Powered by Deep Web Technologies
Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT  

SciTech Connect (OSTI)

Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

2004-05-06T23:59:59.000Z

2

Finding of No Significant Impact for the Veritas 3D Seismic Project (DOE/EA-1544) (7/25/05)  

Broader source: Energy.gov (indexed) [DOE]

United States Government Department of Energy memorandum DATE : July 25, 2005 REPLY TO ATTN OF : FE-472 (Michael J. Taylor) Serial No:MJT/04.082 SUBJECT : FONSI for Veritas 3D Seismic Project (DOE/EA-1544) TO : File INTRODUCTION : Veritas DGC Land Inc. (Veritas) has notified the Department of Energy (DOE) through the Rocky Mountain Oilfield Testing Center (RMOTC) of their intent to conduct a 3D Vibroseis acquisition project in Natrona County, Wyoming. The proposed property is contained in Sections 20, 21, 22, 28, and 28 of T 39 N, R 78 W, at Naval Petroleum Reserve No. 3 (NPR-3). Veritas is the seismic contractor for the Salt Creek 3D Project. A verbal Notice of Intent (NOI) to Conduct Oil and Gas

3

Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California  

SciTech Connect (OSTI)

The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

NONE

1996-10-01T23:59:59.000Z

4

Exploration 3-D Seismic Field Test/Native Tribes Initiative  

SciTech Connect (OSTI)

To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

1999-04-27T23:59:59.000Z

5

3-D Seismic Methods for Shallow Imaging Beneath Pavement  

E-Print Network [OSTI]

The research presented in this dissertation focuses on survey design and acquisition of near-surface 3D seismic reflection and surface wave data on pavement. Increased efficiency for mapping simple subsurface interfaces ...

Miller, Brian

2013-05-31T23:59:59.000Z

6

A 3D-3C Reflection Seismic Survey and Data Integration to Identify the  

Open Energy Info (EERE)

D-3C Reflection Seismic Survey and Data Integration to Identify the D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The Soda Lake geothermal field is an ideal setting to test the applicability of the 3D-3C reflection seismic method because: it is a producing field with a great deal of geologic and drilling data already available; it is in an alluvial valley where the subsurface structures that carry the geothermal fluids have no surface manifestations; and, there are downhole geophysical logs of fractures and permeable zones that can be used to ground-truth the new data.

7

3-D Seismic Methods For Geothermal Reservoir Exploration And  

Open Energy Info (EERE)

Methods For Geothermal Reservoir Exploration And Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: 3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Details Activities (5) Areas (1) Regions (0) Abstract: A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally

8

Widespread 3D seismic survey covers mature field in Gabon  

SciTech Connect (OSTI)

The exploration potential of the Port Gentil region, characterized by some of the earliest petroleum discoveries in Gabon, continues to be of important interest today. Available seismic data are of an older vintage (1974--82), recorded with low common mid-point (CMP) fold. They are critically void of coverage through the transition zone. The geology is highly complex, characterized by salt structures and strong tectonic activity. An intensive joint exploration and reservoir definition campaign is crucial to full evaluation of this area. This article describes the 3D survey conducted during 1992 and early 1993 over a mature oil field in an around Port Gentil and incorporating elements of land, transition zone, and shallow marine data acquisition -- the 3D Mandji program.

Riley, D.; Fleming, M. (Western Geophysical, Houston, TX (United States)); Delvaux, J. (Elf Gabon, Port Gentil (Gabon))

1993-12-06T23:59:59.000Z

9

Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review 2010 - Presentation. The primary objective of this project is to conduct a 3C 3D (converted shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at Wister, CA.The intent of the proposed program is to use a 3D seismic survey with converted shear waves combined with other available data to site and drill production wells at Wister, a blind geothermal resource.

10

NETL: News Release - 3-D Seismic Technology Locates Natural Gas in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 10, 2005 January 10, 2005 3-D Seismic Technology Locates Natural Gas in Fractured Reservoirs DOE-Sponsored Project Taps New Supplies of "Tight" Gas RIO ARRIBA COUNTY, N.M. - Large volumes of natural gas are being tapped from the tight rocks of the San Juan Basin in New Mexico's Rio Arriba County using a new technology developed in a project sponsored by the U.S. Department of Energy (DOE). In this cost-shared project, GeoSpectrum, Inc., of Midland, Texas, uses 3-D seismic to locate fractures in the earth that provide access to millions of cubic feet of untapped natural gas in four new wells-including one well that is now producing up to 2 million cubic feet per day. "The key innovation in this project is the integration of technologies that map previously unseen fracture lineaments and perturbations in seismic data, and then target fracture "sweet spots" where multiple fractures intersect," said geophysicist Francis Toro, who manages the project for DOE's National Energy Technology Laboratory.

11

A 3D-3C Reflection Seismic Survey and Data Integration to Identify...  

Office of Environmental Management (EM)

to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchhill Co., NV A 3D-3C Reflection Seismic Survey and Data...

12

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-03-31T23:59:59.000Z

13

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS.  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-01-01T23:59:59.000Z

14

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-08-21T23:59:59.000Z

15

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-31T23:59:59.000Z

16

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-09-30T23:59:59.000Z

17

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-12-01T23:59:59.000Z

18

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-01T23:59:59.000Z

19

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-06-30T23:59:59.000Z

20

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-07-01T23:59:59.000Z

22

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-12-31T23:59:59.000Z

23

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2006-05-05T23:59:59.000Z

24

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N. P. Paulsson

2005-09-30T23:59:59.000Z

25

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2003-12-01T23:59:59.000Z

26

3-D seismic velocity and attenuation structures in the geothermal field  

SciTech Connect (OSTI)

We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

2013-09-09T23:59:59.000Z

27

Bridging 3D seismic onshore: Lodgepole play highlights promise and challenges  

SciTech Connect (OSTI)

Recent major discoveries by Conoco Inc. and Duncan Oil in the Lower Mississippian Lodgepole formation of the Williston basin show that finding major oil reserves is still possible in the US and that 3D seismic methods have the capability to locate them. The implications are profound for independent oil and gas producers, who traditionally concentrate their operations in the mature US. Like major companies, independents are profiting form use of 3D seismic methods. The Williston basin successes show how independents might use 3D seismic methods to identify opportunities in a region once considered to be drilled up. Both the increasing use of these technologies by independents as well as the experiences major companies have had with them are well-documented. The paper discusses the Lodgepole discoveries, rejuvenation of the US oil and gas industry, stratigraphic information available by 3D seismic means, economic impact, and implications of 30 seismic work in the US.

O`Connor, R.B. Jr. [Wavetech Geophysical Inc., Denver, CO (United States)

1995-11-20T23:59:59.000Z

28

Seismic characterization of fractured reservoirs using 3D double beams  

E-Print Network [OSTI]

We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

Zheng, Yingcai

2012-01-01T23:59:59.000Z

29

A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchhill Co., NV  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project Summary: Understanding geothermal reservoirs requires multi-discipline, integrated 3D GIS: Access down hole geophysical logs, surface geophysics, isotherms, isoresistivity surfaces, seismic data, cross-sections, etc. instantaneously; Wells tell where youve been; MT shows the direction to go; Seismic provides the map; & Be prepared for discoveries.

30

3D Tomography from Few Projections in Experimental Fluid Dynamics  

E-Print Network [OSTI]

3D Tomography from Few Projections in Experimental Fluid Dynamics Stefania Petra, Andreas Schr projections due to both limited optical access to wind and water tunnels and cost S. Petra, C. Schn projection data. The latter are the pixel entries in the recorded 2D images that represent the integration

Schnörr, Christoph

31

Detection of azimuthal anisotropy from 3-D p-wave seismic data  

E-Print Network [OSTI]

DETECTION OF AZIMUTHAL ANISOTROPV FROM 3-D P-WAVE SEISMIC DATA A Thesis by ALI YILDIZEL Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1992 Major Subject: Geophysics DETECTION OF AZIMUTHAL ANISOTROPY FROM 3-D P-WAVE SEISMIC DATA A Thesis by ALI YILDIZEL Approved as to style and content by: Steve I . Iarder (Chair of Committee) Joel S. Watkins (Member) Robert R. Berg...

Yildizel, Ali

2012-06-07T23:59:59.000Z

32

Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration  

SciTech Connect (OSTI)

The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

2010-03-31T23:59:59.000Z

33

Conducting a 3D Converted Shear Wave Project to Reduce Exploration...  

Broader source: Energy.gov (indexed) [DOE]

shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at Wister, CA.The intent of the proposed program is to use a 3D seismic...

34

Conducting a 3D Converted Shear Wave Project to Reduce Exploration...  

Broader source: Energy.gov (indexed) [DOE]

shear wave) seismic survey to reduce exploration risk by characterizing fault and fracture geometrics at Wister, CA. The intent of the proposed program is to use a 3D seismic...

35

3D seismic imaging of buried Younger Dryas mass movement flows: Lake Windermere, UK  

E-Print Network [OSTI]

, , Luke J.W. Pinson a , Jonathan M. Bull a , Justin K. Dix a , Timothy J. Henstock a , John W. Davis offshore using tradi- tional 3D seismic methods (e.g., Frey-Martinez et al., 2005; Gee et al., 2006; Bull.g., Frey-Martinez et al., 2005). From this, a well- developed set of indicators for flow direction

Southampton, University of

36

Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes  

SciTech Connect (OSTI)

Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

2009-03-31T23:59:59.000Z

37

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2002-05-01T23:59:59.000Z

38

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-09-01T23:59:59.000Z

39

3 D seismic interpretation, reservoir characteristics and petroleum prospects for South Marsh Island OCS Blocks, Gulf of Mexico  

E-Print Network [OSTI]

show great stratigraphic diversity within short distances, making the ability to accurately determine whether sand lenses have been adequately produced or bypassed essential for production opportunities for operators. New 3 D seismic processing...

Duan, Ling

2012-06-07T23:59:59.000Z

40

A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays  

SciTech Connect (OSTI)

The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

Paulsson Geophysical Services

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

3-D structural and seismic stratigraphic interpretation of the Guasare-Misoa Interval, VLE 196 Area, Block V, Lamar Field, Lake Maracaibo, Venezuela  

E-Print Network [OSTI]

In this study, the structure, depositional system, and the seismic stratigraphy of the VLE 196 area, Block V in Lamar Field were interpreted using 3-D seismic data and well logs to characterize structural and depositional settings of the Guasare...

Arzuman, Sadun

2004-09-30T23:59:59.000Z

42

Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

1997-06-01T23:59:59.000Z

43

Velocity model-building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data  

E-Print Network [OSTI]

Velocity model-building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic, any approach that helps to auto- mate and optimize velocity model-building will speed up the output . The most common approaches for building a PSDM velocity model rely on reflection traveltime tomography e

Vallée, Martin

44

3-D multichannel seismic reflection study of variable-flux hydrocarbon seeps, continental slope, northern Gulf of Mexico  

E-Print Network [OSTI]

. The reprocessed 3D seismic data were used to map in greater detail near seafloor features and amplitude anomalies. Using remote sensing geophysical data, we were effectively able to map sub-surface features such as salt topography, seep-related faults...

Thomas, Ryan Douglas

2004-11-15T23:59:59.000Z

45

Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation  

E-Print Network [OSTI]

Efficient 3D shape matching and retrieval using a concrete radialized spherical projection We present a 3D shape retrieval methodology based on the theory of spherical harmonics. Using PCA on the face normals of the model. The 3D model is decomposed into a set of spherical functions

Paris-Sud XI, Université de

46

3D Downtown Phoenix Modeling This project is to develop the efficient and effective method for  

E-Print Network [OSTI]

3D Downtown Phoenix Modeling ABSTRACT This project is to develop the efficient and effective method for creating 3D city models that will be used with GIS (Geographical Information Systems) data in VR (Virtual Reality) environment. Here introduces the modeling process to create 3D city model from aerial photos

Hall, Sharon J.

47

3D Printing Phosphonium Ionic Liquid Networks with Mask Projection Microstereolithography  

Science Journals Connector (OSTI)

3D Printing Phosphonium Ionic Liquid Networks with Mask Projection Microstereolithography ... Additive manufacturing, often referred to as 3D printing, where objects are constructed in a layer-by-layer fashion, enables the design and creation of geometrically complex objects with tailored topology, and thus, functionality. ... Herein, we report photopolymerization strategies coupled with additive manufacturing to achieve 3D printed phosphonium PILs in order to demonstrate the first example of 3D printing of an ion-conducting polymer. ...

Alison R. Schultz; Philip M. Lambert; Nicholas A. Chartrain; David M. Ruohoniemi; Zhiyang Zhang; Chainika Jangu; Musan Zhang; Christopher B. Williams; Timothy E. Long

2014-11-06T23:59:59.000Z

48

Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

Lane, Michael

49

Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010  

SciTech Connect (OSTI)

Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

Michael Lane

2012-01-01T23:59:59.000Z

50

The ATLAS3D project --XIII. Mass and morphology of HI in  

E-Print Network [OSTI]

The ATLAS3D project -- XIII. Mass and morphology of HI in early-type galaxies as a function 2011 (MN LATEX style file v2.2) The ATLAS3D project ­ XIII. Mass and morphology of H I in early Physik, PO Box 1312, D-85478 Garching, Germany 11Space Telescope European Coordinating Facility, European

Bureau, Martin

51

The Atlas3D project --III. A census of the stellar angular momentum within the  

E-Print Network [OSTI]

The Atlas3D project -- III. A census of the stellar angular momentum within the effective radius style file v2.2) The ATLAS3D project ­ III. A census of the stellar angular momentum within¨ur extraterrestrische Physik, PO Box 1312, D-85478 Garching, Germany 8Space Telescope European Coordinating Facility

Bureau, Martin

52

Computer power fathoms the depths: billion-bit data processors illuminate the subsurface. [3-D Seismic techniques  

SciTech Connect (OSTI)

Some of the same space-age signal technology being used to track events 200 miles above the earth is helping petroleum explorationists track down oil and natural gas two miles and more down into the earth. The breakthroughs, which have come in a technique called three-dimensional seismic work, could change the complexion of exploration for oil and natural gas. Thanks to this 3-D seismic approach, explorationists can make dynamic maps of sites miles beneath the surface. Then explorationists can throw these maps on space-age computer systems and manipulate them every which way - homing in sharply on salt domes, faults, sands and traps associated with oil and natural gas. ''The 3-D seismic scene has exploded within the last two years,'' says, Peiter Tackenberg, Marathon technical consultant who deals with both domestic and international exploration. The 3-D technique has been around for more than a decade, he notes, but recent achievements in space-age computer hardware and software have unlocked its full potential.

Ross, J.J.

1985-01-01T23:59:59.000Z

53

Quantifying the Permeability Heterogeneity of Sandstone Reservoirs in Boonsville Field, Texas by Integrating Core, Well Log and 3 D Seismic Data  

E-Print Network [OSTI]

the permeability heterogeneity of the target reservoir by integrating core, well log and 3 D seismic data. A set of permeability coefficients, variation coefficient, dart coefficient, and contrast coefficient, was defined in this study to quantitatively identify...

Song, Qian

2013-04-29T23:59:59.000Z

54

Advanced Seismic Data Analysis Program- The "Hot Pot" Project  

Broader source: Energy.gov [DOE]

Advanced Seismic Data Analysis Program- The "Hot Pot" Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

55

3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary  

SciTech Connect (OSTI)

A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of the effect of fractures on seismic wave propagation are now being applied to image fractures in gas and oil environments. It now may be appropriate to apply these methods, with modifications, to geothermal applications. It is assumed that to implement the appropriate methods an industry coupled program tightly linked to actual field cases, iterating between development and application will be pursued. The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

Majer, E.L.

2003-07-14T23:59:59.000Z

56

A comparison of methods for 3D target localization from seismic and acoustic signatures  

SciTech Connect (OSTI)

An important application of seismic and acoustic unattended ground sensors (UGS) is the estimation of the three dimensional position of an emitting target. Seismic and acoustic data derived from UGS systems provide the taw information to determine these locations, but can be processed and analyzed in a number of ways using varying amounts of auxiliary information. Processing methods to improve arrival time picking for continuous wave sources and methods for determining and defining the seismic velocity model are the primary variables affecting the localization accuracy. Results using field data collected from an underground facility have shown that using an iterative time picking technique significantly improves the accuracy of the resulting derived target location. Other processing techniques show little advantage over simple crosscorrelation along in terms of accuracy, but may improve the ease with which time picks can be made. An average velocity model found through passive listening or a velocity model determined from a calibration source near the target source both result in similar location accuracies, although the use of station correction severely increases the location error.

ELBRING,GREGORY J.; GARBIN,H. DOUGLAS; LADD,MARK D.

2000-04-03T23:59:59.000Z

57

Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging  

DOE Patents [OSTI]

The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

Anderson, Roger N. (New York, NY); Boulanger, Albert (New York, NY); Bagdonas, Edward P. (Brookline, MA); Xu, Liqing (New Milford, NJ); He, Wei (New Milford, NJ)

1996-01-01T23:59:59.000Z

58

Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging  

DOE Patents [OSTI]

The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

1996-12-17T23:59:59.000Z

59

Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region  

SciTech Connect (OSTI)

Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

Nugroho, Hendro [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia and Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No. 2, Kemayoran, Jakar (Indonesia)] [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia and Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No. 2, Kemayoran, Jakar (Indonesia); Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia); Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technologyc Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technologyc Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)

2013-09-09T23:59:59.000Z

60

Region-of-interest reconstructions from truncated 3D x-ray projections  

E-Print Network [OSTI]

This paper introduces a method of region-of-interest (ROI) reconstruction from truncated 3D X-ray projections, consisting of a wavelet-based regularized iterative reconstruction procedure that, under appropriate conditions, converges within the ROI to an exact or highly accurate solution. ROI tomography is motivated by the goal to reduce the overall radiation exposure when primarily the reconstruction of a specified region rather than the entire object is required. Our approach assumes that only the 3D truncated X-ray projections, i.e., the projection data restricted to the image of the ROI, are known and does not assume any previous knowledge about the density function, except for standard assumptions about integrability and regularity needed to ensure that forward and backward transforms are well defined. We provide rigorous theoretical justification for the convergence of our regularized reconstruction algorithm in the continuous setting and prove the existence of a critical radius of a spherical ROI that ensures the convergence of the algorithm. Theoretical results are validated numerically using simulated acquisition and truncation of projection data for various acquisition geometries and ROI sizes and locations. We provide a numerical analysis of the ROI reconstruction stability as a function of the ROI size, showing that our algorithm converges also for ROI sizes which are rather small with respect to the support of the density function.

Robert Azencott; Bernhard G. Bodmann; Demetrio Labate; Anando Sen; Daniel Vera

2015-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Full Reviews: Seismicity and Seismic  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer reviewer comments for Seismicity and Seismic.

62

DOE/EA-1544: Environmental Assessment for the Proposed Anadarko/Veritas Salt Creek 3D Vibroseis Project (June 2005)  

Broader source: Energy.gov (indexed) [DOE]

___________________________ ___________________________ Salt Creek 3D Vibroseis Project Environmental Assessment BLM Casper Field Office June 2005 Page 1 ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED ANADARKO / VERITAS SALT CREEK 3D VIBROSEIS PROJECT DOE EA No. EA-1544 BLM Case No. WYW-163071 BLM EA No. WY- 060-EA05-95 WOGCC Permit No. 025-05-015G _________________________________________________________________________________________________ Salt Creek 3D Vibroseis Project Environmental Assessment BLM Casper Field Office June 2005 Page 2 TABLE OF CONTENTS 1.0 PURPOSE AND NEED 1.1 Introduction 3 1.2 Purpose and need for action 3 1.3 Conformance with land use plan 3 1.4 Relationship to statutes, regulations, 4

63

Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan  

SciTech Connect (OSTI)

Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

Justin Coleman

2014-09-01T23:59:59.000Z

64

Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models  

DOE Patents [OSTI]

A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

He, W.; Anderson, R.N.

1998-08-25T23:59:59.000Z

65

Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models  

DOE Patents [OSTI]

A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

He, Wei (New Milford, NJ); Anderson, Roger N. (New York, NY)

1998-01-01T23:59:59.000Z

66

HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

SciTech Connect (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al. (2006a), it is concluded that time-domain SSI analysis using ANSYS{reg_sign} is justified for predicting the global response of the DSTs. The most significant difference between the current revision (Revision 1) of this report and the original issue (Revision 0) is the treatment of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome.

MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

2009-01-15T23:59:59.000Z

67

Combined 3D PET and Optical Projection Tomography Techniques for Plant Root Phenotyping  

E-Print Network [OSTI]

New imaging techniques are in great demand for investigating underground plant roots systems which play an important role in crop production. Compared with other non-destructive imaging modalities, PET can image plant roots in natural soil and produce dynamic 3D functional images which reveal the temporal dynamics of plant-environment interactions. In this study, we combined PET with optical projection tomography (OPT) to evaluate its potential for plant root phenotyping. We used a dedicated high resolution plant PET imager that has a 14 cm transaxial and 10 cm axial field of views, and multi-bed imaging capability. The image resolution is around 1.25 mm using ML-EM reconstruction algorithm. B73 inbred maize seeds were germinated and then grown in a sealed jar with transparent gel-based media. PET scanning started on the day when the first green leaf appeared, and was carried out once a day for 5 days. Each morning, around 10 mCi of 11CO2 was administrated into a custom built plant labeling chamber. After 10 ...

Wang, Qiang; Mathews, Aswin J; Li, Ke; Topp, Christopher; O'Sullivan, Joseph A; Tai, Yuan-Chuan

2015-01-01T23:59:59.000Z

68

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

SciTech Connect (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

69

Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma  

SciTech Connect (OSTI)

The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

Wheeler,David M.; Miller, William A.; Wilson, Travis C.

2002-03-11T23:59:59.000Z

70

DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling  

Broader source: Energy.gov (indexed) [DOE]

Project Pushes the Limits of Seismic-While-Drilling Project Pushes the Limits of Seismic-While-Drilling Technology DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling Technology August 12, 2009 - 1:00pm Addthis Washington, DC - In a project sponsored by the U.S. Department of Energy, Technology International Inc. has developed a breakthrough borehole imaging system that stands on the cusp of commercialization. By pushing the limits of seismic-while-drilling technology, the patent-pending SeismicPULSER system provides more accurate geo-steering for the discovery of new oil and natural gas reserves, facilitating new field development and improving well economics. Drill-bit seismic-while-drilling techniques use a downhole acoustic source and receivers at the surface to create real-time images that allow

71

Small-scale faulting in the Upper Cretaceous of the Groningen block (The Netherlands): 3D seismic interpretation, fault plane analysis and regional paleostress  

Science Journals Connector (OSTI)

Over the last years, field-based studies have shown that fault surfaces can exhibit a considerable self-affine topography. It is reasonable to assume that similar undulations are also present in fault interpretations from 3D reflection seismic data, however both the interpretation uncertainty and geophysical resolution limits hinder their analysis. This study analyses a set of small-scale, non-reactivated faults in the Upper Cretaceous Chalk Group (Upper Ommelanden Formation) of the NW-part of the Groningen Block, the Netherlands, in a high quality Pre Stack Depth Migrated 3D seismic data set. The studied faults are fully contained inside the Chalk Group, in an area located between the major tectonic-bounding faults of the NW Groningen Block. Over 200 faults, with offsets in the order of 30–50 m, were interpreted across an area of ca. 150 km2, showing a clear preferential orientation for strike, dip and dip-direction. Detailed interpretations and 3D fault plane analyses show undulations on the fault plane. We show that these undulations are not an interpretation or gridding artefact, and interpret these to indicate direction of fault slip. These results were used to calculate a paleostress tensor, using all faults to calculate a single stress tensor for the entire study area by Numerical Dynamic Analysis. Based on the orientation, position and a thickness analysis, it is interpreted that these faults formed due to the tectonic reactivation of salt structures in the Latest Cretaceous. The calculated paleostress state shows a general NW–SE-extension, with a vertical maximum principle stress, and a stress ratio of about 0.3, indicating that the studied faults are not the result of dewatering. This interpretation agrees both with a nearby salt-tectonic reconstruction, as well as field-based paleostress results from the UK, Belgium and France. A first look at other surveys from the Dutch sector indicates that similar faults are present in other areas, with different orientations. We propose that a dedicated analysis of these faults across on- and offshore Europe would allow extending the stress map of the Late Cretaceous into areas where the Chalk is not outcropping.

Heijn van Gent; Stefan Back; Janos L. Urai; Peter Kukla

2010-01-01T23:59:59.000Z

72

Project No. MGL1106 Page 1 Science Support Plan  

E-Print Network [OSTI]

Project No. MGL1106 Page 1 Science Support Plan R/V Marcus G. Langseth Crisp 3D Seismic April 10th ............................................................................................................................................8 3.2. SHIPPING, FISHING AND DIVING ACTIVITY ......................................................................................................................................12 6.3. SEISMIC PARAMETERS

73

PSU ARL Additive Manufacturing Capstone Project For the first time the PSU ARL, the IE480W CIMP-3D Group at Penn State showed that  

E-Print Network [OSTI]

PSU ARL Additive Manufacturing Capstone Project For the first time the PSU ARL, the IE480W CIMP-3D Processing by Direct Digital Deposition (CIMP-3D), is a program utilizing Additive Manufacturing (AM was to develop an understanding of how key operating parameters such as layer thickness, manufacturing

Demirel, Melik C.

74

MNRAS 429, 534555 (2013) doi:10.1093/mnras/sts353 The ATLAS3D Project XIV. The extent and kinematics of the molecular  

E-Print Network [OSTI]

MNRAS 429, 534­555 (2013) doi:10.1093/mnras/sts353 The ATLAS3D Project ­ XIV. The extent, D-85478 Garching, Germany 12Space Telescope European Coordinating Facility, European Southern and contrast the extent, surface brightness profiles and kinematics of the molecular gas in CO-rich ATLAS3D

Kuntschner, Harald

75

Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.  

SciTech Connect (OSTI)

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

Brouns, Thomas M.

2007-07-15T23:59:59.000Z

76

FEDMAP FY 2011 Projects 3D/4D Mapping of the San Andreas Fault Zone (Graymer)  

E-Print Network [OSTI]

of surface and groundwater sustainability, land-use planning, ecosystem health, climate change, and sea level Basin and Range Province. Location: Nevada Strategic Direction: Energy and Minerals, Natural Hazards: Colorado, New Mexico Website: http://crustal.cr.usgs.gov/projects/rgb Strategic Direction: Water Issues

77

3D scanning for personal 3D printing: build your own desktop 3D scanner  

Science Journals Connector (OSTI)

3D Printing has entered the mainstream. Multiple low cost desktop 3D printers are currently available from various vendors, and open source projects let hobbyists build their own. This course addresses the problem of creating 3D models for 3D printing. ...

Gabriel Taubin; Daniel Moreno; Douglas Lanman

2014-07-01T23:59:59.000Z

78

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS  

SciTech Connect (OSTI)

The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

MACKEY TC; ABBOTT FG; CARPENTER BG; RINKER MW

2007-02-16T23:59:59.000Z

79

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

80

Accurate registration of random radiographic projections based on three spherical references for the purpose of few-view 3D reconstruction  

SciTech Connect (OSTI)

Precise registration of radiographic projection images acquired in almost arbitrary geometries for the purpose of three-dimensional (3D) reconstruction is beset with difficulties. We modify and enhance a registration method [R. Schulze, D. D. Bruellmann, F. Roeder, and B. d'Hoedt, Med. Phys. 31, 2849-2854 (2004)] based on coupling a minimum amount of three reference spheres in arbitrary positions to a rigid object under study for precise a posteriori pose estimation. Two consecutive optimization procedures (a, initial guess; b, iterative coordinate refinement) are applied to completely exploit the reference's shadow information for precise registration of the projections. The modification has been extensive, i.e., only the idea of using the sphere shadows to locate each sphere in three dimensions from each projection was retained whereas the approach to extract the shadow information has been changed completely and extended. The registration information is used for subsequent algebraic reconstruction of the 3D information inherent in the projections. We present a detailed mathematical theory of the registration process as well as simulated data investigating its performance in the presence of error. Simulation of the initial guess revealed a mean relative error in the critical depth coordinate ranging between 2.1% and 4.4%, and an evident error reduction by the subsequent iterative coordinate refinement. To prove the applicability of the method for real-world data, algebraic 3D reconstructions from few ({<=}9) projection radiographs of a human skull, a human mandible and a teeth-containing mandible segment are presented. The method facilitates extraction of 3D information from only few projections obtained from off-the-shelf radiographic projection units without the need for costly hardware. Technical requirements as well as radiation dose are low.

Schulze, Ralf; Heil, Ulrich; Weinheimer, Oliver; Gross, Daniel; Bruellmann, Dan; Thomas, Eric; Schwanecke, Ulrich; Schoemer, Elmar [Department of Oral Surgery (and Oral Radiology), Johannes Gutenberg-University, Dental School, Mainz 55131 (Germany); Institute of Computer Science, Johannes Gutenberg-University, Mainz 55131 (Germany); Department of Oral Surgery (and Oral Radiology), Johannes Gutenberg-University, Dental School, Mainz 55131 (Germany); Department of Design, Computer Science and Media, University of Applied Sciences, Wiesbaden 65195 (Germany); Institute of Computer Science, Johannes Gutenberg-University, Mainz 55131 (Germany)

2008-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RAPID 3D TRACING OF THE MOUSE BRAIN NEUROVASCULATURE WITH LOCAL MAXIMUM INTENSITY PROJECTION AND MOVING WINDOWS  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1. 3D Frangi vs. 2D Frangi with MIP cube . . . . . . . . 49 a. Synthetic data tracing result . . . . . . . . . . . . 49 b. Performance comparison . . . . . . . . . . . . . . 50 c. Validation . . . . . . . . . . . . . . . . . . . . . . 51 2. MW... with MIP cube . . . . . . . . . . . . . . . . . . . 53 a. Synthetic data tracing result . . . . . . . . . . . . 53 b. Performance comparison . . . . . . . . . . . . . . 54 c. Validation . . . . . . . . . . . . . . . . . . . . . . 54 3. Tracing in low...

Han, Dong Hyeop

2011-10-21T23:59:59.000Z

82

Advanced Seismic data Analysis Program (The "Hot Pot Project")  

Open Energy Info (EERE)

data Analysis Program (The "Hot Pot Project") data Analysis Program (The "Hot Pot Project") Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Advanced Seismic data Analysis Program (The "Hot Pot Project") Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The proposed exploration surveys, drilling programs, data analysis and report generation will require 18 months to complete. It is anticipated that the resource confirmation drilling program will be successful in intersecting structural targets predicted by the 2.5-D advanced seismic analysis and model construction, effectively validating use of this innovative technology as a means to reduce drilling risk through improved well targeting. Oski expects that temporary field jobs will be created during the drilling stage and that long-term direct and indirect jobs would be created once this geothermal resource is proven and a geothermal plant is designed, financed and built.

83

Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir  

E-Print Network [OSTI]

hydrothermal al- teration would combine to reduce the effectiveness of standard 3-D seismic processing.

Feighner, Mark A.

2010-01-01T23:59:59.000Z

84

Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project  

SciTech Connect (OSTI)

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

Reidel, Steve P.

2006-05-26T23:59:59.000Z

85

The ATLAS3D Project - XXVIII. Dynamically-driven star formation suppression in early-type galaxies  

E-Print Network [OSTI]

We present measurements of the star formation rate (SFR) in the early-type galaxies (ETGs) of the ATLAS3D sample, based on Wide-field Infrared Survey Explorer (WISE) 22um and Galaxy Evolution Explorer (GALEX) far-ultraviolet emission. We combine these with gas masses estimated from 12CO and HI data in order to investigate the star formation efficiency (SFE) in a larger sample of ETGs than previously available. We first recalibrate (based on WISE data) the relation between old stellar populations (traced at Ks-band) and 22um luminosity, allowing us to remove the contribution of 22um emission from circumstellar dust. We then go on to investigate the position of ETGs on the Kennicutt-Schmidt (KS) relation. Molecular gas-rich ETGs have comparable star formation surface densities to normal spiral galaxy centres, but they lie systematically offset from the KS relation, having lower star formation efficiencies by a factor of ~2.5 (in agreement with other authors). This effect is driven by galaxies where a substantia...

Davis, Timothy A; Crocker, Alison F; Bureau, Martin; Blitz, Leo; Alatalo, Katherine; Emsellem, Eric; Naab, Thorsten; Bayet, Estelle; Bois, Maxime; Bournaud, Frederic; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

2014-01-01T23:59:59.000Z

86

3-D seismology in the Arabian Gulf  

SciTech Connect (OSTI)

Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

Al-Husseini, M. [Gulf PetroLink, Manama (Bahrain); Chimblo, R. [Saudi Aramco, Dhahran (Saudi Arabia)

1995-08-01T23:59:59.000Z

87

Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector  

E-Print Network [OSTI]

Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach of three-dimensional reconstruction for the LAr TPC with a practical application to track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of real data tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

M. Antonello; B. Baibussinov; P. Benetti; E. Calligarich; N. Canci; S. Centro; A. Cesana; K. Cieslik; D. B. Cline; A. G. Cocco; A. Dabrowska; D. Dequal; A. Dermenev; R. Dolfini; C. Farnese; A. Fava; A. Ferrari; G. Fiorillo; D. Gibin; S. Gninenko; A. Guglielmi; M. Haranczyk; J. Holeczek; A. Ivashkin; J. Kisiel; I. Kochanek; J. Lagoda; S. Mania; A. Menegolli; G. Meng; C. Montanari; S. Otwinowski; A. Piazzoli; P. Picchi; F. Pietropaolo; P. Plonski; A. Rappoldi; G. L. Raselli; M. Rossella; C. Rubbia; P. Sala; A. Scaramelli; E. Segreto; F. Sergiampietri; D. Stefan; J. Stepaniak; R. Sulej; M. Szarska; M. Terrani; F. Varanini; S. Ventura; C. Vignoli; H. Wang; X. Yang; A. Zalewska; K. Zaremba

2012-10-18T23:59:59.000Z

88

Hollywood 3D: Recognizing Actions in 3D Natural Scenes Simon Hadfield Richard Bowden  

E-Print Network [OSTI]

Hollywood 3D: Recognizing Actions in 3D Natural Scenes Simon Hadfield Richard Bowden Centre-class variations. It is made even more challenging when complex 3D actions are projected down to the image plane, losing a great deal of information. The recent emergence of 3D data, both in broadcast content

Bowden, Richard

89

3D modellering og pathfinding i Java; 3D Modeling and Pathfinding in Java.  

E-Print Network [OSTI]

??English: This project explores the performance of Java3D through a large 3D?model and the possibility of running this model with a pathfinding algorithm from an… (more)

Thorlund, Steffen

2009-01-01T23:59:59.000Z

90

Seismicity and Reservoir Fracture Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

91

Seismic Design Expectations Report  

Broader source: Energy.gov [DOE]

The Seismic Design Expectations Report (SDER) is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project seismic design activities prior to...

92

Seismic amplitude and coherency response of channel sand, offshore Louisiana, Gulf of Mexico  

E-Print Network [OSTI]

hazard delineation. This paper describes a new technique for drilling hazard identification using a conventional 3 D seismic amplitude dataset. An event coherence calculation program is applied to a 3 D seismic dataset to derive seismic attributes...

Fischer, Elena Mikhaylovna

2012-06-07T23:59:59.000Z

93

EXPLORING FOR SUBTLE MISSION CANYON STRATIGRAPHIC TRAPS WITH ELASTIC WAVEFIELD SEISMIC TECHNOLOGY  

SciTech Connect (OSTI)

The 9C3D seismic data that will form the principal data base needed for this research program have been successfully acquired. The seismic field data exhibit a good signal-to-noise (S/N) ratio for all elastic-wave modes. Thus the major hurdle of acquiring optimal-quality 9-C seismic data has been cleared. The stratigraphic oil-reservoir target that will be the imaging objective of the seismic data-processing effort is described in this report to indicate the challenge that now confronts the data-processing phase of the project.

John Beecherl

2004-02-01T23:59:59.000Z

94

3D NUCLEAR SEGMENTAT  

Energy Science and Technology Software Center (OSTI)

003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

95

Imaging short-period seismic radiation from the 27 February 2010 Chile (MW 8.8) earthquake by back-projection of P, PP,  

E-Print Network [OSTI]

Imaging short-period seismic radiation from the 27 February 2010 Chile (MW 8.8) earthquake by back projected to the source region to image locations of coherent short-period seismic wave radiation. Several in North America (P), Japan (PKIKP), and Europe (PP), as well as a global configuration of stations

Madariaga, Raúl

96

3D heart reconstruction.  

E-Print Network [OSTI]

??The purpose of this thesis was to achieve a 3D reconstruction of the four heart chambers using 2D echocardiographic images. A level set algorithm based… (more)

Roxo, Diogo

2011-01-01T23:59:59.000Z

97

F3D  

Energy Science and Technology Software Center (OSTI)

003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms  http://camera.lbl.gov/software 

98

Subsurface imaging with reverse vertical seismic profiles  

E-Print Network [OSTI]

This thesis presents imaging results from a 3D reverse vertical seismic profile (RVSP) dataset measured at a hydrocarbon bearing pinnacle reef in northern Michigan. The study presented many challenges in seismic data ...

Krasovec, Mary L. (Mary Lee), 1972-

2001-01-01T23:59:59.000Z

99

Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

Coats, D.W.; Murray, R.C.

1984-11-01T23:59:59.000Z

100

HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK  

SciTech Connect (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis reported in Carpenter et al. (2006), the results of the two investigations will be compared to help determine if a more refined sub-model of the primary tank is necessary to capture the important fluid-structure interaction effects in the tank and if so, how to best utilize a refined sub-model of the primary tank. Both rigid tank and flexible tank configurations were analyzed with ANSYS. The response parameters of interest are total hydrodynamic reaction forces, impulsive and convective mode frequencies, waste pressures, and slosh heights. To a limited extent: tank stresses are also reported. The results of this study demonstrate that the ANSYS model has the capability to adequately predict global responses such as frequencies and overall reaction forces. Thus, the model is suitable for predicting the global response of the tank and contained waste. On the other hand, while the ANSYS model is capable of adequately predicting waste pressures and primary tank stresses in a large portion of the waste tank, the model does not accurately capture the convective behavior of the waste near the free surface, nor did the model give accurate predictions of slosh heights. Based on the ability of the ANSYS benchmark model to accurately predict frequencies and global reaction forces and on the results presented in Abatt, et al. (2006), the global ANSYS model described in Carpenter et al. (2006) is sufficient for the seismic evaluation of all tank components except for local areas of the primary tank. Due to the limitations of the ANSYS model in predicting the convective response of the waste, the evaluation of primary tank stresses near the waste free surface should be supplemented by results from an ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions. However, the primary tank is expected to have low demand to capacity ratios in the upper wall. Moreover, due to the less than desired mesh resolution in the primary tank knuckle of the global ANSYS model, the evaluation of the primary tank stresses in the lo

MACKEY, T.C.

2006-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

102

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

103

3D Plasmon Ruler  

SciTech Connect (OSTI)

In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

None

2011-01-01T23:59:59.000Z

104

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

3D Computer Vision and Video Computing 3D Vision3D Vision CSC I6716 Fall 2010 Topic 1 of Part II Camera Models Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu #12;3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

105

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision Topic 1 of Part II Camera Models CSC I6716 Spring2011 Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

106

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT DYTRAN BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN FLAT TOP TANKS  

SciTech Connect (OSTI)

The work reported in this document was performed in support of a project entitled ''Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work herein was motivated by review comments from a Project Review Meeting held on March 20-21, 2006. One of the recommendations from that meeting was that the effects of the interaction between the tank liquid and the roof be further studied (Rinker, Deibler, Johnson, Karri, Pilli, Abatt, Carpenter, and Hendrix - Appendix E of RPP-RPT-28968, Rev. 1). The reviewers recommended that solutions be obtained for seismic excitation of flat roof tanks containing liquid with varying headspace between the top of the liquid and the tank roof. It was recommended that the solutions be compared with simple, approximate procedures described in BNL (1995) and Malhotra (2005). This report documents the results of the requested studies and compares the predictions of Dytran simulations to the approximate procedures in BNL (1995) and Malhotra (2005) for flat roof tanks. The four cases analyzed all employed a rigid circular cylindrical flat top tank with a radius of 450 in. and a height of 500 in. The initial liquid levels in the tank were 460,480,490, and 500 in. For the given tank geometry and the selected seismic input, the maximum unconstrained slosh height of the liquid is slightly greater than 25 in. Thus, the initial liquid level of 460 in. represents an effectively roofless tank, the two intermediate liquid levels lead to intermittent interaction between the liquid and tank roof, and the 500 in. liquid level represents a completely full tank with no sloshing. Although this work was performed in support of the seismic analysis of the Hanford DSTs, the tank models in this study are for an idealized flat top configuration. Moreover, the liquid levels used in the present models are for study purposes only and are independent of the actual operating levels of the DSTs. The response parameters that are evaluated in this study are the total hydrodynamic reaction forces, the peak convective hydrodynamic forces, the fundamental convective frequencies, the liquid pressures, and peak slosh heights. The results show that the Dytran solutions agree well with the known solutions for the roofless tank and completely full tank. At the two intermediate liquid levels, there are some significant differences between the Dytran results and the approximate estimates. The results show that the estimates of peak hydrodynamic reaction forces appearing in BNL (1995) and Malhotra (2005) are reasonable and generally conservative relative to the Dytran solutions. At the 460 and 480 in. liquid levels, Dytran underestimates the convective component of the reaction force compared to the estimated in BNL (1995) and Malhotra (2005), but the convective component of the reaction force is small relative to the total reaction force. At the 490 in. liquid levels, the peak convective reaction force is more than twice as large as predicted by the approximate methods in BNL (1995) and Malhotra (2005). All three methods give similar answers for the fundamental convective frequency at the 460 and 480 in. liquid levels, but the Dytran solution indicates a significant increase in the apparent convective frequency at the 490 in. liquid level that is caused by the interaction with the roof. The peak wall pressures in the tank at the two intermediate liquid levels are essentially the same as for a roofless tank in the lower two-thirds of the tank wall, but diverge from that solution in the upper third of the tank wall. The estimates of peak wall pressures appearing in BNL (1995) are quite conservative lower in the tank, but may underestimate the peak wall pressures closer to the tank roof. Finally, the peak roof pre

MACKEY, T.C.

2007-02-16T23:59:59.000Z

107

Chapter 7 - Prestack Seismic Inversion and Seismic Attribute Analysis  

Science Journals Connector (OSTI)

Abstract Based on seismic, logging, and geological data, the seismic inversion technique can reveal the spatial characteristics (including reservoir thickness, structural characteristics, extending direction, extending range, pinch-out location, and others) of the target layers, such as reservoirs or coal seams. By combining a large area of the continuous distribution of seismic data with high-resolution well logging data, this technique transforms conventional seismic data into a high-resolution well data volume, enabling us to use the acoustic characteristics of rock formations to ascertain lithological interfaces. So we can extrapolate the borehole lithological and physical properties and hydrocarbon features from points to lines and lines to faces, and predict lateral reservoir variations and reservoir properties from known reservoir characteristics. Seismic inversion technology has been one of the core technologies for reservoir characteristics and reservoir prediction. Seismic attribute analysis is the premise of fine reservoir characteristics and fine 3D seismic interpretation, which help us uncover information about lithology and reservoir heterogeneity from seismic data. The work of seismic attribute analysis includes (1) extracting various seismic attributes from poststack seismic data; (2) conducting crossplot analysis of seismic attributes and reservoir properties (including geology, well logging, and petrophysical parameters) to establish relationships between seismic attributes and reservoir parameters; and (3) dynamically interpreting 3D seismic, geological, and logging data, which helps us to study the relationships between seismic reflection characteristics and sedimentary and tectonic information, predict the reservoir spatial distribution, and reveal how fracture systems influence the reservoir distribution. Development of the seismic inversion technique in reservoir characterization can be summarized in four stages: the first stage was in the 1960s. In this stage, the exploration targets were structural reservoirs, and seismic inversion techniques were not used. The second stage was in the 1970s. The exploration targets were structural and lithological reservoirs, and no well-constraint seismic inversion techniques were used. The third stage was in the 1980s, when many new techniques were developed. Seismic inversion techniques, including the prestack amplitude versus offset (AVO) technique and wave impedance inversion technique, developed rapidly and greatly improved our understanding of seismic reservoir characterization. The fourth stage is the stage of reservoir characterization and dynamic monitoring in the 1990s. Seismic inversion techniques are used for reservoir dynamic characterization, such as 3D AVO inversion, well-seismic joint inversion, reservoir characteristics curve reconstruction, multiparameter reservoir inversion, and the elastic wave impedance inversion techniques. Prestack seismic data contain richer information than do poststack data, so prestack seismic inversion and attribute analysis are increasingly important in oil and gas exploration.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

108

Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California  

SciTech Connect (OSTI)

The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

NONE

1996-05-01T23:59:59.000Z

109

Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical  

Open Energy Info (EERE)

Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Fluid Imaging Project Description EGS has been defined as enhanced reservoirs that have been created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. Critical to the success of EGS is the successful manipulation of fluids in the subsurface to enhance permeability. Knowledge in the change in volume and location of fluids in the rocks and fractures (both natural and induced) will be needed to manage injection strategies such as the number and location of step out wells, in-fill wells and the ratio of injection to production wells. The key difficulty in manipulating fluids has been our inability to reliably predict their locations, movements and concentrations. We believe combining data from MEQ and electrical surveys has the potential to overcome these problems and can meet many of the above needs, economically. Induced seismicity is currently viewed as one of the essential methods for inferring the success of creating fracture permeability and fluid paths during large scale EGS injections. Fluids are obviously playing a critical role in inducing the seismicity, however, other effects such as thermal, geochemical and stress redistribution, etc. may also play a role.

110

Quantum 3D superstrings  

Science Journals Connector (OSTI)

The classical Green-Schwarz superstring action, with N=1 or N=2 spacetime supersymmetry, exists for spacetime dimensions D=3, 4, 6, 10, but quantization in the light-cone gauge breaks Lorentz invariance unless either D=10, which leads to critical superstring theory, or D=3. We give details of results presented previously for the bosonic and N=1 closed 3D (super)strings and extend them to the N=2 3D superstring. In all cases, the spectrum is parity-invariant and contains anyons of irrational spin.

Luca Mezincescu and Paul K. Townsend

2011-11-08T23:59:59.000Z

111

Introduction to 3D Printing  

Science Journals Connector (OSTI)

Three-dimensional (3D) printing has evolved dramatically in the last few years. 3D printers have become plentiful and affordable enough ... can own one. Indeed, the cost of 3D printers (as little as $200 USD) ......

Charles Bell

2014-01-01T23:59:59.000Z

112

Induced seismicity within geologic carbon sequestration projects: Maximum earthquake magnitude and leakage potential from undetected faults  

E-Print Network [OSTI]

Wilson and Gerard, editors, Carbon Capture and Sequestration2010, Shell's Barendrecht Carbon-Capture Project Canceled,s-barendrecht-carbon-capture-project-canceled.html. Pruess,

Mazzoldi, A.P.

2014-01-01T23:59:59.000Z

113

3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

June 2010 3D Scanning for Biometric Identification and Verification Project Leads Anselmo Lastra visibility, cannot be controlled. A relatively new biometric, 3D facial recognition, holds great promise performance using 3D shape and texture matched that of the much more mature technologies of high

McShea, Daniel W.

114

3D Engineered Models for Stringless Paving Workshop  

E-Print Network [OSTI]

3D Engineered Models for Stringless Paving Workshop As the highway industry looks for greater productivity through electronic tools and methods, 3D modeling is fast becoming a standard for project delivery quality, cost, and time benefits from using 3D modeling. For construction, this includes more accurate

115

Homogeneous and Interfacial Catalysis in 3D Controlled Environment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Homogeneous and Interfacial Catalysis in 3D Controlled Environment FWPProject Description: Project Leader(s): Marek Pruski Principal Investigators: Andreja Bakac, Marek Pruski,...

116

Large Scale Computing Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirements Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Modeling and Imaging G. A. Newman Lawrence Berkeley National Laboratory February 9 - 10 , 2010 Talk Outline * SEAM Geophysical Modeling Project - Its Really Big! * Geophysical Imaging (Seismic & EM) - Its 10 to 100x Bigger! - Reverse Time Migration - Full Waveform Inversion - 3D Imaging & Large Scale Considerations - Offshore Brazil Imaging Example (EM Data Set) * Computational Bottlenecks * Computing Alternatives - GPU's & FPGA's - Issues Why ? So that the resource industry can tackle grand geophysical challenges (Subsalt imaging, land acquisition, 4-D, CO2, carbonates ......) SEAM Mission Advance the science and technology of applied

117

3D Reconstruction of Intricate Archean Microbial Structures Using Neutron Computed Tomography and Serial SectioningIN43B-0331 Abstract Project Goals  

E-Print Network [OSTI]

Tomography and Serial SectioningIN43B-0331 Abstract Project Goals Background Methods Neutron Computed using both serial sectioning and neutron computed tomography (NCT). Reconstruction techniques vary mechanisms for ancient microbial communities Neutron Computed Tomography Serial Sectioning Samples were

Hamann, Bernd

118

3d X 3d X SrTiO3Ti 2p 3d  

E-Print Network [OSTI]

XX 3d X 3d X X XX X XX SrTiO3Ti 2p 3d SrTiO3Ti 2p 3d 2p 2p SrTiO3 ts) 2p3/2 (t2g) 2p3/2 (e ) 2p1/2 (eg)2p SrTiO3 3d unit (t2g) (eg) (eg)2p1/2 (t2g)3d (Ti Fe Cu) arb. ( 2g) (Ti, Fe, Cu) y(ansitynten 3d In 3d 468464460456 · Photon Energy (e

Katsumoto, Shingo

119

The ATLAS 3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies  

E-Print Network [OSTI]

[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation con...

Bayet, Estelle; Davis, Timothy A; Young, Lisa M; Crocker, Alison F; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovi?, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

2012-01-01T23:59:59.000Z

120

Chapter 5 - Seismic Attribute Analysis  

Science Journals Connector (OSTI)

Abstract Seismic attributes are the geometry, kinematics, dynamics, and statistical characteristics of seismic waves, which are extracted or derived from prestack and poststack seismic data by mathematical transformation. For a long time, seismic data only have been used to track lineups of seismic waves in order to delineate the geometry and structural characteristics of oil and gas reservoirs. In fact, there is rich information about lithology, physical properties, and fluid composition hidden in seismic data. As we all know, the characteristics of the seismic signal are caused by petrophysical characteristics and its variability. Geoscientists need to do seismic attribute analyses and calibration in order to eliminate data distortion and dig out lithological and physical properties hidden in seismic data. Especially when people are eager to cognize the heterogeneity of lithological and stratigraphic reservoirs, the rich information about the spatial variability in seismic data seems more precious. In recent years, with the advancement of reservoir interpretation and the needs of three dimensional (3-D) seismic data analysis, scientists have found out more and more new attributes on the basis of conventional seismic attributes. At the same time, methods and means used for the calculation and analysis of seismic attributes are increasing. Seismic attribute analysis has been successfully applied in reservoir lithological prediction, hydrocarbon potential prediction, and reservoir property estimates.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Fall 2010 Topic 3 of Part II Stereo Vision Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images taken

Zhu, Zhigang

122

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Spring 2011 Topic 3 of Part II Stereo Vision p g Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images

Zhu, Zhigang

123

Time-lapse seismic monitoring of subsurface fluid flow  

E-Print Network [OSTI]

Time-lapse seismic monitoring repeats 3 D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

Yuh, Sung H.

2004-09-30T23:59:59.000Z

124

Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal...  

Open Energy Info (EERE)

In 1998 a 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada) to determine if modern seismic techniques could be...

125

Surround structured lighting: 3-D scanning with orthographic illumination  

Science Journals Connector (OSTI)

This paper presents a new system for rapidly acquiring complete 3-D surface models using a single orthographic structured light projector, a pair of planar mirrors, and one or more synchronized cameras. Using the mirrors, we project structured light ... Keywords: 3-D reconstruction, Full object scanning, Gray codes, Orthographic projection, Structured lighting

Douglas Lanman; Daniel Crispell; Gabriel Taubin

2009-11-01T23:59:59.000Z

126

Development Of Active Seismic Vector-Wavefield Imaging Technology...  

Open Energy Info (EERE)

Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two...

127

3-D Model for Deactivation & Decommissioning  

Broader source: Energy.gov (indexed) [DOE]

Project & Identifier Project & Identifier Tech Stage: Deployment In-Situ Decommissioning: SR09171 SRS Area Closure Projects: PBS SR-0040 3-D models of the R reactor building and P reactor vessel were delivered to SRS Area Closure Projects Page 1 of 2 Tech Fact Sheet Savannah River Site South Carolina 3-D Model for Deactivation & Decommissioning Challenge Planning for the safe and controlled deactivation and decommissioning (D&D) of highly contaminated nuclear facilities requires that engineers and managers fully understand the work space in which personnel and equipment will operate. It also requires that they effectively communicate safety concerns and work sequences to the personnel who will perform the work. This crucial knowledge is conveyed in

128

3D modeling with silhouettes  

E-Print Network [OSTI]

With the increasing power of computers and the spread of dedicated graphics hardware, 3D content has become ubiquitous in every field, from medicine to video games. However, designing 3D models remains a time-consuming and ...

Rivers, Alec (Alec Rothmyer)

2010-01-01T23:59:59.000Z

129

Slicing a 3D Model  

Science Journals Connector (OSTI)

This chapter and the next are the core of this book’s explanation of the 3D printing process. 3D printers cannot use a computer...slicing.

Joan Horvath

2014-01-01T23:59:59.000Z

130

The Desktop 3D Printer  

Science Journals Connector (OSTI)

In Chapter 1 we saw that 3D printing has a 30-year history spanning a ... technical, legal, and societal shifts in the 3D-printing market since the major patents in the...

Joan Horvath

2014-01-01T23:59:59.000Z

131

3 D interactive pictorial maps  

E-Print Network [OSTI]

of simplififcation and exaggeration.. . . . . . . . . . . . . . 21 8 3 D polygonal text in Maya. . . . . . . . . . . . . . . . . . . . . . . . 22 9 Final 3 D model of Italy with text. . . . . . . . . . . . . . . . . . . . 23 10 Top view of 3 D model of France... the files in a format that is suitable for web viewing. 15 CHAPTER IV METHODOLOGY There are three major steps to making an interactive pictorial map. The fifrst step is to build the 3 D model using a modeling software, Maya. The second step is to apply...

Naz, Asma

2005-02-17T23:59:59.000Z

132

3D Printed Bionic Ears  

Science Journals Connector (OSTI)

(bottom) a 3D printer used for the printing process. ... Figure 2A shows the 3D printed bionic ear immediately after printing. ... A student version of the Autodesk 3ds Max software package was used to modify and render the 3D images. ...

Manu S. Mannoor; Ziwen Jiang; Teena James; Yong Lin Kong; Karen A. Malatesta; Winston O. Soboyejo; Naveen Verma; David H. Gracias; Michael C. McAlpine

2013-05-01T23:59:59.000Z

133

3D Tissue Scaffolds BIOMATERIALS  

E-Print Network [OSTI]

3D Tissue Scaffolds BIOMATERIALS Our goal is to develop measurement tools and reference materials for assessing the impact of the physical and chemical properties of 3D tissue scaffolds on cellular response. These tools will be used to explore the relationship between cellular response on 2D surfaces to that in 3D

134

Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays  

SciTech Connect (OSTI)

Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

Jacobsen, Chris

2014-12-07T23:59:59.000Z

135

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates  

E-Print Network [OSTI]

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

Ali, Mohammed

136

3-D Microprobe Metrology  

SciTech Connect (OSTI)

This report documents the results of a project undertaken to develop an ultra-high-accuracy measurement capability, which is necessary to address a rising trend toward miniaturized mechanical products exhibiting dramatically reduced product tolerances. A significant improvement in measurement capability is therefore required to insure that a 4:1 ratio can be maintained between product tolerances and measurement uncertainty.

Swallow, Kevin

2008-10-14T23:59:59.000Z

137

Development of a Stochastic Inversion Tool To Optimize Agreement Between The Observed And Predicted Seismic Response To CO2 Injection/Migration in the Weyburn-Midale Project  

SciTech Connect (OSTI)

During Phase 1 of the Weyburn Project (2000-2004), 4D reflection seismic data were used to map CO{sub 2} migration within the Midale reservoir, while an extensive fluid sampling program documented the geochemical evolution triggered by CO{sub 2}-brine-oil-mineral interactions. The aim of this task (3b.11) is to exploit these existing seismic and geochemical data sets, augmented by CO{sub 2}/H{sub 2}O injection and HC/H{sub 2}O production data toward optimizing the reservoir model and thereby improving site characterization and dependent predictions of long-term CO{sub 2} storage in the Weyburn-Midale reservoir. Our initial project activities have concentrated on developing a stochastic inversion method that will identify reservoir models that optimize agreement between the observed and predicted seismic response. This report describes the technical approach we have followed, the data that supports it, and associated implementation activities. The report fulfills deliverable D1 in the project's statement of work. Future deliverables will describe the development of the stochastic inversion tool that uses geochemical data to optimize the reservoir model.

Ramirez, A L; Hao, Y; White, D; Carle, S; Dyer, K; Yang, X; Mcnab, W; Foxall, W; Johnson, J

2009-12-02T23:59:59.000Z

138

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

139

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

140

List of Geothermal ARRA Projects | Open Energy Information  

Open Energy Info (EERE)

ARRA Projects ARRA Projects Jump to: navigation, search List of Geothermal ARRA Funded Projects CSV State Project Type Topic 2 Awardees Funding Location of Project A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project Nevada Validation of Innovative Exploration Technologies Magma Energy 5,000,000 Soda Lake, Nevada A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Montana Topic Area 1: Technology Demonstration Projects Montana Tech of The University of Montana 1,072,744 Butte, Montana A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project New Mexico Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources New Mexico Institute of Mining and Technology 1,999,990 Socorro, New Mexico

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

3D World Building System  

SciTech Connect (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2013-10-30T23:59:59.000Z

142

3D World Building System  

ScienceCinema (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2014-02-26T23:59:59.000Z

143

Multicomponent 3-D characterization of a coalbed methane reservoir  

SciTech Connect (OSTI)

Methane is produced from fractured coalbed reservoirs at Cedar Hill Field in the San Juan Basin. Fracturing and local stress are critical to production because of the absence of matrix permeability in the coals. Knowledge of the direction of open fractures, the degree of fracturing, reservoir pressure, and compartmentalization is required to understand the flow of fluids through the reservoir. A multicomponent 3-D seismic survey was acquired to aid in coalbed methane reservoir characterization. Coalbed reservoir heterogeneities, including isolated pressure cells, zones of increased fracture density, and variable fracture directions, have been interpreted through the analysis of the multicomponent data and integration with petrophysical and reservoir engineering studies. Strike-slip faults, which compartmentalize the reservoir, have been identified by structural interpretation of the 3-D P-wave seismic data. These faults form boundaries for pressure cells that have been identified by P-wave reflection amplitude anomalies.

Shuck, E.L. [Advance Geophysical Corp., Englewood, CO (United States)] [Advance Geophysical Corp., Englewood, CO (United States); Davis, T.L.; Benson, R.D. [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.] [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.

1996-03-01T23:59:59.000Z

144

Property:Geothermal/LocationOfProject | Open Energy Information  

Open Energy Info (EERE)

LocationOfProject LocationOfProject Jump to: navigation, search Property Name Geothermal/LocationOfProject Property Type Page Description Location of Project Pages using the property "Geothermal/LocationOfProject" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Soda Lake, Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Butte, Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Socorro, New Mexico +

145

Effective elastic properties of randomly fractured soils: 3D numerical ...  

E-Print Network [OSTI]

The standard Gassmann equation cannot be applied to our 3D fractured media ... Finite-difference methods discretize the wave equation on a grid. They replace ...... 55/2-2) and the Wave Inversion Technology (WIT) Consor- tium project for ...

Pinnacle

2004-04-23T23:59:59.000Z

146

Definition: Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Profiling Profiling Jump to: navigation, search Dictionary.png Vertical Seismic Profiling Vertical Seismic Profile (VSP) is a technique of seismic measurements used for high resolution seismic imaging. It can also be used for correlation with surface seismic data providing velocity information and information for processing such as deconvolution parameters. The defining characteristic of a VSP is that the detectors are in a borehole.[1][2][3] View on Wikipedia Wikipedia Definition Also Known As Advanced Borehole Seismology (ABS), Related Terms Seismic Techniques, High Resolution Imaging and Monitoring References ↑ Bob Hardage VSP Principles ↑ High resolution 3D seismic imaging using 3C data from large downhole seismic arrays Paulsson et al. (2004) ↑ Mueller Soroka Paulsson (2010)

147

Property:Geothermal/ProjectDesc | Open Energy Information  

Open Energy Info (EERE)

ProjectDesc ProjectDesc Jump to: navigation, search Property Name Geothermal/ProjectDesc Property Type Text Description Project Description Pages using the property "Geothermal/ProjectDesc" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + The Soda Lake geothermal field is an ideal setting to test the applicability of the 3D-3C reflection seismic method because: it is a producing field with a great deal of geologic and drilling data already available; it is in an alluvial valley where the subsurface structures that carry the geothermal fluids have no surface manifestations; and, there are downhole geophysical logs of fractures and permeable zones that can be used to ground-truth the new data. If the 3D-3C method is successful it will bring a powerful tool into use in the industry to select targets with the permeability, heat, and fluid needed to exploit geothermal resources.

148

Real time 3D and heterogeneous data fusion  

SciTech Connect (OSTI)

This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

Little, C.Q.; Small, D.E.

1998-03-01T23:59:59.000Z

149

3-D Seismic Methods For Geothermal Reservoir Exploration And...  

Open Energy Info (EERE)

imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured...

150

3-D seismic tomography of the Adelaide fold belt  

Science Journals Connector (OSTI)

......the major factor. Temperature-induced P-wave...which smoothes the temperature contrast, resulting...structure of the eastern Snake River Plain and its...1996. Upper mantle temperatures from teleseismic tomography...implications for regolith development, 3rd Australian Regolith......

Peter Clifford; Stewart Greenhalgh; Greg Houseman; Frank Graeber

2008-01-01T23:59:59.000Z

151

Imaging atoms in 3-D  

ScienceCinema (OSTI)

Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

Ercius, Peter

2014-06-27T23:59:59.000Z

152

3D nonparametric neural identification  

Science Journals Connector (OSTI)

This paper presents the state identification study of 3D partial differential equations (PDEs) using the differential neural networks (DNNs) approximation. There are so many physical situations in applied mathematics and engineering that can be described ...

Rita Q. Fuentes; Isaac Chairez; Alexander Poznyak; Tatyana Poznyak

2012-01-01T23:59:59.000Z

153

Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit  

SciTech Connect (OSTI)

The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a relational model to predict porosity and permeability profiles from well logs at each well location, and a 3D geostatistical variogram to generate the reservoir characterization over the reservoir volume of interest. A reservoir simulation model was built based upon this characterization and history-matched without making significant changes to it, thus validating the procedure. While not the same procedure as originally planned, the procedure ultimately employed proved successful and demonstrated that the general concepts proposed (i.e., data mining and advanced pattern recognition methods) have the flexibility to achieve the reservoir characterization objectives sought even with imperfect or incomplete data.

Scott R. Reeves

2007-09-30T23:59:59.000Z

154

3D Imaging with Holographic Tomography  

Science Journals Connector (OSTI)

There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x?ray wavelength range where the filtered back?projection theorem and Radon transform can be used. These techniques rely on the Fourier projection?slice theorem where rays are considered to propagate straight through the object. Another type of tomography called ‘diffraction tomography’ applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography by scanning the illumination in one direction only takes on a form that we might call a ’peanut ’ compared to the case of object rotation where a diablo is formed the peanut exhibiting significant differences and non?isotropy. In particular there is a line singularity along one transverse direction. Under high numerical aperture conditions the paraxial treatment is not accurate and so we make use of 3D analytical geometry to calculate the behaviour in the non?paraxial case. This time we obtain a similar peanut but without the line singularity.

Colin J. R. Sheppard; Shan Shan Kou

2010-01-01T23:59:59.000Z

155

E-Print Network 3.0 - adaptively smoothed seismicity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zhan Wu, Omar J. Varela, Mrinal K. Sen, and Indrajit G. Roy. Summary: Joint Inversion of Reservoir Production Measurements and 3D Pre-Stack Seismic Data: Proof... -stack seismic...

156

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Half-Life 2

Kazhdan, Michael

157

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Crysis 3

Kazhdan, Michael

158

Crosswell seismic imaging in the Permian Basin, West Texas, USA  

SciTech Connect (OSTI)

Crosswell seismic imaging technology has advanced rapidly over the last three years as the processing methods have become more robust, the cost of data acquisition has fallen, and the interwell distances of operation have increased. The Permian Basin of west Texas, USA is proving to be an ideal environment in which to develop this technology because of the relatively low seismic attenuation of the carbonate-dominated lithology, the moderate well spacings in the large number of mature fields, and the unusually high number of reflecting horizons. Current technology permits us to operate in carbonates at well spacings on the order of 2000 ft (650 m) and to image P- and S-wave reflecting horizons on a scale of 8 to 25 ft (2.4 to 7.6 m). Crosswell technology is not limited to carbonates, although the majority of recent applications have been in this environment. We are involved in three separate crosswell experiments in the Permian Basin, each with unique objectives. The first experiment involves a CO{sub 2} pilot project in a Grayburg Formation reservoir on the eastern edge of the Central Basin Platform. Here we are attempting to characterize the reservoir at a scale unobtainable from 3-D surface seismic data and to image CO{sub 2} fronts directly. The second experiment deals with a waterflood in a Middle Clearfork Formation reservoir on the Eastern Shelf, where we are trying to explain the erratic response of adjacent wells to water injection. In the third project we are trying to image the structure and stratigraphy of subtle {open_quotes}anomalies{close_quotes} in 3-D surface seismic images of the Wolfcamp Formation.

Langan, R.T.; Harris, J.M.; Jensen, T.L. [and others

1995-12-31T23:59:59.000Z

159

3D reconstruction of tensors and vectors  

SciTech Connect (OSTI)

Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

Defrise, Michel; Gullberg, Grant T.

2005-02-17T23:59:59.000Z

160

Voxel octree intersection based 3D scanning.  

E-Print Network [OSTI]

??Recent developments in the field of three dimensional (3D) printing have resulted in widely available low-cost 3D printers. These printers require 3D models, which are… (more)

Bennett, Joel

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fluorescence Detector for Capillary Separations Fabricated by 3D Printing  

Science Journals Connector (OSTI)

Fluorescence Detector for Capillary Separations Fabricated by 3D Printing ... Additive manufacturing, also known as 3D printing, rapid prototyping, or solid-freeform technology, has become an efficient method for rapid prototyping and fabrication applications ranging from small home projects to architecture and industrial machining. ... Compared to the more expensive alternatives using the standard optic component, the 3D printing provides significant cost reduction and, especially, sharing of information between laboratories for easy replication or further modifications, customization of the spatial arrangement, and miniaturization. ...

Jan Prikryl; Frantisek Foret

2014-11-26T23:59:59.000Z

162

Characterization of 3D Photovoltaics  

E-Print Network [OSTI]

Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

163

Seismic stations  

Science Journals Connector (OSTI)

In the previous chapters, the equipment used for seismic stations has been described. When putting this equipment out in the field, we have a seismic station. Unfortunately it is not as simple as just putting ...

Jens Havskov; Gerardo Alguacil

2004-01-01T23:59:59.000Z

164

Induced Seismicity | Open Energy Information  

Open Energy Info (EERE)

Induced Seismicity Induced Seismicity Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Induced Seismicity 2 Geothermal ARRA Funded Projects for Induced Seismicity Geothermal Lab Call Projects for Induced Seismicity Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

165

Department of Mechanical Engineering Spring 2013 3D Printed Medical Device  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Spring 2013 3D Printed Medical Device Overview This project aimed to develop a 3D-printed everting structure for use in conjunction with current endosurgical/concept and that our main form of manufacturing revolved around 3D-printing, which allowed us to quickly make

Demirel, Melik C.

166

Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jrmie Dumas  

E-Print Network [OSTI]

Bridging the Gap: Automated Steady Scaffoldings for 3D Printing J�r�mie Dumas Universit� de Figure 1: The upper leg of the Poppy robot (www.poppy-project.org) cannot be 3D printed on low cost FDM usage. Abstract Fused Filament Fabrication (FFF) is the process of 3D printing ob- jects from melted

Lévy, Bruno

167

3D CONTENT-BASED RETRIEVAL IN ARTWORK DATABASES David Gorisse(1)  

E-Print Network [OSTI]

3D CONTENT-BASED RETRIEVAL IN ARTWORK DATABASES David Gorisse(1) , Matthieu Cord(2) , Michel Jordan, France ABSTRACT In this paper, we present first results obtained in the frame of the EROS-3D project, which aims at dealing with a collection of artwork 3D models, i.e. visualize them, classify them

Paris-Sud XI, Université de

168

For additional information, please e-mail ctsc_noveltech@med.cornell.edu REQUEST FOR CTSC 3D PRINTING APPLICATIONS  

E-Print Network [OSTI]

for commercialization 3D Printing Novel Technology Award $10,000 (direct costs) with use of the New CTSC 3D Printing with 3D printing technology in order to rapidly develop novel biomedical products with application) and importance of funding to feasibility of the project Research Plan (use of the CTSC 3D Printing Core Facility

Chen, Tsuhan

169

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT ESTABLISHMENT OF METHODOLOGY FOR TIME DOMAIN SOIL STRUCTURE INTERACTION ANALYSIS OF HANFORD DST  

SciTech Connect (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank DSV Integrity Project-DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DST assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil, and the effects of the primary tank contents. The DST and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste. Soil-structure interaction analyses are traditionally solved in the frequency domain, but frequency domain analysis is limited to systems with linear responses. The nonlinear character of the coupled SSI model and tank structural model requires that the seismic analysis be solved in the time domain. However, time domain SSI analysis is somewhat nontraditional and requires that the appropriate methodology be developed and demonstrated. Moreover, the analysis of seismically induced fluid-structure interaction between the explicitly modeled waste and the primary tank must be benchmarked against known solutions to simpler problems before being applied to the more complex analysis of the DSTs. The objective of this investigation is to establish the methodology necessary to perform the required SSI analysis of the DSTs in the time domain. Specifically, the analysis establishes the capabilities and limitations of the time domain codes ANSYS and Dytran for performing seismic SSI analysis of the DSTs. The benchmarking of the codes Dytran and ANSYS for performing seismically induced fluid-structure interaction (FSI) between the contained waste and the DST primary tank are documented in Abatt (2006) and Carpenter and Abatt (2006), respectively. The results of those two studies show that both codes have the capability to analyze the fluid-structure interaction behavior of the primary tank and contained waste. As expected, Dytran appears to have more robust capabilities for FSI analysis. The ANSYS model used in that study captures much of the FSI behavior, but does have some limitations for predicting the convective response of the waste and possibly the response of the waste in the knuckle region of the primary tank. While Dytran appears to have somewhat stronger capabilities for the analysis of the FSI behavior in the primary tank, it is more practical for the overall analysis to use ANSYS. Thus, Dytran served the purpose of helping to identify limitations in the ANSYS FSI analysis so that those limitations can be addressed in the structural evaluation of the primary tank. The limitations of ANSYS for predicting the details of the convective

MACKEY, T.C.

2006-03-14T23:59:59.000Z

170

3D Printed Shelby Cobra  

Broader source: Energy.gov [DOE]

ORNL's newly printed 3D car will be showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

171

3D Imaging Technology Conference & Applications Workshop  

E-Print Network [OSTI]

2nd London 3D Imaging Technology Conference & Applications Workshop 3D scanning and vertical, Greece, bilalis@dpem.tuc.gr Abstract. The new 3D scanning technology had changed the way and opened new from some 3D scanning approaches, which were applied for the first time in the southern part of Europe

Aristomenis, Antoniadis

172

3D N = 4 Gauge Theory Compactication  

E-Print Network [OSTI]

Outline 3D N = 4 Gauge Theory Compactication Twistors 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler Metrics Richard Eager UCSB Friday, October 17th, 2008, 4:00 p.m. Richard Eager UCSB 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler M #12;Outline 3D N = 4 Gauge Theory Compactication Twistors

Bigelow, Stephen

173

Alum Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Alum Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow (6 ft) temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature and seismic data to create an integrated model that will be used to prioritize drill target locations. Four geothermal wells will be drilled and geologically characterized in Phase 2. The project will use a coiled-tube rig to test this drilling technology at a geothermal field for the first time. Two slimwells and two production wells will be drilled with core collected and characterized in the target sections of each well. In Phase 3, extended flow tests will be conducted on the producible wells to confirm the geothermal resource followed by an overall assessment of the productivity of the Alum geothermal area. Finally, Phase 3 will evaluate the relative contribution of each exploration technique in reducing risk during the early stages of the geothermal project.

174

4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir  

SciTech Connect (OSTI)

The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

2007-06-30T23:59:59.000Z

175

Abstract 2018: A pipeline within the OncoTrack project for generating Patient-tumor-derived 3D cell cultures (PT3DC) and their application for individualized, targeted drug sensitivity assays  

Science Journals Connector (OSTI)

...2014; San Diego, CA Abstract 2018: A pipeline within the OncoTrack project for generating...demand. Here, we present an experimental pipeline within the OncoTrack project starting...Schaefer, Christian Regenbrecht. A pipeline within the OncoTrack project for generating...

Dirk Schumacher; Karsten Boehnke; Martin Lange; Yvonne Welte; Cathrin Davies; Maria Rivera; Marlen Keil; Ulrich Keilholz; Johannes Haybaeck; Juan Angel Velasco; Marie-Laure Yaspo; Hans Lehrach; David Henderson; Christoph Reinhard; Jens Hoffmann; Reinhold Schaefer; Christian Regenbrecht

2014-10-01T23:59:59.000Z

176

Fast 3D keypoints detector and descriptor for view-based 3D objects recognition  

E-Print Network [OSTI]

Fast 3D keypoints detector and descriptor for view-based 3D objects recognition Ayet Shaiek1 Abstract. In this paper, we propose a new 3D object recognition method that employs a set of 3D keypoints extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range

Paris-Sud XI, Université de

177

3-D physical modeling of a complex salt canopy  

SciTech Connect (OSTI)

Recent drilling has confirmed both significant reservoir potential and the presence of commercial hydrocarbons below salt structures in the Gulf of Mexico. Obtaining definitive seismic images with standard processing schemes beneath these salt structures is very difficult if not impossible. Because of the complicated seismic behavior of these structures, full volume 3-D prestack depth migration is required. Unfortunately, carrying out the multitude of calculations needed to create a proper image requires the largest and fastest supercomputers and rather complex numerical algorithms. Furthermore, developing and testing the imaging algorithms is quite involved and requires appropriate test data sets. To better understand the problems and issues of subsalt imaging, Marathon Oil Company and Louisiana Land and Exploration Company contracted with the University of Houston`s Allied Geophysical Laboratories (AGL) to construct a salt canopy physical model. The model is patterned after the SEG/EAEG Salt Model and is made from synthetic materials. It is a full three-dimensional model with an irregularly shaped, lateral salt structure embedded in five distinct sedimentary layers. The model was used to acquire a multi-offset 3-D marine-style survey. These data are being used to address problems of subsalt imaging. In addition to standard processing techniques, the authors investigate algorithms for multiple removal and prestack depth migration.

Wiley, R.W. [Marathon Oil Co., Littleton, CO (United States); Sekharan, K.K. [Univ. of Houston, TX (United States). Allied Geophysical Labs.

1996-12-31T23:59:59.000Z

178

3D object recognition, localization and treatment of rumex  

E-Print Network [OSTI]

Aim of the project · Build reliable and robust real time plant detection system.y · For a plant:· Short problem description: ­ Weed recognition these days. ­ Vehicle, measurement principle, etc detection only 3D point cloud data will be used. ­ Color images are to be analyzed too, after segmentation

179

Propagation Beam Consideration for 3D THz Computed Tomography  

E-Print Network [OSTI]

Propagation Beam Consideration for 3D THz Computed Tomography B. Recur, 1, J.P. Guillet, 2 I. Manek, "Refraction losses in terahertz computed tomography," Opt. Commun. 283, 2050­2055 (2010). 8. S. Nadar, H, "Accelerated image reconstruction using ordered subsets of projection data," IEEE Trans. Med. Imaging 13, 601

Boyer, Edmond

180

A Brief History of 3D Printing  

Science Journals Connector (OSTI)

Enormous hype surrounds 3D printing, with predictions that it will spur a ... manufacturing facility. There are many areas where 3D printing really is creating significant change, particularly in...

Joan Horvath

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Part removal of 3D printed parts  

E-Print Network [OSTI]

An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

Peña Doll, Mateo

2014-01-01T23:59:59.000Z

182

Development Of Active Seismic Vector-Wavefield Imaging Technology For  

Open Energy Info (EERE)

Of Active Seismic Vector-Wavefield Imaging Technology For Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Details Activities (2) Areas (2) Regions (0) Abstract: This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and reservoir characterization. Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two seismic sources were developed and tested in this study that can be used to illuminate geothermal reservoirs with S-waves.

183

ArrangePak-3D User's Manual  

E-Print Network [OSTI]

ArrangePak-3D User's Manual File Planes Options Help Quit Planes: 5 ­120.2732,+28.2707 poweredbyLEDA ArrangePak­3D #12; #12; ArrangePak-3D User's Manual Manipulating Arrangements of Planes in Three- chantability or #12;tness for a particular purpose. version 1.0x License: The ArrangePak-3D source code

Wismath, Stephen

184

Digital Pygmalion Accurate 3D reconstruction  

E-Print Network [OSTI]

;Overview · Accurate 3D reconstruction from uncalibrated cameras (motion and lighting) · Multi-view stereo - 3D shape from uncalibrated images (review) · Multi-view photometric stereo with uncalibrated lights reconstruction of streets #12;Trumpington Street Data #12;3D reconstruction #12;Reconstruction texture mapped #12

Cipolla, Roberto

185

3D Printing Prof. Hank Dietz  

E-Print Network [OSTI]

3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer #12;3D With Glue Layers of paper: printed with glue & cut Layers of powder: printed with glue Can also be printed in full color #12;3D Extrusion (RepRaps) FDM: Fused Deposition Modeling FFF: Fused

Dietz, Henry G. "Hank"

186

3D Sparse Representations Lanusse F. a  

E-Print Network [OSTI]

3D Sparse Representations Lanusse F. a Starck J.-L. a Woiselle A. c Fadili M.J. b a Laboratoire AIM Securite, 95101 Argenteuil CEDEX, France. Abstract In this chapter we review a variety of 3D sparse representations developed in recent years and adapted to different kinds of 3D signals. In particular, we describe

Starck, Jean-Luc

187

3D Imaging Of Wet Granular Matter  

E-Print Network [OSTI]

3D Imaging Of Wet Granular Matter Leonard Goff Advisor: Dr. Wolfgang Losert With Application to Penetrometer Insertion #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert CoffeeSand Gravel Oops! #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert

Anlage, Steven

188

3D Postprozessor Diplomarbeit von Samuel Gerber  

E-Print Network [OSTI]

3D Postprozessor Diplomarbeit von Samuel Gerber Fachhochschule Aargau FHA University of Applied¨angsschnitt . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.4 Querschnit . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.5 3D-Bilder . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 3D Ansicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Bericht

Gerber, Samuel

189

Supersymmetric Gauge Theories in 3d  

E-Print Network [OSTI]

Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS #12;The Search for Fundamental Physics Dine. 8 #12;Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Based on work with Aharony, Intriligator, Razamat, and Willett, to appear #12;3d SUSY Gauge Theories · New lessons about dynamics

California at Santa Cruz, University of

190

2D 3D * iklee)@yonsei.ac.kr  

E-Print Network [OSTI]

1 2012 2D 3D * 0 , 1 , 2 0,2 1 ( 0 skrcjstk, 2 iklee)@yonsei.ac.kr 1 rinthel Science, Yonsei University. 1 Dept. of Information Media, The University of Suwon. 2D 3D . 2D - , 3D (Disparity) 3D . . 1. 3D 3D . 3D 3D [1

Lee, In-Kwon

191

The EduSeis Project in Italy: An Educational Tool for Training and Increasing Awareness of Seismic Risk  

Science Journals Connector (OSTI)

...data-acquisition purposes using intranet and/or Internet networks...the active use of modern technologies, learn about the dynamics...data and tools of advanced technology. The educational activity...projects based on innovative technologies and the active participation...

L. Cantore; A. Bobbio; F. Di Martino; A. Petrilio; M. Simini; A. Zollo

192

3D Imaging Symposium, Friday 11:00 3D APPROACHES IN PALEOANTHROPOLOGY USING GEOMETRIC MOR-  

E-Print Network [OSTI]

3D Imaging Symposium, Friday 11:00 3D APPROACHES IN PALEOANTHROPOLOGY USING GEOMETRIC MOR, Eugene, OR; ROSENBERGER, Alfred, Brooklyn College/CUNY, Brooklyn, NY The emergence of 3D GM (geometric- ble to easily collect data in a true 3D sense, such as sets of homologous landmarks or com- plete

Delson, Eric

193

Virtual Frog Dissection: Interactive 3D Graphics Via the Web  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dissection: Interactive 3D Graphics Via the Web Dissection: Interactive 3D Graphics Via the Web David Robertson, William Johnston, and Wing Nip Imaging and Distributed Computing Group Lawrence Berkeley National Laboratory Published in Proceedings, The Second International WWW Conference '94: Mosaic and the Web, Chicago, IL (1994). Hyperlinks have been updated periodically to replace stale links. ABSTRACT We have developed a set of techniques for providing interactive 3D graphics via the World Wide Web (WWW) as part of the ``Whole Frog'' project [ 1 ]. We had three goals: (1) to provide K-12 biology students with the ability to explore the anatomy of a frog with a virtual dissection tool; (2) to show the feasibility of interactive visualization over the Web; and (3) to show the possibility for the Web and its associated browsers to be an

194

Seismic interpretation and regional geologic correlation established for offshore Togo, West Africa: a preliminary evaluation of hydrocarbon potential in deep water  

E-Print Network [OSTI]

3-D seismic data acquired by Petroleum Geo-Services Inc. (PGS), Houston, Texas. The study area ranges from approximately 180 m - 2500 m water depth. Research included regional geologic correlation, seismic interpretation, and structural modeling...

Gray, Max Daniel

2012-06-07T23:59:59.000Z

195

3D Magnetotelluric characterization of the COSO GeothermalField  

SciTech Connect (OSTI)

Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

196

3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy  

Open Energy Info (EERE)

3-D Density Model Of Mt Etna Volcano (Southern Italy) 3-D Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern Italy) Details Activities (0) Areas (0) Regions (0) Abstract: A detailed density model of Mt. Etna and its surrounding areas has been evaluated using a 3-D inversion of the gravimetric data acquired in the 1980's. Several high-density and low-density bodies are found, penetrating from shallow depths as far down as 12 km bsl. A positive correlation (in terms of location, extent, density, and velocity) is established between several anomalies of the density model and features identified in previously published seismic tomographies. A prominent high-density body extending down to 7 km bsl is recognized in the southern

197

3D Multiprocessor with 3D NoC Architecture Based on Tezzaron Technology  

E-Print Network [OSTI]

1 3D Multiprocessor with 3D NoC Architecture Based on Tezzaron Technology M.H Jabbar1,2 , D. Houzet the architecture and implementation of 3D multiprocessor with 3D NoC. The 2 tiers design is based on 16 processors simulation, the purpose of this work is to accurately measure NoC performances in real 3D chip when running

Paris-Sud XI, Université de

198

Advanced 3D Sensing and Visualization System for Unattended Monitoring  

SciTech Connect (OSTI)

The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

Carlson, J.J.; Little, C.Q.; Nelson, C.L.

1999-01-01T23:59:59.000Z

199

Mapping the underworld don't dig there! The first 3D maps of the UK underworld are to be created in a new 2.2m project which  

E-Print Network [OSTI]

work even in `urban canyons' to record in-street #12;observations. Another challenge is linking sectors and managed by UKWIR (UK Water Industry Research Ltd). Ends Notes to Editors The project is called the Technology Programme by the Department of Trade and Industry (www.dti.gov.uk/technologyprogramme). The total

Leeds, University of

200

3D Site Response using NLSSI  

Broader source: Energy.gov [DOE]

3D Site Response using NLSSI Justin Coleman, P.E. Bob Spears Nuclear Science and Technology Idaho National Laboratory October 22, 2014

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Caucasus Seismic Information Network: Data and Analysis Final Report  

SciTech Connect (OSTI)

The geology and tectonics of the Caucasus region (Armenia, Azerbaijan, and Georgia) are highly variable. Consequently, generating a structural model and characterizing seismic wave propagation in the region require data from local seismic networks. As of eight years ago, there was only one broadband digital station operating in the region – an IRIS station at Garni, Armenia – and few analog stations. The Caucasus Seismic Information Network (CauSIN) project is part of a nulti-national effort to build a knowledge base of seismicity and tectonics in the region. During this project, three major tasks were completed: 1) collection of seismic data, both in event catalogus and phase arrival time picks; 2) development of a 3-D P-wave velocity model of the region obtained through crustal tomography; 3) advances in geological and tectonic models of the region. The first two tasks are interrelated. A large suite of historical and recent seismic data were collected for the Caucasus. These data were mainly analog prior to 2000, and more recently, in Georgia and Azerbaijan, the data are digital. Based on the most reliable data from regional networks, a crustal model was developed using 3-D tomographic inversion. The results of the inversion are presented, and the supporting seismic data are reported. The third task was carried out on several fronts. Geologically, the goal of obtaining an integrated geological map of the Caucasus on a scale of 1:500,000 was initiated. The map for Georgia has been completed. This map serves as a guide for the final incorporation of the data from Armenia and Azerbaijan. Description of the geological units across borders has been worked out and formation boundaries across borders have been agreed upon. Currently, Armenia and Azerbaijan are working with scientists in Georgia to complete this task. The successful integration of the geologic data also required addressing and mapping active faults throughout the greater Caucasus. Each of the major faults in the region were identified and the probability of motion were assessed. Using field data and seismicity, the relative activity on each of these faults was determined. Furthermore, the sense of motion along the faults was refined using GPS, fault plane solutions, and detailed field studies. During the course of the integration of the active fault data, the existence of the proposed strike slip Borjomi-Kazbeki fault was brought into question. Although it had been incorporated in many active tectonic models over the past decade, field geologists and geophysicists in Georgia questioned its existence. Detailed field studies were carried out to determine the existence of the fault and estimate the slip along it; and it was found that the fault zone did not exist. Therefore, the convergence rate in the greater Caucasus must be reinterpreted in terms of thrust mechanisms, instead of strike-slip on the Borjomi-Kazbeki fault zone.

Randolph Martin; Mary Krasovec; Spring Romer; Timothy O'Connor; Emanuel G. Bombolakis; Youshun Sun; Nafi Toksoz

2007-02-22T23:59:59.000Z

202

Seismic Monitoring - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic Monitoring Seismic Monitoring Email Email Page | Print Print Page...

203

Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration  

SciTech Connect (OSTI)

The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

John Rogers

2011-12-31T23:59:59.000Z

204

3, 35433588, 2003 3-D air pollution  

E-Print Network [OSTI]

ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

Boyer, Edmond

205

MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of selecting alternative enhanced recovery processes, and their possible implementation. The work is being carried out on the Roadrunner/Towaoc Fields of the Ute Mountain Ute Tribe, located in the southwestern corner of Colorado. Although this project is focused on development of existing resources, the calibration established between the reservoir properties and the 3D9C seismic data can also enhance exploration success. During the time period covered by this report, the majority of the project effort has gone into the permitting, planning and design of the 3D seismic survey, and to select a well for the VSP acquisition. The business decision in October, 2002 by WesternGeco, the projects' seismic acquisition contractor, to leave North America, has delayed the acquisition until late summer, 2003. The project has contracted Solid State, a division of Grant Geophysical, to carry out the acquisition. Moreover, the survey has been upgraded to a 3D9C from the originally planned 3D3C survey, which should provide even greater resolution of mounds and internal mound structure.

Paul La Pointe; Claudia Rebne; Steve Dobbs

2003-07-10T23:59:59.000Z

206

BEAMS3D Neutral Beam Injection Model  

SciTech Connect (OSTI)

With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

Lazerson, Samuel

2014-04-14T23:59:59.000Z

207

3D Optical Printing of Piezoelectric Nanoparticle–Polymer Composite Materials  

Science Journals Connector (OSTI)

ACS ActiveView PDFHi-Res Print, Annotate, Reference QuickView ... Here we demonstrate that efficient piezoelectric nanoparticle–polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. ...

Kanguk Kim; Wei Zhu; Xin Qu; Chase Aaronson; William R. McCall; Shaochen Chen; Donald J. Sirbuly

2014-07-21T23:59:59.000Z

208

3D view with pst-vue3d Manuel Luque (mluque5130@aol.com)  

E-Print Network [OSTI]

3D view with pst-vue3d Manuel Luque (mluque5130@aol.com) in cooperation with Herbert Vo� (voss@perce.de) 13th August 2004 1 Presentation The 3D representation of an object or a landscape is one of the most (cube, sphere etc. . . ) and many other things. I want to signal that · Regarding 3D representation, one

Mintmire, John W.

209

3D2D3D photonic crystal heterostructures fabricated by direct laser writing  

E-Print Network [OSTI]

3D­2D­3D photonic crystal heterostructures fabricated by direct laser writing M. Deubel and M fabricate photoresist templates for 3D­2D­3D photonic crystal heterostruc- tures for what we believe for the microfabrication and testing of broadband, 3D air­waveguide microcir- cuitry in photonic bandgap materials. © 2006

John, Sajeev

210

GPU IMPLEMENTATION OF A 3D BAYESIAN CT ALGORITHM AND ITS APPLICATION ON REAL FOAM RECONSTRUCTION  

E-Print Network [OSTI]

Tomography (CT) [1, 3]. The limits of these meth- ods appear when the number of projections is small, and as well as any iterative algebraic meth- ods is the computation time and especially for projection solve is to reconstruct the object f from the projection data g collected by a cone beam 3D CT. The link

Paris-Sud XI, Université de

211

Seismicity Maps  

Science Journals Connector (OSTI)

...density, highly porous airborne vol- canic ejecta near...explosions for such stress-release experiments cannot be...a)+e2 /7 f is the fraction of stress drop and a...Steinbrugge Pacific Fire Rating Bureau San Francisco...fault belt without the release of seismic energy. Hence...

212

3D packaging for integrated circuit systems  

SciTech Connect (OSTI)

A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

Chu, D.; Palmer, D.W. [eds.

1996-11-01T23:59:59.000Z

213

Investigations in massive 3D gravity  

SciTech Connect (OSTI)

Some interesting gravitational properties of the Bergshoeff-Hohm-Townsend model (massive 3D gravity), such as the presence of a short-range gravitational force in the nonrelativistic limit and the existence of an impact-parameter-dependent gravitational deflection angle, are studied. Interestingly enough, these phenomena have no counterpart in the usual Einstein 3D gravity. In order to better understand the two aforementioned gravitational properties, they are also analyzed in the framework of 3D higher-derivative gravity with the Einstein-Hilbert term with the 'wrong sign'.

Accioly, Antonio [Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil); Instituto de Fisica Teorica (IFT), Sao Paulo State University (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco II-Barra Funda, 01140-070, Sao Paulo, SP (Brazil); Helayeel-Neto, Jose; Morais, Jefferson; Turcati, Rodrigo [Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil); Scatena, Eslley [Instituto de Fisica Teorica (IFT), Sao Paulo State University (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco II-Barra Funda, 01140-070, Sao Paulo, SP (Brazil)

2011-05-15T23:59:59.000Z

214

3D MHD Modeling of the Galaxy  

Science Journals Connector (OSTI)

We show the results of our 3D MHD simulations of the flow of the Galactic ... synthetic l - v and v - b diagrams for an imaginary observer inside our modeled...

G. C. Gómez; D. P. Cox

2005-01-01T23:59:59.000Z

215

Printed 3D Multi-View Images  

Science Journals Connector (OSTI)

The technique to produce full-parallax 3D multi-view still pictures is described. The matrix of source views (from 6x6 to 15x15 views) is built from computer-generated images or...

Kim, Sung-Sik; Son, Kwang-Hun; Saveljev, V V; Son, Jung-Young

2001-01-01T23:59:59.000Z

216

Internet video streaming using 3-D SPIHT  

E-Print Network [OSTI]

several years. Video streaming involves video compression, protocols selection for streaming media, client/receiver buffer management and packet loss recovery. This thesis documents a new Internet video streaming system based on the state-of-the-art 3-D...

Jiang, Jianhong

2012-06-07T23:59:59.000Z

217

3D face recognition with wireless transportation  

E-Print Network [OSTI]

In this dissertation, we focus on two related parts of a 3D face recognition system with wireless transportation. In the ?rst part, the core components of the system, namely, the feature extraction and classi?cation component, are introduced...

Zou, Le

2009-05-15T23:59:59.000Z

218

Three dimensional (3D) optical information processing  

E-Print Network [OSTI]

Light exhibits dramatically different properties when it propagates in or interacts with 3D structured media. Comparing to 2D optical elements where the light interacts with a sequence of surfaces separated by free space, ...

Tian, Kehan

2006-01-01T23:59:59.000Z

219

3D Spectroscopy and the Virtual Observatory  

E-Print Network [OSTI]

Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

Bryan W. Miller

2007-08-15T23:59:59.000Z

220

3D TORUS V1.0  

Energy Science and Technology Software Center (OSTI)

002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological  

Open Energy Info (EERE)

D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Details Activities (0) Areas (0) Regions (0) Abstract: Many Geological Survey Organisations (GSOs) are using 3D modelling software technology for a vast variety of applications. Initially many 3D tools were designed for the exploitation of digital seismic mass data existing in hydrocarbon exploration industry. Accordingly, GSOs have to adapt available software and to modify it to their special requirements, defining their own best practice. The Geological Survey of the Bavarian Environment Agency has developed procedures and workflows for a variety of

222

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea  

Open Energy Info (EERE)

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Abstract The local fault and dike structures in Puna, southeastern Hawaii, are of interest both in terms of electricity productionand volcanic hazard monitoring. The geothermal powerplant at Puna has a 30 MW capacity and is built on a sectionof the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955 and 1960.The Puna Borehole Network was established in 2006 inorder to provide detailed seismic data about the Puna geothermal field. The array consists of eight 3-component borehole

223

Analyses of azimuthal seismic anisotrophy in the vertically fractured Spraberry and Dean formations, Midland County, Texas  

E-Print Network [OSTI]

The configuration of a CDP gather from 3-D seismic reflection has source-receiver pairs located at different azimuths. This can be exploited to observe azimuthal variations of P- wave velocity related to azimuthal anisotropy in fractured media...

Sudarmo, Bernadus Supraptomo

2012-06-07T23:59:59.000Z

224

Rock Physics-Based Carbonate Reservoir Pore Type Evaluation by Combining Geological, Petrophysical and Seismic Data  

E-Print Network [OSTI]

model, similar to modern marine hydrological environments within carbonate islands. How to evaluate carbonate reservoir permeability heterogeneity from 3 D seismic data has been a dream for reservoir geoscientists, which is a key factor to optimize...

Dou, Qifeng

2012-07-16T23:59:59.000Z

225

Seismic attribute analyses of lower Permian (Wolfcampian-Leonardian) carbonate buildups, SW Midland, Texas  

E-Print Network [OSTI]

set of attributes that directly indicate the buildup locations. After extensive trial of various attributes, the variance attribute was selected as the optimum seismic attribute. The resultant 3 D variance volume was used to detect the buildup locations...

Decalf, Carole Christiane

2012-06-07T23:59:59.000Z

226

project.m  

E-Print Network [OSTI]

function project(u,w) %last updated 5/9/94 %PROJECT Projecting vector U onto vector W orthogonally. Vectors % U and W can be either a pair of 2D or 3D ...

227

Advanced Seismic While Drilling System  

SciTech Connect (OSTI)

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

228

State of Seismic Methods For Geothermal Reservoir Exploration and Assessment  

Office of Scientific and Technical Information (OSTI)

3-D Seismic Methods For Geothermal Reservoir Exploration 3-D Seismic Methods For Geothermal Reservoir Exploration and Assessment - Summary E.L Majer Lawrence Berkeley National Laboratory Introduction A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the

229

Seismic Array Software System  

E-Print Network [OSTI]

Seismic Array Software System Sam Irvine, Martin Lukac,of a Portable Broadband Seismic Array Long - • Part of theStudy the propagation of seismic waves in Mexico City • Line

2005-01-01T23:59:59.000Z

230

Submarine Seismic Investigations  

Science Journals Connector (OSTI)

...March 1941 research-article Submarine Seismic Investigations E. C. Bullard T. F. Gaskell The refraction seismic method has been used to investigate the...techniques, and results of a refraction seismic survey of the rock surface underlying...

1941-01-01T23:59:59.000Z

231

Austin chalk fracture mapping using frequency data derived from seismic data  

E-Print Network [OSTI]

and below the fractured layer. The Austin Chalk in South Central Texas is a fractured layer, and it produces hydrocarbons from fracture zones with the layer (Sweet Spots). 2D and 3 D P-wave seismic data are used from Burleson and Austin Counties... showing how azimuths were taken for the two additional data sets derived from the initial 3 D data..............??????????..........18 Figure 9. Burleson County 2D data represented as line locations...........????..?.20 Figure 10. Seismic section...

Najmuddin, Ilyas Juzer

2004-09-30T23:59:59.000Z

232

Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

2011-04-01T23:59:59.000Z

233

3D Self-Portraits Etienne Vouga2  

E-Print Network [OSTI]

scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

O'Brien, James F.

234

3D Engineered Models for Construction Support & Available Tools  

E-Print Network [OSTI]

3D Engineered Models for Construction Support & Available Tools #12;3D Engineered Models for Construction · New web page www.fhwa.dot.gov/3d (search "fhwa 3D") ­ Specs, Standards, Details, Tech Briefs ­ Provides initial response within 24 hours of inquiry National Website and TSSC 2 #12;3D Engineered Models

235

3D Keypoints Detection for Objects Recognition Ayet Shaiek1  

E-Print Network [OSTI]

3D Keypoints Detection for Objects Recognition Ayet Shaiek1 , and Fabien Moutarde1 1 Robotics a new 3D object recognition method that employs a set of 3D local features extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range data produced by 3D sensor

Paris-Sud XI, Université de

236

Spiso-3D operation manual (US Patent 8,077,945 B2) Section 1. Introduction : Spiso-3D is an automated software calculating optical 3D  

E-Print Network [OSTI]

1 Spiso-3D operation manual (US Patent 8,077,945 B2) Section 1. Introduction : Spiso-3D is an automated software calculating optical 3D images of neurons mathematically to analyze dendrites and spines (= post synapses). Spiso-3D software was developed by Kawato's laboratory (University of Tokyo

Kawato, Suguru

237

Superplastic forming using NIKE3D  

SciTech Connect (OSTI)

The superplastic forming process requires careful control of strain rates in order to avoid strain localizations. A load scheduler was developed and implemented into the nonlinear finite element code NIKE3D to provide strain rate control during forming simulation and process schedule output. Often the sheets being formed in SPF are very thin such that less expensive membrane elements can be used as opposed to shell elements. A large strain membrane element was implemented into NIKE3D to assist in SPF process modeling.

Puso, M.

1996-12-04T23:59:59.000Z

238

3D printing of multifunctional nanocomposites  

Science Journals Connector (OSTI)

Summary Additive manufacturing (aka, 3D printing) holds strong potential for the formation of a new class of multifunctional nanocomposites. With the ability to print complex 3D objects layer by layer, additive manufacturing with nanomaterials could be leveraged in new ways toward greater control over material properties across part dimensions. Multifunctionality through embedding of nanomaterials can further extend capabilities of nanocomposites to properties such as gradients in thermal and electrical conductivity, photonic emissions tunable for wavelength, and increased strength and reduced weight. Here we discuss the promises offered by nanomaterials-based additive manufacturing as a new paradigm for nanocomposite functionality.

Thomas A. Campbell; Olga S. Ivanova

2013-01-01T23:59:59.000Z

239

3D Modeling Engine Representation Summary Report  

SciTech Connect (OSTI)

Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

2014-09-01T23:59:59.000Z

240

3D-3D registration of free formed objects using shape and texture Fernando C. M. Martins  

E-Print Network [OSTI]

3D-3D registration of free formed objects using shape and texture Fernando C. M. Martins , Hirohisa and orientation of the object in 3D space with respect to an arbitrary fixed reference, given the current measurement and the 3D object model under construction. Measurement integration is the updating of the 3D

Moura, José

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A 3D Printed Fluidic Device that Enables Integrated Features  

Science Journals Connector (OSTI)

Fluorescence Detector for Capillary Separations Fabricated by 3D Printing ... Fluorescence Detector for Capillary Separations Fabricated by 3D Printing ... Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences ...

Kari B. Anderson; Sarah Y. Lockwood; R. Scott Martin; Dana M. Spence

2013-05-21T23:59:59.000Z

242

A 3D Computer Simulation Test of the Leibowitz Hypothesis  

E-Print Network [OSTI]

Barton & Cohn A 3D Computer Simulation Test of the Leibowitzan experiment using a 3D visual simulator in which differentthan smaller ones. The use of 3D visual simulators to assess

Barton, Joseph E.; Cohn, Theodore E

2007-01-01T23:59:59.000Z

243

3D Magnetotelluic characterization of the Coso Geothermal Field  

E-Print Network [OSTI]

and Neubauer, F. M. , 2003, 3D inversion of a scalar radio3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMALMT imaging. An initial 3D conductivity model was constructed

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2008-01-01T23:59:59.000Z

244

Bulletin of the Seismological Society of America, 90, 6B, pp. S65S76, December 2000 The SCEC Southern California Reference Three-Dimensional Seismic  

E-Print Network [OSTI]

Southern California Reference Three-Dimensional Seismic Velocity Model Version 2 by Harold Magistrale-dimensional (3D) seismic velocity model of southern California developed by the Southern California Earthquake mesh of seismic velocity and density values. This parameterization is convenient to store, transfer

Clayton, Robert W.

245

ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS  

SciTech Connect (OSTI)

High-Resolution Source Parameters using Calibration from Ambient Seismic Noise (ASN) Zhongwen Zhan, Shengji Wei, Sidao Ni, and Don V. Helmberger Abstract Several new methods have been developed to retrieve local Green's functions based on the cross-correlation of ambient seismic noise (station-to-station) and conventional (source-to-station) inversions. The latter methods provide the most broadband results but require accurate source parameters for phase-delay recovery which depends on the starting model. Considerable progress is being made in providing such information from 3D modeling, Tape et al. (2008), using Adjoint Tomography. But to match waveforms for the recent Chino Hills event still requires shifting synthetics to align on data. This means that it is difficult to use 3D simulations to refine source locations in near-real time. We can avoid the 3D problems by applying the CAP method and storing shifts from past events, Tan (2006), and/or using ASN, Shapiro et al. (2005), to predict lags for surface waves. Here, we directly compare results from CAP predictions with ASN results using stations near the Chino Hills event. We use the same SC seismic model as used in the Library of Earthquakes to generate Green's functions for noise (single force) for comparison with ASN correlations and allow Cap delays. We apply these delays or corrections to determine precise Centroid locations.

Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

2009-04-30T23:59:59.000Z

246

Physical sectioning in 3D biological microscopy  

E-Print Network [OSTI]

developed in the Brain Networks Laboratory at Texas A&M University, has been used for the purpose of this study. However, the modes of characterizing chatter and its measurement are equally applicable to all current variants of 3D biological microscopy using...

Guntupalli, Jyothi Swaroop

2008-10-10T23:59:59.000Z

247

Physical sectioning in 3D biological microscopy  

E-Print Network [OSTI]

developed in the Brain Networks Laboratory at Texas A&M University, has been used for the purpose of this study. However, the modes of characterizing chatter and its measurement are equally applicable to all current variants of 3D biological microscopy using...

Guntupalli, Jyothi Swaroop

2009-05-15T23:59:59.000Z

248

Seismic Attenuation Inversion with t* Using tstarTomog.  

SciTech Connect (OSTI)

Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

Preston, Leiph

2014-09-01T23:59:59.000Z

249

Printing 3D Catalytic Devices | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printing 3D Catalytic Devices Ames Laboratory scientist Igor Slowing discusses using 3D printers to create new materials, including catalysts...

250

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

251

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization DOE...

252

Bradys EGS Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

egsdrakosbradys.pdf More Documents & Publications Desert Peak EGS Project Bradys EGS Project Seismic Fracture Characterization Methods for Enhanced Geothermal Systems...

253

Seismic sources  

DOE Patents [OSTI]

Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

1987-04-20T23:59:59.000Z

254

Fiber reinforcement during 3D printing  

Science Journals Connector (OSTI)

Abstract Three-dimensional (3D) printing is an attractive rapid prototyping technology for the fabrication of 3D structures by the localized deposition of a reactive binder liquid onto thin powder layers in predominantly technical applications. A practical limitation is often the low green strength of printed samples, which can lead to a collapse of large and fragile structures during removal from the powder bed and the following depowdering procedure. Fibre reinforcement may improve green mechanical properties of printed samples, which was investigated in this study using a range of different short fibres added to a matrix of cellulose-modified gypsum powder. Mechanical testing of printed samples revealed a bending strength increase of 180% and up to 10 times higher work of fracture values compared to non-reinforced printed samples.

Susanne Christ; Martin Schnabel; Elke Vorndran; Jürgen Groll; Uwe Gbureck

2015-01-01T23:59:59.000Z

255

3-D Metals | Open Energy Information  

Open Energy Info (EERE)

Metals Metals Jump to: navigation, search Name 3-D Metals Facility 3-D Metals Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Valley City OH Coordinates 41.2481362°, -81.88305616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2481362,"lon":-81.88305616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

3D-Printing Spatially Varying BRDFs  

Science Journals Connector (OSTI)

A new method fabricates custom surface reflectance and spatially varying bidirectional reflectance distribution functions (svBRDFs). Researchers optimize a microgeometry for a range of normal distribution functions and simulate the resulting surface's ... Keywords: Three-dimensional displays,Printing,Fabrication,Computational modeling,Solid modeling,Printers,Face recognition,computer graphics,bidirectional reflectance distribution function,BRDF,spatially varying bidirectional reflectance distribution function,svBRDF,3D printing,normal distribution function,NDF,microgeometry,surface reflectance

Olivier Rouiller; Bernd Bickel; Wojciech Matusik; Marc Alexa; Jan Kautz

2013-11-01T23:59:59.000Z

257

CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY  

E-Print Network [OSTI]

CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY ­ Master Thesis Proposal ­ BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

258

3D Printing of Functional and Biological Materials  

E-Print Network [OSTI]

! 3D Printing of Functional and Biological Materials Jennifer A. Lewis Wyss Professor)! Multimaterial 3D printing ! #12;3D antennas! Li ion microbatteries! Lightweight microlattices!Flexible sensors! 3D Printing of Integrated Electronic Devices ! #12;20 nm average , 5 ­ 50 nm

259

3D Model Retrieval based on Adaptive Views Clustering  

E-Print Network [OSTI]

3D Model Retrieval based on Adaptive Views Clustering Tarik Filali Ansary1 , Mohamed Daoudi2 , Jean.daoudi@univ-tours.fr http://www-rech.enic.fr/miire Abstract. In this paper, we propose a method for 3D model indexing based selection of 2D views from a 3D model, and a probabilistic Bayesian method for 3D model retrieval from

Paris-Sud XI, Université de

260

Stress relief: improving structural strength of 3D printable objects  

Science Journals Connector (OSTI)

The use of 3D printing has rapidly expanded in the past couple of years. It is now possible to produce 3D-printed objects with exceptionally high fidelity and precision. However, although the quality of 3D printing has improved, both the time to print ... Keywords: 3D printing, physics-based modeling, structural analysis

Ondrej Stava; Juraj Vanek; Bedrich Benes; Nathan Carr; Radomír M?ch

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Identifying fracture zones in the Austin Chalk using seismic attributes  

E-Print Network [OSTI]

An attribute analysis was conducted in an attempt to reduce the risks involved in developing the Austin Chalk. The objective is to identify a set of attributes that directly indicate regions of intense fracturing using short offset 3-D seismic data...

Bafia, Daniel Joseph

2012-06-07T23:59:59.000Z

262

2-Dimensional Seismic Refraction Mapping Study of the Cretaceous-Paleogene Boundary Complex from the Brazos, Texas Section  

E-Print Network [OSTI]

, associated with the KTB complex. A detailed 3-D seismic refraction survey at this site is recommended to generate a high-resolution 2-D terrain map of the top of the HCS layer....

Gowan, Joshua Smith

2012-07-16T23:59:59.000Z

263

SALSA3D : a global 3D p-velocity model of the Earth's crust and mantle for improved event location.  

SciTech Connect (OSTI)

To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is {approx}50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with {approx}400 processors. Resolution of our model is assessed using a variation of the standard checkerboard method. We compare the travel-time prediction and location capabilities of SALSA3D to standard 1D models via location tests on a global event set with GT of 5 km or better. These events generally possess hundreds of Pn and P picks from which we generate different realizations of station distributions, yielding a range of azimuthal coverage and ratios of teleseismic to regional arrivals, with which we test the robustness and quality of relocation. The SALSA3D model reduces mislocation over standard 1D ak135 regardless of Pn to P ratio, with the improvement being most pronounced at higher azimuthal gaps.

Encarnacao, Andre Villanova; Begnaud, Michael A. (Los Alamos National Laboratories); Rowe, Charlotte A. (Los Alamos National Laboratories); Young, Christopher John; Chang, Marcus C.; Ballard, Sally C.; Hipp, James Richard

2010-06-01T23:59:59.000Z

264

A global 3D P-velocity model of the Earth's crust and mantle for improved event location : SALSA3D.  

SciTech Connect (OSTI)

To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is {approx}50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with {approx}400 processors. Resolution of our model is assessed using a variation of the standard checkerboard method. We compare the travel-time prediction and location capabilities of SALSA3D to standard 1D models via location tests on a global event set with GT of 5 km or better. These events generally possess hundreds of Pn and P picks from which we generate different realizations of station distributions, yielding a range of azimuthal coverage and ratios of teleseismic to regional arrivals, with which we test the robustness and quality of relocation. The SALSA3D model reduces mislocation over standard 1D ak135 regardless of Pn to P ratio, with the improvement being most pronounced at higher azimuthal gaps.

Young, Christopher John; Steck, Lee K. (Los Alamos National Laboratory); Phillips, William Scott (Los Alamos National Laboratory); Ballard, Sanford; Chang, Marcus C.; Rowe, Charlotte A. (Los Alamos National Laboratory); Encarnacao, Andre Villanova; Begnaud, Michael A. (Los Alamos National Laboratory); Hipp, James Richard

2010-07-01T23:59:59.000Z

265

3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer  

E-Print Network [OSTI]

3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer Dept, Ontario, M3H 5T4 Paul.Joe@ec.gc.ca ABSTRACT The recent availability of sequences of 3D Doppler radial velocity datasets provides sufficient information to estimate the 3D velocity of Doppler storms. We present

Barron, John

266

Spiso-3D (USA Patent 8,077,945 B2) Section 1. "Spiso-3D" 3  

E-Print Network [OSTI]

1 Spiso-3D (USA Patent 8,077,945 B2) Section 1. "Spiso-3D" 3 BioInfomatics I(x) Taylor, Java 3D . graphic card graphic card . Trial version of Spiso Google down-load Neurolucida 2%Spiso-3D Kawato's laboratory Homepage http://glia.c.u-tokyo.ac.jp #12;2 Section 1, Introduction

Kawato, Suguru

267

3D as a content, 3D as a metaphor. Experiments on distributing and interfacing information about historic artefacts using  

E-Print Network [OSTI]

3D as a content, 3D as a metaphor. Experiments on distributing and interfacing information about MAP, France jyb@gamsau.map.archi.fr idu@gamsau.map.archi.fr Key Words Architectural heritage, 3D The importance we attach to 3D is probably related to the manner we perceive the world. Humans in general seem

Paris-Sud XI, Université de

268

A 3D INTENSITY MODEL BASED ON SPHERICAL HARMONICS FOR AUTOMATIC 3D SEGMENTATION OF HETEROCHROMATIN FOCI  

E-Print Network [OSTI]

A 3D INTENSITY MODEL BASED ON SPHERICAL HARMONICS FOR AUTOMATIC 3D SEGMENTATION OF HETEROCHROMATIN DKFZ Heidelberg and BIOQUANT, Research Group Genome Organization & Function ABSTRACT We introduce a 3D model-based approach for automatic segmentation of 3D fluorescent heterochromatin foci from microscopy

Rippe, Karsten

269

3D GAUSSIAN DESCRIPTOR: A NEW DESCRIPTOR FOR 3D MODELS Mohamed Chaouch and Anne Verroust-Blondet  

E-Print Network [OSTI]

3D GAUSSIAN DESCRIPTOR: A NEW DESCRIPTOR FOR 3D MODELS Mohamed Chaouch and Anne Verroust.chaouch, anne.verroust}@inria.fr ABSTRACT This paper presents a new approach to 3D shape compari- son Shape Benchmark database. Index Terms-- 3D shape retrieval, Gaussian transform 1. INTRODUCTION

Paris-Sud XI, Université de

270

1998 3D GIS vs Advanced visualisation -Hack & Ozmutlu -LWI Seminar 1 3D-GIS vs Advanced Visualization  

E-Print Network [OSTI]

1998 3D GIS vs Advanced visualisation - Hack & Ozmutlu - LWI Seminar 1 3D-GIS vs Advanced Visualization Hack H.R.G.K. and Ozmutlu S. LWI seminar 1998 Delft, The Netherlands #12;1998 3D GIS vs Advanced visualisation - Hack & Ozmutlu - LWI Seminar 2 3D-GIS vs Advanced Visualization Visualization Strategy At source

Hack, Robert

271

Does 3D increase the enjoyment experience? A comparative experiment on the psychological effects of 3D  

Science Journals Connector (OSTI)

[Figure not available: see fulltext.] Keywords: 3D, Emotional Fatigue, Enjoyment, Experiment, Limited Capacity

Qihao Ji; Jessica Tanca; Sophie Janicke

2013-12-01T23:59:59.000Z

272

Roaming Mars and Space: 3D Technology Exploration from Home | Department of  

Broader source: Energy.gov (indexed) [DOE]

Roaming Mars and Space: 3D Technology Exploration from Home Roaming Mars and Space: 3D Technology Exploration from Home Roaming Mars and Space: 3D Technology Exploration from Home November 5, 2013 - 11:55am Addthis Explore Mars and the solar system at mars.webmaker.org. | Courtesy of mars.webmaker.org. Explore Mars and the solar system at mars.webmaker.org. | Courtesy of mars.webmaker.org. Linda Silverman Team Lead, Education and Workforce Development Erin Twamley Project and Web Manager, Education & Workforce Development KEY FACTS The Mars exploration units are 100% free and open source. You can use them in any learning setting - free of charge - and play around with the source code! Kuda is an open-source application for building 3D simulations like

273

Vertical Seismic Profiling At Rye Patch Area (Feighner, Et Al., 1999) |  

Open Energy Info (EERE)

Feighner, Et Al., 1999) Feighner, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At Rye Patch Area (Feighner, Et Al., 1999) Exploration Activity Details Location Rye Patch Area Exploration Technique Vertical Seismic Profiling Activity Date Usefulness useful DOE-funding Unknown Notes In December 1997 LBNL obtained a VSP in well 46-28 to determine the seismic reflectivity in the area and to obtain velocity information for the design and potential processing of the proposed 3-D seismic survey Feighner et al. (1998). Because the results of the VSP indicated apparent reflections, TGI proceeded with the collection of 3.0 square miles of 3-D surface seismic data over the Rye Patch reservoir. References M. Feighner, R. Gritto, T. M. Daley, H. Keers, E. L. Majer (1999)

274

Seismic sources  

DOE Patents [OSTI]

Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

1992-01-01T23:59:59.000Z

275

Speed-line for 3D animation  

E-Print Network [OSTI]

Committee Members, Carol LaFayette John Keyser Head of Department, Mardelle Shepley December 2005 Major Subject: Visualization Sciences iii ABSTRACT Speed-Line for 3D Animation. (December 2005) Won Chan Song, B.F.A., Ringling School of Art and Design Chair... to thank my committee members, Prof. Carol LaFayette and Dr. John Keyser for their advice and feedback. My gratitude also goes to Hobart Chan for letting me borrow his car model, which saved me a huge amount of time when I was making an animation as a...

Song, Won Chan

2007-04-25T23:59:59.000Z

276

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Coso Geothermal Area (1988) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1988 Usefulness useful DOE-funding Unknown Exploration Basis To analyze three-dimensional Vp/Vs variation Notes A tomographic inversion for the 3D variations of the Vp/V s, the ratio of compressional to shear velocity, was performed. Iterative back projection of 2966 shear and compressional wave travel time residuals from local earthquakes recorded on vertical instruments reveals that Vp/Vs is generally high at the surface and decreases systematically to 10 km depth. Near Devil's Kitchen in the Coso Geothermal Area, Vp/Vs values are very low near the surface, consistent with measured values for steam-dominated

277

Over the past 10 years, there has been a consistent increase in using 3D P-wave data to characterize fractures, which is  

E-Print Network [OSTI]

to characterize fractures, which is critical for ensuring economic oil and gas production in tight formations of otherwise low permeability. Here, we pre- sent a case study of fracture detection using 3D P-wave seismic, of zones of high fracture density that are residual-oil-charged. A major aspect of this study is to compare

Edinburgh, University of

278

APPLICATION OF 2D AND 3D MODELS FOR TEACHING OF NATURAL SCIENCES  

E-Print Network [OSTI]

by three systems: the use of a 3D scanner, 3D photography and digital video camera, plus 3D SketchUp and 3D

Outerelo. Raimundo

279

Assessing Beyond Design Basis Seismic Events and Implications on Seismic  

Broader source: Energy.gov (indexed) [DOE]

Assessing Beyond Design Basis Seismic Events and Implications on Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist) Defense Nuclear Facilities Safety Board Topics Covered: Department of Energy Approach to Natural Phenomena Hazards Analysis and Design (Seismic) Design Basis and Beyond Design Basis Seismic Events Seismic Risk Implications - Key Parameters and Insights Conclusions Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk More Documents & Publications DOE's Approach to Nuclear Facility Safety Analysis and Management Results from Beyond Design Basis Event Pilots Idaho National Laboratory Advanced Test Reactor Probabilistic Risk

280

Mon. Not. R. Astron. Soc. 000, 127 (2011) Printed 7 January 2011 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D project ­ I. A volume-limited sample of 260 nearby early-type galaxies: science goals, PO Box 1312, D-85478 Garching, Germany 12Space Telescope European Coordinating Facility, European November 2 c 2011 RAS #12;2 M. Cappellari et al. ABSTRACT The ATLAS3D project is a multi-wavelength survey

Bureau, Martin

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mon. Not. R. Astron. Soc. 000, 000000 (0000) Printed 24 September 2014 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D project ­ XXIX. The new look of early-type galaxies and surrounding fields disclosed Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia) light. As part of the ATLAS3D project, we have obtained with the MegaCam camera at the Canada- France

Bureau, Martin

282

Rheology of nearly ideal 3d foams  

E-Print Network [OSTI]

We probe the complex rheology of nearly ideal 3d foam by flowing through a narrow column. The foams we investigate have large bubble size, to minimize the effects of coarsening, and are very dry. Foams of this type cannot be studied via conventional rheometry. The foam flows upward through a vertical rectangular column with a 4:1 cross-sectional aspect ratio, by bubbling gas through a soapy solution at the base of our apparatus. At the column's narrow surfaces are sticky boundaries, which create shear due to the zero velocity boundary condition. As expected, the flow profile between the adjacent slippery broad faces is flat, however the profile between the narrow, sticky faces exhibits a curved velocity profile that is dependent on gas flow rate. We are able to analyze a 2d velocity profile from a 3d bulk system. We employ particle image velocimetry to measure the strain rate, and compute the stress from the pressure drop along the channel, to investigate the local stress-strain relationships in a flowing foam. We find these dry foams to have a Hershel-Bulkley exponent of 0.21, which is significantly lower (more shear thinning) than other results shown in the literature for much wetter foams.

C. D. Jones; K. N. Nordstrom; D. J. Durian

2014-04-10T23:59:59.000Z

283

SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic  

E-Print Network [OSTI]

#12;SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic ray method available. This method plays an important role in seismology, seismic exploration, and the interpretation of seismic measurements. The book presents a consistent treatment of the seismic ray method, based

Cerveny, Vlastislav

284

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network [OSTI]

; Herrmann, 1981) and secondary oil recovery in western Colorado at the Rangely oil field (Gibbs et al. 1973COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah

Sheehan, Anne F.

285

Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy  

SciTech Connect (OSTI)

Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.

Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

2013-04-15T23:59:59.000Z

286

Seismic velocity estimation from time migration  

E-Print Network [OSTI]

Seismic images . . . . . . . . . . . . . . . . .Algorithms producing the seismic velocities from thethe Dix velocities and the true seismic velocities in 2D . .

Cameron, Maria Kourkina

2007-01-01T23:59:59.000Z

287

Seismic Performance Assessment in Dense Urban Environments  

E-Print Network [OSTI]

Kinematic interaction . . 4.4.2 Seismic footing response 6Deterministic seismic hazard analysis . . . . . . . . . .Probabilistic seismic hazard analysis . . . . . . . . .

Mason, Henry Benjamin

2011-01-01T23:59:59.000Z

288

Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: In 1998 a 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada) to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The results

289

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

290

Metric 3D Reconstruction and Texture Acquisition of Surfaces of Revolution from a Single Uncalibrated View  

Science Journals Connector (OSTI)

Image analysis and computer vision can be effectively employed to recover the three-dimensional structure of imaged objects, together with their surface properties. In this paper, we address the problem of metric reconstruction and texture acquisition ... Keywords: Index Terms- Surface of revolution, camera self-calibration, single-view 3D metric reconstruction, texture acquisition, projective geometry, image-based modeling.

Carlo Colombo; Alberto Del Bimbo; Federico Pernici

2005-01-01T23:59:59.000Z

291

Analysis of seismic waves generated by surface blasting at Indiana coal mines  

E-Print Network [OSTI]

Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent implications for understanding different seismic sources, earthquake structures in Indiana, and wave

Polly, David

292

Time lapse seismic signal analysis for Cranfield, MS, EOR and CCS site Ditkof, J.1  

E-Print Network [OSTI]

EG31 Time lapse seismic signal analysis for Cranfield, MS, EOR and CCS site Ditkof, J.1 , Caspari Australia The Cranfield field located in Southwest Mississippi is an EOR and CCS project which has been-delay along a horizon below the reservoir. Keywords: time lapse, 4D seismic, CO2 sequestration, EOR, seismic

Texas at Austin, University of

293

Toward a compact underwater structured light 3-D imaging system  

E-Print Network [OSTI]

A compact underwater 3-D imaging system based on the principles of structured light was created for classroom demonstration and laboratory research purposes. The 3-D scanner design was based on research by the Hackengineer ...

Dawson, Geoffrey E

2013-01-01T23:59:59.000Z

294

Contributions to the 3D city modeling : 3D polyhedral building model reconstruction from aerial images and 3D facade modeling from terrestrial 3D point cloud and images.  

E-Print Network [OSTI]

??The aim of this work is to develop research on 3D building modeling. In particular, the research in aerial-based 3D building reconstruction is a topic… (more)

Hammoudi, Karim

2011-01-01T23:59:59.000Z

295

Stereoscopic Presentations Taking the Difficulty out of 3D  

E-Print Network [OSTI]

1 Stereoscopic Presentations ­ Taking the Difficulty out of 3D Andrew Woods, Centre for Marine of the two projectors. The audience then wear appropriately polarised 3D video projector (CRT/LCD/DMD) video

296

Computational 3D and reflectivity imaging with high photon efficiency  

E-Print Network [OSTI]

Imaging the 3D structure and reflectivity of a scene can be done using photon-counting detectors. Traditional imagers of this type typically require hundreds of detected photons per pixel for accurate 3D and reflectivity ...

Shin, Dongeek

2014-01-01T23:59:59.000Z

297

3-D Earth model more accurately pinpoints explosions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the...

298

Ames Laboratory 3D printing technology research taking shape...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D printing technology research taking shape Insider Scientists at the U.S. Department of Energy's Ames Laboratory see amazing potential in 3D printing and additive manufacturing,...

299

3D printing and simulation of naturally randomized cellular automata  

Science Journals Connector (OSTI)

3D printing technology usually aims at reproducing objects deterministically ... tools; however, the author has discovered that 3D printing can also generate self-organizing patterns similar ... proposed method w...

Yasusi Kanada

2014-11-01T23:59:59.000Z

300

3D Printing Comes of Age | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3D Printing Comes of Age 3D Printing Comes of Age September 19, 2014 - 5:25pm Addthis The highlight of this year's International Manufacturing Technology Show (IMTS), held earlier...

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity Thanks to a groundbreaking new method, scientists have created the first 3D super-resolution maps of...

302

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

303

Characterizing tensile loading responses of 3D printed samples  

E-Print Network [OSTI]

An experimental study was performed to characterize the loading response of samples manufactured through 3D printing. Tensile testing was performed on a number of 3D printed samples created through Fused Filament Fabrication ...

Haid, Christopher M

2014-01-01T23:59:59.000Z

304

Ames Lab 101: Real-Time 3D Imaging  

ScienceCinema (OSTI)

Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

Zhang, Song

2012-08-29T23:59:59.000Z

305

3-D GRMHD Simulations of Generating Jets  

E-Print Network [OSTI]

We have performed a first fully 3-D GRMHD simulation with Schwarzschild black hole with a free falling corona. The initial simulation results show that a jet is created as in the previous simulations using the axisymmetric geometry with the mirror symmetry at the equator. However, the time to generate the jet is longer than in the 2-D axisymmetric simulations. We expect that due to the additional freedom in the azimuthal dimension without axisymmetry with respect to the z axis and reflection symmetry with respect to the equatorial plane, the dynamics of jet formation can be modified. Further simulations are required for the study of instabilities along the azimuthal direction such as accretion-eject instability

Nishikawa, K I; Shibata, K; Kudoh, T; Sol, H

2002-01-01T23:59:59.000Z

306

3-D GRMHD Simulations of Generating Jets  

E-Print Network [OSTI]

We have performed a first fully 3-D GRMHD simulation with Schwarzschild black hole with a free falling corona. The initial simulation results show that a jet is created as in the previous simulations using the axisymmetric geometry with the mirror symmetry at the equator. However, the time to generate the jet is longer than in the 2-D axisymmetric simulations. We expect that due to the additional freedom in the azimuthal dimension without axisymmetry with respect to the z axis and reflection symmetry with respect to the equatorial plane, the dynamics of jet formation can be modified. Further simulations are required for the study of instabilities along the azimuthal direction such as accretion-eject instability

K. -I. Nishikawa; S. Koide; K. Shibata; T. Kudoh; H. Sol

2002-08-05T23:59:59.000Z

307

A 3D scanning system for biomedical purposes  

Science Journals Connector (OSTI)

The use of three-dimensional (3D) scanning systems for acquiring the external shape features of biological objects has recently been gaining popularity in the biomedical field. A simple, low cost, 3D scanning system is presented, which employs ... Keywords: 3D geometric modelling, 3D scanning, EFDs, biological objects, biomedical scanners, camera calibration, data acquisition, direct linear transformation, elliptical Fourier descriptors, laser light-sectioning, medical imaging, shape features

B. D. Bradley; A. D. C. Chan; M. J. D. Hayes

2009-06-01T23:59:59.000Z

308

Localization and 3D Reconstruction of Urban Scenes Using GPS  

E-Print Network [OSTI]

D models in Google earth · Manual modeling and texturing (sketch-up) · 3D model covers limited area

Haro, Antonio

309

3D Rendering and Ray Casting Michael Kazhdan  

E-Print Network [OSTI]

3D Rendering and Ray Casting Michael Kazhdan (600.357 / 600.457) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 #12;Rendering · Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D) #12;3D Rendering Example What issues must be addressed by a 3D rendering system? #12;Overview

Kazhdan, Michael

310

Automating Shallow Seismic Imaging  

SciTech Connect (OSTI)

This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could make SSR surveying considerably more efficient and less expensive, particularly when geophone intervals of 25 cm or less are required. The most recent research analyzed the difference in seismic response of the geophones with variable geophone spike length and geophones attached to various steel media. Experiments investigated the azimuthal dependence of the quality of data relative to the orientation of the rigidly attached geophones. Other experiments designed to test the hypothesis that the data are being amplified in much the same way that an organ pipe amplifies sound have so far proved inconclusive. Taken together, the positive results show that SSR imaging within a few meters of the earth's surface is possible if the geology is suitable, that SSR imaging can complement GPR imaging, and that SSR imaging could be made significantly more cost effective, at least in areas where the topography and the geology are favorable. Increased knowledge of the Earth's shallow subsurface through non-intrusive techniques is of potential benefit to management of DOE facilities. Among the most significant problems facing hydrologists today is the delineation of preferential permeability paths in sufficient detail to make a quantitative analysis possible. Aquifer systems dominated by fracture flow have a reputation of being particularly difficult to characterize and model. At chemically contaminated sites, including U.S. Department of Energy (DOE) facilities and others at Department of Defense (DOD) installations worldwide, establishing the spatial extent of the contamination, along with the fate of the contaminants and their transport-flow directions, is essential to the development of effective cleanup strategies. Detailed characterization of the shallow subsurface is important not only in environmental, groundwater, and geotechnical engineering applications, but also in neotectonics, mining geology, and the analysis of petroleum reservoir analogs. Near-surface seismology is in the vanguard of non-intrusive approaches to increase knowledge of the shallow subsurface; our

Steeples, Don W.

2004-12-09T23:59:59.000Z

311

Using interactive 3-D visualization for public consultation  

Science Journals Connector (OSTI)

......www.presagis.com/products/content_creation/creator ) was used to create the model and Autodesk 3D Studio Max ( http://usa.autodesk.com/ ) was used to add further details to the model. The 3D games graphics engine Ogre 3D......

Paul van Schaik

2010-11-01T23:59:59.000Z

312

3D Printing Prof. Hank Dietz & Paul Eberhart  

E-Print Network [OSTI]

3D Printing Prof. Hank Dietz & Paul Eberhart September 28, 2013 University of Kentucky Electrical/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer "The whole is greater than the sum of its parts." ­ Aristotle #12;Additive 3D Building Material

Dietz, Henry G. "Hank"

313

3-D Earth model more accurately pinpoints explosions  

E-Print Network [OSTI]

- 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

314

Issues in the Development of 3D Icons Rob Erbacher  

E-Print Network [OSTI]

Issues in the Development of 3D Icons Rob Erbacher Georges Grinstein Institute for Visualization dimensions through the use of 3D icons. We briefly discuss geometric and color icons and the 2D textures they generate. We then exhibit a 3D icon, explain its parameters and features, and demonstrate how this icon

Erbacher, Robert F.

315

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1  

E-Print Network [OSTI]

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

Boyer, Edmond

316

3D RECONSTRUCTION FROM A SINGLE IMAGE Diego Rother  

E-Print Network [OSTI]

3D RECONSTRUCTION FROM A SINGLE IMAGE By Diego Rother and Guillermo Sapiro IMA Preprint Series. 1 3D Reconstruction from a Single Image Diego Rother and Guillermo Sapiro Abstract-- A probabilistic framework for 3D object reconstruction from a single image is introduced in this work. First

317

Fast 3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

Fast 3D Scanning for Biometric Identification and Verification June 2011 Authors Anselmo., & Chen, A. (2011). Fast 3D Scanning for Biometric Identification and Verification. (Prepared by RTI..................................................10 Summary and Findings for Integration of Imperceptible Structured Lighting and SIS's 3D Snapshot

McShea, Daniel W.

318

3D imaging and ranging by time-correlated single  

E-Print Network [OSTI]

3D imaging and ranging by time-correlated single photon counting by A. M. Wallace, 6. S. Buller and A. C. Walker 3D imaging is an important tool for metrology and reverse engineering of components and architecturalsurveying. In this article, we review briefly the principal methods in current use for 3D imaging

Buller, Gerald S.

319

3D discrete rotations using hinge angles Yohan Thibaulta,  

E-Print Network [OSTI]

3D discrete rotations using hinge angles Yohan Thibaulta, , Akihiro Sugimotob , Yukiko Kenmochia a of Informatics, Japan Abstract In this paper, we study 3D rotations on grid points computed by using only integers. For that purpose, we investigate the intersection between the 3D half- grid and the rotation

Paris-Sud XI, Université de

320

3D Laser Imaging at Highway Speed Kelvin CP Wang  

E-Print Network [OSTI]

3D Laser Imaging at Highway Speed Kelvin CP Wang And the Team Formerly at the University Concrete Consortium Meeting Oklahoma City Sheraton Hotel #12;3D Laser Imaging for Pavements Mature Potential to Cover Most if Not All Data Collection on Pavement Surface How to Obtain True 1mm 3D Visual

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The 3D jigsaw puzzle: mapping large indoor spaces  

E-Print Network [OSTI]

The 3D jigsaw puzzle: mapping large indoor spaces Ricardo Martin-Brualla1 , Yanling He1 , Bryan C of famous tourist sites. While current 3D reconstruction algorithms often produce a set of disconnected components (3D pieces) for indoor scenes due to scene coverage or matching failures, we make use

Anderson, Richard

322

Analyzing 3D Images of the Brain NICHOLAS AYACHE  

E-Print Network [OSTI]

Analyzing 3D Images of the Brain NICHOLAS AYACHE OVERVIEW During the past 5 years, there has been research. Along these lines, and focusing on 3D images of the brain obtained with CT, MRI, SPECT, and PET for an objective analysis of 3D images of the brain. Such methods include segmentation, shape analysis, rigid

Paris-Sud XI, Université de

323

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems  

Open Energy Info (EERE)

Technology Adapted to Analyzing and Developing Geothermal Systems Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description Historically, areas where the Earth surface is covered by an exposed high-velocity rock layer have been locations where conventional, single-component, seismic P-waves have failed to provide usable geological information. The research will use new seismic sources that emphasize shear waves and new seismic data-acquisition technology based on cable-free data recording to acquire seismic research data across two sites covered with surface-exposed highvelocity rocks. Research tasks will involve acquiring, processing, and interpreting both conventional seismic data and multicomponent seismic data. Scientists at BEG will analyze well logs, cores, and reservoir test data to construct geological models of the targeted geology across each study site.

324

completed_ep_projects | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Mines DE-FC26-04NT15504 Improving Geologic and Engineering Models of Mid-Continent Fracture and Karsts-Modified Reservoir Using New 3-D Seismic Attributes University of Kansas...

325

Parallel 3-D simulation of seismic wave propagation in heterogeneous anisotropic media: a grid method approach  

Science Journals Connector (OSTI)

......elastic wave equations in anisotropic media, in the absence of...constitutive relation for a general anisotropic medium. However, the anisotropy...constants. When we think of anisotropic earth models, we usually...layers, such as sand and shale. The anisotropy caused by......

Hongwei Gao; Jianfeng Zhang

2006-06-01T23:59:59.000Z

326

Non-linear traveltime inversion for 3-D seismic tomography in strongly anisotropic media  

Science Journals Connector (OSTI)

......low velocity body (Shale 2) and produces many...of the non-linear anisotropic inversion, we obtained...high velocity body (Shale 1) and fails to indicate...low velocity block (Shale 2). By contrast...of the non-linear anisotropic inversion yields clear......

Bing Zhou; Stewart Greenhalgh

2008-01-01T23:59:59.000Z

327

Ultra-Shallow Imaging Using 2D & 3D Seismic Reflection Methods  

E-Print Network [OSTI]

Dome in Brazoria County, Texas, in late 1926 (Weatherby, 1948). A successful discovery well that was drilled based on this information helped the reflection seismograph to gain acceptance. At the time, recording trucks had only one channel...

Sloan, Steven D.

2008-01-01T23:59:59.000Z

328

Role of 3D seismic for quantitative shallow hazard assessment in deepwater sediments  

Science Journals Connector (OSTI)

...attention. These are global problems. In the GOM...attention. These are global problems. In the GOM...Man-made hazards include pipelines, wellheads, shipwrecks...became unusable due to buckling of the casing strings...important unknown in the global methane budget. No matter...

Nader C. Dutta; Randal W. Utech; Dianna Shelander

329

On 3D modeling of seismic wave propagation via a structured ...  

E-Print Network [OSTI]

... from MKL (Math Ker- nel Library), which contains BLAS (Basic Linear Algebra ..... Chandrasekaran S., Dewilde P., Gu M., Pals T., Sun X., van der. Veen A. and

2011-07-27T23:59:59.000Z

330

Illinois CO2 Injection Project Moves Another Step Forward | Department of  

Broader source: Energy.gov (indexed) [DOE]

Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward March 15, 2010 - 1:00pm Addthis Washington, DC - The recent completion of a three-dimensional (3-D) seismic survey at a large Illinois carbon dioxide (CO2) injection test site is an important step forward for the carbon capture and storage (CCS) project's planned early 2011 startup. The survey - essential to determine the geometry and internal structures of the deep underground saline reservoir where CO2 will be injected - was completed by the Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance CCS technologies nationwide. CCS is seen by many experts as a

331

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir |  

Open Energy Info (EERE)

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Details Activities (3) Areas (1) Regions (0) Abstract: A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The

332

Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of  

E-Print Network [OSTI]

Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of solid oxide fuel, France 1 Introduction SOFC3D is a computer program, which simulates the behaviour of a solid oxide fuel model A detailed cell model was obtained [9] by writing the conservation laws in the solid parts

Herbin, Raphaèle

333

Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

334

Seismic Isolation and Decrease of Seismic Effects on Bridges  

Science Journals Connector (OSTI)

A planned road bridge in an active seismic zone near the city of Žilina in Slovakia was analysed for seismic effects. The seismic analysis has shown that an inelastic structural ... is very likely. Because of the...

Associate Professor Rudolf Ároch…

2014-01-01T23:59:59.000Z

335

Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations  

SciTech Connect (OSTI)

The ''Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations'' project is investigating the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This project will involve the use of 4D seismic (time lapse seismic) to try to observe the movement of the injected CO{sub 2} through the reservoir. The differences between certain seismic attributes, such as amplitude, will be used to detect and map the movement of CO{sub 2} within the reservoir. This technique has recently been shown to be effective in CO{sub 2} monitoring in EOR projects such as Weyborne. The project is being conducted in the Charlton 30/31 field in northern Michigan Basin which is a Silurian pinnacle reef that has completed its primary production. This field is now undergoing enhanced oil recovery using CO{sub 2}. The CO{sub 2} flood was initiated the end of 2005 when the injection of small amounts of CO{sub 2} begin in the A1 Carbonate. This injection was conducted for 2 months before being temporarily halted in order for pressure measurements to be conducted. The determination of the reservoir's porosity distribution is proving to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model had to be developed. From this model, an accurate determination of porosity within the carbonate reservoir must be obtained. For this certain seismic attributes have been investigated. The study reservoirs in the Charlton 30/31 field range from 50 to 400 acres in size. The relatively small area to image makes 3-D seismic data acquisition reasonably cost effective. Permeability and porosity vary considerably throughout the reef, thus it is essential to perform significant reservoir characterization and modeling prior to implementing a CO{sub 2} flood to maximize recovery efficiency. Should this project prove successful, the same technique could be applied across a large spectrum of the industry. In Michigan alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. These reservoirs range in thickness from 200 to 400 ft and are at depths of 2000 to 5000 ft. Approximately 113 of these Niagaran oil fields have produced over 1 million bbls each and the total cumulative production is in excess of 300 million bbls and 1.4 Tcf. There could potentially be over 1 billion bbls of oil remaining in reefs in Michigan much of which could be mobilized utilizing techniques similar to those employed in this study.

Brian E. Toelle

2006-02-28T23:59:59.000Z

336

Seismic Travel-Time Residuals and Plates  

Science Journals Connector (OSTI)

......United States, Canada and Greenland under the auspices of Project Vela Uniform (Long Range Seismic Measurements 1966). Arrival...1 that if we plot residuals on the focal sphere, we are at liberty to ascribe these residuals to source effects, receiver effects......

D. Davies; D. P. McKenzie

1969-09-01T23:59:59.000Z

337

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

338

Seismic characterization of fractures  

E-Print Network [OSTI]

Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

JM Carcione

2014-06-07T23:59:59.000Z

339

Seismic Imaging and Monitoring  

SciTech Connect (OSTI)

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

340

3D turtle geometry: artwork, theory, program equivalence and symmetry  

Science Journals Connector (OSTI)

We define a 3D variant of turtle graphics and present the theoretical foundations of 3D turtle geometry. This theory enables one to reason about open and closed 3D polygonal paths by means of algebraic calculations. In particular, we introduce several equivalence relations on turtle programs and theorems that define corresponding standard forms. Also we express the relationship between the symmetries of a 3D polygonal path and the symmetries of a generating turtle program in a suitable standard form. Finally, we discuss software tool support for 3D turtle geometry. Along the way, we present some artworks designed through 3D turtle graphics. These artworks have never been described in the literature before.

Tom Verhoeff

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

3-D Model for Deactivation & Decommissioning | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work space, which would give managers and supervisors a more powerful tool for planning and communicating safety issues and work sequences to personnel executing the physical D&D tasks. 3-D Model for Deactivation & Decommissioning More Documents & Publications D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for Characterization D&D and Risk Assessment Tools 3-D Model for Deactivation & Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D

342

Seismic functionality of essential relays in operating nuclear plants  

Science Journals Connector (OSTI)

The regulatory criteria for licensing of nuclear power plants require that certain safety-related equipment and systems be designed to function during and following a postulated, design basis earthquake. Demonstration of seismic adequacy must be performed and formally documented by shake-table testing, analysis or other specified methods. Since many older, operating nuclear power plants were designed and constructed prior to the issuance of the current seismic qualification criteria, the NRC has questioned whether the seismic adequacy of the essential equipment has been adequately demonstrated and documented. This concern is identified in Unresolved Safety Issue A-46, “Seismic Qualification of Equipment in Operating Nuclear Power Plants”. In response to this concern, a group of affected plant owners, the Seismic Qualification Utility Group (SQUG), with support from the Electric Power Research Institute (EPRI), has undertaken a program to demonstrate the seismic adequacy of essential equipment by the use of actual experience with such equipment in plants which have undergone significant earthquakes and by the use of available seismic qualification data for similar equipment. An important part of this program is the development of data and the methodology for verifying the functionality of electrical relays used in essential circuits needed for plant shutdown during a seismic event. This paper describes this part of the Seismic Qualification Utility Group program. The relay functionality evaluation methodology is being developed under EPRI Project No. RP2849-1.

W.R. Schmidt; R.P. Kassawara

1988-01-01T23:59:59.000Z

343

NASA to send 3D printer into space  

Science Journals Connector (OSTI)

... time that a 3D printer flies in space. The agency has already embraced ground-based 3D printing as a fast, cheap way to make spacecraft parts, including rocket engine components that ... to make spacecraft parts literally on the fly. Space experts say that the promise of 3D printing is real, but a long way from the hype that surrounds it. “There’ ...

Alexandra Witze

2014-09-10T23:59:59.000Z

344

Climate Change Capacity Development (C3D+) | Open Energy Information  

Open Energy Info (EERE)

C3D+) C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) Agency/Company /Organization United Nations Institute for Training and Research (UNITAR) Partner Caribbean Climate Change Community Centre (CCCCC), Climate System Analysis Group at UCT Cape Town (CSAG), Environment and Development Action in the Third World (ENDA-TM), University of Cape Town-Energy Research Centre, South Pacific Regional Environment Programme (SPREP), Munasinghe Institute (MIND), Center for International Forestry Research, International Institute for Sustainable Development (IISD), Stockholm Environment Institute Sector Climate Topics Low emission development planning Resource Type Training materials

345

Coordination Polymers A Unique 3D Alternating Ferro-and  

E-Print Network [OSTI]

(3-ptz)] (3-ptz = 5-(3-pyridyl)tetrazolate),[7e] in which the metal centers are diamagnetic 3d10 cadmium

Gao, Song

346

Identificering af teknologi gennem narrativer; 3D print.  

E-Print Network [OSTI]

??Denne rapport arbejder med en gennemgang af den såkaldte 3D printer teknologi. Denne vil sættes i sammenhæng med et teknologifilosofisk ’form of life ? forståelse… (more)

Petersen, Mikael

2011-01-01T23:59:59.000Z

347

3D Printing of nanostructured catalytic materials | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Printing of nanostructured catalytic materials Over the last couple of decades, scientists have been able to develop a tremendous control over the synthesis and properties of...

348

From Digital to Physical: Computational Aspects of 3D Manufacturing.  

E-Print Network [OSTI]

??The desktop publishing revolution of the 1980s is currently repeating itself in 3D, referred to as desktop manufacturing. Online services such as Shapeways have become… (more)

Baecher, Moritz Niklaus

2013-01-01T23:59:59.000Z

349

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

350

Just Plain Cool, the 3D Printed Shelby Cobra  

Broader source: Energy.gov [DOE]

Indistinguishable from conventional production vehicles on display, the 3D printed Shelby Cobra celebrated its 50th anniversary at the Detroit Auto Show in early January.

351

Ames Laboratory 3D printing technology research taking shape...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D printing technology research taking shape Contacts: For Release: Sept. 23, 2014 Igor Slowing, Chemical and Biological Sciences, 515-294-1959 Laura Millsaps, Public Affairs,...

352

Making 3D Printed Christmas Ornaments | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

enjoys baking cookies and snowball fights. Recent Posts by This Contributor Using 3D Printing to Redesign Santa's Sleigh A Sneak Peek Into Santa's Smarter Sleigh Subscribe to...

353

RELAP5-3D V. 4.X.X  

Energy Science and Technology Software Center (OSTI)

000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL   

354

Nano, photonic research gets boost from new 3-D visualization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imaging (CSSI) data. An image as 2-D coherent surface scattering imaging (CSSI) data. Nano, photonic research gets boost from new 3-D visualization technology By Tona Kunz *...

355

Dynamic response of underground gas storage salt cavern under seismic loads  

Science Journals Connector (OSTI)

Abstract A dynamic elastoplastic damage constitutive model is proposed based on the failure characteristic of rock salt under seismic loads. The coding of the proposed model is achieved by the embedded FISH (short for FLACish) language of FLAC3D (Fast Lagrangian Analysis of Continua). Numerical models of bedded salt cavern gas storage facilities in China are developed by using FLAC3D, and the proposed constitutive model is used in the simulations. The effects of seismic input angle, seismic acceleration, seismic moment, types of seismic waves, and gas pressure on the dynamic response, stress, displacement, plastic zone, and safety factor (SF) of rock masses that surround salt cavern gas storage facilities are studied. Results show that the seismic wave perpendicular to the surface poses the greatest risk to the safety of the cavern. With an increase in seismic acceleration, the cavern’s SF decreases and that of the lower structure of the cavern decreases more than that of the upper section. Plastic zones propagate from the cavern’s internal surface to the pillar, and then to the pillar and floor along the right and left corners of the cavern bottom. Higher internal gas pressure improves cavern safety. The acceleration and duration of seismic waves are critical factors in ensuring the safety of the cavern. The SF of the cavern’s lower structure is more sensitive to changes in seismic parameters than that of the other locations, which makes the cavern bottom more likely to be destroyed during an earthquake. Therefore, the lower structure should be the study target in the seismic design for a salt cavern gas storage facility. Results have been used in the seismic design of salt cavern gas storage facilities in China.

Tongtao Wang; Chunhe Yang; Xiangzhen Yan; Yinping Li; Wei Liu; Cheng Liang; Jie Li

2014-01-01T23:59:59.000Z

356

Seismic image waves  

Science Journals Connector (OSTI)

......involved in the seismic imaging process, for example the migration...revisited, 60th Ann. Int. Mtg., Soc. Expl. Geophys...involved in the seismic imaging process, for example the migration...revisited, 60th Ann. Int. Mtg., SOC. Expl. Geophys......

Peter Hubral; Martin Tygel; Jörg Schleicher

1996-05-01T23:59:59.000Z

357

Mon. Not. R. Astron. Soc. 413, 813836 (2011) doi:10.1111/j.1365-2966.2010.18174.x The ATLAS3D  

E-Print Network [OSTI]

Mon. Not. R. Astron. Soc. 413, 813­836 (2011) doi:10.1111/j.1365-2966.2010.18174.x The ATLAS3D-85478 Garching, Germany 12Space Telescope European Coordinating Facility, European Southern Observatory 2010 November 2 ABSTRACT The ATLAS3D project is a multiwavelength survey combined with a theoretical

Kuntschner, Harald

358

Mon. Not. R. Astron. Soc. 000, 121 (??) Printed 20 May 2011 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

Mon. Not. R. Astron. Soc. 000, 1­21 (??) Printed 20 May 2011 (MN LATEX style file v2.2) The ATLAS3D Garching, Germany 8Space Telescope European Coordinating Facility, European Southern Observatory, Karl observations and models conducted within the ATLAS3D project, encompass various mass ratios (from 1:1 to 6

Bureau, Martin

359

Mon. Not. R. Astron. Soc. 416, 16541679 (2011) doi:10.1111/j.1365-2966.2011.19113.x The ATLAS3D  

E-Print Network [OSTI]

Mon. Not. R. Astron. Soc. 416, 1654­1679 (2011) doi:10.1111/j.1365-2966.2011.19113.x The ATLAS3D Telescope European Coordinating Facility, European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 within the ATLAS3D project, encompass various mass ratios (from 1:1 to 6:1), initial conditions

Kuntschner, Harald

360

Mon. Not. R. Astron. Soc. 000, 000000 (0000) Printed 25 May 2011 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D project ­ IX. The merger origin of a fast and a slow rotating Early-Type Galaxy revealedSpace Telescope European Coordinating Facility, European Southern Observatory, Karl-Schwarzschild-Str. 2 of two apparently relaxed nearby Early-Type Galaxies (ETGs) selected from the ATLAS3D sample, NGC 680

Bureau, Martin

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mon. Not. R. Astron. Soc. 000, 118 (2014) Printed 10 July 2014 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D project - XXIV. The intrinsic shape distribution of early-type galaxies Anne-Marie Weijmans1 Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia 2014 ABSTRACT We use the ATLAS3D sample to perform a study of the intrinsic shapes of early

Bureau, Martin

362

Mon. Not. R. Astron. Soc. 000, 122 (2011) Printed 7 November 2012 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D Project - XIV. The extent and kinematics of molecular gas in early-type galaxies Timothy A¨ur extraterrestrische Physik, PO Box 1312, D-85478 Garching, Germany 12Space Telescope European Coordinating Facility the extent, surface brightness profiles and kinematics of the molecular gas in CO-rich ATLAS3D early

Bureau, Martin

363

Mon. Not. R. Astron. Soc. 000, 132 (2012) Printed 7 October 2013 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D project - ???: Two-dimensional kinematic analysis of simulated galaxies and the cosmological Physik, PO Box 1312, D-85478 Garching, Germany 16Space Telescope European Coordinating Facility, European of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS3D

Bureau, Martin

364

Mon. Not. R. Astron. Soc. 000, 118 (2011) Printed 24 February 2011 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D project ­ VII. A new look at the morphology of nearby galaxies: the kinematic morphology¨ur extraterrestrische Physik, PO Box 1312, D-85478 Garching, Germany 10Space Telescope European Coordinating Facility introduced a volume-limited parent sample of 871 galaxies from which we extracted the ATLAS3D sample of 260

Bureau, Martin

365

Mon. Not. R. Astron. Soc. 414, 888912 (2011) doi:10.1111/j.1365-2966.2011.18496.x The ATLAS3D  

E-Print Network [OSTI]

Mon. Not. R. Astron. Soc. 414, 888­912 (2011) doi:10.1111/j.1365-2966.2011.18496.x The ATLAS3D, PO Box 1312, D-85478 Garching, Germany 8Space Telescope European Coordinating Facility, European in the course of the ATLAS3D project. We exploit the R parameter (previously used via a constant threshold value

Kuntschner, Harald

366

Mon. Not. R. Astron. Soc. 000, 117 (2012) Printed 30 November 2012 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D project - XV. The hot-gas content of early-type galaxies: fast versus slow rotators Marc Sarzi,1 Box 1312, D-85478 Garching, Germany 11Space Telescope European Coordinating Facility, European-derived photometric and spectroscopic measure- ments for the early-type galaxies observed as part of the ATLAS3D

Bureau, Martin

367

Mon. Not. R. Astron. Soc. 000, 127 (2012) Printed 18 December 2012 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas-85478 Garching, Germany 11Space Telescope European Coordinating Facility, European Southern Observatory gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS3D sample. Our goal

Bureau, Martin

368

Mon. Not. R. Astron. Soc. 000, 116 (2012) Printed 19 March 2014 (MN LATEX style file v2.2) The ATLAS3D  

E-Print Network [OSTI]

.2) The ATLAS3D Project - XXVIII. Dynamically-driven star formation suppression in early-type galaxies Timothy A Potsdam, Germany 15Space Telescope European Coordinating Facility, European Southern Observatory, Karl rate (SFR) in the early-type galaxies (ETGs) of the ATLAS3D sample, based on Wide-field Infrared Survey

Bureau, Martin

369

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

370

New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks,  

E-Print Network [OSTI]

#12;New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks, including Buildings Tom Egill Hauksson #12;SCSN: what does it encompass? · ~360 Seismic Stations · ~60 stations from partners SCSN/SCEDC total of ~26 FTE's #12;Crowd Sourced Networks · Current broadband seismic network

Greer, Julia R.

371

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Biasi, Et Al., 2008) Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Ileana Tibuleac, Leiph Preston (2008) Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2008)&oldid=425638" Category: Exploration Activities What links here

372

Shape-based retrieval and analysis of 3D models  

Science Journals Connector (OSTI)

Large repositories of 3D data are rapidly becoming available in several fields, including mechanical CAD, molecular biology, and computer graphics. As the number of 3D models grows, there is an increasing need for computer algorithms to help people find ...

Thomas Funkhouser; Michael Kazhdan

2004-08-01T23:59:59.000Z

373

WirePrint: 3D printed previews for fast prototyping  

Science Journals Connector (OSTI)

Even though considered a rapid prototyping tool, 3D printing is so slow that a reasonably sized object requires printing overnight. This slows designers down to a single iteration per day. In this paper, we propose to instead print low-fidelity wireframe ... Keywords: 3D printing, rapid prototyping

Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer, François Guimbretière, Patrick Baudisch

2014-10-01T23:59:59.000Z

374

Surface light fields for 3D photography Daniel N. Wood  

E-Print Network [OSTI]

Surface light fields for 3D photography Daniel N. Wood A dissertation submitted in partial This is to certify that I have examined this copy of a doctoral dissertation by Daniel N. Wood and have found for 3D photography by Daniel N. Wood Chair of Supervisory Committee: Associate Professor Brian L

Washington at Seattle, University of

375

Mastering AutoCAD Civil 3D 2011  

Science Journals Connector (OSTI)

The only comprehensive reference and tutorial for Civil 3D 2011 Civil 3D is Autodesks popular, robust civil engineering software, and this fully updated guide is the only one endorsed by Autodesk to help students prepare for certification exams. Packed ...

P. James E. Wedding; Scott McEachron

2010-08-01T23:59:59.000Z

376

Automatic 3D modeling of palatal plaster casts Marco Andreetto  

E-Print Network [OSTI]

Automatic 3D modeling of palatal plaster casts Marco Andreetto Dept. of Information Engineer-form surfaces of anatomi- cal interest. 1. Introduction Plaster models derived from palate's impressions. A data-base with the 3D models of the plaster casts, which could be called a "virtual gypsotheque", can

Abu-Mostafa, Yaser S.

377

Chopper: Partitioning models into 3D-printable parts  

E-Print Network [OSTI]

3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a ...

Luo, Linjie

378

3D Wavelet-Based Filter and Method  

DOE Patents [OSTI]

A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

Moss, William C. (San Mateo, CA); Haase, Sebastian (San Francisco, CA); Sedat, John W. (San Francisco, CA)

2008-08-12T23:59:59.000Z

379

3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM  

E-Print Network [OSTI]

been used for decades by biologists and clinicians to isolate main sites of body heat loss by biologists and clinicians to isolate main sites of body heat loss and to assist with diagnosis3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM INFLAMMATION THERMOGRAPHIE 3D

Nebel, Jean-Christophe

380

ESG2006, Grenoble, 30/08-01/09/2006 Third International Symposium on the Effects of Surface Geology on Seismic Motion  

E-Print Network [OSTI]

Lawrence Livermore National Laboratory (LLNL), USA. E3D is listed by the OECD's Nuclear Energy AgencyESG2006, Grenoble, 30/08-01/09/2006 1 Third International Symposium on the Effects of Surface Benchmark: Seismic Modeling Trials Using E3D with the ModelAssembler Community Modeling Environment John N

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization  

SciTech Connect (OSTI)

In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator and the wide-angle correction preserve more dynamic information carried by the elastic waves. The vector imaging condition solves the polarization problem of converted wave imaging. Both P-P and P-S images can be calculated. We also use converted waves to improve the image of steep sub-salt structures. The synthetic data for the SEG/EAGE salt model are migrated with a generalized screen algorithm and for the converted PSS-wave path. All the sub-salt faults are properly imaged.

Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

2005-06-06T23:59:59.000Z

382

Distributed Acoustic and Seismic Sensing  

Science Journals Connector (OSTI)

An overview of fiber optic distributed acoustic and seismic sensor system architectures is presented.

Kirkendall, Clay

383

Fracture Properties From Seismic Scattering  

E-Print Network [OSTI]

Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

Burns, Daniel R.

2007-01-01T23:59:59.000Z

384

3D printing rises to the occasion | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Features Features 2014 2013 2012 2011 2010 News Home | ORNL | News | Features | 2013 SHARE 3D printing rises to the occasion ORNL group shows how it's done, one layer at a time A perforated metal box produced by an Arcam 3D printer. This detailed A perforated metal box produced by an Arcam 3D printer. This detailed "calibration" part illustrates some of the versatility of 3D printing. Photo: Jason Richards (hi-res image) Things have come a long way since the mid-1980s when 3D Systems cofounder Chuck Hull worked out the technology to print objects in three dimensions, one very thin layer at a time. Hull called his new technology "stereolithography." In it, a guided beam of ultraviolet light is focused on a vat of liquid polymer, solidifying areas where it hits. When one layer is complete, the

385

Energy Savings in 3-D | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy savings in 3-D Energy savings in 3-D ORNL researchers show production, energy advantages of additive manufacturing ORNL 3-D printer in use. ORNL 3-D printer in use. Researchers at the Department of Energy's Oak Ridge National Laboratory are working with aircraft makers to determine energy savings through the use of additive manufacturing, also known as 3-D printing. Sachin Nimbalkar and his ORNL colleagues are printing airplane parts to show additive manufacturing's potential as a technology that should be considered foundational to processes seeking more energy efficiency. Additive manufacturing builds products precisely, layer by layer, and is distinctly different from traditional subtractive manufacturing processes, which take raw material and cut it down into a desired shape and size.

386

Merging BIM and GIS using ontologies application to urban facility management in \\{ACTIVe3D\\}  

Science Journals Connector (OSTI)

Abstract This article presents the research work done in order to reduce the gap of heterogeneity between Geographic Information System and Building Information Models. The goal is to extend a platform dedicated to facility management called ACTIVe3D. We want to enlarge its scope to take into account the management of urban elements contained in the building environment, as well as other buildings. The particularity of the platform is that data can be accessed either by a semantic view or through a 3D interface. The SIGA3D project describes a set of processes that aims, for all the stakeholders of urban projects, to manage pieces of information through all the lifecycle of construction projects. To solve the heterogeneity problem between BIM and GIS, we developed a semantic extension to the BIM called UIM (Urban Information Modeling). This extension defines spatial, temporal and multi-representation concepts to build an extensible ontology. The knowledge database can be populated with information coming from standards like IFC and CityGML. This information system has been adapted and implemented into the existing platform and is today fully operational and used by thousands of users.

Clement Mignard; Christophe Nicolle

2014-01-01T23:59:59.000Z

387

4D seismic data acquisition method during coal mining  

Science Journals Connector (OSTI)

In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions.

Wen-Feng Du; Su-Ping Peng

2014-01-01T23:59:59.000Z

388

Method of migrating seismic records  

DOE Patents [OSTI]

The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)

2000-01-01T23:59:59.000Z

389

A High-Throughput 3-D X-ray Microtomography System with Real-Time 3-D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Throughput 3-D X-ray Microtomography System with Real-Time 3-D Throughput 3-D X-ray Microtomography System with Real-Time 3-D Reconstruction A high-throughput x-ray microtomography system (XMS) that can acquire, reconstruct, and interactively display rendered 3-D images of a sample at micrometer-scale resolution within minutes has been developed at Advanced Photon Source (APS) beamline 2-BM, which is managed by the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT). This system could bring better understanding of an array of scientific and technological problems, ranging from failure in microelectronic devices to structures in biological samples. A rendered image from a three-dimensional tomographic reconstruction of a cricket, obtained with the x-ray microtomography system. The image has been digitally cut at different planes to show the internal structures of the cricket's head.

390

Resonant seismic emission of subsurface objects  

E-Print Network [OSTI]

E . , and S. Keydar, 1998, Seismic monitoring of diffractionthe barrel. The Resonant Seismic Emission Source ReceiverFigure 1. Geometry o f the seismic experiment to locate a

Korneev, Valeri A.

2010-01-01T23:59:59.000Z

391

SEI0: CENS Seismic Research: Overview  

E-Print Network [OSTI]

catastrophe (from Berry 2002). Seismic waves show a smearedSeismology/index.html CENS Seismic Research: OverviewRecent developments in seismic source theory argue that

2005-01-01T23:59:59.000Z

392

Seismic demands in precast concrete diaphragms  

E-Print Network [OSTI]

and Mander, J. B. (2003). “Seismic Performance of PrecastState-of-the-Art Report on Seismic Resistance of Prestresseddevelopment of a diaphragm seismic design methodology,” PCI

Schoettler, Matthew John

2010-01-01T23:59:59.000Z

393

Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs  

SciTech Connect (OSTI)

Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

Michael Cornforth

2012-03-26T23:59:59.000Z

394

3D Spectroscopy in the Virtual Observatory: Current Status  

E-Print Network [OSTI]

Three cornerstones for the 3D data support in the Virtual Observatory are: (1) data model to describe them, (2) data access services providing access to fully-reduced datasets, and (3) client applications which can deal with 3D data. Presently all these components became available in the VO. We demonstrate an application of the IVOA Characterisation data model to description of IFU and Fabry-Perot datasets. Two services providing SSA-like access to 3D-spectral data and Characterisation metadata have been implemented by us: ASPID-SR at SAO RAS for accessing IFU and Fabry-Perot data from the Russian 6-m telescope, and the Giraffe Archive at the VO Paris portal for the VLT FLAMES-Giraffe datasets. We have implemented VO Paris Euro3D Client, handling Euro3D FITS format, that interacts with CDS Aladin and ESA VOSpec using PLASTIC to display spatial and spectral cutouts of 3D datasets. Though the prototype we are presenting is yet rather simple, it demonstrates how 3D spectroscopic data can be fully integrated into the VO infrastructure.

Igor Chilingarian; Francois Bonnarel; Mireille Louys; Ivan Zolotukhin; Frederic Royer; Isabelle Jegouzo; Pierre Le Sidaner; Pierre Fernique; Thomas Boch

2007-11-02T23:59:59.000Z

395

3D silicon pixel detectors for the ATLAS Forward Physics experiment  

E-Print Network [OSTI]

The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2-3 mm). This implies the need of slim edges of about 100-200 $\\mu$m width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 $\\mu$m width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 10$^{15}$ n$_{eq}$/cm$^2$ with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al ma...

Lange, Jörn; Grinstein, Sebastian; Paz, Ivan Lopez

2015-01-01T23:59:59.000Z

396

Grafta: A 3D environment for biomolecular networks  

Science Journals Connector (OSTI)

The importance of a comprehensive environment for the depiction of biomolecular networks in the domain of system biology has been emphasised after the completion of genomic, proteomic and metabolomic initatives. Grafta is a software application developed for the three dimensional illustration of biomolecular interactions such as protein interaction networks. Grafta allows its user to move in a 3D environment through a complex assembly of biomolecules represented by 3D objects such as spheres. Their interactions are displayed by an array of 3D tubes. One novelty in Grafta is its anthropomorphic navigation of the viewpoint with respect to the displayed biomolecular network.

Peyman Najmabadi; Hans He Lee; Tony Aung; Aung Thuya; Julio Ng; James J. La Clair; Michael D. Burkart

2009-01-01T23:59:59.000Z

397

Controlling Tokamak Geometry with 3D Magnetic Perturbations  

E-Print Network [OSTI]

It is shown that small externally applied magnetic perturbations can significantly alter important geometric properties of magnetic flux surfaces in tokamaks. Through 3D shaping, experimentally relevant perturbation levels are large enough to influence turbulent transport and MHD stability in the pedestal region. It is shown that the dominant pitch-resonant flux surface deformations are primarily induced by non-resonant 3D fields, particularly in the presence of significant axisymmetric shaping. The spectral content of the applied 3D field can be used to control these effects.

Bird, Thomas M

2014-01-01T23:59:59.000Z

398

Shallow quantum well excitons: 2D or 3D?  

Science Journals Connector (OSTI)

A new regime is obtained in semiconductor heterostructures with constituents of nearly identical band gaps. Previously, it has been shown that even extremely shallow quantum wells (SHQWs) exhibit excitonic and electroabsorption properties typical of a 2D system, but 3D transport features. We show that, surprisingly, even when carriers are two-dimensionally confined in SHQWs, the hole spin relaxation is extremely fast (?400 fsec) as in the bulk (3D) limit and that a 2D-3D transition in the hole spin dynamics in GaAs/AlxGa1-xAs SHQWs takes place at x?5%.

I. Brener; W. H. Knox; K. W. Goossen; J. E. Cunningham

1993-01-18T23:59:59.000Z

399

Approaches for Additive Manufacturing of 3D Electronic Applications  

Science Journals Connector (OSTI)

Abstract Additive manufacturing processes typically used for mechanical parts can be combined with enhanced technologies for electronics production to enable a highly flexible manufacturing of personalized 3D electronic devices. To illustrate different approaches for implementing electrical and electronic functionality, conductive paths and electronic components were embedded in a powder bed printed substrate using an enhanced 3D printer. In addition, a modified Aerosol Jet printing process and assembly technologies adapted from the technology of Molded Interconnect Devices were applied to print circuit patterns and to electrically interconnect components on the surface of the 3D substrates.

J. Hoerber; J. Glasschroeder; M. Pfeffer; J. Schilp; M. Zaeh; J. Franke

2014-01-01T23:59:59.000Z

400

Comparison of 2D and 3D gamma analyses  

SciTech Connect (OSTI)

Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differences—for example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.

Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Bosca, Ryan [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); O’Daniel, Jennifer [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)] [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)

2014-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Three-dimensional seismic stratigraphic study of downdip Yegua sandstones, Edna Field, Jackson County, Texas  

E-Print Network [OSTI]

This study reports an investigation of the structure and stratigraphy of the downdip Yegua sandstones at Edna Field, Jackson County, South Texas. The study is based on 22.9 square miles of three dimensional (3-D) seismic data, well-logs from 15...

Trikania, Andra

2012-06-07T23:59:59.000Z

402

Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods  

Science Journals Connector (OSTI)

......wave. P-wave energy enters the shadow...generally has a lower frequency content compared...simulate the seismic response of 2D and 3D geological...2006. Finite-frequency Kernels based upon...2004. Finite-frequency tomography reveals...Circumventing storage limitations in variational......

Qinya Liu; Jeroen Tromp

2008-07-01T23:59:59.000Z

403

18 - Seismic Design  

Science Journals Connector (OSTI)

Abstract The damages and disruptions of the subsea pipelines caused by an earthquake may have severe effects on the service life, since it may lead to a significant financial loss due to service interruptions, fires, explosions, and environmental contamination. In general, the seismic analyses of the permanent ground deformation for buried and unburied pipes, and seismic ground waves for unburied pipes are required for designing pipeline systems. Many subsea pipelines are often buried for stability and mechanical protection in the shallow water area; otherwise, they are laid on the seabed. This chapter addresses available seismic design codes, standards and design criteria for subsea pipelines, a general design and analysis methodology for fault crossing and seismic ground wave, design and analysis examples using a static model for buried pipe subjected to permanent ground deformations due to the foundation failure, a time history dynamic model for unburied pipelines subjected to seismic ground waves, the mitigation methods for subsea pipelines to avoid seismic hazards including modifying loading and boundary conditions, modifying pipeline configuration, modifying pipeline route selection, and improving emergency response.

Qiang Bai; Yong Bai

2014-01-01T23:59:59.000Z

404

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Hydrate Reservoir  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 DE-FE0010160 Goal The primary goal of this research is to develop analytical techniques capable of quantitatively evaluating the nature of methane hydrate reservoir systems through modeling of their acoustic response using techniques that integrate rock physics theory, amplitude analysis, and spectral decomposition. Performers Fugro GeoConsulting, Inc., Houston TX Background Past efforts under the DOE-supported Gulf of Mexico Joint Industry project included the selection of well locations utilizing prospectivity analysis based primarily on a petroleum systems approach for gas hydrate using 3-D exploration seismic data and derivative analyses that produced predicted

405

Software: DIF3D - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D D Software: ETOE-2 MC2-2 SDX DIF3D DIF3DK VIM REBUS-3 RCT ORIGEN-RA VARI3D SE2-ANL (SUPERENERGY2) SAS4A/SASSYS-1 SAS-DIF3DK MSET PRODIAG Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Software DIF3D (Diffusion and Transport Theory Codes) Bookmark and Share Standard Code Description NAME AND TITLE DIF3D 10.0: Code System Using Variational Nodal Methods and Finite Difference Methods to Solve Neutron Diffusion and Transport Theory Problems. CONTRIBUTOR K. L. Derstine Nuclear Engineering Division Argonne National Laboratory, Argonne, Illinois 60439. CODING LANGUAGE AND COMPUTER Fortran 90 and C source code for Linux PCs, MacOSX and SUN, (C00784MNYCP00).

406

3-D Earth model more accurately pinpoints explosions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty Organization with more accurately locating all types of explosions. October 25, 2013 A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole. This model is used as the starting point to calculate the full SALSA3D velocity model. A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole.

407

3D Photonic Crystals for Photon Management in Solar Cells  

Science Journals Connector (OSTI)

Photon management is a key element to optimize the optical and electro-optical performance of solar cells. The potential of 3D photonic crystals for photon management in solar cells...

Wehrspohn, Ralf; Sprafke, Alexander

408

3-D Thermoconvection in an Anisotropic Inclined Sedimentary Layer  

Science Journals Connector (OSTI)

......3-D thermoconvection in an anisotropic inclined sedimentary layer...basin generally present an anisotropic structure with maximum permeability...We extend these results to anisotropic media, with anisotropies...are usually embedded in a shale matrix (Busch 1974; Pettijohn......

Anne Ormond; Pierre Genthon

1993-02-01T23:59:59.000Z

409

3D Printing a Classic | Department of Energy  

Energy Savers [EERE]

a Classic 3D Printing a Classic January 15, 2015 - 4:02pm Addthis The team from the Oak Ridge Manufacturing Demonstration Facility is at the Detroit Auto Show this week to...

410

3D Modelling of Enhanced Surface Emission by Surface Roughening  

Science Journals Connector (OSTI)

3D FDTD is used to study the effect of surface roughening on the emission of a point source embedded in GaAs with a mirror behind the dipole. Enhancement factors of 10:1 are observed.

Buss, Ian J; Cryan, Martin J; Ho, Daniel; Craddock, Ian; Nash, Geoff; Haigh, Mary K; Railton, Chris; Rarity, John G

411

Investigation of 3-D Heat Transfer Effects in Fenestration Products.  

E-Print Network [OSTI]

??ABSTRACT INVESTIGATION OF 3-D HEAT TRANSFER EFFECTS IN FENESTRATION PRODUCTS SEPTEMBER 2010 SNEH KUMAR B. TECH., INDIAN INSTITUTE OF TECHNOLOGY, CHENNAI INDIA M.S.M.E., UNIVERSITY OF… (more)

Kumar, Sneh

2010-01-01T23:59:59.000Z

412

3D Printed Car at the International Manufacturing Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Courtesy of Local Motors Carbon Fiber Pellets 4 of 6 Carbon Fiber Pellets Pellets of plastic mixed with carbon fiber were used in the production process of the 3D-printed car....

413

Introducing 3D Venn and Euler Diagrams Peter Rodgers1  

E-Print Network [OSTI]

University of Kent, UK p.j.rodgers@kent.ac.uk 2 Autodesk, UK 3 Visual Modelling Group, University of Brighton Venn-3s. www.eulerdiagrams.com/3D/workshop/. Using the freely available Autodesk Design Review software

Kent, University of

414

BUILD YOUR OWN 3D GLASSES! Oaktag (sturdy poster board)  

E-Print Network [OSTI]

BUILD YOUR OWN 3D GLASSES! Materials · Oaktag (sturdy poster board) · Scissors · Clear tape · Basic or sturdy poster board. Cut the glasses out making sure to also cut out the eyeholes. Step 3 Tape the red

Christian, Eric

415

3D Maneuvers For Asymmetric Under-Actuated Rigid Body  

E-Print Network [OSTI]

single-axis maneuvers and (ii) three-dimensional (3D) coupled maneuvers. The sequential single-axis maneuver strategies are established for torque, time, and fuel minimization applications. The resulting control laws are more complicated than...

Kim, Dong Hoon

2013-08-01T23:59:59.000Z

416

3D Printed Quantum Dot Light-Emitting Diodes  

Science Journals Connector (OSTI)

Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. ... Finally, we show that novel architectures that are not easily accessed using standard microfabrication techniques can be constructed, by 3D printing a 2 × 2 × 2 cube of encapsulated LEDs, in which every component of the cube and electronics are 3D printed. ... These include (1) increasing the resolution of the 3D printer such that smaller devices can be printed, (2) improving the performance and yield of the printed devices, and (3) incorporating other classes of nanoscale functional building blocks and devices, including semiconductor, plasmonic, and ferroelectric materials. ...

Yong Lin Kong; Ian A. Tamargo; Hyoungsoo Kim; Blake N. Johnson; Maneesh K. Gupta; Tae-Wook Koh; Huai-An Chin; Daniel A. Steingart; Barry P. Rand; Michael C. McAlpine

2014-10-31T23:59:59.000Z

417

Quantitative Data Analysis Methods for 3D Microstructure  

E-Print Network [OSTI]

of electrochemical ceramic devices such as solid oxide fuel and electrolyser cells depends on the distributionQuantitative Data Analysis Methods for 3D Microstructure Characterization of Solid Oxide Cells

418

3-D Earth model more accurately pinpoints explosions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty...

419

3D EMHD reconnection in a laboratory plasma  

Science Journals Connector (OSTI)

In a large laboratory plasma, reconnection of three-dimensional (3D) magnetic fields is studied in the parameter regime of electron magnetohydrodynamics (EMHD). The field topologies are spheromak-like with two-di...

R. L. Stenzel; J. M. Urrutia; M. C. Griskey; K. D. Strohmaier

2001-06-01T23:59:59.000Z

420

A fast 3D full-wave solver for nanophotonics  

E-Print Network [OSTI]

Conventional fast integral equation solvers seem to be ideal approaches for simulating 3-D nanophotonic devices, as these devices are considered to be open structures, generating fields in both an interior channel and in ...

Zhang, Lei, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Segmentation of 3D Meshes through Spectral Clustering  

E-Print Network [OSTI]

2 , 2/ , ji eji D W - = 2/12/1 -- = WLLO L : diagonal matrix of W 's row sums Normalization PG '04Segmentation of 3D Meshes through Spectral Clustering Rong Liu, Hao Zhang GrUVi Lab, Simon Fraser

Zhang, Richard "Hao"

422

3D pose estimation and segmentation using specular cues  

E-Print Network [OSTI]

We present a system for fast model-based segmentation and 3D pose estimation of specular objects using appearance based specular features. We use observed (a) specular reflection and (b) specular flow as cues, which are ...

Raskar, Ramesh

423

3D printing: a valuable resource in human anatomy education  

Science Journals Connector (OSTI)

In addition to known methods such as plastination and Thiel method embalming, a new three-dimensional printing system (3D printing) has been developed recently—an innovative approach...

Mauro Vaccarezza; Veronica Papa

2014-10-01T23:59:59.000Z

424

3D Tracking at the Nanoscale | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Tracking at the Nanoscale A new theory shows that reactivity at catalytic sites inside narrow pores is controlled by how molecules move at the pore openings. Like cars...

425

An alternative derivation of the Minimal massive 3D gravity  

E-Print Network [OSTI]

By using the algebra of exterior forms and the first order formalism with constraints, an alternative derivation of the field equations for the Minimal massive 3D gravity model is presented.

Ahmet Baykal

2014-08-22T23:59:59.000Z

426

Computational imaging for 3D phase and coherence retrieval |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational imaging for 3D phase and coherence retrieval Wednesday, December 10, 2014 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Laura Waller (UC Berkeley) Program...

427

Observing Warm Clouds in 3D Using ARM Scanning Cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

428

3D Representations for Software Visualization Andrian Marcus  

E-Print Network [OSTI]

research from software analysis, information visualization, human-computer interaction, and cognitive, texture, abstraction mechanism, and by supporting new manipulation techniques and user interfaces.2 [Information Interfaces and Presentation] User Interfaces Keywords: Software visualization, 3D visualization

429

Further Analysis of 3D Magnetotelluric Measurements Over the Coso  

Open Energy Info (EERE)

Further Analysis of 3D Magnetotelluric Measurements Over the Coso Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: At last year's GRC annual meeting we presented initial results of a 3D investigation of the Coso Geothermal field utilizing a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling over the east flank of the field (Newman et al., 2005). Motivation for this study is that electrical resistivity/ conductivity mapping can contribute to better improved understanding of enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling

430

3-D Earth model more accurately pinpoints explosions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty Organization with more accurately locating all types of explosions. October 25, 2013 A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole. This model is used as the starting point to calculate the full SALSA3D velocity model. A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole.

431

D3-D7 holographic dual of a perturbed 3D CFT  

Science Journals Connector (OSTI)

An appropriately oriented D3-D7-brane system is the holographic dual of relativistic fermions occupying a 2+1-dimensional defect embedded in a 3+1-dimensional spacetime. The fermions interact via fields of N=4 Yang-Mills theory in the 3+1-dimensional bulk. Recently, using internal flux to stabilize the system in the probe N7?N3 limit, a number of solutions which are dual to conformal field theories with fermion content have been found. We use holographic techniques to study perturbations of a particular one of the conformal field theories by relevant operators. Generally, the response of a conformal field theory to such a perturbation grows and becomes nonperturbative at low energy scales. We shall find that a perturbation which switches on a background magnetic field B and fermion mass m induces a renormalization group flow that can be studied perturbatively in the limit of small m2/B. We solve the leading order explicitly. We find that, for one particular value of internal flux, the system exhibits magnetic catalysis, the spontaneous breaking of chiral symmetry enhanced by the presence of the magnetic field. In the process, we derive formulas predicting the Debye screening length of the fermion-antifermion plasma at finite density and the diamagnetic moment of the ground state of the fermion system in the presence of a magnetic field.

Hamid Omid and Gordon W. Semenoff

2013-07-10T23:59:59.000Z

432

Seismic properties of a Venezuelan heavy oil in water emulsion  

SciTech Connect (OSTI)

Several procedures for the production of low-viscosity, surfactant-stabilized, easy-transportable dispersions of heavy crude oil in water-briefly, oil in water (or o/w) emulsions - have been recently patented. Some of them propose to form the o/w emulsion in the reservoir, after the injection of a mixture of water and surfactants, increasing significantly the per well daily production. Progression of the o/w emulsion front, through the reservoir to the production wells, can be monitored in seismic planar slices with successive 3D seismic surveys (413 seismic), if enough contrast exists between the seismic velocity value of the o/w emulsion and the one of the oil in place. To facilitate the analysis of the contrast, this study presents high frequency acoustic velocity measurements performed in the laboratory. The experimental setup includes two reflectors and an ultrasonic transducer with double burst train emission. The estimated velocity precision is 0.02%. The measured samples are: a Venezuelan heavy o/w emulsion, a mixture of the same heavy oil and gasoil and a saturated sandstone core containing the o/w emulsion. Additionally, seismic velocities of the actual pore fluids - live oil and five o/w emulsion - and saturated sandstone are calculated using the above laboratory measurements, Wood`s equation, and Gassman`s and Biot`s models.

Maldonado, F.; Liu, Y.; Mavko, G.; Mukerji, T. [Stanford Univ., CA (United States)

1996-08-01T23:59:59.000Z

433

3D Continuum radiative transfer in complex dust configurations around young stellar objects and active nuclei II. 3D Structure of the dense molecular cloud core Rho Oph D  

E-Print Network [OSTI]

Constraints on the density and thermal 3D structure of the dense molecular cloud core Rho Oph D are derived from a detailed 3D radiative transfer modeling. Two ISOCAM images at 7 and 15 micron are fitted simultaneously by representing the dust distribution in the core with a series of 3D Gaussian density profiles. Size, total density, and position of the Gaussians are optimized by simulated annealing to obtain a 2D column density map. The projected core density has a complex elongated pattern with two peaks. We propose a new method to calculate an approximate temperature in an externally illuminated complex 3D structure from a mean optical depth. This T(tau)-method is applied to a 1.3 mm map obtained with the IRAM 30m telescope to find the approximate 3D density and temperature distribution of the core Rho Oph D. The spatial 3D distribution deviates strongly from spherical symmetry. The elongated structure is in general agreement with recent gravo-turbulent collapse calculations for molecular clouds. We discuss possible ambiguities of the background determination procedure, errors of the maps, the accuracy of the T(tau)-method, and the influence of the assumed dust particle sizes and properties.

J. Steinacker; A. Bacmann; Th. Henning; R. Klessen; M. Stickel

2004-10-26T23:59:59.000Z

434

Development of an embedded 3D graphics processor  

E-Print Network [OSTI]

DEVELOPMENT OF AN EMBEDDED 3D GRAPHICS PROCESSOR A Thesis by BRIAN MURRAY Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2002 Major... Subject: Computer Engineering DEVELOPMENT OF AN EMBEDDED 3D GRAPHICS PROCESSOR A Thesis by BRIAN MURRAY Submitted to Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style...

Murray, Brian

2012-06-07T23:59:59.000Z

435

Object segmentation and classification using 3-D range camera  

Science Journals Connector (OSTI)

This paper proposes a vision system using a 3-D range camera for scene segmentation and pedestrian classification. The system detects and segments objects in the foreground, measures their distances to the camera, and classifies them into pedestrians ... Keywords: 3-D range image segmentation, Assistive navigation, Feature extraction, Image segmentation evaluation, Object classification, Pedestrian classification, RGB-D image processing, Range/intensity image processing

Xue Wei; Son Lam Phung; Abdesselam Bouzerdoum

2014-01-01T23:59:59.000Z

436

Reconhecimento de modelos 3D em realidade aumentada móvel  

Science Journals Connector (OSTI)

In order to use Mobile Augmented Reality (AR) in a Participatory Design of a leisure area, the application equipAR! for iPad was developed. The purpose of this application is to enable the visualization and interaction in AR of 3D models of urban equipment ... Keywords: iPad application, mobile augmented reality, perception, recognition of 3D models, tangible augmented reality

Ana Regina M. Cuperschmid; Regina Coeli Ruschel; Ana Maria R. de G. Monteiro

2013-10-01T23:59:59.000Z

437

Patient specific 3D printed phantom for IMRT quality assurance  

Science Journals Connector (OSTI)

The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification.Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms.The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods.A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use.

Eric D Ehler; Brett M Barney; Patrick D Higgins; Kathryn E Dusenbery

2014-01-01T23:59:59.000Z

438

A 3D radiative transfer framework: II. line transfer problems  

E-Print Network [OSTI]

Higher resolution telescopes as well as 3D numerical simulations will require the development of detailed 3D radiative transfer calculations. Building upon our previous work we extend our method to include both continuum and line transfer. We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in 3D static atmospheres. The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a long-characteristics method. The approximate $\\Lambda$ operator is constructed considering nearest neighbors {\\em exactly}. The code is parallelized over both wavelength and solid angle using the MPI library. We present the results of several test cases with different values of the thermalization parameter and two choices for the temperature structure. The results are directly compared to 1D spherical tests. With our current grid setup the interior resolution is much lower in 3D than in 1D, nevertheless the 3D results agree very well with the well-tested 1D calculations. We show that with relatively simple parallelization that the code scales to very large number of processors which is mandatory for practical applications. Advances in modern computers will make realistic 3D radiative transfer calculations possible in the near future. Our current code scales to very large numbers of processors, but requires larger memory per processor at high spatial resolution.

E. Baron; Peter H. Hauschildt

2007-03-16T23:59:59.000Z

439

Toward single cell traction microscopy within 3D collagen matrices  

SciTech Connect (OSTI)

Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

2013-10-01T23:59:59.000Z

440

3D printing facilitated scaffold-free tissue unit fabrication  

Science Journals Connector (OSTI)

Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell–cell adhesion, tissue formation and maturation.

Yu Tan; Dylan J Richards; Thomas C Trusk; Richard P Visconti; Michael J Yost; Mark S Kindy; Christopher J Drake; William Scott Argraves; Roger R Markwald; Ying Mei

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Representation and visualization of variability in a 3D anatomical atlas using the kidney as an example  

E-Print Network [OSTI]

of the human body can be constructed from cross-sectional images generated e.g. by computer tomography (CT or the Visible Korean Human. data set. Using these datasets numerous research projects for the development Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany ABSTRACT Computer-based 3D atlases allow

Lübeck, Universität zu

442

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

443

Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D Printed THz Optics  

Science Journals Connector (OSTI)

We characterize the terahertz (THz) properties of several materials which can be used for fused material deposition 3D printing. We identify Polystyrene as a material which ... compromise between printability and...

S. F. Busch; M. Weidenbach; M. Fey…

2014-10-01T23:59:59.000Z

444

Integrating seismic exploration methods into a geological sciences curriculum at Brigham Young Unversity  

Science Journals Connector (OSTI)

The continuing expansion in petroleum and other resource exploration and in geological hazard assessment for infrastructure development have combined to dramatically increase the need for training of university students in seismic imaging methods. This need is being met at Brigham Young University (BYU) by forming alliances or collaborations with private industry and government in order to provide financial support for research using seismic techniques to obtain access to proprietary datasets and to place students in the workplace as part of their university experience. Infrastructure support has been provided by BYU in the form of acquisition of seismic recording equipment procuring of state?of?the?art software for data processing and geologic mapping and building of a dedicated 3D visualization lab. This infrastructure creates an environment that mimics research and exploration programs in private industry. Seismicgeophysical research foci at BYU include (1) seismic characterization of deep reservoirs for carbon sequestration (2) 3D seismic attribute analysis for petroleum prospecting (3) high?resolution seismicexploration applied to landslide and earthquake hazard assessments (4) exploration of deep sedimentary basins that may be prospective for oil or gas and (5) oilfield applications of seismic mapping in order to detect and map shallow faults that may function as leakage pathways.

2007-01-01T23:59:59.000Z

445

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

® ® © 2012 Paulsson, Inc. (PI) Development of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration DE-FE0004522 Björn N.P. Paulsson Paulsson, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 ® © 2012 Paulsson, Inc. (PI) © 2012 Paulsson, Inc. (PI) * Goals: Design, build, and test a high performance borehole seismic receiver system to allow cost effective geologic Carbon Capture and Storage (CCS) * Objectives: A: Develop technology to allow deployment of a 1,000 level drill pipe deployed 3C Fiber Optic Geophone (FOG) receiver array for deep

446

3D Image Viz-Analysis Tools and V3D Development Hackathon, July 26 -August 8, 2010  

E-Print Network [OSTI]

- Hacking / Dinner at Bob's Pub #12;3D Image Viz-Analysis Tools and V3D Development Hackathon, July 26, Zongcai Ruan, and Luis Ibanez 12:00-1:00 pm Lunch 1:00 pm- Hacking / Dinner at Bob's Pub July 28, 29, 30 to talk about their problems. See schedule below) 12:00-1:00 pm Lunch 1:00 pm- Hacking / Dinner at Bob

Peng, Hanchuan

447

Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

Parra, J.; Collier, H.; Angstman, B.

1997-08-01T23:59:59.000Z

448

Introductory Talk: Whole Frog Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introductory Talk: Whole Frog Project Introductory Talk: Whole Frog Project Introduction Scientific Visualization The Technique for Acquiring and Processing the Frog Data Examples of 3D Reconstructions Virtual Frog Dissection over the Web INTRODUCTION Dual Purpose: + Education . Introduce the concepts of modern, computer based 3D visualization Modeling and displaying 3D structures directly from 3D images obtained, for example, from MRI imaging (biological specimens), X-ray CT imaging (industrial imaging of non-biological objects), and direct generation from mathematical descriptions, is an important aspect of visualization. . Demonstrate the power of whole body, 3D imaging of anatomy The education goal of the Whole Frog Project is to provide high school biology classes the ability to explore the anatomy of a frog by

449

NEBU_3D: A fast pseudo-3D photoionization code for aspherical planetary nebulae and HII regions  

E-Print Network [OSTI]

We describe a pseudo-3D photoionization code, NEBU_3D and its associated visualization tool, VIS_NEB3D, which are able to easily and rapidly treat a wide variety of nebular geometries, by combining models obtained with a 1D photoionization code. We also present a tool, VELNEB_3D, which can be applied to the results of 1D or 3D photoionization codes to generate emission line profiles, position-velocity maps and 3D maps in any emission line by assuming an arbitrary velocity field. As examples of the capabilities of these new tools, we consider three very different theoretical cases. The first one is a blister HII region, for which we have also constructed a spherical model (the spherical impostor) which has exactly the same Hbeta surface brightness distribution as the blister model and the same ionizing star. The second example shows how complex line profiles can be obtained even with a simple expansion law if the nebula is bipolar and the slit slightly off-center. The third example shows different ways to produce line profiles that could be attributed to a turbulent velocity field while there is no turbulence in the model.

C. Morisset; G. Stasinska; M. Pena

2005-09-22T23:59:59.000Z

450

2D?3D polycatenated and 3D?3D interpenetrated metal–organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands  

SciTech Connect (OSTI)

Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D?3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of H{sub 2} at 100 bar and 298 K. • Complexes display blue fluorescent emission bands.

Erer, Hakan [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Ye?ilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Ar?c?, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, ?stanbul (Turkey); Büyükgüngör, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz May?s University, 55139 Samsun (Turkey)

2014-02-15T23:59:59.000Z

451

Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval Mohamed Chaouch, Anne Verroust-Blondet  

E-Print Network [OSTI]

Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval Mohamed Chaouch, Anne.Chaouch,Anne.Verroust}@inria.fr Shape Modeling International'06, Matsushima, June 14-16, 2006 Abstract We present a new approach for 3D model indexing and retrieval using 2D/3D shape descriptors based on silhou- ettes or depth-buffer images

Paris-Sud XI, Université de

452

SunFloor 3D: A Tool for Networks on Chip Topology Synthesis for 3D Systems on Ciprian Seiculescu , Srinivasan Murali  

E-Print Network [OSTI]

SunFloor 3D: A Tool for Networks on Chip Topology Synthesis for 3D Systems on Chips Ciprian an efficient Network on Chip (NoC) intercon- nect for a 3D SoC that not only meets the application performance constraints, but also the constraints imposed by the 3D technology, is a significant challenge. In this work

De Micheli, Giovanni

453

Controllable seismic source  

DOE Patents [OSTI]

An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

2014-08-19T23:59:59.000Z

454

Propagation in 3D of microwaves through density perturbations  

E-Print Network [OSTI]

Simulations using 3D and 2D full-wave codes have shown that edge filaments in tokamak plasmas can significantly affect the propagation of microwaves across a broad frequency spectrum, resulting in scattering angles of up to 46 degrees. Parameter scans were carried out for density perturbations comparable in width and amplitude to MAST filaments and the effect on the measured emission was calculated. 3D effects were discovered in the case of an obliquely incident beam. In general, the problem of EM propagation past wavelength-sized 3D inhomogeneities is not well understood, yet is of importance for both heating and diagnostic applications in the electron cyclotron frequency range for tokamaks, as well as atmospheric physics. To improve this understanding, a new cold-plasma code, EMIT-3D, was written to extend full-wave microwave simulations in magnetized plasmas to 3D, and make comparisons to the existing 2D code IPF-FDMC. This work supports MAST experiments using the SAMI diagnostic to image microwave emissio...

Williams, T R N; O'Brien, M R; Vann, R G L

2013-01-01T23:59:59.000Z

455

Seismic viscoelastic attenuation Submitted to  

E-Print Network [OSTI]

Seismic viscoelastic attenuation Submitted to: Encyclopedia of Solid Earth Geophysics Harsh Gupta-3046 USA E-mail: vernon.cormier@uconn.edu Tel: 860-486-3547 Fax: 860-486-3346 #12;SEISMIC VISCOELASTIC ATTENUATION Synonyms Seismic intrinsic attenuation Definitions Linear viscoelastic attenuation. The loss

Cormier, Vernon F.

456

AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA  

E-Print Network [OSTI]

AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA N. Demir* , E. Baltsavias, Detection, 3D Modelling ABSTRACT: In this work, an automated approach for 3D building roof modelling on the 3D building roof modelling. Buildings have a critical role for 3D city models, decision support

Schindler, Konrad

457

3 July 2003 HIRES3D -ITC Research Seminar -Robert Hack 1 HIGH RESOLUTION REMOTE SENSING  

E-Print Network [OSTI]

3 July 2003 HIRES3D - ITC Research Seminar - Robert Hack 1 HIRES3D HIGH RESOLUTION REMOTE SENSING FOR 3D GROUND MODELING AND CLASSIFICATION ITC Research Seminar, 3 July 2003 Robert Hack International Seminar - Robert Hack 2 HIRES3D HIGH RESOLUTION REMOTE SENSING FOR 3D GROUND MODELING AND CLASSIFICATION

Hack, Robert

458

A novel framework for exploring 3-D FPGAs with heterogeneous interconnect fabric  

Science Journals Connector (OSTI)

A heterogeneous interconnect architecture can be a useful approach for the design of 3-D FPGAs. A methodology to investigate heterogeneous interconnection schemes for 3-D FPGAs under different 3-D fabrication technologies is proposed. Application of ... Keywords: 3-D integration, 3-D reconfigurable architectures, FPGAs, design framework, interconnection fabric

Kostas Siozios; Vasilis F. Pavlidis; Dimitrios Soudris

2012-03-01T23:59:59.000Z

459

Borehole seismic monitoring of seismic stimulation at Occidental Permian Ltd's -- South Wason Clear Fork Unit  

E-Print Network [OSTI]

the distribution of seismic energy within the reservoir.Field Monitoring of ASR Seismic Stimulation Source at LostField Results from Seismic Stimulation, 17th International

Daley, Tom; Majer, Ernie

2007-01-01T23:59:59.000Z

460

Subduction Zone Seismic Experiment in Peru: Results From a Wireless Seismic Network  

E-Print Network [OSTI]

Sensing Subduction Zone Seismic Experiment in Peru:results from a wireless seismic Network Igor Stubailo,deployed in Peru. UCLA seismic line in Peru Lake Titicaca

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d seismic project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Seismic reflection imaging of the Mount Rose fault zone, Reno, Nevada  

E-Print Network [OSTI]

Seismic reflection imaging of the Mount Rose fault zone, Reno, Nevada Project Award Number: # G09AP expressed or implied, of the U.S. Government. #12;2 Abstract Five new high-resolution seismic reflection00071 Submission date: November 30, 2010 CGISS Technical Report 10-01 Lee M. Liberty Center

Barrash, Warren

462

The statistical nature of the upper continental crystalline crust derived from in situ seismic measurements  

Science Journals Connector (OSTI)

......crystalline crust. A recent large-scale geoscientific...German continental deep drilling project (KTB). It...in central Europe. A large program of seismic and...undertaken around the drilling location near Windischeschenbach...were measurements in the borehole, namely vertical seismic......

Guido Kneib

1995-09-01T23:59:59.000Z

463

A heightened radiosensitivity of stromal fibroblasts in 3D matrix  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heightened radiosensitivity of stromal fibroblasts in 3D matrix heightened radiosensitivity of stromal fibroblasts in 3D matrix X. Liu, K. McHenry & Z. Yuan. Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115 Our recent study suggested that stromal fibroblasts can sensitize cocultured epithelial cells to radiation exposure. Since stromal fibroblasts exhibit highly elongated cytoplasmic extensions (pseudopodia), which as shown in our previous study are essential to guide neighboring epithelial cells to form branching ducts, we asked whether radiation could interfere with the formation of fibroblasts' pseudopodium, which would then impair their ability to structurally and functionally support the associated epithelial cells. For this, HMFs were seeded in 3D and were either mock-treated or irradiated 24 h

464

3D Visualization of Water Transport in Ferns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Visualization of Water Transport 3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called xylem. However, in trees such as eucalyptus or redwood, the xylem tissue-better known as wood-bears the weight of the branches and leaves, giving rise to the often massive canopies characteristic of these species. We know much about water transport in woody plants, but considerably less about primitive plants such as ferns. Not only have ferns played an important role in the evolution of trees and shrubs but collectively, these plant forms are a fascinating study in contrasts because ferns use xylem strictly for water transport, leaving structural support to other tissues. Given the global distribution and impressive diversity of ferns, how has their xylem evolved to deal with variable habitat water availability?

465

A 3-D Link between Antibiotic Resistance and Brain Disease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A 3-D Link between Antibiotic Resistance and Brain Disease A 3-D Link between Antibiotic Resistance and Brain Disease The story of what makes certain types of bacteria resistant to a specific antibiotic has a sub-plot that gives insight into the cause of a rare form of brain degeneration among children, according to investigators at St. Jude Children's Research Hospital. The story takes a twist as key differences among the structures of its main molecular characters disappear and reappear as they are assembled in the cell. The story is based on a study of the three-dimensional (3-D) structure of an enzyme called pantothenate kinase, which triggers the first step in the production coenzyme A (CoA), a molecule that is indispensable to all forms of life. Enzymes are proteins that speed up biochemical reactions. CoA plays a pivotal role in the cells' ability to extract energy from fatty

466

3D gravity and non-linear cosmology  

E-Print Network [OSTI]

By the inclusion of an additional term, non-linear in the scalar curvature $R$, it is tested if dark energy could rise as a geometrical effect in 3D gravitational formulations. We investigate a cosmological fluid obeying a non-polytropic equation of state (the van der Waals equation) that is used to construct the energy-momentum tensor of the sources, representing the hypothetical inflaton in gravitational interaction with a matter contribution. Following the evolution in time of the scale factor, its acceleration, and the energy densities of constituents it is possible to construct the description of an inflationary 3D universe, followed by a matter dominated era. For later times it is verified that, under certain conditions, the non-linear term in $R$ can generate the old 3D universe in accelerated expansion, where the ordinary matter is represented by the barotropic limit of the van der Waals constituent.

F. P. Devecchi; M. L. Froehlich

2005-10-11T23:59:59.000Z

467

Building Energy Software Tools Directory: Look3D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Look3D Look3D Look3D logo. A Windows program that creates three-dimensional, full-color surface plots from columnar data. These surface plots can be rotated and customized. Keywords three-dimensional, full-color surface plots from columnar data, energy-use data Validation/Testing N/A Expertise Required No special expertise required. Users International. Audience Anyone analyzing time series data. Input ASCII space delimited numeric files. Input should have time stamp for maximum usability. Output Visualization on screen. Computer Platform Windows 3.1 or higher. Programming Language Visual C++ (source not available). Strengths Particularly useful for visualizing load profile changes over time. Weaknesses N/A Contact Company: Energy Systems Laboratory Address: Building Energy Analysis Division

468

ARM - Publications: Science Team Meeting Documents: Application of 3D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of 3D Radiative Transfer to Mountains Application of 3D Radiative Transfer to Mountains Chen, Yong UCLA Hall, Alex University of California, Los Angeles Liou, Kuo-Nan UCLA A large part of the land surface is not flat, but vertically structured. In mountain terrain, accurate calculations of the net radiation for slopes of varying gradient and orientation are of considerable importance in determining the energy budget of the surface. In order to evaluate the surface variations of total solar irradiance, it is necessary to calculate the direct, diffuse and terrain-reflected components. A 3D Monte Carlo radiative transfer model has been developed and applied to mountain surfaces to study the diurnal and seasonal changes in surface fluxes by choosing 9 different solar zenith angles, including noon, sunrise+1/2 hour,

469

Teleseismic-Seismic Monitoring At Hawthorne Area (Lazaro, Et Al., 2010) |  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Hawthorne Area Teleseismic-Seismic Monitoring At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve Bjornstad, Steve Alm, David Meade, Jeff Shoffner, Kevin Mitchell, Bob Crowder, Greg Halsey (2010) United States Department Of The Navy Geothermal

470

Efficient data exchange: Integrating a vector GIS with an object-oriented, 3-D visualization system  

SciTech Connect (OSTI)

A common problem encountered in Geographic Information System (GIS) modeling is the exchange of data between different software packages to best utilize the unique features of each package. This paper describes a project to integrate two systems through efficient data exchange. The first is a widely used GIS based on a relational data model. This system has a broad set of data input, processing, and output capabilities, but lacks three-dimensional (3-D) visualization and certain modeling functions. The second system is a specialized object-oriented package designed for 3-D visualization and modeling. Although this second system is useful for subsurface modeling and hazardous waste site characterization, it does not provide many of the, capabilities of a complete GIS. The system-integration project resulted in an easy-to-use program to transfer information between the systems, making many of the more complex conversion issues transparent to the user. The strengths of both systems are accessible, allowing the scientist more time to focus on analysis. This paper details the capabilities of the two systems, explains the technical issues associated with data exchange and how they were solved, and outlines an example analysis project that used the integrated systems.

Kuiper, J.; Ayers, A.; Johnson, R. [Argonne National Lab., IL (United States); Tolbert-Smith, M. [USDOE Germantown, Maryland (United States). Office of Program Integration

1996-03-01T23:59:59.000Z

471

RELAP5-3D Code Validation for RBMK Phenomena  

SciTech Connect (OSTI)

The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

Fisher, James Ebberly

1999-09-01T23:59:59.000Z

472

RELAP5-3D code validation for RBMK phenomena  

SciTech Connect (OSTI)

The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

Fisher, J.E.

1999-09-01T23:59:59.000Z

473

3D Flat Holography: Entropy and Logarithmic Corrections  

E-Print Network [OSTI]

We compute the leading corrections to the Bekenstein-Hawking entropy of the Flat Space Cosmological (FSC) solutions in 3D flat spacetimes, which are the flat analogues of the BTZ black holes in AdS3. The analysis is done by a computation of density of states in the dual 2D Galilean Conformal Field Theory and the answer obtained by this matches with the limiting value of the expected result for the BTZ inner horizon entropy as well as what is expected for a generic thermodynamic system. Along the way, we also develop other aspects of holography of 3D flat spacetimes.

Arjun Bagchi; Rudranil Basu

2013-12-19T23:59:59.000Z

474

Polarization Singularities in 2D and 3D Speckle Fields  

Science Journals Connector (OSTI)

The 3D structure of randomly polarized light fields is exemplified by its polarization singularities: lines along which the polarization is purely circular (C lines) and surfaces on which the polarization is linear (L surfaces). We visualize these polarization singularities experimentally in vector laser speckle fields, and in numerical simulations of random wave superpositions. Our results confirm previous analytical predictions [M.?R. Dennis, Opt. Commun. 213, 201 (2002)] regarding the statistical distribution of types of C points and relate their 2D properties to their 3D structure.

Florian Flossmann; Kevin O‘Holleran; Mark R. Dennis; Miles J. Padgett

2008-05-22T23:59:59.000Z

475

Modelling Gaia CCD pixels with Silvaco 3D engineering software  

E-Print Network [OSTI]

Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

Seabroke, G M; Hopkinson, G; Burt, D; Robbins, M; Holland, A

2010-01-01T23:59:59.000Z

476

Evolving spherical boson stars on a 3D cartesian grid  

E-Print Network [OSTI]

A code to evolve boson stars in 3D is presented as the starting point for the evolution of scalar field systems with arbitrary symmetries. It was possible to reproduce the known results related to perturbations discovered with 1D numerical codes in the past, which include evolution of stable and unstable equilibrium configurations. In addition, the apparent and event horizons masses of a collapsing boson star are shown for the first time. The present code is expected to be useful at evolving possible sources of gravitational waves related to scalar field obj