coil cleaning end effector; light weight scarifier; innovative tank mixing; advanced design mixer pump; enhanced sluicing; Russian retrieval equipment testing; retrieval data analysis and correlation; simulant development; and retrieval analysis tool (RAT).

Rinker, M.W.; Bamberger, J.A. [Pacific Northwest National Lab., Richland, WA (United States); Alberts, D.G. [Waterjet Technology, Inc., Kent, WA (United States)] [and others

1997-09-01T23:59:59.000Z

35

Development of a waste dislodging and retrieval system for use in the Oak Ridge National Laboratory gunite tank  

SciTech Connect (OSTI)

As part of the Gunite And Associated Tanks (GAAT) Treatability Study the Oak Ridge National Laboratory (ORNL) has developed a tank waste retrieval system capable of removing wastes varying from liquids to thick sludges. This system is also capable of scarifying concrete walls and floors. The GAAT Treatability Study is being conducted by the Department of Energy Oak Ridge Environmental Restoration Program. Much of the technology developed for this project was cosponsored by the DOE Office of Science and Technology through the Tanks Focus Area (TFA) and the Robotics Technology Development Program. The waste dislodging and conveyance (WD&C) system was developed jointly by ORNL and participants from the TFA. The WD&C system is comprised of a four degree-of-freedom arm with back driveable motorized joints. a cutting and dislodging tool, a jet pump and hose management system for conveyance of wastes, confined sluicing end-effector, and a control system, and must be used in conjunction with a robotic arm or vehicle. Other papers have been submitted to this conference describing the development and operation of the arm and vehicle positioning systems. This paper will describe the development of the WD&C system and its application for dislodging and conveyance of ORNL sludges from the GAAT tanks. The confined sluicing end-effector relies on medium pressure water jets to dislodge waste that is then pumped by the jet pump through the conveyance system out of the tank. This paper will describe the results of cold testing of the integrated system. At the conference presentation there will also be results from the field deployment. ORNL has completed fabrication of the WD&C system for waste removal and is full-scale testing, including testing of the confined sluicing end-effector.

Randolph, J.D.; Lloyd, P.D.; Burks, B.L. [and others

1997-03-01T23:59:59.000Z

36

Fish injury and mortality in spillage and turbine passage  

SciTech Connect (OSTI)

Spillage rather than turbine passage has generally been considered the more benign route for fish passing hydroelectric stations. However, recent studies utilizing the HI-Z Turb`N Tag recapture technique indicate that fish survival may be similar for these passage routes. Short-term ({<=}1 h) survival rates determined during 25 passage tests at propeller turbines on a variety of fish species were compared with those from six sluice/spill tests. Turbine passage survival data were partitioned by fish size, individual turbine unit size, and efficient or inefficient mode of turbine operation. The survival rate in all the turbine passage tests ranged from 81 to 100% (median 96%). Survival estimates were generally similar over the entire range of turbine discharges tested and regardless of operational mode for fish {<=}200 mm (93 to 100%; median 96%). However, studies on fish >200 mm where smaller turbines operated inefficiently were more variable. Estimated survival rates of 81 to 86% were obtained for these larger fish. These latter studies occurred at horizontal propeller type turbines where an inefficient wicket gate or turbine blade setting was tested. Survival rates obtained during the sluice/spill tests ranged from 93 to 100%, with a median of 98%. Although fish species or size did not appear an important factor, the physical characteristics of the sluice/spill area apparently did affect survival. Unobstructed spills yielded higher survival rates. Since similar passage survival rates were obtained for turbine passage (96%) compared to spill passage (98%), the strategy of diverting fishes over spillways or through bypasses should be reexamined. This is especially true when bypasses or spills are suggested as mitigation to protect emigrating juvenile anadromous fishes. Whichever strategy is chosen a quantitative evaluation of each route should be undertaken.

Heisey, P.G.; Mathur, D.; Euston, E.T. [RMC Environmental Services, Drumore, PA (United States)

1995-12-31T23:59:59.000Z

37

Absolute pollen influx and paleoenvironmental interpretations from Lake Wabamun, Alberta, Canada  

E-Print Network [OSTI]

ABSOLUTE POI. I, EN INFLUX AND PALEOEXVIRONNV-'NTAL XNTERPRETATTONS FROII LAKE WABAPRI:. I, ALBERTA, CANADA A Thesis RICHARD GEORGE HOLLOWAY Submitted to the Graduate Collcpe of Texas A&II University in partial fulfillment of the requirement... for the degr. . ;. . of MASTER OF SCTENCL' August. 1978 I!ajor Suhject: Botany ABSOLUTE POLLFN INFLUX AND PALEOENVIRONMENTAL INTERPRETATIONS FROM lAKE WABAMUN, ALBERTA, CANADA A Thesis by RICHARD GEORGE HOLLOWAY Appreoved as to style and content by...

Holloway, Richard George

2012-06-07T23:59:59.000Z

38

Mixer pump test plan for double shell tank AZ-101  

SciTech Connect (OSTI)

Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank (DST)waste. Mixer pumps were chosen as the planned method of retrieval for the DSTs, based on engineering technology studies,past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site. This document outlines a test plan to demonstrate the ability of two 300 hp mixer pumps installed in the AZ-101 tank to mobilize waste.

Symons, G.A.; Staehr, T.W., Westinghouse Hanford

1996-06-01T23:59:59.000Z

39

Application of membrane technology to power generation waters  

SciTech Connect (OSTI)

Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

1980-03-01T23:59:59.000Z

40

Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations  

SciTech Connect (OSTI)

The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report analyzes the retrieval testing issues and describes what has been learned and issues that need further resolution. As such, it can serve as a guide to additional testing that must be performed before the systems are used in-tank. The major issues discussed are tank access, deployment, mining strategy, waste retrieval, liquid scavenging (liquid usage), maneuverability, positioning, static and dynamic performance, remote operations, reliability, availability, maintenance, tank safety, and cost.

Berglin, E.J.

1998-02-05T23:59:59.000Z

Note: This page contains sample records for the topic "686-g l-lake sluice" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Remote systems for waste retrieval from the Oak Ridge National Laboratory gunite tanks  

SciTech Connect (OSTI)

As part of a Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study funded by the Department of Energy, the Oak Ridge National Laboratory (ORNL) is preparing to demonstrate and evaluate two approaches for the remote retrieval of wastes in underground storage tanks. This work is being performed to identify the most cost-effective and efficient method of waste removal before full-scale remediation efforts begin in 1998. System requirements are based on the need to dislodge and remove sludge wastes ranging in consistency from broth to compacted clay from Gunite (Shotcrete) tanks that are approaching fifty years in age. Systems to be deployed must enter and exit through the existing 0.6 m (23.5 in.) risers and conduct retrieval operations without damaging the layered concrete walls of the tanks. Goals of this project include evaluation of confined sluicing techniques and successful demonstration of a telerobotic arm-based system for deployment of the sluicing system. As part of a sister project formed on the Old Hydrofracture Facility tanks at ORNL, vehicle-based tank remediation will also be evaluated.

Falter, D.D.; Babcock, S.M.; Burks, B.L.; Lloyd, P.D.; Randolph, J.D.; Rutenber, J.E. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Van Hoesen, S.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States). Central Engineering Services

1995-12-31T23:59:59.000Z

42

Optimization modelling of the impacts of a Severn Barrage for a two-way generation scheme using a Continental Shelf model  

Science Journals Connector (OSTI)

Abstract The Severn Estuary has the world's second largest tide range and a barrage across the estuary, located just seawards of Cardiff in Wales and Weston in the South West England, has been proposed for over half a century, with the objective of extracting large amounts of tidal energy. A Severn Barrage, as previously proposed by the Severn Tidal Power Group (STPG), would be the largest renewable energy project for tidal power generation in the world, if built as proposed, and would generate approximately 5% of the UK's electricity needs. However, concerns have been raised over the environmental impacts of such a barrage, including potential increase in flood risk, loss of intertidal habitats etc. In addressing the challenges of maximizing the energy output and minimizing the environmental impacts of such a barrage, this research study has focused on using a Continental Shelf model, based on the modified Environmental Fluid Dynamics Code (EFDC) with a barrage operation module (EFDC_B), to investigate both the far and near field hydrodynamic impacts of a barrage for different operating scenarios. Three scenarios have been considered to simulate the Severn Barrage, operating via two-way generation and using different combinations of turbines and sluices. The first scenario consisted of 216 turbines and 166 sluices installed along the barrage; the second consisted of 382 turbines with no sluices; and the third consisted of 764 turbines and no sluices. The specification of the sluice gates and turbines are the same for all scenarios. The model results indicate that the third scenario has the best mitigating effects for the far-field and near-field flood risks caused by a barrage and produces the most similar results of minimum water depth and maximum velocity distributions to those obtained from simulating the natural conditions of the estuary, i.e. the current conditions. The results also show that the flow patterns around the barrage are closest to those for the existing natural conditions with minimal slight changes in the estuary. Thus, the results clearly indicate that the environmental impacts of a Severn Barrage can be minimized if the barrage is operated for two-way generation and under the third scenario. Although it appears that the energy output for the third scenario is less than that obtained for the other two scenarios, if very low head (VLH) turbines are used, then the third scenario could generate more energy as more turbines could be cited along the barrage structure. Therefore, the study shows that a Severn Barrage, operating in two-way generation and with 764 turbines (ideally VLH turbines), would be the best option to meet the needs of maximizing the energy output, but having a minimal impact on environmental changes in the estuary and far-field.

Juntao Zhou; Shunqi Pan; Roger A. Falconer

2014-01-01T23:59:59.000Z

43

Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)  

SciTech Connect (OSTI)

A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling on the tether, even if the vehicle wheels were locked or the vehicle was on its side. Line pull required to retrieve the vehicle was measured, and side load on the riser calculated from the line pull and line angles. Finally, the decontamination test demonstrated the ability to effectively clean the umbilical and vehicle. The issues addressed and resolved during the testing were: Feasibility of deploying a vehicle- based system, mobility, production rate and limitation of water in the tank during sluicing, mining strategy, operator efficiency, vehicle recovery, and decontamination. Water usage and waste removal rates were used to estimate the time and water usage requirements for cleaning a Hanford SST.

Berglin, E.J.

1997-07-31T23:59:59.000Z

44

Potential for criticality in Hanford tanks resulting from retrieval of tank waste  

SciTech Connect (OSTI)

This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

1996-09-01T23:59:59.000Z

45

Treatability Study Operational Testing Program and Implementation Plan for the Gunite and Associated Tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

To support future decision making of the Gunite and Associated Tanks (GAAT) Operable Unit (OU) remedy selection, the Department of Energy (DOE) is performing a Treatability Study (TS), consistent with the EPA guidance for Comprehensive Environmental Response, compensation, and Liability Act (CERCLA) treatability studies. The study will inform stakeholders about various waste removal technologies and the cost of potential remediation approaches, particularly the cost associated with sluicing and the reduction in risk to human health and the environment from tank content removal. As part of the GAAT OU remedy, a series of studies and technology tests will be preformed. These may address one or more of the following areas, characterization, removal, treatment, and transfer of wastes stored in the GAAT OU.

NONE

1996-09-01T23:59:59.000Z

46

Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks  

SciTech Connect (OSTI)

This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

Meyer, Perry A.; Stewart, Charles W.

2001-01-01T23:59:59.000Z

47

Slide 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C C C - - Farm Farm Retrieval Retrieval Update Update Leela Sasaki Office of Waste Processing Technical Exchange May 19, 2009 Tank Operations Contract 2 Agenda * Retrieval Criteria * Retrieval Summary * Modified Sluicing * Tank Updates - Tank C-108 - Tank C-109 - Tank C-110 - Tank C-104 * Other Retrieval Technologies * Q&A Tank Operations Contract 3 Retrieval Criteria * Milestone M-45-00 of the Tri-Party Agreement (TPA) sets retrieval criteria - Volume not to exceed: * 360 ft 3 (2,693 gal) for 100 Series tanks (75-ft diameter tanks) * 30 ft 3 (224 gal) for 200 Series tanks (20-ft diameter tanks) - Retrieve waste to the limit of waste retrieval technology capability Tank Operations Contract 4 Pre- and Post-Retrieval Volumes * About 30% of the waste in C-Farm has been retrieved

48

Slide 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Caustic Caustic Caustic Caustic Cleaning Cleaning for Waste for Waste Heel Heel Removal Removal WB Barton Office of Waste Processing Technical Exchange May 19, 2009 Tank Operations Contract 2 I would like to acknowledge the work of Dan Herting, Heinz Huber, and the staff at the 222-S Laboratory. Without their work, this process would just be a glimmer of an idea. Tank Operations Contract 3 Contents * Background * Chemistry * History * Observations * Process * Next Steps Tank Operations Contract 4 Background * Only 1 of 5 C farm tanks has met the TPA goal for waste retrieval when they reached the "limit of the technology." * On average about 10 % of the starting volume is not retrievable with current sluicing technology. * Waste heels have similar appearance, light tan sand and

49

Co-management of coal combustion by-products and low-volume wastes: A Southeastern Site  

SciTech Connect (OSTI)

The Electric Power Research Institute initiated this study to provide environmental data on the co-management of utility high volume and low volume residues. This report presents results from a field investigation at an ash pond located at a 400 MW, coal-fired power plant in the southeastern US. The pond receives wet-sluiced fly ash and bottom ash from the generating station as well as low volume wastes from coal preparation, demineralizer regeneration, and boiler cleaning. A detailed hydrogeochemical characterization of the primary ash disposal pond and surrounding groundwater system was performed. A total of 25 monitoring wells were installed to characterize groundwater flow directions, rates and chemistry. Ash and soil cores were also collected for hydrogeochemical characterization.

Holcombe, L.J.; Thompson, C.M.; Rehage, J.A. (Radian Corp., Austin, TX (United States)); Erickson, J.R. (GeoTrans, Inc., Sterling, VA (United States)); Fruchter, J.S. (Battelle Pacific Northwest Lab., Richland, WA (United States))

1991-11-01T23:59:59.000Z

50

Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.

Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

1999-04-01T23:59:59.000Z

51

Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

NONE

1996-06-01T23:59:59.000Z

52

Estimation of annual energy output from a tidal barrage using two different methods  

Science Journals Connector (OSTI)

In recent years, there have been growing international challenges relating to climate change and global warming, with a conflict developing between the need to create a low-carbon economy and rapid depleting reserves of fossil fuels. In addition to these challenges there continues to be the added complexity of a significant global increase in energy demand. Marine renewable energy from tidal barrages is carbon-free and has the potential to make a significant contribution to energy supplies now and in the future. Therefore, it is appropriate to evaluate the total energy that can be extracted from such barrages. In this study two different methods are proposed to estimate the total annual energy output from a barrage, including a theoretical estimation based on the principle associated with tidal hydrodynamics, and a numerical estimation based on the solutions obtained from a 2D hydrodynamic model. The proposed Severn Barrage in the UK was taken as a case study, and these two methods were applied to estimate the potential annual energy output from the barrage. The predicted results obtained using the two methods indicate that the magnitude of the annual energy output would range from 13 to 16 TWh, which is similar to the value of 15.6 TWh reported by the Department of Energy and Climate Change, in the UK. Further investigations show that the total annual energy output would increase by about 15% if a higher discharge coefficient were to be adopted for the sluice gates, or if the turbine performance were to be improved. However, the estimated annual energy output could exceed the value of 16 TWh if future technological advances in both sluice gate construction and turbine performance are included.

Junqiang Xia; Roger A. Falconer; Binliang Lin; Guangming Tan

2012-01-01T23:59:59.000Z

53

Identification of physical properties for the retrieval data quality objective process  

SciTech Connect (OSTI)

This activity supports the retrieval data quality objective (DQO) process by identifying the material properties that are important to the design, development, and operation of retrieval equipment; the activity also provides justification for characterizing those properties. These properties, which control tank waste behavior during retrieval operations, are also critical to the development of valid physical simulants for designing retrieval equipment. The waste is to be retrieved in a series of four steps. First, a selected retrieval technology breaks up or dislodges the waste into subsequently smaller pieces. Then, the dislodged waste is conveyed out of the tank through the conveyance line. Next, the waste flows into a separator unit that separates the gaseous phase from the liquid and solid phases. Finally, a unit may be present to condition the slurried waste before transporting it to the treatment facility. This document describes the characterization needs for the proposed processes to accomplish waste retrieval. Baseline mobilization technologies include mixer pump technology, sluicing, and high-pressure water-jet cutting. Other processes that are discussed in this document include slurry formation, pneumatic conveyance, and slurry transport. Section 2.0 gives a background of the DQO process and the different retrieval technologies. Section 3.0 provides the mechanistic descriptions and material properties critical to the different technologies and processes. Supplemental information on specific technologies and processes is provided in the appendices. Appendix A contains a preliminary sluicing model, and Appendices B and C cover pneumatic transport and slurry transport, respectively, as prepared for this document. Appendix D contains sample calculations for various equations.

Gates, C.M.; Beckette, M.R.

1995-06-01T23:59:59.000Z

54

EA-1999: Proposal to Permit 750 Acres at the Savannah River Site for Use by the State of South Carolina Military Department  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts from a proposal by South Carolina Military Department (SCMD) to permit the use of 750 acres at SRS for military training exercises and permanent facilities to support training. This proposal, if implemented, would further the purposes of the Memorandum of Understanding between the U.S. Department of the Army and DOE concerning the Use of SRS Lands for Military Training Activities, signed in 2007. SCMD has requested permitting two tracts of land, one near B-Area and one west of L-Lake and north of South Carolina Route 125, to establish facilities for military training purposes. SCMD does not propose to conduct live-fire training or to use tracked vehicles at SRS.

55

TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE  

SciTech Connect (OSTI)

One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner.

DODD RA

2008-01-22T23:59:59.000Z

56

MHK Technologies/Severn Barrage | Open Energy Information  

Open Energy Info (EERE)

Severn Barrage Severn Barrage < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Severn Barrage.jpg Technology Profile Primary Organization Severn Tidal Power Group STpg Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Severn Barrage is a proposed tidal power station to be built across the Bristol Channel Severn Estuary Along the length of the Severn Barrage open sluice gates would allow the tide to flow in These gates would then be closed at high tide trapping enormous quantities of water behind the barrage A total of 214 40MW turbines would be built into the barrage through which the trapped water would return at high pressure when the tide turns generating electricity In order to permit shipping to pass through the barrage an enormous set of shipping locks would be constructed The tidal turbines along the barrage would generate the same amount of electricity as three of the latest nuclear power stations 8 6 GW during flow and 2 GW on average This would be sufficient to provide 5 6 of the current electricity usage of England and Wales equivalent to 8 large coal fired power stations

57

Initial ACTR retrieval technology evaluation test material recommendations  

SciTech Connect (OSTI)

Millions of gallons of radiaoctive waste are contained in underground storage tanks at Hanford (SE Washington). Techniques for retrieving much of this waste from the storage tanks have been developed. Current baseline approach is to use sluice jets for single-shell tanks and mixer pumps for double-shell tanks. The Acquire Commercial Technology for Retrieval (ACTR) effort was initiated to identify potential improvements in or alternatives to the baseline waste retrieval methods. Communications with a variety of vendors are underway to identify improved methods that can be implemented at Hanford with little or no additional development. Commercially available retrieval methods will be evaluated by a combination of testing and system-level cost estimation. Current progress toward developing waste simulants for testing ACTR candidate methods is reported; the simulants are designed to model 4 different types of tank waste. Simulant recipes are given for wet sludge, hardpan/dried sludge,hard saltcake, and soft saltcake. Comparisons of the waste and simulant properties are documented in this report.

Powell, M.R.

1996-04-01T23:59:59.000Z

58

Operational test report -- Project W-320 cathodic protection systems  

SciTech Connect (OSTI)

Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31). WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems.

Bowman, T.J.

1998-06-16T23:59:59.000Z

59

Mechanisms of gas retention and release: Experimental results for Hanford single-shell waste tanks 241-A-101, 241-S-106, and 241-U-103  

SciTech Connect (OSTI)

The 177 underground waste storage tanks at the Hanford Site contain millions of gallons of radioactive waste resulting from the purification of nuclear materials and related processes. Through various mechanisms, flammable gas mixtures of hydrogen, ammonia, methane, and nitrous oxide are generated and retained in significant quantities within the waste in many ({approximately}25) of these tanks. The potential for large releases of retained gas from these wastes creates a flammability hazard. It is a critical component of the effort to understand the flammability hazard and a primary goal of this laboratory investigation to establish an understanding of the mechanisms of gas retention and release in these wastes. The results of bubble retention experimental studies using waste samples from several waste tanks and a variety of waste types support resolution of the Flammable Gas Safety Issue. Gas bubble retention information gained in the pursuit of safe storage will, in turn, benefit future waste operations including salt-well pumping, waste transfers, and sluicing/retrieval.

Rassat, S.D.; Caley, S.M.; Bredt, P.R.; Gauglitz, P.A.; Rinehart, D.E.; Forbes, S.V.

1998-09-01T23:59:59.000Z

60

DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187  

SciTech Connect (OSTI)

Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pump (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are beinglhave been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.

BURKE CA; LANDON MR; HANSON CE

2011-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "686-g l-lake sluice" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187  

SciTech Connect (OSTI)

Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pump (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.

BURKE CA; LANDON MR; HANSON CE

2012-01-30T23:59:59.000Z

62

Engineering development of a lightweight high-pressure scarifier for tank waste retrieval  

SciTech Connect (OSTI)

The Retrieval Process Development and Enhancements Program (RPD&E) is sponsored by the U.S. Department of Energy Tanks Focus Area to investigate existing and emerging retrieval processes suitable for the retrieval of high-level radioactive waste inside underground storage tanks. This program, represented by industry, national laboratories, and academia, seeks to provide a technical and cost basis to support site-remediation decisions. Part of this program has involved the development of a high-pressure waterjet dislodging system and pneumatic conveyance integrated as a scarifier. Industry has used high-pressure waterjet technology for many years to mine, cut, clean, and scarify materials with a broad range of properties. The scarifier was developed as an alternate means of retrieving waste inside Hanford single-shell tanks, particularly hard, stubborn waste. Testing of the scarifier has verified its ability to retrieve a wide range of tank waste ranging from extremely hard waste that is resistant to other dislodging means to soft sludge and even supernatant fluid. Since the scarifier expends water at a low rate and recovers most of the water as it is used, the scarifier is well suited for retrieval of tanks that leak and cannot be safely sluiced or applications where significant waste dilution is not acceptable. Although the original scarifier was effective, it became evident that a lighter, more compact version that would be compatible with light weight deployment systems under development, such as the Light Duty Utility Arm, was needed. At the end of FY 95, the Light Weight Scarifier (LWS) was designed to incorporate the features of the original scarifier in a smaller, lighter end effector. During FY 96, the detailed design of the LWS was completed and two prototypes were fabricated.

Hatchell, B.K.

1997-09-01T23:59:59.000Z

63

Imaging and Characterizing the Waste Materials Inside an Underground Storage Tank Using Seismic Normal Modes  

SciTech Connect (OSTI)

It is necessary to know something about the nature of the wastes in a Hanford underground storage tank (UST) so that the correct hardware can be inserted into a tank for sampling, sluicing, or pumping operations. It is also important to know if a layer of gas exists beneath solid and liquid layers of waste. Given that the tank will have only one liquid observation well (LOW), the authors examined the information that could be obtained from the natural seismic vibrations of a tank as a whole; that is, the normal modes of that tank. As in the case of a bell, the natural vibration, or normal modes, of a tank depend on many things, including the construction of the tank, the kinds of waste materials in the tank, the amount of each material in the tank, and where the energy is placed that excites the vibrations (i.e., where you will ''hit'' the tank). The nature of a normal mode of vibration can be given by its frequency and amplitude. For any given frequency, the amplitude of vibration can be given as a function of position in and around the tank. Since they assumed that one would be ''listening'' to a tank from locations along a LOW, they show their computed amplitudes as a function of position inside and around the tank, and in the case of the physical models they display the observations along various lines inside the tank model. This allowed us to see the complex geometry of each mode of oscillation as a function of increasing frequency.

M. N. Toksoz; R. M. Turpening

1999-09-14T23:59:59.000Z

64

Evaluation of potential and consequences of steam bump in high heat waste tanks and assessment and validation of GOTH computer code  

SciTech Connect (OSTI)

This report describes the thermal hydraulic analysis performed using the GOTH computer code to evaluate the potential and consequences of steam bumps in high heat waste tanks. The analysis was performed for three different sludge volumes that correspond to the current sludge volume in tank AZ-101, combined sludge volumes of tank AZ-101 and tank AZ-102 and the projected consolidated sludge volume of tank C-106 and tank AY-102. For each case, the steam bump potential was evaluated starting the simulation with a realistic best estimate initial temperature distribution as well as with a conservative potentially possible axial temperature distribution in the sludge. To include further conservatism in estimating the consequent release of radioactive material, steam bump analyses were also performed suppressing steam condensation with subcooled liquid in waste. In addition,calculations were performed with in leakage flow paths corresponding to open risers and pump and sluice pit cover blocks as well as with normal in leakage flow paths due to drain pipes and infiltration paths. Therefore, the report presents the steam bump evaluations encompassing from an extremely conservative case of initiating a steam bump with local saturation temperature throughout the sludge with condensation suppressed and open risers to a realistic potential case with loss of cooling of initiating at steam bump with only the bottom layer with local saturation temperature with condensation included considering only the normal in leakage flow paths. The results show that in all cases the consequences from an energetic bump may not be acceptable, and the safe operation should include keeping peak sludge temperatures below local saturation values. The report also includes a brief description of the capability and validation of models used in the GOTH computer code.

Sathyanarayana, K., Westinghouse Hanford

1996-07-15T23:59:59.000Z

65

W-320 Project thermal modeling  

SciTech Connect (OSTI)

This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.

Sathyanarayana, K., Fluor Daniel Hanford

1997-03-18T23:59:59.000Z

66

EIS-0268-Figures-1997.pdf  

Broader source: Energy.gov (indexed) [DOE]

DOFJ'EIS-0268 DOFJ'EIS-0268 - PKw.2F Figure 4-L L-Lake and environs. 4-3 -- =----- 90 --m--- -m- EAST o (C.nti""ed O"figure 4.4b) AA 320 1 300 1 Fourmile Indian Grave Upland Pen Branch Brench Formation Branch 280 ~ 280 240 : E -220 ~ L 200 180 I 160 140 1 I I 1 2 3 4 5 Miles Legend: _ _ Inferredcontact Note:TO converito kilometersmultiply by 1.609 to convetito metersmultiply by0.304e Figure 4-4a. Generalized geologic cross section from Fourmile Branch to L DO~IS-0268 I t" 1 I I t 4-8 DOE/EIS-0268 I 4-60 I t t i I I DOE/EIS-0268 ,. ,. 4-61 DOE/EIS-0268 ,. ,,.':, .. ,.. , 4-62 I 1 I I I DOE/EIS-0268 4-63 DOEI'EIS-0268 ., . . 4-64 I I 1 B I I I m 1 I I I I 1 I I I m I DOE~IS-0268 4-65 DO~IS-0268 Radon in homes: 200 millirem per year Notes me major contributor to the annual average individual dose in the United StaIeS, [ncluti"g residents of the Central Savannah River Area, is naturally occuning radiation

67

Gas Release During Saltwell Pumping: Interpretation of Operational Data  

SciTech Connect (OSTI)

The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive waste that is a complex mix of radioactive and chemical products. Of these, 67 are known or suspected to have leaked liquid into the surrounding soil, while 82 are considered sound (Hanlon 1999). To minimize the amount of material that potentially could leak into the surrounding soil, all of the SSTs are scheduled to have drainable liquid removed and to be designated as interim stabilized. Of the SSTs, 119 have been declared stabilized, and only 30 require further processing (Hanlon 1999). Many of the tanks have been declared stabilized administratively, with only 45 tanks having had drainable liquid removed. The pending consent decree between the Washington State Department of Ecology and the Office of River Protection. (U.S. District Court Eastern District of Washington, 1999) sets a milestone to complete interim stabilization by September 2004. While process equipment exists for removing drainable liquid, and its operation is well known from previous pumping campaigns, a number of safety issues associated with the release and potential ignition of flammable gases within the tanks needs to be addressed. The safety concerns associated with flammable gases stem from the observation that some of the waste in the SSTs generates and retains hazardous quantities of flammable gases, including hydrogen, nitrous oxide, and ammonia. Of the 30 SSTs remaining to be declared interim stabilized, 29 need to have drainable liquid removed by saltwell pumping (waste in tank 241-C-106 will be removed by sluicing), and 16 of these are on the Flammable Gas Watch List (FGWL) (Hopkins 1995; Hanlon 1999). Most of these tanks are in Facility Group 2 (Noorani 1997); that is, it is believed that tank operations may induce the release of significant quantities of flammable gas, but gas release does not occur spontaneously. In particular, saltwell pumping to remove the interstitial liquid from SSTs is expected to cause the release of much of the retained gas, both insoluble (principally hydrogen) and soluble (principally ammonia), posing a number of safety concerns (Peurrung et al. 1997; Meader 1996).

J.L. Huckaby; L.M. Peurrung; P.A. Gauglitz

1999-09-16T23:59:59.000Z

68

Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK  

Science Journals Connector (OSTI)

The Severn Estuary has a spring tidal range approaching 14 m, which is among the highest tides in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be generated. The aim of the current study is to investigate the impact of constructing a tidal barrage on the hydrodynamic processes in the Severn Estuary using a numerical model. A two-dimensional hydrodynamic model based on an unstructured triangular mesh has been used in this study. The model employs a TVD finite volume method to solve the 2D shallow water equations, with the numerical scheme being second-order accurate in both time and space. The model has been calibrated by comparing model predictions with observed tidal levels and currents at different sites, for typical spring and neap tides, and it has also been verified using tidal level time series at four tide gauging stations measured in 2003. In order to predict the hydrodynamic processes with a barrage, the model domain was divided into two subdomains: one each side of the barrage. Details were given of the method used for representing the various hydraulic structures, including the sluices and turbines, along the proposed Cardiff-Weston barrage. The impact of constructing the barrage on the water levels and velocities was then investigated using this model. Model-predicted hydrodynamic parameters, without and with the barrage, were analysed in detail. Model predictions indicated that with the barrage the mean power output could reach 2.0 GW with up to 25 GWh units of electricity being generated over a typical mean spring tidal cycle. At some cross-sections, the maximum discharges were predicted to decrease by 30–50%, as compared with the corresponding discharges predicted without the barrage. The model also predicted that with the barrage, the maximum water levels upstream of the barrage would decrease by 0.5–1.5 m, and with the peak tidal currents also being reduced considerably. For different operating modes, complex velocity fields were predicted to occur in the vicinity of the barrage.

Junqiang Xia; Roger A. Falconer; Binliang Lin

2010-01-01T23:59:59.000Z

69

Refinements to the EFDC model for predicting the hydro-environmental impacts of a barrage across the Severn Estuary  

Science Journals Connector (OSTI)

Abstract This paper presents an investigation of the impacts of a Severn Barrage on the hydro-environment of the Bristol Channel and Severn Estuary using the Environmental Fluid Dynamics Code (EFDC) model with a recently developed Barrage module (EFDC_B). Details are given of a barrage module being implemented into the EFDC model to represent the various hydraulic structures, such as turbines and sluice gates, as deployed along the barrage line. Several cases, both with and without the barrage, have been simulated to investigate the potential changes on the peak water levels, minimum water depths and peak tidal currents arising from a barrage. The impacts of a barrage on the salinity concentration distribution have also been simulated in both 2D and 3D modes. The predicted results showed that the maximum water levels could be significantly reduced, especially downstream of the barrage and for much of the region in the Severn Estuary and that the minimum water depths would be changed so much that there would be 80.5 km2 loss of intertidal habitats due to the sitting of a barrage across the estuary. Likewise, the peak tidal currents would be considerably reduced, and by as much as a half in the middle of the main channel. The predicted salinity concentrations results indicated that at high water, the salinity concentrations would be reduced by 1–2 ppt downstream and upstream of the barrage and salinity concentrations in the region near Beachley would be reduced by up to 5 ppt, and that at low water, salinity concentrations would be reduced by 0.5–1 ppt in the middle of the Bristol Channel and by typically 0.5 ppt and 1 ppt downstream and upstream of the barrage, respectively. The predicted results also indicated that salinity concentrations downstream and upstream of the barrage would be under a stable state with slight oscillations all the time due to the effects of the barrage. A comparison between the salinity concentration distributions predicted by the 2D and 3D models indicated that the two models produced similar salinity distributions, especially in the Severn Estuary and in the region between the middle of the Bristol Channel and the seaward open boundary.

Juntao Zhou; Roger A. Falconer; Binliang Lin

2014-01-01T23:59:59.000Z

70

Tank characterization report for single-shell tank 241-BY-104  

SciTech Connect (OSTI)

This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

Benar, C.J.

1996-09-26T23:59:59.000Z

71

PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12-inch IX Column and sixteen cycles were completed in the 24-inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead morphology. The skeletal density of the RF resin in the 24-inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

Adamson, D

2007-01-09T23:59:59.000Z

72

PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead morphology. The skeletal density of the RF resin in the 24 inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

Adamson, D

2006-11-08T23:59:59.000Z

73

FLUOR HANFORD DECOMMISSIONING UPDATE  

SciTech Connect (OSTI)

Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat similar to sand) to shield workers to a safe level from the residual radioactivity. Workers then continued preparations for demolishing the structure. Currently, they are isolating utilities, removing asbestos, draining oils, and removing other items not allowed to be disposed in Hanford's Environmental Restoration Disposal Facility (ERDF). The basin's superstructure will be demolished using a heavy industrial excavator equipped with a shear. This portion of the work is expected to be completed in September, with removal of the basin substructure to follow in 2009. D&D of the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream.

GERBER MS

2008-04-21T23:59:59.000Z