National Library of Energy BETA

Sample records for 48h treatment project

  1. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

    Office of Environmental Management (EM)

    Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry D. Harmon Joan B. Berkowitz John C. DeVine, Jr. Herbert G. Sutter Joan K. Young...

  2. Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment

    SciTech Connect (OSTI)

    Harmon, H.D.; Young, J.K.; Berkowitz, J.B.; DeVine, Jr.J.C.; Sutter, H.G.

    2008-07-01

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F and H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Desk-book. The TRA consists of three parts: - Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. - Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. - Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy. (authors)

  3. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-10-25

    ABSTRACT One of U.S. Department of Energy’s (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents – approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes – are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC’s ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates – WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: • Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. • Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. • Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  4. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-03-18

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: (1) Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. (2) Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. (3) Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  5. Development of Chemical Treatment Alternatives for Tetraphenylborate Destruction in Tank 48H

    SciTech Connect (OSTI)

    LAMBERT, DANIELP.

    2004-05-04

    This study assessed chemical treatment options for decomposing the tetraphenylborate in High Level Waste (HLW) Tank 48H. Tank 48H, located at the Savannah River Site in Aiken, SC, contains approximately one million liters of HLW. The tetraphenylborate slurry represents legacy material from commissioning of an In Tank Precipitation process to separate radioactive cesium and actinides from the non radioactive chemicals. During early operations, the process encountered an unplanned chemical reaction that catalytically decomposed the excess tetraphenylborate producing benzene. Subsequent research indicated that personnel could not control the operations within the existing equipment to both meet the desired treatment rate for the waste and maintain the benzene concentration within allowable concentrations. Since then, the Department of Energy selected an alternate treatment process for handling high-level waste at the site. However, the site must destroy the tetraphenylborate before returning the tank to HLW service. The research focuses on identifying treatments to decompose tetraphenylborate to the maximum extent feasible, with a preference for decomposition methods that produce carbon dioxide rather than benzene. A number of experiments examined whether the use of oxidants, catalysts or acids proved effective in decomposing the tetraphenylborate. Additional experiments developed an understanding of the solid, liquid and gas decomposition products. The testing identified several successful treatment options including: an iron catalyst combined with hydrogen peroxide (Fenton's reagent) with added acid; sodium permanganate with added acid; and copper catalyst with added acid. A mistake occurred in the selection and make-up of the Tank 48H simulant recipe which led to an under representation of the amount of monosodium titanate and insoluble sludge solids compared to the simulant target. The amount of added MST and sludge proved about a factor of 40 low relative to the measured Tank 48H values. The MST and sludge are insoluble solids that were likely inert in the testing completed. As a result, the mistake had no impact on the testing. Any future Tank 48H research should be completed using the latest Tank 48H simulant recipe.

  6. Summary - Savannah River Site Tank 48H Waste Treatment Project

    Office of Environmental Management (EM)

    and t ess Level (TRL) on Process: stem (TRL3) atment System RA reports, please v govPagesExternal nology Readiness A ng a systematic, me er SiteSRS H Waste Treatm nt of...

  7. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION J APPENDIXAllegations Related toSRS

  8. Benzene Generation Testing for Tank 48H Waste Disposition

    SciTech Connect (OSTI)

    Peters, T

    2005-05-13

    In support for the Aggregation option1, researchers performed a series of tests using actual Tank 48H slurries. The tests were designed to examine potential benzene generation issues if the Tank 48H slurry is disposed to Saltstone. Personnel used the archived Tank 48H sample (HTF-E-03-127, collected September 17, 2003) for the experiments. The tests included a series of three experiments (Tests A, B, and F) performed in duplicate, giving a total of six experiments. Test A used Tank 48H slurry mixed with {approx}20:1 with Defense Waste Processing Facility (DWPF) Recycle from Tanks 21H and 22H. Test B used Tank 48H slurry mixed with {approx}2.7:1 with DWPF Recycle from Tanks 21H and 22H, while Test F used Tank 48H slurry as-is. Tests A and B occurred at 45 C, while Test F occurred at 55 C. Over a period of 8 weeks, personnel collected samples for analysis, once per week. Each sample was tested with the in-cell gamma counter. The researchers noted a decline in the cesium activity in solution which is attributed to temperature dependence of the complex slurry equilibrium. Selected samples were sent to ADS for potassium, boron, and cesium analysis. The benzene generation rate was inferred from the TPB destruction which is indirectly measured by the in-growth of cesium, potassium or boron. The results of all the analyses reveal no discernible in-growth of radiocesium, potassium or boron, indicating no significant tetraphenylborate (TPB) decomposition in any of the experiments. From boron measurements, the inferred rate of TPB destruction remained less than 0.332 mg/(L-h) implying a maximum benzene generation rate of <0.325 mg/(L-h).

  9. Independent Activity Report, Hanford Sludge Treatment Project...

    Broader source: Energy.gov (indexed) [DOE]

    February 2012 Hanford Sludge Treatment Project Operational Awareness Review HIAR-RL-2012-02-27 The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within...

  10. Advanced Mixed Waste Treatment Project Achieves Impressive Safety...

    Office of Environmental Management (EM)

    Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June...

  11. Filtration of Tank 48H Contents with a Cells Unit Filter

    SciTech Connect (OSTI)

    Nash, C.A.

    2002-02-20

    This report documents the design, operation, and results from tests using a small crossflow filter unit with Tank 48 H material.

  12. Analysis of Tank 48H Samples HTF-E-04-049 and HTF-E-04-050

    SciTech Connect (OSTI)

    Lambert, D

    2004-08-23

    Due to the need for additional HLW storage, successful disposition of the material in Tank 48H and return of the tank to routine service are two critically needed activities. As an initial step in the process, SRNL compositionally characterized the components of the Tank 48H slurry. A nominal Tank 48H Tank 48H slurry sample was collected on August 23, 2004 (HTF-E-04-049 and HTF-E-04-050). The August 23, 2004 sample contained approximately 2 Liters of Tank 48H slurry. This document provides the chemical and radiological properties of a Tank 48H slurry sample. A Technical Task Request defines the required analyses. A Task Plan summarized the analyses required and the methods for completing these analyses. The Tank 48H volume was 239,000 gallons (68.2 inches) at the time of the sampling.

  13. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect (OSTI)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

  14. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    SciTech Connect (OSTI)

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    The Savannah River Site (SRS) must empty the contents of Tank 48H, a 1.3 million gallon Type IIIA HLW storage tank, to return this tank to service. The tank contains organic compounds, mainly potassium tetraphenylborate that cannot be processed downstream until the organic components are destroyed. The THOR{reg_sign} Treatment Technologies (TTT) Fluidized Bed Steam Reforming (FBSR) technology, herein after referred to as steam reforming, has been demonstrated to be a viable process to remove greater than 99.9% of the organics from Tank 48H during various bench scale and pilot scale tests. These demonstrations were supported by Savannah River Remediation (SRR) and the Department of Energy (DOE) has concurred with the SRR recommendation to proceed with the deployment of the FBSR technology to treat the contents of Tank 48H. The Savannah River National Laboratory (SRNL) developed and proved the concept with non-radioactive simulants for SRR beginning in 2003. By 2008, several pilot scale campaigns had been completed and extensive crucible testing and bench scale testing were performed in the SRNL Shielded Cells using Tank 48H radioactive sample. SRNL developed a Tank 48H non-radioactive simulant complete with organic compounds, salt, and metals characteristic of those measured in a sample of the radioactive contents of Tank 48H. FBSR Pilot Scaled Testing with the Tank 48H simulant has demonstrated the ability to remove greater than 98% of the nitrites and greater than 99.5% of the nitrates from the Tank 48H simulant, and to form a solid product that is primarily alkali carbonate. The alkali carbonate is soluble and, thus, amenable to pumping as a liquid to downstream facilities for processing. The FBSR technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration (ESTD) pilot scale steam reformer at the Hazen Research Inc. (HRI) facility in Golden, CO. Additional ESTD tests were completed in 2008 and in 2009 that further demonstrated the TTT steam reforming process ability to destroy organics in the Tank 48 simulant and produce a soluble carbonate waste form. The ESTD was operated at varying feed rates and Denitration and Mineralization Reformer (DMR) temperatures, and at a constant Carbon Reduction Reformer (CRR) temperature of 950 C. The process produced a dissolvable carbonate product suitable for processing downstream. ESTD testing was performed in 2009 at the Hazen facility to demonstrate the long term operability of an integrated FBSR processing system with carbonate product and carbonate slurry handling capability. The final testing demonstrated the integrated TTT FBSR capability to process the Tank 48 simulant from a slurry feed into a greater than 99.9% organic free and primarily dissolved carbonate FBSR product slurry. This paper will discuss the SRNL analytical results of samples analyzed from the 2008 and 2009 THOR{reg_sign} steam reforming ESTD performed with Tank 48H simulant at HRI in Golden, Colorado. The final analytical results will be compared to prior analytical results from samples in terms of organic, nitrite, and nitrate destruction.

  15. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect (OSTI)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

  16. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  17. Project Execution Plan for the River Protection Project Waste Treatment & Immobilization Plant

    SciTech Connect (OSTI)

    MELLINGER, G.B.

    2003-05-03

    The Waste Treatment and Immobilization Plant (WTP), Project W-530, is the cornerstone in the mission of the Hanford Site's cleanup of more than 50 million gallons of highly toxic, high-level radioactive waste contained in aging underground storage tanks.

  18. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  19. RESULTS OF COPPER CATALYZED PEROXIDE OXIDATION (CCPO) OF TANK 48H SIMULANTS

    SciTech Connect (OSTI)

    Peters, T.; Pareizs, J.; Newell, J.; Fondeur, F.; Nash, C.; White, T.; Fink, S.

    2012-08-14

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. The following observations were made with respect to the major processing variables investigated. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. Testing with simulated slurries continues. Current testing is examining lower copper concentrations, refined peroxide addition rates, and alternate acidification methods. A revision of this report will provide updated findings with emphasis on defining recommended conditions for similar tests with actual waste samples.

  20. Mixed and Low-Level Treatment Facility Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  1. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect (OSTI)

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  2. Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being con-

    E-Print Network [OSTI]

    Fay, Noah

    Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being for RO Treatment of CAP Water PROJECT TEAM This Arizona Water Institute PROJECT FACT SHEET is part to treat CAP water and to minimize the amount of concentrate produced. More research and significant

  3. Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project- June 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Waste Treatment Plant Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  4. Voluntary Protection Program Onsite Review, Advanced Mixed Waste Treatment Project- May 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Advanced Mixed Waste Treatment Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  5. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    SciTech Connect (OSTI)

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.; Fondeur, F. F.; Nash, C. A.; White, T. L.; Fink, S. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50 ?C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions is not surprising and is consistent with a previous study. Acidification with phosphoric and formic acids, in lieu of nitric acid, provides benefits in reducing the amount of benzene emitted over the lifetime of a reaction. Analyses of the post-reaction residual material indicate that slurry initially adjusted down to a pH 7 produced a greater degree of energetic material than material initially adjusted to a pH of 9. No more than 140 {micro}g/m{sup 3} of mercury was indicated in reactor head spaces at any time. An estimation of less than 1% of the initial mercury was vaporized in each experiment. A limited number of replicate tests were performed to determine experimental reproducibility. These tests indicate a reasonable degree of reproducibility. The conclusion of the simulant testing has provided a set of reaction conditions that can destroy the TPB and phenylborates quickly. While longer times will be required to degrade the residual organics, the reactions appear to perform in a consistent manner. A real waste test or tests are recommended and further investigation into the use of phosphoric or formic acid is warranted.

  6. Voluntary Protection Program Onsite Review, Waste Treatment Project...

    Office of Environmental Management (EM)

    Hanford Site - June 2010 Voluntary Protection Program Onsite Review, Intermech Inc., Waste Treatment Plant Construction Site - November 2013 Voluntary Protection Program...

  7. TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR THE CHARACTERIZATION AND LEACHING OF A THERMOWELL AND CONDUCTIVITY PROBE PIPE SAMPLE FROM TANK 48H

    SciTech Connect (OSTI)

    Fondeur, F

    2005-11-02

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. The material on the Tank 48H internal tank surfaces is estimated to have a total volume of approximately 115 gallons consisting of mostly water soluble solids with approximately 20 wt% insoluble solids (33 Kg TPB). This film is assumed to be readily removable. The material on the internal equipment/surfaces of Tank 48H is presumed to be easily removed by slurry pump operation. For Tank 49H, the slurry pumps were operated almost continuously for approximately 6 months after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids--Na{sub 3}H(CO){sub 2}, Al(OH){sub 3}, NaTPB, NaNO{sub 3} and NaNO{sub 2}. Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. Depending on when the Recycle material or inhibited water can be added to Tank 48H, the tank may not be allowed to agitate for this same amount of time. The tank will be filled above 150 inches and agitated at least once during the Aggregation process. If the material cannot be removed after completion of these batches, the material may be removed with additional fill and agitation operations. There is a risk that this will not remove the material from the internal surfaces. As a risk mitigation activity, properties of the film and the ease of removing the film from the tank will be evaluated prior to initiating Aggregation. This task will investigate the dissolution of Tank 48H solid deposits in inhibited water and DWPF recycle. To this end, tank personnel plan to cut and remove a thermowell pipe from Tank 48H and submit the cut pieces to SRNL for both characterization and leaching behavior. A plan for the removal, packaging and transport of the thermowell pipe has been issued. This task plan outlines the proposed method of analysis and testing to estimate (1) the thickness of the solid deposit, (2) chemical composition of the deposits and (3) the leaching behavior of the solid deposits in inhibited water (IW) and in Tank 48H aggregate solution.

  8. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    SciTech Connect (OSTI)

    Burket, P

    2009-02-24

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  9. Mixed and low-level waste treatment facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  10. KW-Basin Sludge Treatment Project - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask 4Photo4 | NationalAbout Us Projects

  11. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    SciTech Connect (OSTI)

    WESTRA, A.G.

    1999-06-24

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

  12. Waste Treatment & Immobilization Plant Project - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos and Videos/01/2012 Page 1 ofTreatment Plant

  13. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  14. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Connor, M.D.

    1994-09-29

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover.

  15. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    SciTech Connect (OSTI)

    RYAN GW

    2008-04-25

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

  16. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect (OSTI)

    Jon Creighton

    2012-03-13

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  17. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

  18. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1

    SciTech Connect (OSTI)

    FRANZ GR; MEICHLE RH

    2011-07-18

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  19. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    SciTech Connect (OSTI)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  20. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls – In order to further meet the U.S. Department of Energy’s commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG) to perform waste processing at the Advanced Mixed Waste Treatment Project (AMWTP) at DOE’s Idaho Site near Idaho Falls.

  1. ANALYSES OF HTF-48-12-20/24 (FEBRUARY, 2012) AND ARCHIVED HTF-E-05-021 TANK 48H SLURRY SAMPLES

    SciTech Connect (OSTI)

    Nash, C.; Peters, T.

    2012-08-02

    Personnel characterized a Savannah River National Laboratory (SRNL) archived sample of Tank 48H slurry (HTF-E-05-021) in addition to the composite of samples HTF-48-12-20 and HTF-48-12-24, which were both retrieved in February 2012. The combined February 2012 sample is referred to as HTF-48-12-20/24 in this report. The results from these analyses are compared with Tank 48H samples analyzed in 2003, 2004, and 2005. This work supports the effort to demonstrate copper-catalyzed peroxide oxidation (CCPO) of organic content in this material. The principal findings with respect to the chemical and physical characteristics of the most recent sample are: (1) The measured potassium tetraphenylborate (KTPB) solid concentration is 1.76 wt %; (2) Titanium was in line with 2004 and 2005 slurry measurements at 897 mg/L, it represents 0.1535 {+-} 0.0012 wt % monosodium titanate (MST); (3) The measured insoluble solids content was 1.467 wt %; (4) The free hydroxide concentration in the Tank 48H filtrate sample (1.02 {+-} 0.02 M) is close to the Tank 48H limit (1.0 M); (5) Carbonate reported by total inorganic carbon (TIC, 1.39 {+-} 0.03 M) is more than double the concentrations measured in past (2003-2005) samples; (6) The soluble potassium content (measured at 286 {+-} 23 mg/L) in the filtrate is in line with all past measurements; and (7) The measured {sup 137}Cs concentration is 7.81E + 08 {+-} 3.9E + 07 dpm/mL of slurry (1.33 {+-} 5% Ci/gallon or 3.18E + 05 {+-} 5% curies of {sup 137}Cs in the tank) in the slurry which is in agreement with the 2005 report of 3.14E + 05 {+-} 1.5% curies of {sup 137}Cs in the tank. The filtrate {sup 137}Cs concentration is 2.57E + 07 {+-} 2.6E + 05 dpm/mL. This result is consistent with previous results. Significant analytical data are summarized in Table 1.

  2. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect (OSTI)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  3. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect (OSTI)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

  4. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  5. Evaluation of surface water treatment and discharge options for the Weldon Spring Site Remedial Action Project

    SciTech Connect (OSTI)

    Goyette, M.L.; MacDonell, M.M.

    1992-09-01

    The US Department of Energy (DOE), under its Environmental Restoration and Waste Management Program, is responsible for conducting response actions at the Weldon Spring site in St. Charles County, Missouri. The site consists of two noncontiguous areas: (1) the chemical plant area, which includes four raffinate pits and two small ponds, and (2) a 3.6-ha (9-acre) quarry located about 6.4 km (4 mi) southwest of the chemical plant area. Both of these areas became chemically and radioactively contaminated as a result of processing and disposal activities that took place from the 1940s through 1960s. The Weldon Spring site, located about 48 km (30 mi) west of St. Louis, is listed on the National Priorities List of the US Environmental Protection Agency. Nitroaromatic explosives were processed by the Army at the chemical plant area during the 1940s, and radioactive materials were processed by DOE`s predecessor agency (the Atomic Energy Commission) during the 1950s and 1960s. Overall remediation of the Weldon Spring site is being addressed through the Weldon Spring Site Remedial Action Project, and it consists of several components. One component is the management of radioactively and chemically contaminated surface water impoundments at the chemical plant area -- i.e., the four raffinate pits, Frog Pond, and Ash Pond which was addressed under a separate action and documented in an engineering evaluation/cost analysis report. This report discusses the evaluation of surface water treatment at the Weldon Spring site.

  6. Evaluation of surface water treatment and discharge options for the Weldon Spring Site Remedial Action Project

    SciTech Connect (OSTI)

    Goyette, M.L.; MacDonell, M.M.

    1992-01-01

    The US Department of Energy (DOE), under its Environmental Restoration and Waste Management Program, is responsible for conducting response actions at the Weldon Spring site in St. Charles County, Missouri. The site consists of two noncontiguous areas: (1) the chemical plant area, which includes four raffinate pits and two small ponds, and (2) a 3.6-ha (9-acre) quarry located about 6.4 km (4 mi) southwest of the chemical plant area. Both of these areas became chemically and radioactively contaminated as a result of processing and disposal activities that took place from the 1940s through 1960s. The Weldon Spring site, located about 48 km (30 mi) west of St. Louis, is listed on the National Priorities List of the US Environmental Protection Agency. Nitroaromatic explosives were processed by the Army at the chemical plant area during the 1940s, and radioactive materials were processed by DOE's predecessor agency (the Atomic Energy Commission) during the 1950s and 1960s. Overall remediation of the Weldon Spring site is being addressed through the Weldon Spring Site Remedial Action Project, and it consists of several components. One component is the management of radioactively and chemically contaminated surface water impoundments at the chemical plant area -- i.e., the four raffinate pits, Frog Pond, and Ash Pond which was addressed under a separate action and documented in an engineering evaluation/cost analysis report. This report discusses the evaluation of surface water treatment at the Weldon Spring site.

  7. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    SciTech Connect (OSTI)

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

  8. An Overview of Project Planning for Hot-Isostatic Pressure Treatment of High-Level Waste Calcine for the Idaho Cleanup Project - 12289

    SciTech Connect (OSTI)

    Nenni, Joseph A.; Thompson, Theron J.

    2012-07-01

    The Calcine Disposition Project is responsible for retrieval, treatment by hot-isostatic pressure, packaging, and disposal of highly radioactive calcine stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site in southeast Idaho. In the 2009 Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement the Department of Energy documented the selection of hot-isostatic pressure as the technology to treat the calcine. The Record of Decision specifies that the treatment results in a volume-reduced, monolithic waste form suitable for transport outside of Idaho by a target date of December 31, 2035. That target date is specified in the 1995 Idaho Settlement Agreement to treat and prepare the calcine for transport out of Idaho in exchange for allowing storage of Navy spent nuclear fuel at the INL Site. The project is completing the design of the calcine-treatment process and facility to comply with Record of Decision, Settlement Agreement, Idaho Department of Environmental Quality, and Department of Energy requirements. A systems engineering approach is being used to define the project mission and requirements, manage risks, and establish the safety basis for decision making in compliance with DOE O 413.3B, 'Program and Project Management for the Acquisition of Capital Assets'. The approach draws heavily on 'design-for-quality' tools to systematically add quality, predict design reliability, and manage variation in the earliest possible stages of design when it is most efficient. Use of these tools provides a standardized basis for interfacing systems to interact across system boundaries and promotes system integration on a facility-wide basis. A mass and energy model was developed to assist in the design of process equipment, determine material-flow parameters, and estimate process emissions. Data generated from failure modes and effects analysis and reliability, availability, maintainability, and inspectability analysis were incorporated into a time and motion model to validate and verify the capability to complete treatment of the calcine within the required schedule. The Calcine Disposition Project systems engineering approach, including use of industry-proven design-for-quality tools and quantitative assessment techniques, has strengthened the project's design capability to meet its intended mission in a safe, cost-effective, and timely manner. Use of these tools has been particularly helpful to the project in early design planning to manage variation; improve requirements and high-consequence risk management; and more effectively apply alternative, interface, failure mode, RAMI, and time and motion analyses at the earliest possible stages of design when their application is most efficient and cost effective. The project is using these tools to design and develop HIP treatment of highly radioactive calcine to produce a volume-reduced, monolithic waste form with immobilization of hazardous and radioactive constituents. (authors)

  9. 'In vivo' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    SciTech Connect (OSTI)

    Reynoso Mejia, C. A.; Buenfil Burgos, A. E.; Ruiz Trejo, C.; Mota Garcia, A.; Trejo Duran, E.; Rodriguez Ponce, M.; Gamboa de Buen, I.

    2010-12-07

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured 'in vivo' by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the 'in vivo' measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the 'in vivo' dose is fully described.

  10. Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  11. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    SciTech Connect (OSTI)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand filter is then backwashed into the STSC. The STSC and STS cask are then inerted and transported to T Plant.

  12. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

  13. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  14. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    SciTech Connect (OSTI)

    1995-01-31

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project.

  15. Mobile treatment modules for the Rhode Island environmental training center. Project report

    SciTech Connect (OSTI)

    Herriot, D.

    1994-12-01

    Groundwater pollution can result from many activities, including leaching from landfills and abandoned dump sites, accidental spills of chemicals or waste materials, improper underground injection of liquids, and leakage from faulty septic systems or underground storage tanks. Discoveries of aquifer pollution from man`s waste disposal practices are increasing. A recent trend, is to fast track the remediation process by employing mobile units which can be quickly set up and put into operation to address the contamination problem with the speed and urgency it deserves. The traditional study, design, and construction of a site-specific treatment process simply takes too long. Mobile units can serve as an interim treatment system to expeditiously control migration, and address public health and safety concerns while time and technology work together for a permanent, cost-effective remediation plan.

  16. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  17. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect (OSTI)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

  18. Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project

    SciTech Connect (OSTI)

    Chapman, T.E.

    1993-10-01

    The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacities and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.

  19. Bescorp soil washing system for lead battery site treatment. Applications analysis report. Project report

    SciTech Connect (OSTI)

    Gaire, R.J.

    1995-01-01

    The Brice Environmental Services Corporation (BESCORP) Soil Washing System (BSWS) and its applicability in remediating lead-contaminated soil at lead battery sites was evaluated. The report presents performance and economic data, developed from the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) demonstration (three test runs) and additional data provided by the developer. The demonstration took place at the Alaskan Battery Enterprises (ABE) site in Fairbanks, Alaska. Economic data for a commercial 20-tph unit processing wastes similar to those treated in the SITE Demonstration, including disposal of waste effluents, project operating costs to be about $165/ton of soil (dry basis) containing 6.6 wt percent moisture. This figure does not reflect any revenue from recycling of metallic lead or cashing chips.

  20. CO-operation development project for new treatment of steam generator's - impact on final disposal volumes and recycling in Northern Europe

    SciTech Connect (OSTI)

    Wirendal, B.O.; Lindstrom, A.; Lindberg, M.; Hansson, T.

    2007-07-01

    This paper describes a real case of cost effective volume reduction of a retired, full size SG removed from the Ringhals Nuclear Power Plant, Sweden. The project is described from the first step of fulfilling the demands from the authorities before treatment to the results of the treatment. The evaluations of the method is also included and compared to the other possibilities and the driving forces that work in favour of our method. The waste owners' strategy is also described in this paper. Finally is the method of treatment described as a principle as well as the results. Technical details as well as detailed results are given in Paper 7131 [ref 1]. (authors)

  1. An Archaeological Survey for the Rio Water Supply Corporation Water Treatment Plant Project in Starr County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-30

    5270. In all, 23.14 acres were examined. No previously recorded archaeological sites are present within any portion of the project area, and no previously unrecorded archaeological sites were found. Much of the project area had been disturbed through...

  2. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection...

  3. Independent Oversight Activity Report, Hanford Sludge Treatment...

    Energy Savers [EERE]

    Activity Report, Hanford Sludge Treatment Project - September 2013 Independent Oversight Activity Report, Hanford Sludge Treatment Project - September 2013 November 2013 Hanford...

  4. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  5. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    SciTech Connect (OSTI)

    NONE

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP`s mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP`s LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility.

  6. Hanford’s Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.; Beck, T. H.; Matyas, Josef; Bagaasen, Larry M.; Cooley, Scott K.; Pierce, Eric M.; Kim, Dong-Sang; Schweiger, Michael J.

    2008-02-22

    The GeoMeltŽ In-Container Vitrification™ (ICV™) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford’s low-activity waste (LAW). Also referred to as “bulk vitrification,” this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV™ process before operating the Hanford pilot-plant. In 2007, the project’s fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV™ melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV™ melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D.

  7. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.; Beck, T.H.; Matyas, J.; Bagaasen, L.M.; Cooley, S.K.; Pierce, E.; Kim, D.S.; Schweiger, M.J.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV{sup TM} melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D. (authors)

  8. Contract/Project Management

    Energy Savers [EERE]

    on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre-...

  9. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  10. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Project - October 2010 Independent Oversight Review, Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford...

  11. Thrombin Injection Failure with Subsequent Successful Stent-Graft Placement for the Treatment of an Extracranial Internal Carotid Pseudoaneurysm in a 5-Year-Old Child

    SciTech Connect (OSTI)

    Garcia-Monaco, R. D.; Kohan, A. A.; Martinez-Corvalan, M. P.; Cacchiarelli, N.; Peralta, O.; Wahren, C. G.

    2012-06-15

    Internal carotid artery pseudoaneurysm is a rare life-threatening condition that may develop in different clinical situations. We report the case of an extracranial internal carotid artery pseudoaneurysm secondary to a throat infection in a pediatric patient that was initially treated with percutaneous thrombin injection under ultrasound guidance. However, recanalization occurred at 48 h, and definitive treatment was then performed by endovascular stent-graft placement. We briefly review the clinical characteristics of this uncommon clinical condition as well as the treatment options.

  12. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    2 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project...

  13. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the results of an...

  14. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the results of an...

  15. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2001 Project Team Faculty: Grace Brush, Geography & Environmental Engineering, Whiting School of Engineering Fellow: Dan Bain, Geography & Environmental Engineering, Whiting School. Through this project, the team proposes to develop a variety of resources: a set of general, web

  16. An Archaeological Survey for the Upper Leon River Municipal Water District Proposed Wastewater Treatment System Improvements Project in Eastern Comanche County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-10

    An archaeological evaluation of approximately 4 miles of proposed sewer force main and a proposed wastewater treatment plant at a 20 acre tract in eastern Comanche County, Texas was performed by Brazos Valley Research Associates (BVRA) in October...

  17. Medical Actinium Therapeutic Treatment

    ScienceCinema (OSTI)

    None

    2013-05-28

    Learn how INL researchers are increasing world supplies of Bismuth 213 to help with cancer treatments. For more information about INL research projects, visit http://www.facebook.com/idahonationallaboratory.

  18. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  19. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    SciTech Connect (OSTI)

    Yanochko, Ronald M; Corcoran, Connie

    2012-11-15

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

  20. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  1. Contract/Project Management

    Energy Savers [EERE]

    76% This is a 3-year rolling average Data includes FY06 to FY08. (3748) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

  2. National Decentralized Water Resources Capacity Development Project

    E-Print Network [OSTI]

    Gold, Art

    National Decentralized Water Resources Capacity Development Project Mapping Onsite Treatment Needs Onsite Treatment Needs, Pollution Risks, and Management Options Using GIS Submitted by the University. Wastewater Planning Handbook: Mapping Onsite Treatment Needs, Pollution Risks, and Management Options Using

  3. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    SciTech Connect (OSTI)

    Yanochko, Ronald M. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States); Corcoran, Connie [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)

    2013-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)

  4. Microwave solidification project overview

    SciTech Connect (OSTI)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  5. Environmental Assessment and Finding of No Significant Impact: Wastewater Treatment Capability Upgrade, Project NO. 96-D-122 Pantex Plant Amarillo, Texas

    SciTech Connect (OSTI)

    N /A

    1999-05-27

    This Environmental Assessment (EA) addresses the U.S. Department of Energy (DOE) proposed action regarding an upgrade of the Pantex Plant Wastewater Treatment Facility (WWTF). Potential environmental consequences associated with the proposed action and alternative actions are provided. DOE proposes to design, build, and operate a new WWTF, consistent with the requirements of Title 30 of the Texas Administrative Code (TAC), Chapter 317, ''Design Criteria for Sewage Systems,'' capable of supporting current and future wastewater treatment requirements of the Plant. Wastewater treatment at Pantex must provide sufficient operational flexibility to meet Pantex Plant's anticipated future needs, including potential Plant mission changes, alternative effluent uses, and wastewater discharge permit requirements. Treated wastewater effluent and non-regulated water maybe used for irrigation on DOE-owned agricultural land. Five factors support the need for DOE action: (1) The current WWTF operation has the potential for inconsistent permit compliance. (2) The existing WWTF lies completely within the 100-year floodplain. (3) The Pantex Plant mission has the potential to change, requiring infrastructure changes to the facility. (4) The life expectancy of the existing facility would be nearing its end by the time a new facility is constructed. (5) The treated wastewater effluent and non-regulated water would have a beneficial agricultural use through irrigation. Evaluation during the internal scoping led to the conclusion that the following factors are present and of concern at the proposed action site on Pantex Plant: (1) Periodic wastewater effluent permit exceedances; (2) Wetlands protection and floodplain management; (3) Capability of the existing facility to meet anticipated future needs of Pantex (4) Existing facility design life; and (5) Use of treated wastewater effluent and non-regulated water for irrigation. Evaluation during the internal scoping led to the conclusion that the following conditions are not present, nor of concern at the proposed site on Pantex Plant, and no further analysis was conducted: (1) State or national parks, forests, or other conservation areas; (2) Wild and scenic rivers; (3) Natural resources, such as timber, range, soils, minerals; (4) Properties of historic, archeological, or architectural significance; (5) Native American concerns; (6) Minority and low-income populations; and (7) Prime or unique farmland. In this document, DOE describes the proposed action and a reasonable range of alternatives to the proposed action, including the ''No-Action'' alternative. The proposed action cited in the ''U.S. Department of Energy Application for a Texas Pollutant Discharge Elimination System Permit Modifying Permit to Dispose of Waste, No. 02296,'' December 1998, included the construction of a new wastewater treatment facility, a new irrigation storage pond, and the conversion of the current wastewater treatment facility into an irrigation storage pond. Although a permit modification application has been filed, if a decision on this EA necessitates it, an amendment to the permit application would be made. The permit application would be required for any of the alternatives and the filing does not preclude or predetermine selection of an alternative considered by this EA. This permit change would allow Pantex to land-dispose treated wastewater by irrigating agricultural land. This construction for the proposed action would include designing two new lagoons for wastewater treatment. One of the lagoons could function as a facultative lagoon for treatment of wastewater. The second lagoon would serve as an irrigation storage impoundment (storage pond), with the alternative use as a facultative lagoon if the first lagoon is out of service for any reason. The new facultative lagoon and irrigation water storage pond would be sited outside of the 100-year flood plain. The existing WWTF lagoon would be used as a storage pond for treated wastewater effluent for irrigation water, as needed. The two new lagoons would be li

  6. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Engineering Processes - October 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes - October 2015...

  7. EMAB Briefing on Capital Assets Projects and Operations Activities...

    Office of Environmental Management (EM)

    has: * 2 Line item construction projects: Waste Treatment Plant (WTP) at Hanford and Salt Waste Processing Finishing Plant (SWPF) at Savannah River Site * Capital asset projects...

  8. MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho

    Office of Environmental Management (EM)

    MAJOR CONFORMED CONTRACTS LINKS SiteProject Contract Link Idaho Idaho Cleanup Project http:www.id.doe.govdoeidICPContractICPContract.htm Advance Mixed Waste Treatment http:...

  9. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    & Sciences Project Title Visualize Physical Principles with Virtual Lab Modules Audience Undergraduate provide easy access to digital information, but don't provide experience with right- hand screws, electric of the last generation of physics students. The result is that today's students don't have an intuitive

  10. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    . Pedagogical Issue One of the challenges in teaching the Introduction to Computer Music course is the lack flow and practices. These resources will provide an online space through which students will be able piece of this project will be an animated studio walkthrough requiring user interaction and providing

  11. Independent Oversight Review, Waste Treatment and Immobilization...

    Broader source: Energy.gov (indexed) [DOE]

    November 2011 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality This report documents the results of an independent oversight review...

  12. Metallic Stents for Tracheobronchial Pathology Treatment

    SciTech Connect (OSTI)

    Serrano, Carolina; Laborda, Alicia; Lozano, Juan M.; Caballero, Hugo; Sebastian, Antonio; Lopera, Jorge; Gregorio, Miguel Angel de

    2013-12-15

    Purpose: To present the 7-year experience of the treatment of benign and malignant tracheobronchial stenoses using metallic stents. Patients and Methods: One hundred twenty-three stents were inserted in 86 patients (74 benign and 12 malignant stenoses). Ninety-seven stents were placed in the trachea and 26 in the bronchi. The procedures were performed under fluoroscopic and flexible bronchoscopic guidance with the patient under light sedation. In cases of severe stenotic lesions or obstructions, laser resection was performed before stent placement. Clinical and functional pulmonary data were recorded before and 3 months after the procedure. Follow-up involved clinical data and radiographic techniques at 48 h and at 1-, 3-, 6-, and 12-month intervals. Results: The technical success was 100 %. Dyspnea disappearance, forced expiratory volume in the first second, and pulmonary functional data improvement was observed in all patients (p < 0.001). Complications were detected in 23 patients (26.7 %). Mean follow-up time was 6.3 {+-} 1.2 months in patients with malignant lesions and 76.2 {+-} 2.3 months patients with in benign lesions. By the end of the study, 100 % of patients with malignant pathology and 6.7 % of patients with benign lesions had died. Conclusion: Endoluminal treatment of tracheobronchial stenosis with metallic stents is a therapeutic alternative in patients who are poor candidates for surgery. In unresectable malignant lesions, the benefit of metallic stenting is unquestionable. In benign lesions, the results are satisfactory, but sometimes other interventions are required to treat complications. New stent technology may improve these results.

  13. Project Reports for Alaska Native Tribal Health Consortium- 2011 Project

    Broader source: Energy.gov [DOE]

    The main objective of the proposed project is to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit.

  14. PROJECT REPORTS FOR Alaska Native Tribal Health Consortium- 2011 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The main objective of the proposed project is to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit.

  15. Demonstration Scale Projects Michael Cooney

    E-Print Network [OSTI]

    investigated the application of anaerobic digestion to primary clarifier treatment as a means to lower bulk packing material in anaerobic digesters. #12;Demonstration Scale Projects Michael Cooney With a grant from the DOE, a 3,000 gallon anaerobic

  16. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  17. K Basins Sludge Treatment Project Phase 1

    Office of Environmental Management (EM)

    Readiness Assessment Report Herb G. Sutter Michael Poirier Art W. Etchells Gary Smith Kris Thomas Jim J. Davis Paul Macbeth November 16, 2009 Prepared by the U.S....

  18. INL Bettis Water Treatment Project Report

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

  19. Idaho Site Contractor Achieves Treatment Project Milestone

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site’s main cleanup contractor recently achieved a major performance milestone by successfully passing an operational readiness review for a first-of-a-kind facility that will treat the remaining 900,000 gallons of liquid radioactive waste generated by the site’s legacy cleanup mission.

  20. ADVANCED MIXED WASTE TREATMENT PROJECT (AMWTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01) (NotAdvanced70.4B Chg 1 1GPROJECT

  1. Waste Treatment Plant Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics Âť USAJobs SearchAMERICA'S FUTURE. regulators02-03HeatWaste

  2. Advanced Energy Projects: FY 1993, Research summaries

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  3. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  4. Project Complete

    Broader source: Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  5. Project Construction

    Broader source: Energy.gov [DOE]

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  6. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects that involve UCSD faculty members and graduate students from the structural engineering (SE), mechanical and aerospace engineering (MAE), electrical and computer...

  7. RESEARCH PROJECTS February 13

    E-Print Network [OSTI]

    Schenato, Luca

    RESEARCH PROJECTS FP7 February 13 #12; FP7 COOPERATION #12; INTERNATIONAL RESEARCH PROJECTS FP7 COOPERATION ENERGY PROJECT ACRONYM: EFONET PROJECT TITLE: Energy foresight network PROJECT

  8. Operational Awareness Review of the Hanford Sludge Treatment...

    Office of Environmental Management (EM)

    Operations Office Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Sludge Treatment Project Dates of...

  9. Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility

    Broader source: Energy.gov [DOE]

    Construction of the largest groundwater treatment facility at the Hanford Site – a major American Recovery and Reinvestment Act project – is on schedule and more than 70 percent...

  10. DOE Selects Twelve Projects for Crosscutting Technology Research...

    Office of Environmental Management (EM)

    carbon management systems; and water management and treatment for power plant and carbon dioxide (CO2) storage operations. Project descriptions follow. Materials for Advanced...

  11. Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project

    SciTech Connect (OSTI)

    J. T. Beck

    2007-04-26

    This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

  12. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    accelerates the project schedule and significantly reduces the project total life cycle cost. Current Baseline (FY99 MYWP) Revised Project Baseline Project Scope: ...

  13. Alaska Native Tribal Health Consortium- 2011 Project

    Broader source: Energy.gov [DOE]

    The main objective of the proposed project is to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit.

  14. The Nautilus project

    SciTech Connect (OSTI)

    Salis, J. de

    1996-02-01

    The objective of the Nautilus project is to design, build, and evaluate a subsea multiphase electrical booster system to demonstrate its operability and reliability. The subsea station will reflect the integration of existing, tested, and recently developed equipment. The integration of various technologies, control, and maintenance in a subsea environment represents the challenging aspect of the project. Boosted by a helicoaxial pump, the produced multiphase effluent receives enough energy to reach either a host platform or the shore where the classical separation and treatment operations are performed. For deep offshore developments, the concept should induce a lower investment than alternative solutions. The concept should also give access to marginal fields, currently undeveloped for economical reasons, with the benefit of maximizing existing infrastructure. Furthermore, where sea traffic or environment concerns may limit offshore surface developments, Nautilus should demonstrate itself as an economical alternative.

  15. Effect of Pre and Post-Harvest Treatments on Characteristics of ‘Pawnee’ Pecan Kernels 

    E-Print Network [OSTI]

    Mansur, Zainab J

    2014-04-17

    harvesting practices (‘Direct’, early harvest and brought to the lab; ‘Cluster’, late harvest; and ‘Ground’, early harvest and kept on the ground of the orchard), four storage temperature combinations [oven at 80 °C for 48 h then ambient temperature (‘OA...

  16. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  17. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  18. Project Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProjectITER Project

  19. Project Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)Project Tour Project Tour See NMSSUP from

  20. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  1. Lemon Project Spring Symposium

    E-Print Network [OSTI]

    Fashing, Norman

    Lemon Project: A Journey of Reconciliation." The BOV defined Lemon "as a long- term research project

  2. Oil sands processes-affected water treatment Research field: Oil sands processes-affected water treatment

    E-Print Network [OSTI]

    Milgram, Paul

    Oil sands processes-affected water treatment Research field: Oil sands processes-affected water., to make the system work as desired. We have experimental projects on oil extraction, polymers, fluid

  3. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  4. PROJECT SUMMARY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - . . -Pathways)PROJECT SUMMARY 1 TITLE

  5. Hallmark Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs |ReferencePowerHaier: OrderProject

  6. Custom Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in ActinideRailCurrent ResearchInnovationCustom-Projects

  7. Project Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefineEnergy NationalDepartmentProjectNE I&C

  8. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProject Gnome Double Beta Decay

  9. Project Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProjectITERFebruaryStorage

  10. About Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery ActARM OverviewAbout GEDOE Projects

  11. Line Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015Tray and|Projects Pages default

  12. PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples

    Energy Savers [EERE]

    is responsible for supporting the FDH and RL project offices with adequate day-to-day planning and review technical management, coordination, control, and reporting of project...

  13. PROJECT MANAGEMENT Professional Organizations

    E-Print Network [OSTI]

    Acton, Scott

    PROJECT MANAGEMENT Professional Organizations: Association of Collegiate Computing Services) Project Management Institute (PMI) Events & Training: UVA Local Support Partners (LSP) program training Project Management Institute webinars Project Management Institute events Scrum Alliance events Learning

  14. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  15. PROJECT MANAGEMENT Professional Organizations

    E-Print Network [OSTI]

    Acton, Scott

    PROJECT MANAGEMENT Professional Organizations: Project Management Institute International Association of Project and Program Management (IAPPM) Events & Training: UVa Center for Leadership Excellence classes SkillSoft classes PMO Symposium through PMI Project Management Institute (PMI) webinars American

  16. Perspectives on Project Finance

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Perspectives on Project Finance John May, Managing Partner, Stern Brothers & Co.

  17. Community Renewables Projects

    Broader source: Energy.gov [DOE]

    This webinar covered introduction and barriers to individual renewable projects, resources for community and group buy projects, and permitting guidelines.

  18. Computer Vision Project Topics Project Reports

    E-Print Network [OSTI]

    Zhu, Zhigang

    (contour projection?). step5: choose a tolerance value(3 or 5 pixels) to evaluate the image with eachComputer Vision Project Topics CSc I6716 Spring2011 #12;Project Reports 1. Introduction (problem up with Nikolaos Markou? ¡ Key Components ­ The project is to find a target image from bunch

  19. Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2

    E-Print Network [OSTI]

    is used as a foundation for all development, land use, and transportation activities at UBC. LBS Project Services is a fee-for-service provider of development, design, and project management servicesProject Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2

  20. Online Produced Water Treatment Catalog and Decision Tool

    SciTech Connect (OSTI)

    J. Arthur

    2012-03-31

    The objective of this project was to create an internet-based Water Treatment Technology Catalog and Decision Tool that will increase production, decrease costs and enhance environmental protection. This is to be accomplished by pairing an operator's water treatment cost and capacity needs to specific water treatments. This project cataloged existing and emerging produced water treatment technologies and allows operators to identify the most cost-effective approaches for managing their produced water. The tool captures the cost and capabilities of each technology and the disposal and beneficial use options for each region. The tool then takes location, chemical composition, and volumetric data for the operator's water and identifies the most cost effective treatment options for that water. Regulatory requirements or limitations for each location are also addressed. The Produced Water Treatment Catalog and Decision Tool efficiently matches industry decision makers in unconventional natural gas basins with: 1) appropriate and applicable water treatment technologies for their project, 2) relevant information on regulatory and legal issues that may impact the success of their project, and 3) potential beneficial use demands specific to their project area. To ensure the success of this project, it was segmented into seven tasks conducted in three phases over a three year period. The tasks were overseen by a Project Advisory Council (PAC) made up of stakeholders including state and federal agency representatives and industry representatives. ALL Consulting has made the catalog and decision tool available on the Internet for the final year of the project. The second quarter of the second budget period, work was halted based on the February 18, 2011 budget availability; however previous project deliverables were submitted on time and the deliverables for Task 6 and 7 were completed ahead of schedule. Thus the application and catalog were deployed to the public Internet. NETL did not provide additional funds and work on the project stopped on February 18, 2011. NETL ended the project on March 31, 2012.

  1. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  2. Conventional and novel treatments for control of clubroot disease of brassicas 

    E-Print Network [OSTI]

    Stewart, Kelly Louise

    2008-01-01

    The aim of this project was to develop treatments that would be able to reduce the survival of clubroot spores in field soil and protect the roots of young transplants against infection. The project focused on using ...

  3. Projective ML Didier Remy

    E-Print Network [OSTI]

    RĂŠmy, Didier

    Projective ML Didier Remy INRIA-Rocquencourt Apr 10, 1992 Abstract We propose a projective lambda calculus as the ba- sis for operations on records. Projections operate on elevations, that is, records projective ML from this calculus by adding the ML Let typing rule to the simply typed projective calculus. We

  4. Project Reports for Haida Corporation- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  5. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...

    Office of Environmental Management (EM)

    Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste...

  6. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  7. Summary - Building C-400 Thermal Treatment Remedial Design Report...

    Office of Environmental Management (EM)

    Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External...

  8. Project Selection - Record Keeping 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations.

  9. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  10. 2016 Technology Innovation Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  11. Contract/Project Management

    Office of Environmental Management (EM)

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011...

  12. Contract/Project Management

    Office of Environmental Management (EM)

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- &...

  13. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- &...

  14. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- &...

  15. Contract/Project Management

    Energy Savers [EERE]

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP...

  16. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final...

  17. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  18. Contract/Project Management

    Office of Environmental Management (EM)

    1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  19. Contract/Project Management

    Office of Environmental Management (EM)

    3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

  20. Contract/Project Management

    Energy Savers [EERE]

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast...

  1. Project 1640 Palomar Procedures

    E-Print Network [OSTI]

    Project 1640 Palomar Procedures Version 0.1 7/7/08 2:11:08 PM #12;2 Project 1640 Design..................................................................................................................... 1 Palomar Procedures

  2. Project Finance and Investments

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

  3. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  4. Streaming current and wall dissolution over 48 h in silica nanochannels Mathias Bkbo Andersen a,

    E-Print Network [OSTI]

    , and the chemical reactions in the bulk electrolyte and at the solid­liquid interface. We extend this model to two induced by a pressure-driven flow in long, straight, electrolyte-filled nanochannels. The theoretical work the electrolyte composition using KCl and borate salts, and the wall coating using 3

  5. Low level mixed waste thermal treatment technical basis report

    SciTech Connect (OSTI)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  6. Breckinridge Project, initial effort

    SciTech Connect (OSTI)

    none,

    1982-01-01

    The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basis established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.

  7. Review of the Sodium Bearing Waste Treatment Project - Integrated...

    Office of Environmental Management (EM)

    LCO Limiting Condition for Operation LSS Life Safety Systems MSA Management Self-Assessment OFI Opportunity for Improvement ORR Operational Readiness Review OSO Outside Support...

  8. Review of the Sodium Bearing Waste Treatment Project - Integrated...

    Office of Environmental Management (EM)

    canister transfer to the vault). Other evolutions included numerous operational drills, operational activities, simulator operations and scenario proficiency demonstrations,...

  9. Idaho's Advanced Mixed Waste Treatment Project Details 2013Accomplish...

    Broader source: Energy.gov (indexed) [DOE]

    Articles A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Innovative Technique Accelerates Waste Disposal at Idaho Site Only the...

  10. SLUDGE TREATMENT PROJECT ALTERNATIVES ANALYSIS SUMMARY REPORT [VOLUME 1

    SciTech Connect (OSTI)

    FREDERICKSON JR; ROURK RJ; HONEYMAN JO; JOHNSON ME; RAYMOND RE

    2009-01-19

    Highly radioactive sludge (containing up to 300,000 curies of actinides and fission products) resulting from the storage of degraded spent nuclear fuel is currently stored in temporary containers located in the 105-K West storage basin near the Columbia River. The background, history, and known characteristics of this sludge are discussed in Section 2 of this report. There are many compelling reasons to remove this sludge from the K-Basin. These reasons are discussed in detail in Section1, and they include the following: (1) Reduce the risk to the public (from a potential release of highly radioactive material as fine respirable particles by airborne or waterborn pathways); (2) Reduce the risk overall to the Hanford worker; and (3) Reduce the risk to the environment (the K-Basin is situated above a hazardous chemical contaminant plume and hinders remediation of the plume until the sludge is removed). The DOE-RL has stated that a key DOE objective is to remove the sludge from the K-West Basin and River Corridor as soon as possible, which will reduce risks to the environment, allow for remediation of contaminated areas underlying the basins, and support closure of the 100-KR-4 operable unit. The environmental and nuclear safety risks associated with this sludge have resulted in multiple legal and regulatory remedial action decisions, plans,and commitments that are summarized in Table ES-1 and discussed in more detail in Volume 2, Section 9.

  11. Review of the Hanford Waste Treatment and Immobilization Project...

    Broader source: Energy.gov (indexed) [DOE]

    identification, weld filler material traceability, and fusion bonded epoxy (FBE) coating documentation. The ORP vertical slice audit report findings also took into account:...

  12. Department of Energy Idaho - Advanced Mixed Waste Treatment Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOEDanielDe novoEmergency Public Affairs

  13. Sodium Bearing Waste Treatment Project ďż˝ Countdown to Startup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience of Signatures

  14. Enterprise Assessments, Review of the Hanford Site Sludge Treatment Project

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartmentApril2014 | DepartmentMarch 2015Engineered

  15. Idaho's Advanced Mixed Waste Treatment Project Details 2013

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71Commercial Industrial

  16. Independent Activity Report, Hanford Sludge Treatment Project - February

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OF DESIGN CODES TOSummary Report0 Hanford Tour2012 |

  17. Independent Oversight Review, Advanced Mixed Waste Treatment Project -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OF DESIGNEmergency Preparedness for Severefor-

  18. Independent Oversight Review, Sodium Bearing Waste Treatment Project -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OF DESIGNEmergency2013 |2013 |ofFacility - August2012

  19. Independent Oversight Review, Sodium Bearing Waste Treatment Project -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OF DESIGNEmergency2013 |2013 |ofFacility -

  20. Independent Oversight Activity Report, Hanford Sludge Treatment Project -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergyDepartment| Department of

  1. K Basins Sludge Treatment Project Phase 1 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public CommentInverted Attic9: HSS/9/09 OfficeJuneofby:JustKK

  2. Advanced Mixed Waste Treatment Project Achieves Impressive Safety and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FAL 99-01Energy EfficiencyApplications |Production Marks |

  3. DOE Extends Advanced Mixed Waste Treatment Project Contract | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOEEnvironmentalwith RecoveryWesternEnergy

  4. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  5. Livingston Campus Geothermal Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

  6. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  7. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  8. Onsite Wastewater Treatment Systems: Aerobic Treatment Unit 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-31

    Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them....

  9. Emergency Medical Treatment Required

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Emergency Medical Treatment Required Non-Emergency Medical Treatment Required If possible, get help from colleague or supervisor Call 911 or go to hospital emergency room (for chemical exposure, bring Investigation Report" to Environmental Health & Safety within 48 hours Emergency Medical Treatment Required

  10. Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title......

    E-Print Network [OSTI]

    Dahlberg, Teresa A.

    Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title of the project?) Excellent Very Good Good Fair Unsatisfactory COMMENTS: #12;Judge Evaluation Scoring Form for REU) #12;Judge Evaluation Scoring Form for Poster Presentation PROJECT.#.: ...Title.. PARTICIPANTS: DATE

  11. Sample Project Execution Plan

    Broader source: Energy.gov [DOE]

    The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects.  The plan serves as the main communication vehicle to ensure that...

  12. Haida Corporation- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  13. Iskuulpa Watershed ProjectIskuulpa Watershed Project BPA Project # 199506001BPA Project # 199506001

    E-Print Network [OSTI]

    Basin Fish and Wildlife Mitigation ProjectMitigation Project Established by the CTUIR in 1995Established by the CTUIR in 1995 Provides dual benefit to fish and wildlifeProvides dual benefit to fish and wildlife while

  14. Rooftop Unit Network Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Project RTU Network Project Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies...

  15. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    100% Post-CAP This is based on a 3-year rolling average (FY10). TPC is Total Project Cost. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup...

  16. Planning the Project Meeting 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    Project group meetings must be planned well in advance. Members should be involved in completing some type of work before the next meeting. This helps the leader plan the next project meeting and makes efficient use of time.

  17. The 4-H Project 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    As a 4-H volunteer, you will find that projects are useful tools for teaching a wide variety of skills to young people. This publication will help you plan and evaluate 4-H learning projects.

  18. Rabbit Project Reference Manual 

    E-Print Network [OSTI]

    Wootton, Chad

    2000-05-04

    This publication explains how to raise rabbits for a 4-H rabbit project. It discusses project options; breeds; equipment; breeding and kindling; sanitation; diseases, parasites and illnesses; processing; marketing; and grooming and showing. Although...

  19. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    within 12 months of the original CD- 34 duration. 90% 91% FY10-FY12 Seventy completions to date. Schedule Compliance, Projects greater than 5 years Duration: Projects will...

  20. Infrastructure Projects | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions for many, as well as a change to the layout of the laboratory due to ancillary projects. The project has received approval to make early purchases in the...

  1. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

  2. GHPsRUS Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Battocletti, Liz

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  3. WIPP Projects Interative Map

    Broader source: Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  4. GHPsRUS Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Battocletti, Liz

    2013-07-09

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  5. Ferdinand Project Middleware List

    E-Print Network [OSTI]

    ://java.dzone.com/articles/case-study-how-lastfm-uses] - hornetq-vm: VM for testing of clustered scenarios [http://sourceforge.net/projects/hornetq-vm/] EvaluationFerdinand Project Middleware List Jaroslav Keznikl2 , Michal Malohlava1 , LukĂĄs Marek1 , Petr Tma1 phone +420-266053831 #12;FERDINAND PROJECT MIDDLEWARE LIST PURPOSE The purpose of this report

  6. TEAM PROJECT: WORKING PROTOTYPE

    E-Print Network [OSTI]

    .) Value: the report is worth 10% of the Team Project grade. #12;Next steps: You will evaluateTEAM PROJECT: WORKING PROTOTYPE Due: Week of April 5-8 at time to be scheduled with GTA Format that will be polished into the final project for which you will create a final report and give a final presentation

  7. Project Description 1 Introduction

    E-Print Network [OSTI]

    VanDeGrift, Tammy

    Project Description 1 Introduction This project will investigate "commonsense computing": what, and 3. Apply our findings to changes in classroom pedagogy in ways that can be rigorously evalu- ated. 1 0736572 #12;In the exploratory part of this project, which we are proposing here, we will concentrate

  8. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  9. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...

    Energy Savers [EERE]

    qualitativelysubjectively assess the project risk. The approach is modeled after project risk assessment processes outlined in standard project management texts and training...

  10. Treatment-resistant pyoderma gangrenosum

    E-Print Network [OSTI]

    Kosari, Payman; Feldman, Steven R

    2012-01-01

    of compliance with psoriasis treatment. J Cutan Med Surg .in the treatment of psoriasis: a systematic review.acid gel for plaque psoriasis treatment. Arch Dermatol 141(

  11. Considering biomedical/CAM treatments

    E-Print Network [OSTI]

    Cheng, JX; Widjaja, F; Choi, JE; Hendren, RL

    2013-01-01

    and possible use of biomedical CAM treatments, including24 April 2013 ? 6:40 pm Biomedical Complementary Treatment24 April 2013 ? 6:40 pm Biomedical Complementary Treatment

  12. Genome Science and Personalized Cancer Treatment

    ScienceCinema (OSTI)

    Gray, Joe

    2010-01-08

    August 4, 2009 Berkeley Lab lecture: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks ? particularly with regard to breast cancer.

  13. Genome Science and Personalized Cancer Treatment

    SciTech Connect (OSTI)

    Gray, Joe

    2009-08-07

    August 4, 2009 Berkeley Lab lecture: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  14. Genome Science and Personalized Cancer Treatment

    SciTech Connect (OSTI)

    Gray, Joe

    2009-08-04

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  15. BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)

    E-Print Network [OSTI]

    BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

  16. National Compact Stellarator Experiment Project Closeout Report PROJECT CLOSEOUT REPORT

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Approved by Jeffrey Makiel DOE Federal Project Director for the National Compact Stellarator Experiment II.....................................................................................1 3. PROJECT HISTORY

  17. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...

    Broader source: Energy.gov (indexed) [DOE]

    addressing the following key elements of project management and control: Project Management Control System (PMCS) - Work breakdown structure - Baseline developmentupdate...

  18. Advances in Psoriasis Treatment

    E-Print Network [OSTI]

    Feldman, Steven R

    2000-01-01

    population of patients with psoriasis. Cutis 58 (3):216-220,The economic impact of psoriasis increases with psoriasisterm cyclosporin treatment of psoriasis [see comments]. Br J

  19. Project Surveillance and Maintenance Plan. [UMTRA Project

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the (guidance) to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs.

  20. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  1. Structuring small projects

    SciTech Connect (OSTI)

    Pistole, C.O.

    1995-11-01

    One of the most difficult hurdles facing small project developers is obtaining financing. Many major banks and institutional investors are unwilling to become involved in projects valued at less than $25 million. To gain the interest of small project investors, developers will want to present a well-considered plan and an attractive rate of return. Waste-to-energy projects are one type that can offer diversified revenue sources that assure maximum profitability. The Ripe Touch Greenhouse project, a $14.5 million waste tire-to-energy facility in Colorado, provides a case study of how combining the strengths of the project partners can help gain community and regulatory acceptance and maximize profit opportunities.

  2. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ď?ˇ Create a Showcase Waste Heat Recovery Demonstration Project.

  3. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  4. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  5. Mascoma: Frontier Biorefinery Project

    Broader source: Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  6. Integrated Project Team RM

    Office of Environmental Management (EM)

    acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals representing diverse disciplines with the specific...

  7. Mentors and Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ideas. Borovsky, Joe Mentor Joe Borovsky General Interests Magnetospheric physics, solar-wind physics, solar-windmagnetosphere coupling Suggested Project Topics Theory and...

  8. Penobscot Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    With this award, the Penobscot Indian Nation will advance the preconstruction activities required to secure funding for the proposed 227-megawatt (MW) Alder Stream wind project.

  9. Bacteria TMDL Projects 

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01

    stream_source_info Bacteria TMDL projects.pdf.txt stream_content_type text/plain stream_size 2550 Content-Encoding ISO-8859-1 stream_name Bacteria TMDL projects.pdf.txt Content-Type text/plain; charset=ISO-8859-1 tx H2O... of the projects are listed below. ? Peach CreekWater Quality Improvement Project ? Monitoring and Educational Programs Focused on Bacteria and Nutrient Runoff on Dairy Operations in the LeonWatershed ? Development of the Plum CreekWPP ? Impact of Proper...

  10. Whistling Ridge Energy Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build, own and operate the wind project and their associated facilities. The Final Environmental Impact Statement (FEIS) has been issued for the proposed Whistling Ridge...

  11. TThe {\\sc Majorana} Project

    E-Print Network [OSTI]

    The MAJORANA collaboration

    2009-10-23

    The {\\sc Majorana} Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  12. The MAJORANA project

    SciTech Connect (OSTI)

    Elliott, Steven R [Los Alamos National Laboratory

    2009-01-01

    The Majorana Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  13. Power Systems Past Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    loop and its six associated substations. An upgrade of the INL loop, designed by Power Systems personnel, was completed in 1997. This project consists of transmission line...

  14. Project Reports for Kootznoowoo Incorporated- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).

  15. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect (OSTI)

    2013-11-19

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents’ are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  16. FIDDLER CREEK POLYMER AUGMENTATION PROJECT

    SciTech Connect (OSTI)

    Lyle A. Johnson, Jr.

    2001-10-31

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1 with lesser effects in Pattern 2. These early observations did not continue to develop. The oil production for both patterns remained fairly constant to the rates established by the restart of waterflooding. The water production declined but stabilized in both patterns. The stabilization of the oil at prepolymer rates and water production at the lower rates can be attributed to the polymer injection, but the effect was not as great as originally predicted. The sweep improvement for the patterns appeared to be negatively impacted by extended shutdowns in the injection and production systems. Such problems as those experienced in this project can be expected when long-term polymer injection is started in old waterflood fields. To prevent these problems, new injection and production tubulars and pumps would be required at a cost prohibitive to the present, independent operators. Unless the future results from the continued waterflood show positive effects of the long-term polymer injection, it appears that the batch-type polymer treatment may have more promise than the long-term treatment and should be more cost effective.

  17. The human genome project

    SciTech Connect (OSTI)

    Yager, T.D.; Zewert, T.E.; Hood, L.E. )

    1994-04-01

    The Human Genome Project (HGP) is a coordinated worldwide effort to precisely map the human genome and the genomes of selected model organisms. The first explicit proposal for this project dates from 1985 although its foundations (both conceptual and technological) can be traced back many years in genetics, molecular biology, and biotechnology. The HGP has matured rapidly and is producing results of great significance.

  18. The Home Microbiome Project

    SciTech Connect (OSTI)

    Gilbert, Jack

    2014-08-25

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  19. LEP Dismantling Project

    E-Print Network [OSTI]

    Poole, John; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The LEP Dismantling Project has been in its operational phase since late in the year 2000. This report briefly reviews the development of the project and the current status. The report has been prepared for presentation to the Radiation Protection Committee in May 2001 and consequently it has a bias towards Radiation Protection activities.

  20. Project organizations and schedules

    SciTech Connect (OSTI)

    Briggs, R.J.

    1990-07-01

    The Superconducting Super Collider Laboratory (SSCL) faces the challenge of simultaneously carrying out a large-scale construction project with demanding cost, schedule, and performance goals; and creating a scientific laboratory capable of exploiting this unique scientific instrument. This paper describes the status of the laboratory organization developed to achieve these goals, and the major near-term schedule objectives of the project.

  1. TEAM PROJECT: USER TESTING

    E-Print Network [OSTI]

    TEAM PROJECT: USER TESTING Due: Wed April 21 (section 2) Thu April 22 (section 1) Now that you have: usability inspection, Neilsen's heuristic evaluation, pluralistic walk through, or GOMS analysis (without part of your project. You might consider a joint session with another team! Format: 3-4 page report

  2. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  3. The Home Microbiome Project

    ScienceCinema (OSTI)

    Gilbert, Jack

    2014-09-15

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  4. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

  5. North American LNG Project Sourcebook

    SciTech Connect (OSTI)

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  6. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  7. Portable treatment systems study

    SciTech Connect (OSTI)

    Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

    1997-03-01

    In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas.

  8. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-28

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  9. Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects

    SciTech Connect (OSTI)

    Dufour, Marc; Dormond-Meuwly, Anne; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2013-08-16

    Highlights: •PI3K inhibitors inhibit AKT only transiently. •Re-activation of AKT limits the anti-cancer effect of PI3K inhibitors. •The results suggest to combine PI3K and AKT inhibitors in cancer therapy. -- Abstract: Targeting the phosphatidylinositol-3-kinase (PI3K) is a promising approach in cancer therapy. In particular, PI3K blockade leads to the inhibition of AKT, a major downstream effector responsible for the oncogenic activity of PI3K. However, we report here that small molecule inhibitors of PI3K only transiently block AKT signaling. Indeed, treatment of cancer cells with PI3K inhibitors results in a rapid inhibition of AKT phosphorylation and signaling which is followed by the reactivation of AKT signaling after 48 h as observed by Western blot. Reactivation of AKT signaling occurs despite effective inhibition of PI3K activity by PI3K inhibitors. In addition, wortmannin, a broad range PI3K inhibitor, did not block AKT reactivation suggesting that AKT signals independently of PI3K. In a therapeutical perspective, combining AKT and PI3K inhibitors exhibit stronger anti-proliferative and pro-apoptotic effects compared to AKT or PI3K inhibitors alone. Similarly, in a tumor xenograft mouse model, concomitant PI3K and AKT blockade results in stronger anti-cancer activity compared with either blockade alone. This study shows that PI3K inhibitors only transiently inhibit AKT which limits their antitumor activities. It also provides the proof of concept to combine PI3K inhibitors with AKT inhibitors in cancer therapy.

  10. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  11. Advanced energy projects FY 1994 research summaries

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  12. Hydropower major rehabilitation projects

    SciTech Connect (OSTI)

    Norlin, J.A. [Army Corps of Engineers, Portland, OR (United States)

    1995-12-31

    The Corps of Engineers has developed an active Major Rehabilitation Program to handle large, long duration restoration projects. These projects are funded by specific appropriations and subsequently are required to have detailed rehabilitation plans to justify the work. The emphasis of the Major Rehabilitation Program is correcting reliability problems. Papers that were presented at Waterpower `93 discussed the basic concepts that are required in preparing a Major Rehabilitation Evaluation Report. This paper will cover the current status of each of the current major rehabilitation projects that the Corps of Engineers has in progress.

  13. LIMB demonstration project extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

  14. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  15. Arroyo Colorado Watershed Protection Plan Implementation Project Final Report 

    E-Print Network [OSTI]

    Berthold, T. Allen; Flores, Jaime

    2011-01-01

    /industrial wastewater discharges and irrigation return flows, recreation, and environmental uses and presents a detailed strategy to restore and protect these uses. Furthermore, the plan describes the institutional framework for current management programs... treatment levels, and enhanced biological treatment projects such as reuse via irrigation, polishing ponds and constructed wetland cells. Status ? Multiple wastewater effluent limits have been reduced and this is further reported in the milestones...

  16. Integrated Waste Treatment Unit GFSI Risk Management Plan

    SciTech Connect (OSTI)

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  17. NNSA project receives DOE Secretary's Award for Project Management...

    National Nuclear Security Administration (NNSA)

    project receives DOE Secretary's Award for Project Management Improvement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  18. Contract/Project Management

    Office of Environmental Management (EM)

    (Post- RCACAP) 80% Cleanup 86% Cleanup 67% Pre-CAP 88% Post-CAP This is based on a 3-year rolling average (FY09 to FY11, Note: zero cleanup projects completed in FY09). TPC is...

  19. CNEEC - Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of developing systems that can lead to break-out high-efficiency, cost-effective solar energy-to-fuel technologies. The projects are closely tied together through two mechanisms:...

  20. Hualapai Tribe- 2010 Project

    Broader source: Energy.gov [DOE]

    The project will build on the potential for renewable energy development on the Hualapai Reservation that was identified during the Phase l renewable energy resource assessment conducted by the Hualapai Tribe since 2005.

  1. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  2. AVTA: The EV Project

    Broader source: Energy.gov [DOE]

    The EV Project partnered with city, regional and state governments, utilities, and other organizations in 18 cities to deploy about 12,500 public and residential charging stations.  It also...

  3. Winnebago Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    Following through with the Winnebago Tribe's commitment to reduce energy usage and consumption, the Winnebago Tribe Solar Project will focus on renewable energy production and energy cost savings consistent with protecting our natural environment.

  4. Offshore Wind Project Map

    Broader source: Energy.gov [DOE]

    Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

  5. QUEST2 Energy Project 

    E-Print Network [OSTI]

    Clary, A. T.

    2007-01-01

    methodical process to identify primarily behavioral or procedural opportunities to improve energy efficiency. A key component of this process was to put control plans in place to maintain any gains that were achieved. The project resulting in finding...

  6. Portsmouth Paducah Project Office

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) established the Portsmouth/Paducah Project Office (PPPO) on October 1, 2003, to provide focused leadership to the Environmental Management missions at the...

  7. Federal Project Facilitators

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following are U.S. Department of Energy (DOE) approved project facilitators who are required under the DOE indefinite-delivery, indefinite-quantity contract to develop federal energy savings performance contracts.

  8. PROJECTION PURSUIT Jiayang Sun

    E-Print Network [OSTI]

    Sun, Jiayang

    PROJECTION PURSUIT Jiayang Sun Many data sets are high dimensional. It has been a common practice Friedman [7], Hall [11], Morton [21], Sun [23, 24], Cook et al. [2], Li and Cheng [19] and Roosen

  9. St. Bernard Project Update

    Broader source: Energy.gov [DOE]

    The folks at St. Bernard Project are helping survivors of Hurricane Katrina get back into their homes -- and are using new technologies to reduce energy and save money for the returning residents.

  10. Project financial evaluation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The project financial section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  11. Navajo Electrification Demonstraiton Project

    SciTech Connect (OSTI)

    Larry Ahasteen, Project Manager

    2006-07-17

    This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

  12. Lake Charles CCS Project

    SciTech Connect (OSTI)

    Leib, Thomas; Cole, Dan

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO2 per year as an integral component of commercial operations.

  13. Term Pricing Project

    E-Print Network [OSTI]

    Jeff Beckley

    2015-10-29

    Term Pricing Project. Your job is to reprice Purdue Life's 20 Year Term. You are to write a one page memo or report summarizing your work. The report should ...

  14. A Mobile Robot Project

    E-Print Network [OSTI]

    Brooks, Rodney A.

    We are building a mobile robot which will roam around the AI lab observing and later perhaps doing. Our approach to building the robot and its controlling software differs from that used in many other projects in a number ...

  15. Innovative Self- Generating Projects 

    E-Print Network [OSTI]

    Kelly, L.

    2013-01-01

    ? All rights reserved. Case Studies on Canadian Customer Generation Projects Innovative Self-Generation Projects Liam Kelly, M.A.Sc, CMVP Energy Engineer Willis Energy Services A CLEAResult company ESL-IE-13-05-06 Proceedings of the Thrity...-05-06 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 ? 2013 CLEAResult ? All rights reserved. Overcoming Challenges ? Look for innovative opportunities ? Leverage available incentives ? Quantify other...

  16. Black Pine Circle Project

    SciTech Connect (OSTI)

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  17. Black Pine Circle Project

    ScienceCinema (OSTI)

    Mytko, Christine

    2014-09-15

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  18. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  19. Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Develops Student-Stakeholders ProjectBaseload

  20. Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title......

    E-Print Network [OSTI]

    Dahlberg, Teresa A.

    Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title...... #12 of the project?) Excellent Very Good Good Fair Unsatisfactory COMMENTS: #12;Judge Evaluation Scoring Form for REU and click! PROJECT TITLE REU Site: Computing Research for Undergraduates: Visualization, Virtual

  1. Project Title: Earthquake Documentary Interviews

    E-Print Network [OSTI]

    Hickman, Mark

    Project Title: Earthquake Documentary Interviews Bachelor of Arts Internship Company: Chris Thomson Academic Adviser: Mary Wiles Project Reference Number: S112/CEISMIC/29/NP - Earthquake collected on the earthquake, its survivors and their stories. This project is unique

  2. Treatment Deployment Evaluation Tool

    SciTech Connect (OSTI)

    Rynearson, Michael Ardel; Plum, Martin Michael

    1999-08-01

    The U.S. Department of Energy (DOE) is responsible for the final disposition of legacy spent nuclear fuel (SNF). As a response, DOE's National Spent Nuclear Fuel Program (NSNFP) has been given the responsibility for the disposition of DOE -owned SNF. Many treatment technologies have been identified to treat some forms of SNF so that the resulting treated product is acceptable by the disposition site. One of these promising treatment processes is the electrometallurgical treatment (EMT) currently in development; a second is an Acid Wash Decladding process. The NSNFP has been tasked with identifying possible strategies for the deployment of these treatment processes in the event that the treatment path is deemed necessary. To support the siting studies of these strategies, economic evaluations are being performed to identify the least-cost deployment path. This model (tool) was developed to consider the full scope of costs, technical feasibility, process material disposition, and schedule attributes over the life of each deployment alternative. Using standard personal computer (PC) software, the model was developed as a comprehensive technology economic assessment tool using a Life-Cycle Cost (LCC) analysis methodology. Model development was planned as a systematic, iterative process of identifying and bounding the required activities to dispose of SNF. To support the evaluation process, activities are decomposed into lower level, easier to estimate activities. Sensitivity studies can then be performed on these activities, defining cost issues and testing results against the originally stated problem.

  3. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  4. Assessment of sludge management options in a waste water treatment plant

    E-Print Network [OSTI]

    Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

    2012-01-01

    This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

  5. Geysers Project Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver Peak Area (DOEEnergyProject

  6. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    SciTech Connect (OSTI)

    Lawrence, B.

    1999-04-20

    The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  7. Savannah River Site approved site treatment plan, 2000 annual update

    SciTech Connect (OSTI)

    Lawrence, B.

    2000-04-20

    The Compliance Plan Volume (Volume 1) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume 2) and is provided for information.

  8. CRAD, Radiological Controls- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Radiation Protection Program at the Advanced Mixed Waste Treatment Project.

  9. Project Analysis Standard Operating Procedure

    Office of Environmental Management (EM)

    Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project...

  10. & Immobilization Plant Project

    Office of Environmental Management (EM)

    and monitoring challenges at the Waste Treatment Plant (WTP) in Hanford. The "black cell" design concept and the use of Power Fluidic Pulse Jet Mixer technology on which WTP is...

  11. Jefferson Lab Project Control System Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Control System Manual Technical Engineering Development Facility (TEDF) Utilities Infrastructure Modernization (UIM) Office of Project Management Project Control...

  12. 11/17/11 Treatment Wetlands

    E-Print Network [OSTI]

    Gray, Matthew

    wastewater treatment faciliOes, combined sewer overflows, municipal stormwater, industry ­ Wastewater treatment ­ Stormwater treatment ­ Flood control ConvenOonal Wastewater Treatment ˇ Primary Treatment ­ grit and solids removal ˇ Secondary Treatment

  13. July 2015 Project Dashboard.xls

    Broader source: Energy.gov (indexed) [DOE]

    Date: 07232015 Program Contractor Project Number Project Title Original Project Budget Project Budget Monthly Overall Assessment Cost Performance Schedule Performance 1 EM...

  14. September 2015 Project Dashboard | Department of Energy

    Energy Savers [EERE]

    September 2015 Project Dashboard September 2015 Project Dashboard Post CD-2 Active Projects (as of September 29, 2015) September 2015 Project Dashboard More Documents &...

  15. Focused ultrasound treatment of abscesses induced by methicillin resistant Staphylococcus aureus: Feasibility study in a mouse model

    SciTech Connect (OSTI)

    Rieck, Birgit; Bates, David; Pichardo, Samuel E-mail: lcuriel@lakeheadu.ca; Curiel, Laura E-mail: lcuriel@lakeheadu.ca; Zhang, Kunyan; Escott, Nicholas; Mougenot, Charles

    2014-06-15

    Purpose: To study the therapeutic effect of focused ultrasound on abscesses induced by methicillin-resistantStaphylococcus aureus (MRSA). MRSA is a major nosocomial pathogen where immunocompromised patients are prone to develop infections that are less and less responsive to regular treatments. Because of its capability to induce a rise of temperature at a very precise location, the use of focused ultrasound represents a considerable opportunity for therapy of localized MRSA-related infections. Methods: 50?l of MRSA strain USA400 bacteria suspension at a concentration of 1.32 ą 0.5 × 10{sup 5} colony forming units (cfu)/?l was injected subcutaneously in the left flank of BALB/c mice. An abscess of 6 ą 2 mm in diameter formed after 48 h. A transducer operating at 3 MHz with a focal length of 50 mm and diameter of 32 mm was used to treat the abscess. The focal point was positioned 2 mm under the skin at the abscess center. Forty-eight hours after injection four ultrasound exposures of 9 s each were applied to each abscess under magnetic resonance imaging guidance. Each exposure was followed by a 1 min pause. These parameters were based on preliminary experiments to ensure repetitive accurate heating of the abscess. Real-time estimation of change of temperature was done using water-proton resonance frequency and a communication toolbox (matMRI) developed inhouse. Three experimental groups of animals each were tested: control, moderate temperature (MT), and high temperature (HT). MT and HT groups reached, respectively, 52.3 ą 5.1 and 63.8 ą 7.5?°C at the end of exposure. Effectiveness of the treatment was assessed by evaluating the bacteria amount of the treated abscess 1 and 4 days after treatment. Myeloperoxidase (MPO) assay evaluating the neutrophil amount was performed to assess the local neutrophil recruitment and the white blood cell count was used to evaluate the systemic inflammatory response after focused ultrasound treatment. Results: Macroscopic evaluation of treated abscess indicated a diminution of external size of abscess 1 day after treatment. Treatment did not cause open wounds. The median (lower to upper quartile) bacterial count 1 day after treatment was 6.18 × 10{sup 3} (0.76 × 10{sup 3}–11.18 × 10{sup 3}), 2.86 × 10{sup 3} (1.22 × 10{sup 3}–7.07 × 10{sup 3}), and 3.52 × 10{sup 3} (1.18 × 10{sup 3}–6.72 × 10{sup 3}) cfu/100 ?l for control, MT and HT groups, respectively; for the 4-day end point, the count was 1.37 × 10{sup 3} (0.67 × 10{sup 3}–2.89 × 10{sup 3}), 1.35 × 10{sup 3} (0.09 × 10{sup 3}–2.96 × 10{sup 3}), and 0.07 × 10{sup 3} (0.03 × 10{sup 3}–0.36 × 10{sup 3}) cfu/100 ?l for control, MT and HT, showing a significant reduction (p = 0.002) on the bacterial load four days after focused ultrasound treatment when treating at high temperature (HT). The MPO amount remained unchanged between groups and days, indicating no change on local neutrophil recruitment in the abscess caused by the treatment. The white blood cell count remained unchanged between groups and days indicating that no systemic inflammatory response was caused by the treatment. Conclusions: Focused ultrasound induces a therapeutic effect in abscesses induced by MRSA. This effect is observed as a reduction of the number bacteria without significantly altering the amount of MPO at the site of a MRSA-induced abscess. These initial results suggest that focused ultrasound is a viable option for the treatment of localized MRSA-related infections.

  16. Instrument validation project

    SciTech Connect (OSTI)

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.

  17. 2020 Vision Project Summary

    SciTech Connect (OSTI)

    Gordon, K.W.; Scott, K.P.

    2000-11-01

    Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

  18. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  19. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect (OSTI)

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.

  20. On the Effectiveness of Projection Methods for Convex Feasibility ...

    E-Print Network [OSTI]

    wei

    Dec 13, 2009 ... problems in sensor networks [14], in radiation therapy treatment ...... The first EMI (Electric & Musical Industries Ltd., London, England, UK) CT ... ally convergent algorithms for maximum a posteriori transmission ... Blatt, D., Hero, A.O., III: Energy based sensor network source localization via projection.

  1. AIDP -Apple Interface Design Project

    E-Print Network [OSTI]

    Tollmar, Konrad

    AIDP - Apple Interface Design Project AIDP - Apple Interface Design Project m 92-95 m Joy Mountford m Design Centre, Advanced Technology Group m Apple's Industrial Design Group "Encourage ProjectThe Project m Bridge the gulf between the physical and virtual worlds - Apple m Design a new way

  2. Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

  3. Innovation Program Student Initiated Project

    E-Print Network [OSTI]

    Bertini, Robert L.

    Innovation Program Student Initiated Project Proposal Guidelines Eligibility The team must include of the problem the innovation is meant to solve A clear description of the work to be done for the project Milestones for the project, as well as a projected 'end product' Background with enough detail

  4. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    and evaluate web-based application which could utilize sensor data. In this project, we focused on two aspectsDegree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden Y E T I A N A Web This thesis describes the project "A new Web Server for sensors". The project has created a demonstration web

  5. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  6. Project Management Plan Chinese Food

    E-Print Network [OSTI]

    Igusa, Kiyoshi

    impact of this project? ˇ Data management: How do we collect, preserve and sort all of the files? Which special equipment, facilities needed or wanted? According to http://project-management-knowledge.com/ weProject Management Plan Chinese Food According to NSF, the basic elements of a project management

  7. Cogeneration Project Analysis Update 

    E-Print Network [OSTI]

    Robinson, A. M.; Garcia, L. N.

    1987-01-01

    -1 ------------ COGENERATION PROJECT ANALYSIS UPDATE by Arthur M. Robinson & Luis N. Garcia ROBINSON & GARCIA Energy Consultants P. O. Box 1203, Destrehan, LA 70047 ABSTRACT Not long ago, to evaluate the feasibility of a cogeneration project, a simple economic analysis... pressure steam produced from the turbine exhaust. And fed to an extraction condensing steam turbine, coupled to a second generator. A depiction with typical values is shown in Figure 2. ~) ~ EL.eCTRICJTY FRCM (iE/.)eRATORS BoiLE.R GAS / Fl/EL R...

  8. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  9. Investor Confidence Project 

    E-Print Network [OSTI]

    Golden, M.

    2013-01-01

    Environmental Defense Fund’s Investor Confidence Project Delivering Investment Quality Energy Efficiency to Market ESL-KT-13-12-38 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Investor Confidence Project... Actionable Data ESL-KT-13-12-38 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Near-Term: Not Enough Deal-Flow • High Transaction Costs • Lack of Viable Origination Channels • Highly Variable Performance • Complex...

  10. Showcasing a Project 

    E-Print Network [OSTI]

    Miller, Kari

    2007-01-01

    Dr. John Sij, an agronomist at The Texas A&M University System Agricultural Research and Extension Center at Vernon. Story by Kari Miller SHOWCASING A PROJECT Groups work to solve stream?s impairment... present and most of them were landowners in that watershed,? he said. ?That was one of the Showcasing a Project tx H2O | pg. 9 best-attended meetings of landowners we?ve probably had in the state.? The team is bringing in Dr. George Di Giovanni...

  11. Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)Project Tour Project Tour

  12. Energy-saving through remote control of a wastewater treatment plant

    E-Print Network [OSTI]

    Energy-saving through remote control of a wastewater treatment plant S. Marsili-Libelli *, G an energy-saving project being implemented on a conventional wastewater treatment plant, where several controllers. The main energy-saving target is the control of dissolved oxygen in the context of nitrogen

  13. Background & Projects Publications

    E-Print Network [OSTI]

    Home Background & Projects Calendar Publications Staff Directory Links Search MAES Home | Field Stations | Station Home | Publications | FruitNet Weekly Report Northern Michigan FruitNet 2006 Weekly vineyards. Side hedging and/or topping shoots will be needed to get light and air to the fruiting zone

  14. Rank Project Name Directorate,

    E-Print Network [OSTI]

    ,000 0.5 400 lbs industrial waste, eliminates potential for oil contaminated run-off 3 RetrofitRank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1 Minimization of Silver Waste from Silver-Staining Electrophoretic Mini-Gels Life Sciences, Biology (B

  15. Project Summary Partnership Inspiration

    E-Print Network [OSTI]

    Everest, Graham R

    Businesses are hunting for solutions to reduce their carbon footprint and energy spend. This project follows as they help overcome the challenges of auditing and reducing the organisational carbon footprint. A television strategy underpinning their carbon footprint understanding and slashing carbon emissions by 10

  16. Final Year Project Report

    SciTech Connect (OSTI)

    Hubsch, Tristan

    2013-06-20

    In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.

  17. Kootznoowoo Incorporated- 2010 Project

    Broader source: Energy.gov [DOE]

    Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).

  18. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  19. Universitt Project EURAT

    E-Print Network [OSTI]

    Heermann, Dieter W.

    of individual people in far less time today than at the conclusion of the Human Genome Project in 2003 (Collins of Whole Human Genome Sequencing" Position Paper Cornerstones for an ethiCally and legally informed Pra 60 61 63 65 67 69 70 71 73 88 96 100 #12;4 5Ethical and Legal Aspects of Whole Human Genome

  20. Information Technology Project Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-12

    This Guide provides Department of Energy recommended guidelines to ensure that the acquisition of information technology capital assets is performed in compliance with DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE N 251.105.

  1. Environmental of Forestry Projects

    E-Print Network [OSTI]

    Environmental Impact Assessment of Forestry Projects #12;EnvironmentalImpactAssessment 2 Flow chart Details of the Environmental Statement publicised for comment FC considers ES and any comments received FC the issues of concern that need to be covered in the Environmental Statement (ES). The Environmental

  2. PROJECT PROPOSAL FPGA PAINT

    E-Print Network [OSTI]

    PROJECT PROPOSAL FPGA PAINT Design of Embedded Systems, Advanced Course Faculty to develop a paint program on Digilent Nexys2 FPGA board. We expect it to be a platform of painting on a plain space or painting an existing picture outline with color. There would be options for changing

  3. Baytown Cogeneration Project 

    E-Print Network [OSTI]

    Lorenz, M. G.

    2007-01-01

    The Baytown Cogeneration Project installed a GE 7FA gas turbine generator that produces 160 MW of electricity and 560-klB/hr of superheated 1500-psig steam. All of the steam and electricity are consumed by the ExxonMobil Refinery & Chemical Plant...

  4. Accounting Projects Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    and international tax work for individuals, closely held companies, family offices and clients expecting a liquidityAccounting Projects Company Description: CPA firm performing accounting services, bookkeeping. Company Description: a full service CPA firm headquartered in the San Francisco Bay Area. Nationally

  5. Project Title: Residential wind turbine design Project Description: This project aims to

    E-Print Network [OSTI]

    Muradoglu, Metin

    that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims

  6. Reducing Poverty Risk in Developing Countries Project No. Project Title Project Leader

    E-Print Network [OSTI]

    Krivobokova, Tatyana

    1 Reducing Poverty Risk in Developing Countries Project No. Project Title Project Leader 1 Dynamic). At the same time, there will be substantial collaboration between the projects to develop this common research in developing countries Lay 5 Informal risk sharing networks as an strategy to reduce poverty risk Ibanez

  7. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  8. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    SciTech Connect (OSTI)

    Slaybaugh, R.R.

    1997-08-29

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  9. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    SciTech Connect (OSTI)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of the most effective site-specific habitat restoration plan, taking into consideration the unique characteristics of each project site, and conducted in cooperation with landowners and project partners, was of paramount importance to ensure each project's success. An Aquatic Habitat Inventory was conducted from river mile 0-8 on Isquulktpe Creek and the data collected was compared with data collected in 1994. Monitoring plans will continue throughout the duration of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety of fisheries monitoring techniques and habitat assessments used to determine existing conditions and identify factors limiting anadromous salmonid abundance in accordance with the Umatilla River Subbasin Salmon and Steelhead Production Plan (NPPC 1990) and the Final Umatilla Willow Subbasin Plan (Umatilla/Willow Subbasin Planning Team 2005).

  10. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2007-01-10

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  11. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a Ă?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă?Â?real-worldĂ?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nationĂ?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă?Â?s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air ProductsĂ?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă?Â? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station userĂ?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă?Â?s fueling experience.

  12. Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons

    E-Print Network [OSTI]

    Kwok, Jessica C. F.; Yuen, Ying Lai; Lau, Wai Kit; Zhang, Fu Xing; Fawcett, James W.; Chan, Ying Shing; Shum, Daisy K. Y.

    2012-02-03

    showed that treatment of the fil- ter with ChABC resulted in cultures bearing longer neur- ites [19]. Treatment of chiasmatic brain slice cultures (E13 to E15, mouse) with ChABC resulted in misrouting of retinal ganglion cell projections at the optic...

  13. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01

    by Aerobic Treatment. Journal (Water Pollution ControlWastewater Treatment Plants. Journal (Water Pollution

  14. In situ treatment of mixed contaminants in groundwater: Application of zero-valence iron and palladized iron for treatment of groundwater contaminated with trichloroethene and technetium-99

    SciTech Connect (OSTI)

    Korte, N.E.; Muck, M.T.; Zutman, J.L.; Schlosser, R.M. [Oak Ridge National Lab., Grand Junction, CO (United States); Liang, L.; Gu, B. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Siegrist, R.L. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; [Colorado School of Mines, Golden, CO (United States); Houk, T.C. [Portsmouth Gaseous Diffusion Plant, Piketon, OH (United States); Fernando, Q. [Univ. of Arizona, Tucson, AZ (United States)

    1997-04-01

    The overall goal of this portion of the project was to package one or more unit processes, as modular components in vertical and/or horizontal recirculation wells, for treatment of volatile organic compounds (VOCs) [e.g., trichloroethene (TCE)] and radionuclides [e.g., technetium (Tc){sup 99}] in groundwater. The project was conceived, in part, because the coexistence of chlorinated hydrocarbons and radionuclides has been identified as the predominant combination of groundwater contamination in the US Department of Energy (DOE) complex. Thus, a major component of the project was the development of modules that provide simultaneous treatment of hydrocarbons and radionuclides. The project objectives included: (1) evaluation of horizontal wells for inducing groundwater recirculation, (2) development of below-ground treatment modules for simultaneous removal of VOCs and radionuclides, and (3) demonstration of a coupled system (treatment module with recirculation well) at a DOE field site where both VOCs and radionuclides are present in the groundwater. This report is limited to the innovative treatment aspects of the program. A report on pilot testing of the horizontal recirculation system was the first report of the series (Muck et al. 1996). A comprehensive report that focuses on the engineering, cost and hydrodynamic aspects of the project has also been prepared (Korte et al. 1997a).

  15. UWA Renewable Energy Vehicle Project Available Projects: 2nd

    E-Print Network [OSTI]

    1 UWA Renewable Energy Vehicle Project Available Projects: 2nd Semester 2005 Time commitment values materials and distribute 4) Educate team on marketing strategies 5) Contact potential sponsors, media

  16. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    10/12/2012 Update to WBS Level 2 Threshold (top of page 20), Change DOE Federal Project Director ..............................................................................................................................1 1.2.1 DOE-approved project documents:..............................................................................................1 1.2.2 DOE certified institutional systems or plans

  17. Project Reports for San Carlos Apache Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    Under this project, the San Carlos Apache Tribe will study the feasibility of solar energy projects within the reservation with the potential to generate a minimum of 1 megawatt (MW).

  18. Evaluation of Technology Risk in Project Cogeneration Project Returns 

    E-Print Network [OSTI]

    Thoennes, C. M.

    1985-01-01

    The economic returns of a cogeneration project are a direct function of the project margin, that is, the difference between revenues and expenses. Revenues and expenses, of course, are made up of both variable and fixed components. The revenues...

  19. Nucla CFB Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  20. Healy Clean Coal Project

    SciTech Connect (OSTI)

    None

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  1. Debt collection project report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    In October 1979 the Office of Management and Budget initiated a review of debt collection within the Federal Government. A DOE Debt Collection Project Team was established, and seven activites were selected for review. These were Albuquerque Operations Office; Bonneville Power Administration; Chicago Operations and Regional Office; Naval Petroleum Reserves, California; Oak Ridge Operations Office; Washington Financial Services Division; and Western Area Power Administration. The team visited each of these activities to collect data on the size, age, and types of receivables managed and procedures for billing, aging, and handling overdue accounts. Various deficiencies were found to exist at several of the DOE entities that are not consistent with good management practices in the performance of their debt collection functions. Also, the Debt Collection Project Team identified a wide variation in the procedures followed by DOE activities in the management of accounts receivable, and a wide variation in the effectiveness of the debt management functions. 1 figure, 17 tables. (RWR)

  2. Forecasting potential project risks through leading indicators to project outcome 

    E-Print Network [OSTI]

    Choi, Ji Won

    2007-09-17

    for the degree of MASTER OF SCIENCE May 2007 Major Subject: Civil Engineering FORECASTING POTENTIAL PROJECT RISKS THROUGH LEADING INDICATORS TO PROJECT OUTCOME A Thesis by JI WON CHOI... Guikema Head of Department, David Rosowsky May 2007 Major Subject: Civil Engineering iii ABSTRACT Forecasting Potential Project Risks through Leading Indicators to Project Outcome. (May 2007) Ji Won Choi, B.S., Han-Yang University...

  3. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  4. Baytown Energy Project 

    E-Print Network [OSTI]

    Porter, J.

    2006-01-01

    Mobil's Baytown Chemical Plant, the Baytown Energy Project (BEP) utilized this planning strategy to redeploy assets by changing the fractionation configuration of the plant. In the aromatics recovery plant, aromatics (benzene, toluene and xylenes... prefractionator followed by a set of integrated towers to separate the ternary product mixture of benzene toluene and xylenes from a toluene disproportionation unit. The towers also fractionated a concentrated benzene and toluene sidestream from the primary...

  5. Advanced Biomass Gasification Projects

    SciTech Connect (OSTI)

    Not Available

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  6. Popeye Project: Subsea system

    SciTech Connect (OSTI)

    Ritter, P.B.; Langner, C.G.; Sgouros, G.E.; Saucier, B.J.; Voss, R.K.

    1996-12-31

    The subsea system installed for Shell Offshore Inc. (SOI) Popeye Project represents an advancement in deep water subsea technology. It is a diverless, guidelineless, 10,000 psi cluster manifold concept, the first of its kind. The cluster concept was selected in large part based on SOI`s deep water experience and anticipated future subsea development needs. This paper describes how the innovative Popeye subsea system was selected, designed, tested, and successfully installed.

  7. Popeye project: Subsea system

    SciTech Connect (OSTI)

    Ritter, P.B.; Sgouros, G.E.; Langner, C.G.; Saucier, B.J.; Voss, R.K.

    1997-12-01

    The subsea system installed for the Shell Offshore Inc. (SOI) Popeye project represents an advance in deepwater subsea technology. It is a diverless, guidelineless, 10,000-psi cluster-manifold concept, the first of its kind. The cluster concept was selected in large part based on SOI`s deepwater experience and anticipated future subsea-development needs. This paper describes how the innovative Popeye subsea system was selected, designed, tested, and successfully installed.

  8. BETO Active Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAuditsDepartmentj.BETO Active Project

  9. Desert Peak EGS Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Danielthrough theKDesert Peak EGS Project DOE Award:

  10. Project Submission Template

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget | DepartmentLogisticalProjectDepartmentCooperation

  11. The Human Genome Diversity Project

    SciTech Connect (OSTI)

    Cavalli-Sforza, L.

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  12. The IPHI Project

    SciTech Connect (OSTI)

    Ferdinand, Robin; Beauvais, Pierre-Yves

    2005-06-08

    High Power Proton Accelerators (HPPAs) are studied for several projects based on high-flux neutron sources driven by proton or deuteron beams. Since the front end is considered as the most critical part of such accelerators, the two French national research agencies CEA and CNRS decided to collaborate in 1997 to study and build a High-Intensity Proton Injector (IPHI). The main objective of this project is to master the complex technologies used and the concepts of manufacturing and controlling the HPPAs. Recently, a collaboration agreement was signed with CERN and led to some evolutions in the design and in the schedule. The IPHI design current was maintained at 100 mA in Continuous Wave mode. This choice should allow to produce a high reliability beam at reduced intensity (typically 30 mA) tending to fulfill the Accelerator Driven System requirements. The output energy of the Radio Frequency Quadrupole (RFQ), was reduced from 5 to 3 MeV, allowing then the adjunction and the test, in pulsed operation of a chopper line developed by CERN for the Superconducting Proton Linac (SPL). In a final step, the IPHI RFQ and the chopper line should become parts of the SPL injector. In this paper, the IPHI project and the recent evolutions are reported together with the construction and operation schedule.

  13. Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

  14. Final Project Report

    SciTech Connect (OSTI)

    Bogucz, E A

    2010-12-13

    This project pursued innovations to improve energy efficiency and indoor environmental quality (IEQ) in commercial and residential buildings. For commercial buildings, the project developed a testbed for “intelligent nested environmental systems technologies (iNEST),” which monitor and control energy flows and IEQ across a cascade of spaces from individuals’ desktops to office suites to floors to whole buildings. An iNEST testbed was constructed at Syracuse University and was used to assess the use of devices such as personal badges and CO2 sensors to study how reduced energy use and improved IEQ could be achieved. For residential buildings, resources were targeted in support of DoE’s Builders Challenge Program and to recruit Syracuse, NY builders. Three homes in Syracuse’s Near Westside neighborhood were also registered under the program by Syracuse University team, with an additional home registered by one of the builders. Findings from the work at the iNEST testbed facility, and results from other related projects were disseminated through Syracuse Center of Excellence in Environmental and Energy Systems (SyracuseCoE) 2008 Annual Symposium, the 9th International Healthy Buildings 2009 Conference & Exhibition, and through SyracuseCoE’s website and eNewsletters to inform the broader community of researchers, designers and builders. These public communication activities helped enhance the understanding of high performance buildings and facilitate further market acceptance.

  15. Final project report

    SciTech Connect (OSTI)

    Nitin S. Baliga and Leroy Hood

    2008-11-12

    The proposed overarching goal for this project was the following: Data integration, simulation and visualization will facilitate metabolic and regulatory network prediction, exploration, and formulation of hypotheses. We stated three specific aims to achieve the overarching goal of this project: (1) Integration of multiple levels of information such as mRNA and protein levels, predicted protein-protein interactions/associations and gene function will enable construction of models describing environmental response and dynamic behavior. (2) Flexible tools for network inference will accelerate our understanding of biological systems. (3) Flexible exploration and queries of model hypotheses will provide focus and reveal novel dependencies. The underlying philosophy of these proposed aims is that an iterative cycle of experiments, experimental design, and verification will lead to a comprehensive and predictive model that will shed light on systems level mechanisms involved in responses elicited by living systems upon sensing a change in their environment. In the previous years report we demonstrated considerable progress in development of data standards, regulatory network inference and data visualization and exploration. We are pleased to report that several manuscripts describing these procedures have been published in top international peer reviewed journals including Genome Biology, PNAS, and Cell. The abstracts of these manuscripts are given and they summarize our accomplishments in this project.

  16. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  17. Guest Project: Personal Information Title of the Project

    E-Print Network [OSTI]

    ! ! Guest Project: Personal Information ! ! Title of the Project: ! ! Project Coordinator: ! Name? ! 1. 2. 3... #12;! Rules and Acceptance: ! The primary purpose of the ICTP SciFabLab is to support, models, and codes developed within the ICTP Scientific FabLab as open source / open hardware

  18. TREATMENT SYSTEMS AN INTEGRATED APPROACH

    E-Print Network [OSTI]

    for on-site management and treatment of effluent and solid waste 3. Provide for surface water attenuationECOLOGICAL TREATMENT SYSTEMS AN INTEGRATED APPROACH TO THE TREATMENT OF WASTE AND WASTE WATER In nature there is no waste, because the waste of one organism is food for another Inherent

  19. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  20. Financing Energy Projects in Dow 

    E-Print Network [OSTI]

    Dingwall, D. C.

    1984-01-01

    in size, and authorized and financed as a part of Dow's regular capital program. Capital projects relating to the more efficient generation of energy generally refer to DOW'S large Gulf Coast combined cycle cogeneration projects, most of which came...

  1. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    cloud. This thesis project designed, implemented, and evaluated the use of open shortest path firstDegree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden A M I R R O O Z B

  2. Environmental Management (EM) Cleanup Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-24

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and provides guidance on environmental management cleanup projects. Canceled by DOE N 251.105.

  3. Risk Management In Major Projects 

    E-Print Network [OSTI]

    Baker, Scott William

    The integration of risk management in major projects within the construction and oil and gas industries has never been more significant especially as these projects are becoming larger and more complex. The increased ...

  4. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  5. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.

  6. Why Cogeneration Development Projects Fail 

    E-Print Network [OSTI]

    Greenwood, R. W.

    1987-01-01

    ENERATION DEVElDHmNT PROJECTS FAIL RALPH w. GRBBtMX>D Regional Manager Bbasco Services Incorporated Houston, Texas ABSTRACT Cogeneration projects that are organized by developers fail to reach fruition for reasons other than the basic economical... here to discuss those additional problems unique to small projects. A developnent project is defined as one where a third party, the developer, provides preliminary econanic options, licensing, business structure, financing, detailed engineering...

  7. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden G U O J U N W A N Abstract The goal of this thesis project is to improve industrial system testing efficiency. The thesis. The work load for testers can be decreased and more projects could be carried out in parallel

  8. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    and competitive activities which in this thesis project were evaluated in a educational process contextDegree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden F R A N C I S C O interaction in areas, such as health care, computer games, and robotics. Although many research projects have

  9. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden A L I S A R R A F(KTH) Kista, Stockholm, Sweden. #12;#12;Abstract Today, the number of software projects having large number of tools that have evolved to improve the quality of development in such projects. In addition, building

  10. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden S A A D A H M E D, Sweden #12;Abstract The project focuses on the packaging process of the smart card manufacturing industry. The idea of the project concerns how to increase production packaging efficiency by introducing a control

  11. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    of the main achievements of this thesis project. Evaluation of the measurement results indicates that fiberDegree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden M O Z H G A N for small cell backhaul. This thesis project investigates if a small cell network's requirements can

  12. The Piazza Project Presented by

    E-Print Network [OSTI]

    Ives, Zachary G.

    The Piazza Project Presented by: Mengmeng Liu and Shirley Cohen CIS 650 #12;Agenda ¡ Project aspects #12;Piazza Project Members AnHai Doan Oren Etzioni Steven Gribble Zack Ives Alon Halevy Jayant (PDMS): ¡ n mediated peer schemas as few as (n - 1) mappings between them ­ evaluated transitively ¡ m

  13. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    by a review of related work. The overall project's goal is to create and evaluate an authorization schemaDegree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden A L E X I S M A R #12;#12;i Abstract This master's thesis project began at the Karolinska University Hospital

  14. Addendum to Fake Projective Planes

    E-Print Network [OSTI]

    Yeung, Sai-Kee

    ingenious group theoretic computations that the twenty eight classes of fake projective planes altogether- damental group of eight of the one hundred fake projective planes do not admit an embedding into SU(2, 1. In [1] we proved that if the fundamental group of a fake projective plane is an arithmetic subgroup

  15. Office: ITO PE/Project

    E-Print Network [OSTI]

    Mills, Kevin

    Mgr.: Mills/Swinson PAD No.: Smart Spaces Moving Through Smart Spaces "city-wide appliances" "in1 DARPA Office: ITO PE/Project: Pgm No.: Pgm Mgr.: Mills/Swinson PAD No.: Smart Spaces Personal Information Projection ˇ Develop techniques for projecting personal information from cyberspace into smart

  16. Indian River Hydroelectric Project Grant

    SciTech Connect (OSTI)

    Rebecca Garrett

    2005-04-29

    This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

  17. Summer Student Project Report

    E-Print Network [OSTI]

    Kazan, Oguz

    2013-01-01

    My project covered a preliminary R&D phase in which an HPD tube with 163-pixels and external readout was tested. The external readout electronics were based on the existing Beetle front-end chip. The HPD performance for single-photon detection was assessed. The experimental setup made use of a fast laser light sources and an electronics readout chain specifically developed for laboratory tests. In parallel to the measurements, I improved the software which was used to make measurements and to display the data in a useful way.

  18. Project Earth Lover

    SciTech Connect (OSTI)

    Slobotski, Stephanie,

    2011-09-01

    Under this project, the Ponca Tribe of Nebraska (PTN) will conduct An Energy Options Analysis (EOA) to empower Tribal Leadership with critical information to allow them to effectively screen energy options that will further develop the Tribe's long-term strategic plan and energy vision. The PTN will also provide community workshops to enhance Tribal Members' capabilities, skills and awareness of energy efficiency and conservation technology and practices. A 90- minute workshop will be conducted at each of the 5 sites and one-hundred tribal members will receive an erergy efficiency kit.

  19. Indonesia project underway

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    Unocal Corporation has given the Indonesian Government notice of intent to proceed with a geothermal project to provide steam for a 110 megawatt electrical generating plant. The company has drilled 11 wells, and has confirmed reserves for more than 230 megawatts of generating capacity. Indonesia's state electric company, PLN, will build the power plant. Ansaldo, an Italian company, will supply equipment and manage the construction. With the notice of intent to proceed, Unocal Geothermal of Indonesia, Ltd. will begin drilling additional wells and build the field facilities necessary to provide steam to the power plant.

  20. Autostereoscopic projection viewer

    DOE Patents [OSTI]

    Toeppen, John S. (Livermore, CA)

    2006-12-19

    An autostereoscopic viewer is employed to produce aberration corrected images to simulate a virtual presence by employing pairs of projector optical components coupled with an image corrector plate and a field lens. Images are designed with magnifications and optical qualities and positioned at predetermined eyezones having controlled directional properties. The viewer's eyes are positioned in these eyezones. The size of these zones is related to the aperture of the projection lenses, the magnification produced by the Fresnel(s), and the optical properties and position of the image corrector plate.

  1. Buckman Direct Diversion Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransen PlasmaEnergy, science,Buckman Direct Diversion Project

  2. ARM Observations Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProductsObservations Projected

  3. NREL: Transportation Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With UsSimulatorTruckNewsProjects

  4. PSERC Current Projects Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - . . -Pathways)PROJECT SUMMARY 11OE0000652

  5. Sandia National Laboratories: Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of thePrograms:Mode Stirred ChamberReuse ReuseProjects

  6. Protection Upgrades Project (4580)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)ProjectProposedAmerica'sTrap and

  7. Production Project Accounts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matrices inPrincipalFirmProduction Project Accounts

  8. Project File System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working1999-2000University 4 Project

  9. Savings Project: Lower Water Heating Temperature | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings 12-30 annually for each 10F...

  10. Pacific Direct Current Intertie (PDCI) Upgrade Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Reliability Projects Expand Projects Skip navigation links Line Projects Big Eddy-Knight Central Ferry Lower Monumental Grand Coulee Transmission Line Replacement...

  11. Grand Coulee Transmission Line Replacement Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Reliability Projects Expand Projects Skip navigation links Line Projects Big Eddy-Knight Central Ferry Lower Monumental Grand Coulee Transmission Line Replacement...

  12. June 2015 Project Dashboard | Department of Energy

    Office of Environmental Management (EM)

    June 2015 Project Dashboard June 2015 Project Dashboard June 2015 Project Dashboard.pdf More Documents & Publications The Weekend Ozone Effect - The Weekly Ambient Emissions...

  13. Preparing for Project Implementation Assigning Accountability...

    Office of Environmental Management (EM)

    Assigning Accountability for Each Project, April 14, 2010 Preparing for Project Implementation Assigning Accountability for Each Project, April 14, 2010 Assigning Accountability...

  14. Searchlight Wind Energy Project FEIS Appendix E

    Office of Environmental Management (EM)

    June 2, 2009 District Las Vegas Field Office Resource Area Activity (program) Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Project 4....

  15. SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Tracking Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking Checklist The following checklist is intended to provide system owners, project...

  16. project information | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Biomass Feed and Gasification Archived Projects Agreement Number Project Title Performer Name Technology Area FE0023577 Advanced Gasifier and Water Gas Shift...

  17. Integrated nonthermal treatment system study

    SciTech Connect (OSTI)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  18. Projection optics box

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA); Malsbury, Terry (Tracy, CA); Hudyma, Russell M. (San Ramon, CA); Parker, John M. (Tracy, CA)

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  19. Device Oriented Project Controller

    SciTech Connect (OSTI)

    Dalesio, Leo; Kraimer, Martin

    2013-11-20

    This proposal is directed at the issue of developing control systems for very large HEP projects. A de-facto standard in accelerator control is the Experimental Physics and Industrial Control System (EPICS), which has been applied successfully to many physics projects. EPICS is a channel based system that requires that each channel of each device be configured and controlled. In Phase I, the feasibility of a device oriented extension to the distributed channel database was demonstrated by prototyping a device aware version of an EPICS I/O controller that functions with the current version of the channel access communication protocol. Extensions have been made to the grammar to define the database. Only a multi-stage position controller with limit switches was developed in the demonstration, but the grammar should support a full range of functional record types. In phase II, a full set of record types will be developed to support all existing record types, a set of process control functions for closed loop control, and support for experimental beam line control. A tool to configure these records will be developed. A communication protocol will be developed or extensions will be made to Channel Access to support introspection of components of a device. Performance bench marks will be made on both communication protocol and the database. After these records and performance tests are under way, a second of the grammar will be undertaken.

  20. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    The DOE LIMB Demonstration Project Extension is a continuation of the EPA Limestone Injection Multistage Burner (LIMB) Demonstration. EPA ultimately expects to show that LIMB is a low cost control technology capable of producing moderate SO{sub x} and NO{sub x} control (50--60 percent) with applicability for retrofit to the major portion of the existing coal-fired boiler population. The current EPA Wall-Fired LIMB Demonstration is a four-year project that includes design and installation of a LIMB system at the 105-MW Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. LIMB Extension testing continued during the quarter with lignosulfonated hydrated lime, pulverized limestone, and hydrated dolomitic lime while firing 1.8% and 3% sulfur coals. Sulfur dioxide removal efficiencies were equivalent to the results found during EPA, base LIMB testing. Sulfur dioxide removal efficiencies were lower than expected while testing with pulverized limestone without humidification. A slight increase in sulfur capture was noted while injecting pulverized limestone at the 187' elevation and with the humidifier outlet temperature at 145{degree}F.

  1. Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Gray, Joe

    2011-04-28

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks ? particularly with regard to breast cancer.

  2. Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Gray, Joe

    2009-08-04

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  3. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Springs Point Geothermal Project Project Location Information...

  4. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?˘ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?˘ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?˘ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?˘ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  5. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    SciTech Connect (OSTI)

    Jacobsen, P.H.

    1997-09-23

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  6. Southern Nevada Alternative Fuels Demonstration Project

    SciTech Connect (OSTI)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this project were related to the economy and the budget cutbacks required during the project duration, which resulted in fewer bus drivers than expected the ultimate shut down of the City’s downtown bus operations.

  7. A Cultural Resources Survey of the City of Brenham Wastewater Expansion Project in Central Washington County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-01

    A Phase I cultural resources survey for a proposed wastewater treatment plant expansion project (8.5 acres) in the corporate limits of Brenham, Texas was performed by Brazos Valley Research Associates in August 2002. The presence of one abandoned...

  8. The Methanol Economy Project

    SciTech Connect (OSTI)

    Olah, George; Prakash, G.K.

    2013-12-31

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO{sub 2} capture using supported amines, co-electrolysis of CO{sub 2} and water to formate and syngas, decomposition of formate to CO{sub 2} and H{sub 2}, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields. ? Direct electrophilic bromination of methane to methyl bromide followed by hydrolysis to yield methanol was investigated on a wide variety of catalyst systems, but hydrolysis proved impractical for large-scale industrial application. ? Bireforming the correct ratio of methane, CO{sub 2}, and water on a NiO / MgO catalyst yielded the right proportion of H{sub 2}:CO (2:1) and proved to be stable for at least 250 hours of operation at 400 psi (28 atm). ? CO{sub 2} capture utilizing supported polyethyleneimines yielded a system capable of adsorbing CO{sub 2} from the air and release at nominal temperatures with negligible amine leaching. ? CO{sub 2} electrolysis to formate and syngas showed considerable increases in rate and selectivity by performing the reaction in a high pressure flow electrolyzer. ? Formic acid was shown to decompose selectively to CO{sub 2} and H{sub 2} using either Ru or Ir based homogeneous catalysts. ? Direct formic acid fuel cells were also investigated and showed higher than 40% voltage efficiency using reduced loadings of precious metals. A technoeconomic analysis was conducted to assess the viability of taking each of these processes to the industrial scale by applying the data gathered during the experiments to approximations based on currently used industrial processes. Several of these processes show significant promise for industrial scale up and use towards improving our nation’s energy independence.

  9. Waste Management Effluent Treatment Facility: Phase I. CAC basic data

    SciTech Connect (OSTI)

    Gemar, D.W.; O'Leary, C.D.

    1984-03-23

    In order to expedite design and construction of the Waste Management Effluent Treatment Facility (WMETF), the project has been divided into two phases. Phase I consists of four storage basins and the associated transfer lines, diversion boxes, and control rooms. The design data pertaining to Phase I of the WMETF project are presented together with general background information and objectives for both phases. The project will provide means to store and decontaminate wastewater streams that are currently discharged to the seepage basins in F Area and H Area. This currently includes both routine process flows sent directly to the seepage basins and diversions of contaminated cooling water or storm water runoff that are stored in the retention basins before being pumped to the seepage basins.

  10. Clean Fuel Advanced Technology Awarded Projects Organization Project Descriptions

    E-Print Network [OSTI]

    COSTSHARE TOTAL COST (includes costshare) Nox (kg/yr) VOC (kg/yr) CO (kg/yr) PM (kg/yr) 2006 CFAT Projects(7 Energy Alternatives, LLC Biodiesel refueling infrastructure1,3 $150,000 $147,520 $297,520 -496 385 900,004 $1,097,397 3143 -285 25900 147 2009 CFAT Project(1 project) North Carolina Solar Center 1

  11. Developing Government Renewable Energy Projects

    SciTech Connect (OSTI)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  12. Treatment of Wood Preserving Wastewater 

    E-Print Network [OSTI]

    Reynolds, T. D.; Shack, P. A.

    1976-01-01

    procedure, solids accumulation, and miscellaneous design aspects are discussed. A treatment scheme incorporating atmospheric evaporation ponds after chemical coagulation and settling is proposed....

  13. BPA, Transmission, I-5 Corridor Reinforcement Project, Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2011 Moving forward: From route "segments" to "alternatives" As we develop the draft environmental impact statement for this project, we have defined four route alternatives by...

  14. Project Reports for Nez Perce Tribe- 2011 Project

    Broader source: Energy.gov [DOE]

    The project will implement energy efficiency measures that include updates of several different elements in key Nez Perce tribal buildings in the town of Lapwai, Idaho.

  15. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    ..............................................................................................................................1 1.2.1 DOE-approved project documents:..............................................................................................1 1.2.2 DOE certified institutional systems or plans.......................................................................................................4 DOE Level I Milestones

  16. Project Reports for Native Village of Unalakleet- 2011 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Native Village of Unalakleet (NVU) project is a feasibility study for a retrofit of a tribally owned three-story 14-apartment complex, located in Unalakleet, Alaska.

  17. Project Reports for Peoria Tribe: Housing Authority- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Housing Authority of the Peoria Tribe of Indians of Oklahoma (Peoria Housing Authority or PHA) will conduct the "PHA Weatherization Training Project."

  18. Project Reports for Oneida Seven Generations Corp.- 2012 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary goal of the Oneida Energy project is to achieve the environmental and economic benefits of using waste as a fuel for energy conversion.

  19. PROJECT MANGEMENT PLAN EXAMPLES Deactivation Plan Project Scope...

    Energy Savers [EERE]

    Stabilization and Deactivation Project scope. Environmental remediation of cribs, ponds, and ditches will be conducted as follow-on work consistent with the goal of the...

  20. Project Reports for Pascua Yaqui Tribe- 2012 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Pascua Yaqui Tribe (PYT) Renewable Energy Development and Deployment Feasibility Study will determine the technical and economic viability of future renewable projects.

  1. Project Reports for Lower Sioux Indian Community- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lower Sioux intends to continue its efforts to develop wind projects on its lands as a continuation of efforts begun roughly 20 years ago.

  2. Project Reports for Gila River Indian Community- 2012 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Gila River Indian Community (GRIC) will conduct feasibility studies of potential renewable energy projects on its lands in south central Arizona.

  3. Altered Development of Visual Subcortical Projections Following

    E-Print Network [OSTI]

    Finlay, Barbara L.

    Altered Development of Visual Subcortical Projections Following Neonatal Thalamic Ablation increases connectivity by stabilizing an exuberant develop- mental projection, we examined the normal projection zones and show progressive growth within these zones. At no time during development do projections

  4. The Biocatalytic Desulfurization Project

    SciTech Connect (OSTI)

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  5. Popeye Project: ROV interfaces

    SciTech Connect (OSTI)

    Scates, C.R.; Hickok, D.D.; Hernandez, D.A.

    1997-04-01

    The Popeye Project in the Gulf of Mexico helped advance the technology and standardization of ROV interfaces for deepwater subsea production systems. Some of the many successful ROV operations during installation and completion were {open_quotes}first-of-it`s-kind{close_quotes} activities-enabled by many technical advances. The use and reliance upon ROV systems for support of deepwater drilling and installation operations significantly increased in the past 10 years. Shell Offshore Inc.`s (SOI) confidence in this increased capability was an important factor in many of the design decisions which characterized the innovative system. Technology advancements, which depended on effective ROV intervention, were implemented with no significant difficulties. These advancements, in particular the flying leads and seabed position methods, are available to the industry for other deepwater subsea systems. In addition, several Popeye ROV interfaces have helped advance the subsea standardization initiative; e.g., hot stabs, torque-tool end effectors, and paint color.

  6. Ribosomal Database Project II

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Ribosomal Database Project (RDP) provides ribosome related data and services to the scientific community, including online data analysis and aligned and annotated Bacterial small-subunit 16S rRNA sequences. As of March 2008, RDP Release 10 is available and currently (August 2009) contains 1,074,075 aligned 16S rRNA sequences. Data that can be downloaded include zipped GenBank and FASTA alignment files, a histogram (in Excel) of the number of RDP sequences spanning each base position, data in the Functional Gene Pipeline Repository, and various user submitted data. The RDP-II website also provides numerous analysis tools.[From the RDP-II home page at http://rdp.cme.msu.edu/index.jsp

  7. BULKING SLUDGE TREATMENT BY MICROSCOPIC OBSERVATION AND MECHANICAL TREATMENT

    E-Print Network [OSTI]

    the conventional physico­chemical parameters for the evaluation and control of biological stages of waste water for the operation of the biological stage of waste water treatment plants. If the threatening extensive growth status and for the regulation of biological parts in waste water treatment plants. Furthermore, e

  8. Rural Energy Conference Project

    SciTech Connect (OSTI)

    Dennis Witmer; Shannon Watson

    2008-12-31

    Alaska remains, even at the beginning of the 21st century, a place with many widely scattered, small, remote communities, well beyond the end of both the road system and the power grid. These communities have the highest energy costs of any place in the United States, despite the best efforts of the utilities that service them. This is due to the widespread dependence on diesel electric generators, which require small capital investments, but recent increases in crude oil prices have resulted in dramatic increases in the cost of power. In the enabling legislation for the Arctic Energy Office in 2001, specific inclusion was made for the study of ways of reducing the cost of electrical power in these remote communities. As part of this mandate, the University of Alaska has, in conjunction with the US Department of Energy, the Denali Commission and the Alaska Energy Authority, organized a series of rural energy conferences, held approximately every 18 months. The goal of these meeting was to bring together rural utility operators, rural community leaders, government agency representatives, equipment suppliers, and researchers from universities and national laboratories to discuss the current state of the art in rural power generation, to discuss current projects, including successes as well as near successes. Many of the conference presenters were from industry and not accustomed to writing technical papers, so the typical method of organizing a conference by requesting abstracts and publishing proceedings was not considered viable. Instead, the organizing committee solicited presentations from appropriate individuals, and requested that (if they were comfortable with computers) prepare Power point presentations that were collected and posted on the web. This has become a repository of many presentations, and may be the best single source of information about current projects in the state of Alaska.

  9. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

  10. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium...

  11. U. S. Department of Energy project book

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This book covers representative projects in each program within the Department of Energy. The projects included were selected to provide an insight into the wide spectrum of projects authorized and under way in the Department. The projects described do not cover all projects authorized - they are merely representative. Descriptions, goals, and status are given for 29 energy projects, 4 scientific projects, and 5 defense projects. (RWR)

  12. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a...

  13. Project Profile: Thermochemical Storage with Anhydrous Ammonia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Thermochemical Storage with Anhydrous Ammonia: Optimizing the Synthesis Reactor for Direct Production of Supercritical Steam Project Profile: Thermochemical...

  14. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports...

  15. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald...

  16. Regulatory Considerations for Developing Generation Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Projects on Federal Lands Regulatory Considerations for Developing Generation Projects on Federal Lands Presentation covers regulatory considerations for developing...

  17. Leveraging Resources for Weatherization Innovation Pilot Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Innovation Pilot Projects (WIPP) Presentation Leveraging Resources for Weatherization Innovation Pilot Projects (WIPP) Presentation As a WIPP agency, reporting...

  18. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000...

  19. Project Management Career Development Program | Department of...

    Office of Environmental Management (EM)

    You are here Home Operational Management Certifications and Professional Development Project Management Career Development Program Project Management Career Development...

  20. Legacy of a Bomb: The Manhattan Project’s Impact on the Scientific Community

    E-Print Network [OSTI]

    Gao, Jany Huan

    2009-01-01

    TECH SPRING WAR TECH The Manhattan Project’s Impact on thewar and science: the Manhattan Project. This oper- andfor defense ever, the Manhattan Project’s legacy does and

  1. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  2. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden D I E G O F E R N A N D O B O T E R O A R I S T I Z Á B A L An E-Reading Platform Business Plan The Leaf Project KTH Information and Communication Technology #12;i The Leaf Project An E-Reading Platform Business Plan Diego

  3. Silver Peak Innovative Exploration Project

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

  4. Project Funding Catalog of Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Develops Student-Stakeholders Project DevelopsProject Funding Catalog of

  5. Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |Project Management Project ManagementProject

  6. Implementing Fast Hierarchical Back Projection Jason Chang

    E-Print Network [OSTI]

    Willsky, Alan S.

    Implementing Fast Hierarchical Back Projection Jason Chang ECE 558 ­ Final Project Paper May 9, 2007 #12;Implementing Fast Hierarchical Back Projection Chang ii Abstract ­ Filtered back projection implemented in this project, called fast hierarchical back projection (FHBP), was proposed in [1] as a fast

  7. Projection screen having reduced ambient light scattering

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM)

    2010-05-11

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  8. HLW System Integrated Project Team

    Office of Environmental Management (EM)

    Team Integrated Project Team Steve Schneider Steve Schneider Office of Engineering and Technology High Level Waste Corporate Board March 5, 2009 This document is intended for...

  9. Research Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Nuclear Computational Low Energy Initiative (NUCLEI) Kinetic Theory of Turbulent Multiphase Flow Chemical Analysis of Nanodomains Chemical Physics Homogeneous and...

  10. Portsmouth/Paducah Project Office

    Office of Environmental Management (EM)

    1. Letter from W. Murphie to M. Galanti, "Record of Decision for the Site-wide Waste Disposition Evaluation Project at the Portsmouth Gaseous Diffusion Plant (DOEPPPO03...

  11. CCS Project Permit Acquisition Protocols

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Matthews, Vince; McPherson, Brian

    2013-06-30

    Geologic carbon storage projects require a vast range of permits prior to deployment. These include land-access permits, drilling permits, seismic survey permits, underground injection control permits, and any number of local and state permits, depending on the location of the project. For the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project in particular, critical permits included site access permits, seismic survey permits, and drilling permits for the characterization well. Permits for these and other activities were acquired either prior to or during the project.

  12. Software Defined Networking (SDN) Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Networking (SDN) Project Energy sector-focused SDN flow controller to manage control system networks centrally and securely Background Traditional information technology (IT)...

  13. Nez Perce Tribe- 2011 Project

    Broader source: Energy.gov [DOE]

    The project will implement energy efficiency measures that include updates of several different elements in key Nez Perce tribal buildings in the town of Lapwai, Idaho.

  14. TSSWCB Bacteria-Related Projects 

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01

    stream_source_info TSSWCB bacteria-related projects.pdf.txt stream_content_type text/plain stream_size 2550 Content-Encoding ISO-8859-1 stream_name TSSWCB bacteria-related projects.pdf.txt Content-Type text/plain; charset=ISO-8859... of the projects are listed below. ? Peach CreekWater Quality Improvement Project ? Monitoring and Educational Programs Focused on Bacteria and Nutrient Runoff on Dairy Operations in the LeonWatershed ? Development of the Plum CreekWPP ? Impact of Proper...

  15. Texas 4-H Beef Project 

    E-Print Network [OSTI]

    Texas 4-H Beef Project Team

    2000-07-27

    This tri-fold brochure explains the opportunities in 4-H beef projects, the membership requirements, potential costs, goals and objectives, volunteer leader opportunities, and career development possibilities....

  16. Project Funding | Department of Energy

    Office of Environmental Management (EM)

    Contracts ESPC ENABLE Process Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs. Read the FEMP project funding quick...

  17. Nuclear Power Plant Design Project

    E-Print Network [OSTI]

    Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global) .................................................................... 14 4.4 High Temperature Gas Reactor

  18. SBSP Commercial Upstream Incentive Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SBSP Commercial Upstream Incentive Project 2014 Building Technologies Office Peer Review Todd Levin, tlevin@anl.gov, Cathy Milostan, cmilostan@anl.gov Argonne National Laboratory...

  19. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support...

  20. Harvesting Energy from Wastewater Treatment

    E-Print Network [OSTI]

    Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5 #12;Energy content of Wastewaters ˇ Electricity "lost" to water and wastewater treatment= 0.6 quad wastewater (primary clarifier effluent) Arrows indicate wastewater addition P= 28 mW/m2 (PEM/Nafion) =146 m

  1. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  2. ARM Observations Projected onto CCSM Results Projected onto

    E-Print Network [OSTI]

    Mills, Richard

    ARM Observations Projected onto ARM States CCSM Results Projected onto ARM States 1Oak Ridge to Comparing Atmospheric Radiation Measurement (ARM) Data with Global Climate Model (GCM) Results Atmospheric state contained only in model results Atmospheric states contained only in ARM observations ARM

  3. Project Reports for Lummi Indian Business Council- 2010 Project

    Broader source: Energy.gov [DOE]

    The overall goal of the Lummi Indian Reservation Wind Energy Development Feasibility Assessment project is to conduct an assessment that will provide the information needed for the Lummi Indian Business Council (LIBC) to make a knowledge-based determination whether a wind-generation project on the reservation would provide enough economic, environmental, cultural, and social benefits to justify the cost of the development.

  4. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    _____________________________ Manager, SC-PSO _____________________________ J. Makiel NSTX Upgrade Project Federal Project Director, SC-PSO Description of Changes A 1/11/10 PPEP Initial Issue by PPPL & PSO, but not approved by OFES B 4/5/10 PPEP Cost

  5. Project Management Plan Project Title: Natural Resources Management

    E-Print Network [OSTI]

    US Army Corps of Engineers

    DEFINITION. The NRM Gateway is a knowledge management resource, designed to serve the needs of the NRMP; ˇ Preserve institutional knowledge; ˇ Develop practical and agency-approved webpages that provide usefulProject Management Plan Project Title: Natural Resources Management (NRM) Gateway Website

  6. Design criteria Drain Rerouting Project 93-OR-EW-2

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This document contains the design criteria to be used by the architect-engineer (A--E) in the performance of Title I and II design for the Drain Rerouting Project. The Drain Rerouting project at the US Department of Energy`s (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee will provide the Y-12 Plant with the capability to reroute particular drains within buildings 9202, 9203 and 9995. Process drains that are presently connected to the storm sewer shall be routed to the sanitary sewer to ensure that any objectionable material inadvertently discharged into process drains will not discharge to East Fork Popular Creek (EFPC) without treatment. The project will also facilitate compliance with the Y-12 Plant`s National Pollutant Discharge Elimination System (NPDES) discharge permit and allow for future pretreatment of once-through coolant.

  7. Modeling Hepatitis C treatment policy.

    SciTech Connect (OSTI)

    Kuypers, Marshall A.; Lambert, Gregory Joseph; Moore, Thomas W.; Glass, Robert John,; Finley, Patrick D.; Ross, David [Clinical Public Health Group, Veterans Health Administration, Washington, D.C.; Chartier, Maggie

    2013-09-01

    Chronic infection with Hepatitis C virus (HCV) results in cirrhosis, liver cancer and death. As the nation's largest provider of care for HCV, US Veterans Health Administration (VHA) invests extensive resources in the diagnosis and treatment of the disease. This report documents modeling and analysis of HCV treatment dynamics performed for the VHA aimed at improving service delivery efficiency. System dynamics modeling of disease treatment demonstrated the benefits of early detection and the role of comorbidities in disease progress and patient mortality. Preliminary modeling showed that adherence to rigorous treatment protocols is a primary determinant of treatment success. In depth meta-analysis revealed correlations of adherence and various psycho-social factors. This initial meta-analysis indicates areas where substantial improvement in patient outcomes can potentially result from VA programs which incorporate these factors into their design.

  8. Project design criteria manual: Upper Mechanicville Hydroelectric Redevelopment Project

    SciTech Connect (OSTI)

    None

    1980-12-01

    The design criteria presented in this manual are to be used as the bases for the detailed design for the Upper Mechanicville (NY) Hydroelectric Redevelopment Project. The manual refers to codes and standards which are to be used in the design of the project. Design approaches not covered by existing codes and standards are also given for all phases of the project. The manual is divided into six sections: civil design, hydraulic design, geotechnical design, electrical systems, mechanical systems, and major equipment. These design criteria are to be used as a guide for design. When changes become necessary, these shall be documented by the engineer responsible for the design. This documentation shall be sent to the Project Engineer and Project Manager for submission to the client for reference. The documentation shall specify the reason for the change and shall be routed to all Department Coordinators.

  9. Annual Progress Report Fish Research Project Oregon : Project title, Evaluation of Habitat Improvements -- John Day River.

    SciTech Connect (OSTI)

    Olsen, Erik A.

    1984-01-01

    This report summarizes data collected in 1983 to evaluate habitat improvements in Deer, Camp, and Clear creeks, tributaries of the John Day River. The studies are designed to evaluate changes in abundance of spring chinook and summer steelhead due to habitat improvement projects and to contrast fishery benefits with costs of construction and maintenance of each project. Structure types being evaluated are: (1) log weirs, rock weirs, log deflectors, and in stream boulders in Deer Creek; (2) log weirs in Camp Creek; and (3) log weir-boulder combinations and introduced spawning gravel in Clear Creek. Abundance of juvenile steelhead ranged from 16% to 119% higher in the improved (treatment) area than in the unimproved (control) area of Deer Creek. However, abundance of steelhead in Camp Creek was not significantly different between treatment and control areas. Chinook and steelhead abundance in Clear Creek was 50% and 25% lower, respectively in 1983, than the mean abundance estimated in three previous years. The age structure of steelhead was similar between treatment and control areas in Deer and Clear creeks. The treatment area in Camp Creek, however, had a higher percentage of age 2 and older steelhead than the control. Steelhead redd counts in Camp Creek were 36% lower in 1983 than the previous five year average. Steelhead redd counts in Deer Creek were not made in 1983 because of high streamflows. Chinook redds counted in Clear Creek were 64% lower than the five year average. Surface area, volume, cover, and spawning gravel were the same or higher than the corresponding control in each stream except in Deer Creek where there was less available cover and spawning gravel in sections with rock weirs and in those with log deflectors, respectively. Pool:riffle ratios ranged from 57:43 in sections in upper Clear Creek with log weirs to 9:91 in sections in Deer Creek with rock weirs. Smolt production following habitat improvements is estimated for each stream. Preliminary cost estimates are summarized for each habitat project and economic benefits are calculated for Deer Creek.

  10. Integrated Project Teams - An Essential Element of Project Management during Project Planning and Execution - 12155

    SciTech Connect (OSTI)

    Burritt, James G.; Berkey, Edgar

    2012-07-01

    Managing complex projects requires a capable, effective project manager to be in place, who is assisted by a team of competent assistants in various relevant disciplines. This team of assistants is known as the Integrated Project Team (IPT). he IPT is composed of a multidisciplinary group of people who are collectively responsible for delivering a defined project outcome and who plan, execute, and implement over the entire life-cycle of a project, which can be a facility being constructed or a system being acquired. An ideal IPT includes empowered representatives from all functional areas involved with a project-such as engineering design, technology, manufacturing, test and evaluation, contracts, legal, logistics, and especially, the customer. Effective IPTs are an essential element of scope, cost, and schedule control for any complex, large construction project, whether funded by DOE or another organization. By recently assessing a number of major, on-going DOE waste management projects, the characteristics of high performing IPTs have been defined as well as the reasons for potential IPT failure. Project managers should use IPTs to plan and execute projects, but the IPTs must be properly constituted and the members capable and empowered. For them to be effective, the project manager must select the right team, and provide them with the training and guidance for them to be effective. IPT members must treat their IPT assignment as a primary duty, not some ancillary function. All team members must have an understanding of the factors associated with successful IPTs, and the reasons that some IPTs fail. Integrated Project Teams should be used by both government and industry. (authors)

  11. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  12. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

  13. Final Project Report

    SciTech Connect (OSTI)

    Zhang, Jin; Zhao, Yiping

    2014-12-05

    In this entire project period from 2005-2014, we have made significant progress in developing novel nanostructures of metal oxides (MOs) for solar hydrogen generation based on photoelectrochemical (PEC). Materials investigated are focused on 1D and 0D MO nanostructures of TiO2, WO3, ZnO, and Fe2O3 in conjunction with quantum dot (QD) sensitization and chemical doping (N or H) to alter their electronic band structures for both visible light absorption and for facilitating interfacial charge transport. In addition, we have used plasmonic metal nanostructures to enhance the PEC performance by improving light absorption of QDs via enhanced scattering of the plamonic metal. Most importantly, we have discovered a multipronged strategy for improving PEC performance: using plasmonic metal nanostructure to enhance light absorption, QDs to improve charge transfer, and chemical doping to increase charge transport in metal oxides for PEC. The combination is critical for overall high efficiency of PEC. This strategy is developed and demonstrated for the first time to our best knowledge.

  14. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1991-09-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (1) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems; (2) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit; and (3) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater. The demonstration project consists of several distinct phases: a preliminary phase to develop the LIMB process design applicable to the host boiler, a construction and start-up phase, and an operating and evaluation phase. The first major activity, the development of the Edgewater LIMB design, was completed in January 1986 and detailed engineering is now complete. Major boiler-related components were installed during a September 1986 boiler outage. Start-up activities began in March of 1987 with tuning of the low NO{sub x} burners. Sorbent injection activities were underway as of July 1987. 3 figs.

  15. RP-5 Renewable Energy Efficiency Project

    SciTech Connect (OSTI)

    Neil Clifton; Dave Wall; Jamal Zughbi

    2007-06-30

    This is the final technical report for the RP-5 Renewable Energy Efficiency Project (REEP). The report summarizes, in a comprehensive manner, all the work performed during the award period extending between July 12, 2002 and June 30, 2007. This report has been prepared in accordance with the Department of Energy (DOE) Guidelines and summarizes all of the activities that occurred during the award period. The RP-5 Renewable Energy Efficiency Project, under development by the Inland Empire Utilities Agency (IEUA), is comprised of a series of full-scale demonstration projects that will showcase innovative combinations of primary and secondary generation systems using methane gas derived from local processing of biosolids, dairy manure and other organic material. The goal of the project is to create renewable energy-based generation systems with energy efficiencies 65% or more. The project was constructed at the 15 MGD Regional Wastewater Treatment Plant No. 5 located in the City of Chino in California where the Agency has constructed its new energy-efficient (platinum-LEED rating) headquarters building. Technologies that were featured in the project include internal combustion engines (ICE), absorption chillers, treatment plant secondary effluent cooling systems, heat recovery systems, thermal energy storage (TES), Organic Rankine Cycle (ORC) secondary power generation system, the integration of a future fuel cell system, gas cleaning requirements, and other state-of-the-art design combinations. The RP-5 REEP biogas source is coming from three manure digesters which are located within the RP-5 Complex and are joined with the RP-5 REEP through gas conveyance pipelines. Food waste is being injected into the manure digesters for digester gas production enhancement. The RP-5 REEP clearly demonstrates the biogas production and power generation viability, specifically when dealing with renewable and variable heating value (Btu) fuel. The RP-5 REEP was challenged with meeting stringent utility, gas, power, and air quality rules and regulations. Coordination with the Southern California Gas Company (SCGC), Southern California Edison (SCE), and South Coast Air Quality Management District (SCAQMD) was continuous and extensive. The interconnecting agreement and the permit to construct and operate were major obstacles despite the early start and coordination with the utility companies and regulatory agencies. The RP-5 REEP is part of a unique RP-5 Complex approach where several facilities are tied and connected with each other; where energy and gas can be transferred from one facility to another (see attached RP-5 Complex Ultimate Energy Balance Diagram). The REEP also incorporated new technologies, such as TES and ORC, along with using heat recovery for the platinum-LEED headquarter buildings heating and cooling via efficient absorption chillers. Through the conceptual design phase, numerous innovative technologies were researched and evaluated, with the most proven and efficient selected to be part of the RP-5 REEP.

  16. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    SciTech Connect (OSTI)

    VAN BEEK, J.E.

    1999-09-02

    Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

  17. Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About UsEnergy Marketing Corp. |Storage,

  18. RESEARCH PROJECTS A Basic research

    E-Print Network [OSTI]

    25 7 RESEARCH PROJECTS A Basic research SOFT SENSOR METHODS TO IMPROVE COMPETENCE OF INDUSTRIAL, Oulu University Duration of the project: 2000-2004 The aim is to improve the competence of industrial. #12;26 B Energy and process automation INTERACTION BETWEEN WOOD AND DEFIBRATION MEDIA IN GRINDING

  19. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems First level, 15.0 HEC Stockholm, Sweden A B D E L A H M I D into many devices. The goal of this thesis project is to build upon this trend toward "The internet describes different techniques and approaches toward developing this sensor. The thesis also evaluates

  20. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden R U S L A N M U K when dealing with this very large amount of data (often called "big data"). This thesis projectSQL). This comparison considers both a single node and a multi node cluster. The comparison evaluates several critical

  1. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden L U C I A N O R U's Live Smooth Streaming, have recently become very popular. This master's thesis project developed and evaluated several media rate adaptation algorithms optimized for mobile networks with a client running

  2. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden Y O U B E I J I N's thesis project concerns Sharplet, a spaced repetition system based web service, who is trying to stand the design, implementation, and evaluation of a new service that includes both audio and video content

  3. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden A R U N A R U M U contents ­ such as video or animations. The goal of this thesis project is remove the problem a web- browser based GUI. The prototype that will be designed, implemented, and evaluated will implement

  4. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden P E T E R S K O G, but also via third-party data sources. This report regards how mobile software is evaluated and rated of several relevant statistical methods and data mining techniques. The main object of this thesis project

  5. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden PAV E L L E G O N. In this master's thesis IEEE 802.11n technology was evaluated to assess its suitability for backhaul from a small secure small cells into a mobile network was developed. The results obtained during the project

  6. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden M U H A M M A D I several industrial actors are evaluating alternatives to CAN. Ethernet is one of the potential candidates possible extent. The purpose of this thesis project is to investigate the possibility of replacing the CAN

  7. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden N I YA Z A D I G O network resources. This master's thesis project proposes to multiplex RTP and data packets at the user and cost metrics are used to evaluate different potential demultiplexing points, and then the best possible

  8. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    . The objective of the project is to evaluate and analyse the need for value added services in India. The reportDegree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden N A R AYA N A N

  9. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden E R I K E L D H approach for computing as a whole. This thesis project explores these two technologies in order to create such a solution could be realized and utilized. The thesis evaluates current cloud providers in terms

  10. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden F E R N A N D O VA seamless handover between Wi-Fi APs and between cellular/Wi-Fi networks. During this thesis project interworking. Finally, a custom-designed simulator has been used to evaluate the proposed solution. Keywords

  11. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    project is to analyze and evaluate the level of performance, from the network point of view, that canDegree project in Communication Systems Communication Systems, 30.0 HEC Stockholm, Sweden I S A A C test this approach in a real environment, a prior providers' survey was utilized to evaluate

  12. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden S A B R I N A D U protocols for Traffic Engineering: MPLS-TE and RSVP-TE. The goal of this thesis project is to optimize. This thesis proposes and evaluates a solution to this optimization problem in the specific context

  13. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden S A B R I N A A L's thesis project, to implement the ifoodbag web application in a cloud. To achieve this goal, we began for why these specific mechanisms were selected is given. The tests allowed the evaluation of how each

  14. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden D R A G A N C A B authorization architecture from the preceding seminal work performed in SENSEI project. SENSEI and SWoT share association of software agents, management, evaluation, and enforcement of access permissions for resources

  15. Degree project in Communication Systems

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    for instrumentation (PXI) modules. The main objective of this project is to evaluate how different PXI modules workDegree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden W I L LY W A N G Evaluating the use of PXI modules in tests of a radio base station KTH Information and Communication

  16. Climate change & street trees project

    E-Print Network [OSTI]

    Climate change & street trees project Social Research Report The social and cultural values Group as part of the Climate change and street trees project, funded by the Forestry Commission with changing socio-economics and/or demographics, but little evidence exists relating

  17. Project Title: Prisoner Counselling Effectiveness

    E-Print Network [OSTI]

    Hickman, Mark

    : Martin Visser, John George Academic Supervisor: Andrew Frost Project Reference Number: S112/PrisonersTrustProject Title: Prisoner Counselling Effectiveness Bachelor of Arts Internship Company/Organization: The Counselling Service for Prisoners Trust Intern Position Title: Methodology Evaluator Organisation Supervisor

  18. The Climate Impacts LINK Project

    E-Print Network [OSTI]

    Feigon, Brooke

    The Climate Impacts LINK Project The Climatic Research Unit, University of East Anglia Funded by the UK Department of the Environment, Transport and the Regions, Contract Ref EPG 1/1/68 The Climate Impacts LINK Project: Applying Results from the Hadley Centre's Climate Change Experiments for Climate

  19. Special Report Post-project

    E-Print Network [OSTI]

    Rudowsky, Ira

    128 Special Report Post-project appraisals pay Frank R. Gulliver li your company is like most, you- nal auditor with the British Petroleum Company He was a founding member of its post-project appraisal. The Rotterdam proj- ect's success taught top managers at BP a valuable lesson: the planners needed to improve

  20. Southern Region Watershed Management Project

    E-Print Network [OSTI]

    and technology transfer programs. #12;Southern Region Watershed Management Project September 15, 2000 and networking both internally and with other regional water resources management programs, promoted technology1 Southern Region Watershed Management Project September 15, 2000 to September 14, 2005 Terminal