National Library of Energy BETA

Sample records for 4-valve dual overhead

  1. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads

    Office of Environmental Management (EM)

    6.1 DOE-HDBK-1141-2001 Overhead 6.1 Radiological Aspects of Uranium Objectives: * Identify the radiological properties of uranium. * Describe the toxicological properties and behavior of uranium. * Identify appropriate instrumentation, measurement techniques, and special radiological survey methods for uranium. OT 6.2 DOE-HDBK-1141-2001 Overhead 6.2 Radiological Aspects of Uranium (cont.) Objectives: * Describe personnel protection requirements, external dose control techniques, and internal

  2. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads

    Office of Environmental Management (EM)

    13.1 Overhead 13.1 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators Objectives: * Identify the general characteristics of accelerators. * Identify the types of particles accelerated. * Identify the two basic types of accelerators. * Identify uses for accelerators. * Define prompt radiation. * Identify prompt radiation sources. OT 13.2 Overhead 13.2 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Define radioactivation. * Explain how contaminated material

  3. Operating Experience Level 3, Danger! Equipment Hits Overhead Lines

    Broader source: Energy.gov [DOE]

    OE-3 2016-01: This Operating Experience Level 3 (OE-3) document provides information about a safety concern related to workers and operations at Department of Energy (DOE) facilities where equipment has struck overhead communication cables and energized power lines.

  4. Effective Methods in Reducing Communication Overheads in Solving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0/2002 Yun (Helen) He, GHC2002 1 Effective Methods in Reducing Communication Overheads in Solving PDE Problems on Distributed-Memory Computer Architectures Chris Ding and Yun (Helen) He Lawrence Berkeley National Laboratory 10/10/2002 Yun (Helen) He, GHC2002 2 Outline n Introduction n Traditional Method n Ghost Cell Expansion (GCE) Method n GCE Algorithm n Diagonal Communication Elimination (DCE) Technique n Analysis of GCE Method n Message Volume n Communication Time

  5. Parallel garbage collection without synchronization overhead. Technical report

    SciTech Connect (OSTI)

    Patel, J.H.

    1984-08-01

    Incremental garbage-collection schemes incur substantial overhead that is directly translated as reduced execution efficiency for the user. Parallel garbage-collection schemes implemented via time-slicing on a serial processor also incur this overhead, which might even be aggravated due to context switching. It is useful, therefore, to examine the possibility of implementing a parallel garbage-collection algorithm using a separate processor operating asynchronously with the main-list processor. The overhead in such a scheme arises from the synchronization necessary to manage the two processors, maintaining memory consistency. In this paper, the authors present an architecture and supporting parallel garbage-collection algorithms designed for a virtual memory system with separate processors for list processing and for garbage collection. Each processor has its own primary memory; in addition, there is a small common memory which both processors may access. Individual memories swap off a common secondary memory, but no locking mechanism is required. In particular, a page may reside in both memories simultaneously, and indeed may be accessed and modified freely by each processor. A secondary memory controller ensures consistency without necessitating numerous lockouts on the pages.

  6. Path-sensitive analysis for reducing rollback overheads

    DOE Patents [OSTI]

    O'Brien, John K.P.; Wang, Kai-Ting Amy; Yamashita, Mark; Zhuang, Xiaotong

    2014-07-22

    A mechanism is provided for path-sensitive analysis for reducing rollback overheads. The mechanism receives, in a compiler, program code to be compiled to form compiled code. The mechanism divides the code into basic blocks. The mechanism then determines a restore register set for each of the one or more basic blocks to form one or more restore register sets. The mechanism then stores the one or more register sets such that responsive to a rollback during execution of the compiled code. A rollback routine identifies a restore register set from the one or more restore register sets and restores registers identified in the identified restore register set.

  7. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads, Part 3 of 5

    Office of Environmental Management (EM)

    Assessor Training DOE-HDBK-1141-2001 Overheads Office of Environment, Safety & Health U.S. Department of Energy Radiological Assessor Training DOE-HDBK-1141-2001 Overheads ii This page intentionally left blank. OT 1.1 DOE-HDBK-1141-2001 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purpose of 10 CFR Part 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1141-2001 Overhead 1.2 Regulatory Documents

  8. DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Overheads

    Office of Environmental Management (EM)

    Control Training for Supervisors DOE-HDBK-1143-2001 Overheads Office of Environment, Safety & Health U.S. Department of Energy Radiological Control Training for Supervisors DOE-HDBK-1143-2001 Overheads This page intentionally left blank. ii OT 1.1 DOE-HDBK-1143-2001 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2

  9. Development and application of composite overhead ground wire with optical fibers

    SciTech Connect (OSTI)

    Tsujimoto, K.; Kato, T.; Okazato, A.; Sakurada, H.

    1983-05-01

    A overhead ground wire composed with optical fibers has been developed, as well as the accessories and the joints. The overhead ground wire is provided with an aluminum pipe at the core thereof in which the optical fibers are inserted. The composite overhead ground wire with optical fibers was installed for the Kaga-Reinan 500 kV overhead transmission line in autumn, 1981 for the purposes of observing lightning and using as telecommunication line, as well. After the successful performance of the optical fiber, especially in view of transmission loss after installation, has been proved, the composite overhead ground wire is now being checked for the purposes as stated above. The ground wire was also installed for the Tsuruga Test Line at about the same time and investigations were started to confirm the reliability of the optical fiber to be over a long period of time under severe meteorological conditions such as strong winds and icing. The construction of the composite ground wire with optical fibers is such that the optical fibers contained therein are not restrained by the ground wire itself. This enables insertion and pulling out of optical fiber cables. Tests were conducted at certain sections of the Kaga-Reinan Line to confirm that there was no change in the performance of the optical fibers due to such operations of insertion and pulling out. This report briefly discusses the development of the composite ground wire with optical fibers, its installation and the test results.

  10. A Testing Platform for Validation of Overhead Conductor Aging Models and Understanding Thermal Limits

    SciTech Connect (OSTI)

    Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D; Young II, Marcus Aaron; Rizy, D Tom; Stovall, John P; Overholt, Philip N

    2014-01-01

    Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess the performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.

  11. Characterization Results For The 2013 HTF 3H Evaporator Overhead Samples

    SciTech Connect (OSTI)

    Washington, A. L. II

    2013-12-04

    This report tabulates the radiochemical analysis of the 3H evaporator overhead sample for {sup 137}Cs, {sup 90}Sr, and {sup 129}I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  12. From: Laurie Smith To: Congestion Study Comments Subject: Taking of Private Property for Overhead Transmission Lines

    Office of Environmental Management (EM)

    Taking of Private Property for Overhead Transmission Lines Date: Friday, September 19, 2014 9:18:01 AM Scores of people in my area are opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons: First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. The easements prevent the landowner from

  13. Dual Career Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Options » Dual Career Services Dual Career Services Los Alamos Lab recruits the best minds on the planet and offers job search information and assistance to our dual career spouses or partners. World-class talent often comes in pairs Attracting world-class talent to the Lab is a top priority. Top candidates must often consider the employment needs of a spouse or other family member before choosing to work in Los Alamos. The Dual Career Services program can help solve this challenge by

  14. Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang T.

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  15. Ultra-scale vehicle tracking in low spatial-resolution and low frame-rate overhead video

    SciTech Connect (OSTI)

    Carrano, C J

    2009-05-20

    Overhead persistent surveillance systems are becoming more capable at acquiring wide-field image sequences for long time-spans. The need to exploit this data is becoming ever greater. The ability to track a single vehicle of interest or to track all the observable vehicles, which may number in the thousands, over large, cluttered regions while they persist in the imagery either in real-time or quickly on-demand is very desirable. With this ability we can begin to answer a number of interesting questions such as, what are normal traffic patterns in a particular region or where did that truck come from? There are many challenges associated with processing this type of data, some of which we will address in the paper. Wide-field image sequences are very large with many thousands of pixels on a side and are characterized by lower resolutions (e.g. worse than 0.5 meters/pixel) and lower frame rates (e.g. a few Hz or less). The objects in the scenery can vary in size, density, and contrast with respect to the background. At the same time the background scenery provides a number of clutter sources both man-made and natural. We describe our current implementation of an ultrascale capable multiple-vehicle tracking algorithm for overhead persistent surveillance imagery as well as discuss the tracking and timing performance of the currently implemented algorithm which is aimed at utilizing grayscale electrooptical image sequences alone for the track segment generation.

  16. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  17. Dual surface interferometer

    DOE Patents [OSTI]

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  18. Dual flapper valve assembly

    SciTech Connect (OSTI)

    Clary, S.R.; Giusti, F. Jr.; Sproul, R.M.

    1989-07-11

    This patent describes a dual flapper valve assembly for limiting the loss of completion fluid in connection with a well service operation. The valve assembly consists of: tubular support means defining a flow passage; a first flapper valve assembly connected in series flow relation with the support means, the first flapper valve assembly having a valve closure member movable between first and second positions for closing and opening the flow passage; a second flapper valve assembly connected in series flow relation in the support means, the second flapper valve assembly having a valve closure member movable between open and closed passage positions for closing and opening the flow passage; a prop sleeve mounted within the support means, the prop sleeve being movable from an extended position in which it props the closure member of one flapper valve in the open passage position to a retracted position in which the closure member is disengaged and released for movement to the closed passage position, the valve closure member of one of the flapper valve assemblies being engageable by a wash pipe extending through the flow passage to prop the valve closure member in the open passage position, and being movable to the closed passage position upon retraction of the wash pipe out of the flow passage.

  19. Dual porosity gas evolving electrode

    DOE Patents [OSTI]

    Townsend, C.W.

    1994-11-15

    A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  20. Dual porosity gas evolving electrode

    DOE Patents [OSTI]

    Townsend, Carl W. (Los Angeles, CA)

    1994-01-01

    A dual porosity electrode for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  1. UWB dual burst transmit driver

    DOE Patents [OSTI]

    Dallum, Gregory E. (Livermore, CA); Pratt, Garth C. (Discovery Bay, CA); Haugen, Peter C. (Livermore, CA); Zumstein, James M. (Livermore, CA); Vigars, Mark L. (Livermore, CA); Romero, Carlos E. (Livermore, CA)

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  2. Dual Axis Radiographic Hydrodynamic Test Facility | National...

    National Nuclear Security Administration (NNSA)

    Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security ... Home About Us Our Programs Defense Programs Research, Development, Test, and ...

  3. EA-0962: Construction and Routine Operation of a 12-kilovolt Overhead Powerline and Formal Authorization for a 10-inch and 8-inch Fresh Water Pipeline Right-of-Way at Naval Petroleum Reserve No. 1, Kern County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to install an overhead powerline extension from the U.S. Department of Energy's Naval Petroleum Reserve No. 1 (NPR-1) power source to the...

  4. Dual shell pressure balanced vessel

    DOE Patents [OSTI]

    Fassbender, Alexander G. (West Richland, WA)

    1992-01-01

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  5. dual-mode scramjet combustor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dual-mode scramjet combustor - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  6. Dual arm master controller concept

    SciTech Connect (OSTI)

    Kuban, D.P.; Perkins, G.S.

    1984-01-01

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures.

  7. Dual Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deputy Group Leader Tim Ferris (505) 665-2179 Email Hydrotests are critical in assessing nuclear weapons in nation's stockpile Dual Axis Radiographic Hydrodynamic Test facility ...

  8. Characterization of Dual-Fuel Reactivity Controlled Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI)...

  9. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery ...

  10. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to...

  11. Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Feldman, D.; Friedman, B.; Margolis, R.

    2013-10-01

    Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

  12. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  13. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  14. dual-function | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing amine-based technology. This dual-function membrane is prepared by a unique sol-gel dip-coating process for depositing a microporous amino-silicate membrane on a...

  15. Dual control active superconductive devices

    DOE Patents [OSTI]

    Martens, Jon S. (Albuquerque, NM); Beyer, James B. (Madison, WI); Nordman, James E. (Madison, WI); Hohenwarter, Gert K. G. (Madison, WI)

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  16. Dual-domain point diffraction interferometer

    DOE Patents [OSTI]

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2000-01-01

    A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.

  17. Dual waveband compact catadioptric imaging spectrometer

    DOE Patents [OSTI]

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  18. dual-phase-ceramic-asu | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-Combustion Carbon Dioxide Capture by a New Dual-Phase Ceramic Carbonate Membrane Reactor Project No.: DE-FE0000470 Arizona State University is developing a dual-phase,...

  19. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline...

  20. The Meritor Dual Mode Hybrid Powertrain CRADA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Meritor Dual Mode Hybrid Powertrain CRADA The Meritor Dual Mode Hybrid Powertrain CRADA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss072_malikoupoulos_2012_o.pdf More Documents & Publications The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization The Meritor Dual Mode Hybrid Powertrain CRADA Autonomous Intelligent Hybrid Propulsion Systems

  1. Coupled dual loop absorption heat pump

    DOE Patents [OSTI]

    Sarkisian, Paul H. (Watertown, MA); Reimann, Robert C. (Lafayette, NY); Biermann, Wendell J. (Fayetteville, NY)

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  2. Adaptive upscaling with the dual mesh method

    SciTech Connect (OSTI)

    Guerillot, D.; Verdiere, S.

    1997-08-01

    The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.

  3. Fabrication of dual porosity electrode structure

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1991-01-01

    A substantially entirely fibrous ceramic which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers.

  4. Fabrication of dual porosity electrode structure

    DOE Patents [OSTI]

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  5. Inorganic dual-layer microporous supported membranes

    DOE Patents [OSTI]

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  6. Dual fueling of a Caterpillar 3406 diesel engine

    SciTech Connect (OSTI)

    Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E.

    1996-05-01

    A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

  7. Gravity dual of metastable dynamical supersymmetry breaking (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Gravity dual of metastable dynamical supersymmetry breaking Citation Details In-Document Search Title: Gravity dual of metastable dynamical supersymmetry breaking Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine

  8. A Gravity Dual of Metastable Dynamical Supersymmetry Breaking (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect A Gravity Dual of Metastable Dynamical Supersymmetry Breaking Citation Details In-Document Search Title: A Gravity Dual of Metastable Dynamical Supersymmetry Breaking Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively

  9. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT,

  10. Dual Layer Solid State Thin Film Deposition - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Dual Layer Solid State Thin Film Deposition National Renewable Energy Laboratory Contact NREL About This Technology <em>The dual-layered electrolyte material can be deposited at different vacuum pressures to suit desired physical properties such as high ionic conductivity, mechanical fracture toughness, and low diffusion constant for atmospheric gases. </em> The dual-layered electrolyte material can be deposited at

  11. A dual mass flux framework for boundary layer convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A dual mass flux framework for boundary layer convection Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Category: Modeling A new convective boundary layer...

  12. The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  13. Independently tunable dual-band perfect absorber based on graphene...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies Citation Details In-Document Search Title: Independently tunable ...

  14. Method and system for dual resolution translation stage

    DOE Patents [OSTI]

    Halpin, John Michael

    2014-04-22

    A dual resolution translation stage includes a stage assembly operable to receive an optical element and a low resolution adjustment device mechanically coupled to the stage assembly. The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution stage further includes a lever arm mechanically coupled to the adjustable pivot block. The lever arm is operable to pivot about the pivot shaft. The dual resolution stage additionally includes a high resolution adjustment device mechanically coupled to the lever arm and the stage assembly.

  15. POLICY GUIDANCE MEMORANDUM #11A Approval Process for Dual Compensation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waivers for Reemployed Annuitants Process to grant dual compensation (salary-offset) waivers to reemployed annuitants who work on a limited basis without reduction to...

  16. Dual stage active magnetic regenerator and method

    DOE Patents [OSTI]

    Pecharsky, Vitalij K. (Ames, IA); Gschneidner, Jr., Karl A. (Ames, IA)

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl.sub.2 or (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen.

  17. Dual stage active magnetic regenerator and method

    DOE Patents [OSTI]

    Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl{sub 2} or (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen. 17 figs.

  18. Dual fuel control of a high speed turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Sardari, P.

    1987-01-01

    The modification of a Ford 7600 turbocharged diesel engine to a dual fuel engine using methane as the supplementary fuel has been carried out. The paper describes the preliminary work of dual fuel control. Two systems are examined and their behaviour is presented.

  19. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Universal Dual-Fuel Controller for OEMAftermarket Diesel Engineswith Comprehensive Fuel & Emission Control Presents a universal dual fuel ratio controller designed to control ...

  20. Dual liquid and gas chromatograph system

    DOE Patents [OSTI]

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  1. Dual liquid and gas chromatograph system

    DOE Patents [OSTI]

    Gay, Don D.

    1985-01-01

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  2. Dual-keel electrodynamic maglev system

    DOE Patents [OSTI]

    He, J.L.; Wang, Z.; Rote, D.M.; Coffey, H.T.; Hull, J.R.; Mulcahy, T.M.; Cal, Y.

    1996-12-24

    A propulsion and stabilization system is disclosed with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle. 6 figs.

  3. Dual-keel electrodynamic maglev system

    DOE Patents [OSTI]

    He, Jianliang (Naperville, IL); Wang, Zian (Downers Grove, IL); Rote, Donald M. (Lagrange, IL); Coffey, Howard T. (Darien, IL); Hull, John R. (Westmont, IL); Mulcahy, Thomas M. (Western Springs, IL); Cal, Yigang (Woodridge, IL)

    1996-01-01

    A propulsion and stabilization system with a plurality of superconducting magnetic devices affixed to the dual-keels of a vehicle, where the superconducting magnetic devices produce a magnetic field when energized. The system also includes a plurality of figure-eight shaped null-flux coils affixed to opposing vertical sides of slots in a guideway. The figure-eight shaped null-flux coils are vertically oriented, laterally cross-connected in parallel, longitudinally connected in series, and continue the length of the vertical slots providing levitation and guidance force. An external power source energizes the figure-eight shaped null-flux coils to create a magnetic traveling wave that interacts with the magnetic field produced by the superconducting magnets to impart motion to the vehicle.

  4. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, Herbert S. (Asheville, NC)

    1984-01-01

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

  5. Dual LED/incandescent security fixture

    DOE Patents [OSTI]

    Gauna, Kevin Wayne

    2005-06-21

    A dual LED and incandescent security lighting system uses a hybrid approach to LED illumination. It combines an ambient LED illuminator with a standard incandescent lamp on a motion control sensor. The LED illuminator will activate with the onset of darkness (daylight control) and typically remain on during the course of the night ("always on"). The LED illumination, typically amber, is sufficient to provide low to moderate level lighting coverage to the wall and ground area adjacent to and under the fixture. The incandescent lamp is integrated with a motion control circuit and sensor. When movement in the field of view is detected (after darkness), the incandescent lamp is switched on, providing an increased level of illumination to the area. Instead of an "always on" LED illuminator, the LEDs may also be switched off when the incandescent lamp is switched on.

  6. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

  7. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

  8. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-07-31

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

  9. Microelectromechanical dual-mass resonator structure

    DOE Patents [OSTI]

    Dyck, Christopher W. (Cedar Crest, NM); Allen, James J. (Albuquerque, NM); Huber, Robert J. (Bountiful, UT)

    2002-01-01

    A dual-mass microelectromechanical (MEM) resonator structure is disclosed in which a first mass is suspended above a substrate and driven to move along a linear or curved path by a parallel-plate electrostatic actuator. A second mass, which is also suspended and coupled to the first mass by a plurality of springs is driven by motion of the first mass. Various modes of operation of the MEM structure are possible, including resonant and antiresonant modes, and a contacting mode. In each mode of operation, the motion induced in the second mass can be in the range of several microns up to more than 50 .mu.m while the first mass has a much smaller displacement on the order of one micron or less. The MEM structure has applications for forming microsensors that detect strain, acceleration, rotation or movement.

  10. Comments on shielding for dual energy accelerators

    SciTech Connect (OSTI)

    Rossi, M. C.; Lincoln, H. M.; Quarin, D. J.; Zwicker, R. D.

    2008-06-15

    Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1x16.2 cm{sup 2} for 6 MV and 14.1x16.8 cm{sup 2} for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm{sup 2}, respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm{sup 2} for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 deg. was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 deg. were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam.

  11. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  12. Slant-hole collimator, dual mode sterotactic localization method

    DOE Patents [OSTI]

    Weisenberger, Andrew G. (Grafton, VA)

    2002-01-01

    The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.

  13. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $200 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residences, commercial, and industrial...

  14. EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

  15. Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate

    Office of Scientific and Technical Information (OSTI)

    Synthase Inhibitors: An X-ray and NMR Investigation (Journal Article) | SciTech Connect Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate Synthase Inhibitors: An X-ray and NMR Investigation Citation Details In-Document Search Title: Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate Synthase Inhibitors: An X-ray and NMR Investigation Authors: Zhang, Yonghui ; Cao, Rong ; Yin, Fenglin ; Hudock, Michael P. ; Guo, Rey-Ting ; Krysiak, Kilannin ;

  16. Postmortem validation of breast density using dual-energy mammography

    SciTech Connect (OSTI)

    Molloi, Sabee Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  17. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, E.

    1984-04-10

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  18. Project Profile: Indirect, Dual-Media, Phase Changing Material Modular

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage System | Department of Energy Indirect, Dual-Media, Phase Changing Material Modular Thermal Energy Storage System Project Profile: Indirect, Dual-Media, Phase Changing Material Modular Thermal Energy Storage System Acciona logo Acciona Solar, under the Thermal Storage FOA, plans to design and validate a prototype and demonstrate a full-size (800 MWth) thermal energy storage (TES) system based on phase change materials (PCMs). Approach Acciona is using a test loop to

  19. Dual Functional Cathode Additives for Battery Technologies - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Dual Functional Cathode Additives for Battery Technologies Brookhaven National Laboratory Contact BNL About This Technology <br type="_moz" /> Schematic demonstrating the cell reactions of an anode less lithium-sulfur cell with a dual functional cathode additive (here a metal sulfide cathode additive). Schematic demonstrating the cell reactions of an anode less lithium-sulfur cell

  20. Characterization of Dual-Fuel Reactivity Controlled Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RCCI) Using Hydrated Ethanol and Diesel Fuel | Department of Energy Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel This study uses numerical simulations to explore the use of wet ethanol as the low-reactivity fuel and diesel as the high-reactivity fuel for RCCI operation in a heavy-duty diesel engine. PDF icon

  1. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, Eugene (Coram, NY)

    1985-01-01

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  2. Dual mode stereotactic localization method and application

    DOE Patents [OSTI]

    Keppel, Cynthia E.; Barbosa, Fernando Jorge; Majewski, Stanislaw

    2002-01-01

    The invention described herein combines the structural digital X-ray image provided by conventional stereotactic core biopsy instruments with the additional functional metabolic gamma imaging obtained with a dedicated compact gamma imaging mini-camera. Before the procedure, the patient is injected with an appropriate radiopharmaceutical. The radiopharmaceutical uptake distribution within the breast under compression in a conventional examination table expressed by the intensity of gamma emissions is obtained for comparison (co-registration) with the digital mammography (X-ray) image. This dual modality mode of operation greatly increases the functionality of existing stereotactic biopsy devices by yielding a much smaller number of false positives than would be produced using X-ray images alone. The ability to obtain both the X-ray mammographic image and the nuclear-based medicine gamma image using a single device is made possible largely through the use of a novel, small and movable gamma imaging camera that permits its incorporation into the same table or system as that currently utilized to obtain X-ray based mammographic images for localization of lesions.

  3. Dual-domain lateral shearing interferometer

    DOE Patents [OSTI]

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2004-03-16

    The phase-shifting point diffraction interferometer (PS/PDI) was developed to address the problem of at-wavelength metrology of extreme ultraviolet (EUV) optical systems. Although extremely accurate, the fact that the PS/PDI is limited to use with coherent EUV sources, such as undulator radiation, is a drawback for its widespread use. An alternative to the PS/PDI, with relaxed coherence requirements, is lateral shearing interferometry (LSI). The use of a cross-grating, carrier-frequency configuration to characterize a large-field 4.times.-reduction EUV lithography optic is demonstrated. The results obtained are directly compared with PS/PDI measurements. A defocused implementation of the lateral shearing interferometer in which an image-plane filter allows both phase-shifting and Fourier wavefront recovery. The two wavefront recovery methods can be combined in a dual-domain technique providing suppression of noise added by self-interference of high-frequency components in the test-optic wavefront.

  4. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-02-14

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be performed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described. 6 figs.

  5. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  6. Dual design resistor for high voltage conditioning and transmission lines

    DOE Patents [OSTI]

    Siggins, Timothy Lynn; Murray, Charles W.; Walker, Richard L.

    2007-01-23

    A dual resistor for eliminating the requirement for two different value resistors. The dual resistor includes a conditioning resistor at a high resistance value and a run resistor at a low resistance value. The run resistor can travel inside the conditioning resistor. The run resistor is capable of being advanced by a drive assembly until an electrical path is completed through the run resistor thereby shorting out the conditioning resistor and allowing the lower resistance run resistor to take over as the current carrier.

  7. Dual output acoustic wave sensor for molecular identification

    DOE Patents [OSTI]

    Frye, Gregory C. (Cedar Crest, NM); Martin, Stephen J. (Albuquerque, NM)

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  8. Dual fiber microprobe for mapping elemental distributions in biological cells

    DOE Patents [OSTI]

    Martin, Rodger C [Powell, TN; Martin, Madhavi Z [Powell, TN

    2007-07-31

    Laser-induced breakdown spectroscopy (LIBS) is applied on a microscale for in situ elemental analysis and spatial mapping in biological cells. A high power laser beam is focused onto a cell surface using a dual branching optical fiber probe for optical excitation of the cell constituents. Dual spectrometers and ICCD detectors capture the emission spectra from the excited cell(s). Repeated probing or repositioning of the laser beam with respect to the cell can provide 2-D or 3-D mapping of the cell.

  9. Exploring Avionics Using Dual Cool Jets | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring Next Generation Avionics Using Dual Cool Jets Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Exploring Next Generation Avionics Using Dual Cool Jets Ankit Kalani 2015.08.12 Heat is a byproduct of operating electronics. If not managed properly, it can severely affect the reliability and performance of the

  10. TESTING OF THE DUAL ROTARY FILTER SYSTEM

    SciTech Connect (OSTI)

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-08-29

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be an issue in deployment where the desired flow rate will be within the normal operating range of the meter. Testing demonstrated that the use of a flexible line for the filtrate discharge is highly desired at the outlet of the rotary union to transition to the system piping. Isolating the vibration from the rotary union will significantly improve the lifetime of the seals. Methods to monitor and isolate individual filters should be considered during deployment. The ability to diagnose issues and isolate individual filters would allow isolation prior to failure. Thus, filters may be cleaned or repaired instead of requiring complete replacement if the condition were to continue unnoticed. Isolating the filtrate line of each filter during startup will minimize the premature buildup of solids on the filter disks. Several tests have shown that the method of filter startup can improve performance lifetime of the filters. The installation must factor in an air inlet for the draining of a filter that does not involve a reverse flow through the filter disks. The reverse flow may cause deformation of the disks or may damage other components of the filters themselves.

  11. Toward large N thermal QCD from dual gravity: The heavy quarkonium...

    Office of Scientific and Technical Information (OSTI)

    We continue our study on the gravity duals for strongly coupled large N QCD with fundamental flavors both at zero and nonzero temperatures. The gravity dual at zero temperature ...

  12. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comprehensive Fuel & Emission Control | Department of Energy Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control Presents a universal dual fuel ratio controller designed to control the fueling and emissions of dual fuel systems PDF icon p-25_servati.pdf More Documents & Publications Active DPF for Off-Road

  13. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  14. Toward large N thermal QCD from dual gravity: The heavy quarkonium

    Office of Scientific and Technical Information (OSTI)

    potential (Journal Article) | SciTech Connect Toward large N thermal QCD from dual gravity: The heavy quarkonium potential Citation Details In-Document Search Title: Toward large N thermal QCD from dual gravity: The heavy quarkonium potential We continue our study on the gravity duals for strongly coupled large N QCD with fundamental flavors both at zero and nonzero temperatures. The gravity dual at zero temperature captures the logarithmic runnings of the coupling constants at far IR and

  15. Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduce Operating Costs and Emissions Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions to someone by E-mail Share Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions on Facebook Tweet about Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions on Twitter Bookmark Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating

  16. Dual aperture dipole magnet with second harmonic component

    DOE Patents [OSTI]

    Praeg, W.F.

    1983-08-31

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  17. A tandem-based compact dual-energy gamma generator

    SciTech Connect (OSTI)

    Persaud, A.; Kwan, J.W.; Leitner, M.; Leung, K.N.; Ludewigt, B.; Tanaka, N.; Waldron, W.; Wilde, S.; Antolak, A.J.; Morse, D.H.; Raber, T.

    2009-11-11

    A dual-energy tandem-type gamma generator has been developed at E.O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications.

  18. Protection of Li Anodes Using Dual Phase Electrolytes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es012_mikhaylik_2011_p.pdf More Documents & Publications Protection of Li Anodes Using Dual Phase Electrolytes Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants FY 2011 Annual Prog

  19. Protection of Li Anodes Using Dual Phase Electrolytes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es012_mikhaylik_2010_o.pdf More Documents & Publications Protection of Li Anodes Using Dual Phase Electrolytes Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grant

  20. Dual aperture dipole magnet with second harmonic component

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  1. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Patents [OSTI]

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  2. Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  3. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  4. Reduce overhead by using outside services

    SciTech Connect (OSTI)

    Sanchez, R.O.

    1996-09-01

    This document, after giving a summary of Sandia`s mission, describes technology transfer efforts and accomplishments at Sandia. This includes information on their user facilities: the combustion research facility, the national solar thermal test facility, and the electronics quality and reliability center.

  5. Chapter 13 - OVERHEAD AND GANTRY CRANES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric powered, but can be air powered or hand-chain operated. These cranes may be cab operated, pulpit operated, floor operated, or remotely operated. Such cranes are...

  6. Development and Use of the Dual-Mode Plasma Torch

    SciTech Connect (OSTI)

    Womack, R.; Shuey, M.

    2002-02-26

    After several years of development, a commercially available high-temperature treatment system has been developed and installed that treats heterogeneous low-level radioactive waste. High temperature plasma processing, unique torch design and operating features make it feasible to achieve a volume reduced, permanent, high integrity waste form while eliminating the personnel exposure and costs associated with conventional sorting, characterizing and handling. Plasma technology can also be used to treat previous conditioned waste packages that no longer meet the current acceptance criteria for final disposal. Plasma treatment can result, in many cases, in a substantial volume reduction, which lowers the final disposal costs. This paper covers the recently patented dual mode plasma torch design(1), the lessons learned that fostered its development and the advantages it brings to radioactive waste processing. This paper also provides current full scale Plasma Arc Centrifugal Treatment (PACT) project status and how the dual mode torch is being used in the PACT system.

  7. Dual ion beam assisted deposition of biaxially textured template layers

    DOE Patents [OSTI]

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  8. Advanced regenerator testing in the Raytheon dual-use cryocoolerr

    SciTech Connect (OSTI)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-29

    Significant progress has been made on the Raytheon low cost space cryocooler called the Dual-Use Cryocooler (DUC). Most notably, the DUC has been integrated and tested with an advanced regenerator. The advanced regenerator is a drop-in replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  9. Retractable pin dual in-line package test clip

    DOE Patents [OSTI]

    Bandzuch, Gregory S.; Kosslow, William J.

    1996-01-01

    This invention is a Dual In-Line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  10. FEI Nova 200 Dual-Beam SEM/FIB

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nova 200 Dual-Beam SEM/FIB Current Research Activities: * Support instrument for atom probe and TEM specimen preparation * 3D reconstruction of microstructural features Contact: Jon Poplawsky, poplawskyjd@ornl.gov, (865) 576-4965 Capabilities: * FEG scanning electron microscope * Ion column with Ga liquid ion source for milling * GIS for Pt deposition * Kleindiek nanomanipulator for specimen lift-out * Oxford Inca EDS system * AutoTEM, AutoFIB, and slice and view automation software Fabricating

  11. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  12. Development of a high-output dual-fuel engine

    SciTech Connect (OSTI)

    Danyluk, P.R. . Fairbanks Morse Engineering Division)

    1993-10-01

    This paper presents the results of a new dual-fuel engine development program. The engine is the largest commercially available in terms of power output (650 hp/cyl) and features very low emissions (1 g/hp-hr NO[sub x]) and excellent fuel consumption (43 percent thermal efficiency). A two-cylinder turbocharged prototype was designed and built for the initial development. Results from testing on 18-cylinder production versions are also reported.

  13. Dual-phase Cr-Ta alloys for structural applications

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Brady, Michael P. (Oak Ridge, TN); Zhu, Jiahong (Knoxville, TN); Tortorelli, Peter F. (Knoxville, TN)

    2001-01-01

    Dual phase alloys of chromium containing 2 to 11 atomic percent tantalum with minor amounts of Mo, Cr, Ti, Y, La, Cr, Si and Ge are disclosed. These alloys contain two phases including Laves phase and Cr-rich solid solution in either eutectic structures or dispersed Laves phase particles in the Cr-rich solid solution matrix. The alloys have superior mechanical properties at high temperature and good oxidation resistance when heated to above 1000.degree. C. in air.

  14. Integrated process and dual-function catalyst for olefin epoxidation

    DOE Patents [OSTI]

    Zhou, Bing (Cranbury, NJ); Rueter, Michael (Plymouth Meeting, PA)

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  15. Gravity Duals of Lifshitz-Like Fixed Points (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Gravity Duals of Lifshitz-Like Fixed Points Citation Details In-Document Search Title: Gravity Duals of Lifshitz-Like Fixed Points We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our

  16. Independently tunable dual-band perfect absorber based on graphene at

    Office of Scientific and Technical Information (OSTI)

    mid-infrared frequencies (Journal Article) | SciTech Connect Journal Article: Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies Citation Details In-Document Search Title: Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate

  17. Dual Integrated Appliances as an Energy and Safety Solution for Low Income

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Webinar | Department of Energy Dual Integrated Appliances as an Energy and Safety Solution for Low Income Weatherization Webinar Dual Integrated Appliances as an Energy and Safety Solution for Low Income Weatherization Webinar Slides from the Building America webinar presented by the NorthernSTAR team. PDF icon webinar_northernstar_dual_appliances_20111019.pdf More Documents & Publications Building America Expert Meeting: Recommendations for Applying Water Heaters in

  18. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and...

  19. POLICY GUIDANCE MEMORANDUM #11A Approval Process for Dual Compensation Waivers for Reemployed Annuitants

    Broader source: Energy.gov [DOE]

    Process to  grant dual compensation (salary-offset) waivers to reemployed annuitants who work on a limited basis without reduction to their retirement annuity.

  20. The Power of Integrators, Financiers, and Insurers to Reduce Proliferation Risks: Nuclear Dual-Use Goods

    SciTech Connect (OSTI)

    Weise, Rachel A.; Hund, Gretchen

    2015-05-01

    Globalization of manufacturing supply chains has changed the nature of nuclear proliferation. Before 1991, nonproliferation efforts focused almost exclusively on limiting the spread of materials and equipment specifically designed for nuclear use -- reactors, centrifuges, and fissile material. Dual-use items, those items with both nuclear and non-nuclear applications, were not closely scrutinized or controlled. However, in 1991 the international community discovered that Iraq had developed a fairly sophisticated nuclear weapons program by importing dual-use items; this discovery spurred the international community to increase controls on dual-use technologies. Despite these international efforts, dual-use items are still a challenge for those seeking to limit proliferation.

  1. Gauge theories on hyperbolic spaces and dual wormhole instabilities

    SciTech Connect (OSTI)

    Buchel, Alex

    2004-09-15

    We study supergravity duals of strongly coupled four-dimensional gauge theories formulated on compact quotients of hyperbolic spaces. The resulting background geometries are represented by Euclidean wormholes, which complicate establishing the precise gauge theory/string theory correspondence dictionary. These backgrounds suffer from the nonperturbative instabilities arising from the D3D3-bar pair-production in the background four-form potential. We discuss conditions for suppressing this Schwingerlike instability. We find that Euclidean wormholes arising in this construction develop a naked singularity before they can be stabilized.

  2. Exclusive J/{psi} electroproduction in a dual model

    SciTech Connect (OSTI)

    Fiore, R.; Jenkovszky, L. L.; Magas, V. K.; Melis, S.; Prokudin, A.

    2009-12-01

    Exclusive J/{psi} electroproduction is studied in the framework of the analytic S-matrix theory. The differential and integrated elastic cross sections are calculated using the modified dual amplitude with Mandelstam analyticity model. The model is applied to the description of the available experimental data and proves to be valid in a wide region of the kinematical variables s, t, and Q{sup 2}. Our amplitude can be used also as a universal background parametrization for the extraction of tiny resonance signals.

  3. Neutrons and Quarks Share Dual Nature | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons and Quarks Share Dual Nature Mosiac Title Mosiac Title: No1 beginnning, click for copyright information. When you stand back to admire a mosaic, such as the one to the left, you see the overall image. But look closely, and you can see the individual tiles and binding mortar that make up the mosaic. Physicists do much the same thing when they study protons and neutrons. Crack open a proton or a neutron, and you'll find quarks swarming around inside. Among the quarks are a host of other

  4. Dual-wavelength InP quantum dot lasers

    SciTech Connect (OSTI)

    Shutts, S.; Smowton, P. M.; Krysa, A. B.

    2014-06-16

    We have demonstrated a two-section dual-wavelength diode laser incorporating distributed Bragg reflectors, with a peak-wavelength separation of 62.5?nm at 300?K. Each lasing wavelength has a different temperature dependence, providing a difference-tuning of 0.11?nm/K. We discuss the mechanisms governing the light output of the two competing modes and explain how the short wavelength can be relatively insensitive to output changes at the longer wavelength. Starting from an initial condition when the output at both wavelengths are equal, a 500% increase in the long wavelength output causes the short wavelength output to fall by only 6%.

  5. Dual-circuit, multiple-effect refrigeration system and method

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN)

    1995-01-01

    A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

  6. Overhead Piping / Asbestos Removal. Letter transmits response to comments on the overhead piping and asbestos removal.

    Office of Legacy Management (LM)

  7. Investigation of plasma diagnostics using a dual frequency harmonic technique

    SciTech Connect (OSTI)

    Kim, Dong-Hwan; Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook

    2014-09-07

    Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (ω{sub 1},ω{sub 2}) was applied to a probe, various harmonic currents (ω{sub 1}, 2ω{sub 1},ω{sub 2}, 2ω{sub 2},ω{sub 2}±ω{sub 1},ω{sub 2}±2ω{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.

  8. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOE Patents [OSTI]

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  9. Iterative Self-Dual Reconstruction on Radar Image Recovery

    SciTech Connect (OSTI)

    Martins, Charles; Medeiros, Fatima; Ushizima, Daniela; Bezerra, Francisco; Marques, Regis; Mascarenhas, Nelson

    2010-05-21

    Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizes when applied to simulated and real SAR images in comparison with standard filters.

  10. Dual manifold system and method for fluid transfer

    DOE Patents [OSTI]

    Doktycz, Mitchel J. (Knoxville, TN); Bryan, William Louis (Knoxville, TN); Kress, Reid (Oak Ridge, TN)

    2003-05-27

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  11. Dual manifold system and method for fluid transfer

    DOE Patents [OSTI]

    Doktycz, Mitchel J.; Bryan, William Louis; Kress, Reid

    2003-09-30

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  12. Slowly Varying Dilaton Cosmologies and Their Field Theory Duals

    SciTech Connect (OSTI)

    Awad, Adel; Das, Sumit R.; Ghosh, Archisman; Oh, Jae-Hyuk; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC

    2011-06-28

    We consider a deformation of the AdS{sub 5} x S{sup 5} solution of IIB supergravity obtained by taking the boundary value of the dilaton to be time dependent. The time dependence is taken to be slowly varying on the AdS scale thereby introducing a small parameter {epsilon}. The boundary dilaton has a profile which asymptotes to a constant in the far past and future and attains a minimum value at intermediate times. We construct the sugra solution to first non-trivial order in {epsilon}, and find that it is smooth, horizon free, and asymptotically AdS{sub 5} x S{sup 5} in the far future. When the intermediate values of the dilaton becomes small enough the curvature becomes of order the string scale and the sugra approximation breaks down. The resulting dynamics is analysed in the dual SU(N) gauge theory on S{sup 3} with a time dependent coupling constant which varies slowly. When N{epsilon} << 1, we find that a quantum adiabatic approximation is applicable, and use it to argue that at late times the geometry becomes smooth AdS{sub 5} x S{sup 5} again. When N{epsilon} >> 1, we formulate a classical adiabatic perturbation theory based on coherent states which arises in the large N limit. For large values of the tHooft coupling this reproduces the supergravity results. For small 'tHooft coupling the coherent state calculations become involved and we cannot reach a definite conclusion. We argue that the final state should have a dual description which is mostly smooth AdS5 space with the possible presence of a small black hole.

  13. Dual-Axis Resonance Testing of Wind Turbine Blades - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Wind Energy Wind Energy Find More Like This Return to Search Dual-Axis Resonance Testing of Wind Turbine Blades National Renewable Energy Laboratory Contact NREL About This Technology <em>Dual-axis testing can concurrently test edgewise and flapwise blade stability which is significant in reducing the amount of time needed to fatigue test wind turbine blades. </em><br /> Dual-axis testing can concurrently test edgewise and flapwise blade stability which is

  14. Final joint environmental assessment for the construction and routine operation of a 12-kilovolt (KV) overhead powerline right-of-way, and formal authorization for a 10-inch and 8-inch fresh water pipeline right-of-way, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The purpose and need of the proposed action, which is the installation of an overhead powerline extension from an Naval Petroleum Reserve No. 1 (NPR-1) power source to the WKWD Station A, is to significantly reduce NPR-1`s overall utility costs. While the proposed action is independently justified on its own merits and is not tied to the proposed NPR-1 Cogeneration Facility, the proposed action would enable DOE to tie the NPR-1 fresh water pumps at Station A into the existing NPR-1 electrical distribution system. With the completion of the cogeneration facility in late 1994 or early 1995, the proposed action would save additional utility costs. This report deals with the environmental impacts of the construction of the powerline and the water pipeline. In addition, information is given about property rights and attaining permission to cross the property of proposed affected owners.

  15. Toward the AdS/CFT gravity dual for high energy collisions. II...

    Office of Scientific and Technical Information (OSTI)

    II. The stress tensor on the boundary Citation Details In-Document Search Title: Toward the AdSCFT gravity dual for high energy collisions. II. The stress tensor on the boundary ...

  16. Dual modulation laser line-locking technique for wavelength modulation spectroscopy

    DOE Patents [OSTI]

    Bomse, David S. (Santa Fe, NM); Hovde, D. Christian (Santa Fe, NM); Silver, Joel A. (Santa Fe, NM)

    2002-01-01

    Disclosed are a method and apparatus for dual modulation of an optical spectroscopy laser. Demodulation is accomplished in a manner resulting in measurement of absorbance of a gas species, as well as stabilization of laser wavelength and baseline noise reduction.

  17. A Nonproliferation Third Party for Dual-use Industries - Legal Issues for Consideration

    SciTech Connect (OSTI)

    Morris, Frederic A.; Seward, Amy M.; Kurzrok, Andrew J.

    2012-10-01

    This paper discusses legal issues in connection with formation of a third party to facilitate information sharing and best practices by companies in nuclear-related dual-use industries.

  18. Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel in existing dual-purpose canisters (DPCs) and other types of storage casks.

  19. Diagnostic quality of mammograms obtained with a new low-radiation-dose dual-screen and dual-emulsion film combination

    SciTech Connect (OSTI)

    Wojtasek, D.A.; Teixidor, H.S.; Govoni, A.F.; Gareen, I.F. )

    1990-02-01

    We evaluated the image quality of mammograms made by using a new dual-screen, dual-emulsion film combination (Kodak Min-R Fast screen, T-Mat Mll film) that permits reduction of radiation exposure by approximately 50% when compared with a standard single-screen, single-emulsion film system (Kodak Min-R screen, OM-1 film). This new film has been improved when compared with earlier T-Mat M film, including the introduction of an inert dye to reduce light crossover to essentially 0%. Mammogram pairs made with the dual-emulsion film combination and the standard single-emulsion film combination were obtained in 50 patients otherwise undergoing routine mammography. The image pairs were randomized and evaluated by three radiologists who used a three-point scale (better, same, or worse). Each pair was evaluated with regard to parenchymal contrast, sharpness, and latitude, as well as the number and sharpness of calcifications (n = 19) and sharpness of masses (n = 12) when present. All three observers found the dual-emulsion film combination to be better than or the same as the standard with regard to parenchymal sharpness (94-100%), the number and sharpness of calcifications (98-100%), and sharpness of masses (100%). Two observers found the dual-emulsion film combination to be significantly worse (p less than .05) than the standard with respect to parenchymal contrast (72%, 86%), and all three observers rated it significantly worse for film latitude (14 to 42%). Our results suggest that this new dual-emulsion film combination that allows mammography to be performed with less radiation exposure can be used without loss of image quality.

  20. Parameterized reduced-order models using hyper-dual numbers. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Parameterized reduced-order models using hyper-dual numbers. Citation Details In-Document Search Title: Parameterized reduced-order models using hyper-dual numbers. The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while

  1. Dual vortex theory of strongly interacting electrons: A non-Fermi liquid

    Office of Scientific and Technical Information (OSTI)

    with a twist (Journal Article) | SciTech Connect Dual vortex theory of strongly interacting electrons: A non-Fermi liquid with a twist Citation Details In-Document Search Title: Dual vortex theory of strongly interacting electrons: A non-Fermi liquid with a twist As discovered in the quantum Hall effect, a very effective way for strongly repulsive electrons to minimize their potential energy is to aquire nonzero relative angular momentum. We pursue this mechanism for interacting

  2. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operation with Low Degradation | Department of Energy for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low Degradation Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low Degradation Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon petri_versa%20_power_kickoff.pdf More Documents & Publications Reversible Fuel Cells Workshop Summary Report Progress on the

  3. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module | Department of Energy Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage (TES) module with high efficiency. This project is looking at a packed or structured bed TES tank with molten salt flowing through it. Approach A computational modeling of molten salt heat transfer fluid

  4. Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chromium Metal-Organic Framework with Functional Groups | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal-Organic Framework with Functional Groups Previous Next List Park, Jihye; Feng, Dawei; Zhou, Hong-Cai. Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal-Organic Framework with Functional Groups. J. Amer. Chem. Soc., 137,

  5. Development of Dual-Fuel Engine for Class 8 Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Dual-Fuel Engine for Class 8 Applications Development of Dual-Fuel Engine for Class 8 Applications Highlights roadmap towards 55% brake thermal efficiency and progress to meet engine development goals PDF icon deer12_zhang.pdf More Documents & Publications SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer High-Efficiency Clean Combustion in Light-Duty

  6. Silver-Mordenite for Radiologic Gas Capture from Complex Streams: Dual

    Office of Scientific and Technical Information (OSTI)

    Catalytic CH3I Decomposition and I Confinement (Journal Article) | SciTech Connect Journal Article: Silver-Mordenite for Radiologic Gas Capture from Complex Streams: Dual Catalytic CH3I Decomposition and I Confinement Citation Details In-Document Search Title: Silver-Mordenite for Radiologic Gas Capture from Complex Streams: Dual Catalytic CH3I Decomposition and I Confinement The effective capture and storage of radiological iodine (129I) remains a strong concern for safe nuclear waste

  7. The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential for Systems Optimization | Department of Energy The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss062_smith_2011_p.pdf More Documents & Publications Vehicle Systems Integration (VSI) Research

  8. Investigations of Dual-Purpose Canister Direct Disposal Feasibility (FY14)

    Office of Environmental Management (EM)

    R1 | Department of Energy Investigations of Dual-Purpose Canister Direct Disposal Feasibility (FY14) R1 Investigations of Dual-Purpose Canister Direct Disposal Feasibility (FY14) R1 Results continue to support the earlier conclusion that direct disposal of DPCs is technically feasible, at least for some DPCs, and for some disposal concepts (geologic host media). Much of the work performed has reached a point where site-specific information would be needed for further resolution. Several

  9. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  10. Dual energy scanning beam laminographic x-radiography

    DOE Patents [OSTI]

    Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

  11. Dual energy scanning beam laminographic x-radiography

    DOE Patents [OSTI]

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  12. Static-stress analysis of dual-axis confinement vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.

  13. Static-stress analysis of dual-axis safety vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    An 8-ft-diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high-explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the shellto-nozzle interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.

  14. DUAL HALOS AND FORMATION OF EARLY-TYPE GALAXIES

    SciTech Connect (OSTI)

    Park, Hong Soo; Lee, Myung Gyoon E-mail: mglee@astro.snu.ac.kr

    2013-08-20

    We present a determination of the two-dimensional shape parameters of the blue and red globular cluster systems (GCSs) in a large number of elliptical galaxies and lenticular galaxies (early-type galaxies, called ETGs). We use a homogeneous data set of the globular clusters in 23 ETGs obtained from the HST/ACS Virgo Cluster Survey. The position angles of both blue and red GCSs show a correlation with those of the stellar light distribution, showing that the major axes of the GCSs are well aligned with those of their host galaxies. However, the shapes of the red GCSs show a tight correlation with the stellar light distribution as well as with the rotation property of their host galaxies, while the shapes of the blue GCSs do much less. These provide clear geometric evidence that the origins of the blue and red globular clusters are distinct and that ETGs may have dual halos: a blue (metal-poor) halo and a red (metal-rich) halo. These two halos show significant differences in metallicity, structure, and kinematics, indicating that they are formed in two distinguishable ways. The red halos might have formed via dissipational processes with rotation, while the blue halos are through accretion.

  15. Dual variational principles for nonlinear traveling waves in multifluid plasmas

    SciTech Connect (OSTI)

    Webb, G. M.; McKenzie, J. F.; Mace, R. L.; Ko, C. M.; Zank, G. P.

    2007-08-15

    A Hamiltonian description of nonlinear, obliquely propagating traveling waves in a charge neutral, electron-proton, multifluid plasma is developed. The governing equations are written as a dual spatial Hamiltonian system. In the first formulation, the Hamiltonian is identified with the longitudinal, x-momentum flux integral P{sub x}=const, in which the energy integral {epsilon}={epsilon}{sub 0} acts as a constraint, and the Hamiltonian evolution operator is d/dx, where x is the position coordinate in the wave frame. In the second Hamiltonian formulation, the Hamiltonian is proportional to the conserved energy integral {epsilon}, in which the momentum integral P{sub x}=const acts as a constraint, and the Hamiltonian evolution operator d/d{tau}=u{sub x}d/dx is the Lagrangian time derivative where u{sub x} is the x component of the electron and proton fluids. The analysis is facilitated by using the de Hoffman-Teller frame of magnetohydrodynamic shock theory to simplify the transverse electron and proton momentum equations. The system is exactly integrable in cases in which the total transverse momentum fluxes of the system are zero in the de Hoffman-Teller frame. The implications of this constraint for the Alfven Mach number of the traveling wave are discussed. The physical conditions for the formation of whistler oscillitons based on the whistler dispersion equation are discussed.

  16. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  17. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  18. Dual energy CT for attenuation correction with PET/CT

    SciTech Connect (OSTI)

    Xia, Ting; Alessio, Adam M.; Kinahan, Paul E.

    2014-01-15

    Purpose: The authors evaluate the energy dependent noise and bias properties of monoenergetic images synthesized from dual-energy CT (DECT) acquisitions. These monoenergetic images can be used to estimate attenuation coefficients at energies suitable for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This is becoming more relevant with the increased use of quantitative imaging by PET/CT and SPECT/CT scanners. There are, however, potential variations in the noise and bias of synthesized monoenergetic images as a function of energy. Methods: The authors used analytic approximations and simulations to estimate the noise and bias of synthesized monoenergetic images of water-filled cylinders with different shapes and the NURBS-based cardiac-torso (NCAT) phantom from 40 to 520 keV, the range of SPECT and PET energies. The dual-kVp spectra were based on the GE Lightspeed VCT scanner at 80 and 140 kVp with added filtration of 0.5 mm Cu. The authors evaluated strategies of noise suppression with sinogram smoothing and dose minimization with reduction of tube currents at the two kVp settings. The authors compared the impact of DECT-based attenuation correction with single-kVp CT-based attenuation correction on PET quantitation for the NCAT phantom for soft tissue and high-Z materials of bone and iodine contrast enhancement. Results: Both analytic calculations and simulations displayed the expected minimum noise value for a synthesized monoenergetic image at an energy between the mean energies of the two spectra. In addition the authors found that the normalized coefficient of variation in the synthesized attenuation map increased with energy but reached a plateau near 160 keV, and then remained constant with increasing energy up to 511 keV and beyond. The bias was minimal, as the linear attenuation coefficients of the synthesized monoenergetic images were within 2.4% of the known true values across the entire energy range. Compared with no sinogram smoothing, sinogram smoothing can dramatically reduce noise in the DECT-derived attenuation map. Through appropriate selection of tube currents for high and low kVp scans, DECT can deliver roughly the same amount of radiation dose as that of a single kVp CT scan, but could be used for PET attenuation correction with reduced bias in contrast agent regions by a factor of ?2.6 and slightly reduced RMSE for the total image. Conclusions: When DECT is used for attenuation correction at higher energies, there is a noise amplification that is dependent on the energy of the synthesized monoenergetic image of linear attenuation coefficients. Sinogram smoothing reduces the noise amplification in DECT-derived attenuation maps without increasing bias. With an appropriate selection of CT techniques, a DECT scan with the same radiation dose as a single CT scan can result in a PET image with improved quantitative accuracy.

  19. Dual shell pressure balanced reactor vessel. Final project report

    SciTech Connect (OSTI)

    Robertus, R.J.; Fassbender, A.G.

    1994-10-01

    The Department of Energy`s Office of Energy Research (OER) has previously provided support for the development of several chemical processes, including supercritical water oxidation, liquefaction, and aqueous hazardous waste destruction, where chemical and phase transformations are conducted at high pressure and temperature. These and many other commercial processes require a pressure vessel capable of operating in a corrosive environment where safety and economy are important requirements. Pacific Northwest Laboratory (PNL) engineers have recently developed and patented (U.S. patent 5,167,930 December 1, 1992) a concept for a novel Dual Shell Pressure Balanced Vessel (DSPBV) which could solve a number of these problems. The technology could be immediately useful in continuing commercialization of an R&D 100 award-winning technology, Sludge-to-oil Reactor System (STORS), originally developed through funding by OER. Innotek Corporation is a small business that would be one logical end-user of the DSPBV reactor technology. Innotek is working with several major U.S. engineering firms to evaluate the potential of this technology in the disposal of wastes from sewage treatment plants. PNL entered into a CRADA with Innotek to build a bench-scale demonstration reactor and test the system to advance the economic feasibility of a variety of high pressure chemical processes. Hydrothermal processing of corrosive substances on a large scale can now be made significantly safer and more economical through use of the DSPBV. Hydrothermal chemical reactions such as wet-air oxidation and supercritical water oxidation occur in a highly corrosive environment inside a pressure vessel. Average corrosion rates from 23 to 80 miles per year have been reported by Rice (1994) and Latanision (1993).

  20. DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY

    SciTech Connect (OSTI)

    Comerford, Julia M.; Schluns, Kyle; Greene, Jenny E.; Cool, Richard J.

    2013-11-01

    Dual supermassive black holes (SMBHs) with kiloparsec-scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z < 0.37 in the AGN and Galaxy Evolution Survey (AGES), and we find two double-peaked AGNs and five offset AGN candidates. When we compare these results to a similar search of the DEEP2 Galaxy Redshift Survey and match the two samples in color, absolute magnitude, and minimum velocity offset, we find that the fraction of AGNs that are dual SMBH candidates increases from z = 0.25 to z = 0.7 by a factor of ?6 (from 2/70 to 16/91, or 2.9{sup +3.6}{sub -1.9}% to 18{sup +5}{sub -5}%). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ?3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9{sup +3}{sub -2}% to 29{sub -19}{sup +26}%). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs.

  1. Inspection report: the Department of Energy's export licensing process for dual-use and munitions commodities

    SciTech Connect (OSTI)

    Friedman, Gregory H.

    1999-05-01

    Export of commodities, encouraged by both the private sector and the Federal Government, helps to improve our position in the global economy and is in the national interest of the US. However, exports of commodities or technologies, without regard to whether they may significantly contribute to the military potential of individual countries or combination of countries or enhance the proliferation of weapons of mass destruction, may adversely affect the national security of the US. The Federal Government, therefore, implements several laws, Executive Orders, and regulations to control the export of certain commodities and technologies. These commodities and technologies require a license for export. Some of the controlled items are designated as ''dual-use,'' that is, commodities and technologies that have both civilian and military application. Some dual-use commodities are designated as ''nuclear dual-use''--items controlled for nuclear nonproliferation purposes. Another group of controlled commodities is designated as munitions, which are goods and technologies that have solely military uses. The Department of Energy (Energy) conducts reviews of export license applications for nuclear dual-use items and certain munitions. On August 26, 1998, the Chairman of the Senate Committee on Governmental Affairs requested that the Inspectors General from the Departments of Commerce, Defense, Energy, State, and Treasury, and the Central Intelligence Agency (CIA), update and expand on a 1993 interagency review conducted by the Inspectors General of the Departments of Commerce, Defense, Energy, and State of the export licensing processes for dual-use and munitions commodities.

  2. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOE Patents [OSTI]

    Sisk, Francis J. (Washington Township, Fayette County, PA)

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor motor for at least a predetermined time in response to a condition of the control means operative to initiate a change in the operating direction of the compressor when it restarts.

  3. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    DOE Patents [OSTI]

    Campbell; Christian X. (Oviedo, FL), Morrison; Jay A. (Oviedo, FL)

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  4. Dual fuel Russian urban transit buses: Economical reduced emissions. Export trade information

    SciTech Connect (OSTI)

    1998-01-01

    This study, conducted by Caterpillar, was funded by the US Trade and Development Agency. The scope of this project was to examine the financial and environmental aspects of introducing new alternative fuel engines to the buses of Russia`s public transportation system. The report consists of the following: (1) executive summary; (2) background/overview; (3) 3306 design, development, test; (4) electronic governed engines; (5) Moscow bus testing; (6) conclusions; (7) appendices. The appendices include: (1) Caterpillar emissions lab report; (2) dyno tests -- dual fuel data sheets; (3) 3360 horizontal engine lub tilt test; (4) 1000 hour endurance test -- engine operator sheets; (5) 1000 hour endurance test -- 250 hour check; (6) Caterpillar dual fuel electronic engines; (7) product description -- dual fuel electronic governed engines; (8) California Environmental Protection Agency -- certification of caterpillar electronic governed engines; (9) annual payback data.

  5. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    SciTech Connect (OSTI)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 ?m to 1.5 mm, show CO2 permeance in the range of 0.5-510-7 molm-2s-1Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.

  6. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect (OSTI)

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas???????¢????????????????air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed ???????¢????????????????relative combustion phasing???????¢???????????????). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20???????????????° to 60???????????????°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  7. Parameterized Reduced Order Models from a Single Mesh Using Hyper-Dual

    Office of Scientific and Technical Information (OSTI)

    Numbers. (Journal Article) | SciTech Connect Journal Article: Parameterized Reduced Order Models from a Single Mesh Using Hyper-Dual Numbers. Citation Details In-Document Search Title: Parameterized Reduced Order Models from a Single Mesh Using Hyper-Dual Numbers. Abstract not provided. Authors: Brake, Matthew Robert ; Fike, Jeffrey A. ; Topping, Sean D. Publication Date: 2014-10-01 OSTI Identifier: 1184572 Report Number(s): SAND2014-19219J 540795 DOE Contract Number: AC04-94AL85000 Resource

  8. Heavy-duty H2-Diesel Dual Fuel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    duty H2-Diesel Dual Fuel Engines Heavy-duty H2-Diesel Dual Fuel Engines Brake thermal efficiency can be improved with the addition of a large amount of hydrogen at medium to high loads PDF icon deer09_li.pdf More Documents & Publications Evaluation of NTE Windows and a Work-Based Method to Determine In-Use Emissions of a Heavy-Duty Diesel Engine Status of APBF-DEC NOx Adsorber/DPF Projects Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology

  9. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell | Awards and Honors | NREL NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and at the Swiss Center for Electronics and Microtechnology (CSEM) have jointly set a new world record for converting non-concentrated (1-sun) sunlight into electricity using a dual-junction III-V/Si solar cell. The newly certified record conversion efficiency of 29.8 percent was set

  10. Propane-Diesel Dual Fuel for CO2 and Nox Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propane-Diesel Dual Fuel for CO2 and Nox Reduction Propane-Diesel Dual Fuel for CO2 and Nox Reduction Test results show significant CO2 and NOx emission reductions, fuel economy gains, and overall energy savings with propane injection in a diesel engine. PDF icon p-18_servati.pdf More Documents & Publications Active DPF for Off-Road Particulate Matter (PM) Control Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology DPF for a Tractor Auxiliary Power Unit

  11. Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a Multi-Cylinder Light Duty Diesel Engine | Department of Energy Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-06_curran.pdf More Documents &

  12. Control Strategy for a Dual Loop EGR System to Meet Euro 6 and Beyond |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Control Strategy for a Dual Loop EGR System to Meet Euro 6 and Beyond Control Strategy for a Dual Loop EGR System to Meet Euro 6 and Beyond Presentation given at the 2009 DEER Conference. This presentation focues on EGR and Boost systems for reducing the cost and lowering emissions of diesel engines. PDF icon deer09_czarnowski.pdf More Documents & Publications Can Future Emissions Limits be Met with a Hybrid EGR System Alone? Strategies for In-Cylinder Reductions to

  13. Dual Loop Parallel/Series Waste Heat Recovery System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual Loop Parallel/Series Waste Heat Recovery System Dual Loop Parallel/Series Waste Heat Recovery System This system captures all the jacket water, intercooler, and exhaust heat from the engine by utilizing a single condenser to reject leftover heat to the atmosphere. PDF icon p-04_cook.pdf More Documents & Publications Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer CNG-Hybrid: A Practical Path to "Net Zero

  14. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine

    DOE Patents [OSTI]

    Qu, Ronghai; Lipo, Thomas A.

    2005-08-02

    The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.

  15. Single line-of-sight dual energy backlighter for mix width experiments

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Single line-of-sight dual energy backlighter for mix width experiments Citation Details In-Document Search Title: Single line-of-sight dual energy backlighter for mix width experiments We present a diagnostic technique used to spatially multiplex two x-ray radiographs of an object onto a detector along a single line-of-sight. This technique uses a thin, <2 μm, cosputtered backlighter target to simultaneously produce both Ni and Zn He{sub α} emission.

  16. Toward the AdS/CFT gravity dual for high energy collisions. I. Falling into

    Office of Scientific and Technical Information (OSTI)

    the AdS space (Journal Article) | SciTech Connect I. Falling into the AdS space Citation Details In-Document Search Title: Toward the AdS/CFT gravity dual for high energy collisions. I. Falling into the AdS space In the context of the AdS/CFT correspondence we discuss the gravity dual of a high energy collision in a strongly coupled N=4 SYM gauge theory. We suggest a setting in which two colliding objects are made of nondynamical heavy quarks and antiquarks, which allows one to treat the

  17. Using Hyper-Dual Numbers To Construct Parameterized Reduced-Order Models.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Using Hyper-Dual Numbers To Construct Parameterized Reduced-Order Models. Citation Details In-Document Search Title: Using Hyper-Dual Numbers To Construct Parameterized Reduced-Order Models. Abstract not provided. Authors: Brake, Matthew Robert ; Fike, Jeffrey A. ; Topping, Sean D. Publication Date: 2014-10-01 OSTI Identifier: 1242114 Report Number(s): SAND2014-19346C 540913 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation:

  18. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    SciTech Connect (OSTI)

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  19. Iterative image-domain decomposition for dual-energy CT

    SciTech Connect (OSTI)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael; Zhu, Lei

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.

  20. System-Level Logistics for Dual Purpose Canister Disposal

    SciTech Connect (OSTI)

    Kalinina, Elena A.

    2014-06-03

    The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.

  1. A Preliminary Cost Study of the Dual Mode Inverter Controller

    SciTech Connect (OSTI)

    McKeever, J.W.

    2005-01-28

    In 1998, the Power Electronics and Electric Machinery Research Center (PEEMRC) at the Oak Ridge National Laboratory (ORNL) started a program to investigate alternate field weakening schemes for permanent magnet (PM) motors. The adjective ''alternate'' was used because at that time, outside research emphasis was on motors with interior-mounted PMs (IPMs). The PEEMRC emphasis was placed on motors with surface-mounted PMs (SPMs) because of the relative ease of manufacturing SPM motors compared with the IPM motors. Today the PEEMRC is continuing research on SPMs while examining the IPMs that have been developed by industry. Out of this task--the goal of which was to find ways to drive PM motors that inherently have low inductance at high speeds where their back-emf exceeds the supply voltage--ORNL developed and demonstrated the dual mode inverter control (DMIC) [1,2] method of field weakening for SPM motors. The predecessor of DMIC is conventional phase advance (CPA), which was developed by UQM Technologies, Inc. [3]. Fig. 1 shows the three sets of anti-parallel thyristors in the dashed box that comprise the DMIC. If one removes the dashed box by shorting each set of anti-parallel thyristors, the configuration becomes a conventional full bridge inverter on the left driving a three phase motor on the right. CPA may be used to drive this configuration ORNL's initial analyses of CPA and DMIC were based on driving motors with trapezoidal back-emfs [4-6], obtained using double layer lapped stator windings with one slot per pole per phase. A PM motor with a sinusoidal back-emf obtained with two poles per slot per phase has been analyzed under DMIC operation as a University of Tennessee-Knoxville (UTK) doctoral dissertation [7]. In the process of this research, ORNL has completed an analysis that explains and quantifies the role of inductance in these methods of control. The Appendix includes information on the equations for the three components of phase inductance, L{sub gap}, L{sub slot}, and L{sub endturns}. PM motors inherently have a lower inductance because of the increase in effective air gap caused by the magnet, which is in the denominator of the equation for L{sub gap}. L{sub gap} accounts for about half of the phase inductance. Because of the low inductance, there is a propensity for currents to exceed the motor's rated value. DMIC solves this problem for low-inductance PM motors and, in addition, provides a number of safety features that protect against uncontrolled generator mode operation [8,9]; however, the DMIC topology adds a pair of anti-parallel thyristors in each of the three phases, thereby introducing additional silicon costs as well as additional voltage drops during operation. It poses the tradeoff question; under what conditions can the beneficial features of DMIC offset its additional silicon cost and voltage drop losses? The purpose of this report is to address the tradeoff question. Sections of the report will: (1) review the role of self-inductance in performance and control of PM motors, (2) discuss the bounding inductances for motors with trapezoidal back-emfs under CPA control, (3) discuss the bounding inductances for trapezoidal back-emfs under DMIC, (4) discuss the bounding inductances for the PM synchronous motor (PMSM), (5) present the analysis showing how DMIC minimizes current in PMSMs, (6) present the results of a cost study conducted for two motors driven using a CPA inverter and for two motors driven using DMIC, (7) discuss estimating life cycle cost benefits, and (8) present conclusions.

  2. Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine

    SciTech Connect (OSTI)

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-04-20

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  3. Evaluation of Instrumentation and Dynamic Thermal Ratings for Overhead Lines

    SciTech Connect (OSTI)

    Phillips, A.

    2013-01-31

    In 2010, a project was initiated through a partnership between the Department of Energy (DOE) and the New York Power Authority (NYPA) to evaluate EPRI?s rating technology and instrumentation that can be used to monitor the thermal states of transmission lines and provide the required real-time data for real-time rating calculations. The project included the installation and maintenance of various instruments at three 230 kV line sites in northern New York. The instruments were monitored, and data collection and rating calculations were performed for about a three year period.

  4. Fault isolation through no-overhead link level CRC

    DOE Patents [OSTI]

    Chen, Dong (Croton On Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY); Gara, Alan G. (Mount Kisco, NY)

    2007-04-24

    A fault isolation technique for checking the accuracy of data packets transmitted between nodes of a parallel processor. An independent crc is kept of all data sent from one processor to another, and received from one processor to another. At the end of each checkpoint, the crcs are compared. If they do not match, there was an error. The crcs may be cleared and restarted at each checkpoint. In the preferred embodiment, the basic functionality is to calculate a CRC of all packet data that has been successfully transmitted across a given link. This CRC is done on both ends of the link, thereby allowing an independent check on all data believed to have been correctly transmitted. Preferably, all links have this CRC coverage, and the CRC used in this link level check is different from that used in the packet transfer protocol. This independent check, if successfully passed, virtually eliminates the possibility that any data errors were missed during the previous transfer period.

  5. Synthesis of ZSM-23/ZSM-22 intergrowth zeolite with a novel dual-template strategy

    SciTech Connect (OSTI)

    Wang, Bingchun, E-mail: wangbc@dicp.ac.cn [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China) [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Tian, Zhijian, E-mail: tianz@dicp.ac.cn [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China) [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Li, Peng; Wang, Lei; Xu, Yunpeng; Qu, Wei; Ma, Huaijun; Xu, Zhusheng [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Lin, Liwu [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2009-12-15

    ZSM-23/ZSM-22 intergrowth zeolite with fixed proportion of 60%ZSM-23/40%ZSM-22 has been synthesized with a novel dual-template strategy. The products were characterized by X-ray diffraction and scanning electron microscopy. Dimethylamine and diethylamine were used together as a dual-template system. The molar ratio of diethylamine to dimethylamine, which was changed with the type of aluminum source, was the key factor for the synthesis of intergrowth zeolites. A molar ratio of diethylamine to dimethylamine of 1:24 could result in an ZSM-23/ZSM-22 intergrowth zeolite if aluminum sulfate was used as aluminum source, whereas a molar ratio of diethylamine to dimethylamine of 1:12 was required to get an ZSM-23/ZSM-22 intergrowth zeolite if sodium metaaluminate was used. Furthermore, fluoride anion could be involved in the process as a crystallization promoter.

  6. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    SciTech Connect (OSTI)

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam onto the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.

  7. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less

  8. Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat

    SciTech Connect (OSTI)

    Guo, Minghuan; Wang, Zhifeng; Liang, Wenfeng; Zhang, Xiliang; Zang, Chuncheng; Lu, Zhenwu; Wei, Xiudong

    2010-06-15

    A 4 m x 4 m toroidal heliostat with receiver oriented dual-axis tracking, also called spinning-elevation tracking, was developed as an auxiliary heat source for a hydrogen production system. A series of spinning-elevation tracking formulas have been derived for this heliostat. This included basic tracking formulas, a formula for the elevation angle for heliostat with a mirror-pivot offset, and a more general formula for the biased elevation angle. This paper presents the new tracking formulas in detail and analyzes the accuracy of applying a simplifying approximation. The numerical results show these receiver oriented dual-axis tracking formula approximations are accurate to within 2.5 x 10{sup -6} m in image plane. Some practical tracking strategies are discussed briefly. Solar images from the toroidal heliostat at selected times are also presented. (author)

  9. Proteinligand interactions investigated by thermal shift assays (TSA) and dual polarization interferometry (DPI)

    SciTech Connect (OSTI)

    Grftehauge, Morten K. Hajizadeh, Nelly R.; Swann, Marcus J.; Pohl, Ehmke

    2015-01-01

    The biophysical characterization of proteinligand interactions in solution using techniques such as thermal shift assay, or on surfaces using, for example, dual polarization interferometry, plays an increasingly important role in complementing crystal structure determinations. Over the last decades, a wide range of biophysical techniques investigating proteinligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography.

  10. Nonlinear periodic waves solutions of the nonlinear self-dual network equations

    SciTech Connect (OSTI)

    Laptev, Denis V. Bogdan, Mikhail M.

    2014-04-15

    The new classes of periodic solutions of nonlinear self-dual network equations describing the breather and soliton lattices, expressed in terms of the Jacobi elliptic functions have been obtained. The dependences of the frequencies on energy have been found. Numerical simulations of soliton lattice demonstrate their stability in the ideal lattice and the breather lattice instability in the dissipative lattice. However, the lifetime of such structures in the dissipative lattice can be extended through the application of ac driving terms.

  11. Dialing in the Properties of Dual Metallic-Insulating Materials | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Dialing in the Properties of Dual Metallic-Insulating Materials February 11, 2016 Tweet EmailPrint Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated

  12. Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor and Dual-Polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor and Dual-Polarization K. P. Moran, B. E. Martner, and K. A. Clark National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado C. Chanders Science and Technology Corporation Background The Atmospheric Radiation Measurement (ARM) Millimeter Wavelength Cloud Radars (MMCRs) are vertically pointing ground-based Doppler systems, designed for long-term, unattended operations. In spite of very low

  13. On two-parameter models of photon cross sections: Application to dual-energy CT imaging

    SciTech Connect (OSTI)

    Williamson, Jeffrey F.; Li Sicong; Devic, Slobodan; Whiting, Bruce R.; Lerma, Fritz A.

    2006-11-15

    The goal of this study is to evaluate the theoretically achievable accuracy in estimating photon cross sections at low energies (20-1000 keV) from idealized dual-energy x-ray computed tomography (CT) images. Cross-section estimation from dual-energy measurements requires a model that can accurately represent photon cross sections of any biological material as a function of energy by specifying only two characteristic parameters of the underlying material, e.g., effective atomic number and density. This paper evaluates the accuracy of two commonly used two-parameter cross-section models for postprocessing idealized measurements derived from dual-energy CT images. The parametric fit model (PFM) accounts for electron-binding effects and photoelectric absorption by power functions in atomic number and energy and scattering by the Klein-Nishina cross section. The basis-vector model (BVM) assumes that attenuation coefficients of any biological substance can be approximated by a linear combination of mass attenuation coefficients of two dissimilar basis substances. Both PFM and BVM were fit to a modern cross-section library for a range of elements and mixtures representative of naturally occurring biological materials (Z=2-20). The PFM model, in conjunction with the effective atomic number approximation, yields estimated the total linear cross-section estimates with mean absolute and maximum error ranges of 0.6%-2.2% and 1%-6%, respectively. The corresponding error ranges for BVM estimates were 0.02%-0.15% and 0.1%-0.5%. However, for photoelectric absorption frequency, the PFM absolute mean and maximum errors were 10.8%-22.4% and 29%-50%, compared with corresponding BVM errors of 0.4%-11.3% and 0.5%-17.0%, respectively. Both models were found to exhibit similar sensitivities to image-intensity measurement uncertainties. Of the two models, BVM is the most promising approach for realizing dual-energy CT cross-section measurement.

  14. Toward the AdS/CFT gravity dual for high energy collisions. III.

    Office of Scientific and Technical Information (OSTI)

    Gravitationally collapsing shell and quasiequilibrium (Journal Article) | SciTech Connect III. Gravitationally collapsing shell and quasiequilibrium Citation Details In-Document Search Title: Toward the AdS/CFT gravity dual for high energy collisions. III. Gravitationally collapsing shell and quasiequilibrium The equilibration of matter and onset of hydrodynamics can be understood in the AdS/CFT context as a gravitational collapse process, in which 'collision debris' create a horizon. In

  15. Method for continuously recovering metals using a dual zone chemical reactor

    DOE Patents [OSTI]

    Bronson, Mark C. (Livermore, CA)

    1995-01-01

    A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing.

  16. An Analysis of Dual Zone Loading for Shipping Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Allen, William Christopher; Yim, Man-Sung

    2007-07-01

    The bumps current fuel assembly designs can achieve exceeds the fuel assembly burnups the current fleet of shipping casks can ship. One method of handling this situation which has been proposed is regionalized loading. This concept involves administratively separating the fuel basket of a shipping cask into two or more regions and loading fuel with different burnup, cooling times and enrichments into these regions. To evaluate how regionalized loading patterns might affect shipping spent nuclear fuel in comparison to uniform loading, a test case study was performed using fuel assemblies discharged from an actual nuclear plant and a shipping cask licensed by the NRC. Using the same fuel assemblies and shipping cask, results were obtained assuming a uniform loading pattern and compared to the results obtained assuming a dual zone loading pattern. Source terms for the analysis were generated using SAS2 and the dose levels were calculated using MCNPS. The analysis showed that the dual zone loading reduced the amount of time required to ship the given quantity of fuel by roughly thirty percent compared to the uniform loading. The average dose rate to the transportation workers and the public due to the implementation of dual zone loading increased. Implications of these increases are discussed. (authors)

  17. Method for continuously recovering metals using a dual zone chemical reactor

    DOE Patents [OSTI]

    Bronson, M.C.

    1995-02-14

    A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing. 6 figs.

  18. WE-E-BRE-04: Dual Focal Spot Dose Painting for Precision Preclinical Radiobiological Investigations

    SciTech Connect (OSTI)

    Stewart, J; Lindsay, P; Jaffray, D

    2014-06-15

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mm circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations. Funding Support: this work is supported by funding the National Sciences and Engineering Research Council of Canada, and a Mitacs-accelerate fellowship. Conflict of Interest: Dr. Lindsay and Dr. Jaffray are listed as inventors of the small animal microirradiator described herein. This system has been licensed for commercial development.

  19. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 7.15 · δ18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less

  20. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy

    SciTech Connect (OSTI)

    Qin Zhengbo; Wu Xia; Tang Zichao [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2013-06-15

    A novel dual-channel time-of-flight mass spectrometer (D-TOFMS) has been designed to select anions in the photoelectron imaging measurements. In this instrument, the radiation laser can be triggered precisely to overlap with the selected ion cloud at the first-order space focusing plane. Compared with that of the conventional single channel TOFMS, the in situ mass selection performance of D-TOFMS is significantly improved. Preliminary experiment results are presented for the mass-selected photodetachment spectrum of F{sup -} to demonstrate the capability of the instrument.

  1. Dual initiation strip charge apparatus and methods for making and implementing the same

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Todd,; Steven N. (Rio Rancho, NM); Polisar, Stephen (Albuquerque, NM); Hughs, Chance (Tijeras, NM)

    2011-03-22

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

  2. Process for whole cell saccharification of lignocelluloses to sugars using a dual bioreactor system

    DOE Patents [OSTI]

    Lu, Jue (Okemos, MI); Okeke, Benedict (Montgomery, AL)

    2012-03-27

    The present invention describes a process for saccharification of lignocelluloses to sugars using whole microbial cells, which are enriched from cultures inoculated with paper mill waste water, wood processing waste and soil. A three-member bacterial consortium is selected as a potent microbial inocula and immobilized on inedible plant fibers for biomass saccharification. The present invention further relates the design of a dual bioreactor system, with various biocarriers for enzyme immobilization and repeated use. Sugars are continuously removed eliminating end-product inhibition and consumption by cell.

  3. Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors

    SciTech Connect (OSTI)

    Ahrenkiel, R. K.; Johnston, S. W.; Kuciauskas, D.; Tynan, Jerry

    2014-12-07

    This work addresses the frequent discrepancy between transient photoconductive (PC) decay and transient photoluminescence (PL) decay. With this dual- sensor technique, one measures the transient PC and PL decay simultaneously with the same incident light pulse, removing injection-level uncertainty. Photoconductive decay measures the transient photoconductivity, ??(t). PCD senses carriers released from shallow traps as well as the photo-generated electron-hole pairs. In addition, variations in carrier mobility with injection level (and time) contribute to the decay time. PL decay senses only electron-hole recombination via photon emission. Theory and experiment will show that the time dependence of the two techniques can be quite different at high injection.

  4. Dual-mode self-validating resistance/Johnson noise thermometer system

    DOE Patents [OSTI]

    Shepard, Robert L. (Oak Ridge, TN); Blalock, Theron V. (Knoxville, TN); Roberts, Michael J. (Knoxville, TN)

    1993-01-01

    A dual-mode Johnson noise and DC resistance thermometer capable of use in control systems where prompt indications of temperature changes and long term accuracy are needed. A resistance-inductance-capacitance (RLC) tuned circuit produces a continuous voltage signal for Johnson noise temperature measurement. The RLC circuit provides a mean-squared noise voltage that depends only on the capacitance used and the temperature of the sensor. The sensor has four leads for simultaneous coupling to a noise signal processor and to a DC resistance signal processor.

  5. High strength, low carbon, dual phase steel rods and wires and process for making same

    DOE Patents [OSTI]

    Thomas, Gareth (Berkeley, CA); Nakagawa, Alvin H. (Campbell, CA)

    1986-01-01

    A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

  6. Integration of progressive hedging and dual decomposition in stochastic integer programs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; Ryan, Sarah M.; Woodruff, David L.

    2015-04-07

    We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.

  7. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air

    SciTech Connect (OSTI)

    Zhang, Zhelin; Chen, Yanping Yang, Liu; Yuan, Xiaohui; Liu, Feng; Chen, Min; Xu, Jianqiu; Zhang, Jie; Sheng, Zhengming

    2014-09-08

    Dual-frequency terahertz radiation from air-plasma filaments produced with two-color lasers in air has been demonstrated experimentally. When a focusing lens is tilted for a few degrees, it is shown that the laser filament evolves from a single one to two sub-filaments. Two independent terahertz sources emitted from the sub-filaments with different frequencies and polarizations are identified, where the frequency of terahertz waves from the trailing sub-filament is higher than that from the leading sub-filament.

  8. Efficacy of fixed filtration for rapid kVp-switching dual energy x-ray systems

    SciTech Connect (OSTI)

    Yao, Yuan; Wang, Adam S.; Pelc, Norbert J.; Department of Radiology, Stanford University, Stanford, California 94305; Department of Electrical Engineering, Stanford University, Stanford, California 94305

    2014-03-15

    Purpose: Dose efficiency of dual kVp imaging can be improved if the two beams are filtered to remove photons in the common part of their spectra, thereby increasing spectral separation. While there are a number of advantages to rapid kVp-switching for dual energy, it may not be feasible to have two different filters for the two spectra. Therefore, the authors are interested in whether a fixed added filter can improve the dose efficiency of kVp-switching dual energy x-ray systems. Methods: The authors hypothesized that a K-edge filter would provide the energy selectivity needed to remove overlap of the spectra and hence increase the precision of material separation at constant dose. Preliminary simulations were done using calcium and water basis materials and 80 and 140 kVp x-ray spectra. Precision of the decomposition was evaluated based on the propagation of the Poisson noise through the decomposition function. Considering availability and cost, the authors chose a commercial Gd{sub 2}O{sub 2}S screen as the filter for their experimental validation. Experiments were conducted on a table-top system using a phantom with various thicknesses of acrylic and copper and 70 and 125 kVp x-ray spectra. The authors kept the phantom exposure roughly constant with and without filtration by adjusting the tube current. The filtered and unfiltered raw data of both low and high energy were decomposed into basis material and the variance of the decomposition for each thickness pair was calculated. To evaluate the filtration performance, the authors measured the ratio of material decomposition variance with and without filtration. Results: Simulation results show that the ideal filter material depends on the object composition and thickness, and ranges across the lanthanide series, with higher atomic number filters being preferred for more attenuating objects. Variance reduction increases with filter thickness, and substantial reductions (40%) can be achieved with a 2 loss in intensity. The authors experimental results validate the simulations, yet were overall slightly worse than expectation. For large objects, conventional (non-K-edge) beam hardening filters perform well. Conclusions: This study demonstrates the potential of fixed K-edge filtration to improve the dose efficiency and material decomposition precision for rapid kVp-switching dual energy systems.

  9. Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation

    SciTech Connect (OSTI)

    Cheng, Yu Hua; Subramaniam, Vishnu P.; Gong, Dangguo; Tang, Yuxin; Highfield, James; Pehkonen, Simo O.; Pichat, Pierre; Chen, Zhong

    2012-12-15

    A dual-phase material (DP-160) comprising hydrated titanate (H{sub 2}Ti{sub 3}O{sub 7}{center_dot}xH{sub 2}O) and anatase (TiO{sub 2}) was synthesized in a low-temperature one-pot process in the presence of triethylamine (TEA) as the N-source. The unique structure exhibits strong visible light absorption. The chromophore is linked to Ti-N bonds derived from both surface sensitization and sub-surface (bulk) doping. From transmission electron microscope (TEM) and textural studies by N{sub 2} physisorption, the composite exists as mesoporous particles with a grain size of {approx}20 nm and mean pore diameter of 3.5 nm, responsible for the high surface area ({approx}180 m{sup 2}/g). DP-160 demonstrated photocatalytic activity in the degradation of phenol under visible light ({lambda}>420 nm). The activity of the composite was further enhanced by a small addition (0.001 M) of H{sub 2}O{sub 2}, which also gave rise to some visible light activity in the control samples. This effect is believed to be associated with the surface peroxo-titanate complex. GC-MS analyses showed that the intermediate products of phenol degradation induced by visible light irradiation of DP-160 did not differ from those obtained by UV (band-gap) irradiation of TiO{sub 2}. The overall performance of the composite is attributed to efficient excitation via inter-band states (due to N-doping), surface sensitization, improved adsorptive properties of aromatic compounds due to the N-carbonaceous overlayer, and the presence of heterojunctions that are known to promote directional charge transfer in other mixed-phase titanias like Degussa P25. - graphical abstract: Nitrogen-sensitized dual phase titanate/titania photocatalyst showing extended visible light absorption and efficient photocatalytic degradation of phenol. Highlights: Black-Right-Pointing-Pointer Low temperature one-pot synthesis of visible light active dual phase photocatalyst. Black-Right-Pointing-Pointer The dual phase consists of nanoscale titanate and anatase titania phases. Black-Right-Pointing-Pointer The photocatalyst displays high activity in degrading phenol under visible light. Black-Right-Pointing-Pointer Mechanisms for the sensitization to visible light are considered.

  10. NREL, CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell

    SciTech Connect (OSTI)

    2016-01-01

    Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. National Renewable Energy Laboratory (NREL) and Swiss Center for Electronics and Microtechnology (CSEM) scientists have collaborated to create a novel tandem solar cell that operates at 29.8% conversion efficiency under non-concentrator (1-sun) conditions. In comparison, the 1-sun efficiency of a silicon (Si) single-junction solar cell is probably still a few years away from converging on its practical limit of about 26%.

  11. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    DOE Patents [OSTI]

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  12. An advanced economizer controller for dual-duct air-handling systems -- with a case application

    SciTech Connect (OSTI)

    Liu, M.; Claridge, D.E.; Park, B.Y.

    1997-12-31

    A heating penalty is expected when economizers are applied to dual-duct air-handling systems. The heating penalty can be even higher than the cooling savings when the hot airflow is higher than the cold airflow. To avoid the excessive heating penalty, advanced economizers are developed in this paper. The application of the advanced economizer has resulted in savings of $7,000/yr in one 95,000-ft{sup 2} (8,800-m{sup 2}) school building since 1993. The impacts of cold and hot deck settings on the energy consumption are also discussed.

  13. Toward the AdS/CFT gravity dual for high energy collisions. II. The stress

    Office of Scientific and Technical Information (OSTI)

    tensor on the boundary (Journal Article) | SciTech Connect II. The stress tensor on the boundary Citation Details In-Document Search Title: Toward the AdS/CFT gravity dual for high energy collisions. II. The stress tensor on the boundary In this second paper of the series, we calculate the stress tensor of excited matter, created by debris of high energy collisions at the boundary. The falling open strings, connected to receding charges, produce a nonzero stress tensor which we found

  14. Final Technical Report - Integrated Hydrogeophysical and Hydrogeologic Driven Parameter Upscaling for Dual-Domain Transport Modeling

    SciTech Connect (OSTI)

    Shafer, John M

    2012-11-05

    The three major components of this research were: 1. Application of minimally invasive, cost effective hydrogeophysical techniques (surface and borehole), to generate fine scale (~1m or less) 3D estimates of subsurface heterogeneity. Heterogeneity is defined as spatial variability in hydraulic conductivity and/or hydrolithologic zones. 2. Integration of the fine scale characterization of hydrogeologic parameters with the hydrogeologic facies to upscale the finer scale assessment of heterogeneity to field scale. 3. Determination of the relationship between dual-domain parameters and practical characterization data.

  15. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect (OSTI)

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  16. Plasma characteristics of single- and dual-electrode ion source systems utilized in low-energy ion extraction

    SciTech Connect (OSTI)

    Vasquez, M. R.; Tokumura, S.; Kasuya, T.; Wada, M.

    2014-02-15

    Discharge characteristics in the upstream as well as in the downstream regions of a 50-eV positive ion beam were measured along the beam axis. Single- and dual-electrode configurations made of 0.1-mm diameter tungsten wires were tested. By varying the upstream discharge parameters, the shape of the sheath edge around the extractors, which can either be planar or cylindrical, can be controlled. The sheath eventually affected the simultaneous extraction of ions and neutralizing electrons. The dual-electrode configuration at the lower discharge current, revealed a homogeneous discharge downstream. At this condition, the edge of the sheath can be inferred to be planar which allowed the uniform extraction and propagation of low-energy ions at longer distances. The dual-electrode configuration was capable of transmitting low-energy ions up to 70 mm downstream.

  17. Spectroscopy diagnostic of dual-frequency capacitively coupled CHF{sub 3}/Ar plasma

    SciTech Connect (OSTI)

    Liu, Wen-Yao; Du, Yong-Quan [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China); Liu, Yong-Xin; Liu, Jia; Zhao, Tian-Liang; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Xu, Yong; Li, Xiao-Song; Zhu, Ai-Min [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China) [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-11-15

    A combined spectroscopic method of absorption, actinometry, and relative optical emission intensity is employed to determine the absolute CF{sub 2} density, the relative F and H densities, H atom excitation temperature and the electron density in dual-frequency (60/2 MHz) capacitively coupled CHF{sub 3}/Ar plasmas. The effects of different control parameters, such as high-frequency (HF) power, low-frequency (LF) power, gas pressure, gap length and content of CHF{sub 3}, on the concentration of radical CF{sub 2}, F, and H and excitation temperature are discussed, respectively. It is found that the concentration of CF{sub 2} is strongly dependent on the HF power, operating pressure and the proportion of CHF{sub 3} in feed gas, while it is almost independent of the LF power and the gap length. A higher concentration ratio of F to CF{sub 2} could be obtained in dual-frequency discharge case. Finally, the generation and decay mechanisms of CF{sub 2} and F were also discussed.

  18. Turbine-scale wind field measurements using dual-Doppler lidar

    SciTech Connect (OSTI)

    Newsom, Rob K.; Berg, Larry K.; Shaw, William J.; Fischer, Marc

    2015-02-01

    Spatially resolved measurements of micro-scale winds are retrieved using scanning dual-Doppler lidar, and validated against independent in situ wind measurements. Data for this study were obtained during a month-long field campaign conducted at a site in north-central Oklahoma in November of 2010. Observational platforms include one heavily instrumented 60-m meteorological tower and two scanning coherent Doppler lidars. The lidars were configured to perform coordinated dual-Doppler scans surrounding the 60-m tower, and the resulting radial velocity observations were processed to retrieve the 3-component velocity vector field on surfaces defined by the intersecting scan planes. Raw radial velocity measurements from the lidars were calibrated by direct comparison to a sonic anemometer located at the 60 m level on the tower. Wind retrievals were performed using both calibrated and uncalibrated measurements, and validated against the 60-m sonic anemometer observations. Retrievals using uncalibrated radial velocity data show a significant slow bias in the wind speed of about 14%; whereas the retrievals using the calibrated data show a much smaller slow bias of 1.2%. Retrievals using either the calibrated or uncalibrated data exhibit negligible bias in the wind direction (<0.2o), and excellent correlation in the wind speeds (>0.96).

  19. Welding Induced Alignment Distortion in Dual-in-Line LD Packages

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Shi, Frank G.

    2007-11-11

    The tolerance for the movement of a single mode fiber relative to the laser is extremely tight, a submicron movement can often lead to a significant misalignment and thus the reduction in the power coupled into the fiber. Among various fiber pigtailing assembly technologies, pulsed laser welding is the method with submicron accuracy and is most conducive to automation. However, the melting-solidification process during laser welding can often distort the pre-achieved fiber-optic alignment. This Welding-Induced-Alignment-Distortion (WIAD) is a serious concern and significantly affects the yield for single mode fiber pigtailing to a semiconductor laser. In this paper, effect of laser welding sequence on WIAD in a dual-in-line packager is numerically investigated by means of Finite Element Method (FEM). Optimal welding sequence may minimize WIAD in dual-in-line package. Additionally, unsymmetrical space between fiber and U-channel induced by laser welding of U-channelto-plate in DIP LD packages is found to have obvious effect on WIAD.

  20. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    SciTech Connect (OSTI)

    Yang, Lei, E-mail: nanoyang@qq.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082 (China); Dong, Jiazhang; Jiang, Zhongcheng [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Pan, Anlian; Zhuang, Xiujuan [Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China)

    2014-06-14

    We report a strategy to investigate O vacancy (V{sub O}) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y{sub 2}O{sub 3}:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of V{sub O}(0/+). In the following cross relaxation, energy transfer from V{sub O} to the excitation energy level of Tb{sup 3+} in ZnO:Tb core area. While in Y{sub 2}O{sub 3}:Eu shell area, energy transfer to the excitation energy level of Eu{sup 3+}. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu{sup 3+} or Tb{sup 3+} in the range of 0.010.05, chromaticity coordinates of ZnO:Tb/Y{sub 2}O{sub 3}:Eu nanocable stably stays at yellow region in color space except ZnO:Tb{sub 0.01}/Y{sub 2}O{sub 3}:Eu{sub 0.01}. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  1. Dual-completion design for HP/HT corrosive oil well, Villafortuna-Trecate Italy

    SciTech Connect (OSTI)

    Cerruti, S.E.

    1994-12-31

    Villafortuna-Trecate (Italy) oil field is one of the deepest hydrocarbon deposit in production with a reservoir pressure over 15 Ksi, bottom hole temperature in the range of 380 F and corrosive environment due the presence of carbon dioxide and hydrogen sulfide in the production fluids. The design of Villafortuna-Trecate completions requested effort in the selection of appropriate equipment and materials that would enhance the safety, longevity and production capacity of the wells. The paper will discuss the dual completion design outlining the supporting logic and concepts together with the equipment innovations utilized. It includes discussion on tubing material and design, tubing connection, wellhead equipment, completion schemes and related equipment, annulus fluid and displacement technique. Quality control aspects are also discussed. It should serve as a general example of conditions unique to deep, high pressure, high temperature corrosive wells and should be of interest to engineers facing a similar task.

  2. Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system

    DOE Patents [OSTI]

    Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.

    1994-03-29

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.

  3. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yuping; Li, Tongtong; Chen, Qi; Zhang, Huiyun; O’Hara, John F.; Abele, Ethan; Taylor, Antoinette J.; Chen, Hou-Tong; Azad, Abul K.

    2015-12-22

    We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We also employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. Thus, it enables a promising way to design electrically tunable absorbers, which maymore » contribute toward the realization of frequency selective detectors for sensing applications.« less

  4. Quasi-phase-matching of the dual-band nonlinear left-handed metamaterial

    SciTech Connect (OSTI)

    Liu, Yahong Song, Kun; Gu, Shuai; Liu, Zhaojun; Guo, Lei; Zhao, Xiaopeng; Zhou, Xin

    2014-11-17

    We demonstrate a type of nonlinear meta-atom creating a dual-band nonlinear left-handed metamaterial (DNLHM). The DNLHM operates at two distinct left-handed frequency bands where there is an interval of one octave between the two center frequencies. Under the illumination of a high-power signal at the first left-handed frequency band corresponding to fundamental frequency (FF), second-harmonic generation (SHG) is observed at the second left-handed band. This means that our DNLHM supports backward-propagating waves both at FF and second-harmonic (SH) frequency. We also experimentally demonstrate quasi-phase-matching configurations for the backward SHG. This fancy parametric process can significantly transmits the SH generated by an incident FF wave.

  5. High-throughput, dual probe biological assays based on single molecule detection

    DOE Patents [OSTI]

    Hollars, Christopher W. (Brentwood, CA); Huser, Thomas R. (Livermore, CA); Lane, Stephen M. (Oakland, CA); Balhorn, Rodney L. (Livermore, CA); Bakajin, Olgica (San Leandro, CA); Darrow, Christopher (Pleasanton, CA); Satcher, Jr., Joe H. (Patterson, CA)

    2006-07-11

    A method and apparatus with the sensitivity to detect and identify single target molecules through the localization of dual, fluorescently labeled probe molecules. This can be accomplished through specific attachment of the taget to a surface or in a two-dimensional (2D) flowing fluid sheet having approximate dimensions of 0.5 .mu.m.times.100 .mu.m.times.100 .mu.m. A device using these methods would have 10.sup.3 10.sup.4 greater throughput than previous one-dimensional (1D) micro-stream devices having 1 .mu.m.sup.3 interrogation volumes and would for the first time allow immuno- and DNA assays at ultra-low (femtomolar) concentrations to be performed in short time periods (.about.10 minutes). The use of novel labels (such as metal or semiconductor nanoparticles) may be incorporated to further extend the sensitivity possibly into the attomolar range.

  6. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOE Patents [OSTI]

    Thomas, Gareth (Berkeley, CA); Ahn, Jae-Hwan (Albany, CA); Kim, Nack-Joon (Laramie, WY)

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  7. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  8. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOE Patents [OSTI]

    Thomas, G.; Ahn, J.H.; Kim, N.J.

    1986-10-28

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.

  9. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    SciTech Connect (OSTI)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at ?g/ ?Hz and ?rad/s/ ?Hz levels, making this a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.

  10. Self-latching eccentric cam for dual stroke compressor or pump

    DOE Patents [OSTI]

    Sisk, Francis J. (San Mateo, CA)

    1985-01-01

    For a dual capacity refrigerant compressor of the type which has an eccentric cam rotatable on a crankpin between two opposite positions which changes the total eccentricity of the crankpin and cam so as to obtain two different stroke lengths, the rotation of the cam on the crankpin being effected by a reversal of motor operation, the cam moves through an angle of about 270.degree. around the crankpin so that a centrifugal force torque tending to hold the cam in place is available at least in the reduced stroke length position of the cam, and by providing lightening cavities and eccentric weightings, the center of mass 74 of the cam can be shifted to obtain the centrifugal torque in the proper direction at both the maximum and reduced stroke positions.

  11. Effects of gas pressure on 60/13.56 MHz dual-frequency capacitively coupled plasmas

    SciTech Connect (OSTI)

    Yuan, Q. H.; Yin, G. Q. [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Xin, Y.; Ning, Z. Y. [School of Physical Science and Technology, Suzhou University, SuZhou 215006 (China)

    2011-05-15

    The electron energy probability functions (EEPFs) were measured with increasing gas pressure in 60/13.56 MHz dual-frequency capacitively coupled plasma (DF-CCP) using compensated Langmiur electrostatic probe. The transition pressure of heating mode from collisionless to collisional heating in 60/13.56 MHz DF-CCP is found to be significantly lower than that in 13.56 MHz single-frequency CCP. As the pressure increases, the EEPFs change from bi-Maxwellian to Druyvesteyn type which is similar with that in 60 MHz single-frequency CCP. The pressure dependence of electron densities, effective electron temperatures, floating potentials, and plasma potentials in 60/13.56 MHz DF-CCP were measured and were compared with that in 60 MHz single-frequency CCP. The pressure dependence of these plasma parameters in 60/13.56 MHz DF-CCP is similar with that in 60 MHz single-frequency CCP.

  12. Self-latching eccentric cam for dual stroke compressor or pump

    DOE Patents [OSTI]

    Sisk, F.J.

    1985-01-22

    For a dual capacity refrigerant compressor of the type which has an eccentric cam rotatable on a crankpin between two opposite positions which changes the total eccentricity of the crankpin and cam so as to obtain two different stroke lengths, the rotation of the cam on the crankpin being effected by a reversal of motor operation, the cam moves through an angle of about 270[degree] around the crankpin so that a centrifugal force torque tending to hold the cam in place is available at least in the reduced stroke length position of the cam, and by providing lightening cavities and eccentric weightings, the center of mass of the cam can be shifted to obtain the centrifugal torque in the proper direction at both the maximum and reduced stroke positions. 7 figs.

  13. Enhanced transportation of energetic electrons in dual-frequency atmospheric microplasmas

    SciTech Connect (OSTI)

    Kwon, H. C.; Kim, H. Y.; Won, I. H.; Lee, H. Wk.; Shin, H. K.; Lee, J. K.

    2013-02-15

    A comparative study of electron kinetics between single-frequency (SF) microplasmas and their equivalent dual-frequency (DF) microplasmas with matching effective frequencies in atmospheric-pressure helium discharges was performed using particle-in-cell simulation with a Monte Carlo collision. The effective-frequency concept helps in analyzing DF microplasmas in a fashion similar to SF microplasmas with effective parameters. In this study, the plasma characteristics such as the plasma potential, density, and electron energy probability functions of the SF microplasma and its DF counterpart were almost the same. However, the oscillating sheath edge was pushed further into the electrode for a substantial fraction of the time and the sheath width decreased in DF microplasmas. As a result, the transportation of the energetic electrons ({epsilon} > 4 eV) usable for tailoring the surface chemistry in atmospheric microplasmas is enhanced in DF microplasmas as compared to SF microplasmas.

  14. Dual axis translation apparatus and system for translating an optical beam and related method

    DOE Patents [OSTI]

    Cassidy, Kelly (Manteca, CA)

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  15. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, A.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.; Zhong, Z.

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  16. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    SciTech Connect (OSTI)

    Li Rutao Zuo Xiurong Hu Yueyue Wang Zhenwei Hu, Dingxu

    2011-08-15

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: {yields}The pipe with ferrite/martensite microstructure shows high deformability. {yields}The base metal of the pipe consists of ferrite and martensite. {yields}Heat affected zone shows excellent low temperature toughness. {yields}Weld metal mainly consists of intragranularly nucleated acicular ferrites. {yields}Weld metal shows excellent low temperature toughness and high strength.

  17. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    SciTech Connect (OSTI)

    Havrilla, George J.; Gao, Ning

    2002-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  18. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    SciTech Connect (OSTI)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  19. Proposal of a gigawatt-class L/Ku dual-band magnetically insulated transmission line oscillator

    SciTech Connect (OSTI)

    Ju, J.-C. Fan, Y.-W.; Shu, T.; Zhong, H.-H.

    2014-10-15

    We present a gigawatt (GW)-class magnetically insulated transmission line oscillator (MILO) which is capable of generating dual-band high power microwaves (HPMs). The proposed device, deriving from previously studied complex MILO and dual-frequency MILO, is designed to produce two HPMs in L-band and Ku-band, respectively. It is found in particle-in-cell (PIC) simulation that when the diode voltage is 610?kV, HPMs with frequencies of 1.72 GHz and 14.6?GHz can be achieved with powers of 3.3?GW and 2.4?GW, respectively. The corresponding total power conversion efficiency is approximately 12.8%. Power difference of the two generated HPMs is approximately 1.4?dB, and frequency difference of them reaches a level as high as ?10?dB.

  20. Safety of natural gas dual-fueled vehicles: Addendum to safety analysis of natural gas vehicles transiting highway tunnels

    SciTech Connect (OSTI)

    Shaaban, S.H.; Zalak, V.M. )

    1991-01-01

    A safety analysis was performed to assess the relative hazard of vehicles containing both compressed natural gas (CNG) and gasoline, referred to as dual-fueled vehicles, compared to the hazard of a dedicated CNG vehicle. This study expands upon previous work that examined the safety of CNG vehicles transiting highway tunnels. The approach was to examine operational data, test results and to perform thermal analyses to determine if there are any synergistic effects where the total consequences of fuel release might be greater than the sum of the two fuels released separately. This study concluded that a dual-fueled vehicle poses a slightly greater risk than a dedicated CNG vehicle; however, this marginal increase in risk is small and is within the bounds of risk posed by gasoline-powered vehicles. 4 refs.

  1. An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement

    SciTech Connect (OSTI)

    Wang, Pitao; Wang, Huaxiang; Sun, Benyuan; Cui, Ziqiang; Huang, Wenrui

    2014-04-11

    This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative data and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.

  2. Effect of Dual-Function Nano-Structured Silicon Oxide Thin Film on Multi-Junction Solar Cells

    SciTech Connect (OSTI)

    Yan, B.; Sivec, L.; Yue, G.; Jiang, C. S.; Yang, J.; Guha, S.

    2011-01-01

    We present our recent study of using nano-structured hydrogenated silicon oxide films (nc-SiO{sub x}:H) as a dual-function layer in multi-junction solar cells. The nc-SiO{sub x}:H films were deposited using very high frequency glow discharge of a SiH{sub 4} (or Si{sub 2}H{sub 6}), CO{sub 2}, PH{sub 3}, and H{sub 2} gas mixture. By optimizing deposition parameters, we obtained 'dual function' nc-SiO{sub x}:H material characterized by a conductivity suitable for use as an n layer and optical properties suitable for use as an inter-reflection layer. We tested the nc-SiO{sub x}:H by replacing the normal n-type material in the tunnel junction of a multi-junction structure. The advantage of the dual-function nc-SiO{sub x}:H layer is twofold; one is to simplify the cell structure, and the other is to reduce any optical loss associated with the inter-reflection layer. Quantum efficiency measurements show the gain in top cell current is equal to or greater than the loss in bottom cell current for a-Si:H/nc-Si:H structures. In addition, a thinner a-Si:H top cell with the nc-SiO{sub x}:H n layer improves the top-cell stability, thereby providing higher stabilized solar cell efficiency. We also used the dual-function layer between the middle and the bottom cells in a-Si:H/a-SiGe:H/nc-Si:H triple-junction structures. The gain in the middle cell current is {approx}1.0 mA/cm{sup 2}, leading to an initial active-area efficiency of 14.8%.

  3. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    SciTech Connect (OSTI)

    1995-08-01

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

  4. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOE Patents [OSTI]

    Kieper, Douglas Arthur (Newport News, VA); Majewski, Stanislaw (Yorktown, VA); Welch, Benjamin L. (Hampton, VA)

    2008-10-28

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  5. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    DOE Patents [OSTI]

    Majewski, Stanislaw (Morgantown, VA); Umeno, Marc M. (Woodinville, WA)

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  6. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    SciTech Connect (OSTI)

    Kennel, N.D.; Maher, A.; Buckallew, B.

    1994-12-31

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute.

  7. Particle formation and its control in dual frequency plasma etching reactors

    SciTech Connect (OSTI)

    Kim, Munsu; Cheong, Hee-Woon; Whang, Ki-Woong

    2015-07-15

    The behavior of a particle cloud in plasma etching reactors at the moment when radio frequency (RF) power changes, that is, turning off and transition steps, was observed using the laser-light-scattering method. Two types of reactors, dual-frequency capacitively coupled plasma (CCP) and the hybrid CCP/inductively coupled plasma (ICP), were set up for experiments. In the hybrid CCP/ICP reactor (hereafter ICP reactor), the position and shape of the cloud were strongly dependent on the RF frequency. The particle cloud becomes larger and approaches the electrode as the RF frequency increases. By turning the lower frequency power off later with a small delay time, the particle cloud is made to move away from the electrode. Maintaining lower frequency RF power only was also helpful to reduce the particle cloud size during this transition step. In the ICP reactor, a sufficient bias power is necessary to make a particle trap appear. A similar particle cloud to that in the CCP reactor was observed around the sheath region of the lower electrode. The authors can also use the low-frequency effect to move the particle cloud away from the substrate holder if two or more bias powers are applied to the substrate holder. The dependence of the particle behavior on the RF frequencies suggests that choosing the proper frequency at the right moment during RF power changes can reduce particle contamination effectively.

  8. Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar

    SciTech Connect (OSTI)

    Newsom, Rob K.; Calhoun, Ron; Ligon, David; Allwine, K Jerry

    2008-04-01

    Dual-Doppler lidar observations are used to investigate the structure and evolution of surface layer flow over a suburban area. The observations were made during the Joint Urban 2003 (JU2003) field experiment in Oklahoma City in the summer of 2003. This study focuses specifically on a 10-hour sequence of scan data beginning shortly after noon local time on July 7, 2003. During this period two coherent Doppler lidars performed overlapping low elevation angle sector scans upwind and south of Oklahoma Citys central business district (CBD). Radial velocity data from the two lidars are processed to reveal the structure and evolution of the horizontal velocity field in the surface layer throughout the afternoon and evening transition periods. The retrieved velocity fields clearly show a tendency for turbulence structures to be elongated in the direction of the mean flow throughout the entire 10-hour study period. As the stratification changed from unstable to weakly stable the turbulence structures became increasingly more linearly organized, and the cross-stream separation between high- and low-speed regoins decreased. The spatially resolved velocity fields are used to estimate streamwise and cross-stream turbulence length scales as functions of stability.

  9. Operational experience and evaluation of a dual-element stretched-membrane heliostat

    SciTech Connect (OSTI)

    Strachan, J.W.; Van Der Geest, J.

    1994-01-01

    A dual-element, stretched-membrane central receiver heliostat was designed and manufactured in 1989, by a private US company engaged in the development of commercial central receiver solar technology. The two-module collector, with a collection area of 97.5 m{sup 2}, extends stretched-membrane mirror technology on several fronts with face-down stow capability and a digital controller that integrates tracking and focusing control on a single programmable control board. The solar collector was installed at Sandia`s National Solar Thermal Test Facility in Albuquerque, New Mexico and evaluated over a three-and-a-half year period which ended in September 1993. The measured performance and the operational and maintenance characteristics of this commercial prototype are the subject of this report. The results of beam quality measurements, tracking repeatability tests, measurements of beam movement in elevated winds, performance tests of the focusing system, and all-day beam quality and tracking tests are presented, and the authors offer a detailed discussion of the knowledge gained through operation and maintenance and of the improvements made or suggested to the heliostat`s design.

  10. Scaling studies with the dual crystal spectrometer at the OMEGA-EP laser facility

    SciTech Connect (OSTI)

    Szabo, C. I.; Feldman, U.; Workman, J.; Flippo, K.; Seely, J. F.; Hudson, L. T.; Henins, A.

    2010-10-15

    The dual crystal spectrometer (DCS) is an approved diagnostic at the OMEGA and the OMEGA-EP laser facilities for the measurement of high energy x-rays in the 11-90 keV energy range, e.g., for verification of the x-ray spectrum of backlighter targets of point projection radiography experiments. DCS has two cylindrically bent transmission crystal channels with image plate detectors at distances behind the crystals close to the size of the respective Rowland circle diameters taking advantage of the focusing effect of the cylindrically bent geometry. DCS, with a source to crystal distance of 1.2 m, provides the required energy dispersion for simultaneous detection of x-rays in a low energy channel (11-45 keV) and a high-energy channel (19-90 keV). A scaling study is described for varied pulse length with unchanged laser conditions (energy, focusing). The study shows that the K{alpha} line intensity is not strongly dependent on the length of the laser pulse.

  11. A lightweight high performance dual-axis gimbal for space applications

    SciTech Connect (OSTI)

    Pines, D.J.; Hakala, D.B.; Malueg, R.

    1995-05-05

    This paper describes the design, development and performance of a lightweight precision gimbal with dual-axis slew capability to be used in a closed-loop optical tracking system at Lawrence Livermore National Laboratory-LLNL. The motivation for the development of this gimbal originates from the need to acquire and accurately localize warm objects (T{approximately}500 K) in a cluttered background. The design of the gimbal is centered around meeting the following performance requirements: pointing accuracy with control < 35 {mu}rad-(1-{omega}); slew capability > 0.2 rad/sec; mechanical weight < 5 kg. These performance requirements are derived by attempting to track a single target from multiple satellites in low Earth orbit using a mid-wave infrared camera. Key components in the gimbal hardware that are essential to meeting the performance objectives include a nickel plated beryllium mirro, an accurate lightweight capacitive pickoff device for angular measurement about the elevation axis, a 16-bit coarse/fine resolver for angular measurement about the azimuth axis, a toroidally wound motor with low hysteresis for providing torque about the azimuth axis, and the selection of beryllium parts to insure high stiffness to weight ratios and more efficient thermal conductivity. Each of these elements are discussed in detail to illustrate the design trades performed to meet the tracking and slewing requirements demanded. Preliminary experimental results are also given for various commanded tracking maneuvers.

  12. Field emission spectroscopy evidence for dual-barrier electron tunnelling in nanographite

    SciTech Connect (OSTI)

    Bandurin, D. A.; Kleshch, V. I.; Mingels, S.; Ltzenkirchen-Hecht, D.; Mller, G.; Obraztsov, A. N.

    2015-06-08

    Nanocarbon films with upstanding flake-like graphite crystallites of nanometre thickness were fabricated by carbon condensation from a methanehydrogen gas mixture activated by a direct-current discharge. The nanographite (NG) crystallites are composed of a few graphene layers. The adjacent atomic layers are connected partially at the edges of the crystallites to form strongly curved graphene structures. The extraordinary field emission (FE) properties were revealed for the NG films with an average current density of a few mA/cm{sup 2}, reproducibly obtained at a macroscopic applied field of about 1?V/?m. The integral FE currentvoltage curves and electron spectra (FEES) of NG cathodes with multiple emitters were measured in a triode configuration. Most remarkably, above a threshold field, two peaks were revealed in FEES with different field-dependent shifts to lower energies. This behaviour evidences electron emission through a dual potential barrier, corresponding to carboncarbon heterostructure formed as a result of the graphene bending.

  13. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-30

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP)more » chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.« less

  14. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOE Patents [OSTI]

    Kieper, Douglas Arthur (Seattle, WA); Majewski, Stanislaw (Morgantown, WV); Welch, Benjamin L. (Hampton, VA)

    2012-07-03

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  15. System-independent characterization of materials using dual-energy computed tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Azevedo, Stephen G.; Martz, Jr., Harry E.; Aufderheide, III, Maurice B.; Brown, William D.; Champley, Kyle M.; Kallman, Jeffrey S.; Roberson, G. Patrick; Schneberk, Daniel; Seetho, Isaac M.; Smith, Jerel A.

    2016-02-01

    In this study, we present a new decomposition approach for dual-energy computed tomography (DECT) called SIRZ that provides precise and accurate material description, independent of the scanner, over diagnostic energy ranges (30 to 200 keV). System independence is achieved by explicitly including a scanner-specific spectral description in the decomposition method, and a new X-ray-relevant feature space. The feature space consists of electron density, ρe, and a new effective atomic number, Ze, which is based on published X-ray cross sections. Reference materials are used in conjunction with the system spectral response so that additional beam-hardening correction is not necessary. The techniquemore » is tested against other methods on DECT data of known specimens scanned by diverse spectra and systems. Uncertainties in accuracy and precision are less than 3% and 2% respectively for the (ρe, Ze) results compared to prior methods that are inaccurate and imprecise (over 9%).« less

  16. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    SciTech Connect (OSTI)

    Barnard, Casey; Griffin, Benjamin

    2015-09-01

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 ?Pa at 100 Hz and 120 ?Pa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.

  17. Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy

    SciTech Connect (OSTI)

    Deshpande, Shrikant; McNamara, Aimee L.; Holloway, Lois; Metcalfe, Peter; Vial, Philip

    2015-04-15

    Purpose: To test the feasibility of a dual detector concept for comprehensive verification of external beam radiotherapy. Specifically, the authors test the hypothesis that a portal imaging device coupled to a 2D dosimeter provides a system capable of simultaneous imaging and dose verification, and that the presence of each device does not significantly detract from the performance of the other. Methods: The dual detector configuration comprised of a standard radiotherapy electronic portal imaging device (EPID) positioned directly on top of an ionization-chamber array (ICA) with 2 cm solid water buildup material (between EPID and ICA) and 5 cm solid backscatter material. The dose response characteristics of the ICA and the imaging performance of the EPID in the dual detector configuration were compared to the performance in their respective reference clinical configurations. The reference clinical configurations were 6 cm solid water buildup material, an ICA, and 5 cm solid water backscatter material as the reference dosimetry configuration, and an EPID with no additional buildup or solid backscatter material as the reference imaging configuration. The dose response of the ICA was evaluated by measuring the detectors response with respect to off-axis position, field size, and transit object thickness. Clinical dosimetry performance was evaluated by measuring a range of clinical intensity-modulated radiation therapy (IMRT) beams in transit and nontransit geometries. The imaging performance of the EPID was evaluated quantitatively by measuring the contrast-to-noise ratio (CNR) and spatial resolution. Images of an anthropomorphic phantom were also used for qualitative assessment. Results: The measured off-axis and field size response with the ICA in both transit and nontransit geometries for both dual detector configuration and reference dosimetry configuration agreed to within 1%. Transit dose response as a function of object thickness agreed to within 0.5%. All IMRT test patterns and clinical IMRT beams had gamma pass rates of ?98% at 2%/2 mm criteria. In terms of imaging performance, the measured CNR and spatial resolution (f{sub 50}) were 263.23 24.85 and 0.4025 1.25 10{sup ?3} for dual detector configuration and 324 26.65 and 0.4141 1.14 10{sup ?3} for reference imaging configuration, respectively. The CNR and spatial resolution were quantitatively worse in the dual detector configuration due to the additional backscatter. The difference in imaging performance was not visible in qualitative assessment of phantom images. Conclusions: Combining a commercially available ICA dosimetry device with a conventional EPID did not significantly detract from the performance of either device. Further improvements in imaging performance may be achieved with an optimized design. This study demonstrates the feasibility of a dual detector concept for simultaneous imaging and dosimetry in radiation therapy.

  18. Inspection of the Department`s export licensing process for dual-use and munitions commodities

    SciTech Connect (OSTI)

    Not Available

    1993-08-10

    The purpose of our inspection was to review the Department of Energy`s (Energy) export licensing process for dual-use and military (munitions) commodities subject to nuclear nonproliferation controls. Specifically, we reviewed Energy`s authorities, procedures, and policies pertaining to the export licensing process and examined procedures for safeguarding data transmitted between Energy and other agencies involved in the export licensing process. We also reviewed Energy`s role as a member of the Subgroup on Nuclear Export Coordination. Our review of the sample of 60 export cases did not find evidence to lead us to believe that Energy`s recommendations for these cases were inappropriate or incorrect. We identified, however, problems regarding management systems associated with the export license review process. We found that without documentation supporting export licensing decisions by the Export Control Operations Division (ECOD), we could not determine whether ECOD analysts considered all required criteria in their review of export cases referred to Energy. For example, we found that the ECOD did not retain records documenting the bases for its advice, recommendations, or decisions regarding its reviews of export license cases or revisions to lists of controlled commodities and, therefore, was not in compliance with certain provisions of the Export Administration Act, as amended, and Energy records management directives. Additionally, we found that the degree of compliance by Energy with the export licensing review criteria contained in the Export Administration Regulations and the Nuclear Non-Proliferation Act of 1978 could not be determined because ECOD did not retain records documenting the bases for its advice and recommendations on export cases.

  19. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect (OSTI)

    Lawal, Adeniyi

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a â??demonstrationâ?? size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  20. TU-F-18A-02: Iterative Image-Domain Decomposition for Dual-Energy CT

    SciTech Connect (OSTI)

    Niu, T; Dong, X; Petrongolo, M; Zhu, L

    2014-06-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. The proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability. This work is supported by a Varian MRA grant.

  1. COMPARISON OF EXPERIMENTAL RESULTS TO CFD MODELS FOR BLENDING IN A TANK USING DUAL OPPOSING JETS

    SciTech Connect (OSTI)

    Leishear, R.

    2011-08-07

    Research has been completed in a pilot scale, eight foot diameter tank to investigate blending, using a pump with dual opposing jets. The jets re-circulate fluids in the tank to promote blending when fluids are added to the tank. Different jet diameters and different horizontal and vertical orientations of the jets were investigated. In all, eighty five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of several miles of two inch diameter, serpentine, vertical cooling coils below the liquid surface for a full scale, 1.3 million gallon, liquid radioactive waste storage tank. Two types of tests were performed. One type of test used a tracer fluid, which was homogeneously blended into solution. Data were statistically evaluated to determine blending times for solutions of different density and viscosity, and the blending times were successfully compared to computational fluid dynamics (CFD) models. The other type of test blended solutions of different viscosity. For example, in one test a half tank of water was added to a half tank of a more viscous, concentrated salt solution. In this case, the fluid mechanics of the blending process was noted to significantly change due to stratification of fluids. CFD models for stratification were not investigated. This paper is the fourth in a series of papers resulting from this research (Leishear, et.al. [1- 4]), and this paper documents final test results, statistical analysis of the data, a comparison of experimental results to CFD models, and scale-up of the results to a full scale tank.

  2. MONICA: a compact, portable dual gamma camera system for mouse whole-body imaging

    SciTech Connect (OSTI)

    Choyke, Peter L.; Xia, Wenze; Seidel, Jurgen; Kakareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.

    2010-04-01

    Introduction We describe a compact, portable dual-gamma camera system (named "MONICA" for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed ?looking up? through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV?10%, yielded the following results: spatial resolution (FWHM at 1 cm), 2.2 mm; sensitivity, 149 cps (counts per seconds)/MBq (5.5 cps/μCi); energy resolution (FWHM, full width at half maximum), 10.8%; count rate linearity (count rate vs. activity), r2=0.99 for 0?185 MBq (0?5 mCi) in the field of view (FOV); spatial uniformity, <3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-min images acquired throughout the 168-h study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g., limited imaging space, portability and, potentially, cost are important.

  3. Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas

    SciTech Connect (OSTI)

    Liu Yongxin; Zhang Quanzhi; Liu Jia; Song Yuanhong; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bogaerts, Annemie [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)

    2012-09-10

    The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen and argon has been studied by different experimental methods. In comparison with the electropositive argon discharge, the BRH in an electronegative discharge occurs at larger electrode gaps. Kinetic particle simulations reveal that in the oxygen discharge, the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonant electrons when traversing the bulk, resulting in a suppressed BRH. This effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative.

  4. Dual chamber system providing simultaneous etch and deposition on opposing substrate sides for growing low defect density epitaxial layers

    DOE Patents [OSTI]

    Kulkarni, Nagraj S. (Knoxville, TN); Kasica, Richard J. (Ashburn, VA) ,

    2011-03-08

    A dual-chamber reactor can include a housing enclosing a volume having a divider therein, where the divider defines a first chamber and a second chamber. The divider can include a substrate holder that supports at least one substrate and exposes a first side of the substrate to the first chamber and a second side of the substrate to the second chamber. The first chamber can include an inlet for delivering at least one reagent to the first chamber for forming a film on the first side of the substrate, and the second chamber can include a removal device for removing material from the second side of the substrate.

  5. Heating mode transition in a hybrid direct current/dual-frequency capacitively coupled CF{sub 4} discharge

    SciTech Connect (OSTI)

    Zhang, Quan-Zhi; Wang, You-Nian; Bogaerts, Annemie

    2014-06-14

    Computer simulations based on the particle-in-cell/Monte Carlo collision method are performed to study the plasma characteristics and especially the transition in electron heating mechanisms in a hybrid direct current (dc)/dual-frequency (DF) capacitively coupled CF{sub 4} discharge. When applying a superposed dc voltage, the plasma density first increases, then decreases, and finally increases again, which is in good agreement with experiments. This trend can be explained by the transition between the four main heating modes, i.e., DF coupling, dc and DF coupling, dc source dominant heating, and secondary electron dominant heating.

  6. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    SciTech Connect (OSTI)

    Volpi, F. Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-07-28

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, ?2.8 to 1.5?GPa, and 2.0 to 2.8?g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple mass correction of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen?+?porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly behave like pores in tensile films where they do not participate to the film stiffness.

  7. Shut-off of a geopressured water channel behind casing via coiled tubing utilizing a dual slurry cement system: A case history

    SciTech Connect (OSTI)

    Nowak, T.W.; Lange, K.J.; Grant, W.H.; Patout, T.S.

    1995-12-31

    This paper presents a case history involving a unique dual cement system to shut off a geopressured water channel behind casing utilizing coiled tubing. The channeling problem was identified and documented using water flow logging techniques. Logging indicated the lower gravel packed selective could produce salt water if perforated without eliminating the suspected water channel. Reserves did not warrant a major rig workover, making a non-rig workover via coiled tubing the only viable option to repair the well. A unique dual cement system tested on a hesitation squeeze schedule pumped through coiled tubing with extremely limited thickening time was necessary to repair the primary cement job.

  8. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging

    SciTech Connect (OSTI)

    Hill, Melissa L.; Yaffe, Martin J.; Mainprize, James G.; Carton, Ann-Katherine; Saab-Puong, Sylvie; Iordache, R?zvan; Muller, Serge; Jong, Roberta A.; Dromain, Clarisse

    2013-08-15

    Purpose: Dual-energy (DE) contrast-enhanced digital mammography (CEDM) uses an iodinated contrast agent in combination with digital mammography (DM) to evaluate lesions on the basis of tumor angiogenesis. In DE imaging, low-energy (LE) and high-energy (HE) images are acquired after contrast administration and their logarithms are subtracted to cancel the appearance of normal breast tissue. Often there is incomplete signal cancellation in the subtracted images, creating a background clutter that can impair lesion detection. This is the second component of a two-part report on anatomical noise in CEDM. In Part I the authors characterized the anatomical noise for single-energy (SE) temporal subtraction CEDM by a power law, with model parameters ? and ?. In this work the authors quantify the anatomical noise in DE CEDM clinical images and compare this with the noise in SE CEDM. The influence on the anatomical noise of the presence of iodine in the breast, the timing of imaging postcontrast administration, and the x-ray energy used for acquisition are each evaluated.Methods: The power law parameters, ? and ?, were measured from unprocessed LE and HE images and from DE subtracted images to quantify the anatomical noise. A total of 98 DE CEDM cases acquired in a previous clinical pilot study were assessed. Conventional DM images from 75 of the women were evaluated for comparison with DE CEDM. The influence of the imaging technique on anatomical noise was determined from an analysis of differences between the power law parameters as measured in DM, LE, HE, and DE subtracted images for each subject.Results: In DE CEDM, weighted image subtraction lowers ? to about 1.1 from 3.2 and 3.1 in LE and HE unprocessed images, respectively. The presence of iodine has a small but significant effect in LE images, reducing ? by about 0.07 compared to DM, with ? unchanged. Increasing the x-ray energy, from that typical in DM to a HE beam, significantly decreases ? by about 2 10{sup ?5} mm{sup 2}, and lowers ? by about 0.14 compared to LE images. A comparison of SE and DE CEDM at 4 min postcontrast shows equivalent power law parameters in unprocessed images, and lower ? and ? by about 3 10{sup ?5} mm{sup 2} and 0.50, respectively, in DE versus SE subtracted images.Conclusions: Image subtraction in both SE and DE CEDM reduces ? by over a factor of 2, while maintaining ? below that in DM. Given the equivalent ? between SE and DE unprocessed CEDM images, and the smaller anatomical noise in the DE subtracted images, the DE approach may have an advantage over SE CEDM. It will be necessary to test this potential advantage in future lesion detectability experiments, which account for realistic lesion signals. The authors' results suggest that LE images could be used in place of DM images in CEDM exam interpretation.

  9. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    SciTech Connect (OSTI)

    Cao, Yaoyu; Li, Xiangping; Gu, Min

    2014-12-29

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100?nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures.

  10. Dual-Fuel Combustion Turbine Provides Reliable Power to U.S. Navy Submarine Base New London in Groton, Connecticut

    SciTech Connect (OSTI)

    Halverson, Mark A.)

    2002-01-01

    In keeping with a long-standing tradition of running Base utilities as a business, the U.S. Navy Submarine Base New London installed a dual-fuel combustion turbine with a heat recovery boiler. The 5-megawatt (MW) gas- and oil-fired combustion turbine sits within the Lower Base area, just off the shores of the Thames River. The U.S. Navy owns, operates, and maintains the combined heat and power (CHP) plant, which provides power to the Navy?s nuclear submarines when they are in port and to the Navy?s training facilities at the Submarine Base. Heat recovered from the turbine is used to produce steam for use in Base housing, medical facilities, and laundries. In FY00, the Navy estimates that it will save over $500,000 per year as a result of the combined heat and power unit.

  11. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    DOE Patents [OSTI]

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  12. Theoretical investigation of the design and performance of a dual energy (kV and MV) radiotherapy imager

    SciTech Connect (OSTI)

    Liu, Langechuan; Antonuk, Larry E. El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao

    2015-04-15

    Purpose: In modern radiotherapy treatment rooms, megavoltage (MV) portal imaging and kilovoltage (kV) cone-beam CT (CBCT) imaging are performed using various active matrix flat-panel imager (AMFPI) designs. To expand the clinical utility of MV and kV imaging, MV AMFPIs incorporating thick, segmented scintillators and, separately, kV imaging using a beams eye view geometry have been investigated by a number of groups. Motivated by these previous studies, it is of interest to explore to what extent it is possible to preserve the benefits of kV and MV imaging using a single AMFPI design, given the considerably different x ray energy spectra used for kV and MV imaging. In this paper, considerations for the design of such a dual energy imager are explored through examination of the performance of a variety of hypothetical AMFPIs based on x ray converters employing segmented scintillators. Methods: Contrast, noise, and contrast-to-noise ratio performances were characterized through simulation modeling of CBCT imaging, while modulation transfer function, Swank factor, and signal performance were characterized through simulation modeling of planar imaging. The simulations were based on a previously reported hybrid modeling technique (accounting for both radiation and optical effects), augmented through modeling of electronic additive noise. All designs employed BGO scintillator material with thicknesses ranging from 0.25 to 4 cm and element-to-element pitches ranging from 0.508 to 1.016 mm. A series of studies were performed under both kV and MV imaging conditions to determine the most advantageous imager configuration (involving front or rear x ray illumination and use of a mirror or black reflector), converter design (pitch and thickness), and operating mode (pitch-binning combination). Results: Under the assumptions of the present study, the most advantageous imager design was found to employ rear illumination of the converter in combination with a black reflector, incorporate a BGO converter with a 0.508 mm pitch and a 2 cm thickness, and operate at full resolution for kV imaging and 2 2 binning mode for MV imaging. Such a dual energy imager design should provide soft tissue visualization at low, clinically practical doses under MV conditions, while helping to preserve the high spatial resolution and high contrast offered by kV imaging. Conclusions: The authors theoretical investigation suggests that a dual energy imager capable of largely preserving the desirable characteristics of both kV and MV imaging is feasible. Such an imager, when coupled to a dual energy radiation source, could facilitate simplification of current treatment room imaging systems (as well as their associated quality assurance), and facilitate more precise integration of kV and MV imaging information by virtue of reduced geometric uncertainties.

  13. Dual function armchair graphene nanoribbon-based spin-photodetector: Optical spin-valve and light helicity detector

    SciTech Connect (OSTI)

    Ostovari, Fatemeh; Moravvej-Farshi, Mohammad Kazem

    2014-08-18

    We show an armchair graphene nanoribbon channel connected between asymmetric ferromagnetic source-drain structurei.e., p-type Co/Au/graphene source and n-type Co/Cu/graphene draincan operate as dual function spin-photodetector, under zero external biases at room temperature. It can function as an optical spin-valve with magnetoresistance of greater than 60% and responsivity as high as 25.12?A/mW, when irradiated by an un-polarized light of energy ?3.03?eV. Under a circularly polarized illumination, this optical spin-valve can also operate as a light helicity detector. The calculated magnetoresistances for right and left circularly polarized lights are both greater than 60%.

  14. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect (OSTI)

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Ω pilot ∼ 0.2-0.6 and Ω overall ∼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Ω pilot (> 0.5), increasing Ω overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Ω overall (at constant Ω pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  15. Dual Phase Li4 Ti5O12TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    SciTech Connect (OSTI)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  16. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    SciTech Connect (OSTI)

    Hoerner, Matthew R. Stepusin, Elliott J.; Hyer, Daniel E.; Hintenlang, David E.

    2015-03-15

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 ?m in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 ?m in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup } thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3} calibrated ionization chamber to measure the reference air kerma. Results: Each detector exhibited counting losses of 5% when irradiated at a dose rate of 26.3 mGy/s (Gadolinium) and 324.3 mGy/s (plastic). The dead time of the gadolinium oxysulfide detector was determined to be 48 ns, while the dead time of the plastic scintillating detector was unable to accurately be calculated due to poor counting statistics from low detected count rates. Noticeable depth/energy dependence was observed for the plastic scintillator for depths greater than 16 cm of acrylic that was not present for measurements using the gadolinium oxysulfide scintillator, leading us to believe that quenching may play a larger role in the depth dependence of the plastic scintillator than the incident x-ray energy spectrum. When properly corrected for dead time effects, the energy response of the gadolinium oxysulfide scintillator is consistent with the plastic scintillator. Using the integrated dual detector method was superior to each detector individually as the depth-dependent measure of dose was correctable to less than 8% between 100 and 135 kV. Conclusions: The dual scintillator fiber-optic detector accommodates a methodology for energy dependent corrections of the plastic scintillator, improving the overall accuracy of the dosimeter across the range of diagnostic energies.

  17. Overhead electric power transmission line jumpering system for bundles of five or more subconductors

    DOE Patents [OSTI]

    Winkelman, Paul F.

    1982-01-01

    Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

  18. Electron depletion via cathode spot dispersion of dielectric powder into an overhead plasma

    SciTech Connect (OSTI)

    Gillman, Eric D. [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375 (United States)] [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375 (United States); Foster, John E. [Department of Nuclear Engineering and Radiological Sciences (NERS), University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, Michigan 48109 (United States)] [Department of Nuclear Engineering and Radiological Sciences (NERS), University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, Michigan 48109 (United States)

    2013-11-15

    The effectiveness of cathode spot delivered dielectric particles for the purpose of plasma depletion is investigated. Here, cathode spot flows kinetically entrain and accelerate dielectric particles originally at rest into a background plasma. The time variation of the background plasma density is tracked using a cylindrical Langmuir probe biased approximately at electron saturation. As inferred from changes in the electron saturation current, depletion fractions of up to 95% are observed. This method could be exploited as a means of communications blackout mitigation for manned and unmanned reentering spacecraft as well as any high speed vehicle enveloped by a dense plasma layer.

  19. etter, Specifications, and Survey Report: Removal of Overhead Yard Piping and Asbestos Insulation

    Office of Legacy Management (LM)

  20. Sampling of Insulation on Inter-Building Overhead Utility Pipes for Asbestos Content.

    Office of Legacy Management (LM)

  1. A dual chelating solgel synthesis of BaTiO{sub 3} nanoparticles with effective photocatalytic activity for removing humic acid from water

    SciTech Connect (OSTI)

    Wang, Peigong; Fan, Caimei; Wang, Yawen; Ding, Guangyue; Yuan, Peihong

    2013-02-15

    Graphical abstract: The cubic phase BaTiO{sub 3} nanoparticles can be obtained at 600 C and changed into tetragonal phase at 900 C by a dual chelating solgel method, and the photocatalytic activities of the photocatalysts calcined at different temperatures were investigated by the removal of humic acid (HA) from water under UV light irradiation. Highlights: ? The humic acid in water was firstly degradated by BaTiO{sub 3} photocatalyst. ? The cubic BaTiO{sub 3} was obtained and changed into tetragonal phase at lower temperature. ? The chelating agents had an important influence on the phase formation of BaTiO{sub 3}. ? The tetragonal phase BaTiO{sub 3} calcined at 900 C exhibited higher photocatalytic activity under UV irradiation. -- Abstract: In this paper, a dual chelating solgel method was used to synthesize BaTiO{sub 3} nanoparticles by using acetylacetone and citric acid as chelating agents. The samples calcined at different temperatures were analyzed by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and UVvis diffuse reflectance spectra (UVvis). The results indicated that cubic phase BaTiO{sub 3} nanoparticles about 19.6 nm can be obtained at 600 C and changed into tetragonal phase at 900 C about 97.1 nm. All the BaTiO{sub 3} nanoparticles showed effective photocatalytic activities on the removal of humic acid (HA) under UV light irradiation. A comparison of single (acetylacetone or citric acid) and dual chelating (acetylacetone and citric acid) synthetic processes was also studied and the results demonstrated that the dual chelating agents indeed reduced phase transformation temperature from cubic to tetragonal BaTiO{sub 3}.

  2. Experimental and numerical investigations of electron density in low-pressure dual-frequency capacitively coupled oxygen discharges

    SciTech Connect (OSTI)

    Liu, Jia; Wen, De-Qi; Liu, Yong-Xin; Gao, Fei; Lu, Wen-Qi; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-11-15

    The electron density is measured in low-pressure dual-frequency (2/60 MHz) capacitively coupled oxygen discharges by utilizing a floating hairpin probe. The dependence of electron density at the discharge center on the high frequency (HF) power, low frequency (LF) power, and gas pressure are investigated in detail. A (1D) particle-in-cell/Monte Carlo method is developed to calculate the time-averaged electron density at the discharge center and the simulation results are compared with the experimental ones, and general agreements are achieved. With increasing HF power, the electron density linearly increases. The electron density exhibits different changes with the LF power at different HF powers. At low HF powers (e.g., 30 W in our experiment), the electron density increases with increasing LF power while the electron density decreases with increasing LF power at relatively high HF powers (e.g., 120 W in our experiment). With increasing gas pressure the electron density first increases rapidly to reach a maximum value and then decreases slowly due to the combined effect of the production process by the ionization and the loss processes including the surface and volume losses.

  3. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect (OSTI)

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  4. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    SciTech Connect (OSTI)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  5. Achievement of high coercivity in sintered R-Fe-B magnets based on misch-metal by dual alloy method

    SciTech Connect (OSTI)

    Niu, E Wang, Zhen-Xi; Chen, Zhi-An; Rao, Xiao-Lei; Hu, Bo-Ping; Chen, Guo-An; Zhao, Yu-Gang; Zhang, Jin

    2014-03-21

    The R-Fe-B (R, rare earth) sintered magnets prepared with different ratio of alloys of MM-Fe-B (MM, misch-metal) and Nd-Fe-B by dual alloy method were investigated. As expected, the high ratio of MM-Fe-B alloy degrades the hard magnetic properties heavily with intrinsic coercivity lower than 5 kOe. When the atomic ratio MM/R???21.5% the magnetic properties can reach a practical level of B{sub r}???12.1 kGs, H{sub cj}???10.7 kOe, and (BH){sub max}???34.0 MGOe. And the effect of H{sub cj} enhancement by the grain boundary diffusion process is obvious when MM/R???21.5%. It is revealed that the decrement of intrinsic magnetic properties of R{sub 2}Fe{sub 14}B matrix phase is not the main reason of the degradation of the magnets with high MM ratio. The change of deteriorated microstructure together with phase component plays fundamental roles in low H{sub cj}. In high MM ratio magnets, (a) after annealing, Ce atoms inside main phase are inclined to be segregated in the outer layer of the main phase grains; (b) there is no thin layer of Ce-rich phase as an analogue of Nd-rich phase to separate main phase grains; (c) excessive Ce tends to form CeFe{sub 2} grains.

  6. A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies

    SciTech Connect (OSTI)

    Theobald, W.; Stoeckl, C.; Jaanimagi, P. A.; Nilson, P. M.; Storm, M.; Meyerhofer, D. D.; Sangster, T. C.; Hey, D.; MacKinnon, A. J.; Park, H.-S.; Patel, P. K.; Shepherd, R.; Snavely, R. A.; Key, M. H.; King, J. A.; Zhang, B.; Stephens, R. B.; Akli, K. U.; Highbarger, K.; Daskalova, R. L.; and others

    2009-08-15

    A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the {approx}1.5 to 2 keV range (6.2-8.2 A wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4x10{sup 20} W/cm{sup 2}. The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of {approx}10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He{sub {alpha}} and Ly{sub {alpha}} resonance lines were {approx}1.8 and {approx}1.0 mJ/eV sr ({approx}0.4 and 0.25 J/A sr), respectively, for 220 J, 10 ps laser irradiation.

  7. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    SciTech Connect (OSTI)

    Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  8. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    SciTech Connect (OSTI)

    Black, Dolores A.; Robinson, William H.; Limbrick, Daniel B.; Black, Jeffrey D.; Wilcox, Ian Z.

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. Furthermore, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  9. Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.

    SciTech Connect (OSTI)

    Rinehart, Alex; Petrusak, Robin (Advanced Resources International, Inc., Arlington, VA); Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.

  10. Electrodeposition, characterization and morphological investigations of NiFe/Cu multilayers prepared by pulsed galvanostatic, dual bath technique

    SciTech Connect (OSTI)

    Esmaili, S.; Bahrololoom, M.E.; Kavanagh, K.L.

    2011-02-15

    NiFe/Cu multilayers were grown sequentially by pulsed electrodeposition on copper (Cu) substrates. The layers were prepared in galvanostatic mode using a dual bath technique. The morphology, thickness, roughness and composition of the layers were studied using scanning electron microscopy, scanning transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffraction and atomic force microscopy. Analysis showed that the resulting multilayers were continuous layers with a root mean square roughness of 30 nm and a grain size of 20-60 nm. The Cu substrate and the electrodeposited Cu layer were preferentially (200) oriented while the NiFe layers were polycrystalline but with a preferred (200) texture. The thinnest multilayers produced were 20/40, NiFe/Cu, respectively. - Research Highlights: {yields} Thin MLs of Cu and Py can be ED utilizing a pulsed-galvanostatic, DBT. {yields} The resulting multilayers were continuous layers with an rms of 30 nm. {yields} The smallest average thickness achieved by DBT was 40 nm/20 nm for Cu/NiFe.

  11. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Black, Dolores A.; Robinson, William H.; Limbrick, Daniel B.; Black, Jeffrey D.; Wilcox, Ian Z.

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional modelmore » based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. Furthermore, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less

  12. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventionalmore » model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less

  13. COMPARISON OF EXPERIMENTS TO CFD MODELS FOR MIXING USING DUAL OPPOSING JETS IN TANKS WITH AND WITHOUT INTERNAL OBSTRUCTIONS

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Fowley, M.

    2012-06-26

    This paper documents testing methods, statistical data analysis, and a comparison of experimental results to CFD models for blending of fluids, which were blended using a single pump designed with dual opposing nozzles in an eight foot diameter tank. Overall, this research presents new findings in the field of mixing research. Specifically, blending processes were clearly shown to have random, chaotic effects, where possible causal factors such as turbulence, pump fluctuations, and eddies required future evaluation. CFD models were shown to provide reasonable estimates for the average blending times, but large variations -- or scatter -- occurred for blending times during similar tests. Using this experimental blending time data, the chaotic nature of blending was demonstrated and the variability of blending times with respect to average blending times were shown to increase with system complexity. Prior to this research, the variation in blending times caused discrepancies between CFD models and experiments. This research addressed this discrepancy, and determined statistical correction factors that can be applied to CFD models, and thereby quantified techniques to permit the application of CFD models to complex systems, such as blending. These blending time correction factors for CFD models are comparable to safety factors used in structural design, and compensate variability that cannot be theoretically calculated. To determine these correction factors, research was performed to investigate blending, using a pump with dual opposing jets which re-circulate fluids in the tank to promote blending when fluids are added to the tank. In all, eighty-five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of vertical cooling coils below the liquid surface for a full scale, liquid radioactive waste storage tank. Also, different jet diameters and different horizontal orientations of the jets were investigated with respect to blending. Two types of blending tests were performed. The first set of eighty-one tests blended small quantities of tracer fluids into solution. Data from these tests were statistically evaluated to determine blending times for the addition of tracer solution to tanks, and blending times were successfully compared to Computational Fluid Dynamics (CFD) models. The second set of four tests blended bulk quantities of solutions of different density and viscosity. For example, in one test a quarter tank of water was added to a three quarters of a tank of a more viscous salt solution. In this case, the blending process was noted to significantly change due to stratification of fluids, and blending times increased substantially. However, CFD models for stratification and the variability of blending times for different density fluids was not pursued, and further research is recommended in the area of blending bulk quantities of fluids. All in all, testing showed that CFD models can be effectively applied if statistically validated through experimental testing, but in the absence of experimental validation CFD model scan be extremely misleading as a basis for design and operation decisions.

  14. SU-E-I-98: Dose Comparison for Pulmonary Embolism CT Studies: Single Energy Vs. Dual Energy

    SciTech Connect (OSTI)

    Mahmood, U; Erdi, Y

    2014-06-01

    Purpose: The purpose of this study was to assess and compare the size specific dose estimate (SSDE), dose length product (DLP) and noise relationship for pulmonary embolism studies evaluated by single source dual energy computed tomography (DECT) against conventional CT (CCT) studies in a busy cancer center and to determine the dose savings provided by DECT. Methods: An IRB-approved retrospective study was performed to determine the CTDIvol and DLP from a subset of patients scanned with both DECT and CCT over the past five years. We were able to identify 30 breast cancer patients (6 male, 24 female, age range 24 to 81) who had both DECT and CCT studies performed. DECT scans were performed with a GE HD 750 scanner (140/80 kVp, 480 mAs and 40 mm) and CCT scans were performed with a GE Lightspeed 16 slice scanner (120 kVp, 352 mAs, 20 mm). Image noise was measured by placing an ROI and recording the standard deviation of the mean HU along the descending aorta. Results: The average DECT patient size specific dose estimate was to be 14.2 1.7 mGy as compared to 22.4 2.7 mGy from CCT PE studies, which is a 37% reduction in the SSDE. The average DECT DLP was 721.8 84.6 mGy-cm as compared to 981.8 106.1 mGy-cm for CCT, which is a 26% decrease. Compared to CCT the image noise was found to decrease by 19% when using DECT for PE studies. Conclusion: DECT SSDE and DLP measurements indicate dose savings and image noise reduction when compared to CCT. In an environment that heavily debates CT patient doses, this study confirms the effectiveness of DECT in PE imaging.

  15. A dual strategy for improving lithium storage performance, a case of Fe{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Wang, Xia; Xiao, Ying; Hu, Changwen; Cao, Minhua

    2014-11-15

    Graphical abstract: The ?-Fe{sub 2}O{sub 3} nanoellipse with180230 nm (edge length) and 140170 nm (edge width) has been synthesize and tested as anode material for LIBs. The ?-Fe{sub 2}O{sub 3} nanoellipse electrode with sodium alginate (SA) binder exhibits greatly enhanced performance for lithium storage. - Highlights: ?-Fe{sub 2}O{sub 3} nanoellipses were fabricated by a simple hydrothermal method with glycine. The elliptical ?-Fe{sub 2}O{sub 3}-SA electrode exhibits enhanced lithium storage performance. The reason for the enhanced performance of elliptical ?-Fe{sub 2}O{sub 3}-SA was investigated. - Abstract: In this paper, we developed a dual strategy, the nanostructure engineering of active material and the proper choice of binder, to achieve excellent lithium storage performance of transition metal oxides. ?-Fe{sub 2}O{sub 3} nanoellipses with a mean size of 180230 nm (edge length) and 140170 nm (edge width) were fabricated by a simple hydrothermal method in the presence of glycine. When tested as anode material for lithium ion batteries (LIBs), the ?-Fe{sub 2}O{sub 3} nanoellipse electrode with sodium alginate (SA) binder exhibits greatly enhanced performance for lithium storage. The capacity could be retained as high as 1164 mA h g{sup ?1} at a current density of 100 mA g{sup ?1} for over 60 cycles. Even cycled at high current densities of 20005000 mA g{sup ?1}, high capacities of 443628 mA h g{sup ?1} can be achieved, whereas the electrode with the conventional poly(vinylidene fluoride) (PVDF) binder suffers from rapid capacity decay under the same test conditions.

  16. Compliant membranes for the development of MEMS dual-backplate capacitive microphone using the SUMMiT V fabrication process.

    SciTech Connect (OSTI)

    Martin, David (University of Florida, Gainesville, FL)

    2005-11-01

    The objective of this project is the investigation of compliant membranes for the development of a MicroElectrical Mechanical Systems (MEMS) microphone using the Sandia Ultraplanar, Multilevel MEMS Technology (SUMMiT V) fabrication process. The microphone is a dual-backplate capacitive microphone utilizing electrostatic force feedback. The microphone consists of a diaphragm and two porous backplates, one on either side of the diaphragm. This forms a capacitor between the diaphragm and each backplate. As the incident pressure deflects the diaphragm, the value of each capacitor will change, thus resulting in an electrical output. Feedback may be used in this device by applying a voltage between the diaphragm and the backplates to balance the incident pressure keeping the diaphragm stationary. The SUMMiT V fabrication process is unique in that it can meet the fabrication requirements of this project. All five layers of polysilicon are used in the fabrication of this device. The SUMMiT V process has been optimized to provide low-stress mechanical layers that are ideal for the construction of the microphone's diaphragm. The use of chemical mechanical polishing in the SUMMiT V process results in extremely flat structural layers and uniform spacing between the layers, both of which are critical to the successful fabrication of the MEMS microphone. The MEMS capacitive microphone was fabricated at Sandia National Laboratories and post-processed, packaged, and tested at the University of Florida. The microphone demonstrates a flat frequency response, a linear response up to the designed limit, and a sensitivity that is close to the designed value. Future work will focus on characterization of additional devices, extending the frequency response measurements, and investigating the use of other types of interface circuitry.

  17. Electrical properties of a-C:Mo films produced by dual-cathode filtered cathodic arc plasma deposition

    SciTech Connect (OSTI)

    Sansongsiri, Sakon; Anders, Andre; Yodsombat, Banchob

    2008-01-20

    Molybdenum-containing amorphous carbon (a-C:Mo) thin films were prepared using a dual-cathode filtered cathodic arc plasma source with a molybdenum and a carbon (graphite) cathode. The Mo content in the films was controlled by varying the deposition pulse ratio of Mo and C. Film sheet resistance was measured in situ at process temperature, which was close to room temperature, as well as ex situ as a function of temperature (300-515 K) in ambient air. Film resistivity and electrical activation energy were derived for different Mo and C ratios and substrate bias. Film thickness was in the range 8-28 nm. Film resistivity varied from 3.55x10-4 Omega m to 2.27x10-6 Omega m when the Mo/C pulse ratio was increased from 0.05 to 0.4, with no substrate bias applied. With carbon-selective bias, the film resistivity was in the range of 4.59x10-2 and 4.05 Omega m at a Mo/C pulse ratio of 0.05. The electrical activation energy decreased from 3.80x10-2 to 3.36x10-4 eV when the Mo/C pulse ratio was increased in the absence of bias, and from 0.19 to 0.14 eV for carbon-selective bias conditions. The resistivity of the film shifts systematically with the amounts of Mo and upon application of substrate bias voltage. The intensity ratio of the Raman D-peak and G-peak (ID/IG) correlated with the pre-exponential factor (sigma 0) which included charge carrier density and density of states.

  18. A Monte Carlo neutron transport code for eigenvalue calculations on a dual-GPU system and CUDA environment

    SciTech Connect (OSTI)

    Liu, T.; Ding, A.; Ji, W.; Xu, X. G. [Nuclear Engineering and Engineering Physics, Rensselaer Polytechnic Inst., Troy, NY 12180 (United States); Carothers, C. D. [Dept. of Computer Science, Rensselaer Polytechnic Inst. RPI (United States); Brown, F. B. [Los Alamos National Laboratory (LANL) (United States)

    2012-07-01

    Monte Carlo (MC) method is able to accurately calculate eigenvalues in reactor analysis. Its lengthy computation time can be reduced by general-purpose computing on Graphics Processing Units (GPU), one of the latest parallel computing techniques under development. The method of porting a regular transport code to GPU is usually very straightforward due to the 'embarrassingly parallel' nature of MC code. However, the situation becomes different for eigenvalue calculation in that it will be performed on a generation-by-generation basis and the thread coordination should be explicitly taken care of. This paper presents our effort to develop such a GPU-based MC code in Compute Unified Device Architecture (CUDA) environment. The code is able to perform eigenvalue calculation under simple geometries on a multi-GPU system. The specifics of algorithm design, including thread organization and memory management were described in detail. The original CPU version of the code was tested on an Intel Xeon X5660 2.8 GHz CPU, and the adapted GPU version was tested on NVIDIA Tesla M2090 GPUs. Double-precision floating point format was used throughout the calculation. The result showed that a speedup of 7.0 and 33.3 were obtained for a bare spherical core and a binary slab system respectively. The speedup factor was further increased by a factor of {approx}2 on a dual GPU system. The upper limit of device-level parallelism was analyzed, and a possible method to enhance the thread-level parallelism was proposed. (authors)

  19. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas

    SciTech Connect (OSTI)

    Desai, M. I.; McComas, D. J.; Allegrini, F.; Livi, S. A.; Ogasawara, K.; Ebert, R. W.; Weidner, S. E.; Alexander, N.

    2015-05-15

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ?10 eV/q40 keV/q plasma ionsCoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ?30 keV10 MeV energetic ionsCoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  20. Near-resonance enhanced O2 detection for dual-broadband pure rotational coherent anti-Stokes Raman scattering with an ultraviolet-visible setup at 266 nm

    SciTech Connect (OSTI)

    Schenk, Martin; Seeger, Thomas; Leipertz, Alfred

    2005-07-01

    Broadband and dual-broadband coherent anti-Stokes Raman scattering (CARS) are widely established tools for nonintrusive gas diagnostics. Up to now the investigations have been mainly performed for electronic nonresonant conditions of the gas species of interest. We report on the enhancement of the O2-N2 detection limit of dual-broadband pure rotational CARS by shifting the wavelength of the narrowband pump laser from the commonly used 532-266 nm. This enhancement is caused when the Schumann-Runge absorption band is approached near 176 nm. The principal concept of this experiment, i.e., covering the Raman resonance with a single- or dual-broadband combination of lasers in the visible range and moving only the narrowband probe laser near or directly into electronic resonant conditions in the UV range, should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects for the purpose of single-shot concentration measurements of minority species. To quantify the enhancement in O2 sensitivity, comparative measurements at both a 266 and a 532 nm narrowband pump laser wavelength are presented, employing a 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyram (DCM) dye laser as a broadband laser source at 635 nm. An increase of approximately 13% in the ratio of the rotational CARS cross sections of O2 and N2 was obtained. The broad spectral width of the CARS excitation profile was approximately equal for both setups. Further enhancement should be achievable by shifting the narrowband pump laser closer toward 176 nm, for example, with a frequency-doubled optical parametric oscillator or an excimer laser. The principal concept of this experiment should also be applicable to broadband CARS experiments to directly exploit electronic resonance effects of the narrowband pump laser with electronic transitions of minority species for the purpose of single-shot concentration measurements of those species.

  1. NREL, CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. A joint effort between the National Renewable Energy Laboratory (NREL) and the Swiss Center for Electronics and Microtechnology (CSEM) has resulted in a novel tandem solar cell that operates at 29.8% conversion efficiency under 1-sun conditions. The new solar cell technology combines NREL's 1.8-eV gallium indium phosphide (GaInP) technology as a top cell and

  2. InGaP/GaAs Inverted Dual Junction Solar Cells For CPV Applications Using Metal-Backed Epitaxial Lift-Off

    SciTech Connect (OSTI)

    Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey

    2010-10-14

    The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.

  3. Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 5, November 1997--January 1998

    SciTech Connect (OSTI)

    1998-02-23

    This quarter has the authors starting out with the engine mapped out in its standard dual fuel configuration. This means that the engine is configured to be exactly what the have been selling in the past. They have worked to install the new style gas injectors, Hydraulic power unit, control lines, gas lines and associated hardware. This hardware has been tested and is operational. They have been able to start at installing the spark ignition system but have been held up because of other more pressing work.

  4. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

    SciTech Connect (OSTI)

    Dong, Xue; Niu, Tianye; Zhu, Lei

    2014-05-15

    Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ?14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.

  5. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography

    SciTech Connect (OSTI)

    Cai, C.; Rodet, T.; Mohammad-Djafari, A.; Legoupil, S.

    2013-11-15

    Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also necessary to have the accurate spectrum information about the source-detector system. When dealing with experimental data, the spectrum can be predicted by a Monte Carlo simulator. For the materials between water and bone, less than 5% separation errors are observed on the estimated decomposition fractions.Conclusions: The proposed approach is a statistical reconstruction approach based on a nonlinear forward model counting the full beam polychromaticity and applied directly to the projections without taking negative-log. Compared to the approaches based on linear forward models and the BHA correction approaches, it has advantages in noise robustness and reconstruction accuracy.

  6. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  7. Dual Panal Planar Portal

    Energy Science and Technology Software Center (OSTI)

    2000-12-01

    The D3P system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The complete vision of the D3P system is to have two array systems facing each other. Version 2.3 of the software is designed to control and process data from a single panel. A second panel is expected to be added at a future date and the software will be modified atmore » that time to integrate the images from two panels at one time. The D3P software can be segmented into three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver-array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 1 to 2 seconds. At the completion of the array movement the second software task reconstructs the high-resolution image from the radar data utilizing the integrated DSP board. The third task displays the result to the computer screen for user review and analysis.« less

  8. Dual frequency optical cavity

    DOE Patents [OSTI]

    George, E. Victor (Livermore, CA); Schipper, John F. (Palo Alto, CA)

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  9. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  10. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  11. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: toward mass spectrometry imaging of an untargeted metabolome

    SciTech Connect (OSTI)

    Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin

    2015-08-27

    Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows us to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.

  12. Large-amplitude, narrow-linewidth microwave emission in a dual free-layer MgO spin-torque oscillator

    SciTech Connect (OSTI)

    Nagasawa, Tazumi Kudo, Kiwamu; Suto, Hirofumi; Mizushima, Koichi; Sato, Rie

    2014-11-03

    Synchronized magnetization motion among the several magnetic layers composing a spin-torque oscillator (STO) is considered an effective way to improve spectral purity. To utilize this scheme in a MgO-based STO, we have fabricated a dual free-layer STO composed of a CoFeB free layer (FL), a MgO barrier layer, and a CoFe/Ru/CoFeB synthetic ferrimagnet free layer (SyF). Unlike conventional MgO-based STOs, this structure does not have an antiferromagnetic layer that pins the SyF, leading to a large-amplitude oscillation of magnetization in the SyF. The dual free-layer STO exhibits coherent microwave emissions with power spectrum density beyond 800 nW/GHz and narrow spectral linewidth below 5 MHz (Q-factor ≈ 2000). Macrospin simulations confirm that the stable oscillations originate from the synchronized magnetization motion of the FL and the SyF through dynamical dipolar coupling.

  13. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: toward mass spectrometry imaging of an untargeted metabolome

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin

    2015-08-27

    Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows usmore » to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.« less

  14. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective YSZ coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-03-15

    Recently, compliant sealing glass has been proposed as a potential candidate sealant for solid oxide fuel cell (SOFC) applications. In a previous paper, the thermal stability and chemical compatibility were reported for a compliant alkali-containing silicate glass sealed between anode supported YSZ bi-layer and YSZ-coated stainless steel interconnect. In this paper, we will report the electrical stability of the compliant glass under a DC load and dual environment at 700-800 degrees C. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two plain SS441 metal coupons or YSZ-coated aluminized substrates. The results showed instability with plain SS441 at 800 degrees C, but stable behavior of increasing resistivity with time was observed with the YSZ coated SS441. In addition, results of interfacial microstructure analysis with scanning electron microscopy will be correlated with the measured resistivity results. Overall, the YSZ coating demonstrated chemically stability with the alkali-containing compliant silicate sealing glass under electrical field and dual environments.

  15. Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

    SciTech Connect (OSTI)

    Pandey, Sushil Kumar; Kumar Pandey, Saurabh; Awasthi, Vishnu; Mukherjee, Shaibal; Gupta, M.; Deshpande, U. P.

    2013-08-12

    Sb-doped ZnO (SZO) films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system and subsequently annealed in-situ in vacuum and in various proportions of O{sub 2}/(O{sub 2} + N{sub 2})% from 0% (N{sub 2}) to 100% (O{sub 2}). Hall measurements established all SZO films were p-type, as was also confirmed by typical diode-like rectifying current-voltage characteristics from p-ZnO/n-ZnO homojunction. SZO films annealed in O{sub 2} ambient exhibited higher hole concentration as compared with films annealed in vacuum or N{sub 2} ambient. X-ray photoelectron spectroscopic analysis confirmed that Sb{sup 5+} states were more preferable in comparison to Sb{sup 3+} states for acceptor-like Sb{sub Zn}-2V{sub Zn} complex formation in SZO films.

  16. Electrical stability of a novel sealing glass with (Mn,Co)-spinel coated Crofer22APU in a simulated SOFC dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Xia, Guanguang; Yang, Zhenguo

    2010-09-01

    A novel alkaline-earth silicate (Sr-Ca-Y-B-Si-Zn) sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was sandwiched between two metallic interconnect plates and tested for electrical stability in dual environmnet at elevated temperatures of 800-850 degrees C. A ferritic stainless steel (Crofer22APU) was used as the metallic interconnect material in the as-received state and coated with (Mn,Co)3O4 spinel. The isothermal aging results showed stable electrical resistivity at 800-850 degrees C for ~500-1000 hr. The electrical resistivities at 800 or 850 degrees C of the spinel-coated samples were lower than the as-received ones; however, they were still several orders of magnitude higher than typical SOFC functional parts. Interfacial microstructure was characterized and possible reactions are discussed.

  17. Tricyclic GyrB/ParE (TriBE) Inhibitors. A new class of broad-spectrum dual-targeting antibacterial agents

    SciTech Connect (OSTI)

    Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael; Bensen, Daniel C.; Chen, Zhiyong; Lam, Thanh; Zhang, Junhu; Lee, Suk Joong; Hough, Grayson; Phillipson, Doug; Akers-Rodriguez, Suzanne; Cunningham, Mark L.; Kwan, Bryan P.; Nelson, Kirk J.; Castellano, Amanda; Locke, Jeff B.; Brown-Driver, Vickie; Murphy, Timothy M.; Ong, Voon S.; Pillar, Chris M.; Shinabarger, Dean L.; Nix, Jay; Lightstone, Felice C.; Wong, Sergio E.; Nguyen, Toan B.; Shaw, Karen J.; Finn, John

    2013-12-26

    Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. Growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Moreover, lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.

  18. Knockdown of dual specificity phosphatase 4 enhances the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin

    SciTech Connect (OSTI)

    Liu, Yu; Du, Feiya; Chen, Wei; Yao, Minya; Lv, Kezhen; Fu, Peifen

    2013-12-10

    Background: Breast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial. Methods: We used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms. Results: Knockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin. Conclusions: DUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer. - Highlights: We used different technologies to prove our conclusion. DUSP4 knockdown increased doxorubicin chemosensitivity in breast cancer cells. DUSP4 is a potential target for combating drug resistance in breast cancer. DUSP4 is a potential target for regulating the EMT in breast cancer.

  19. Tricyclic GyrB/ParE (TriBE) Inhibitors. A new class of broad-spectrum dual-targeting antibacterial agents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tari, Leslie W.; Li, Xiaoming; Trzoss, Michael; Bensen, Daniel C.; Chen, Zhiyong; Lam, Thanh; Zhang, Junhu; Lee, Suk Joong; Hough, Grayson; Phillipson, Doug; et al

    2013-12-26

    Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. Growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highlymore » conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Moreover, lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.« less

  20. Demonstration of the BNL Continuous Dual Trap Analyzer to Detect Perfluorocarbon Tracers for the Tag, Track and Location Program

    SciTech Connect (OSTI)

    Heiser,J.H.; Adams, J.; Dietz, R..; Milian, L.; Watson, T.

    2008-10-07

    The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100's of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and instruments that allow detection of up to seven PFTs at part per quadrillion levels (1015) with sample times as short as 60 seconds. The Continuous Dual-Trap Analyzer (CDTA) was developed for leak hunting applications and can continuously sample the air for PFTs without interruption. Sample time can be as short as 60 seconds. The CDTA has been extensively used in the commercial sector to detect PFTs that have been introduced to leaking buried dielectric fluid-filled cables or leaking subsurface gas lines. The PFTs travel through the cable or pipe until they reach the leak site. PFTs then escape into the surrounding soil and permeate/diffuse to the surface where they can be detected with the CDTA. Typically a cable is tagged with ppm levels of PFTs resulting in ppt to ppq concentrations in the air at the leak site. The CDTA is proven to be rugged, reliable and has a proven track record of successful leak location. The application of the CDTA to PFT detection for TTL is identical to application for leak detection. The CDTA operator has a general idea, with a few miles of roadway, where the leak is located, but no specific knowledge of the location (it can be any where along the road). The CDTA is mounted in a Chevy Astro Van and is dispatched to the field. In the field the van is driven at nominally 15 mph along the road. The CDTA continuously samples the air outside the van (via a 1/4-inch plastic sample tube stuck out a side window) until a positive detection occurs. The van then covers the road section where the detection occurred at a slightly slower pace to pin-point the area where the leak is and to direct soil probe samples. The soil probe samples take soil gas samples every 10 yards or so and the samples are analyzed on the CDTA. The leak can be located to within a few feet in 95% of the cases. To date the CDTA has been successful in every leak hunt performed by BNL. One interesting case was a leak hunt that resulted in repeated negative detections. The confidence in the CDTA forced the utility to recheck its 'plumbing' which lead to the discovery that a valve was turned that sho

  1. Dual-pump CARS temperature and major species concentration measurements in counter-flow methane flames using narrowband pump and broadband Stokes lasers

    SciTech Connect (OSTI)

    Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.; Naik, Sameer V.; Gore, Jay P.; Lucht, Robert P.

    2010-07-15

    Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355 nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for future computations. (author)

  2. CRADA Final Report: Application of Dual-Mode Invertor Control to Commercially Available Radial-Gap Permanent Magnet Motors - Vol. 1

    SciTech Connect (OSTI)

    Lawler, J.S.; McKeever, J.W.; Downing, M.E.; Stahlhut, R.D; Bremmer, R.; Shoemaker, J.M.; Seksarian, A.K.; Poore, B.; Lutz, J.

    2006-05-01

    John Deere and Company (Deere), their partner, UQM Technologies, Inc. (UQM), and the Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center (PEEMRC) recently completed work on the cooperative research and development agreement (CRADA) Number ORNL 04-0691 outlined in this report. CRADA 04-0691 addresses two topical issues of interest to Deere: (1) Improved characterization of hydrogen storage and heat-transfer management; and (2) Potential benefits from advanced electric motor traction-drive technologies. This report presents the findings of the collaborative examination of potential operational and cost benefits from using ORNL/PEEMRC dual-mode inverter control (DMIC) to drive permanent magnet (PM) motors in applications of interest to Deere. DMIC was initially developed and patented by ORNL to enable PM motors to be driven to speeds far above base speed where the back-electromotive force (emf) equals the source voltage where it is increasingly difficult to inject current into the motor. DMIC is a modification of conventional phase advance (CPA). DMIC's dual-speed modes are below base speed, where traditional pulse-width modulation (PWM) achieves maximum torque per ampere (amp), and above base speed, where six-step operation achieves maximum power per amp. The modification that enables DMIC adds two anti-parallel thyristors in each of the three motor phases, which consequently adds the cost of six thyristors. Two features evaluated in this collaboration with potential to justify the additional thyristor cost were a possible reduction in motor cost and savings during operation because of higher efficiency, both permitted because of lower current. The collaborative analysis showed that the reduction of motor cost and base cost of the inverter was small, while the cost of adding six thyristors was greater than anticipated. Modeling the DMIC control displayed inverter efficiency gains due to reduced current, especially under light load and higher speed. This current reduction, which is the salient feature of DMIC, may be significant when operating duty cycles have low loads at high frequencies. Reduced copper losses make operation more efficient thereby reducing operating costs. In the Deere applications selected for this study, the operating benefit was overshadowed by the motor's rotational losses. Rotational losses of Deere 1 and Deere 2 dominate the overall drive efficiency so that their reduction has the greatest potential to improve performance. A good follow-up project would be to explore cost erective ways to reduce the rotational losses buy 66%.

  3. Overhead Piping and Support Removal. Subcontractor is Hemphill Contracting Company. Subcontract work package number 3589-SC-WP017

    Office of Legacy Management (LM)

  4. p-type conduction from Sb-doped ZnO thin films grown by dual ion beam sputtering in the absence of oxygen ambient

    SciTech Connect (OSTI)

    Kumar Pandey, Sushil; Kumar Pandey, Saurabh; Awasthi, Vishnu; Kumar, Ashish; Mukherjee, Shaibal; Deshpande, Uday P.; Gupta, Mukul

    2013-10-28

    Sb-doped ZnO (SZO) thin films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system in the absence of oxygen ambient. The electrical, structural, morphological, and elemental properties of SZO thin films were studied for films grown at different substrate temperatures ranging from 200 C to 600 C and then annealed in situ at 800 C under vacuum (pressure ?5 10{sup ?8} mbar). Films grown for temperature range of 200500 C showed p-type conduction with hole concentration of 1.374 10{sup 16} to 5.538 10{sup 16} cm{sup ?3}, resistivity of 66.73312.758 ? cm, and carrier mobility of 4.9648.846 cm{sup 2} V{sup ?1} s{sup ?1} at room temperature. However, the film grown at 600 C showed n-type behavior. Additionally, current-voltage (IV) characteristic of p-ZnO/n-Si heterojunction showed a diode-like behavior, and that further confirmed the p-type conduction in ZnO by Sb doping. X-ray diffraction measurements showed that all SZO films had (002) preferred crystal orientation. X-ray photoelectron spectroscopy analysis confirmed the formation of Sb{sub Zn}2V{sub Zn} complex caused acceptor-like behavior in SZO films.

  5. Crystallographic analysis of human hemoglobin elucidates the structural basis of the potent and dual antisickling activity of pyridyl derivatives of vanillin

    SciTech Connect (OSTI)

    Abdulmalik, Osheiza; Ghatge, Mohini S.; Musayev, Faik N.; Parikh, Apurvasena; Chen, Qiukan; Yang, Jisheng; Nnamani, Ijeoma; Danso-Danquah, Richmond; Eseonu, Dorothy N.; Asakura, Toshio; Abraham, Donald J.; Venitz, Jurgen; Safo, Martin K.

    2011-11-01

    Pyridyl derivatives of vanillin increase the fraction of the more soluble oxygenated sickle hemoglobin and/or directly increase the solubility of deoxygenated sickle hemoglobin. Crystallographic analysis reveals the structural basis of the potent and dual antisickling activity of these derivatives. Vanillin has previously been studied clinically as an antisickling agent to treat sickle-cell disease. In vitro investigations with pyridyl derivatives of vanillin, including INN-312 and INN-298, showed as much as a 90-fold increase in antisickling activity compared with vanillin. The compounds preferentially bind to and modify sickle hemoglobin (Hb S) to increase the affinity of Hb for oxygen. INN-312 also led to a considerable increase in the solubility of deoxygenated Hb S under completely deoxygenated conditions. Crystallographic studies of normal human Hb with INN-312 and INN-298 showed that the compounds form Schiff-base adducts with the N-terminus of the ?-subunits to constrain the liganded (or relaxed-state) Hb conformation relative to the unliganded (or tense-state) Hb conformation. Interestingly, while INN-298 binds and directs its meta-positioned pyridine-methoxy moiety (relative to the aldehyde moiety) further down the central water cavity of the protein, that of INN-312, which is ortho to the aldehyde, extends towards the surface of the protein. These studies suggest that these compounds may act to prevent sickling of SS cells by increasing the fraction of the soluble high-affinity Hb S and/or by stereospecific inhibition of deoxygenated Hb S polymerization.

  6. Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas

    SciTech Connect (OSTI)

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2014-10-15

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}?X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}?X{sup ~1}A{sub 1} system and B{sup 2}??X{sup 2}? system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100?K higher than those of ground state CF{sub 2}, and about 200?K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

  7. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    SciTech Connect (OSTI)

    Li, Yangmei; Zhang, Xiaoping Zhang, Jiande; Dang, Fangchao; Yan, Xiaolu

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675?kV and the guiding magnetic field is 0.8?T, a combined microwave with an average power of about 4.0?GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diode voltage range from 675?kV to 755?kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720?kV/cm, which is relatively low corresponding to an output power of 4.0?GW. The stable combined output suggests the probability of long-pulse operation for the combined source.

  8. Dual specificity and novel structural folding of yeast phosphodiesterase-1 for hydrolysis of second messengers cyclic adenosine and guanosine 3',5'-Monophosphate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; Robinson, Howard; Wan, Yiqian; Wang, Yousheng; Ke, Hengming

    2014-08-05

    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a KM of 110 μM and a kcat of 16.9 s⁻¹ for cAMP and a KM of 105 μM and a kcat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (kcat/KMcAMP)/(kcat/KMcGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMP at 1.31 Å resolution reveal a new structural foldingmore » that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less

  9. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

    SciTech Connect (OSTI)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

    2004-10-11

    A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J{sub P}) and valley current (J{sub V}) densities should be greater than the short-circuit current density (J{sub sc}) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J{sub P}) and valley current density (J{sub V}) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios.

  10. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective alumina coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-12-01

    An alkali-containing silicate glass was recently proposed as a potential sealant for solid oxide fuel cells (SOFC). The glass contains appreciable amount of alkalis and retains its glassy microstructure at elevated temperatures over time. It is more compliant as compared to conventional glass-ceramics sealants and could potentially heal cracks during thermal cycling. In previous papers the thermal cycle stability, thermal stability and chemical compatibility were reported with yttria-stabilized zirconia (YSZ) electrolyte and YSZ-coated ferritic stainless steel interconnect. In this paper, we report the electrical stability of the compliant glass with aluminized AISI441 interconnect material under DC load in dual environment at 700-800oC. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two aluminized AISI441 metal coupons as well as plain AISI441 substrates. The results showed good electrical stability with the aluminized AISI441 substrate, while unstable behavior was observed for un-coated substrates. In addition, interfacial microstructure was examined with scanning electron microscopy and correlated with the measured resistivity results. Overall, the alumina coating demonstrated good chemical stability with the alkali-containing silicate sealing glass under DC loading.

  11. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    SciTech Connect (OSTI)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payloads communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.

  12. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer

    SciTech Connect (OSTI)

    Korhonen, Juha; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS ; Kapanen, Mika; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS; Department of Medical Physics, Tampere University Hospital, POB-2000, 33521 Tampere ; Keyrilinen, Jani; Seppl, Tiina; Tenhunen, Mikko

    2014-01-15

    Purpose: The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. Methods: T{sub 1}/T{sub 2}*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRI intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360 volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. Results: The average HU differences between the constructed pseudo-CT images and standard CT images of each test patient ranged from ?2 to 5 HUs and from 22 to 78 HUs in soft and bony tissues, respectively. The average local absolute value differences were 11 HUs in soft tissues and 99 HUs in bones. The planning target volume doses (volumes 95%, 50%, 5%) in the pseudo-CT images were within 0.8% compared to those in CT images in all of the 20 treatment plans. The average deviation was 0.3%. With all the test patients over 94% (IMRT) and 92% (VMAT) of dose points within body (lower than 10% of maximum dose suppressed) passed the 1 mm and 1% 2D gamma index criterion. The statistical tests (t- and F-tests) showed significantly improved (p ? 0.05) HU and dose calculation accuracies with the soft tissue conversion method instead of homogeneous representation of these tissues in MRI-based RTP images. Conclusions: This study indicates that it is possible to construct high quality pseudo-CT images by converting the intensity values of a single MRI series into HUs in the male pelvis, and to use these images for accurate MRI-based prostate RTP dose calculations.

  13. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    SciTech Connect (OSTI)

    Goodsitt, Mitchell M. Shenoy, Apeksha; Howard, David; Christodoulou, Emmanuel; Dewaraja, Yuni K.; Shen, Jincheng; Schipper, Matthew J.; Wilderman, Scott; Chun, Se Young

    2014-05-15

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (?17 17 mm) region of interest (ROI), 2 2, and 3 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.21.3 times greater in the medium body than in the small body phantom and 1.31.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 2 segmented subregions of the ROIs were 1.61.9 times greater than for no segmentation, and RMS errors for 3 3 segmented subregions were 2.32.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.

  14. SU-E-J-19: Accuracy of Dual-Energy CT-Derived Relative Electron Density for Proton Therapy Dose Calculation

    SciTech Connect (OSTI)

    Mullins, J; Duan, X; Kruse, J; Herman, M; Bues, M

    2014-06-01

    Purpose: To determine the suitability of dual-energy CT (DECT) to calculate relative electron density (RED) of tissues for accurate proton therapy dose calculation. Methods: DECT images of RED tissue surrogates were acquired at 80 and 140 kVp. Samples (RED=0.19?2.41) were imaged in a water-equivalent phantom in a variety of configurations. REDs were calculated using the DECT numbers and inputs of the high and low energy spectral weightings. DECT-derived RED was compared between geometric configurations and for variations in the spectral inputs to assess the sensitivity of RED accuracy versus expected values. Results: RED accuracy was dependent on accurate spectral input influenced by phantom thickness and radius from the phantom center. Material samples located at the center of the phantom generally showed the best agreement to reference RED values, but only when attenuation of the surrounding phantom thickness was accounted for in the calculation spectra. Calculated RED changed by up to 10% for some materials when the sample was located at an 11 cm radius from the phantom center. Calculated REDs under the best conditions still differed from reference values by up to 5% in bone and 14% in lung. Conclusion: DECT has previously been used to differentiate tissue types based on RED and Z for binary tissue-type segmentation. To improve upon the current standard of empirical conversion of CT number to RED for treatment planning dose calculation, DECT methods must be able to calculate RED to better than 3% accuracy throughout the image. The DECT method is sensitive to the accuracy of spectral inputs used for calculation, as well as to spatial position in the anatomy. Effort to address adjustments to the spectral calculation inputs based on position and phantom attenuation will be required before DECT-determined RED can achieve a consistent level of accuracy for application in dose calculation.

  15. Dual pressure-dual temperature isotope exchange process

    DOE Patents [OSTI]

    Babcock, D.F.

    1974-02-12

    A liquid and a gas stream, each containing a desired isotope, flow countercurrently through two liquid-gas contacting towers maintained at different temperatures and pressures. The liquid is enriched in the isotope in one tower while the gas is enriched within the other and a portion of at least one of the enriched streams is withdrawn from the system for use or further enrichment. The tower operated at the lower temperature is also maintained at the lower pressure to prevent formation of solid solvates. Gas flow between the towers passes through an expander-compressor apparatas to recover work from the expansion of gas to the lower pressure and thereby compress the gas returning to the tower of higher pressure. (Official Gazette)

  16. Dual and Triple Ion-Beam Irradiations of Fe, Fe(Cr) and Fe(Cr)-ODS Final Report: IAEA SMoRE CRP

    SciTech Connect (OSTI)

    Fluss, M J; Hsiung, L L; Marian, J

    2011-11-20

    Structures of nanoparticles in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y2O3 (K3) and Fe-20Cr-4.5Al-0.34Ti-0.5Y2O3 (MA956) oxide dispersion strengthened (ODS) ferritic steels produced by mechanical alloying (MA) and followed by hot extrusion have been studied using high-resolution transmission electron microscopy (HRTEM) techniques to gain insight about the formation mechanism of nanoparticles in MA/ODS steels. The observations of Y-Al-O complex-oxide nanoparticles in both ODS steels imply that decomposition of Y2O3 in association with internal oxidation of Al occurred during mechanical alloying. While the majority of oxide nanoparticles formed in both steels is Y4Al2O9, a few oxide particles of YAlO3 are also occasionally observed. These results reveal that Ti (0.3 wt %) plays an insignificant role in forming oxide nanoparticles in the presence of Al (4.5 wt %). HRTEM observations of crystalline nanoparticles larger than {approx}2 nm and amorphous or disordered cluster domains smaller than {approx}2 nm provide an insight into the formation mechanism of oxide nanoparticle in MA/ODS steels, which we believe from our observations involves a solid-state amorphous precursor followed by recrystallization. Dual ion-beam irradiations using He{sup +} + Fe{sup +8} ions were employed to gain more detailed insight about the role of nanoparticles in suppressing radiation-induced swelling. This is elaborated through TEM examinations of cavity distributions in ion-irradiated Fe-14Cr and K3-ODS ferritic steels. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoscale oxide particles and clusters in ion-irradiated K3-ODS are presented. Finally, we describe the results from triple ion-beam irradiations using H{sup +} + He{sup +} + Fe{sup +8} ions to emulate fusion first wall radiation effects. Preliminary work is reported that confirms the existence of significant hydrogen synergistic effects described earlier by Tanaka et al., for Fe(Cr) and by Wakai et al., for F82H reduced activation ferritic martensitic (RAF/M) steel. These previous results combined with our data suggest a complex new 'catalytic' mechanism whereby H interacts with the steady state population of defects and the embryonic cavities so as to accelerated cavity (void) growth in both Fe(Cr) and under special conditions in ODS steels.

  17. Diverse assemblies of the (4,4) grid layers exemplified in Zn(II)/Co(II) coordination polymers with dual linear ligands

    SciTech Connect (OSTI)

    Liu, Guang-Zhen; Li, Xiao-Dong; Xin, Ling-Yun; Li, Xiao-Ling; Wang, Li-Ya

    2013-07-15

    Diverse (4,4) grid layers are exemplified in five two-dimensional coordination polymers with dual {sub 2}-bridged ligands, namely, ([Zn(cbaa)(bpp)]H{sub 2}O){sub n} (1), [Zn{sub 2}(cbaa){sub 2}(bpy)]{sub n} (2), [Co{sub 2}(cbaa){sub 2}(bpp){sub 2}]{sub n} (3), [Co(cbaa)(bpp)]{sub n} (4), and [Co(bdaa)(bpp)(H{sub 2}O){sub 2}]{sub n} (5) (H{sub 2}cbaa=4-carboxybenzeneacetic acid, bpp=1,3-di(4-pyridyl)propane, bpy=4,4?-bipyridyl, and H{sub 2}bdaa=1,4-benzenediacrylic acid). For 1, two (4,4) grid layers with [ZnN{sub 2}O{sub 2}] tetrahedron as the node are held together by lattice water forming a H-bonding bilayer. Individual (4,4) grid layer in 2 is based on (Zn{sub 2}(OCO){sub 4}) paddlewheel unit as the node. Two (4,4) grid layers with (Co{sub 2}O(OCO){sub 2}) dimer as the node are covalently interconnected by organic ligands affording a thick bilayer of 3 with new framework topology. The different entanglements between two coincident (4,4) grid layers with [CoN{sub 2}O{sub 4}] octahedron as the node leads to two 2D?2D interpenetrated structures for 4 and 5. Furthermore, fluorescent properties of 1 and 2 as well as magnetic properties of 3 are investigated. - Graphical abstract: Diverse assemblies of the (4,4) grid layers with different network nodes forms five coordination polymers that are well characterized by IR, TGA, element analysis, fluorescent and magnetic measurement. - Highlights: Diverse assemblies of the (4,4) grid layers with different structural units as the nodes. A new topology type with the uninodal 6-connected net of (4{sup 12}.5{sup 2}.6) is found. Intense fluorescence emissions with a rare blue-shift of 55 nm compared to free carboxylate ligand.

  18. Dual contact pogo pin assembly

    DOE Patents [OSTI]

    Hatch, Stephen McGarry

    2015-01-20

    A contact assembly includes a base and a pair of electrical contacts supported by the base. A first end of the first electrical contact corresponds to a first end of the base and is configured to engage a first external conductive circuit element. A first end of the second electrical contact also corresponds to the first end of the base and is configured to engage a second external conductive circuit element. The first contact and the second contact are electrically isolated from one another and configured to compress when engaging an external connector element. The base includes an aperture positioned on a second end of the base outboard of a second end of the first and second electrical contacts. The aperture presents a narrowing shape with a wide mouth distal the electrical contacts and a narrow internal through-hole proximate the electrical contacts.

  19. Dual rotating shaft seal apparatus

    DOE Patents [OSTI]

    Griggs, J.E.; Newman, H.J.

    1983-06-16

    The report is directed to apparatus suitable for transferring torque and rotary motion through a wall in a manner which is essentially gas impermeable. The apparatus can be used for pressurizing, agitating, and mixing fluids and features two ferrofluidic, i.e., ferrometic seals. Each seal is disposed on one of two supported shafts and each shaft is operably connected at one end to a gear mechanism and at its other end to an adjustable coupling means which is to be connected to a rotatable shaft extending through a wall through which torque and rotary motion are to be transferred.

  20. Homopolar motor with dual rotors

    DOE Patents [OSTI]

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  1. CRADA Final Report: Application of Dual-Mode Inverter Control to Commercially Available Radial-Gap Mermanent Magnet Motors - Vol. I

    SciTech Connect (OSTI)

    McKeever, John W; Lawler, Jack; Downing, Mark; Stahlhut, Ronnie D; Bremmer, R.; Shoemaker, J. M.; Seksarian, A. K.; Poore, B.; Lutz, Jon F

    2006-05-01

    John Deere and Company (Deere), their partner, UQM Technologies, Inc. (UQM), and the Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center (PEEMRC) recently completed work on the cooperative research and development agreement (CRADA) Number ORNL 04-0691 outlined in this report. CRADA 04-0691 addresses two topical issues of interest to Deere: (1) Improved characterization of hydrogen storage and heat-transfer management; and (2) Potential benefits from advanced electric motor traction-drive technologies. This report presents the findings of the collaborative examination of potential operational and cost benefits from using ORNL/PEEMRC dual-mode inverter control (DMIC) to drive permanent magnet (PM) motors in applications of interest to Deere. DMIC was initially developed and patented by ORNL to enable PM motors to be driven to speeds far above base speed where the back-electromotive force (emf) equals the source voltage where it is increasingly difficult to inject current into the motor. DMIC is a modification of conventional phase advance (CPA). DMIC's dual-speed modes are below base speed, where traditional pulse-width modulation (PWM) achieves maximum torque per ampere (amp), and above base speed, where six-step operation achieves maximum power per amp. The modification that enables DMIC adds two anti-parallel thyristors in each of the three motor phases, which consequently adds the cost of six thyristors. Two features evaluated in this collaboration with potential to justify the additional thyristor cost were a possible reduction in motor cost and savings during operation because of higher efficiency, both permitted because of lower current. The collaborative analysis showed that the reduction of motor cost and base cost of the inverter was small, while the cost of adding six thyristors was greater than anticipated. Modeling the DMIC control displayed inverter efficiency gains due to reduced current, especially under light load and higher speed. This current reduction, which is the salient feature of DMIC, may be significant when operating duty cycles have low loads at high frequencies. Reduced copper losses make operation more efficient thereby reducing operating costs. In the Deere applications selected for this study, the operating benefit was overshadowed by the motor's rotational losses. Rotational losses of Deere 1 and Deere 2 dominate the overall drive efficiency so that their reduction has the greatest potential to improve performance. A good follow-up project would be to explore cost erective ways to reduce the rotational losses buy 66%. During this analysis it has been shown that, for a PM synchronous motor (PMSM), the DMIC's salient feature is its ability to minimize the current required to deliver a given power. The root-mean-square (rms) current of a motor is determined by the speed, power, motor drive parameters, and controls as I{sub rms} = (n, P, motor drive parameters, controls), where n is the relative speed, {omega}/{omega}{sub base} = {Omega}/{Omega}{sub base}, {omega} is the mechanical frequency, {Omega} is the electrical frequency, and P is the power. The characteristic current is the rms current at infinite speed, when all resistance and rotational losses are neglected. Expressions have been derived for the characteristic currents of PMSMs when the motor is controlled by CPA and by DMIC. The expression for CPA characteristic current is I{sub n{yields}{infinity}}{sup CPA} = nE{sub base}/X = nE{sub base}/n{Omega}{sub b}L = E{sub base}/{Omega}{sub b}L, which is strictly a function of the machine parameters, back-emf at base speed, base speed electrical frequency, and inductance. At high speeds, the rms current tends to remain constant even when the load-power requirements are reduced. The expression for DMIC characteristic current is I{sub n{yields}{infinity}}{sup DMIC} = P/3V{sub max} = P{pi}/3{radical}2V{sub dc}, which has nothing to do with machine parameters. This interesting result shows that at high speeds under DMIC control, the rms current diminis

  2. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 December 2008.

    SciTech Connect (OSTI)

    Kucera, Paul A.

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical camera identified salmon passage observations were identical to DIDSON target counts. However, optical cameras identified eight jack salmon (3 upstream, 5 downstream) less than 55 cm in length that DIDSON did not count as salmon because of the length criteria employed ({ge} 55 cm). Precision of the DIDSON technology was evaluated by comparing estimated net upstream salmon escapement and associated 95% confidence intervals between two DIDSON sonar units operated over a five day period. The DIDSON 1 salmon escapement was 145.7 fish ({+-} 2.3), and the DIDSON 2 escapement estimate was 150.5 fish ({+-} 5). The overlap in the 95% confidence intervals suggested that the two escapement estimates were not significantly different from each other. Known length salmon carcass trials were conducted in 2008 to examine the accuracy of manually measured lengths, obtained using DIDSON software, on high frequency files at a 5 m window length. Linear regression demonstrated a highly significant relationship between known lengths and manually measured salmon carcass lengths (p < 0.0001). A positive bias in manual length measurement of 6.8% to 8% existed among the two observers in the analysis. Total Secesh River salmon escapement (natural origin and hatchery) in 2008 was 912 fish. Natural origin salmon escapement in the entire Secesh River drainage was 847 fish. The estimated natural origin spawner abundance was 836 fish. Salmon spawner abundance in 2008 increased by three fold compared to 2007 abundance levels. The 10 year geometric mean natural origin spawner abundance was 538 salmon and was below the recommended viable population threshold level established by the ICTRT (2007). One additional Snake River basin salmon population was assessed for comparison of natural origin salmon spawner abundance. The Johnson Creek/EFSF Salmon River population had a 10 year geometric mean natural origin spawner abundance of 254 salmon. Salmon spawner abundance levels in both streams were below viable population thresholds. DIDSON technology has been used in the Secesh River to determine salmo

  3. Commissioning of a proton gantry equipped with dual x-ray imagers and a robotic patient positioner, and evaluation of the accuracy of single-beam image registration for this system

    SciTech Connect (OSTI)

    Wang, Ning; Ghebremedhin, Abiel; Patyal, Baldev

    2015-06-15

    Purpose: To check the accuracy of a gantry equipped with dual x-ray imagers and a robotic patient positioner for proton radiotherapy, and to evaluate the accuracy and feasibility of single-beam registration using the robotic positioner. Methods: One of the proton treatment rooms at their institution was upgraded to include a robotic patient positioner (couch) with 6 degrees of freedom and dual orthogonal kilovoltage x-ray imaging panels. The wander of the proton beam central axis, the wander of the beamline, and the orthogonal image panel crosswires from the gantry isocenter were measured for different gantry angles. The couch movement accuracy and couch wander from the gantry isocenter were measured for couch loadings of 50300 lb with couch rotations from 0 to 90. The combined accuracy of the gantry, couch, and imagers was checked using a custom-made 30 30 30 cm{sup 3} Styrofoam phantom with beekleys embedded in it. A treatment in this room can be set up and registered at a setup field location, then moved precisely to any other treatment location without requiring additional image registration. The accuracy of the single-beam registration strategy was checked for treatments containing multiple beams with different combinations of gantry angles, couch yaws, and beam locations. Results: The proton beam central axis wander from the gantry isocenter was within 0.5 mm with gantry rotations in both clockwise (CW) and counterclockwise (CCW) directions. The maximum wander of the beamline and orthogonal imager crosswire centers from the gantry isocenter were within 0.5 and 0.8 mm, respectively, with the gantry rotations in CW and CCW directions. Vertical and horizontal couch wanders from the gantry isocenter were within 0.4 and 1.3 mm, respectively, for couch yaw from 0 to 90. For a treatment with multiple beams with different gantry angles, couch yaws, and beam locations, the measured displacements of treatment beam locations from the one based on the initial setup beam registered at the gantry at 0/180 and couch yaw at 0 were within 1.5 mm in three translations and 0.5 in three rotations for a 200 lb couch loading. Conclusions: Results demonstrate that the gantry equipped with a robotic patient positioner and dual imaging panels satisfies treatment requirements for proton radiotherapy. The combined accuracy of the gantry, couch, and imagers allows a patient to be registered at one setup position and then moved precisely to another treatment position by commanding the robotic patient positioner and delivering treatment without requiring additional image registration.

  4. Experimental investigations of electron density and ion energy distributions in dual-frequency capacitively coupled plasmas for Ar/CF{sub 4} and Ar/O{sub 2}/CF{sub 4} discharges

    SciTech Connect (OSTI)

    Liu, Jia; Liu, Yong-Xin; Gao, Fei; Wang, You-Nian, E-mail: ynwang@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bi, Zhen-Hua [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2014-01-07

    The electron density and ion energy distribution (IED) are investigated in low-pressure dual-frequency capacitively coupled Ar/CF{sub 4} (90%/10%) and Ar/O{sub 2}/CF{sub 4} (80%/10%/10%) plasmas. The relations between controllable parameters, such as high-frequency (HF) power, low-frequency (LF) power and gas pressure, and plasma parameters, such as electron density and IEDs, are studied in detail by utilizing a floating hairpin probe and an energy resolved quadrupole mass spectrometer, respectively. In our experiment, the electron density is mainly determined by the HF power and slightly influenced by the LF power. With increasing gas pressure, the electron density first goes up rapidly to a maximum value and then decreases at various HF and LF powers. The HF power also plays a considerable role in affecting the IEDs under certain conditions and the ion energy independently controlled by the LF source is discussed here. For clarity, some numerical results obtained from a two-dimensional fluid model are presented.

  5. Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} lead-free ceramics

    SciTech Connect (OSTI)

    Wei, Yongbin; Jia, Yanmin E-mail: ymjia@zjnu.edu.cn; Wu, Jiang; Shen, Yichao; Wu, Zheng E-mail: ymjia@zjnu.edu.cn; Luo, Haosu

    2014-07-28

    A mutual enhancement action between the ferro-/piezoelectric polarization and the photoluminescent performance of rare earth Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) lead-free ceramics is reported. After Pr{sup 3+} doping, the KNN ceramics exhibit the maximum enhancement of ?1.2 times in the ferroelectric remanent polarization strength and ?1.25 times in the piezoelectric coefficient d{sub 33}, respectively. Furthermore, after undergoing a ferro-/piezoelectric polarization treatment, the maximum enhancement of ?1.3 times in photoluminescence (PL) was observed in the poled 0.3% Pr{sup 3+} doped sample. After the trivalent Pr{sup 3+} unequivalently substituting the univalent (K{sub 0.5}Na{sub 0.5}){sup +}, A-sites ionic vacancies will occur to maintain charge neutrality, which may reduce the inner stress and ease the domain wall motions, yielding to the enhancement in ferro-/piezoelectric performance. The polarization-induced enhancement in PL is attributed to the decrease of crystal symmetry abound the Pr{sup 3+} ions after polarization. The dual-enhancement of the ferro-/piezoelectric and photoluminescent performance makes the Pr{sup 3+} doped KNN ceramic hopeful for piezoelectric/luminescent multifunctional devices.

  6. Development of NS-TACSR with extremely suppressed aeolian noise and its application to 500 kV overhead transmission lines

    SciTech Connect (OSTI)

    Tsujimoto, K.; Furukawa, S. (Kansai Electric Power Co., Inc., Osaka (Japan)); Shimojima, K.; Yamamoto, K. (Hitachi Cable, Ltd., Hitachi (JP))

    1991-10-01

    Recently in Japan, with the unprecedented advance of residential area development in the suburbs of large cities, it has become quite difficult to secure the routes of EHV transmission lines from nuclear power plants in remote places to the suburbs of large cities, urging resolution of environmental problems related to transmission lines. In Japan, aerodynamic sound produced by conductors and insulators frequently caused noise problems. Having an opportunity of constructing a 500 kV transmission line through a residential are, we made a research to resolve this noise problem. This paper describes the characteristics of aeolian noise and preventive measures against it.

  7. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    SciTech Connect (OSTI)

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn; Hansel, Colleen

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or chemodenitrification, and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  8. Dual echelon femtosecond single-shot spectroscopy

    SciTech Connect (OSTI)

    Shin, Taeho; Wolfson, Johanna W.; Teitelbaum, Samuel W.; Kandyla, Maria; Nelson, Keith A.

    2014-08-15

    We have developed a femtosecond single-shot spectroscopic technique to measure irreversible changes in condensed phase materials in real time. Crossed echelons generate a two-dimensional array of time-delayed pulses with one femtosecond probe pulse. This yields 9 ps of time-resolved data from a single laser shot, filling a gap in currently employed measurement methods. We can now monitor ultrafast irreversible dynamics in solid-state materials or other samples that cannot be flowed or replenished between laser shots, circumventing limitations of conventional pump-probe methods due to sample damage or product buildup. Despite the absence of signal-averaging in the single-shot measurement, an acceptable signal-to-noise level has been achieved via background and reference calibration procedures. Pump-induced changes in relative reflectivity as small as 0.2%?0.5% are demonstrated in semimetals, with both electronic and coherent phonon dynamics revealed by the data. The optical arrangement and the space-to-time conversion and calibration procedures necessary to achieve this level of operation are described. Sources of noise and approaches for dealing with them are discussed.

  9. Dual amplitude pulse generator for radiation detectors

    DOE Patents [OSTI]

    Hoggan, Jerry M. (Idaho Falls, ID); Kynaston, Ronnie L. (Blackfoot, ID); Johnson, Larry O. (Island Park, ID)

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  10. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  11. The Aerodynamic, Dual- Wavelength Optical Spectrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Denver With the Agreement of: W. W. Szymanski Department of Experimental Physics University of Vienna A. Czitrovszky Institute for Solid State Physics and Optics...

  12. The Meritor Dual Mode Hybrid Powertrain CRADA

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  14. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  15. Dual wire welding torch and method

    DOE Patents [OSTI]

    Diez, Fernando Martinez (Peoria, IL); Stump, Kevin S. (Sherman, IL); Ludewig, Howard W. (Groveland, IL); Kilty, Alan L. (Peoria, IL); Robinson, Matthew M. (Peoria, IL); Egland, Keith M. (Peoria, IL)

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  16. Dual circuit embossed sheet heat transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1984-02-21

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  17. Dual-porosity ribbed fuel cell cathode

    DOE Patents [OSTI]

    Johnsen, Richard; Yuh, Chao-Yi; Alexander, Michael

    2005-05-10

    A fuel cell cathode comprising a cathode body having rib regions and base regions which connect the rib regions, the rib regions being of greater thickness and of less porosity than the base regions.

  18. Dual circuit embossed sheet heat transfer panel

    DOE Patents [OSTI]

    Morgan, Grover D. (St. Louis County, MO)

    1984-01-01

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  19. Dual resolution, vacuum compatible optical mount

    DOE Patents [OSTI]

    Halpin, John Michael (Tracy, CA)

    2011-10-04

    An optical mount for an optical element includes a mounting plate, a lever arm pivot coupled to mounting plate, and an adjustment plate. The optical mount also includes a flexure pivot mechanically coupling the adjustment plate to the mounting plate and a lever arm. The optical mount further includes a first adjustment device extending from the adjustment plate to make contact with the lever arm at a first contact point. A projection of a line from the first contact point to a pivot point, measured along the lever arm, is a first predetermined distance. The optical mount additionally includes a second adjustment device extending from the adjustment plate to make contact with the lever arm at a second contact point. A projection of a line from the second contact point to the pivot point, measured along the lever arm, is a second predetermined distance greater than the first predetermined distance.

  20. Dual-sided coded-aperture imager

    DOE Patents [OSTI]

    Ziock, Klaus-Peter (Clinton, TN)

    2009-09-22

    In a vehicle, a single detector plane simultaneously measures radiation coming through two coded-aperture masks, one on either side of the detector. To determine which side of the vehicle a source is, the two shadow masks are inverses of each other, i.e., one is a mask and the other is the anti-mask. All of the data that is collected is processed through two versions of an image reconstruction algorithm. One treats the data as if it were obtained through the mask, the other as though the data is obtained through the anti-mask.

  1. Dual-range linearized transimpedance amplifier system

    DOE Patents [OSTI]

    Wessendorf, Kurt O. (Albuquerque, NM)

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  2. Dual nozzle single pump fuel injection system

    SciTech Connect (OSTI)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is supplied by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.

  3. Dual-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, Thomas D. (Finleyville, PA); Reehl, Douglas P. (Pittsburgh, PA); Walbert, Gary F. (Library, PA)

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  4. Gas laser with dual plasma mixing

    DOE Patents [OSTI]

    Pinnaduwage, L.A.

    1999-04-06

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity. 2 figs.

  5. Dual phase multiplex polymerase chain reaction

    DOE Patents [OSTI]

    Pemov, Alexander (Charlottesville, VA); Bavykin, Sergei (Darien, IL)

    2008-10-07

    Highly specific and sensitive methods were developed for multiplex amplification of nucleic acids on supports such as microarrays. Based on a specific primer design, methods include five types of amplification that proceed in a reaction chamber simultaneously. These relate to four types of multiplex amplification of a target DNA on a solid support, directed by forward and reverse complex primers immobilized to the support and a fifth type--pseudo-monoplex polymerase chain reaction (PCR) of multiple targets in solution, directed by a single pair of unbound universal primers. The addition of the universal primers in the reaction mixture increases the yield over the traditional "bridge" amplification on a solid support by approximately ten times. Methods that provide multitarget amplification and detection of as little as 0.45-4.5.times.10.sup.-12 g (equivalent to 10.sup.2-10.sup.3 genomes) of a bacterial genomic DNA are disclosed.

  6. file://L:\\DOE-hanford.gov\\public\\boards\\hab\\advice\\advice48.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of overhead function definitions for accounts, to avoid increases above existing overhead costs. Environmental Restoration Environmental Restoration and Strategic Planning for...

  7. Testing the Effectiveness of an Avian Flight Diverter for Reducing...

    Open Energy Info (EERE)

    California Abstract Distribution power lines are placed high overhead, safely out of human reach; however, for birds, these overhead wires are a potentially fatal obstacle....

  8. High order harmonic generation in dual gas multi-jets

    SciTech Connect (OSTI)

    Tosa, Valer E-mail: calin.hojbota@itim-cj.ro; Hojbota, Calin E-mail: calin.hojbota@itim-cj.ro

    2013-11-13

    High order harmonic generation (HHG) in gas media suffers from a low conversion efficiency that has its origins in the interaction of the atom/molecule with the laser field. Phase matching is the main way to enhance the harmonic flux and several solutions have been designed to achieve it. Here we present numerical results modeling HHG in a system of multi-jets in which two gases alternate: the first gas jet (for example Ne) generates harmonics and the second one which ionizes easier, recover the phase matching condition. We obtain configurations which are experimentally feasible with respect to pressures and dimensions of the jets.

  9. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  10. Dual beam optical system for pulsed laser ablation film deposition

    DOE Patents [OSTI]

    Mashburn, Douglas N. (Knoxville, TN)

    1996-01-01

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.

  11. Dual beam optical system for pulsed laser ablation film deposition

    DOE Patents [OSTI]

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  12. Dual-phase reactor plant with partitioned isolation condenser

    DOE Patents [OSTI]

    Hui, Marvin M. (Cupertino, CA)

    1992-01-01

    A nuclear energy plant housing a boiling-water reactor utilizes an isolation condenser in which a single chamber is partitioned into a distributor plenum and a collector plenum. Steam accumulates in the distributor plenum and is conveyed to the collector plenum through an annular manifold that includes tubes extending through a condenser pool. The tubes provide for a transfer of heat from the steam, forming a condensate. The chamber has a disk-shaped base, a cylindrical sidewall, and a semispherical top. This geometry results in a compact design that exhibits significant performance and cost advantages over prior designs.

  13. Dual chain synthetic heparin-binding growth factor analogs

    DOE Patents [OSTI]

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  14. Dual chain synthetic heparin-binding growth factor analogs

    DOE Patents [OSTI]

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  15. Dual-axis resonance testing of wind turbine blades

    SciTech Connect (OSTI)

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  16. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  17. Dual-shank attachment design for omega seals

    DOE Patents [OSTI]

    Sattinger, Stanley S.

    1978-01-01

    An improved apparatus and process for attaching welded omega seal segments to reactor heads, standpipes, mechanisms, and plugs comprises a first shank in combination with a second shank to attach an omega seal at a metal-to-metal interface.

  18. Gravity Duals of Lifshitz-Like Fixed Points (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Phys.Rev.D78:106005,2008 Research Org: Stanford Linear Accelerator Center...

  19. Polarizing optical interferometer having a dual use optical element

    DOE Patents [OSTI]

    Kotidis, Petros A. (Waban, MA); Woodroffe, Jaime A. (North Reading, MA); Rostler, Peter S. (Newton, MA)

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  20. Dual mode fuel injector with one piece needle valve member

    DOE Patents [OSTI]

    Lawrence, Keith E. (Peoria, IL); Hinrichsen, Michael H. (Goodfield, IL); Buckman, Colby (Bellville, MI)

    2005-01-18

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively by inner and outer needle value members. The homogenous charged nozzle outlet set is defined by an outer needle value member that is moveably positioned in an injector body, which defines the conventional nozzle outlet set. The inner needle valve member is positioned in the outer needle valve member. The outer needle valve member is a piece component that includes at least one external guide surface, an external value surface and an internal valve seat.

  1. Investigations of Dual-Purpose Canister Direct Disposal Feasibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasible, at least for some DPCs, and for some disposal concepts (geologic host media). ... zone (partial desiccation) in the host rock, limited mostly to a few meters with ...

  2. Current-driven detection of terahertz radiation using a dual...

    Office of Scientific and Technical Information (OSTI)

    asymmetries. In addition to the responsivity enhancement, we report a relatively low noise equivalent power and a peculiar non-monotonic dependence of the responsivity on the...

  3. Dual Integrated Appliances as an Energy and Safety Solution for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as an Energy and Safety Solution for Low Income Weatherization Webinar Slides from the Building America webinar presented by the NorthernSTAR team. PDF icon...

  4. Dual sensitivity mode system for monitoring processes and sensors

    DOE Patents [OSTI]

    Wilks, Alan D. (Mount Prospect, IL); Wegerich, Stephan W. (Glendale Heights, IL); Gross, Kenneth C. (Bolingbrook, IL)

    2000-01-01

    A method and system for analyzing a source of data. The system and method involves initially training a system using a selected data signal, calculating at least two levels of sensitivity using a pattern recognition methodology, activating a first mode of alarm sensitivity to monitor the data source, activating a second mode of alarm sensitivity to monitor the data source and generating a first alarm signal upon the first mode of sensitivity detecting an alarm condition and a second alarm signal upon the second mode of sensitivity detecting an associated alarm condition. The first alarm condition and second alarm condition can be acted upon by an operator and/or analyzed by a specialist or computer program.

  5. Frequency dependence of the electrical asymmetry effect in dual...

    Office of Scientific and Technical Information (OSTI)

    reduction in electrical asymmetry is a sensitive function of the secondary electron emission coefficient, we are able to non-invasively estimate this coefficient as 0.035 for...

  6. Dual mode fuel injection system and fuel injector for same

    DOE Patents [OSTI]

    Lawrence, Keith E.; Tian, Ye

    2005-09-20

    A fuel injection system has the ability to produce two different spray patterns depending on the positioning of a needle control valve member. Positioning of the needle control valve member determines which of the two needle control chambers are placed in a low pressure condition. First and second needle valve members have closing hydraulic surfaces exposed to fluid pressure in the two needle control chambers. The injector preferably includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by the first and second needle valve members.

  7. Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project is looking at a packed or structured bed TES tank with molten salt flowing through it. Approach A computational modeling of molten salt heat transfer fluid pressure ...

  8. Dual-circuit embossed-sheet heat-transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1982-08-23

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  9. A Gravity Dual of Metastable Dynamical Supersymmetry Breaking...

    Office of Scientific and Technical Information (OSTI)

    Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; DUALITY; EXPECTATION VALUE; RENORMALIZATION; SUPERGRAVITY; SUPERSYMMETRY; SYMMETRY BREAKING; SU GROUPS Theory-HEP,HEPTH...

  10. Dual arm master controller for a bilateral servo-manipulator

    DOE Patents [OSTI]

    Kuban, Daniel P. (Oak Ridge, TN); Perkins, Gerald S. (Altadena, CA)

    1989-01-01

    A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences therebetween. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed.

  11. Project Profile: Indirect, Dual-Media, Phase Changing Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Thermal Storage FOA, plans to design and validate a prototype and demonstrate a full-size (800 MWth) thermal energy storage (TES) system based on phase change materials (PCMs). ...

  12. Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate...

    Office of Scientific and Technical Information (OSTI)

    ; Goddard, Amanda ; Chang, Ting-Kai ; Lin, Fu-Yang ; Van Beek, Ermond ; Papapoulos, Socrates ; Wang, Andrew H.-J. more ; Kubo, Tadahiko ; Ochi, Mitsuo ; Mukkamala, Dushyant ; ...

  13. Development of Dual-Gated Bilayer Graphene Device Structures...

    Office of Scientific and Technical Information (OSTI)

    DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: SPIE Optics %2B Photonics 2013 Conference held August 25-29, 2013 in San Diego, CA.; Related...

  14. Parameterized reduced-order models using hyper-dual numbers....

    Office of Scientific and Technical Information (OSTI)

    from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode...

  15. Polarizing optical interferometer having a dual use optical element

    DOE Patents [OSTI]

    Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-04-04

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  16. Project Profile: Dual-Purpose Heat Transfer Fluids for CSP

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory, under an ARRA CSP Award, is developing advanced heat transfer fluids (HTFs) by incorporating multifunctional engineered nanoparticles in heat transfer applications and thermal energy storage.

  17. Rotary engine with dual spark plugs and fuel injectors

    SciTech Connect (OSTI)

    Abraham, J.; Bracco, F.V.

    1991-06-11

    This patent describes a stratified charge rotary combustion engine having a housing having a running surface surrounding a working chamber, the running surface having a two-lobed profile, the lobes forming a junction in a top-dead-center region of the housing, a rotor mounted for rotation in the working chamber, a fuel injection and ignition system placed in the top-dead center region. It includes a pilot fuel injector fuel into the working chamber; a first spark plug located upstream of the pilot fuel injector for igniting fuel injected by the pilot fuel injector, the pilot fuel injector and the first spark plug being located on a downstream side of the junction; a main fuel injector for injecting fuel into the working chamber, the ignited pilot fuel acting to ignite fuel injected by the main injector; and a second spark plug located upstream of the main fuel injector and located upstream of the junction for igniting fuel/air mixture in the working chamber.

  18. Dual-cone double-helical downhole logging device

    DOE Patents [OSTI]

    Yu, Jiunn S. (Albuquerque, NM)

    1984-01-01

    A broadband downhole logging device includes a double-helix coil wrapped over a dielectric support and surrounded by a dielectric shield. The device may also include a second coil longitudinally aligned with a first coil and enclosed within the same shield for measuring magnetic permeability of downhole formations and six additional coils for accurately determining downhole parameters.

  19. Parameterized reduced-order models using hyper-dual numbers....

    Office of Scientific and Technical Information (OSTI)

    This report presents a methodology for developing parameterized ROMs, which is based on ... DOE Contract Number: AC04-94AL85000 Resource Type: Technical Report Research Org: Sandia ...

  20. Dual Cool Jets Enable Better Avionics Cooling | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plays ice hockey. Subscribe to Future Posts Select topics of interest to receive future blogs by email. Subscribe to all future posts Who Bill Gerstler What Aviation Aero-Thermal...

  1. Dual beam translator for use in Laser Doppler anemometry

    DOE Patents [OSTI]

    Brudnoy, David M. (Albany, NY)

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  2. Dual beam translator for use in Laser Doppler anemometry

    DOE Patents [OSTI]

    Brudnoy, D.M.

    1984-04-12

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  3. Dual-circuit segmented rail phased induction motor

    DOE Patents [OSTI]

    Marder, Barry M. (Albuquerque, NM); Cowan, Jr., Maynard (Albuquerque, NM)

    2002-01-01

    An improved linear motor utilizes two circuits, rather that one circuit and an opposed plate, to gain efficiency. The powered circuit is a flat conductive coil. The opposed segmented rail circuit is either a plurality of similar conductive coils that are shorted, or a plurality of ladders formed of opposed conductive bars connected by a plurality of spaced conductors. In each embodiment, the conductors are preferably cables formed from a plurality of intertwined insulated wires to carry current evenly.

  4. Advanced Materials for RSOFC Dual Operation with Low Degradation

    SciTech Connect (OSTI)

    Eric, Tang; Tony, Wood; Sofiane, Benhaddad; Casey, Brown; Hongpeng, He; Jeff, Nelson; Oliver, Grande; Ben, Nuttall; Mark, Richards; Randy, Petri

    2012-12-27

    Reversible solid oxide fuel cells (RSOFCs) are energy conversion devices. They are capable of operating in both power generation mode (SOFC) and electrolysis modes (SOEC). RSOFC can integrate renewable production of electricity and hydrogen when power generation and steam electrolysis are coupled in a system, which can turn intermittent solar and wind energy into "firm power." In this DOE EERE project, VPS continuously advanced RSOFC cell stack technology in the areas of endurance and performance. Over 20 types of RSOFC cells were developed in the project. Many of those exceeded performance (area specific resistance less than 300 mohmcm2) and endurance (degradation rate less than 4% per 1000 hours) targets in both fuel cell and electrolysis modes at 750C. One of those cells, RSOFC-7, further demonstrated the following: Steady-state electrolysis with a degradation rate of 1.5% per 1000 hours. Ultra high current electrolysis over 3 A/cm2 at 75% water electrolysis efficiency voltage of 1.67 V. Daily SOFC/SOEC cyclic test of over 600 days with a degradation rate of 1.5% per 1000 hours. Over 6000 SOFC/SOEC cycles in an accelerated 20-minute cycling with degradation less than 3% per 1000 cycles. In RSOFC stack development, a number of kW-class RSOFC stacks were developed and demonstrated the following: Steady-state electrolysis operation of over 5000 hours. Daily SOFC/SOEC cyclic test of 100 cycles. Scale up capability of using large area cells with 550 cm2 active area showing the potential for large-scale RSOFC stack development in the future. Although this project is an open-ended development project, this effort, leveraging Versa Power Systems' years of development experience, has the potential to bring renewable energy RSOFC storage systems significantly closer to commercial viability through improvements in RSOFC durability, performance, and cost. When unitized and deployed in renewable solar and wind installations, an RSOFC system can enable higher availability for intermittent renewable resources, thereby improving the commercial viability of these types of energy resources.

  5. Portable dual field gradient force multichannel flow cytometer device with a dual wavelength low noise detection scheme

    DOE Patents [OSTI]

    James, Conrad D; Galambos, Paul C; Derzon, Mark S; Graf, Darin C; Pohl, Kenneth R; Bourdon, Chris J

    2012-10-23

    Systems and methods for combining dielectrophoresis, magnetic forces, and hydrodynamic forces to manipulate particles in channels formed on top of an electrode substrate are discussed. A magnet placed in contact under the electrode substrate while particles are flowing within the channel above the electrode substrate allows these three forces to be balanced when the system is in operation. An optical detection scheme using near-confocal microscopy for simultaneously detecting two wavelengths of light emitted from the flowing particles is also discussed.

  6. A comparison of advanced distillation control techniques for a propylene/propane splitter

    SciTech Connect (OSTI)

    Gokhale, V.; Hurowitz, S.; Riggs, J.B.

    1995-12-01

    A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are DMC, nonlinear process model based control, and artificial neural networks. Each controller was tuned based upon setpoint changes in the overhead production composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DMC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

  7. Comparison of advanced distillation control methods. First annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1996-11-01

    A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are dynamic matrix control (DMC), nonlinear process model based control, and artificial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

  8. Comparison of advanced distillation control methods. First annual report

    SciTech Connect (OSTI)

    1996-11-01

    A detailed dynamic simulator of a propylene/propane (C3) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are DMC, nonlinear process model based control, and articial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DMC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

  9. September

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber and 4 valves. LANL computer model boosts engine efficiency The KIVA model has been instrumental in...

  10. ARIA Cell Solenoid Design Considerations

    SciTech Connect (OSTI)

    Schulze, Martin E.

    2015-05-20

    Detailed schematics of the structure of the preliminary ARIA solenoid cell design including overhead and cross section views and dimensions.

  11. DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and Rigging Manual)

    Office of Environmental Management (EM)

    7 OVERHEAD AND GANTRY CRANES 7-i Chapter 7 Overhead and Gantry Cranes This chapter specifies operation, inspection, maintenance, and testing requirements for the use of overhead and gantry cranes and implements the requirements of ASME B30.2 ["Overhead and Gantry Cranes (Top- Running Bridge, Single or Multiple Girder, Top-Running Trolley Hoist)"], B30.11 ("Monorail Systems and Underhung Cranes"), and B30.17 ["Overhead and Gantry Cranes (Top-Running Bridge, Single Girder,

  12. Dual x-ray fluorescence spectrometer and method for fluid analysis

    DOE Patents [OSTI]

    Wilson, Bary W.; Shepard, Chester L.

    2005-02-22

    Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.

  13. Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth's magnetopause

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hasegawa, H.; Sonnerup, B. U. Ö.; Eriksson, S.; Nakamura, T. K. M.; Kawano, H.

    2015-02-03

    We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that amore » magnetic flux rope with a diameter of ~ 3000 km was embedded in the magnetopause. The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by ~ 390 km) better predicts magnetic field variations actually measured along the TH-E path than does the 2-D Grad–Shafranov reconstruction using the data from TH-C (which was closer to TH-E than TH-D and was at ~ 1250 km from TH-E). Such a 3-D nature suggests that the field lines reconnected at the two X-lines on both sides of the flux rope are entangled in a complicated way through their interaction with each other. The generation process of the observed 3-D flux rope is discussed on the basis of the reconstruction results and the pitch-angle distribution of electrons observed in and around the FTE.« less

  14. Dual vortex theory of strongly interacting electrons: A non-Fermi...

    Office of Scientific and Technical Information (OSTI)

    As discovered in the quantum Hall effect, a very effective ... (unbroken), leads to spin-charge confinement (separation). ... Resource Relation: Journal Name: Physical Review. B, ...

  15. Toward the AdS/CFT gravity dual for high energy collisions. I...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 72 PHYSICS OF ELEMENTARY ... COORDINATES; DE SITTER GROUP; EINSTEIN FIELD EQUATIONS; ... RAPIDITY; QUANTUM FIELD THEORY; QUARK-ANTIQUARK ...

  16. Toward the AdS/CFT gravity dual for high energy collisions. III...

    Office of Scientific and Technical Information (OSTI)

    The equilibration of matter and onset of hydrodynamics can be understood in the AdSCFT context as a gravitational collapse process, in which 'collision debris' create a horizon. ...

  17. THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY

    SciTech Connect (OSTI)

    Zolotov, Adi; Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Willman, Beth [Haverford College, Department of Astronomy, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Brooks, Alyson M. [California Institute of Technology, M/C 350-17, Pasadena, CA 91125 (United States); Governato, Fabio [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Shen, Sijing; Wadsley, James, E-mail: az481@nyu.ed, E-mail: bwillman@haverford.ed [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L88 4M1 (Canada)

    2010-09-20

    Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] and [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.

  18. Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants

    SciTech Connect (OSTI)

    C. Brinker; George Xomeritakis; C.-Y. Tsai; Ying-Bing Jiang

    2009-04-30

    CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)

  19. Final Report. Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    SciTech Connect (OSTI)

    Normann, Randy A

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  20. Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    SciTech Connect (OSTI)

    Normann, Randy A.

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  1. Dual Durameter Blow Molded Rocker Cover Design With Unique Isolation Strategy

    DOE Patents [OSTI]

    Freese, V, Charles Edwin

    2000-07-11

    The rocker arm cover on a diesel engine can be formed of a rigid molded plastic material to minimize the transmission of noise into the atmosphere. Sonic vibration of the cover can be reduced by reducing the cover material stiffness. The reduced stiffness of the cover material allows the roof area of the cover to be momentarily displaced away from the cylinder head in the presence of an acoustic wave, so that the roof area is not able to develop the restoring force that is necessary for vibrational motion.

  2. Design Optimization of Vena Cava Filters: An application to dual filtration devices

    SciTech Connect (OSTI)

    Singer, M A; Wang, S L; Diachin, D P

    2009-12-03

    Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic filter into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design optimization to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an optimally designed vena cava filter. Computational fluid dynamics is coupled with a nonlinear optimization algorithm to determine the optimal configuration of trapped model thrombus in the inferior vena cava. The location and shape of the thrombus are parameterized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design optimization framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava filters that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of thrombus trapped along the cava wall reduces the disruption to the flow, but increases the area exposed to abnormal wall shear stress. Computer-based design optimization is a useful tool for developing vena cava filters. Characterizing and parameterizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable.

  3. Dual effects of stochastic heating on electron injection in laser wakefield acceleration

    SciTech Connect (OSTI)

    Deng, Z. G.; Wang, X. G.; Yang, L.; Zhou, C. T.; Yu, M. Y.; Ying, H. P.

    2014-08-15

    Electron injection into the wakefield of an intense short laser pulse by a weaker laser pulse propagating in the opposite direction is reconsidered using two-dimensional (2D) particle-in-cell simulations as well as analytical modeling. It is found that for linearly polarized lasers the injection efficiency and the quality of the wakefield accelerated electrons increase with the intensity of the injection laser only up to a certain level, and then decreases. Theory and simulation tracking test electrons originally in the beat region of the two laser pulses show that the reduction of the injection efficiency at high injection-laser intensities is caused by stochastic overheating of the affected electrons.

  4. Argonne working with Ford and FCA US to study dual-fuel vehicles | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Visiting IIT Professor Carrie Hall troubleshoots the engine wiring harness. The Argonne system can replicate speed and load conditions found during typical vehicle operation for both naturally aspirated as well as turbocharged engines. (Click to view larger.) Visiting IIT Professor Carrie Hall troubleshoots the engine wiring harness. The Argonne system can replicate speed and load conditions found during typical vehicle operation for both naturally aspirated as well as

  5. DUAL Gamma-Ray Mission (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    von Ballmoos, P. ; Toulouse, CESR ; Takahashi, T. ; JAXA, Sagamihara ; Gehrels, N. ; NASA, Goddard ; Tueller, J. ; NASA, Goddard ; Baring, M. ; Rice U. ; Beacom, J. ; Ohio...

  6. Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics

    DOE Patents [OSTI]

    Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

    2014-04-08

    Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

  7. STATUS OF THE DUAL POLARIZATION UPGRADE ON THE NOAAs RESEARCH...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patterns (VCP) of the WSR-88Ds "CLOUD" VCP of KOUN 4 Sensitivity of KOUN with enhanced signal processing. Radar RHIs correspond to the vertical black lines in the pictures 5...

  8. Discovery of a BTK/MNK dual inhibitor for lymphoma and leukemia...

    Office of Scientific and Technical Information (OSTI)

    Sci.) 2 ; Harvard-Med) 2 less + Show Author Affiliations (UST - China) ( Publication Date: 2016-01-13 OSTI Identifier: 1234758 Resource Type: Journal Article Resource ...

  9. Zero field high frequency oscillations in dual free layer spin torque oscillators

    SciTech Connect (OSTI)

    Braganca, P. M. Pi, K.; Zakai, R.; Childress, J. R.; Gurney, B. A.

    2013-12-02

    We observe microwave oscillations in relatively simple spin valve spin torque oscillators consisting of two in-plane free layers without spin polarizing layers. These devices exhibit two distinct modes which can reach frequencies >25?GHz in the absence of an applied magnetic field. Macrospin simulations identify these two modes as optical and acoustic modes excited by the coupling of the two layers through dipole field and spin torque effects. These results demonstrate the potential of this system as a large output power, ultrahigh frequency signal generator that can operate without magnetic field.

  10. Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2009-07-01

    The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotopes nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-m sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

  11. Control Strategy for a Dual Loop EGR System to Meet Euro 6 and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lowering emissions of diesel engines. PDF icon deer09czarnowski.pdf More Documents & Publications Can Future Emissions Limits be Met with a Hybrid EGR System Alone? Strategies ...

  12. Dual baseline search for muon antineutrino disappearance at 0.1 eV²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.; Huelsnitz, W.; Aguilar-Arevalo, A. A.; Alcaraz-Aunion, J. L.; Brice, S. J.; Brown, B. C.; Bugel, L.; Catala-Perez, J.; Church, E. D.; Conrad, J. M.; et al

    2012-09-25

    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ν¯μ at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the νμ background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ν¯μ disappearance that dramatically improves upon prior limits inmore »the Δm²=0.1–100 eV² region.« less

  13. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    DOE Patents [OSTI]

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  14. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    SciTech Connect (OSTI)

    Maiden, Wendy M.

    2010-05-01

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

  15. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  16. Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet

    DOE Patents [OSTI]

    Praeg, W.F.

    1982-03-09

    Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.

  17. Photo of the Week: The First Energy-Efficient Dual-Paned Windows...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technologies Division at Berkeley Lab is aimed at developing new glazing materials, windows simulation software and other advanced high-performance window systems....

  18. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOE Patents [OSTI]

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  19. Dual-Color Auto-Calibration Scanning-Angle Evanescent Field Microscope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can be used for live cell imaging as well as for examining single molecule dynamics. Total internal reflection fluorescence microscopy (TIRFM) is a mode of...

  20. Develop the dual fuel conversion system for high output, medium speed diesel engines. Final report

    SciTech Connect (OSTI)

    1998-07-16

    The original plan for the project involved design modifications to an existing system to enhance its performance and increase the limit of power that was achieved by the original design and to apply the higher performance product to the full sized engine and test its performance. The new system would also be applied to a different engine model. The specific work would include the redesign of gas injectors, piston configurations and two types of igniters, engine instrumentation, monitoring and testing.

  1. Using Hyper-Dual Numbers To Construct Parameterized Reduced-Order...

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these results? Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My ...

  2. Single line-of-sight dual energy backlighter for mix width experiments...

    Office of Scientific and Technical Information (OSTI)

    S. A. ; Felker, S. ; Seugling, R. ; Doane, D. ; Wallace, R. 1 ; Guymer, T. M. ; Moore, A. S. 2 ; Whiting, N. ; Sorce, C. 3 + Show Author Affiliations Lawrence Livermore ...

  3. Lean NOx Reduction with Dual Layer LNT/SCR Catalysts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    out coupled ammonia generation and NOx reduction, achieving high NOx conversion with minimal ammonia slip PDF icon deer12harold.pdf More Documents & Publications Development of ...

  4. GUIDANCE MEMORANDUM_#11A_Approval_Process_for_Dual_Compensation_Waivers ....pdf

    Office of Environmental Management (EM)

  5. A Global Climate Model Agent for High Spatial and Temporal Resolution Data

    SciTech Connect (OSTI)

    Wood, Lynn S.; Daily, Jeffrey A.; Henry, Michael J.; Palmer, Bruce J.; Schuchardt, Karen L.; Dazlich, Donald A.; Heikes, Ross P.; Randall, David

    2015-02-01

    Fine cell granularity in modern climate models can produce terabytes of data in each snapshot, causing significant I/O overhead. To address this issue, a method of reducing the I/O latency of high-resolution climate models by identifying and selectively outputting regions of interest is presented. Working with a Global Cloud Resolving Model and running with up to 10240 processors on a Cray XE6, this method provides significant I/O bandwidth reduction depending on the frequency of writes and size of the region of interest. The implementation challenges of determining global parameters in a strictly core-localized model and properly formatting output files that only contain subsections of the global grid are addressed, as well as the overall bandwidth impact and benefits of the method. The gains in I/O throughput provided by this method allow dual output rates for high-resolution climate models: a low-frequency global snapshot as well as a high-frequency regional snapshot when events of particular interest occur.

  6. FlexiWay: A Cache Energy Saving Technique Using Fine-grained Cache Reconfiguration

    SciTech Connect (OSTI)

    Mittal, Sparsh ORNL; Zhang, Zhao Iowa State University; Vetter, Jeffrey S ORNL

    2013-01-01

    Recent trends of CMOS scaling and use of large last level caches (LLCs) have led to significant increase in the leakage energy consumption of LLCs and hence, managing their energy consumption has become extremely important in modern processor design. The conventional cache energy saving techniques require offline profiling or provide only coarse granularity of cache allocation. We present FlexiWay, a cache energy saving technique which uses dynamic cache reconfiguration. FlexiWay logically divides the cache sets into multiple (e.g. 16) modules and dynamically turns off suitable and possibly different number of cache ways in each module. FlexiWay has very small implementation overhead and it provides fine-grain cache allocation even with caches of typical associativity, e.g. an 8-way cache. Microarchitectural simulations have been performed using an x86-64 simulator and workloads from SPEC2006 suite. Also, FlexiWay has been compared with two conventional energy saving techniques. The results show that FlexiWay provides largest energy saving and incurs only small loss in performance. For single, dual and quad core systems, the average energy saving using FlexiWay are 26.2%, 25.7% and 22.4%, respectively.

  7. Remote handling facility and equipment used for space truss assembly

    SciTech Connect (OSTI)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs.

  8. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, Wallace B. (Los Alamos, NM); DuBois, David H. (Los Alamos, NM)

    1998-08-11

    A digital system provides sending and receiving gateways for HIPPI interfaces. Electronic logic circuitry formats data signals and overhead signals in a data frame that is suitable for transmission over a connecting fiber optic link. Multiplexers route the data and overhead signals to a framer module. The framer module allocates the data and overhead signals to a plurality of 9-byte words that are arranged in a selected protocol. The formatted words are stored in a storage register for output through the gateway.

  9. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure the ...

  10. Cost and Performance Baseline for Fossil Energy Plants; Volume...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rich Solvent Rich Solvent Direct Contact Cooler (DCC) and Polishing Scrubber Wash Water Filter DCC Circulating Water Filter Blower Condenser Product CO 2 Overhead...

  11. file://L:\\DOE-hanford.gov\\public\\boards\\hab\\advice\\advice85.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of disproportionate cuts in cleanup work compared to cuts in overhead and indirect costs, and a virtual halt of progress in the high-priority Environmental Restoration...

  12. #041.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that spending on activity indirectly related to cleanup activity (i.e. administrative costs and program overheads) has not been reduced to the same degree as critical programs...

  13. Charter for the Commission to Review the Effectiveness of the...

    Office of Environmental Management (EM)

    of the national laboratories, including consolidation and realignment, reducing overhead costs, reevaluating governance models using industrial and academic bench marks for...

  14. NREL: Photovoltaics Research - Process Development and Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Development and Integration Laboratory Photovoltaics Research Overhead photo a male standing next to a large circular piece of equipment. Work with Us Are you interested in...

  15. Software Defined Networking (SDN) Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    device firmware is greatly reduced, eliminating some patch management and configuration administration overhead. Barriers While SDN simplifies current packet structure and...

  16. GettingStartedVideoconferenceSlides2014.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are well balanced Minimal system overhead - Simple lightweight OS (CNK) minimizes noise Standard Programming Models - Fortran, C, C++ & Python languages supported -...

  17. Hyper-Threading

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a program execution. In addition, for HT to realize any performance benefit, low communication overhead and high parallel efficiency (smaller sequential portion in the...

  18. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inspection, and overhead SIR savings to investment ratio TRL technology readiness level UL Underwriters Laboratories W Watt vi This report is available at no cost from the...

  19. EIS-0486: Plains & Eastern Clean Line Transmission Project |...

    Broader source: Energy.gov (indexed) [DOE]

    Project. The proposed project would include an overhead 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the...

  20. Microsoft PowerPoint - salishan_05_kogge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 20, 2005 Topics * How We Spend Today's Silicon * Raw Performance & Storage * Factoring in Overheads * Chip Level Architectural Design Space * Explorations Design...

  1. DOE FACT SHEET: Net Zero Performance Analysis and Passive Survivabilit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Results The study resulted in a suite of recommendations designed to increase the performance of the base design: * Reduce overhead lighting energy use by maximizing daylight, task ...

  2. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. Description High-voltage electric power transmission...

  3. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. High-voltage electric power transmission cables based...

  4. Microsoft Word - DOE-ID-INL-15-034.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The project would also include electrical additions including the addition of two transformers, panels, conduit, wiring, outlets and a new overhead cable tray. All the electrical...

  5. CrayPat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which is to be viewed with the Cray Apprentice2 tool. Automatic Program Analysis (APA) Since a sampling experiment runs with little overhead and a detailed tracing...

  6. A new load-balancing strategy for the solution of dynamical large...

    Office of Scientific and Technical Information (OSTI)

    The strategy incurs minimal overhead and is scalable. Authors: Crivelli, Silvia ; Head-Gordon, Teresa Publication Date: 2004-03-01 OSTI Identifier: 836544 Report Number(s): ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... The strategy incurs minimal overhead and is scalable. March 2004 , IEEE Protein-folding via divide-and-conquer optimization Oliva, Ricardo ; Crivelli, Silvia ; Meza, Juan Full Text ...

  8. Hoisting and Rigging

    Office of Environmental Management (EM)

    7 OVERHEAD AND GANTRY CRANES 7-i This chapter specifies operation, inspection, maintenance, and testing requirements for the use of overhead and gantry cranes and implements the requirements of ASME B30.2 ["Overhead and Gantry Cranes (Top- Running Bridge, Single or Multiple Girder, Top-Running Trolley Hoist)"], B30.11 ("Monorail Systems and Underhung Cranes"), and B30.17 ["Overhead and Gantry Cranes (Top-Running Bridge, Single Girder, Underhung Hoist")] (for latest

  9. Hanford Blog Archive - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery and Reinvestment Act. December 20, 2010 Essential overhead maintenance crane installed in Hanford Waste Treatment Plant On Friday, crews at the Hanford Waste...

  10. Microsoft PowerPoint - Interface_Levin

    Office of Environmental Management (EM)

    Reduce the number of heavy lifts Plant operations Minimize spent fuel pool overhead crane use Radiation protection and security requirements Cost considerations Additional...

  11. Silver-mordenite for radiologic gas capture from complex streams. Dual catalytic CH3I decomposition and I confinement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nenoff, Tina M.; Rodriguez, Mark A.; Soelberg, Nick R.; Chapman, Karena W.

    2014-05-09

    The selective capture of radiological iodine (129I) is a persistent concern for safe nuclear energy. In these nuclear fuel reprocessing scenarios, the gas streams to be treated are extremely complex, containing several distinct iodine-containing molecules amongst a large variety of other species. Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I2) to form AgI. However the mechanisms for organoiodine capture is not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of the recovered sorbent.more » Tools applied include infrared spectroscopy, thermogravimetric analysis with mass spectrometry, micro X-ray fluorescence, powder X-ray diffraction analysis, and pair distribution function analysis. Moreover, the MOR zeolite catalyzes decomposition of the methyl iodide through formation of surface methoxy species (SMS), which subsequently reacts with water in the mixed gas stream to form methanol, and with methanol to form dimethyl ether, which are both detected downstream in the effluent. The liberated iodine reacts with Ag in the MOR pore to the form subnanometer AgI clusters, smaller than the MOR pores, suggesting that the iodine is both physically and chemically confined within the zeolite.« less

  12. Charge noise analysis of metal oxide semiconductor dual-gate Si/SiGe quantum point contacts

    SciTech Connect (OSTI)

    Kamioka, J.; Oda, S.; Kodera, T.; Takeda, K.; Obata, T.; Tarucha, S.

    2014-05-28

    The frequency dependence of conductance noise through a gate-defined quantum point contact fabricated on a Si/SiGe modulation doped wafer is characterized. The 1/f{sup 2} noise, which is characteristic of random telegraph noise, is reduced by application of a negative bias on the global top gate to reduce the local gate voltage. Direct leakage from the large global gate voltage also causes random telegraph noise, and therefore, there is a suitable point to operate quantum dot measurement.

  13. Dopant effects on 2-ethyl-1-hexanol: A dual-channel impedance spectroscopy and neutron scattering study

    SciTech Connect (OSTI)

    Singh, Lokendra P.; Richert, Ranko; Raihane, Ahmed; Alba-Simionesco, Christiane

    2015-01-07

    A two-channel impedance technique has been used to study the relaxation behavior of 2-ethyl-1-hexanol with polar and non-polar dopants at the few percent concentration level over a wide temperature and frequency range. The non-polar dopants shift both the Debye and the primary structural relaxation time in the same direction, to shorter times for 3-methylpentane and to longer times for squalane, consistent with the relative glass transition temperatures (T{sub g}) of the components. By contrast, polar dopants such as water or methanol modify the ?-process towards slower dynamics and increased amplitude, while the Debye process is accelerated and with a decreased amplitude. This effect of adding water to alcohol is explained by water promoting more compact structures with reduced Kirkwood correlation factors. This picture is consistent with a shift in the neutron scattering pre-peak to lower scattering vectors and with simulation work on alcohol-water systems.

  14. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOE Patents [OSTI]

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  15. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect (OSTI)

    2012-01-30

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPCs initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPCs next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPCs $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  16. Component mode synthesis methods applied to 3D heterogeneous core calculations, using the mixed dual finite element solver MINOS

    SciTech Connect (OSTI)

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2006-07-01

    This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  17. Dual baseline search for muon neutrino disappearance at 0.5 eV2 2 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahn, K B.M.

    2011-06-01

    The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the &Delta'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40 eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

  18. Electrical Stability of a Novel Refractory Sealing Glass in a Dual Environment for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Meinhardt, Kerry D.

    2010-03-01

    A novel refractory alkaline-earth silicate (Sr-Ca-Y-B-Si) sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was sealed between two metallic interconnect plates and tested for electrical stability at elevated temperatures and duel environments under DC loading. The isothermal aging results showed very stable electrical resistivity with values 5-9 orders of magnititudes higher than typical SOFC function materials at 850 degrees C for ~700 hr. For comparison, the state-of-the-art sealing glass (G18, Ba-Ca-Al-B-Si) was also evaluated in a similar condition and showed less stable in accelerated tests at 830 degrees C for ~100 hr. Interfacial microstruicture was characterized and possible reactions were discussed.

  19. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  20. Systems and methods for reactive distillation with recirculation of light components

    DOE Patents [OSTI]

    Stickney, Michael J. (Nassau Bay, TX); Jones, Jr., Edward M. (Friendswood, TX)

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  1. Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures

    SciTech Connect (OSTI)

    Tedder, D.W.

    1984-08-07

    A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

  2. Radiological Worker Training Power Point Slides for App. A

    Energy Savers [EERE]

    30-2008 DOE HANDBOOK Radiological Worker Training DOE-HDBK-1130-2008 Overheads December 2008 Reaffirmed 2013 OT 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in

  3. Investigation of conductor swinging by wind and its application for design of compact transmission line

    SciTech Connect (OSTI)

    Tsujimoto, K.; Fujii, K.; Kubokawa, H.; Okomura, T.; Simojima, K.; Yoshioka, V.

    1982-11-01

    In Japan it has recently become necessary to shorten the interphase spacing in overhead transmission lines because of land limitations and economical considerations. In this connection, the authors have attempted to analyze, in-depth, the possibilities of shortened interphase spacing via conductor swinging caused by wind effects: one of the important factors in the design of more compact overhead lines. This paper describes not only the investigative results of conductor swinging that were obtained both through computer simulation and in 3 years of full scale field line testing, but also design methodology for compact overhead lines based on these results.

  4. LANL computer model boosts engine efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL computer model boosts engine efficiency LANL computer model boosts engine efficiency The KIVA model has been instrumental in helping researchers and manufacturers understand combustion processes, accelerate engine development and improve engine design and efficiency. September 25, 2012 KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber and 4 valves. KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber

  5. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  6. CX-005674: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Portland General Electric Overhead Line Crossing of Keeler-Oregon CityCX(s) Applied: B4.9Date: 04/15/2011Location(s): Willamette Meridian, OregonOffice(s): Bonneville Power Administration

  7. Mr. David Abney Chief Executive Officer Wise Services, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Wise Services) employee that struck a fiber optics line at the DOE Portsmouth Gaseous ... The boom on the track hoe struck an overhead fiber optics communications cable and broke ...

  8. Lands & Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    essential to distributing electricity to your home or office, they are not designed for human contact. It is extremely dangerous to touch a power line, whether it is overhead or...

  9. WY Final EA DRAFT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    made throughout the EA: The overhead cable line located along OR 202 is owned by ... The sheet pile wall would extend along OR 202 for a total length of approximately 800 ...

  10. Job Launch Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The 9,572 compute nodes each have a quad-core 2.3 GHz Opteron processor and 8 GB of memory shared by the 4 cores. The compute nodes run a restricted low-overhead operating...

  11. CX-006249: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Blast and Paint West Hackberry Heat Exchanger Headers and Overhead Rack PipingCX(s) Applied: B1.3Date: 06/20/2011Location(s): Cameron Parish, LouisianaOffice(s): Strategic Petroleum Reserve Field Office

  12. EA-0962: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Routine Operation of a 12-kilovolt Overhead Powerline and Formal Authorization for a 10-inch and 8-inch Fresh Water Pipeline Right-of-Way at Naval Petroleum Reserve No. 1, Kern County, California

  13. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  14. CX-011999: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Burial of Overhead Fiber Optic Cable at Grand Coulee Radio Station CX(s) Applied: B4.7 Date: 04/21/2014 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

  15. file://L:\\DOE-hanford.gov\\public\\boards\\hab\\advice\\advice65.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    began working with the Department of Energy (DOE) in 1995 to ensure that the values of citizens ... such reasons as indirect and overhead costs exceeding budgets in the following ...

  16. CX-012232: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Swan Valley-Teton Overhead Fiber Line Install CX(s) Applied: B4.6 Date: 06/02/2014 Location(s): Idaho Offices(s): Bonneville Power Administration

  17. Radiological safety training for uranium facilities

    SciTech Connect (OSTI)

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  18. Review of the Portsmouth Gaseous Diffusion Plant Work Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Pre-job briefing for Converter Sampling 25-5-2 Stage 12 at X-326 * Pre-job briefing for Overhead Crane Preventive Maintenance * Pre-job briefing for Wise Construction Pre-job B-2

  19. CAB Investment Review Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steel Lines Sustain Program FY14-15 BPA's overhead steel line assets consist of approximately 10,800 circuit miles on approximately 43,000 steel towers and poles. Steel lines...

  20. Oregon - OAR 860-025-0030 - Petition for CPCN for Construction...

    Open Energy Info (EERE)

    OAR 860-025-0030 - Petition for CPCN for Construction of Overhead Transmission Lines Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...