Powered by Deep Web Technologies
Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

3S Industries AG Formerly 3S Swiss Solar Systems AG | Open Energy  

Open Energy Info (EERE)

AG Formerly 3S Swiss Solar Systems AG AG Formerly 3S Swiss Solar Systems AG Jump to: navigation, search Name 3S Industries AG (Formerly 3S Swiss Solar Systems AG) Place Bern, Switzerland Zip CH-3006 Product Swiss-based manufacturer of manual and semi-automatic PV module production lines; provides turnkey integration service for PV and BIPV. Coordinates 46.948432°, 7.440461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.948432,"lon":7.440461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

ENRO AG | Open Energy Information  

Open Energy Info (EERE)

search Name ENRO AG Place Essen, Germany Zip 45128 Sector Biomass Product Focuses on distributed energy supply concepts for local authorities and industrial firms. Invests and...

3

Solarpraxis AG | Open Energy Information  

Open Energy Info (EERE)

technical journals and organises conferences in building services, the copper industry and solar technology. References Solarpraxis AG1 LinkedIn Connections CrunchBase...

4

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

5

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

6

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

7

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

8

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

9

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

10

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

11

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

12

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

13

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

14

Ag & Water Pump | OpenEI  

Open Energy Info (EERE)

Ag & Water Pump Ag & Water Pump Dataset Summary Description Natural gas consumption data from the California Energy Commission by planning area for Commercial, Residential, Ag & Water Pump, Streetlight, Industry, Mining & Construction and Total Usage. Source California Energy Commission Date Released Unknown Date Updated Unknown Keywords Ag & Water Pump annual energy consumption Commercial Energy Consumption Industry Residential Streetlight Data text/csv icon Natural Gas Consumption by Planning Area (csv, 12.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 1990-2009 License License Other or unspecified, see optional comment below Comment http://www.energy.ca.gov/conditions.html Rate this dataset Usefulness of the metadata

15

Eifelstrom AG | Open Energy Information  

Open Energy Info (EERE)

Eifelstrom AG Jump to: navigation, search Name Eifelstrom AG Place Germany Sector Solar Product Holding company belonging to the family of Frank Asbeck, founder of Solar World AG....

16

AIXTRON AG | Open Energy Information  

Open Energy Info (EERE)

AIXTRON AG AIXTRON AG Jump to: navigation, search Name AIXTRON AG Place Aachen, North Rhine-Westphalia, Germany Zip 52072 Sector Solar Product AIXTRON AG is a provider of deposition equipment to the semiconductor industry. Their equipment is used in the manufacture of LEDs, germanium and GaAs solar cells and OLEDs. Coordinates 50.778138°, 6.088498° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.778138,"lon":6.088498,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Antec Solar Energy AG formerly Oekologik Ecovest AG | Open Energy  

Open Energy Info (EERE)

Antec Solar Energy AG formerly Oekologik Ecovest AG Antec Solar Energy AG formerly Oekologik Ecovest AG Jump to: navigation, search Name Antec Solar Energy AG (formerly Oekologik Ecovest AG) Place Arnstadt, Germany Zip 99310 Sector Solar Product German manufacturer of CdTe PV cells and modules; also manages funds for the development of solar parks. References Antec Solar Energy AG (formerly Oekologik Ecovest AG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Antec Solar Energy AG (formerly Oekologik Ecovest AG) is a company located in Arnstadt, Germany . References ↑ "Antec Solar Energy AG (formerly Oekologik Ecovest AG)" Retrieved from "http://en.openei.org/w/index.php?title=Antec_Solar_Energy_AG_formerly_Oekologik_Ecovest_AG&oldid=342206

18

MAP3S precipitation chemistry network: seventh periodic summary report, 1983. [MAP3S Network  

SciTech Connect

This summary report, the seventh in the series, contains complete field and chemical data from the MAP3S Precipitation Chemistry Network for the year 1983. Sections cover QA/QC of the MAP3S/PCN; network history, network site information and a MAP3S/PCN bibliography; and a brief statistical look at the laboratory operations for 1983. There is also a brief statistical summary for 1982 to 1983. Included under the Quality Control section are the QA audits for site performance, laboratory comparisons, field blank and pH test results, and sample shipping and analysis results. Included is a listing of cooperating organizations and personnel for the MAP3S/PCN. 10 references, 10 figures, 32 tables.

Rothert, J.E.; Dana, M.T.

1984-11-01T23:59:59.000Z

19

Altus AG | Open Energy Information  

Open Energy Info (EERE)

Altus AG Jump to: navigation, search Name Altus AG Place Germany Sector Renewable Energy Product Germany-based renewable energy project developer. References Altus AG1 LinkedIn...

20

Solara AG | Open Energy Information  

Open Energy Info (EERE)

Solara AG Jump to: navigation, search Name Solara AG Place Hamburg, Germany Zip D-22765 Product Distributerinstaller of small-scale photovoltaics and turbines for boats,...

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solare AG | Open Energy Information  

Open Energy Info (EERE)

AG Jump to: navigation, search Name Solare AG Place Cologne, North Rhine-Westphalia, Germany Zip 50678 Sector Solar Product Germany-based equipment manufacturer and developer of...

22

Energieteam AG | Open Energy Information  

Open Energy Info (EERE)

Energieteam AG Jump to: navigation, search Name Energieteam AG Place Lichtenau, Germany Zip D-33165 Sector Wind energy Product Wind farm developer. Has developed 904MW wind in...

23

Inergetic AG | Open Energy Information  

Open Energy Info (EERE)

icon Inergetic AG Jump to: navigation, search Name Inergetic AG Place Schwerin, Germany Zip 19061 Sector Biomass Product Biomass power plant developer and operator. Actively...

24

AGS intensity upgrades  

SciTech Connect

After the successful completion of the AGS Booster and several upgrades of the AGS, a new intensity record of 6.3 x 10{sup 13} protons per pulse accelerated to 24 GeV was achieved. The high intensity slow-extracted beam program at the AGS typically serves about five production targets and about eight experiments including three rare Kaon decay experiments. Further intensity upgrades are being discussed that could increase the average delivered beam intensity by up to a factor of four.

Roser, T.

1995-12-01T23:59:59.000Z

25

MAN Ferrostaal AG | Open Energy Information  

Open Energy Info (EERE)

AG AG Jump to: navigation, search Name MAN Ferrostaal AG Place Essen, Germany Zip 45128 Sector Solar Product Germany-based firm that focuses on the development and realisation of industrial plants. The firm has engineering and development interests in solar projects. Coordinates 51.451805°, 7.010625° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.451805,"lon":7.010625,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information  

Open Energy Info (EERE)

PV Crystalox Solar AG formerly PV Silicon AG PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name PV Crystalox Solar AG (formerly PV Silicon AG) Place Abingdon, England, United Kingdom Zip OX14 4SE Sector Solar Product UK-based manufacturer of multicrystalline ingots and wafers to the solar industry; as of early 2009, to output solar-grade polysilicon. Coordinates 36.71049°, -81.975194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.71049,"lon":-81.975194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

ASP AG | Open Energy Information  

Open Energy Info (EERE)

ASP AG Place Laupen, Switzerland Zip CH-8637 Product Manufacturer of inverters for PV systems and other off- and on-grid applications. References ASP AG1 LinkedIn Connections...

28

VWind AG | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name VWind AG Place Germany Sector Wind energy Product Germany-based offshore wind installation company. References VWind AG1 LinkedIn Connections CrunchBase...

29

Solarcomplex AG | Open Energy Information  

Open Energy Info (EERE)

Solarcomplex AG Solarcomplex AG Jump to: navigation, search Name solarcomplex AG Place Singen, Germany Zip 78224 Sector Renewable Energy, Solar Product Regional solar energy company with the goal of transforming energy for the Constance region of germany to renewables by 2030. References solarcomplex AG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. solarcomplex AG is a company located in Singen, Germany . References ↑ "solarcomplex AG" Retrieved from "http://en.openei.org/w/index.php?title=Solarcomplex_AG&oldid=351363" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

30

Systaic AG | Open Energy Information  

Open Energy Info (EERE)

Systaic AG Systaic AG Jump to: navigation, search Name Systaic AG Place Duesseldorf, North Rhine-Westphalia, Germany Zip D-40213 Sector Solar Product Has developed and is installing a building-integrated PV roof, which can be used as a roof seal and be customised. Also builds large-scale solar projects and a product for powering cars with solar power. References Systaic AG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Systaic AG is a company located in Duesseldorf, North Rhine-Westphalia, Germany . References ↑ "Systaic AG" Retrieved from "http://en.openei.org/w/index.php?title=Systaic_AG&oldid=351987" Categories: Clean Energy Organizations Companies

31

AGS experiments -- 1995, 1996 and 1997  

Science Conference Proceedings (OSTI)

This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

Depken, J.C.; Presti, P.L.

1997-12-01T23:59:59.000Z

32

Renewable Energy Engineering Consulting AG REECON AG | Open Energy  

Open Energy Info (EERE)

Engineering Consulting AG REECON AG Engineering Consulting AG REECON AG Jump to: navigation, search Name Renewable Energy Engineering Consulting AG (REECON AG) Place Heppenheim, Hessen, Germany Zip D-64646 Sector Solar Product Heppenheim-based clean energy consultancy firm, specialising in the solar sector. Coordinates 49.642899°, 8.63901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.642899,"lon":8.63901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Solarparc AG Former WindWelt AG | Open Energy Information  

Open Energy Info (EERE)

Solarparc AG Former WindWelt AG Solarparc AG Former WindWelt AG Jump to: navigation, search Name Solarparc AG (Former WindWelt AG) Place Bonn, Germany Zip 53115 Sector Solar, Wind energy Product Focused on planning, developing and operating wind and solar power stations. Coordinates 50.7323°, 7.101695° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.7323,"lon":7.101695,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Solarion AG | Open Energy Information  

Open Energy Info (EERE)

4288 Sector Solar Product Focuses on the development, production and marketing of CIGS thin-film solar cells on flexible substrate. References Solarion AG1 LinkedIn...

35

Sunline AG | Open Energy Information  

Open Energy Info (EERE)

search Name Sunline AG Place Frth, Germany Zip 90765 Sector Solar Product German solar PV and thermal company active in planning and marketing solar installations....

36

AEE AG | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name AEE AG Place Frankfurt am Main, Germany Zip 60596 Sector Hydro Product String representation "The Aktiengesel ... rmance control." is too long....

37

AGS Experiments: 1989, 1990, 1991  

Science Conference Proceedings (OSTI)

This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

Depken, J.C.

1992-02-01T23:59:59.000Z

38

AGS Experiments: 1989, 1990, 1991  

SciTech Connect

This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

Depken, J.C.

1992-02-01T23:59:59.000Z

39

Photon transitions in Upsilon(2S) and Upsilon(3S)  

E-Print Network (OSTI)

We have studied the inclusive photon spectra in Upsilon(2S) and \\Upsilon(3S) decays using a large statistics data sample obtained with the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates and photon energies for Upsilon(2S)->gamma chi_bJ(1P) and Upsilon(3S)->gamma chi_bJ(2P) J=0,1,2. We measure the rate for a rare E1 transition Upsilon(3S)->gamma chi_b0(1P) for the first time. We also set upper limits on the rates for the hindered magnetic dipole (M1) transitions to the eta_b(1S) and eta_b(2S) states.

M. Artuso; for the CLEO Collaboration

2004-11-22T23:59:59.000Z

40

AG Solutions Inc | Open Energy Information  

Open Energy Info (EERE)

AG Solutions Inc. Place Gladstone, Michigan Product 10Mgpy biodiesel producer in Gladstone, Michigan. References AG Solutions Inc.1 LinkedIn Connections CrunchBase Profile No...

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MAMA Sustainable Incubation AG | Open Energy Information  

Open Energy Info (EERE)

MAMA Sustainable Incubation AG Jump to: navigation, search Name MAMA Sustainable Incubation AG Place Berlin, Germany Sector Renewable Energy Product Berlin-based technology...

42

Solar Millennium AG | Open Energy Information  

Open Energy Info (EERE)

AG Jump to: navigation, search Name Solar Millennium AG Place Erlangen, Bavaria, Germany Zip D-91052 Sector Solar Product Bavaria-based solar project developer; provides technical...

43

Sputnik Engineering AG | Open Energy Information  

Open Energy Info (EERE)

"Sputnik Engineering AG" Retrieved from "http:en.openei.orgwindex.php?titleSputnikEngineeringAG&oldid351629" Categories: Clean Energy Organizations Companies...

44

Solar Power Partners AG | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Solar Power Partners AG Jump to: navigation, search Name Solar Power Partners AG Place...

45

EnergieKontor AG | Open Energy Information  

Open Energy Info (EERE)

AG Jump to: navigation, search Name EnergieKontor AG Place Bremen, Bremen, Germany Zip 28359 Sector Wind energy Product Bremen-based european wind project developer and...

46

SITIZN Group Holding AG | Open Energy Information  

Open Energy Info (EERE)

Holding AG Jump to: navigation, search Name SITIZN Group Holding AG Place Riederich, Germany Zip 72585 Sector Solar Product Germany-based solar technology and consultancy firm....

47

Offshore Ostsee Wind AG | Open Energy Information  

Open Energy Info (EERE)

Ostsee Wind AG Jump to: navigation, search Name Offshore Ostsee Wind AG Place Brgerende, Mecklenburg-Western Pomerania, Germany Zip 18211 Sector Wind energy Product Joint...

48

REpower Systems AG | Open Energy Information  

Open Energy Info (EERE)

Systems AG Jump to: navigation, search Name REpower Systems AG Place Hamburg, Germany Zip D-22297 Sector Services, Wind energy Product Wind turbine manufacturer with primary...

49

AgRefresh | Open Energy Information  

Open Energy Info (EERE)

AgRefresh Jump to: navigation, search Name AgRefresh Place Burlington, Vermont Zip 5402 Sector Carbon, Renewable Energy Product String representation "AgreFresh focus ......

50

Umwelt Management AG UMaAG | Open Energy Information  

Open Energy Info (EERE)

UMaAG UMaAG Jump to: navigation, search Name Umwelt Management AG (UMaAG) Place Cuxhaven, Germany Zip 27478 Sector Wind energy Product RE project developer, esp. wind energy. Coordinates 53.858306°, 8.697818° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.858306,"lon":8.697818,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Abwicklungsgesellschaft Biogas I AG Formerly Schmack Biogas AG | Open  

Open Energy Info (EERE)

Abwicklungsgesellschaft Biogas I AG Formerly Schmack Biogas AG Abwicklungsgesellschaft Biogas I AG Formerly Schmack Biogas AG Jump to: navigation, search Name Abwicklungsgesellschaft Biogas I AG (Formerly Schmack Biogas AG) Place Schwandorf, Bavaria, Germany Zip 92421 Product Germany-based company that specialises in biogas production technology. It provides turn-key biogas plants including project development, technical and biological commissioning. Coordinates 49.327703°, 12.108496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.327703,"lon":12.108496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

SiC Processing AG | Open Energy Information  

Open Energy Info (EERE)

SiC Processing AG SiC Processing AG Jump to: navigation, search Name SiC Processing AG Place Hirschau, Germany Zip 92242 Sector Solar Product Offers management and recycling of slurry for solar and semiconductor industries. Coordinates 49.542793°, 11.943304° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.542793,"lon":11.943304,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Campa AG | Open Energy Information  

Open Energy Info (EERE)

Campa AG Campa AG Jump to: navigation, search Name Campa AG Place Ochsenfurt, Germany Zip 97199 Product String representation "Campa AG is one ... on and trading." is too long. Coordinates 49.66347°, 10.06599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.66347,"lon":10.06599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Safeguards-by-Design: An Element of 3S Integration  

SciTech Connect

In 2008, the 20/20 Vision for the Future background report by the IAEA Director General identified the possibility of integrating certain activities related to safeguards, safety, and security. Later in the year, the independent Commission report prepared at the request of the IAEA Director General noted that the Agencys roles in nuclear safeguards, safety, and security (3S) complement and can mutually reinforce each other. Safeguards-by-design (SBD) is a practical measure that strengthens 3S integration, especially for the stage of nuclear facility design and construction, but also with ramifications for other stages of the facility life-cycle. This paper describes the SBD concept, with examples for diverse regulatory environments, being developed in the U.S under the U.S. Department of Energy (DOE) Next Generation Safeguards Initiative and the Advanced Fuel Cycle Initiative. This is compared with related international SBD work performed in the recent IAEA workshop on Facility Design and Plant Operation Features that Facilitate the Implementation of IAEA Safeguards. Potential future directions for further development of SBD and its integration within 3S are identified.

R. S. Bean; T. A. Bjornard; D. J. Hebdich

2009-04-01T23:59:59.000Z

55

Isovolta AG | Open Energy Information  

Open Energy Info (EERE)

Isovolta AG Isovolta AG Jump to: navigation, search Name Isovolta AG Place Vienna, Austria Zip 2355 Sector Solar Product Isovolta produces TPT and PTE-type solar module backsheets. Coordinates 48.202548°, 16.368805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.202548,"lon":16.368805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Solarwatt AG | Open Energy Information  

Open Energy Info (EERE)

Solarwatt AG Solarwatt AG Jump to: navigation, search Name Solarwatt AG Place Dresden, Germany Zip D-01109 Sector Solar Product Solarwatt Solar-Systeme GmbH manufactures high-quality solar modules from laminated safety glass. Coordinates 51.053645°, 13.740815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.053645,"lon":13.740815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Alteno AG | Open Energy Information  

Open Energy Info (EERE)

Alteno AG Alteno AG Jump to: navigation, search Name Alteno AG Place Basel, Switzerland Zip 4057 Sector Solar Product Installer of solar PV and passive plants in Basel and Zurich. Coordinates 47.548807°, 7.58782° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.548807,"lon":7.58782,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Parabel AG | Open Energy Information  

Open Energy Info (EERE)

Parabel AG Parabel AG Jump to: navigation, search Name Parabel AG Place Berlin-Pankow, Berlin, Germany Sector Solar Product Sells a thin-film roofing product using UniSolar laminates, and distributes and installs other PV and solar passive products. Coordinates 52.562199°, 13.3983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.562199,"lon":13.3983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Nordex AG | Open Energy Information  

Open Energy Info (EERE)

Nordex AG Nordex AG Jump to: navigation, search Name Nordex AG Place Norderstedt, Germany Zip 22848 Sector Wind energy Product The Nordex Group is a globally-oriented manufacturer of wind energy systems focusing principally on turbines in the megawatt class. Coordinates 53.706285°, 9.99709° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.706285,"lon":9.99709,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Meeco AG | Open Energy Information  

Open Energy Info (EERE)

Meeco AG Meeco AG Jump to: navigation, search Name meeco AG Place Zug, Switzerland Zip 6304 Sector Renewable Energy Product Switzerland-based company that offers engineering and management solutions in the areas of renewable energy, reusable resources and aviation. Coordinates 47.171507°, 8.516215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.171507,"lon":8.516215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Qimonda AG | Open Energy Information  

Open Energy Info (EERE)

Qimonda AG Qimonda AG Jump to: navigation, search Name Qimonda AG Place Munich, Bavaria, Germany Zip 81739 Sector Solar Product Qimonda designs and manufacturers DRAM memory chips and recently entered the solar cell manufacturing sector with the establishment of Qimonda Solar. Coordinates 48.136415°, 11.577531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.136415,"lon":11.577531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

ABIDAS AG | Open Energy Information  

Open Energy Info (EERE)

ABIDAS AG ABIDAS AG Jump to: navigation, search Name ABIDAS AG Place Werder, Brandenburg, Germany Zip 14542 Product Local energy consultant and PV systems installer and integrator. Coordinates 53.499122°, 12.011653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.499122,"lon":12.011653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Interstrom AG | Open Energy Information  

Open Energy Info (EERE)

Interstrom AG Interstrom AG Jump to: navigation, search Name Interstrom AG Place Bayreuth, Bavaria, Germany Zip 95448 Sector Solar Product Germany-based electricity provider. The firm is also involved in solar project development. Coordinates 49.945189°, 11.571023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.945189,"lon":11.571023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Fuhrlander AG | Open Energy Information  

Open Energy Info (EERE)

Fuhrlander AG Fuhrlander AG Jump to: navigation, search Name Fuhrlander AG Place Waigandshain, Germany Zip D-56477 Sector Wind energy Product Manufacturer and license holder of wind turbines in the 30 to 2500 kW range, with particular capabilities relating to difficult wind conditions. Coordinates 50.645135°, 8.082535° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.645135,"lon":8.082535,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

3C Holding AG | Open Energy Information  

Open Energy Info (EERE)

Holding AG Holding AG Jump to: navigation, search Name 3C Holding AG Place Bad Vilbel/Frankfurt am Main, Germany Zip 61118 Sector Services Product 3C Holding AG develops trading strategies for EU allowances, JI/CDM Projects and climate neutral events, products and services. Merged with Factor Consulting to form First Climate. References 3C Holding AG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. 3C Holding AG is a company located in Bad Vilbel/Frankfurt am Main, Germany . References ↑ "3C Holding AG" Retrieved from "http://en.openei.org/w/index.php?title=3C_Holding_AG&oldid=341624" Categories: Clean Energy Organizations Companies Organizations Stubs

66

SES 21 AG | Open Energy Information  

Open Energy Info (EERE)

AG Place OderdingPolling, Germany Zip 82398 Sector Solar Product A distributor of photovoltaic and solar thermal systems in Germany. References SES 21 AG1 LinkedIn Connections...

67

MAGNETIC DESIGN OF A SUPERCONDUCTING AGS SNAKE*  

NLE Websites -- All DOE Office Websites (Extended Search)

a partial helical snake for polarized proton acceleration in the AGS. It will be a 3 Tesla superconducting magnet having a magnetic length of 1.9 meter. AGS needs only one...

68

Ag Fuels Ltd | Open Energy Information  

Open Energy Info (EERE)

Ag Fuels Ltd Place Sealy, Texas Product 3.6Mgpl (13.6Mlpy) biodiesel producer in Sealy, Texas. References Ag Fuels Ltd1 LinkedIn Connections CrunchBase Profile No CrunchBase...

69

AgPro | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name AgPro Place Massena, New York Product Operator of biodiesel plant based on soy. References AgPro1 LinkedIn Connections CrunchBase Profile No...

70

SolarHybrid AG | Open Energy Information  

Open Energy Info (EERE)

SolarHybrid AG Jump to: navigation, search Name SolarHybrid AG Place Germany Sector Solar Product Germany-based solar thermal hybrid product manufacturer References SolarHybrid...

71

EnerVest AG | Open Energy Information  

Open Energy Info (EERE)

EnerVest AG Jump to: navigation, search Name EnerVest AG Place Mnchen, Germany Zip 80538 Sector Renewable Energy, Wind energy Product EnerVest develops and manages renewable...

72

Computer & Email Information, RHIC & AGS Userscenter  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer & Email Information Wireless Access RHIC RHIC link to computer accounts RHIC E-mail Services Please contact useraccts at rcf.rhic.bnl.gov, for further assistance. AGS AGS...

73

AGS experiments, 1988, 1989, 1990  

SciTech Connect

This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters.

Depken, J.C.

1991-04-01T23:59:59.000Z

74

AGS experiments: 1990, 1991, 1992. Ninth edition  

SciTech Connect

This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ``as run``; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters.

Depken, J.C.

1993-04-01T23:59:59.000Z

75

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

76

Aecom Government Services AGS | Open Energy Information  

Open Energy Info (EERE)

Aecom Government Services AGS Aecom Government Services AGS Jump to: navigation, search Name Aecom Government Services (AGS) Place Fort Worth, Texas Zip 76102 Sector Renewable Energy, Services Product Texas-based government services arm of AECOM. The entity offers engineering services to the renewable energy sector. References Aecom Government Services (AGS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Aecom Government Services (AGS) is a company located in Fort Worth, Texas . References ↑ "Aecom Government Services (AGS)" Retrieved from "http://en.openei.org/w/index.php?title=Aecom_Government_Services_AGS&oldid=341817" Categories: Clean Energy Organizations Companies

77

American Ag Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Ag Fuels LLC Ag Fuels LLC Jump to: navigation, search Name American Ag Fuels LLC Place Defiance, Ohio Zip 43512 Product Biodiesel producer in Defiance, Ohio. References American Ag Fuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Ag Fuels LLC is a company located in Defiance, Ohio . References ↑ "American Ag Fuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Ag_Fuels_LLC&oldid=342105" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

78

Sunseeker Energy Holding AG | Open Energy Information  

Open Energy Info (EERE)

Sunseeker Energy Holding AG Sunseeker Energy Holding AG Jump to: navigation, search Name Sunseeker Energy Holding AG Place Schindellegi, Switzerland Zip 8834 Sector Solar Product Switzerland-based company seeking to developing new generation solar and hybrid power technologies for sustainable energy use. References Sunseeker Energy Holding AG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sunseeker Energy Holding AG is a company located in Schindellegi, Switzerland . References ↑ "Sunseeker Energy Holding AG" Retrieved from "http://en.openei.org/w/index.php?title=Sunseeker_Energy_Holding_AG&oldid=351842" Categories: Clean Energy Organizations Companies Organizations

79

2000 TMS Annual Meeting Exhibitor: ABB INDUSTRIE AG  

Science Conference Proceedings (OSTI)

... solution that strengthens our clients' entire operation. ABB leads the market in key electrical generation, distribution and transformer rectifier systems.

80

WPD AG | Open Energy Information  

Open Energy Info (EERE)

WPD AG WPD AG Place Bremen, Bremen, Germany Zip 28211 Sector Wind energy Product Focuses mainly on deal structuring, project controlling, advance funding of project development costs, procuring equity, and the co-development of wind farms. Coordinates 53.075166°, 8.804667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.075166,"lon":8.804667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RWE AG | Open Energy Information  

Open Energy Info (EERE)

AG AG Jump to: navigation, search Name RWE AG Place Essen, North Rhine-Westphalia, Germany Zip 45128 Sector Geothermal energy, Solar, Wind energy Product Essen-headquartered natural gas & electricity public utility operating across Europe. Through its subsidiary, RWE Innogy, it is active as a developer & operator of wind, solar, geothermal, wave, & marine power projects. Coordinates 51.451805°, 7.010625° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.451805,"lon":7.010625,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Flisom AG | Open Energy Information  

Open Energy Info (EERE)

Flisom AG Flisom AG Jump to: navigation, search Name Flisom AG Place Zurich, Switzerland Zip 8005 Sector Efficiency, Solar Product Flisom has a high-efficiency copper-indium-gallium-selenide technology that it plans to put on plastic foilâ€"not glassâ€"potentially opening up new applications like solar for cell phones. Coordinates 47.37706°, 8.53955° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.37706,"lon":8.53955,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Ag  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congress Congress on the Price-Anderson Act Prepared by U. S. Department of Energy Department of Energy Report to Congress on the Price-Anderson Act Table of Contents Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1- I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -3- II. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -4- III. RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -9- Recommendation 1. The DOE indemnification should be continued without any substantial change. -9- Recommendation 2. The amount of the DOE indemnification should not be decreased. . . . . . . . . -14- Recommendation 3. The DOE indemnification should continue to provide broad and mandatory coverage of activities conducted under contract for DOE.

84

Ag  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Inquiry: Preparation of Report to Congress Notice of Inquiry: Preparation of Report to Congress on Price-Anderson Act 62 Federal Register 68,272 (December 31, 1997) A - 1 Department of Energy Report to Congress on the Price-Anderson Act, Appendix A, Notice of Inquiry DEPARTMENT OF ENERGY Office of General Counsel Preparation of Report to Congress on Price-Anderson Act AGENCY: Office of General Counsel, DOE. ACTION: Notice of Inquiry concerning preparation of report to Congress on the Price-Anderson Act. SUMMARY: The Department of Energy (the "Department" or "DOE") is requesting public comments concerning the continuation or modification of the provisions of the Price-Anderson Act (the "Act"). These comments will assist the Department in the preparation of a report on the Act to be

85

Ag  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B B Atomic Energy Act of 1954, as amended 42 United States Code §§ 2210 et seq. (1994) § 2014 (AEA § 11) Definitions § 2210 (AEA §170) Indemnification and Limitation of Liability § 2282a (AEA § 234A) Civil Monetary Penalties for Violations of Department of Energy Regulations B - 1 Department of Energy Report to Congress on the Price-Anderson Act, Appendix B, Atomic Energy Act UNITED STATES CODE TITLE 42 - THE PUBLIC HEALTH AND WELFARE CHAPTER 23 - DEVELOPMENT AND CONTROL OF ATOMIC ENERGY SUBCHAPTER I - GENERAL PROVISIONS Sec. 2014. Definitions The intent of Congress in the definitions as given in this section should be construed from the words or phrases used in the definitions. As used in this chapter: (a) The term ''agency of the United States'' means the executive branch of the United States, or any

86

Ag  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter from John L. Quattrocchi, Senior Vice President, Under- writing, American Nuclear Insurers to Omer F. Brown, II, Har- man & Wilmot, L.L.P., dated January 21, 1998; Attachment B to Comments filed by Energy Contractor Price- Anderson Group. Town Center, Suite 300S/ 29 South Main Street/ West Hartford, CT 06107-2430/ (860) 561-3433 - FAX (860) 561-4655 [Logo and Letterhead: AMERICAN NUCLEAR INSURERS UNDERWRITING DEPARTMENT, John L. Quattrocchi, Senior Vice President] January 21, 1998 Mr. Omer F. Brown, II Harmon & Wilmot, L.L.P. 1010 Vermont Avenue, N.W. Suite 810 Washington, D.C. 20005 Re: DOE Notice of Inquiry Dear Mr. Brown: On December 31, 1997, the DOE published in the Federal Register a Notice of Inquiry concerning the preparation of its Report to Congress on the renewal of Price-Anderson. One of the DOE's questions

87

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

88

Bosch Solar Energy AG former ErSol Solar Energy AG | Open Energy...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Bosch Solar Energy AG former ErSol Solar Energy AG Jump to: navigation, search Name Bosch Solar...

89

Ag Communications Communications and Media Specialist  

E-Print Network (OSTI)

Ag Lobbyist International U.S. Meat Export Federation Cargill Kraft Hershey's Nestle's Seaboard Tyson Development Chef Fats and Oil Researcher Quality Assurance Supervisor Certified Flavor Chemist Cereal

Veiga, Pedro Manuel Barbosa

90

Algatec Solar AG | Open Energy Information  

Open Energy Info (EERE)

Ortsteil Prsen, Brandenburg, Germany Zip D-04932 Sector Solar Product Germany-based PV solar module manufacturer. References Algatec Solar AG1 LinkedIn Connections...

91

IBC Solar AG | Open Energy Information  

Open Energy Info (EERE)

search Name IBC Solar AG Place Bad Staffelstein, Bavaria, Germany Zip 96231 Sector Solar Product PV system integrator focused on turn-key solar power plants, and raising...

92

ASP Aton Sunpower AG | Open Energy Information  

Open Energy Info (EERE)

Zug, Switzerland Product Zug-based project developer focused on the installaion of photovoltaic facilities. References ASP Aton Sunpower AG1 LinkedIn Connections CrunchBase...

93

Sonne Wind Beteiligungen AG | Open Energy Information  

Open Energy Info (EERE)

search Name Sonne+Wind Beteiligungen AG Place Berlin, Germany Zip 10715 Sector Efficiency, Solar, Wind energy Product Berlin-based VC firm focusing on wind, solar and...

94

Seeger Engineering AG | Open Energy Information  

Open Energy Info (EERE)

range from project development, planning, financing and supervision of biomass power and wood pellets production plants. References Seeger Engineering AG1 LinkedIn Connections...

95

Stangl Semiconductor Equipment AG | Open Energy Information  

Open Energy Info (EERE)

Solar Product German manufacturer of wet chemistry systems for processing silicon and thin-film solar cells. References Stangl Semiconductor Equipment AG1 LinkedIn...

96

SUNTEG Energy AG | Open Energy Information  

Open Energy Info (EERE)

SUNTEG Energy AG Place Zug, Switzerland Sector Solar Product Sunteg is involved in a bioethanol project in Latin America, and, through subsidiary Systemcare, produces a solvent for...

97

Ag Processing Inc AGP | Open Energy Information  

Open Energy Info (EERE)

search Name Ag Processing Inc. (AGP) Place Omaha, Nebraska Zip 68103-2047 Product Cooperative engaged in the procurement, processing, marketing, and transportation of grains and...

98

Solar Systems and Solutions Soluciones Sistemas Solares 3S | Open Energy  

Open Energy Info (EERE)

Solutions Soluciones Sistemas Solares 3S Solutions Soluciones Sistemas Solares 3S Jump to: navigation, search Name Solar Systems and Solutions / Soluciones Sistemas Solares (3S) Place Navarre, Spain Sector Solar Product Installs and engineers solar passive panels. References Solar Systems and Solutions / Soluciones Sistemas Solares (3S)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Systems and Solutions / Soluciones Sistemas Solares (3S) is a company located in Navarre, Spain . References ↑ "Solar Systems and Solutions / Soluciones Sistemas Solares (3S)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Systems_and_Solutions_Soluciones_Sistemas_Solares_3S&oldid=351332

99

AG Plus Co operative | Open Energy Information  

Open Energy Info (EERE)

Plus Co operative Plus Co operative Jump to: navigation, search Name AG Plus Co-operative Place SE Kindred, North Dakota Zip 58051 Product Cooperative offering membership stock to agricultural producers. Set up to assist with the financing of a soybean crushing plant in the town of Kindred. References AG Plus Co-operative[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AG Plus Co-operative is a company located in SE Kindred, North Dakota . References ↑ "AG Plus Co-operative" Retrieved from "http://en.openei.org/w/index.php?title=AG_Plus_Co_operative&oldid=341858" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

100

AG Land 3 | Open Energy Information  

Open Energy Info (EERE)

Name AG Land 3 Name AG Land 3 Facility AG Land 3 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.146061°, -93.428028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.146061,"lon":-93.428028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AG Land 2 | Open Energy Information  

Open Energy Info (EERE)

AG Land 2 AG Land 2 Facility AG Land 2 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 41.904231°, -93.354864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.904231,"lon":-93.354864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

AG Land 6 | Open Energy Information  

Open Energy Info (EERE)

AG Land 6 AG Land 6 Jump to: navigation, search Name AG Land 6 Facility AG Land 6 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer Enervation LLC Energy Purchaser Alliant Energy Location Hamilton County IA Coordinates 42.335536°, -93.632344° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.335536,"lon":-93.632344,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

AG Land 4 | Open Energy Information  

Open Energy Info (EERE)

AG Land 4 AG Land 4 Facility AG Land 4 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.206397°, -93.325714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.206397,"lon":-93.325714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

A New Hypothesis for the Mechanism of Ice Nucleation on Wetted AgI and AgIAgCl Particulate Aerosols  

Science Conference Proceedings (OSTI)

A potential molecular mechanism of ice nucleation on AgI and AgI??AgCl particulates involves rearrangement of ordered water molecule clusters associated with hydrated Ag+ ion patches. This nucleation mechanism is thought to occur rapidly at ?5 ...

William G. Finnegan; Steven K. Chai

2003-07-01T23:59:59.000Z

105

Study of Y(3S, 2S)-> eta Y(1S) and Y(3S, 2S) -> pi pi- Y(1S) Hadronic Transitions  

SciTech Connect

We study the {Upsilon}(3S, 2S) {yields} {eta}{Upsilon}(1S) and {Upsilon}(3S, 2S) {yields} {pi}{sup +}{pi}{sup -}{Upsilon}(1S) transitions with 122 x 10{sup 6} {Upsilon}(3S) and 100 x 10{sup 6} {Upsilon}(2S) mesons collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider. We measure {Beta}[{Upsilon}(2S) {yields} {eta}{Upsilon}(1S)] = (2.39 {+-} 0.31(stat.) {+-} 0.14(syst.)) x 10{sup -4} and {Lambda}[{Upsilon}(2S) {yields} {eta}{Upsilon}(1S)]/{Lambda}[{Upsilon}(2S) {yields} {pi}{sup +}{pi}{sup -}{Upsilon}(1S)] = (1.35 {+-} 0.17(stat.) {+-} 0.08(syst.)) x 10{sup -3}. We find no evidence for {Upsilon}(3S) {yields} {eta}{Upsilon}(1S) and obtain {Beta}[{Upsilon}(3S) {yields} {eta}{Upsilon}(1S)] < 1.0 x 10{sup -4} and {Lambda}[{Upsilon}(3S) {yields} {eta}{Upsilon}(1S)]/{Lambda}[{Upsilon}(3S) {yields} {pi}{sup +}{pi}{sup -}{Upsilon}(1S)] < 2.3 x 10{sup -3} as upper limits at the 90% confidence level. We also provide improved measurements of the {Upsilon}(2S)-{Upsilon}(1S) and {Upsilon}(3S)-{Upsilon}(1S) mass differences, 562.170 {+-} 0.007(stat.) {+-} 0.088(syst.)MeV/c{sup 2} and 893.813 {+-} 0.015(stat.) {+-} 0.107(syst.)MeV/c{sup 2}, respectively.

Lees, J.P.; Poireau, V.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; /INFN, Bari /Bari U.; Milanes, D.A.; /INFN, Bari; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; /Bergen U.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /UC, Berkeley; Koch, H.; Schroeder, T.; /Ruhr U., Bochum; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; McKenna, J.A.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

2012-03-27T23:59:59.000Z

106

Liquidus Projection of Thermoelectric Ag-Sn-Te Ternary System  

Science Conference Proceedings (OSTI)

Presentation Title, Liquidus Projection of Thermoelectric Ag-Sn-Te Ternary ... Ag Decorated Al Nanoparticles as Novel Ink Materials for Printed Electronics...

107

Searches for Exotic Decays of the Upsilon(3S) at BaBar  

SciTech Connect

In this paper we present two searches for new physics in {Upsilon}(3S) decays collected by the BABAR detector. We search for charged lepton-flavour violating decays of the {Upsilon}(3S), which are unobservable in the Standard Model but are predicted to occur in several beyond-the-Standard Model scenarios. We also search for production of a light Higgs or Higgs-like state produced in radiative decays of the {Upsilon}(3S) and decaying to muon pairs.

Hooberman, Benjamin; /LBL, Berkeley /Heidelberg U.

2011-12-01T23:59:59.000Z

108

Wacker Chemie AG formerly Wacker GmbH | Open Energy Information  

Open Energy Info (EERE)

Chemie AG formerly Wacker GmbH Chemie AG formerly Wacker GmbH Jump to: navigation, search Name Wacker Chemie AG (formerly Wacker GmbH) Place Munich, Germany Zip 81737 Sector Solar Product German chemicals company; major manufacturer of polysilicon for solar and semiconductor industries. Coordinates 48.136415°, 11.577531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.136415,"lon":11.577531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Asserting the utility of CO2P3S using the Cowichan Problem Set  

Science Conference Proceedings (OSTI)

Parallel programming environments provide a way for programmers to reap the benefits of parallelism, while reducing the effort required to create parallel applications. The CO"2P"3S parallel programming system is one such tool that uses a pattern-based ... Keywords: CO2P3S, Cowichan Problems, Design patterns, Fifteen Puzzle, Parallel programming, Programming environments, Search-Tree pattern

John Anvik; Jonathan Schaeffer; Duane Szafron; Kai Tan

2005-12-01T23:59:59.000Z

110

Edisun Power AG | Open Energy Information  

Open Energy Info (EERE)

Edisun Power AG Edisun Power AG Jump to: navigation, search Name Edisun Power AG Place Zurich, Switzerland Zip 8006 Sector Solar Product Edisun Power Europe AG finances, acquires and operates solar power installations, and markets solar power. Coordinates 47.37706°, 8.53955° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.37706,"lon":8.53955,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

AG Land 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 Jump to: navigation, search Name AG Land 1 Facility AG Land 1 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer AG Land Energy LLC Energy Purchaser Alliant Energy Location Story County IA Coordinates 42.145531°, -93.432161° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.145531,"lon":-93.432161,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

AOCS Official Method Ag 1-65  

Science Conference Proceedings (OSTI)

Oil AOCS Official Method Ag 1-65 Methods Methods and Analyses Analytical Chemistry Methods Downloads DEFINITION This method determines the substances extracted by petroleum ether under the conditions of the test

113

ABO Wind AG | Open Energy Information  

Open Energy Info (EERE)

ABO Wind AG Place Hessen, Germany Zip 65193 Sector Bioenergy, Wind energy Product German developer of wind and bioenergy generation assets. ABO Wind has no direct holding in any...

114

Bos ten AG | Open Energy Information  

Open Energy Info (EERE)

Germany Zip 93049 Sector Solar Product Partner of Beck Energy in development of a 3.2MW solar PV plant. References Bos.ten AG1 LinkedIn Connections CrunchBase Profile No...

115

High intensity performance of the Brookhaven AGS  

SciTech Connect

Experience and results from recent high intensity proton running periods of the Brookhaven AGS, during which a record intensity for a proton synchrotron of 6.3 x 10{sup 13} protons/pulse was reached, is presented. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Brennan, J.M.; Roser, T.

1996-07-01T23:59:59.000Z

116

Unit Energy Europe AG | Open Energy Information  

Open Energy Info (EERE)

search Name Unit Energy Europe AG Place Bad Homburg v.d.H., Hessen, Germany Sector Hydro, Wind energy Product Unit Energy develops and operates wind parks and hydroelectric...

117

20% PARTIAL SIBERIAN SNAKE IN THE AGS.  

Science Conference Proceedings (OSTI)

An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.

Huang, H; Bai, M; Brown, K A; Glenn, W; Luccio, A U; Mackay, W W; Montag, C; Ptitsyn, V; Roser, T; Tsoupas, N; Zeno, K; Ranjbar, V; Spinka, H

2002-11-06T23:59:59.000Z

118

HIGH INTENSITY BEAM OPERATION OF THE BROOKHAVEN AGS  

SciTech Connect

For the last few years the Brookhaven AGS has operated at record proton intensities. This high beam intensity allowed for the simultaneous operation of several high precision rare kaon decay experiments. The record beam intensities were achieved after the AGS Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. The intensity is presently limited by space charge effects at both Booster and AGS injection and transverse instabilities in the AGS.

ROSER,T.

1999-06-28T23:59:59.000Z

119

Energy Efficient Single Stack Exhaust Fan Systems (E3S3F)  

E-Print Network (OSTI)

This paper first investigates the fan energy performance of a constant air volume exhaust system. Two single stack energy efficient exhaust fan systems (E3S3F) are presented. The E3S3F-I has the static pressure sensor located at the inlet of the exhaust fan. It has been found to consume up to 15% less fan power than conventional constant air volume exhaust systems. The E3S3F-II uses a variable speed device to maintain the static pressure at the entrance of the stack. It consumes up to 60% less fan power than conventional constant volume exhaust systems.

Wang, G.; Liu, M.

2001-01-01T23:59:59.000Z

120

Industrial Applications  

Science Conference Proceedings (OSTI)

Table 2   Frequently used rubber linings in other industries...Application Lining Power industry Scrubber towers Blended chlorobutyl Limestone slurry tanks Blended chlorobutyl Slurry piping Blended chlorobutyl 60 Shore A hardness natural rubber Seawater cooling water

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

122

Industries Affected  

Science Conference Proceedings (OSTI)

Table 2   Industries affected by microbiologically influenced corrosion...generation: nuclear, hydro, fossil fuel,

123

Ag on Si(111) from basic science to application  

SciTech Connect

In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-({radical}3x{radical}3)R30{degree}Ag (Ag-Si-{radical}3 hereafter). In this thesis I systematically e plore effects of Ag deposition on the Ag-Si-{radical}3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

Belianinov, Aleksey

2012-04-04T23:59:59.000Z

124

ASSET LOGISTIC AG | Open Energy Information  

Open Energy Info (EERE)

ASSET LOGISTIC AG ASSET LOGISTIC AG Jump to: navigation, search Name ASSET@LOGISTIC AG Place Hamburg, Hamburg, Germany Zip 20148 Sector Wind energy Product Developer of 3 wind farms in Almeria, Spain Coordinates 53.553345°, 9.992455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.553345,"lon":9.992455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

SolarWorld AG | Open Energy Information  

Open Energy Info (EERE)

SolarWorld AG SolarWorld AG Jump to: navigation, search Name SolarWorld AG Place Bonn, Germany Zip 53113 Product Vertically integrated PV manufacturer, with factories in Freiberg, Germany and Hillsboro, Oregon. Coordinates 50.7323°, 7.101695° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.7323,"lon":7.101695,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Abakus Solar AG | Open Energy Information  

Open Energy Info (EERE)

Abakus Solar AG Abakus Solar AG Jump to: navigation, search Name Abakus Solar AG Place Gelsenkirchen, North Rhine-Westphalia, Germany Zip 45886 Product Gelsenkirchen-based project developer specializing in building-intergrated photovoltaics (BIPV). Coordinates 51.511335°, 7.09253° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.511335,"lon":7.09253,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Meyer Burger AG | Open Energy Information  

Open Energy Info (EERE)

Meyer Burger AG Meyer Burger AG Jump to: navigation, search Name Meyer Burger AG Place Steffisburg, Switzerland Zip 3613 Sector Solar Product Manufactures wire saws for cutting and processing hard, brittle materials - such as silicon solar feedstock. Coordinates 46.77862°, 7.633955° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.77862,"lon":7.633955,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

SAG Solarstrom AG | Open Energy Information  

Open Energy Info (EERE)

SAG Solarstrom AG SAG Solarstrom AG Jump to: navigation, search Name SAG Solarstrom AG Place Freiburg, Germany Zip D-79111 Sector Solar Product System Integrator, developing utility-scale solar PV projects and selling the individual modules to investors. Coordinates 47.99854°, 7.849655° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.99854,"lon":7.849655,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Power PLUS Communications AG | Open Energy Information  

Open Energy Info (EERE)

PLUS Communications AG PLUS Communications AG Jump to: navigation, search Name Power PLUS Communications AG Place Mannheim, Germany Zip 68167 Product String representation "Power Plus Comm ... nergy provider." is too long. Coordinates 49.48651°, 8.466785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.48651,"lon":8.466785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Roth Rau AG | Open Energy Information  

Open Energy Info (EERE)

Roth Rau AG Roth Rau AG Jump to: navigation, search Name Roth & Rau AG Place Zimmritz, Germany Zip 7751 Sector Hydro, Hydrogen, Solar Product Roth & Rau offers equipment for fully automated solar cell manufacturing lines, using deposition of amorphous hydrogenated silicon nitride technology. Coordinates 50.85482°, 11.50169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.85482,"lon":11.50169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Norddeutsche Affinerie AG | Open Energy Information  

Open Energy Info (EERE)

Norddeutsche Affinerie AG Norddeutsche Affinerie AG Jump to: navigation, search Name Norddeutsche Affinerie AG Place Hamburg, Germany Zip 20539 Product Producer and recycler of copper. Coordinates 53.553345°, 9.992455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.553345,"lon":9.992455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Centrosolar Group AG | Open Energy Information  

Open Energy Info (EERE)

Centrosolar Group AG Centrosolar Group AG Jump to: navigation, search Name Centrosolar Group AG Place Munich, Germany Zip 80807 Product German holding company of various PV-related subsidiaries. Coordinates 48.136415°, 11.577531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.136415,"lon":11.577531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

BGZ Beteiligungsgesellschaft Zukunftsenergien AG | Open Energy Information  

Open Energy Info (EERE)

BGZ Beteiligungsgesellschaft Zukunftsenergien AG BGZ Beteiligungsgesellschaft Zukunftsenergien AG Jump to: navigation, search Name BGZ Beteiligungsgesellschaft Zukunftsenergien AG Place Husum, Germany Zip 25813 Sector Solar, Wind energy Product Finance and management holding, esp. for wind and solar projects. Coordinates 45.799479°, -121.486901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.799479,"lon":-121.486901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Husker Ag LLC | Open Energy Information  

Open Energy Info (EERE)

Husker Ag LLC Husker Ag LLC Jump to: navigation, search Name Husker Ag LLC Place Plainview, Nebraska Zip 68769 Product Bioethanol producer using corn as feedstock. Coordinates 34.197675°, -101.698139° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.197675,"lon":-101.698139,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

ADM Hamburg AG | Open Energy Information  

Open Energy Info (EERE)

ADM Hamburg AG ADM Hamburg AG Jump to: navigation, search Name ADM Hamburg AG Place Hamburg, Hamburg, Germany Zip 21107 Product Biodiesel producer with a capacity of 595m litres/year. Coordinates 53.553345°, 9.992455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.553345,"lon":9.992455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Huber and Suhner AG | Open Energy Information  

Open Energy Info (EERE)

and Suhner AG and Suhner AG Jump to: navigation, search Name Huber and Suhner AG Place Pfaeffikon, Switzerland Zip 8330 Sector Solar Product Huber and Suhner specialises in electrical and optical connectivity solutions and makes solar module components. Coordinates 47.367448°, 8.781544° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.367448,"lon":8.781544,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

TriWo AG | Open Energy Information  

Open Energy Info (EERE)

TriWo AG TriWo AG Jump to: navigation, search Name TriWo AG Place Trier, Denmark Zip 54290 Sector Solar Product Developer of solar photovoltaic electricity generation project in Germany. Coordinates 49.757256°, 6.636521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.757256,"lon":6.636521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

CSG Solar AG | Open Energy Information  

Open Energy Info (EERE)

CSG Solar AG CSG Solar AG Jump to: navigation, search Name CSG Solar AG Place Thalheim, Saxony-Anhalt, Germany Zip 6766 Sector Solar Product Manufacture of solar modules based on Crystalline Silicon on Glass (CSG) technology Coordinates 50.70348°, 12.8498° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.70348,"lon":12.8498,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

AG Land 5 | Open Energy Information  

Open Energy Info (EERE)

5 5 Jump to: navigation, search Name AG Land 5 Facility AG Land 5 Sector Wind energy Facility Type Community Wind Facility Status In Service Owner AG Land Energy LLC Developer Enervation LLC Energy Purchaser Alliant Energy Location Hamilton County IA Coordinates 42.335544°, -93.636953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.335544,"lon":-93.636953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

MVV Energie AG | Open Energy Information  

Open Energy Info (EERE)

MVV Energie AG MVV Energie AG Jump to: navigation, search Name MVV Energie AG Place Mannheim, North Rhine-Westphalia, Germany Zip 68159 Sector Biomass, Hydro, Hydrogen, Solar, Vehicles, Wind energy Product International energy distribution utility with interests in gas cells, gas powered vehicles, biomass, solar, wind and hydrogen power. Coordinates 49.48651°, 8.466785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.48651,"lon":8.466785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

AGO AG Energie Anlagen | Open Energy Information  

Open Energy Info (EERE)

AGO AG Energie Anlagen AGO AG Energie Anlagen Jump to: navigation, search Name AGO AG Energie + Anlagen Place Kulmbach, Baden-Württemberg, Germany Zip 95326 Sector Biomass Product Project developer and consultancy for biomass plants and efficient energy supply and facilities. Coordinates 50.10717°, 11.45865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.10717,"lon":11.45865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Eisenbeiss Solar AG | Open Energy Information  

Open Energy Info (EERE)

Eisenbeiss Solar AG Eisenbeiss Solar AG Jump to: navigation, search Name Eisenbeiss Solar AG Place Augsburg, Germany Sector Geothermal energy, Solar Product Eisenbeiss Solar is a German-based company which offers domestic heating systems combining solar passive, wood burning, geothermal heat pumps and fossil fuel. Coordinates 48.370335°, 10.897892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.370335,"lon":10.897892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Manz Automation AG | Open Energy Information  

Open Energy Info (EERE)

AG AG Jump to: navigation, search Name Manz Automation AG Place Reutlingen, Baden-Württemberg, Germany Zip D-72768 Sector Solar Product German manufacturer of solar and LCD capital equipment. Coordinates 48.49159°, 9.21487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.49159,"lon":9.21487,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Gehrlicher Solar AG | Open Energy Information  

Open Energy Info (EERE)

Gehrlicher Solar AG Gehrlicher Solar AG Jump to: navigation, search Name Gehrlicher Solar AG Place Neustadt, Germany Zip 96465 Sector Solar Product Germany-based company that plans, builds and markets photovoltaic and solar thermal plants. It consults for local, private and environmental organisations, specialising in citizen shareholding. Coordinates 51.46817°, 10.46445° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.46817,"lon":10.46445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

HIGH INTENSITY PERFORMANCE OF THE BROOKHAVEN AGS.  

SciTech Connect

The Brookhaven AGS provides 24 GeV protons for a multi-user program of fixed-target high energy physics experiments, such as the study of extremely rare Kaon decays. Up to 7 x 10{sup 13} protons are slowly extracted over 2.2 seconds each 5.1 seconds. The muon storage ring of the g-2 experiment is supplied with bunches of 7 x 10{sup 12} protons. Since the completion of the a 1.9 GeV Booster synchrotron and installation of a new high-power rf system and transition jump system in the AGS various modes of operation have been explored to overcome space charge limits and beam instabilities at these extreme beam intensities. Experiments have been done using barrier cavities to enable accumulation of debunched beam in the AGS as a potential path to significantly higher intensities. We report on the present understanding of intensity limitations and prospects for overcoming them.

AHRENS,L.A.; ALESSI,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.; GARDNER,C.; GLENN,J.W.; ROSER,T.; SMITH,K.S.; VAN ASSELT,W.; ZHANG,S.Y.

1999-03-29T23:59:59.000Z

146

RHIC & AGS Userscenter;User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facilities User Facilities Experimenters work at one of five user facilities. The largest of these facilities is the Relativistic Heavy Ion Collider (RHIC), others include the Alternating Gradient Synchrotron facility (AGS), the Tandem Van de Graaff, the Accelerator Test Facility (ATF), and the NASA Space Radiation Laboratory (NSRL). See also: National User Facility Organization (NUFO). Accelerator Test Facility (ATF) Brookhaven's newest user facility, the ATF is a proposal driven Program Committee reviewed Users' Facility dedicated for long-term R&D in Physics of Beams. Alternating Gradient Synchrotron (AGS) Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world's premiere particle accelerators, well known for the three Nobel Prizes won as a result of research performed there.

147

PIA - Form EIA-475 A/G Residential Energy Consumption Survey...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Form EIA-475 AG Residential Energy Consumption Survey PIA - Form EIA-475 AG Residential Energy Consumption Survey PIA - Form EIA-475 AG Residential Energy Consumption Survey PIA...

148

Spin tracking study of the AGS  

SciTech Connect

In the recent polarized proton runs in the AGS, a 5% partial snake was used successfully to overcome the imperfection depolarizing resonances. Although some depolarization at intrinsic resonances are expected, the level of the depolarization does not agree with a simple model calculation. A spin tracking program is then used to simulate the real polarized proton beam in the AGS. The results show that, due to the linear coupling introduced by a solenoidal 5% partial snake, the polarized beam will be partially depolarized also at the so-called coupling resonance, which is related to the horizontal betatron tune. The synchrotron oscillation also affects the beam polarization to a smaller extent.

Huang, H.; Roser, T.; Luccio, A.

1997-07-01T23:59:59.000Z

149

SPIN COUPLING RESONANCE STUDY IN AGS.  

SciTech Connect

In the AGS spin resonances due to coupling may account for as much as a 50 percent loss in polarization at a reduced acceleration rate. The major source of coupling in the AGS is the solenoidal snake. In the past some preliminary work was done to understand this phenomena, and a method to overcome these resonances was attempted. However in the polarized proton run of 2002 we sought to study more thoroughly the response of these coupled spin resonances to the strength of the solenoidal snake, skew quadrupoles and vertical and horizontal betatron tune separation. In this paper we present our results and compare them with those predicted by a modified DEPOL program.

RANJBAR,V.; AHRENS,L.; BAI,M.; BROWN,K.; GLENN,W.; HUANG,H.; LUCCIO,A.; MACKAY,W.W.; PTITSYN,V.; ROSER,T.; TSOUPAS,N.; LEE,S.Y.

2002-06-02T23:59:59.000Z

150

Polarized proton acceleration program at the AGS  

SciTech Connect

The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A multi-university/laboratory collaborative effort involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to improve and modify to accelerate polarized protons. From the experience at the ZGS and careful studies made us confident of the feasibility of achieving a polarization of over 60 percent up to 26 GeV/c with an intensity of 10/sup 11/ approx. 10/sup 12/ per pulse. The first polarized proton acceleration at the AGS is expected in 1983.

Lee, Y.Y.

1981-01-01T23:59:59.000Z

151

Industry @ ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

152

Ag Nanowire Based Transparent Conductor for CIGS PV  

Science Conference Proceedings (OSTI)

Coated silver nanowires (AgNW) have been considered as a replacement for transparent conducting oxides (TCOs) in CIGS based photovoltaic devices. The advantages of AgNW over TCOs are discussed, and optical and electrical characteristics of AgNWs on glass are presented. Similarly fabricated AgNWs with varying sheet resistance on CIGS devices were tested against ITO transparent conductor controls. The CIGS was produced using a roll-to-roll technique on a flexible polymer substrate. Variations in the ZnO layer resistivity that are adjacent to the AgNW layer in the CIGS device were also tested. Device results indicate similar Jsc, but a reduced FF for cells made with the AgNWs, and Voc dependence on the resistivity of the coated AgNW and ZnO window layers. FF and Voc losses associated with the use of AgNWs are discussed.

Woods, L. M.; Wolk, J.; Smith, M.; Davande, H.; Ribelin, R. M.; Perkins, C. L.

2011-01-01T23:59:59.000Z

153

Microwave instabilities in Booster and AGS  

SciTech Connect

Microwave instabilities is evaluated for the Booster and AGS for the preparation of the relativistic heavy ion collider. We found that the Booster may require feedback system for the transverse instability at the high intensity proton operation. The coherent instability is not important for the nominal RhIC operational intensity.

Lee, S.Y.; Zhao, X.F.

1987-03-13T23:59:59.000Z

154

A27: Electrochemical Study of Ag Ionization in Molten Lead ...  

Science Conference Proceedings (OSTI)

The concentration of Ag+ in the molten glass significantly increased with ... Electrochemical Deposition of High Purity Silicon in Molten Salts.

155

AGS experiments -- 1996, 1997, 1998, 1999. Fifteenth edition  

SciTech Connect

This report is a compilation of two-page summaries for AGS experiments for FY 1996, FY 1997, FY 1998, FY 1999. The bulk of the experiments are for high energy physics and nuclear physics programs. Also included are the run schedules for the AGS for each of those years and a listing of publications of AGS experiments for 1982--1999.

Lo Presti, P.

1999-03-01T23:59:59.000Z

156

The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties  

Science Conference Proceedings (OSTI)

Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Tihminlioglu, Funda [Chemical Engineering Department, Izmir Institute of High Technology, Gulbahcekoyu Urla, Izmir (Turkey); Oks, Efim; Nikolaev, Alexey [High Current Electrnonics, Institute , Tomsk (Russian Federation); Ila, Daryush [Center for Irradiation of Materials, Alabama A and M University, Normal, Huntsville AL 35762 (United States)

2009-03-10T23:59:59.000Z

157

EECH Group AG formerly European Energy Consult Holding P T Technology AG |  

Open Energy Info (EERE)

EECH Group AG formerly European Energy Consult Holding P T Technology AG EECH Group AG formerly European Energy Consult Holding P T Technology AG Jump to: navigation, search Name EECH Group AG (formerly European Energy Consult Holding, P&T Technology AG) Place Hamburg, Schleswig-Holstein, Germany Zip 20354 Sector Solar, Wind energy Product Manager of retail bond issues to fund wind, PV and solar thermal power projects. Coordinates 53.553345°, 9.992455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.553345,"lon":9.992455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Effect of Ag thickness on electrical transport and optical properties of indium tin oxide-Ag-indium tin oxide multilayers  

SciTech Connect

We report the dependence of electronic and optical properties on the Ag thickness in transparent conductive indium tin oxide (ITO)-Ag-ITO (IMI) multilayer films deposited on polyethylene naphthalate flexible substrate by sputtering at room temperature. The electrical properties (such as carrier concentration, mobility, and resistivity) changed significantly with incorporation of Ag between the ITO layers. Comparison of sheet resistance of the IMI multilayers and the calculated sheet resistance of the Ag midlayer indicates that most of the conduction is through the Ag film. The critical thickness of Ag to form a continuous conducting layer is found to be 8 nm using electrical and optical analysis. A conduction mechanism is proposed to elucidate the mobility variation with increased Ag thickness. Carrier transport is limited by either interface scattering or grain-boundary scattering depending on the thickness of the Ag midlayer. Interface scattering is dominant for thinner (5.5-7 nm) Ag and grain-boundary scattering is dominant for thicker (8-10.5 nm) Ag midlayers. In addition, the effect of varying Ag midlayer thickness on transmittance behavior is also discussed. A figure of merit is used to compare performance of the IMI multilayer systems as a function of Ag thickness.

Indluru, A.; Alford, T. L. [School of Materials and Flexible Display Center, Arizona State University, Tempe, Arizona 85287 (United States)

2009-06-15T23:59:59.000Z

159

SolarWaterWorld AG | Open Energy Information  

Open Energy Info (EERE)

SolarWaterWorld AG SolarWaterWorld AG Jump to: navigation, search Name SolarWaterWorld AG Place Berlin, Berlin, Germany Zip 10559 Sector Solar Product Berlin-headquartered maker of solar-powered boats. References SolarWaterWorld AG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarWaterWorld AG is a company located in Berlin, Berlin, Germany . References ↑ "SolarWaterWorld AG" Retrieved from "http://en.openei.org/w/index.php?title=SolarWaterWorld_AG&oldid=351441" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

160

Microsoft Word - S00790AG.doc  

Office of Legacy Management (LM)

Website: http://www.lm.doe.gov/land/sites/mo/weldon/weldon.htm Website: http://www.lm.doe.gov/land/sites/mo/weldon/weldon.htm DOE office in Grand Junction 24-hour toll free security telephone number: (877) 695-5322 DOE-WSS local telephone number: (636) 300-0012 S00790AG DOE-LM/GJ688-2004 Long-Term Surveillance and Maintenance Plan for the U.S Department of Energy Weldon Spring, Missouri, Site February 2005 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Weldon Spring Site LTS&M Plan February 2005 Second Draft Final Doc. No. S00790AG Page iii Contents Acronyms and Abbreviations .......................................................................................................

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PERFORMANCE OF THE AGS TRANSITION JUMP SYSTEM.  

SciTech Connect

The transition jump system has been indispensable to the high intensity proton operation of the AGS complex. Nevertheless, transition crossing remains one of the major hurdles as the accelerator complex intensity is pushed upward. To enhance the performance of the system ''quadrupole pumping'' in the Booster is used to minimize the necessary longitudinal dilution of the beam on the AGS injection porch. During the transition jump sextupole correctors at strategic locations are pulsed to minimize the effects of the chromatic non-linearity of the jump system. The available instrumentation for diagnosing the performance of the system will be described, along with installed hardware to counter the non-linear effects of the transition jump system.

AHRENS,L.A.; BRENNAN,J.M.; GLENN,J.W.; ROSER,T.; VAN ASSELT,W.K.

1999-03-29T23:59:59.000Z

162

Bosch Solar Energy AG | Open Energy Information  

Open Energy Info (EERE)

Logo: Bosch Solar Energy AG Name Bosch Solar Energy AG Address Wilhelm-Wolff-Strasse 23 Place Arnstadt, Germany Product solar modules and cells Phone number +49 361 2195-0 Website http://www.bosch-solarenergy.d Coordinates 50.8597437°, 10.9471316° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8597437,"lon":10.9471316,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

New beam instrumentation in the AGS Booster  

SciTech Connect

The AGS Booster was designed to accelerate beams from 2{times}10{sup 10} polarized protons to 1.5{times}10{sup 13} protons and heavy ions through Au{sup +33}. The range of beam parameters and the high vacuum, and radiation environment presented challenges for the beam instrumentation. Some interesting beam monitors in the Booster and transport lines, will be described. Where available, results will be presented. 21 refs., 7 figs.

Witkover, R.L.

1991-01-01T23:59:59.000Z

164

Centrotec Sustainable AG | Open Energy Information  

Open Energy Info (EERE)

Centrotec Sustainable AG Centrotec Sustainable AG Jump to: navigation, search Name Centrotec Sustainable AG Place Brilon, Germany Zip D - 59929 Sector Solar Product Provides gas flue and climate systems for low-energy houses. Centrotec has also succeeded in seizing a substantial market share of the booming solar market via its subsidiary Centrosolar. Coordinates 51.39555°, 8.572655° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.39555,"lon":8.572655,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Cross Capital AG | Open Energy Information  

Open Energy Info (EERE)

Cross Capital AG Cross Capital AG Jump to: navigation, search Name Cross Capital AG Place Zug, Switzerland Zip 6300 Sector Solar Product Switzerland-based company that participates in enterprises of all kinds at home and abroad. The company Shares a 50% stake in the Ibersol STEG project with German solar developer Solar Millennium. Coordinates 47.171507°, 8.516215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.171507,"lon":8.516215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

AGS RESONANT EXTRACTION WITH HIGH INTENSITY BEAMS.  

SciTech Connect

The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams.[1] Learning to extract and transport these higher intensity beams has required a process of careful modeling and experimentation. We have had to learn how to correct for various instabilities and how to better match extraction and the transport lines to the higher emittance beams being accelerated in the AGS. Techniques employed include ''RF'' methods to smooth out momentum distributions and fine structure. We will present results of detailed multi-particle tracking modeling studies which enabled us to develop a clear understanding of beam loss mechanisms in the transport and extraction process. We will report on our status, experiences, and the present understanding of the intensity limitations imposed by resonant extraction and transport to fixed target stations.

AHRENS,L.; BROWN,K.; GLENN,J.W.; ROSER,T.; TSOUPAS,N.; VANASSELT,W.

1999-03-29T23:59:59.000Z

167

DOE'EIA-0"38!3-(S Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

DOE'EIA-0"38!3-(S DOE'EIA-0"38!3-(S Annual Energy With Proectjions to 20 For Further Information ... The Annual Energy Outlook (AEO) is prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (202/586-2222). General questions concerning energy demand or energy markets may be addressed to Mark E. Rodekohr (202/586-1130), Director of the Energy Demand and Integration Division. General questions concerning energy supply and conversion activities may be addressed to Scott Sitzer (202/586-2308), Director of the Energy Supply and Conversion Division. Detailed questions about the forecasts and related model components may be addressed to the following analysts: Highlights ..............................

168

Ventana's Energy, Environment, Economy-Society (E3S) Model | Open Energy  

Open Energy Info (EERE)

Ventana's Energy, Environment, Economy-Society (E3S) Model Ventana's Energy, Environment, Economy-Society (E3S) Model Jump to: navigation, search Tool Summary Name: Energy, Environment, Economy-Society (E3S) Model Agency/Company /Organization: Ventana Systems Inc. Partner: United States Department of Energy Sector: Climate, Energy Topics: Co-benefits assessment, - Macroeconomic, Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Not Available Website: www.ventanasystems.com/modelpage.php?modelID=11 Country: China UN Region: South-Eastern Asia Coordinates: 35.86166°, 104.195397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.86166,"lon":104.195397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

METAL MEDIA FILTERS, AG-1 SECTION FI  

Science Conference Proceedings (OSTI)

One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

Adamson, D.

2012-05-23T23:59:59.000Z

170

POLARIZED PROTON OPERATIONS IN THE AGS AND RHIC.  

Science Conference Proceedings (OSTI)

Polarized proton beam has been accelerated and stored at 100 GeV in Relativistic Heavy Ion Collider (RHIC) to study spin effects in the hadronic reactions. The essential equipment includes four Siberian snakes and eight spin rotators in two RHIC rings, a partial snake in the AGS, fast relative polarimeters, and ac dipoles in the AGS and RHIC. This paper summarizes the performance of RHIC as a polarized proton collider and of AGS as the injector to RHIC.

HUANG,H.; AHRENS,L.; BAI,M.; BEEBE-WANG,J.; ALESSI,J.; ALEKSEEV,I.; BRARVAR,S.; BRENNAN,M.; BROWN,K.; BUNCE,G.; DREES,A.; FISCHER,W.; GARDNER,C.; GLENN,W.; IGO,G.; JINNOCHI,O.; LUCCIO,A.; MACKAY,W.; MONTAG,C.; PILAT,F.; PTITSYN,V.; ROSER,T.; SATOGATA,T.; SPINKA,H.; SVIRIDA,D.; TEPIKIAN,S.; TRBOJEVIC,D.; TSOUPAS,N.; UNDERWOOD,D.; VANZEIJTS,J.; WOOD,J.; ZELENSKI,A.; ZENO,K.; ZHANG,S.Y.

2003-05-12T23:59:59.000Z

171

Carl Zeiss STM AG | Open Energy Information  

Open Energy Info (EERE)

Germany-based, technology developer and solutions provider for the semiconductor and nano-technology industry. Carl Zeiss through its subsidiary is invovled in the solar and...

172

Photoionization electronic spectroscopy of AlAg  

Science Conference Proceedings (OSTI)

AlAg is produced in a supersonic molecular beam by laser vaporization of alloy samples in a pulsed nozzle cluster source. Electronic spectroscopy is studied with resonant two-photon photoionization. In addition to the two electronic excited states previously reported by Clements and Barrow, we have observed ten new states. Vibrational analyses are presented for each of these states, and rotational analyses are given for selected states. The number and characteristics of these excited states are compared to the predictions of recent [ital ab] [ital initio] calculations.

Robbins, D.L.; Yeh, C.S.; Pilgrim, J.S.; Lang, G.L.; Duncan, M.A. (Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States))

1994-04-01T23:59:59.000Z

173

Modelling of the AGS using Zgoubi - Status  

SciTech Connect

This paper summarizes the progress achieved so far, and discusses various outcomes, regarding the development of a model of the Alternating Gradient Synchrotron at the RHIC collider. The model, based on stepwise ray-tracing methods, includes beam and polarization dynamics. This is an on-going work, and a follow-on of code developments and particle and spin dynamics simulations that have been subject to earlier publications at IPAC and PAC [1, 2, 3]. A companion paper [4] gives additional informations, regarding the use of the measured magnetic field maps of the AGS main magnets.

Meot F.; Ahrens, L.; Dutheil, Y.; Glenn, J.; Huang, H.; Roser, T.; Schoefer, V.; Tsoupas, N.

2012-05-20T23:59:59.000Z

174

Solaxis GmbH Regetec Handels AG | Open Energy Information  

Open Energy Info (EERE)

Germany Zip 47475 Sector Solar Product Distributor and installer of photovoltaic modules and solar heating systems. References Solaxis GmbH (Regetec Handels AG)1...

175

High intensity performance and upgrades at the Brookhaven AGS  

SciTech Connect

For the last two years the Brookhaven AGS has operated the slow extracted beam program at record proton intensities. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Roser, T.

1996-12-31T23:59:59.000Z

176

Dispersion of Ag Nanoparticles onto Porous Aluminum Hydroxide ...  

Science Conference Proceedings (OSTI)

And the optical property of the fabricated Ag nanoparticles dispersed ... Properties and Characterization of Nano-Structured Metal Oxides Used for Gas Sensor...

177

Associations and Industry - TMS  

Science Conference Proceedings (OSTI)

... Associations and Industry, Research Programs, ==== Basic Metallurgy ==== ... FORUMS > ASSOCIATIONS AND INDUSTRY, Replies, Views, Originator, Last...

178

Chemistry of atmospheric precipitation at Lewes, Delaware, as part of the MAP3S study  

Science Conference Proceedings (OSTI)

The purpose of this proposal is to request continuation of funding for the routine operation and research activities at the MAP3S precipitation chemistry site at Lewes, Delaware (Site No. 7). Specifically, financial support is being requested to provide for (1) collection of precipitation samples on an event basis, (2) routine field analyses, processing and shipment of samples to Battelle Northwest Laboratories for further analyses, and (3) modest additional salary and laboratory costs to partially support centrally related research projects as described later.

Church, T.M.

1986-07-31T23:59:59.000Z

179

Industrial alliances  

Science Conference Proceedings (OSTI)

The United States is emerging from the Cold War era into an exciting, but challenging future. Improving the economic competitiveness of our Nation is essential both for improving the quality of life in the United States and maintaining a strong national security. The research and technical skills used to maintain a leading edge in defense and energy now should be used to help meet the challenge of maintaining, regaining, and establishing US leadership in industrial technologies. Companies recognize that success in the world marketplace depends on products that are at the leading edge of technology, with competitive cost, quality, and performance. Los Alamos National Laboratory and its Industrial Partnership Center (IPC) has the strategic goal to make a strong contribution to the nation`s economic competitiveness by leveraging the government`s investment at the Laboratory: personnel, infrastructure, and technological expertise.

Adams, K.V.

1993-09-13T23:59:59.000Z

180

Thermoelectric figure of merit of Ag{sub 2}Se with Ag and Se excess  

Science Conference Proceedings (OSTI)

In the temperature range of 100-300 K, the electric ({sigma}) and thermoelectric ({alpha}{sub 0}) properties of Ag{sub 2}Se with an excess of Ag as high as {approx}0.1 at. % and Se as high as {approx}1.0 at. %, respectively, are investigated. From the data on {sigma}, {alpha}{sub 0}, and {chi}{sub tot} (thermal conductivities), the thermoelectric power {alpha}{sub 0}{sup 2}{sigma} and the figure of merit Z are calculated. It is found that {alpha}{sub 0}{sup 2}{sigma} and Z attain the peak values at room temperature and the electron concentration n {approx} 6.5 x 10{sup 18} cm{sup -3}.

Aliev, F. F., E-mail: farzali@physics.ab.az; Jafarov, M. B.; Eminova, V. I. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

2009-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Transforming the Freight Industry  

E-Print Network (OSTI)

Transforming the Freight Industry From Regulation to Icommon-carrier freight industry was Competition to backwardjourneys. When the freight industry was deregulated, it was

Regan, Amelia

2002-01-01T23:59:59.000Z

182

Demographics and industry returns  

E-Print Network (OSTI)

Demographics and Industry Returns By Stefano DellaVigna andand returns across industries. Cohort size fluc- tuationspredict profitability by industry. Moreover, forecast demand

Pollet, Joshua A.; DellaVigna, Stefano

2007-01-01T23:59:59.000Z

183

Industry Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

184

Office of Industrial Technologies: Industry partnerships  

SciTech Connect

US industries are making progress in turning the vision of the future into reality: More effective competition in global markets, increased industrial efficiency, more jobs, reduced waste generation and greenhouse gas emissions (to 1990 levels), improved environment. DOE`s Office of Industrial Technologies is catalyzing and supporting industry progress in many ways. This pamphlet gives an overview of OIT.

1995-04-01T23:59:59.000Z

185

Commissioning of the new AGS MMPS transformers  

SciTech Connect

The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps. +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. During rectify and invert operation the P Bank power supplies are used. During the flattops the F Bank power supplies are used. The P Bank power supplies are fed from two 23 MVA transformers and the F Bank power supplies are fed from two 5.3 MYA transformers. The fundamental frequency of the F Bank power supplies is 1440 Hz, however the fundamental frequency of the P banks was 720 Hz. It was very important to reduce the ripple during rectify to improve polarized proton operations. For this reason and also because the original transformers were 45 years old we replaced these transformers with new ones and we made the fundamental frequency of both P and F banks 1440 Hz. This paper will highlight the major hurdles that were involved during the installation of the new transformers. It will present waveforms while running at different power levels up to 6MW full load. It will show the transition from the F-Bank power supplies to the P-Banks and also show the improvements in ripple made on the P-Bank power supplies.

Bajon,E.; Badea, V. S.; Bannon, M.; Bonati, R.; Marneris, I. M.; Porqueddu, r.; Roser, T.; Sandberg, J.; Savatteri, S.

2009-05-04T23:59:59.000Z

186

ENGINEERING OF THE AGS SNAKE COIL ASSEMBLY.  

SciTech Connect

A 30% Snake superconducting magnet is proposed to maintain polarization in the AGS proton beam, the magnetic design of which is described elsewhere. The required helical coils for this magnet push the limits of the technology developed for the RHIC Snake coils. First, fields must be provided with differing pitch along the length of the magnet. To accomplish this, a new 3-D CAD system (''Pro/Engineer'' from PTC), which uses parametric techniques to enable fast iterations, has been employed. Revised magnetic field calculations are then based on the output of the mechanical model. Changes are made in turn to the model on the basis of those field calculations. To ensure that accuracy is maintained, the final solid model is imported directly into the CNC machine programming software, rather than by the use of graphics translating software. Next, due to the large coil size and magnetic field, there was concern whether the structure could contain the coil forces. A finite element analysis was performed, using the 3-D model, to ensure that the stresses and deflections were acceptable. Finally, a method was developed using ultrasonic energy to improve conductor placement during coil winding, in an effort to minimize electrical shorts due to conductor misplacement, a problem that occurred in the RHIC helical coil program. Each of these activities represents a significant improvement in technology over that which was used previously for the RHIC snake coils.

ANERELLA,M.GUPTA,R.KOVACH,P.MARONE,A.PLATE,S.POWER,K.SCHMALZLE,J.WILLEN,E.

2003-05-12T23:59:59.000Z

187

Luminescent and structural properties of ZnO-Ag films  

Science Conference Proceedings (OSTI)

ZnO-Ag thin films were prepared by a two-stage method on glass and sapphire substrates. Ag doping was carried out by a method of close space sublimation at atmospheric pressure. The film thickness is varied from 0.6 to 7 {mu}m. The structural and radiative properties were explored by X-ray diffraction technique, atomic force microscopy, photoluminescence and cathodoluminescence spectroscopy. The influence of the fabricating conditions on the properties of ZnO-Ag films is studied. It is found that the Ag doping modifies the crystalline structure of the films and promotes the oriented growth of monocrystalline blocks with the size of 500-2000 nm in the [0002] direction. Improvement of the crystalline quality correlates with the change of the radiative characteristics of the films. The origin of emission centers is discussed.

Khomchenko, V. S., E-mail: vsk@isp.kiev.ua; Kushnirenko, V. I., E-mail: vl_kush@ukr.net; Papusha, V. P.; Savin, A. K.; Lytvyn, O. S. [National Academy of Sciences of Ukraine, V.E. Lashkaryov Institute of Semiconductor Physics (Ukraine)

2010-05-15T23:59:59.000Z

188

Ag Nano Plate for Application of Printable Electronics  

Science Conference Proceedings (OSTI)

Since Ag Nnao Plate(ANP) which is synthesized by a thermal growth method is completely flat(thickness <100nm) and narrow size distribution, it is the most...

189

AgFuture Energy LLC AFE | Open Energy Information  

Open Energy Info (EERE)

a Pennsylvania-based advisory firm to commercialise energy research underway at the schools. References AgFuture Energy LLC (AFE)1 LinkedIn Connections CrunchBase Profile No...

190

Ag Exudation during Internal Oxidation in various Contact Materials  

Science Conference Proceedings (OSTI)

... Ag alloys are frequently used as contact materials in high-energy switching operations. ... Influence of Direct Aged Treatment on Creep Behaviors of Hot Continuous ... Remediation of Chicken Processing Wastewater using Electrochemically...

191

High intensity performance and upgrades at the Brookhaven AGS  

SciTech Connect

The high intensity proton beam of the AGS is used both for the slow-extracted-beam (SEB) area with many target station to produce secondary beams and the fast-extracted-beam (FEB) line used for the production of muons for the g-2 experiment and for high intensity target testing for the spallation neutron sources and muon production targets for the muon collider. The same FEB line will also be used for the transfer of beam to RHIC. The proton beam intensity in the AGS has increased steadily over the 35 year existence of the AGS, but the most dramatic increase occurred over the last couple of years with the addition of the new AGS Booster. All modifications associated with this are discussed.

Roser, T.

1998-12-01T23:59:59.000Z

192

The AGS main magnet power supply upgrade  

SciTech Connect

The AGS Main Magnet Power Supply consists of a group of thyristor controlled power converters that operate from full rectify to full invert. In order to minimize ripple during the critical periods of injection and extraction 24 pulse converters are used for these portions of the cycle. The maximum voltage available in this mode is nominally 2,000 volts. The converters that are functional during this portion of the cycle are called the flat-top bank or ``F`` bank modules. During acceleration and invert where voltages of up to 12,000 volts are needed and where the ripple requirements are less stringent, groups of twelve pulse converters are operational. These converters are called the Pulsed bank or ``P`` bank modules. The original controlled rectifier system consisted of 96 large mercury filled excitron tubes divided equally between the P bank and F bank converters. These devices were extremely durable and ran successfully for over twenty years. It was, decided to replace the excitron farm with multiple arrangements of three-phase, full-wave, bridge modules that utilize silicon controlled rectifiers (SCR`s or thyristors) as the switching element. In order to match the existing transformer connections and buswork, eight identical modules were required; four for the P bank system and four for the F bank system. In order to reduce noise pickup and provide electrical isolation the high level SCR gate triggers are provided via fiberoptic cable. The status of various parameters such as water flow, auxiliary power supply performance, trigger circuitry failure, over voltage, overcurrent, and loss of phase reference are monitored via a programmable logic controller (PLCs). The PLCs use isolated input and output modules for various voltage levels from TTL to 150 Vdc to 125 Vac. These devices are extremely flexible and have allowed modifications and improvements that have enhanced the performance over any equivalent hard wired system.

Sandberg, J.N.; Casella, R.; Geller, J.; Marneris, I.; Soukas, A.; Schumburg, N.

1995-05-01T23:59:59.000Z

193

EDDY CURRENT EFFECT OF THE BNL-AGS VACUUM CHAMBER ON THE OPTICS OF THE BNL-AGS SYNCHROTRON.  

Science Conference Proceedings (OSTI)

During the acceleration cycle of the AGS synchrotron, eddy currents are generated within the walls of the vacuum chambers of the AGS main magnets. The vacuum chambers have elliptical cross section, are made of inconel material with a wall thickness of 2 mm and are placed within the gap of the combined-function main magnets of the AGS synchrotron. The generation of the eddy currents in the walls of the vacuum chambers, creates various magnetic multipoles, which affect the optics of the AGS machine. In this report these magnetic multipoles are calculated for various time interval starting at the acceleration cycle, where the magnetic field of the main magnet is {approx}0.1 T, and ending before the beam extraction process, where the magnetic field of the main magnet is almost constant at {approx}1.1 T. The calculations show that the magnetic multipoles generated by the eddy-currents affect the optics of the AGS synchrotron during the acceleration cycle and in particular at low magnetic fields of the main magnet. Their effect is too weak to affect the optics of the AGS machine during beam extraction at the nominal energies.

TSOUPAS,N.; AHRENS,L.; BROWN,K.A.; GLENN,J.W.; GARDNER,K.

1999-03-29T23:59:59.000Z

194

HIGH INTENSITY PERFORMANCE AND UPGRADES AT THE BROOKHAVEN AGS  

SciTech Connect

Fig. 1 shows the present layout of the AGS-RHIC accelerator complex. The high intensity proton beam of the AGS is used both for the slow-extracted-beam (SEB) area with many target station to produce secondary beams and the fast-extracted-beam (FEB) line used for the production of muons for the g-2 experiment and for high intensity target testing for the spallation neutron sources and muon production targets for the muon collider. The same FEB line will also be used for the transfer of beam to RHIC. The proton beam intensity in the AGS has increased steadily over the 35 year existence of the AGS, but the most dramatic increase occurred over the last couple of years with the addition of the new AGS Booster[1]. In Fig. 2 the history of the AGS intensity improvements is shown and the major upgrades are indicated. The AGS Booster has one quarter the circumference of the AGS and therefore allows four Booster beam pulses to be stacked in the AGS at an injection energy of 1.5--1.9 GeV. At this increased energy, space charge forces are much reduced and this in turn allows for the dramatic increase in the AGS beam intensity. The 200 MeV LINAC is being used both for the injection into the Booster as well as an isotope production facility. A recent upgrade of the LINAC rf system made it possible to operated at an average H{sup {minus}} current of 150 {micro}A and a maximum of 12 x 10{sup 13} H{sup {minus}} per 500 {micro}s LINAC pulse for the isotope production target. Typical beam currents during the 500 {micro}s pulse are about 80 mA at the source, 60 mA after the 750 keV RFQ, 38 mA after the first LINAC tank (10 MeV), and 37 mA at end of the LINAC at 200 MeV. The normalized beam emittance is about 2 {pi} mm mrad for 95% of the beam and the beam energy spread is about {+-}1.2 MeV. A magnetic fast chopper installed at 750 keV allows the shaping of the beam injected into the Booster to avoid excessive beam loss.

ROSER,T.

1998-05-04T23:59:59.000Z

195

Development of a new Pb-free solder: Sn-Ag-Cu  

Science Conference Proceedings (OSTI)

With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217{degrees}C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

Miller, C.M.

1995-02-10T23:59:59.000Z

196

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

| Industrial Program Coordinator | Publications Courtesy of The New York Times, Noah Berger The overall goal of the plan to enhance the NSLS facility's Industrial Users'...

197

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

198

Construction Industry Institute  

Science Conference Proceedings (OSTI)

... in one of our country's most vital industries. ... An industry-led program to disseminate practical ... fire-proofing materials, connections, and steel trusses; ...

2010-10-05T23:59:59.000Z

199

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

200

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Search for Dimuon Decays of a Light Scalar in Radiative Transitions Y(3S) -> gamma A0  

SciTech Connect

The fundamental nature of mass is one of the greatest mysteries in physics. The Higgs mechanism is a theoretically appealing way to account for the different masses of elementary particles and implies the existence of a new, yet unseen particle, the Higgs boson. We search for evidence of a light scalar (e.g. a Higgs boson) in the radiative decays of the narrow {Upsilon}(3S) resonance: {Upsilon}(3S) {yields} {gamma}A{sup 0}, A{sup 0} {yields} {mu}{sup +}{mu}{sup -}. Such an object appears in extensions of the Standard Model, where a light CP-odd Higgs boson naturally couples strongly to b-quarks. We find no evidence for such processes in a sample of 122 x 10{sup 6} {Upsilon}(3S) decays collected by the BABAR collaboration at the PEP-II B-factory, and set 90% C.L. upper limits on the branching fraction product {Beta}({Upsilon}(3S) {yields} {gamma}A{sup 0}) x {Beta}(A{sup 0} {yields} {mu}{sup +}{mu}{sup -}) at (0.25 - 5.2) x 10{sup -6} in the mass range 0.212 {<=} m{sub A{sup 0}} {<=} 9.3 GeV. We also set a limit on the dimuon branching fraction of the {eta}{sub b} meson {Beta}({eta}{sub b} {yields} {mu}{sup +}{mu}{sup -}) < 0.8% at 90% C.L. The results are preliminary.

Aubert, B

2009-06-02T23:59:59.000Z

202

Omega-3 Oils: Applications in Functional Foods Chapter 6 Synthesis and Properties of Structured Lipids with Omega-3s  

Science Conference Proceedings (OSTI)

Omega-3 Oils: Applications in Functional Foods Chapter 6 Synthesis and Properties of Structured Lipids with Omega-3s Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 75989052C9EEE7E80FE897C67F4B17E4 AOCS Pr

203

Industrial Applications of Renewable Resources  

Science Conference Proceedings (OSTI)

Archive of Industrial Applications of Renewable Resources Industrial Applications of Renewable Resources Cincinnati, Ohio, USA Industrial Applications of Renewable Resources ...

204

EPURON GmbH formerly Voltwerk AG | Open Energy Information  

Open Energy Info (EERE)

EPURON GmbH formerly Voltwerk AG EPURON GmbH formerly Voltwerk AG Jump to: navigation, search Name EPURON GmbH (formerly Voltwerk AG) Place Hamburg, Germany Zip 20537 Sector Solar, Wind energy Product Develops, finances, implements and operates solar, wind and biogas power projects. Coordinates 53.553345°, 9.992455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.553345,"lon":9.992455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

PNE Wind formerly Plambeck Neue Energien AG | Open Energy Information  

Open Energy Info (EERE)

Plambeck Neue Energien AG Plambeck Neue Energien AG Jump to: navigation, search Name PNE Wind (formerly Plambeck Neue Energien AG) Place Cuxhaven, Lower Saxony, Germany Zip 27472 Sector Wind energy Product Germany-based developer of onshore and offshore windpower parks. Coordinates 53.858306°, 8.697818° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.858306,"lon":8.697818,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

AgFe Management Ltd | Open Energy Information  

Open Energy Info (EERE)

AgFe Management Ltd AgFe Management Ltd Jump to: navigation, search Name AgFe Management Ltd Place London, England, United Kingdom Zip W11 1QF Product London-based, Financial Asset Management and Advisory firm. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Mepsolar AG aka Munich Energy Partners | Open Energy Information  

Open Energy Info (EERE)

Mepsolar AG aka Munich Energy Partners Mepsolar AG aka Munich Energy Partners Jump to: navigation, search Name Mepsolar AG (aka Munich Energy Partners) Place Munich, Germany Zip 81829 Product Develops utility scale PV projects in Spain and Bulgaria and plans also to launch a PV direct selling business for residential customers. Coordinates 48.136415°, 11.577531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.136415,"lon":11.577531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

RENERCO Renewable Energy Concepts AG | Open Energy Information  

Open Energy Info (EERE)

RENERCO Renewable Energy Concepts AG RENERCO Renewable Energy Concepts AG Jump to: navigation, search Name RENERCO Renewable Energy Concepts AG Place Munich, Germany Zip D-80336 Sector Renewable Energy Product Munich-based service provider for all projects involving renewable energies. Also develops a complete range of projects of its own. Coordinates 48.136415°, 11.577531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.136415,"lon":11.577531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Intergral Drive Systems AG IDS | Open Energy Information  

Open Energy Info (EERE)

Intergral Drive Systems AG IDS Intergral Drive Systems AG IDS Jump to: navigation, search Name Intergral Drive Systems AG (IDS) Place Zurich, Swaziland Zip CH-8005 Sector Wind energy Product Zurich based producer of power electronics systems for wind turbines, PV plants, and propulsion systems. Coordinates 47.37706°, 8.53955° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.37706,"lon":8.53955,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

SPIN COUPLING RESONANCE AND SUPPRESSION IN THE AGS.  

Science Conference Proceedings (OSTI)

Spin depolarizing resonances due to coupling may account for as much as a 30 percent loss in polarization in the AGS. The major source of coupling in the AGS is the solenoidal snake. In the past some preliminary work was done to understand this phenomena [1], and a method to overcome these resonances was attempted [2]. However, in the polarized proton run of 2002, the response of these coupled spin.resonances to the strength of the solenoidal snake, skew quadrupoles and vertical and horizontal betatron tune separation was studied to provided a benchmark for a modified DEPOL program [3]. Then using the new DEPOL program, a method to cure the coupled spin resonances in the AGS via spin matching rather than global or local decoupling was explored.

Ranjbar, V H; Ahrens, L; Bai, M; Brown, K; Glenn, W; Huang, H; Luccio, A U; Mackay, W W; Ptitsyn, V; Roser, T

2002-09-09T23:59:59.000Z

211

THE RHIC/AGS ONLINE MODEL ENVIRONMENT: DESIGN AND OVERVIEW.  

SciTech Connect

An integrated online modeling environment is currently under development for use by AGS and RHIC physicists and commissioners. This environment combines the modeling efforts of both groups in a CDEV [1] client-server design, providing access to expected machine optics and physics parameters based on live and design machine settings. An abstract modeling interface has been designed as a set of adapters [2] around core computational modeling engines such as MAD and UAL/Teapot++ [3]. This approach allows us to leverage existing survey, lattice, and magnet infrastructure, as well as easily incorporate new model engine developments. This paper describes the architecture of the RHIC/AGS modeling environment, including the application interface through CDEV and general tools for graphical interaction with the model using Tcl/Tk. Separate papers at this conference address the specifics of implementation and modeling experience for AGS and RHIC.

SATOGATA,T.; BROWN,K.; PILAT,F.; TAFTI,A.A.; TEPIKIAN,S.; VAN ZEIJTS,J.

1999-03-29T23:59:59.000Z

212

Zinc Electrowinning Using Novel Rolled Pb-Ag-Ca Anodes  

Science Conference Proceedings (OSTI)

Aug 1, 2003 ... Since May 2001, industrial-scale tests have been carried out at two zinc refineries in North America in industrial electrowinning cells.

213

Physics of the AGS-to-RHIC transfer line commissioning  

Science Conference Proceedings (OSTI)

This paper presents beam physics results from the fall 1995 AGS-to- RHIC (ATR) transfer line commissioning run with fully ionized gold nuclei. We first describe beam position monitors and transverse video profile monitors, instrumentation relevant to measurements performed during this commissioning. Measured and corrected beam trajectories demonstrate agreement with design optics to a few percent, including optical transfer functions and beamline dispersion. Digitized 2- dimensional video profile monitors were used to measure beam emittance, and beamline optics and AGS gold ion beam parameters are shown to be comparable to RHIC design requirements.

Satogata, T.; Ahrens, L.; Brennan, M.; Brown, K.; Clifford, T.; Connolly, R.; Dell, F.; Deng, D.P.; Hoff, L.; Kewisch, J.; MacKay, W.W.; Maldonado, G.; Martin, B.; Olsen, R.; Peggs, S.; Pilat, F.; Robinson, T.; Sathe, S.; Shea, D.; Shea, T.J.; Tanaka, M.; Thompson, P.; Tepikian, S.; Trahern, C.G.; Trbojevic, D.; Tsoupas, N.; Wei, J.; Witkover, R.; Zhou, P.

1996-07-01T23:59:59.000Z

214

AGS to RHIC transfer line: Design and commissioning  

SciTech Connect

In the fall of 1995, we successfully completed a major milestone in the RHIC (Relativistic Heavy Ion Collider) project: the first beam test of the AGS (Alternating Gradient Synchrotron) to RHIC (ATR) transfer line. The ATR serves as a test bed for the new RHIC control system. This transfer line is highly instrumented, with several types of instrumentation for characterizing the extracted beam from AGS and for matching the beam into RHIC. We describe the design and performance of ATR with gold ions with an eye to reaching the design criteria for RHIC operation, both in beam quality and controls.

MacKay, W.W; Ahrens, L.; Bennan, M.; Brown, K. [and others

1996-09-01T23:59:59.000Z

215

Pb-free Sn-Ag-Cu ternary eutectic solder  

DOE Patents (OSTI)

A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

Anderson, Iver E. (Ames, IA); Yost, Frederick G. (Cedar Crest, NM); Smith, John F. (Ames, IA); Miller, Chad M. (Ames, IA); Terpstra, Robert L. (Ames, IA)

1996-06-18T23:59:59.000Z

216

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

217

Flexible, transparent, and conductive film based on random networks of Ag nanowires  

Science Conference Proceedings (OSTI)

Flexible, transparent, and conductive films based on randomnetworks ofAg nanowireswere prepared by vacuum-filtratingmethod. The size of Ag nanowires prepared by hydrothermal method is uniform, with a relatively smaller diameter and a longer length, thereby ...

Shunhua Wang, Xu Zhang, Weiwei Zhao

2013-01-01T23:59:59.000Z

218

Access to A-G curriculum at San Jose Unified School District  

E-Print Network (OSTI)

Issue 1 Access to A-G curriculum at San Jose Unified Schoolhigh school enrollment curriculum for all California publicwith a college-bound curriculum is to increase the A-G

Lin, Barbara

2006-01-01T23:59:59.000Z

219

AgBioForum, 13(2): 131-141. 2010 AgBioForum. Introduction  

E-Print Network (OSTI)

. Lett. 3 (2008) 034001 H K Gibbs et al Industrialized nations with biofuels targets, such as the United.1088/1748-9326/3/3/034001 Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield Published 9 July 2008 Online at stacks.iop.org/ERL/3/034001 Abstract Biofuels from land-rich tropical

220

Polarized beams at the ZGS and the AGS  

SciTech Connect

I have had, and still do, a feeling of deja Vu as I have gone through the development of the polarized beam at the AGS. There were many similarities both scientifically and sociologically, and of course, some significant differences between the AGS and the ZGS. We traded the 12 GeV ZGS for the 28 GeV AGS, we traded Ron Martin for Derek Lowenstein, but having the lowest energy, high energy machine did not change. Paraphrasing some remarks of Bob Sachs, the AGS replaced the ZGS as the tail of the dog, and it appears that now the tail loppers are again on the loose. You will probably see them again somewhere in the world using body english to help polarize a beam. Basically, I would like to describe a little of the progression of events and the hardware in both accelerators that allowed Kent and his colleagues to do a great deal of very interesting spin physics. 6 refs., 30 figs.

Ratner, L.G.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Exploring the origin of degenerate doublet bands in $^{106}$Ag  

E-Print Network (OSTI)

The electromagnetic transition probabilities of the excited levels for the two nearly degenerate bands of $^{106}$Ag have been measured using the Doppler Shift Attenuation Method. A comparison with the calculated values using triaxial projected shell model approach indicates that these bands originate from two different quasi-particle configurations but constructed from the same mean-field deformation.

N. Rather; P. Datta; S. Chattopadhyay; S. Roy; S. Rajbanshi; A. Gowsami; G. H. Bhat; J. A. Sheikh; R. Palit; S. Pal; S. Saha; J. Sethi; S. Biswas; P. Singh; H. C. Jain

2013-10-29T23:59:59.000Z

222

Electroplating of Cu(Ag) thin films for interconnect applications  

Science Conference Proceedings (OSTI)

Electromigration effects in interconnect metallizations cause a need for materials with superior resistance against electromigration failure but with adequate electrical properties. In principle, Cu(Ag) alloys are potential candidates to become an interconnect ... Keywords: Copper-silver alloy thin film, Electrochemical deposition, Interconnect material

S. Strehle; S. Menzel; J. W. Bartha; K. Wetzig

2010-02-01T23:59:59.000Z

223

Industrial Decision Making  

E-Print Network (OSTI)

Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy although, freight costs, favorable exchange rates and high capacity utilization will encourage future industrial investment. Industry will eventually enter a new period of major investment. Future industrial investment will be an opportunity to influence the energy efficiency of these facilities for generations to come. Program managers must begin engaging industrial customers now, in order to exploit this unprecedented opportunity to change future energy use patterns. This paper reviews recent market trends and industrial investment decision-making. The paper will also address several important questions: Why has industrial investment declined? What is the outlook for industrial investment? How can programs engage industry for future opportunities?

Elliott, R. N.; McKinney, V.; Shipley, A.

2008-01-01T23:59:59.000Z

224

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

225

Studies on the properties of sputter-deposited Ag-doped ZnO films  

Science Conference Proceedings (OSTI)

Ag-doped ZnO films were prepared by simultaneous rf magnetron sputtering of ZnO and dc magnetron sputtering of Ag on glass substrate. The influences of dopant content and substrate temperature on the properties of the as-grown films were investigated. ... Keywords: Ag, Electrical and optical properties, Thin films, ZnO

D. R. Sahu

2007-12-01T23:59:59.000Z

226

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

227

Industrial | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends Despite a 54-percent increase in industrial shipments, industrial energy...

228

America's Booming Wind Industry  

Energy.gov (U.S. Department of Energy (DOE))

Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry.

229

The Copper Industry  

Science Conference Proceedings (OSTI)

...These products are sold to a wide variety of industrial users. Certain mill products??chiefly wire, cable, and most

230

NIST Industry Day 2012  

Science Conference Proceedings (OSTI)

... at www.fedbizopps.gov. Search NIST-AMD-INDUSTRY-DAY-2012 in the Quick Search engine. Deadline for registration ...

2013-08-30T23:59:59.000Z

231

Industrial Development Projects (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes municipalities and counties to issue bonds or interest coupons to finance industrial projects, including energy generation facilities.

232

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

innovation and lets industry pick winning technologies. TheTransforming the Oil Industry intothe Energy Industry BY DANIEL SPERLING AND SONIA YEH A C C E

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

233

From Industry Protection to Industry Promotion: IT Policy in Brazil  

E-Print Network (OSTI)

Brazilian banking automation industry. Science, TechnologyBrazilian liberalisation of the IT industry on technologicalWorking paper. Computer Industry Almanac, Inc. (1999).

Botelho, Antonio Jose Junqueira; Dedrick, Jason; Kraemer, Kenneth L.; Tigre, Paulo Bastos

1999-01-01T23:59:59.000Z

234

Near-surface and bulk behavior of Ag in SiC  

SciTech Connect

The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85-1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

Xiao, Haiyan [University of Tennessee, Knoxville (UTK); Zhang, Yanwen [ORNL; Snead, Lance Lewis [ORNL; Shutthanandan, Vaithiyalingam [Pacific Northwest National Laboratory (PNNL); Xue, Haizhou [University of Tennessee, Knoxville (UTK); Weber, William J [ORNL

2012-01-01T23:59:59.000Z

235

Near-surface and bulk behavior of Ag in SiC  

SciTech Connect

The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the nearsurface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85~1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in 2 SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

Xiao, Haiyan Y.; Zhang, Yanwen; Snead, Lance L.; Shutthanandan, V.; Xue, Haizhou; Weber, William J.

2012-01-01T23:59:59.000Z

236

Characterization and device performance of (AgCu)(InGa)Se2 absorber layers  

DOE Green Energy (OSTI)

The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and ? = 13.0%.

Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

2009-06-08T23:59:59.000Z

237

Solar World USA not SolarWorld AG | Open Energy Information  

Open Energy Info (EERE)

World USA not SolarWorld AG World USA not SolarWorld AG Jump to: navigation, search Name Solar World USA (not SolarWorld AG) Place Colorado Springs, Colorado Zip 80907 Sector Solar Product Solar World manufactures solar powered products for educational, consumer, electronic and custom OEM markets. References Solar World USA (not SolarWorld AG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar World USA (not SolarWorld AG) is a company located in Colorado Springs, Colorado . References ↑ "Solar World USA (not SolarWorld AG)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_World_USA_not_SolarWorld_AG&oldid=351350" Categories: Clean Energy Organizations

238

Sovello AG formerly EverQ GmbH | Open Energy Information  

Open Energy Info (EERE)

Sovello AG formerly EverQ GmbH Sovello AG formerly EverQ GmbH Jump to: navigation, search Name Sovello AG (formerly EverQ GmbH) Place Bitterfeld-Wolfen, Saxony-Anhalt, Germany Zip 6766 Sector Renewable Energy, Solar Product JV between Evergreen Solar, Q-Cells and Renewable Energy Corp to develop PV wafers, cells and panels through string ribbon process. References Sovello AG (formerly EverQ GmbH)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sovello AG (formerly EverQ GmbH) is a company located in Bitterfeld-Wolfen, Saxony-Anhalt, Germany . References ↑ "Sovello AG (formerly EverQ GmbH)" Retrieved from "http://en.openei.org/w/index.php?title=Sovello_AG_formerly_EverQ_GmbH&oldid=35158

239

Low emissivity Ag/Ta/glass multilayer thin films deposited by sputtering  

SciTech Connect

Ta is deposited on a glass substrate as an interlayer for the two-dimensional growth of Ag thin films because Ta has good thermal stability and can induce a negative surface-energy change in Ag/glass. From the transmission electron microscopy results, we concluded that the Ag crystals in the bottom layer (seemingly on Ag/Ta) were flattened; this was rarely observed in the three-dimensional growth mode. Comparing Ag/Ta/glass with Ag/glass, we found that the Ta interlayer was effective in reducing both the resistance and the emissivity, accompanied by the relatively high transmittance in the visible region. In particular, Ag(9 nm)/Ta(1 nm)/glass film showed 0.08 of the emissivity, including {approx}61% of the transmittance in the visible region (wavelength: 550 nm).

Park, Sun Ho [Division of Advanced Materials Engineering, Kongju National University, Budaedong, Cheonan City (Korea, Republic of); Lee, Kee Sun [Division of Advanced Materials Engineering, Kongju National University, Budaedong, Cheonan City (Korea, Republic of); Green Home Energy Technology Center, Cheonan City (Korea, Republic of); Sivasankar Reddy, A. [Green Home Energy Technology Center, Cheonan City (Korea, Republic of)

2011-09-15T23:59:59.000Z

240

Heliocentris Energiesysteme GmbH aka Heliocentris Fuel Cells AG | Open  

Open Energy Info (EERE)

Heliocentris Energiesysteme GmbH aka Heliocentris Fuel Cells AG Heliocentris Energiesysteme GmbH aka Heliocentris Fuel Cells AG Jump to: navigation, search Name Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel Cells AG) Place Berlin, Germany Zip 12489 Product Specialised in fuel cell demonstration applications for education and outreach. References Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel Cells AG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel Cells AG) is a company located in Berlin, Germany . References ↑ "[ Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel Cells AG)]" Retrieved from "http://en.openei.org/w/index.php?title=Heliocentris_Energiesysteme_GmbH_aka_Heliocentris_Fuel_Cells_AG&oldid=346452"

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

242

Preliminary study of AC power feeders for AGS booster  

SciTech Connect

It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO's substation.

Meth, M.

1992-07-17T23:59:59.000Z

243

Preliminary study of AC power feeders for AGS booster  

SciTech Connect

It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO`s substation.

Meth, M.

1992-07-17T23:59:59.000Z

244

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

245

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

246

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Print Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

247

Magnetic moment of Ag-104(m) and the hyperfine magnetic field of Ag in Fe using nuclear magnetic resonance on oriented nuclei  

E-Print Network (OSTI)

Nuclear magnetic resonance (NMR/ON) measurements with beta- and gamma-ray detection have been performed on oriented Ag-104(g,m) nuclei with the NICOLE He-3-He-4 dilution refrigerator setup at ISOLDE/CERN. For Ag-104(g) (I-pi = 5(+)) the gamma-NMR/ON resonance signal was found at nu = 266.70(5) MHz. Combining this result with the known magnetic moment for this isotope, the magnetic hyperfine field of Ag impurities in an Fe host at low temperature (< 1 K) is found to be vertical bar B-hf(AgFe)vertical bar = 44.709(35) T. A detailed analysis of other relevant data available in the literature yields three more values for this hyperfine field. Averaging all four values yields a new and precise value for the hyperfine field of Ag in Fe; that is, vertical bar B-hf(AgFe)vertical bar = 44.692(30) T. For Ag-104(m) (I-pi = 2(+)), the anisotropy of the beta particles provided the NMR/ON resonance signal at nu = 627.7(4) MHz. Using the new value for the hyperfine field of Ag in Fe, this frequency corresponds to the magnetic moment mu(Ag-104m) = +3.691(3) mu(N), which is significantly more precise than previous results. The magnetic moments of the even-A Ag102 -110 isotopes are discussed in view of the competition between the (pi g(9/2))(7/2+)(-3)(nu d(5/2)nu g(7/2))(5/2+) and the (pi g(9/2))(9/2+)(-3)(nu d(5/2)nu g(7/2))(5/2+) configurations. The magnetic moments of the ground and isomeric states of Ag-104 can be explained by an almost complete mixing of these two configurations.

V. V. Golovko; I. S. Kraev; T. Phalet; B. Delaure; M. Beck; V. Yu. Kozlov; S. Coeck; F. Wauters; P. Herzog; Ch. Tramm; D. Zakoucky; D. Venos; D. Srnka; M. Honusek; U. Koester; N. Severijns

2010-06-30T23:59:59.000Z

248

Pressurized Water Reactor AgInCd Control Rod Lifetime  

Science Conference Proceedings (OSTI)

Swelling of the lower end tip of AgInCd (AIC) absorber rods is one of the lifetime limiting phenomena for PWR control rods. Understanding the relationship between swelling and accumulated fluence is crucial to predicting the service life of these components. This report presents the initial results and analyses from a control rod absorber research program led by the EPRI Fuel Reliability Program, in close collaboration with Westinghouse Electric Company and AREVA NP. The goals of the program are to chara...

2009-08-27T23:59:59.000Z

249

Design of the AGS Booster beam position monitor system  

SciTech Connect

The AGS Booster beam position monitor system must cover a wide range of beam intensity and bunch length for proton and heavy ion acceleration. The detector is designed to maintain 0.1 mm local tolerance following 300{degree}C bakeout. The electronics will be located in the tunnel, communicating via fiber optic links to avoid ground loops. The design will be described and test results for prototype units presented. 5 refs., 4 figs.

Beadle, E.; Brennan, J.M.; Ciardullo, D.J.; Savino, J.; Stanziani, V.; Thomas, R.; Van Zwienen, W.; Witkover, R.L.; Schulte, E. (Brookhaven National Lab., Upton, NY (USA); European Organization for Nuclear Research, Geneva (Switzerland))

1989-01-01T23:59:59.000Z

250

Tobacco Industry Involvement in Colorado  

E-Print Network (OSTI)

Accessed May 25, 2004) Industry Summary. 1992 (est. ).11 May 2004) Tobacco Industry Involvement in Colorado Pageor (800) LUNG-USA. Tobacco Industry Involvement in Colorado

Landman, BA, Anne; Bialick, Peter

2004-01-01T23:59:59.000Z

251

For Industry | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D accelerates battery technology | More news Home | Connect with ORNL | For Industry For Industry | For Industry SHARE There are a few different way of "working" with...

252

Novatec BioSol AG | Open Energy Information  

Open Energy Info (EERE)

Novatec BioSol AG Novatec BioSol AG Jump to: navigation, search Name Novatec BioSol AG Place Karlsruhe, Rhineland-Palatinate, Germany Zip D-76135 Sector Solar Product Novatec is a solar field component manufacturer and plans to develop and operate using linear Fresnel concentrator solar thermal electrical generation (STEG) plants in Spain. Coordinates 49.01076°, 8.408695° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.01076,"lon":8.408695,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Gamesa Energie Deutschland formerly EBV Management Holding AG | Open Energy  

Open Energy Info (EERE)

Deutschland formerly EBV Management Holding AG Deutschland formerly EBV Management Holding AG Jump to: navigation, search Name Gamesa Energie Deutschland (formerly EBV Management Holding AG) Place Oldenburg, Germany Zip 26122 Sector Wind energy Product German wind farm developer focused on developing and constructing wind farms in prepration for a sale to third party investors on commissioning. Coordinates 53.138699°, 8.21144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.138699,"lon":8.21144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

WKN Windkraft Nord AG WKN Offshore Tech | Open Energy Information  

Open Energy Info (EERE)

AG WKN Offshore Tech AG WKN Offshore Tech Jump to: navigation, search Name WKN Windkraft Nord AG (WKN Offshore Tech) Place Husum, Germany Zip 25813 Sector Wind energy Product Wind project developer. The majority of their wind farms are marketed as closed end funds though some have been sold to private investors such as DIFKO Vind. Coordinates 45.799479°, -121.486901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.799479,"lon":-121.486901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Search for a Low-Mass Higgs Boson in Upsilon (3S)--> gamma A0, A0--> tau + tau - at BABAR  

E-Print Network (OSTI)

We search for a light Higgs boson A0 in the radiative decay ?(3S)??A0, A0-->?+?-, ?+?e+?e?? ?, or ?+-->?+???? ?. The data sample contains 122106 ?(3S) events recorded with the BABAR detector. We find no evidence for a ...

Zhao, M.

256

PIA - Industry Interactive Procurement System (IIPS) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Interactive Procurement System (IIPS) PIA - Industry Interactive Procurement System (IIPS) PIA - Industry Interactive Procurement System (IIPS) PIA - Industry Interactive...

257

Industrial | OpenEI  

Open Energy Info (EERE)

Industrial Industrial Dataset Summary Description The Industrial Assessment Centers (IAC) Database is a collection of all the publicly available data from energy efficiency assessments conducted by IACs at small and medium-sized industrial facilities. Source Department of Energy Industrial Assessment Centers Date Released September 20th, 2012 (2 years ago) Date Updated September 20th, 2012 (2 years ago) Keywords assessment energy efficiency Industrial manufacturing small and medium-sized Data application/vnd.ms-excel icon copy_of_iac_database.xls (xls, 28.7 MiB) Quality Metrics Level of Review Standards Comment Temporal and Spatial Coverage Frequency Daily Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

258

Industrial Partnerships Office  

Industrial Partnerships Office 6/13 Richard Rankin Director----Roger Werne Deputy Director-----Yvonne King Administrator Nina Potter Manager Intellectual Property

259

Industrial Waste Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

9) Page 2 of 7 Industrial Waste Generation Work with Engineered Nanomaterials Power Consumption Historical Contamination (groundwater, soil) Hazardous Waste Generation Atmospheric...

260

Construction Industry Software  

Science Conference Proceedings (OSTI)

... Translates a CIS/2 (CIMsteel Integration Standards) file into a 3D interactive VRML model of a steel structure or an IFC (Industry Foundation Classes ...

2012-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Search - Industrial Partnerships Office  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore ...

262

Technologies - Industrial Partnerships Office  

Energy, Utilities, & Power Systems. Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988

263

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

264

OpenEI - Industrial  

Open Energy Info (EERE)

renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by...

265

Recent developments: Industry briefs  

SciTech Connect

This article is the `Industry Briefs` portion of the March 1992 `Recent Developments` section of Nuexco. Specific issues mentioned are: (1) closure of Yankee Rowe, (2) steam-generator tube plugging at Trojan, (3) laser enrichment in South Africa, (4) the US uranium industry, (5) planning for two nuclear units in Taiwan, and (6) the establishment of a Czech/French joint venture.

NONE

1992-03-01T23:59:59.000Z

266

Geothermal industry assessment  

DOE Green Energy (OSTI)

An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

Not Available

1980-07-01T23:59:59.000Z

267

AGS tune jump system to cross horizontal depolarization resonances overview  

SciTech Connect

Two partial snakes overcome the vertical depolarizing resonances in the AGS. But a new type of depolarizing intrinsic resonance from horizontal motion appeared. We reduce these using horizontal tune jumps timed to these resonances. We gain a factor of six in crossing rate with a tune jump of 0.05 in 100 {micro}s. Two quadrapoles, we described in 2009, pulse 42 times, the current matching beam energy. The power supplies for these quads are described in detail elsewhere in this conference. The controls for the Jump Quad system is based on a BNL designed Quad Function Generator. Two modules are used; one for timing, and one to supply reference voltages. Synchronization is provided by a proprietary serial bus, the Event Link. The AgsTuneJump application predicts the times of the resonances during the AGS cycle and calculates the power supply trigger times from externally collected tune and energy versus time data and the Low and High PS voltage functions from a voltage to current model of the power supply. The system was commissioned during runs 09 & 10 and is operational. Many beam effects are described elsewhere. The TuneJump system has worked well and has caused little trouble save for the perturbations in the lattice having such a large effect due to our need to run with the vertical tune within a few thousandths of the integer tune. As these problems were mostly sorted out by correcting the 6th harmonic orbit distortions which caused a large 18 theta beta wave. Also running with minimal chromaticity reduces emittance growth. There are still small beta waves which are being addressed. The timing of the pulses is still being investigated, but as each crossing causes minimal polarization loss, this is a lengthy process.

Glenn, J.W.; Ahrens, L.; Fu, W.; Mi, J.L.; Rosas, P.; Schoefer, V.; Theisen, C.; Altinbas, Z.

2011-03-28T23:59:59.000Z

268

AGS performance and upgrades; A possible proton driver for a muon collider  

SciTech Connect

After the successful completion of the AGS Booster and several upgrades of the AGS, a new intensity record of 6.3 x 10{sup 13} protons per pulse accelerated to 24GeV was achieved. Further intensity upgrades are being discussed that could increase the average delivered beam intensity by up to a factor of six. The total beam power then reaches almost 1 MW and the AGS can then be considered as a proton driver for a muon collider.

Roser, T.

1995-12-31T23:59:59.000Z

269

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

270

Uranium industry annual 1996  

SciTech Connect

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

271

Effect of Ag Content on Grain Growth during Reversion in ...  

Science Conference Proceedings (OSTI)

... and Welding Conditions of Monopile and Transition for Offshore Wind Plant ... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines.

272

Recent Advances of Nanojoining of Ag Nanoparticles by ...  

Science Conference Proceedings (OSTI)

In the intermediate intensity regime, spherical nanoparticles are changed into a ... Challenges in the Oil and Gas Industry in Support of Large Capital Projects.

273

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-06-01T23:59:59.000Z

274

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-01-01T23:59:59.000Z

275

Design of the AGS Booster Beam Position Monitor electronics  

SciTech Connect

The operational requirements of the AGS Booster Beam Position Monitor system necessitate the use of electronics with wide dynamic range and broad instantaneous bandwidth. Bunch synchronization is provided by a remote timing sequencer coupled to the local ring electronics via digital fiber-optic links. The Sequencer and local ring circuitry work together to provide single turn trajectory or average orbit and intensity information, integrated over 1 to 225 bunches. Test capabilities are built in for the purpose of enhancing BPM system accuracy. This paper describes the design of the Booster Beam Position Monitor electronics, and presents performance details of the front end processing, acquisition and timing circuitry.

Ciardullo, D.J.; Smith, G.A.; Beadle, E.R.

1991-01-01T23:59:59.000Z

276

Design of the AGS Booster Beam Position Monitor electronics  

SciTech Connect

The operational requirements of the AGS Booster Beam Position Monitor system necessitate the use of electronics with wide dynamic range and broad instantaneous bandwidth. Bunch synchronization is provided by a remote timing sequencer coupled to the local ring electronics via digital fiber-optic links. The Sequencer and local ring circuitry work together to provide single turn trajectory or average orbit and intensity information, integrated over 1 to 225 bunches. Test capabilities are built in for the purpose of enhancing BPM system accuracy. This paper describes the design of the Booster Beam Position Monitor electronics, and presents performance details of the front end processing, acquisition and timing circuitry.

Ciardullo, D.J.; Smith, G.A.; Beadle, E.R.

1991-12-31T23:59:59.000Z

277

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

278

Careers in the Wind Industry | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Careers in the Wind Industry Jump to: navigation, search Two engineers working in the nacelle of a Siemens offshore wind turbine. Photo from Siemens AG, NREL 19687 Resources American Wind Energy Association. Careers in Wind. Accessed August 29, 2013. This page connects wind energy companies to people seeking jobs in the wind energy industry. Environmental Entrepreneurs. (August 2013). Clean Energy Works for Us: 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report. Accessed August 30, 2013 Environmental Entrepreneurs (e2) is a national community of business

279

Detonation Spraying of TiO2-Ag: Controlling the Phase Composition ...  

Science Conference Proceedings (OSTI)

Presentation Title, Detonation Spraying of TiO2-Ag: Controlling the Phase Composition and Microstructure ... Using Ice to Make Nature Inspired Hybrid Materials.

280

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

282

SIMULATIONS OF THE AGS MMPS STORING ENERGY IN CAPACITOR BANKS  

SciTech Connect

The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. The generator is 3 phase 7500 Volts rated at 50 MVA. The peak power requirements come from the stored energy in the rotor of the motor/generator. The motor generator is about 45 years old, made by Siemens and it is not clear if companies will be manufacturing similar machines in the future. We are therefore investigating different ways of storing energy for future AGS MMPS operations. This paper will present simulations of a power supply where energy is stored in capacitor banks. Two dc to dc converters will be presented along with the control system of the power section. The switching elements will be IGCT's made by ABB. The simulation program used is called PSIM version 6.1. The average power from the local power authority into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.

MARNERIS,I.; BADEA, V.S.; BONATI, R.; ROSER, T.; SANDBERG, J.

2007-06-25T23:59:59.000Z

283

Report of the AGS Experimental Area Shielding Upgrade Committee  

SciTech Connect

The proton intensity delivered to the AGS experimental areas is expected to increase fourfold when the full potential of the Booster is realized. It is therefore necessary to anticipate the modifications to the shielding and radiation monitoring that will be required in order to insure safe operation within the appropriate guidelines for radiation exposure. This report examines the consequences of site boundary requirements and soil and air activation as well as the protection of radiation workers, i.e., AGS personnel and experimenters, from unnecessary radiation exposure in the experimental areas. Where possible, Health Physics surveys and fault studies carried out in the Spring of 1990 have been used to estimate levels in and around the experimental areas with 5 {times} 10{sup 13} protons per pulse or 75% of the total anticipated intensity delivered to each of the target stations under normal'' as well as fault conditions. Where fault studies were not possible due to construction, the new beams and facilities were designed for the higher intensities that will be available and radiation patterns were calculated. Weak spots were identified and improvements recommended. Capital and manpower estimates were developed for the upgrades. 7 refs.

Beavis, D.; Brown, H.N.; Bunce, G.; Carroll, A.S.; Chiang, I.H.; Glenn, J.W.; Lazarus, D.M.; Lessard, E.; Pendzick, A.; Sims, W.; Woodle, K.

1990-08-01T23:59:59.000Z

284

Oil-Well Cement and C3S Hydration Under High Pressure as Seen by In Situ X-Ray Diffraction, Temperatures ;= 80 degrees C with No Additives  

SciTech Connect

The hydration kinetics of a white cement and batches of both Class G and H oil-well cements were examined between 0 and 60 MPa, at {le}80 C, using in situ synchrotron X-ray diffraction. This gives a continuous measure of the C{sub 3}S (Ca{sub 3}SiO{sub 5}), CH (Ca(OH){sub 2}), C{sub 4}AF (Ca{sub 2}FeAlO{sub 5}), ettringite, and other phases in the hydrating slurries. Slurries prepared from single-phase C{sub 3}S; synthetic C{sub 4}AF, and gypsum; and white cement, synthetic C{sub 4}AF and gypsum were also examined. An increasing pressure enhanced the rate of hydration for all slurries. Analysis of the data, using a kinetic model, provided rate constants that were used to obtain activation volumes for C{sub 3}S hydration. For all the cement and C{sub 3}S slurries studied, similar activation volumes were obtained (average {Delta}V{double_dagger}{sup -}-35 cm{sup 3}/mol), indicating that the presence of cement phases other than C{sub 3}S has a modest influence on the pressure dependence of C{sub 3}S hydration. An alternative analysis, using the time at which 90% of the initial C{sub 3}S remained, gave similar activation volumes. Pressure accelerated the formation of ettringite from synthetic C{sub 4}AF in the presence of gypsum. However, in slurries containing cement, the pressure dependence of C{sub 3}S hydration plays a major role in determining the pressure dependence of ettringite formation.

Jupe, Andrew C.; Wilkinson, Angus P.; Funkhouser, Garry P. (Halliburton); (GIT)

2012-06-28T23:59:59.000Z

285

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W. (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

286

Industrial Process Surveillance System  

DOE Patents (OSTI)

A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

2001-01-30T23:59:59.000Z

287

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

288

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

289

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

290

Argonne CNM: Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industrial Users For Industrial Users The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through peer review of user proposals. Before you submit your first user proposal, we encourage you to contact any of our staff researchers, group leaders, the User Office, or division management to discuss the feasibility of your intended research using the expertise and facilities at the CNM. We are here to serve you as part of our user community and will be happy to address any questions you might have.

291

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

292

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

293

Industry | OpenEI  

Open Energy Info (EERE)

Industry Industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by other industries and construction. Data is only available for Paraguay and the U.S., years 2000 to 2007. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption Industry UN Data application/zip icon XML (zip, 514 bytes) application/zip icon XLS (zip, 425 bytes) Quality Metrics

294

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Former User Group Chair Enthusiastic About Relevance of Neutron Scattering Former User Group Chair Enthusiastic About Relevance of Neutron Scattering to Industrial Research Former User Group Chair Mike Crawford Mike Crawford, DuPont Research and Development. The drive is intensifying to encourage research partnerships between Neutron Sciences and private industry. Such partnerships, a long-term strategic goal set by the DOE's Basic Energy Sciences Advisory Committee, will deliver industry and its technological problems to SNS and HFIR, where joint laboratory-industry teams can use the unparalleled resources available here to resolve them. "SNS is a tremendous facility. It has the potential to have a couple of thousand user visits a year and, if they build another target station in the future, you're probably talking about 4000 user visits a year,"

295

Industrial Oil Products Division  

Science Conference Proceedings (OSTI)

A forum for professionals involved in research, development, engineering, marketing, and testing of industrial products and co-products from fats and oils, including fuels, lubricants, coatings, polymers, paints, inks, cosmetics, dielectric fluids, and ad

296

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

297

Optimization of Industrial Enzymes  

Enzymes are highly efficient naturally occurring catalysts that are used in a wide range of applications from industrial processes to new drug development. Conventional mechanism for understanding the mechanisms of enzyme functions are costly and time ...

298

Technologies - Industrial Partnerships Office  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore National Security, LLC ...

299

Electric Power Industry Restructuring:  

U.S. Energy Information Administration (EIA)

Good morning. I was asked to speak to you today about EIAs data collection efforts in a more competitive electric power industry. I know that you want to hear ...

300

Uranium Industry Annual, 1992  

Science Conference Proceedings (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

302

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Stresses in Materials HTML, HFIR Team Work with Industry To Find Hidden Stresses in Materials Metalsa, EPRI, John Deere among partners in high-impact projects Whether it's...

303

Industrial Assessment Center  

SciTech Connect

The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

J. Kelly Kissock; Becky Blust

2007-04-17T23:59:59.000Z

304

Working Through Outsourcing: Software Practice, Industry Organization and Industry Evolution in India  

E-Print Network (OSTI)

Outsourcing: Software Practice, Industry Organizationand Industry Evolution in India Kyle EischenSoftware Practice, Industry Organization and Industry

Eischen, Kyle

2004-01-01T23:59:59.000Z

305

Industrial Retrofits are Possible  

E-Print Network (OSTI)

Ontario is the industrial heartland of Canada and more than 80% of its energy comes from Canadian sources with the remainder from the neighbouring U.S. states. Because of the ever increasing demand for energy relating to increased economic activity, the provincial government's major energy priority is efficiency. In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant. In this presentation, the author will outline the results of the program to date and will attempt to share with the audience the individual case experiences. Since the program's start, the Ontario Ministry of Energy has completed over 320 energy analyses of industrial plants which had combined energy bills of over $420 million. The potential annual energy savings identified were over $40 million or 9.51%. Electricity and natural gas are the major fuels used by Ontario industries and our surveys to date have shown savings of 6% in electricity and 11% in natural gas. Over the first two years of the program, individual plants have or are intending to implement more than half of the energy analysis recommendations.

Stobart, E. W.

1990-06-01T23:59:59.000Z

306

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

The electric utility industry represents only one source of power available to industry. Although the monopolistic structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to industry. Electric utilities face increased competition, both from other utilities and from industrial self-generation. The paper discusses competition for industrial customers and innovative pricing trends that have evolved nationally to meet the growing competition for industrial sales. Cogeneration activities and the emerging concepts of wheeling power are also discussed. Specifics of industry evaluation and reaction to utility pricing are presented. Also enumerated are examples of the response various utilities throughout the United States have made to the needs of their industrial customers through innovative rate design. Industry/utility cooperation can result in benefits to industry, to the electric utility and to all other ratepayers. This discussion includes examples of successful cooperation between industry and utilities.

Ross, J. A.

1986-06-01T23:59:59.000Z

307

PRESERVING POLARIZATION THROUGH AN INTRINSIC DEPOLARIZING RESONANCE WITH A PARTIAL SNAKE AT THE AGS.  

Science Conference Proceedings (OSTI)

An 11.4% partial Siberian snake was used to successfully accelerate polarized protons through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% partial Siberian snake in the AGS to overcome all weak and strong spin resonances.

Huang, H; Bai, M; Brown, K A; Glenn, J W; Luccio, A U; Montag, C; Ptitsyn, V; Ranjbar, V; Roser, T; Spinka, H; Tsoupas, N; Underwood, D G

2002-09-09T23:59:59.000Z

308

Microstructure and electrical mechanism of Sn-xAg-Cu PV-ribbon for solar cells  

Science Conference Proceedings (OSTI)

The microstructure, fusion current, and series resistance of photovoltaic (PV) ribbon containing SAC105 and SAC305 alloys are investigated. After reflow, the interfacial microstructures of solder/Cu and solder/Ag were observed and an electrical current ... Keywords: Electrical properties, Photovoltaic ribbon, Sn-Ag-Cu

Kuan-Jen Chen, Fei-Yi Hung, Truan-Sheng Lui, Li-Hui Chen, Dai-Wen Qiu, Ta-Lung Chou

2014-03-01T23:59:59.000Z

309

Improved field emission characteristic of carbon nanotubes by an Ag micro-particle intermediation layer  

Science Conference Proceedings (OSTI)

An efficient way to improve field emission characteristic of carbon nanotubes (CNTs) through an Ag micro-particle intermediation layer is presented. In this way, the intermediation layer is deposited on an indium tin oxide glass substrate by electrochemical ... Keywords: Ag micro-particle intermediation layer, Carbon nanotubes, Field emission

Wenhui Lu; Hang Song; Yixin Jin; Haifeng Zhao; Zhiming Li; Hong Jiang; Guoqing Miao

2008-05-01T23:59:59.000Z

310

Energy spectrum of charge carriers in Ag{sub 2}Te  

Science Conference Proceedings (OSTI)

On the basis of investigations of the temperature and concentration dependences of kinetic coefficients (the Hall coefficientR, the electrical conductivity {sigma}, and thermopower {alpha}{sub 0}) in n-type Ag{sub 2}Te, it is established that Ag atoms in Ag{sub 2}Te create the shallow donor levels located at a distance of (0.002-7 x 10{sup -5}T) eV from the bottom of the conduction band. It is shown that silver telluride has n-type conductivity starting with the deficiency of Ag {>=} 0.01 at % in the stoichiometric composition, and it is practically impossible to achieve the stoichiometric composition in Ag{sub 2}Te.

Aliev, F. F., E-mail: farzali@physics.ab.az; Jafarov, M. B. [Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2008-11-15T23:59:59.000Z

311

Optical and quantum efficiency analysis of (Ag,Cu)(In,Ga)Se2 absorber layers  

DOE Green Energy (OSTI)

(Ag,Cu)(In,Ga)Se2 thin films have been deposited by elemental co-evaporation over a wide range of compositions and their optical properties characterized by transmission and reflection measurements and by relative shift analysis of quantum efficiency device measurements. The optical bandgaps were determined by performing linear fits of (?h?)2 vs. h?, and the quantum efficiency bandgaps were determined by relative shift analysis of device curves with fixed Ga/(In+Ga) composition, but varying Ag/(Cu+Ag) composition. The determined experimental optical bandgap ranges of the Ga/(In+Ga) = 0.31, 0.52, and 0.82 groups, with Ag/(Cu+Ag) ranging from 0 to 1, were 1.19-1.45 eV, 1.32-1.56 eV, and 1.52-1.76 eV, respectively. The optical bowing parameter of the different Ga/(In+Ga) groups was also determined.

Boyle, Jonathan; Hanket, Gregory; Shafarman, William

2009-06-09T23:59:59.000Z

312

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

The Potential for Energy Efficiency. Prepared for The EnergyIndustrial Sector Energy Efficiency Potential Study - DraftIndustrial Energy Efficiency Market Characterization Study.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

313

Industrial Technologies - Energy Innovation Portal  

Industrial Technologies Marketing Summaries Here youll find marketing summaries of industrial technologies available for licensing from U.S. Department of Energy ...

314

EIA Electric Industry Data Collection  

U.S. Energy Information Administration (EIA)

Steam Production EIA Electric Industry Data Collection Residential Industrial ... Monthly data on cost and quality of fuels delivered to cost-of-service plants

315

NEMS industrial module documentation report  

SciTech Connect

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

1994-01-01T23:59:59.000Z

316

UBS AG, LONDON BRANCH Order No. EA-263 I. BACKGROUND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On April 11, 2002, the Office of Fossil Energy (FE) of the Department of Energy (DOE) received an application from UBS, AG London Branch (UBS) for authorization to transmit electric energy from the Untied States to Mexico and to Canada. UBS, a Swiss corporation formed in 1998 by the merger of Union Bank of Switzerland and Swiss Bank Corporation, is a power marketer that does not own or control any electric generation or transmission facilities nor does it have any franchised service territory in the United States. The designation "London Branch" indicates the principal booking location of the company's energy trading business; UBS

317

EERE PROJECT M AN AG EM ENT CENT ER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

... RTl\1ENT OF ENERGY ... RTl\1ENT OF ENERGY EERE PROJECT M AN AG EM ENT CENT ER NEP .... DETERMINATION RECIPIENT:US Synthetic Corporation Page 1 of2 STATE: UT PROJECT TITLE: The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings For use in Marine Hydrokinetic (MHK) Energy Machines Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-OOOO293 OE-EEOOO3633 GFO-OOO3633"()()1 EE3633 Based on my review orthe information concerning tbe proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.iA). I have made Ibe following determination: ex, EA, [ IS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including

318

UBS AG, LONDON BRANCH Order No. EA-261 I. BACKGROUND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On April 11, 2002, the Office of Fossil Energy (FE) of the Department of Energy (DOE) received an application from UBS AG, London Branch (UBS) for authorization to transmit electric energy from the United States to Mexico. UBS, a Swiss corporation formed in 1998 by the merger of Union Bank of Switzerland and Swiss Bank Corporation, is a power marketer that does not own or control any electric generation or transmission facilities nor does it have any franchised service territory in the United States. The designation "London Branch" indicates the

319

Phonon drag of electrons in Ag{sub 2}S  

Science Conference Proceedings (OSTI)

The temperature dependences of the heat-conductivity coefficient {chi} and the thermopower 6h of Ag{sub 2}S are investigated in the range of 4.2-300 K. It is found that the value of 6h sharply increases (6h {infinity} T{sup -3}) with decreasing T at T < 100 K and passes through a maximum at 16-18 K. The heat-conductivity coefficient passes through a maximum at {approx}30 K. The sharp increase in 6h is found to be caused by the effect of long-wavelength-phonon drag of electrons. It is shown that the shift of the 6h and {chi} peaks, as well as the temperature dependence of the phonon thermopower 6h{sub ph} {infinity} T{sup -3}, agrees with the Herring theory.

Aliev, S. A.; Aliev, F. F., E-mail: farzali@physics.ab.az; Gasanov, Z. S.; Abdullayev, S. M.; Selim-zade, R. I. [Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2010-06-15T23:59:59.000Z

320

Energy Efficiency Fund (Electric) - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Industrial Distributed Energy: Combined Heat & Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Distributed Energy: Combined Heat & Power Industrial Distributed Energy: Combined Heat & Power Information about the Department of Energy's Industrial Technologies...

322

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Eligibility Commercial Industrial Local...

323

Industrial Oil Products Newsletter April 2013  

Science Conference Proceedings (OSTI)

Read the Industrial Oil Products Newsletter April 2013. Industrial Oil Products Newsletter April 2013 Industrial Oil Products Newsletter April 2013 ...

324

ET Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

325

Industrial lighting handbook  

SciTech Connect

Technological advances in industrial lighting system components now make it possible to reduce lighting system consumption by up to 50% or more without loss of the benefits inherent in good quality electric illumination. Management involvement in decisions about industrial lighting is essential, however, and this document provides generalized information in lay terms to help decision-makers become familiar with the concerns that affect industrial environment and the financial well-being of their companies. The five sections (1) discuss the benefits of good lighting, (2) review certain major lighting issues and terms, (3) identify procedures for developing a lighting energy management plan, (4) identify lighting energy management options (LEMOs), and (5) discuss sources of assistance. 19 figures, 8 tables.

1985-01-01T23:59:59.000Z

326

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

327

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

328

INDUSTRIAL ASSESSMENT CENTER PROGRAM  

Science Conference Proceedings (OSTI)

Since its establishment in 1990, San Diego State Universitys Industrial Assessment Center (IAC) has served close to 400 small and medium-sized manufacturing plants in Southern California. SDSU/IACs efforts to transfer state-of-the-art technologies to industry have increased revenues, cultivated creativity, improved efficiencies, and benefited the environment. A substantial benefit from the program has been the ongoing training of engineering faculty and students. During this funding cycle, SDSU/IAC has trained 31 students, 7 of the graduate. A total of 92 assessments and 108 assessment days were completed, resulting in 638 assessment recommendations.

ASFAW BEYENE

2008-09-29T23:59:59.000Z

329

Industrial Assessment Center  

SciTech Connect

Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

Dr. Diane Schaub

2007-03-05T23:59:59.000Z

330

Solar industrial process heat  

DOE Green Energy (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

331

Long-range interactions between a He(2 {sup 3}S) atom and a He(2 {sup 3}P) atom for like isotopes  

SciTech Connect

For the interactions between a He(2 {sup 3}S) atom and a He(2 {sup 3}P) atom for like isotopes, we report perturbation theoretic calculations using accurate variational wave functions in Hylleraas coordinates of the coefficients determining the potential energies at large internuclear separations. We evaluate the coefficient C{sub 3} of the first order resonant dipole-dipole energy and the van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for the second order energies arising from the mutual perturbations of instantaneous electric dipole, quadrupole, and octupole interactions. We also evaluate the leading contribution to the third-order energy. We establish definitive values including treatment of the finite nuclear mass for the {sup 3}He(2 {sup 3}S)-{sup 3}He(2 {sup 3}P) and {sup 4}He(2 {sup 3}S)-{sup 4}He(2 {sup 3}P) interactions.

Zhang, J.-Y.; Yan, Z.-C. [Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada); Vrinceanu, D. [T-4 Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Babb, J. F.; Sadeghpour, H. R. [ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States)

2006-02-15T23:59:59.000Z

332

Industrial Partnerships | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial Partnerships SHARE Industrial Partnerships ORNL takes great pride in its work with U.S. industry. Each year, the Industrial Partnerships team hosts more than 100 visits to ORNL by both large corporations and small companies to help our potential partners understand the capabilities and expertise that exist at the laboratory and the various mechanisms available to help facilitate collaboration. Mechanism for Partnering How do I get started exploring industrial partnerships at ORNL? As the nation's largest science and energy laboratory, it can sometimes be

333

INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER  

SciTech Connect

The U. S. Department of Energys Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

MELINDA KRAHENBUHL

2010-05-28T23:59:59.000Z

334

Industrial cogeneration optimization program  

SciTech Connect

The purpose of this program was to identify up to 10 good near-term opportunities for cogeneration in 5 major energy-consuming industries which produce food, textiles, paper, chemicals, and refined petroleum; select, characterize, and optimize cogeneration systems for these identified opportunities to achieve maximum energy savings for minimum investment using currently available components of cogenerating systems; and to identify technical, institutional, and regulatory obstacles hindering the use of industrial cogeneration systems. The analysis methods used and results obtained are described. Plants with fuel demands from 100,000 Btu/h to 3 x 10/sup 6/ Btu/h were considered. It was concluded that the major impediments to industrial cogeneration are financial, e.g., high capital investment and high charges by electric utilities during short-term cogeneration facility outages. In the plants considered an average energy savings from cogeneration of 15 to 18% compared to separate generation of process steam and electric power was calculated. On a national basis for the 5 industries considered, this extrapolates to saving 1.3 to 1.6 quads per yr or between 630,000 to 750,000 bbl/d of oil. Properly applied, federal activity can do much to realize a substantial fraction of this potential by lowering the barriers to cogeneration and by stimulating wider implementation of this technology. (LCL)

1980-01-01T23:59:59.000Z

335

Industrial Assessment Center  

SciTech Connect

This project involved providing technical assistance to help small and medium size industries in Wisconsin to reduce operating costs by managing energy, waste and productivity. The project helped save 525 companies on average about $40,000 per year. Under the direction of Dr. Saxena, more than twenty undergraduate and ten graduate students were trained in energy, waste, and productivity management.

Umesh K. Saxena

2009-06-04T23:59:59.000Z

336

Synfuels industry opportunities  

SciTech Connect

Presentations made at the seminar are included in this volume. The present state in the development of synthetic fuels and the creation of the Synthetic Fuels Corporation are discussed by representatives of federal agencies and private industry. Separate abstracts of individual items were prepared for inclusion in the Energy Data Base and Energy Abstracts for Policy Analysis. (DMC)

Hill, R.F.; Boardman, E.B.; Heavner, M.L. (eds.)

1981-01-01T23:59:59.000Z

337

Turning industry visions into reality  

Science Conference Proceedings (OSTI)

This brochure outlines the activities of the Office of Industrial Technologies (OIT) in the Department of Energy. OIT activities are aimed at industry adoption of energy-efficient, pollution-reducing technologies and include research and development on advanced technologies, financing, technical assistance, information dissemination, education, and bringing together industry groups, universities, National Laboratories, states, and environmentalists. OIT`s core initiative is to facilitate partnerships within seven materials and process industries: aluminum, chemicals, forest products, glass, metalcasting, petroleum refining, and steel industries.

NONE

1997-01-01T23:59:59.000Z

338

Industrial battery stack  

SciTech Connect

A novel industrial battery stack is disclosed, wherein positive plates which have been longitudinally wrapped with a perforate or semi-perforate material are accurately aligned with respect to the negative plates and separators in the stack during the stacking operation. The novel spacing members of the present invention have a generally U-shaped cross section for engaging through the wrapping a portion of the positive plate adjacent to the longitudinal edges of that plate. Projections protruding substantially from the base of the ''U'' provide the proper distance between the edge of the wrapped plate and an adjacent longitudinal surface. During the stacking and burning operation, this longitudinal surface comprises the back wall of a novel industrial battery plate holder. Following the burning of the battery stack and its subsequent assembly into an appropriate industrial battery case, the spacing member or members act to protect the positive battery plates and retain them in their proper alignment during the operation of the battery. Applicants have also provided a novel apparatus and method for stacking, aligning and burning industrial battery stacks which comprises a battery stack holder having several upstanding walls which define a stacking column having a coplanar terminus. An adjustably locatable partition within said stacking column may be disposed at any of a plurality of positions parallel with respect to the coplanar terminus so that the battery stack holder may be adjusted for any of a variety of given sizes of plates and separators. The battery plates and separators may then be stacked into the battery stack holder so that only the plate lugs extrude beyond the coplanar terminus. A dam is insertable along the top of the battery plates and across the top of the upstanding side walls of the battery stack holder to facilitate the rapid efficient burning of the industrial battery stack.

Digiacomo, H.L.; Sacco, J.A.

1980-08-19T23:59:59.000Z

339

Evidence for the h[subscript b](1P) meson in the decay ?(3S)??[superscript 0]h[subscript b](1P)  

E-Print Network (OSTI)

Using a sample of 12210[superscript 6] ?(3S) events recorded with the BABAR detector at the PEP-II asymmetric-energy e[superscript +]e[superscript -] collider at SLAC, we search for the h[subscript b](1P) spin-singlet ...

Cowan, Ray Franklin

340

Industrial Technologies Success Stories - Energy Innovation Portal  

Bookmark Industrial Technologies Success Stories - Energy Innovation Portal on Google; Bookmark Industrial Technologies Success Stories ...

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Transfer of TiN/Ti/Ag metallization research  

Science Conference Proceedings (OSTI)

A simple technology for manufacturing extremely stable silicon solar cells is described. The process uses a sputtering technique to reactively deposit high quality TiN films to be used as diffusion barrier layers in metallization systems. The deposition parameters have been optimized to yield films with low-stress and with resistivities as low as 50..mu.. ohm-cm. The TiN films act as an excellent metal diffusion barrier layer below the contact grid-lines, and also upon controlled oxidation as a good anti-reflection coating of TiO/sub 2/ in the active area of the solar cell. Such a unique and dual application of the TiN layer considerably simplifies the fabrication of the cells. Cells so prepared are found to be stable with no degradation in their electrical performance after heat treatments up to 600/sup 0/C for 15 minutes. The application of TiN films in obtaining stable ohmic contacts to GaAs has also been investigated. Ohmic contacts to p-type GaAs have been formed with GaAs/Pt(mG)/TiN/Ag system, which possess low contact resistivity stable up to 550/sup 0/C heat treatments.

Tandon, J.

1986-05-01T23:59:59.000Z

342

Industrial Energy Procurement Contracts  

E-Print Network (OSTI)

Rates are going down and services are improving! Or are they? As opportunities to directly contract for energy expand from the larger industrials to include mid-market companies, existing energy supply and service contracts will be renegotiated and new ones developed. Many of these mid-level industrial customers typically lack in-house expertise on energy procurement, yet their operations use significant amounts of energy. This paper looks at some of the issues involved in the main terms of a procurement contract, as well as issues in contract formation and termination. Finally the paper reviews some of the recent energy aggregation and outsourcing deals to highlight some that worked and some that didn't.

Thompson, P.; Cooney, K.

2000-04-01T23:59:59.000Z

343

REGULATING HAWAII'S PETROLEUM INDUSTRY  

E-Print Network (OSTI)

This study was prepared in response to House Resolution No. 174, H.D. 2, which was adopted during the Regular Session of 1995. The Resolution requested the Legislative Reference Bureau to conduct a study to obtain the views of selected state agencies and representatives of Hawaii's petroleum industry in order to assist the Legislature in formulating policies that protect the interests of Hawaii's gasoline consumers. The Resolution sought information and the views of survey participants on a broad range of proposals to regulate Hawaii's petroleum industry. This study reviews each of these proposals in terms of their value to consumers, and explores both regulatory policy options and alternatives to regulation available to state lawmakers. The Bureau extends its sincere appreciation to all those whose participation and cooperation made this study possible. A list of contact persons, including the names of survey participants and others who helped to contribute to this study, is contained in Appendix B.

Mark J. Rosen; Wendell K. Kimura

1995-01-01T23:59:59.000Z

344

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

345

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

346

Industrial Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

347

Evolution of industrial automation  

Science Conference Proceedings (OSTI)

Automation has been of high priority for the manufacturing sector, from Ford's first set of Model-T Assembly lines in the early 1920s to the modern factory floor. With appropriate automation, the aim was to rationalise the production and keep ... Keywords: Ethernet, architecture, automated manufacturing, bus topology, control servers, distributed control, economies of scale, embedded intelligence, functionality, fuzzy logic, global village, graphic panel, industrial automation, networking, networks

R. Murugesan

2006-03-01T23:59:59.000Z

348

Industrial - Utility Cogeneration Systems  

E-Print Network (OSTI)

Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional electric utility power plant, considerable energy is wasted in the form of heat rejection to the atmosphere thru cooling towers, ponds or lakes, or to rivers. In a cogeneration system heat rejection can be minimized by systems which apply the otherwise wasted energy to process systems requiring energy in the form of steam or heat. Texas has a base load of some 75 million pounds per hour of process steam usage, of which a considerable portion could be generated through cogeneration methods. The objective of this paper is to describe the various aspects of cogeneration in a manner which will illustrate the energy saving potential available utilizing proven technology. This paper illustrates the technical and economical benefits of cogeneration in addition to demonstrating the fuel savings per unit of energy required. Specific examples show the feasibility and desirability of cogeneration systems for utility and industrial cases. Consideration of utility-industrial systems as well as industrial-industrial systems will be described in technical arrangement as well as including a discussion of financial approaches and ownership arrangements available to the parties involved. There is a considerable impetus developing for the utilization of coal as the energy source for the production of steam and electricity. In many cases, because of economics and site problems, the central cogeneration facility will be the best alternative for many users.

Harkins, H. L.

1979-01-01T23:59:59.000Z

349

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

350

In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)  

SciTech Connect

Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth [1] of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film [2]. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy.

Al-Mahboob A.; Vescovo, E.; Sadowski, J.T.

2013-08-18T23:59:59.000Z

351

Glass-like thermal transport in AgSbTe2 | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass-like thermal transport in AgSbTe2: nano-scale insights to improve thermoelectric efficiency May 16, 2013 Inelastic neutron scattering data showing the phonon dispersions...

352

Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering  

SciTech Connect

Ag nanoparticles (AgNPs) were deposited onto silicon substrates by direct current (dc) magnetron sputtering. The influences of sputtering power and sputtering time on the AgNP film morphology were studied using atomic force microscopy. The particle size was successfully tuned from 19 nm to 53 nm by varying the sputtering time at a dc power of 10 W. When Rhodamine 6 G (R6G) was used as the probe molecule, the AgNP films showed significant surface enhanced Raman scattering effect. In particular, it is found that larger particles show stronger enhancement for lower concentrations of R6G while smaller particles display stronger enhancement for higher concentrations of R6G.

Fang Yingcui; Li Xiaxi; Blinn, Kevin; Mahmoud, Mahmoud A.; Liu Meilin [Vacuum Section of Hefei University of Technology, Hefei, Anhui, 230009 (China) and School of Materials Science and Engineering, Center for Innovative Fuel Cell and Battery Technologies, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); School of Materials Science and Engineering, Center for Innovative Fuel Cell and Battery Technologies, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States); School of Materials Science and Engineering, Center for Innovative Fuel Cell and Battery Technologies, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

2012-09-15T23:59:59.000Z

353

Pb-free Sn-Ag-Cu ternary eutectic solder - Energy ...  

A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu ...

354

Industrial Energy Use Indices  

E-Print Network (OSTI)

Energy use indices and associated coefficients of variation are computed for major industry categories for electricity and natural gas use in small and medium-sized plants in the U.S. Standard deviations often exceed the average EUI for an energy type, with coefficients of variation averaging 290% for 8,200 plants from all areas of the continental U.S. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energys national Industrial Assessment Center database.

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

355

Effect of a phase transition on the electron energy spectrum in Ag{sub 2}S  

Science Conference Proceedings (OSTI)

Temperature dependences of electrical conductivity {sigma}, Hall coefficient R, and thermopower {alpha}{sub 0} in Ag{sub 2}S are reported. It is established that at T {approx} 435 {+-} 5 K, all kinetic parameters vary drastically, which is associated with a change in parameters of the conduction band. It is shown that the dispersion law of electron energy in {beta}-Ag{sub 2}S corresponds to the Kane model.

Aliev, F. F., E-mail: farzali@physics.ab.az; Jafarov, M. B.; Tairov, B. A.; Pashaev, G. P.; Saddinova, A. A.; Kuliev, A. A. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

2008-10-15T23:59:59.000Z

356

Analysis of AGS E880 polarimeter data at Gy = 12.5.  

SciTech Connect

Data were collected with the AGS internal (E880) polarimeter at G{gamma} = 12.5 during the FY04 polarized proton run. Measurements were made with forward scintillation counters in coincidence with recoil counter telescopes, permitting an absolute calibration of the polarimeter for both nylon and carbon targets. The results are summarized and they will also be useful for an absolute calibration of the AGS CNI polarimeter at G{gamma} = 12.5.

Cadman, R.; Huang, H.; Krueger, K.; Spinka, H.; Underwood, D. (High Energy Physics); (Brookhaven National Laboratory)

2012-02-23T23:59:59.000Z

357

The winds of Luminous Blue Variables and the Mass of AG Car  

E-Print Network (OSTI)

We present radiation-driven wind models for Luminous Blue Variables (LBVs) and predict their mass-loss rates. A comparison between our predictions and the observations of AG Car shows that the variable mass loss behaviour of LBVs is due the recombination/ionisation of Fe IV/III and Fe III/II. We also derive a present-day mass of 35 Msun for AG Car.

Jorick S. Vink; Alex de Koter

2002-07-15T23:59:59.000Z

358

Photoionization spectroscopy of ionic metal dimers: LiCu and LiAg  

Science Conference Proceedings (OSTI)

Electronic spectra are reported for the heteronuclear metal dimers LiCu and LiAg, with resonant one-color two-photon ionization (R2PI). The dimers are produced in a pulsed supersonic molecular beam by laser vaporization of either a copper or silver rod coated with a thin film of vacuum deposited lithium metal. A total of twelve excited electronic states for LiCu and seven for LiAg are observed. Analysis of the vibrational progressions yields ground and excited state vibrational frequencies and dissociation energies for both LiCu and LiAg. In addition, selected vibronic bands are rotationally resolved. This data, together with that obtained by Morse and co-workers for LiCu [J. Chem. Phys. (to be published)], gives bond lengths for LiCu and LiAg (r{sub 0}{sup {double_prime}}=2.26 and 2.41 {Angstrom}, respectively). The bond lengths for LiCu and LiAg are significantly shorter than expected by comparison to the homonuclear diatomics Li{sub 2} and Cu{sub 2} or Ag{sub 2}. Dissociation energies in the heteronuclear dimers are also much greater than the mean of the corresponding homonuclear dimer values. These trends indicate that ionic character plays a leading role in the ground-state bonding. {copyright} {ital 1997 American Institute of Physics.}

Brock, L.R.; Knight, A.M.; Reddic, J.E.; Pilgrim, J.S.; Duncan, M.A. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

1997-04-01T23:59:59.000Z

359

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

360

Industrial Applications for Renewable Resources  

Science Conference Proceedings (OSTI)

This CD-ROM contains the PowerPoint presentations from the presenters from Industrial Applications of Renewable Resources: A Conference on Sustainable Technologies. Industrial Applications for Renewable Resources Biofuels and Bioproducts and Biodiesel DV

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Texas Industries of the Future  

E-Print Network (OSTI)

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. The bottom line for Texas industry is savings in energy and materials, cost-effective environmental compliance, increased productivity, reduced waste, and enhanced product quality. The state program leverages the programs and tools of the federal Department of Energy's Industries of the Future. At the federal level, there are nine Industries of the Future: refining, chemicals, aluminum, steel, metal casting, glass, mining, agriculture, and forest products. These industries were selected nationally because they supply over 90% of the U.S. economy's material needs and account for 75% of all energy use by U.S. industry. In Texas, three IOF sectors, chemicals, refining and forest products, account for 86% of the energy used by industry in this state.

Ferland, K.

2002-04-01T23:59:59.000Z

362

Empirical essays in industrial organization  

E-Print Network (OSTI)

In this dissertation, I present three empirical essays that encompass topics in industrial organization. The first essay examines the degree of competition and spatial differentiation in the retail industry by exploiting ...

Chiou, Lesley C

2005-01-01T23:59:59.000Z

363

Industry Professional | Open Energy Information  

Open Energy Info (EERE)

Industry Professional Jump to: navigation, search How to GET INVOLVED WITH OpenEI Get involved with OpenEI Programmer.jpg Industry Professional Do you have valuable information...

364

Deaerators in Industrial Steam Systems  

SciTech Connect

This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

365

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

366

Partnering Highlights - Industrial Partnerships Office  

Lawrence Livermore National Laboratory (LLNL) is participating in six industry projects for the advancement of energy technologies using high ...

367

Aluminum: Industry of the future  

SciTech Connect

For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

1998-11-01T23:59:59.000Z

368

Recent developments: Industry briefs  

SciTech Connect

The January 1992 Industry Briefs includes brief articles on: (1) the startup of Chinese and Indian nuclear units, (2) agreements between China and Pakistan for the construction of a nuclear unit, (3) international safeguards agreements, (4) restart of a nuclear unit in Armenia, (5) closure of a German nuclear waste site, (6) restructuring of the Hungarian state-owned utility MVMT, (7) requests for bids for Wolsong Units 3 and 4, (8) signing of the European Energy charter, (9) continued operation of the MAGNOX reactors, and (10) changing Canadian requirements on uranium.

NONE

1992-01-01T23:59:59.000Z

369

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

370

The changing battery industry  

SciTech Connect

This report provides an economic and technological assessment of the electrical battery industry, highlighting major trends. Among those systems considered are lithium-based, sodium-sulfur nickel-zinc, nickel-iron, nickel-hydrogen, zinc-chloride, conductive polymer, and redox cells. Lead-acid, nickel-cadmium, and manganese dioxide-based batteries and direct solar power and fuel cells are discussed in relation to these new techniques. New applications, including electric vehicles, solar power storage, utility load leveling, portable appliances, computer power and memory backup, and medical implants are discussed. Predictions and development scenarios for the next twenty years are provided for the U.S. market.

Not Available

1987-01-01T23:59:59.000Z

371

Recent developments: Industry briefs  

Science Conference Proceedings (OSTI)

This article is the `Industry Briefs` portion of Nuexco`s September 1992 `Recent Developments` section. Specific iems discussed include: (1) merger of Urangesellschaft and Interuran, (2) cessation of uranium mining in Bulgaria, (3) record operation of Limerick-2 and Tokai-2, (4) MRS in Wyoming, (5) low-level waste facilities at Perry, (6) closure of Trojan, (7) restart of Kozloduy-6, (8) agreements between Cogema and Minatom, (9) planning for a large nuclear power plant in Japan moves forward, (10) order of a new reactor at Civaux, (11) relicensing of Yankee Rowe, (12) operation of Bradwell-2, and (13) high-level waste management in Japan.

NONE

1992-09-01T23:59:59.000Z

372

Recent developments: Industry briefs  

Science Conference Proceedings (OSTI)

This article is the `Industry Briefs` portion of Nuexco`s August 2992 `Recent Developments` section. Specific items discussed include: (1) non-proliferation in Argentina and Brazil, (2) a joint-venture uranium leaching project in the USA, (3) life extension for Yankee Rowe, (4) contracts for nuclear plants in the Republic of Korea, (5) cleanup of Wismut, (6) record operation of Three Mile Island-1, Oconee-1, and Cook-1, (7) closure of Kozloduy units, (8) China`s ascension to the non-proliferation treaty, and (9) a centrifuge enrichment facility in Japan.

NONE

1991-08-01T23:59:59.000Z

373

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

374

The impact of government policies on industrial evolution : the case of China's automotive industry  

E-Print Network (OSTI)

Governmental industrial policies have great influence on industrial performances and development trajectories. The infant industry theory has been the dominating theoretical foundation of the industrial policies in developing ...

Luo, Jianxi

2006-01-01T23:59:59.000Z

375

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Industries Jump to: navigation, search Name Guardian Industries Place Auburn Hills, MI Website http://www.guardian.com/ References Results of NREL Testing (Glass Magazine)[1] Guardian News Archive[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Guardian Industries is a company located in Auburn Hills, MI. References ↑ "Results of NREL Testing (Glass Magazine)" ↑ "Guardian News Archive" Retrieved from "http://en.openei.org/w/index.php?title=Guardian_Industries&oldid=381719" Categories: Clean Energy Organizations

376

Outlook for Industrial Energy Benchmarking  

E-Print Network (OSTI)

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common understanding of opportunities for energy efficiency improvements and provide additional information to improve the competitiveness of U.S. industry. The EPA's initial benchmarking efforts will focus on industrial power facilities. The key industries of interest include the most energy intensive industries, such as chemical, pulp and paper, and iron and steel manufacturing.

Hartley, Z.

2000-04-01T23:59:59.000Z

377

THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT  

Science Conference Proceedings (OSTI)

After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must be upgraded to 0.2 s to reach the required repetition rate of 2.5 Hz. The required upgrade of the AGS power supply, the rf system, and other rate dependent accelerator issues is discussed. The design of the target/horn configuration is shown. The material selected for the proton target is a Carbon-Carbon composite. It is a 3-dimensional woven material that exhibits extremely low thermal expansion for temperatures up to 1000 C; for higher temperatures it responds like graphite. This property is important for greatly reducing the thermo-elastic stresses induced by the beam, thereby extending the life of the target. The target consists of a 80 cm long cylindrical rod of 12 mm diameter. The target intercepts a 2 mm rms proton beam of 10{sup 14} protons/pulse. The total energy deposited as heat in the target is 7.3 kJ with peak temperature rise of about 280 C. Heat will be removed from the target through forced convection of helium gas across its outside surface. The extracted proton beam uses an existing beamline at the AGS, but is then directed to a target station atop a constructed earthen hill. The target is followed by a downward slopping pion decay channel. This vertical arrangement keeps the target and decay pipe well above the water table in this area. The 11.3 degrees slope aims the neutrino beam at a water Cerenkov neutrino detector to be located in the Homestake mine at Lead, South Dakota. A 3-dimensional view of the beam transport line, target station, and decay tunnel is provided.

WENG,W.T.; DIWAN,M.; RAPARIA,D.

2004-10-08T23:59:59.000Z

378

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

379

Search for a Low-mass Higgs Boson in Y(3S)--> gamma A^0, A^0--> tau^ tau^- at BABAR  

SciTech Connect

We search for a light Higgs boson A{sup 0} in the radiative decay Y(3S) {yields} {gamma}A{sup 0}, A{sup 0} {yields} T{sup +}T{sup -}, T{sup +} {yields} e{sup +}{nu}{sub e}{nu}{sub T}, or T{sup +} {yields} {mu}{sup +} {nu}{sub {mu}T}. The data sample contains 122 x 10{sup 6} Y(3S) events recorded with the BABAR detector. We find no evidence for a narrow structure in the studied T{sup +}T{sup -} invariant mass region of 4.03 < m{sub T{sup +}T{sup -}} < 10.10 GeV/c{sup 2}. We exclude at the 90% confidence level (C.L.) a low-mass Higgs boson decaying to T{sup +}T{sup -} with a product branching fraction B(Y(3S) {yields} {gamma}A{sup 0}) x B(A{sup 0} {yields} T{sup +}T{sup -}) > (1.5-16) x 10{sup -5} across the mT{sup +}T{sup -} range. We also set a 90% C.L. upper limit on the T{sup +}T{sup -} decay of the {eta}{sub b} at B({eta}{sub b} {yields} T{sup +}T{sup -}) < 8%.

Gabareen Mokhtar, Arafat

2009-12-09T23:59:59.000Z

380

Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)  

SciTech Connect

Using a sample of 122 million {Upsilon}(3S) events recorded with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC, we search for the h{sub b}(1P) spin-singlet partner of the P-wave {chi}{sub b}(1P) states in the sequential decay {Upsilon}(3S) {yields} {pi}{sup 0}h{sub b}(1P), h{sub b}(1P) {yields} {gamma}{eta}{sub b}(1S). We observe an excess of events above background in the distribution of the recoil mass against the {pi}{sup 0} at mass 9902 {+-} 4(stat.) {+-} 1(syst.) MeV/c{sup 2}. The width of the observed signal is consistent with experimental resolution, and its significance is 3.0 {sigma}, including systematic uncertainties. We obtain the value (3.7 {+-} 1.1 (stat.) {+-} 0.7 (syst.)) x 10{sup -4} for the product branching fraction {Beta}({Upsilon}(3S) {yields} {pi}{sup 0}h{sub b}) x {Beta}(h{sub b} {yields} {gamma}{eta}{sub b}).

Lees, J.P.

2011-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Federal Energy Management Program: Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Facilities to someone by E-mail Share Federal Energy Management Program: Industrial Facilities on Facebook Tweet about Federal Energy Management Program: Industrial...

382

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Performance for Industrial Refrigeration Systems. M.Sc.the performance of industrial refrigeration systems. SystemIndustrial Technologies Cooling and Storage (Food-4) Refrigeration

2000-01-01T23:59:59.000Z

383

Litigation in Argentina: challenging the tobacco industry.  

E-Print Network (OSTI)

Profits over people: Tobacco Industry Activities to MarketBarnoya J, Glantz S. Tobacco industry success in preventingL. Implications of the tobacco industry documents for public

Flores, M L; Barnoya, J; Mejia, R; Alderete, E; Prez-Stable, E J

2006-01-01T23:59:59.000Z

384

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Efficient Technologies for Industry Ernst Worrell Staff20036, USA ABSTRACT U.S. industry consumes approximately 37%efficient technologies for industry, focusing on over 50

2004-01-01T23:59:59.000Z

385

NSLS Industrial User Program | Synchrotron Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS Industrial Users' Program Industry Home | Synchrotron Techniques | Battery Lab | Science Highlights | Industrial Program Coordinator | Publications Battery Lab NSLS users are...

386

Industrial Partnerships - Oak Ridge National Laboratory | ORNL  

Industrial Partnerships Overview. ORNL takes great pride in its work with U.S. industry, both large and small. Each year, the Industrial Partnerships team hosts more ...

387

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

and Paper n Other Industries, Electricity Conservation s65% of electricity consumed by industry is used by motorof the main industries include electricity savings. q

Worrell, Ernst

2009-01-01T23:59:59.000Z

388

Case Study of the California Cement Industry  

E-Print Network (OSTI)

2 compares cement industry electricity and natural gas useTable 2. Cement Industry Electricity and Natural GasFigure 2. Cement Industry End Use Electricity Consumption

Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

2005-01-01T23:59:59.000Z

389

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Name Industrial Energy Audit Guidebook: Guidelines...

390

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issued: February 9, 2012 Issued: February 9, 2012 BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ORDER Case Number: 2011-SW-2912 By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Zoe Industries, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated against Respondent pursuant to 10 C.F.R. § 429.122 by Notice of Proposed Civil Penalty, alleging that Respondent distributed in commerce in the United States the Giessdorf eight-jet basic model showerhead, SKU 150043, which failed to meet the applicable standard for water usage. See 10 C.F.R. § 430.32(p). 2. The DOE and Respondent have negotiated the terms of the Compromise Agreement

391

ESCO Industry in China  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ESCO Development in ESCO Development in China China-America EE Forum 2011.5.6, S.F Contents Fast development 1 Great potential 2 Opportunities & Challenges 3 Function of EMCA 4 China Energy Conservation project  Officially started in 1998;  It is a key international cooperation project in the field of energy conservation by Chinese government and World Bank/GEF;  The main purpose of the project is to promote Energy Performance Contracting (EPC) mechanism and develop ESCO industry in China Project progress-1 st phase 3 pilot ESCOs: Beijing Liaoning Shandong Phase I EC information Dissemination Center(ECIDC) Project progress-2 nd phase EMCA Phase II I& G New and Potential ESCOs Technical support Financial support Project Progress- 2 nd Phase EMCA---provide practical technical

392

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

393

End User Perspective - Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Research Center Solid State Research Center DOE Fuel Cell Portable Power Workshop End User Perspective - Industrial Consumer Electronics Power (< 20-50W) Department of Energy Fuel Cell Portable Power Workshop Jerry Hallmark Manager Energy Technologies Lab Motorola Labs Solid State Research Center DOE Fuel Cell Portable Power Workshop Outline * Energy & Power of Portable Devices * Fuel Cell Applications & Cost * Key Requirements & Challenges * Fuels for Portable Fuel Cells * Fuel Transportation Regulations and Standards * Methanol Fuel Cells - Direct Methanol Fuel Cells - Reformed Methanol Fuel Cells * Technical Challenges 2 Solid State Research Center DOE Fuel Cell Portable Power Workshop Portable Electronics Yearly Energy Usage  :KU 1990 1980  :KU

394

and Industry Dynamics  

E-Print Network (OSTI)

We assess the long-run dynamic implications of market-based regulation of carbon dioxide emissions in the US Portland cement industry. We consider several alternative policy designs, including mechanisms that use production subsidies to partially offset compliance costs and border tax adjustments to penalize emissions associated with foreign imports. Our results highlight two general countervailing market distortions. First, following Buchanan (1969), reductions in product market surplus and allocative inefficiencies due to market power in the domestic cement market counteract the social benefits of carbon abatement. Second, tradeexposure to unregulated foreign competitors leads to emissions leakage which offsets domestic emissions reductions. Taken together, these forces result in social welfare losses under policy regimes that fully internalize the emissions externality. In contrast, market-based policies that incorporate design features to mitigate the exercise of market power and emissions leakage can deliver welfare gains. 1

Meredith Fowlie; Mar Reguant; Stephen P. Ryan; Meredith Fowlie; Mar Reguant; Stephen P. Ryan

2013-01-01T23:59:59.000Z

395

Industrial Heat Recovery - 1982  

E-Print Network (OSTI)

Two years ago I summarized 20 years of experience on Industrial Heat Recovery for the Energy-source Technology Conference and Exhibition held in New Orleans, Louisiana. At the end of that paper I concluded with brief advice on 'How to specify heat recovery equipment.' The two years which have elapsed since then have convinced me that proper specification assures the most reliable equipment at the lowest price. The most economical specification describes the operating and site data but leaves the design details for the supplier. A true specialist will be able to provide you with the latest technology at the best possible price. This paper explores the impact of specifications on heat recovery equipment and its associated cost.

Csathy, D.

1982-01-01T23:59:59.000Z

396

Comparison of National Programs for Industrial Energy Efficiency: Industry Brief  

Science Conference Proceedings (OSTI)

This report looks at the Better Buildings, Better Plants program from the Department of Energy; E3, an initiative of five U.S. federal agencies; ENERGY STAR for Industry from the Environmental Protection Agency; and Superior Energy Performance, a product of the U.S. Council for Energy-Efficient Manufacturing. By comparing the goals of several energy-efficiency programs that have been established to support industry, this report hopes to help industrial facilities find the right fit for their own ...

2013-02-25T23:59:59.000Z

397

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

398

Ab-Initio Determination of Novel Crystal Structures of the Thermoelectric Material MgAgSb  

Science Conference Proceedings (OSTI)

Materials with the half-Heusler structure possess interesting electrical and magnetic properties, including potential for thermoelectric applications. MgAgSb is compositionally and structurally related to many half-Heusler materials, but has not been extensively studied. This work presents the high-temperature X-ray diffraction analysis of MgAgSb between 27 and 420 C, complemented with thermoelectric property measurements. MgAgSb is found to exist in three different structures in this temperature region, taking the half-Heusler structure at high temperatures, a Cu2Sb-related structure at intermediate temperatures, and a previously unreported tetragonal structure at room temperature. All three structures are related by a distorted Mg-Sb rocksalt-type sublattice, differing primarily in the Ag location among the available tetrahedral sites. Transition temperatures between the three phases correlate well with discontinuities in the Seebeck coefficient and electrical conductivity; the best performance occurs with the novel room temperature phase. For application of MgAgSb as a thermoelectric material, it may be desirable to develop methods to stabilize the room temperature phase at higher temperatures.

Kirkham, Melanie J [ORNL; Moreira Dos Santos, Antonio F [ORNL; Rawn, Claudia J [ORNL; Lara-Curzio, Edgar [ORNL; Sharp, Jeff W. [Marlow Industries, Inc; Thompson, Alan [Marlow Industries, Inc

2012-01-01T23:59:59.000Z

399

Tobacco Industry Political Activity in Colorado 1979-1995  

E-Print Network (OSTI)

7 TOBACCO INDUSTRY POLITICALcontrol. * Increased tobacco industry political spending atlocal communities. * The tobacco industry seeks preemptive

Monardi, Fred M. Ph.D.; O'Neill, Amanda; Glantz, Stanton A. Ph.D.

1996-01-01T23:59:59.000Z

400

Tobacco Industry Interference with Tobacco Control  

E-Print Network (OSTI)

143. Bero L. Tobacco industry manipulation of research.Glantz SA. German tobacco industrys successful efforts toBarnoya J, Glantz S. Tobacco industry success in preventing

World Health Organization

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

industrial sector | OpenEI  

Open Energy Info (EERE)

industrial sector industrial sector Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

402

User Facilities for Industry 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Organizers:+Andreas+Roelofs+(CNM),+Jyotsana+Lal+(APS),+Katie+Carrado+Gregar+(CNM),+and+Susan+Strasser+ (APS)! ! In! order! to! increase! awareness! of! the! industrial! community! to! Argonne! National! Laboratory! user! facilities,!the!Advanced!Photon!Source!(APS),!the!Center!for!Nanoscale!Materials!(CNM)!and!the!Electron! Microscopy!Center!(EMC)!welcomed!industrial!scientists,!engineers!and!related!professionals!to!a!oneC day! workshop! to! learn! more! about! Argonne's! National! Laboratory! and! the! capabilities/techniques! available! for! their! use.! The! workshop! showcased! several! successful! industrial! user! experiments,! and! explained! the! different! ways! in! which! industrial! scientists! can! work! at! Argonne! or! with! Argonne!

403

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

404

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

405

Midstate Electric Cooperative - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial...

406

Industrial Energy Efficiency:Policy, Initiatives, & Opportunities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency:Policy, Initiatives, & Opportunities Industrial Energy Efficiency:Policy, Initiatives, & Opportunities presentation Industrial Energy Efficiency:Policy, Initiatives, &...

407

NIST Medical-Industrial Radiation Facility  

Science Conference Proceedings (OSTI)

Medical-Industrial Radiation Facility. ... Radiation hardness testing; Electron-beam sterilization; Beam diagnostics; Industrial CT scanning. ...

408

Carbon Emissions: Food Industry - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The wet corn milling industry emits almost a sixth of the energy-related carbon in the food industry. ...

409

Exhibitor: SAINT GOBAIN INDUSTRIAL CERAMICS NORTON ...  

Science Conference Proceedings (OSTI)

SAINT GOBAIN INDUSTRIAL CERAMICS NORTON PRIMARY METALS ... Norton refractory products for the copper industry include shaft furnace liners, bricks,...

410

Barron Electric Cooperative - Commercial, Industrial, and Agricultural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program...

411

Deutsche Solar AG formerly Bayer Solar GmbH | Open Energy Information  

Open Energy Info (EERE)

AG formerly Bayer Solar GmbH AG formerly Bayer Solar GmbH Jump to: navigation, search Name Deutsche Solar AG (formerly Bayer Solar GmbH) Place Freiberg/Sachsen, Germany Zip 9599 Sector Solar Product Producers of mono- and multicrystalline silicon wafers for solar cells. Coordinates 50.916956°, 13.339619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.916956,"lon":13.339619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

STATUS OF SLOW EXTRACTION OF HIGH INTENSITY PROTONS FROM BROOKHAVEN'S AGS.  

SciTech Connect

The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams. We have an active program of high energy physics experiments, including the high precision measurement of the muons magnetic moment [1] and the discovery of the rare Kaon decay, K+ {yields} {pi} + {nu}{bar {nu}} [2]. This program is continuing into the future with the rare symmetry violating process experiments [3] currently being designed to operate at the AGS. In this paper, we will present results from operation of high intensity slow extraction, the problems we encounter, and our solutions to those problems.

BROWN,K.A.AHRENS,L.BRENNAN,J.M.GLENN,J.W.ROSER,T.RUSSO,T.TSOUPAS,N.SMITH,K.ZENO,K.

2003-05-12T23:59:59.000Z

413

Effect of oxygen on the stability of Ag islands on Si(111)-7 7  

SciTech Connect

We have used scanning tunneling microscopy to probe the effect of oxygen exposure on an ensemble of Ag islands separated by a Ag wetting layer on Si(111)-7 7. Starting from a distribution dominated by islands that are 1 layer high (measured with respect to the wetting layer), coarsening in ultrahigh vacuum at room temperature leads to growth of 2-layer islands at the expense of 1-layer islands, which is expected. If the sample is exposed to oxygen, 3-layer islands are favored, which is unexpected. There is no evidence for oxygen adsorption on top of Ag islands, but there is clear evidence for adsorption in the wetting layer. Several possible explanations are considered.

Shao, Dahai; Liu; Xiaojie; Lu, Ning; Wang, Cai-Zhuang; Ho, Kai-Ming; Tringides, Michael C.; Thiel, Patricia A.

2012-07-31T23:59:59.000Z

414

Industry Interactive Procurement System (IIPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Interactive Industry Interactive Industry Interactive Industry Interactive Procurement System Procurement System (IIPS) (IIPS) Douglas Baptist, Project Manager Information Management Systems Division US Department of Energy IIPS Functions Issue synopses, solicitations and related documents via the Internet Receive and Respond to Solicitation Specific Questions Receive proposal, bid or application information electronically Provide access to proposal information to authorized personnel through a web browser Conduct negotiations or obtain clarifications Issue award documents IIPS Security Security Plan in place and approved by DOE's Chief Information Officer System security tested by DOE's Computer Incident Advisory Capability team Security measures include: - Encryption on the IIPS server

415

Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

416

Industry-Lab Research Opportunities  

Partnering With Berkeley Lab: Industry-Lab Research Opportunities. Some of the most innovative technology transfer at Berkeley Lab involves collaborative projects ...

417

Technology Commercialization Showcase 2008: Industrial ...  

Source: McKinsey & Company, 2007. Industry represents 38% of the total global opportunity to reduce energy demand: 6 Agenda Market Overview ...

418

AMO Industrial Distributed Energy: Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficiency by 2020. The Industrial Energy EfficiencyCombined Heat & Power Working Group is developing a number of resources. News Energy Department Invests in...

419

Industrial SPP / Partner Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Cascade Energy Engineering 5257 NE MLK Jr. Blvd, Suite 301 Portland, OR 97211 Business: Industrial Energy Efficiency Dan Brown, Vice President Phone: 503-287-8488 Email:...

420

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for the Petroleum and Coal Products Industry, 1994. Petroleum refining is by far the largest component of the petroleum and ...

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Greenline Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Place San Rafael, California Zip 94901 Product Small to medium scale biodiesel plants designer and producer. They also run a biodiesel plant in Vallejo,...

422

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

India Zip 416 109 Sector Wind energy Product Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries. References...

423

DMI Industries | Open Energy Information  

Open Energy Info (EERE)

OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References DMI Industries1 LinkedIn Connections CrunchBase Profile No...

424

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place Monroe, Michigan Zip 48161 Sector Wind energy Product Michigan-based wind turbine tower manufacturer. References Ventower Industries1 LinkedIn Connections CrunchBase...

425

Industry and Related Associations - TMS  

Science Conference Proceedings (OSTI)

The web site of IPC: Association Connecting Electronics Industries, 0, 883, Christina Raabe Eck, 2/12/2007 12:48 PM by Todd Osman. New Messages, Rating...

426

Tech Transfer - Industrial Partnerships Office  

LLNL-industry consortium advances high performance computing. A prototype computer system is demonstrating the use of flash memory in supercomputing.

427

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

sponsored avoided cost studies, energy efficiency programat various costs is with energy efficiency supply curves.Energy Efficiency in Industry Table 4 summarizes the benefit-cost

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

428

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Eolica Industrial Place Sao Paulo, Sao Paulo, Brazil Zip 01020-901 Sector Wind energy Product Brazil based wind turbine steel towers and...

429

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

430

Industrial Relations | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and introduce technologies to the private sector. How Industry Can Work with Argonne Argonne has many types of contractual agreements to meet the needs and interests of...

431

Industries in focus | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

432

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the countrys greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

433

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013...

434

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

435

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

436

Nanoalloy composition-temperature phase diagram for catalyst design: Case study of Ag-Au  

Science Conference Proceedings (OSTI)

By coupling a cluster expansion with density functional theory (DFT) calculations, we determine the configurational thermodynamics (site preferences and occupations) for alloyed nanoparticles (NPs) as functions of composition (c) and temperature (T), exemplified using a 55-atom Ag-Au truncated cuboctahedron NP. The c-T phase diagram for site occupations gives detailed design information for alloyed NP, especially the thermodynamically stable active sites for catalysis and how they change with stoichiometry and processing temperature. Generally, Ag prefers core and Au prefers shell, agreeing with our universal core-shell preference assessed from DFT impurity segregation energies but with interesting multishell configurations having specific active sites.

Wang, Lin-Lin; Tan, Teck L.; Johnson, Duane D.

2012-07-23T23:59:59.000Z

437

Site-controlled Ag nanocrystals grown by molecular beam epitaxy-Towards plasmonic integration technology  

Science Conference Proceedings (OSTI)

We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.

Urbanczyk, Adam [COBRA Research Institute on Communication Technology, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Noetzel, Richard [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), ETSI Telecommunication, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

2012-12-15T23:59:59.000Z

438

Formation of phases in the films of a Ag-In-Se system  

Science Conference Proceedings (OSTI)

Processes of electron-diffraction structure analysis have been used to study the processes of phase formation and phase transitions in thin layers of a Ag-In-Se system. The phases formed at the onset of interaction between the films and phase transformations occurring during annealing of the samples in vacuum are established. It is found that thin films of the AgInSe{sub 2} compound formed as a result of simultaneous or consecutive deposition of components are amorphous, and crystallization brings about the formation of textured films with high structural quality

Ismayilov, D. I.; Kerimova, N. K., E-mail: kerimova-nurlana@mail.ru [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

2009-09-15T23:59:59.000Z

439

Wet chemical synthesis and characterization of AgGaSe{sub 2} nanoparticles  

SciTech Connect

AgGaSe{sub 2} compound semiconductor nanoparticles were synthesized by wet chemical method using mercaptoacetic acid as a capping agent at room temperature. The synthesized powders belong to chalcopyrite structure confirmed by powder XRD. The surface morphology and crystalline size were observed by high resolution scanning electron microscope (HR-SEM). The stoichiometric composition of AgGaSe{sub 2} nanoparticles was confirmed by Energy dispersive X-ray (EDX) analysis. Different functional group vibrations of mercaptoacetic acid capped nanoparticles were studied using FT-IR spectrum. The absorbance and optical bandgap of the nanoparticles were determined using diffuse reflectance spectroscopy (DRS).

Sugan, S.; Dhanasekaran, R. [Crystal Growth Centre, Anna University, Chennai- 600 025 (India)

2013-06-03T23:59:59.000Z

440

Industrial Wastewater Minimization in the Chemicals and Petroleum Industries Industry Technology Commentary  

Science Conference Proceedings (OSTI)

Although water is employed in all major industries, the chemicals and petroleum industries stand out as relying on a vast amount of water for their production needs. In the petroleum industry, more than half of the water is used for cooling, followed by boiler feed (roughly one-third), and then process and other uses. In the chemicals industry, the majority of water is used for cooling, followed by process applications, and then boiler and other uses. Both of these market segments have made great strides...

2011-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Industrial Engineering Department Graduate Handbook  

E-Print Network (OSTI)

Handbook Page 4 Engineering Graduate Program if: (1) his/her undergraduate degree lacks fundamental by the student and the I.E. Graduate Advisor. #12;IE Department Graduate Handbook Page 5 4.2 Fundamental SystemsIndustrial Engineering Department Graduate Handbook Master of Science in Industrial Engineering

Rock, Chris

442

Ceramic Industries, Non-ferrous  

E-Print Network (OSTI)

Refractory applications for the steel, non-ferrous and cement industry Refractory applications for the ceramic, petrochemical and other industry Raw materials for refractories Users points of view Quality and Environment Processes, equipment and controls Development of refractory products

Refractories For Iron; Hydrocarbon Waste Incineration Pulp

2005-01-01T23:59:59.000Z

443

Uranium industry annual 1993  

SciTech Connect

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

444

AVLIS industrial access program  

Science Conference Proceedings (OSTI)

This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

Not Available

1984-11-15T23:59:59.000Z

445

Electronics Industry: Markets & Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronics Industry: Markets & Issues Electronics Industry: Markets & Issues Speaker(s): William M. Smith Date: March 17, 1998 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Richard Sextro Electronics represents a unique opportunity to get in on the beginning of an incredible growth spurt, for an already huge industry; $400 billion/year in the U.S. now, moving up by 10%-20% per year in several sectors. This is quite unlike many other U.S. industrial sectors, which often involve mature businesses requiring assistance to stay afloat. The potential for forming business partnerships with electronics firms to deal with issues in energy efficiency, water availability/quality, air quality, productivity/yield, HVAC, power quality, wastewater, air emissions, etc., is staggering. The industrys oligopic nature provides serious opportunities

446

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative on-demand industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical static design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

447

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often they simply do not understand the savings possible or the techniques available. Recognizing this, a program was developed to acquaint Oklahoma industry with the potential savings allowable through energy management techniques. The program is entitled 'Oklahoma Industrial Energy; Management Program' and is located at Oklahoma State University. This paper describes past, on-going, and proposed activities of this Program and assesses their impact. Included are industrial energy management conferences, closed circuit television short courses on selected energy management topics, energy auditing, industrial energy audits (through the Oklahoma Energy Analysis and Diagnostic Center) , energy and water management research, and two courses currently being offered.

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

448

D3S1358 Variants  

Science Conference Proceedings (OSTI)

... 22, 152.9 (average SGM+ and ID), ABI 3130xl, SGM+ ID, Michael Stangegaard, University of Copenhagen, Denmark, Re-extracted and re-amplified ...

2013-08-20T23:59:59.000Z

449

EPIC Industry Manual for Printed Circuit Boards  

Science Conference Proceedings (OSTI)

The EPRI Partnership for Industrial Competitiveness (EPIC) focuses on identifying opportunities for improving the industrial efficiency of selected industries that are customers of participating utilities. The goal is to examine opportunities to improve the efficiency and productivity and reduce environmental impacts of any particular industrial customer. EPIC's industry manuals are intended to provide broad coverage within a candidate industry, with different sectors of the industry linked by focusing o...

2000-11-17T23:59:59.000Z

450

Al-Based Metallic Glass Incorporated Novel Ag Electrode for Si ...  

Science Conference Proceedings (OSTI)

... and good corrosion/oxidation resistances in the supercooled liquid state. ... Al- Based Metallic Glass Incorporated Novel Ag Electrode for Si Solar Cell ... Interfacial Free Energy and Local Order of Metallic Liquids from Elements to Alloys ... Predicting the Production of Glass Former Alloys by Mathematical Simulation of...

451

Kinetics of chemical ordering in a Ag-Pt nanoalloy particle via first-principles simulations  

SciTech Connect

The energetics and kinetic energy barriers of vacancy/atom exchange in a 37-atom truncated octahedron Ag-Pt binary cluster in the Ag-rich range of compositions are investigated via a first-principles atomistic approach. The energy of the local minima obtained considering various distributions of a single vacancy and a few Pt atoms within the cluster and the energy barriers connecting them are evaluated using accurate density-functional calculations. The effects of the simultaneous presence of a vacancy and Pt atoms are found to be simply additive when their distances are larger than first-neighbors, whereas when they can be stabilizing at low Pt content due to the release of strain by the Pt/vacancy interaction or destabilizing close to a perfect Pt(core)/Ag(shell) arrangement. It is found that alloying with Pt appreciably increases the barriers for homotops transformations, thus rationalizing the issues encountered at the experimental level in producing Ag-Pt equilibrated nanoparticles and bulk phase diagram.

Negreiros, F. R.; Fortunelli, A. [CNR-IPCF, Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche, Molecular Modeling Laboratory, via G. Moruzzi 1, Pisa I56124 (Italy); Taherkhani, F. [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Parsafar, G. [Department of Chemistry and Nanotechnology Center, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Caro, A. [Los Alamos National Laboratories, Division of Materials Science and Technology, Los Alamos, New Mexico 87545 (United States)

2012-11-21T23:59:59.000Z

452

*Corresponding author. E-mail address: agagroup@olympus.ece.jhu.edu (A.G. Andreou).  

E-Print Network (OSTI)

*Corresponding author. E-mail address: agagroup@olympus.ece.jhu.edu (A.G. Andreou). This research and Computer Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21211, USA contains eight photoreceptors which receive light through a facet lens and respond in graded fashion

Maryland at College Park, University of

453

A Comparison of AgI and CO2 Seeding Effects in Alberta Cumulus Clouds  

Science Conference Proceedings (OSTI)

Three convective clouds extending above a stratocumulus layer were identified as being seedable on one day and were then seeded in a random sequence with CO2 pellets, a placebo and droppable AgI flares. The radar and microphysical seeding effects ...

Marianne English; John D. Marwitz

1981-05-01T23:59:59.000Z

454

Enhanced photocatalytic activity of Ag microgrid connected Ti O 2 nanocrystalline films  

Science Conference Proceedings (OSTI)

One reason for the high degree of photogenerated carrier recombination was found to be the charge accumulation caused by the uneven reaction area on the photocatalyst surface. The authors connected Ti O 2 nanoparticles with conducting Ag microgrid. Obvious photocatalytic activity improvement (81%) over the pure Ti O 2 was observed

Feng Pan; Junying Zhang; Weiwei Zhang; Tianmin Wang; Chao Cai

2007-01-01T23:59:59.000Z

455

The industrial ecology of the iron casting industry  

E-Print Network (OSTI)

Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

Jones, Alissa J. (Alissa Jean)

2007-01-01T23:59:59.000Z

456

INDUSTRIAL ASSOCIATESHIP SCHEME Centre for Industrial Consultancy and Sponsored Research  

E-Print Network (OSTI)

) Refrigeration Industry (1994) Advances in Electrical Power Systems (1994) Photovoltaics for Terrestrial and Space Applications (1996) Plate Heat Exchangers: The New Wave (1996) Refrigeration under Cryogenic of Manufacturing Process Through ASP Model (2002) (v) Manufacturing Artificial Intelligence based Mechanical Design

Bhashyam, Srikrishna

457

Profile of the chemicals industry in California: California industries of the future program  

E-Print Network (OSTI)

of the U.S. Chemical Industry. Berkeley, CA: Lawrence2004. Profile of the Petroleum Refining Industry inCalifornia - California Industries of the Future Program.

Galitsky, Christina; Worrell, Ernst

2004-01-01T23:59:59.000Z

458

Industry Structure Dynamics and the Nature of Technology in The Hearing Instrument Industry  

E-Print Network (OSTI)

Patterns of innovation in industry. Technology Review. Vol.alignment equipment industry. RAND Journal of Economics,in the hearing instrument industry. CISTEMA Working Paper,

Lotz, Peter

1998-01-01T23:59:59.000Z

459

The Impacts of IT on Firm and Industry Stucture: The Personal Computer Industry  

E-Print Network (OSTI)

company reports and industry averages, ,to Rapid Change in the PC Industry, California ManagementImpacts of IT on Firm and Industry Structure: The Personal

Dedrick, Jason; Kraemer, Kenneth L

2005-01-01T23:59:59.000Z

460

Profile of the chemicals industry in California: California industries of the future program  

E-Print Network (OSTI)

The industry consumes 8% of the electricity and 5% of theon electricity and gas use for the chemicals industry fromelectricity and natural gas users in the chemicals industry

Galitsky, Christina; Worrell, Ernst

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

462

Analysis of industrial load management  

SciTech Connect

Industrial Load Management, ILM, has increased the possibilities of changing load profiles and raising load factors. This paper reports on load profile measurements and feasible load management applications that could be implemented in industry e.g. bivalent systems for heating of premises and processes, load priority systems, energy storage and rescheduling processes or parts of processes due to differential electricity rates. Industrial load variations on hourly, daily and seasonal basis are treated as well as the impact by load management on load curves e g peak clipping, valley filling and increased off-peak electricity usage.

Bjork, C.O.; Karlsson, B.G.

1986-04-01T23:59:59.000Z

463

Industrial Carbon Management Initiative (ICMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

464

INDUSTRIAL SAFETY & HEALTH (ISH)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HEALTH (ISH) HEALTH (ISH) OBJECTIVE ISH.1 A comprehensive industrial safety & health program has been implemented to address applicable safety requirements at the TA 55 SST Facility. (Core Requirements 1, 3, and 4) Criteria * Procedures are implemented to address applicable industrial & health safety issues. * An adequate number of trained personnel are available to support SST facility regarding industrial safety & health concerns. * Portable fire extinguishers are appropriate for the class of fire they are expected to fight and are located within the proper distance. * Cranes, hooks, slings, and other rigging are plainly marked as to their capacity and inspected prior to use. * Forklifts and other powered lifting devices are adequately inspected.

465

Industry Sponsored Research | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnering Mechanism Sample Sponsored Research Agreement SBIR-STTR Support Economic Development Industrial Partnerships University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Sponsored Research SHARE Sponsored Research Fiber Optic Research The Oak Ridge National Laboratory is a United States Department of Energy national laboratory, operated under contract by UT-Battelle, LLC. The laboratory's 1500+ research scientists and engineers conduct a vigorous program of scientific discovery and technology development, and ORNL is eager to engage industry in partnerships to help translate its research output into market impact and support for U.S. competitiveness. Companies wishing to learn about the research being

466

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

467

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

468

Export.gov - By Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

By Industry By Industry Print | E-mail Page Export Information By Industry Export.gov offers a wide range of current industry and trade information to help exporters of U.S goods and services find the information they need to compete successfully in overseas markets. Four Essential Resources 1. Export Assistance. The U.S. & Foreign Commercial Service is the trade promotion arm of the U.S. Department of Commerce's International Trade Administration. Commercial Service trade professionals in more than100 U.S. cities and in nearly 80 countries help U.S. companies to start exporting or increase sales to new global markets. Commercial Service services include: Market Intelligence , Trade Counseling , Business Matchmaking, and more. 2. Trade Data & Analysis. Trade data can help companies identify the best

469

Ohio State's industry research partnerships  

E-Print Network (OSTI)

, in such critical projects as conversion of biomass to alternative energy and the creation of nanomaterials across the nation by enhancing industry productivity, generating jobs, and increasing revenues. 9 1 92 4

470

Future Prospects for Industrial Biotechnology  

Science Conference Proceedings (OSTI)

The field of industrial biotechnology has moved rapidly in recent years as a combined result of international political desire, especially in the case of biofuels, and unprecedented progress in molecular biology research that has supplied the enabling ...

OECD Organisation for Economic Co-operation and Development

2011-10-01T23:59:59.000Z

471

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

from 1% to 5% of base usage for natural gas. The achievableUsage A key initial step in the analysis was to develop a baseline understanding of industrial electricity and natural gas

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

472

Industrial Uses of Vegetable Oils  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils offers new insights into these important (and growing) products of vegetable oils, while also covering developments in biodegradable grease, vegetable oils-based polyols, and the synthesis of surfactants from vegetable oil

473

Motech Industries | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Partnership Year 2008 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now Motech Industries is a company located in Bethlehem, Taiwan....

474

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now Benteler Industries is a company located in...

475

The steam engine and industrialization  

E-Print Network (OSTI)

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

476

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout the country. The average small to medium sized company has yet to undertake a dedicated program. The reasons are numerous, but often it is simply because of a lack of knowledge of techniques or the amount of savings possible. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future. The program offerings basically include: 1. A series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy Audit booklets including instructions and forms. 4. Technical aid on a limited basis. 5. A series of laboratory type experiments involving power factor, solar energy, boiler combustion improvement and other energy related projects. 6. Fact sheet publication as the need develops. Plans for the future include expansion of the program to small businesses in general through the Energy Extension Service and more technical aid to participating industries, The basic plan involving the services above shall remain intact. The program has been very successful to date. The results are directly transferable to other states and the program directors are willing to share information.

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

477

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections can bring about. Over the last 2-3 years a number of articles have appeared in various industrial publications concerning infrared surveys. However, all of the articles have dealt with the technical aspects of infrared inspections, with the economics either completely neglected or mentioned only in passing. I believe that in the real industrial world it is the economic benefits of a technology that allow the product of that technology to reach the market and become a success, and not the fact that a technology is useful per se. In this presentation, I shall be focusing primarily on the major economic aspects of the surveys and what the end results really represent in terms of economic benefits. Once the economic benefits of these inspections are clearly understood, it will be readily apparent why the industrial use of these inspections is developing rapidly.

Duch, A. A.

1979-01-01T23:59:59.000Z

478

Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions  

SciTech Connect

The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [Departamento de Ciencias Exatas e da Terra-UNIFESP, Diadema-SP (Brazil)] [Departamento de Ciencias Exatas e da Terra-UNIFESP, Diadema-SP (Brazil); Paganotti, A.; Gama, S. [Departamento de Ciencias Exatas e da Terra-UNIFESP, Diadema-SP (Brazil)] [Departamento de Ciencias Exatas e da Terra-UNIFESP, Diadema-SP (Brazil); Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A. [Instituto de Quimica - UNESP, Araraquara-SP (Brazil)] [Instituto de Quimica - UNESP, Araraquara-SP (Brazil)

2013-01-15T23:59:59.000Z

479

Reactive sputtering synthesis of Co-CoO/Ag nanogranular and multilayer films containing core-shell particles  

Science Conference Proceedings (OSTI)

We present magnetic characterization of two series of samples grown by reactive sputtering of Co and Ag: (i) thin films obtained by cosputtering of these metals at different oxygen pressures, and (ii) Co/Ag multilayer films deposited with fixed Co layer thickness (1.1 nm) and oxygen pressure (2x10{sup -5} mbar), and varying Ag layer thickness t{sub Ag}. For certain preparation conditions the samples obtained with both synthesis methods consist of a dispersion of core-shell Co-CoO nanoparticles embedded in a Ag matrix. Regarding series (i), it is remarkable that the interesting core-shell/matrix structure, suggested by exchange-bias and giant magnetoresistance properties, could be achieved using the simple one-step technique of reactive cosputtering. In series (ii), the exchange-bias and coercivity fields strongly depend on the spacer layer thickness for t{sub Ag}<4 nm, and then become roughly thickness independent. A discontinuous-continuous transition in the silver layers with increasing t{sub Ag}, similar to that observed in a previous study, is hypothesized as the origin of the behavior in both fields.

Munoz, T.; De Toro, J. A.; Normile, P. S.; Andres, J. P.; Gonzalez, J. A.; Muniz, P.; Barbero, A. J.; Riveiro, J. M. [Departamento de Fisica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

2007-05-01T23:59:59.000Z

480

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an existing Market Information: Industries End-use(s) EnergyGas Boiler Market Information: Industries End-use(s) Energyelectricity Market Information: Industries End-use(s) Energy

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3s industries ag" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy types

2000-01-01T23:59:59.000Z

482

Putting the sun to work in industry  

DOE Green Energy (OSTI)

Industrial applications of solar energy are discussed in this illustrated brochure along with the DOE and SERI industrial process heat field test programs. The future prospects and advantages of solar industrial process heat are also discussed. (MHR)

None

1979-09-01T23:59:59.000Z

483

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an average industrial electricity price of $0.039/kWh waskWh (the average industrial electricity price in 1996), withprojected 2015 industrial price for electricity in the AEO

2000-01-01T23:59:59.000Z

484

Optimization tools for the freight brokerage industry  

E-Print Network (OSTI)

The freight brokerage industry in North America was born of the deregulation of the trucking industry in 1982. In the two decades since, the industry has grown from nothing to $50 Billion in revenue. In the beginning, ...

Silver, Jeffrey L. (Jeffrey Lee), 1962-

2003-01-01T23:59:59.000Z

485

IT management in the aerospace industry  

E-Print Network (OSTI)

(cont.) payoff IT investments. When the North American Aerospace Industry invests less than any other industry in the high risk investments, its foreign counterpart invests more than any other industry. The second major ...

Ferre, Gregoire, 1978-

2004-01-01T23:59:59.000Z

486

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

Shape Casting in the Steel Industry. Near net shape casting/in the U.S. iron and steel industry. Although the technologythe United States Iron and Steel Industry, as Share of Steel

2005-01-01T23:59:59.000Z

487

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

in the U.S. iron and steel industry. Although the technologyUnited States iron and steel industry, expressed as share ofnet shape casting in the steel industry . Near net shape

2004-01-01T23:59:59.000Z

488

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

trends in the iron and steel industry. Energy Policy 30:initiatives of Japans steel industry against globalenergy use in the steel industry, but can reduce both energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

489

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

of the iron and steel industry in the US. This examinationin the US iron and steel industry. Finally, we discuss thefrom the iron and steel industry. Fig. 1. Conservation

Worrell, Ernst

2011-01-01T23:59:59.000Z

490

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. Emerging Energy-Efficient Industrial Technologies,

2005-01-01T23:59:59.000Z

491

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Inc Jump to: navigation, search Name Green Energy Industries Inc Sector Marine and Hydrokinetic Website http:http:www.gecorpusa.co Region United States...

492

Biodiesel Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Industries Inc Place Santa Barbara, California Zip 93110 Product Biodiesel producer and facility developer. References Biodiesel Industries Inc1 LinkedIn Connections CrunchBase...

493

Kishimura Industry Co | Open Energy Information  

Open Energy Info (EERE)

Kishimura Industry Co Jump to: navigation, search Name Kishimura Industry Co Place Kanagawa-Ken, Japan Sector Solar, Vehicles Product Developer of solar power systems and...

494

Rotation With Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rotation With Industry Rotation With Industry 7ROTATIONWITHINDUSTRY.pdf More Documents & Publications Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialINITIALENTRYO...

496

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Name California Solar Energy Industries Association Place Rio Vista, California Zip 94571 Sector Solar Product California Solar Energy Industries Association is a trade group...

497

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Kayo Battery Industries Group Jump to: navigation, search Name Kayo Battery Industries Group Place...

498

AMO Industrial Distributed Energy: Information Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Industrial Distributed Energy Search Search Help Industrial Distributed Energy EERE...

499

Aluminum Industry of the Future - TMS  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... The U. S. DOE's Industrial Technologies Program provides funding for projects that address industry priorities for energy and the environment.

500

USB's Industrial Uses of Soybean Oil Award  

Science Conference Proceedings (OSTI)

Recognizing outstanding research into new industrial applications or uses for soybean oil, sponsored by the United Soybean Board. USB's Industrial Uses of Soybean Oil Award Awards Soybeans USB's