Powered by Deep Web Technologies
Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Recovery of 3D Solar Magnetic Field Model Parameter Using Image Structure Matching  

Science Conference Proceedings (OSTI)

An approach to recover a 3D solar magnetic field model parameter using intensity images of the Sun's corona is introduced. The approach is a quantitative approach in which the 3D model parameter is determined via an image structure matching scheme. The ... Keywords: 3D Parameter Recovery, Image-based Modeling, Structure Matching

Jong Kwan Lee; G. Allen Gary

2009-05-01T23:59:59.000Z

2

A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes After The  

Open Energy Info (EERE)

Magnetic Structure Of Izu-Oshima Volcano And Their Changes After The Magnetic Structure Of Izu-Oshima Volcano And Their Changes After The Eruption In 1986 As Estimated From Repeated Airborne Magnetic Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes After The Eruption In 1986 As Estimated From Repeated Airborne Magnetic Surveys Details Activities (0) Areas (0) Regions (0) Abstract: A 3D magnetic inversion method using a conjugate gradient method (CG method) was developed for constructing 3D magnetization models of a volcanic edifice and applied to aeromagnetic anomalies of Izu-Oshima Volcano surveyed in 1986 and in 1997. The calculated results of the 1986 data show that the volcanic edifice of Izu-Oshima Volcano has a mean magnetization intensity ranging from 10.4 to 12.1 A/m. The derived 3D

3

A Mean Field Analysis of the Exchange Coupling (J) For 2- and 3-D Structured Tetracyanoethylenide (TCNE -)-based Magnets  

SciTech Connect

Mean field expressions based on the simple Heisenberg model were derived to correlate the inter- and intralayer exchange coupling to the critical temperatures, Tc, for several TCNE (tetracyanoethylene) based magnets with extended 2- and 3-D structure types. These expressions were used to estimate the exchange coupling, J, for 2-D ferrimagnetic [MII(TCNE)(NCMe)2]+ (M = Mn, Fe), 3-D antiferromagnetic MnII(TCNE)[C4(CN)8]1/2, and 3-D ferrimagnetic MnII(TCNE)3/2(I3)1/2. The sign and magnitude of the exchange coupling are in accord with previously reported magnetic data.

McConnell, Amber C. [University of Utah; Fishman, Randy Scott [ORNL; Miller, Joel S. [University of Utah

2012-01-01T23:59:59.000Z

4

Single crystal to single crystal transition in (10, 3)-d framework with pyrazine-2-carboxylate ligand: Synthesis, structures and magnetism  

Science Conference Proceedings (OSTI)

Assembling of pyrazine-2-carboxylate (Pzc) acid with nickel chlorine under solvothermal condition with MeOH as solvent gave a porous complex 1 {l_brace}[Ni(Pzc)ClH{sub 2}O]{center_dot}MeOH{r_brace}{sub n} with 1D channels. In 1 the ligands and metal ions are connected by three of each other and a rare (10,3)-d topology net is gained. The MeOH molecules filled in the 1D channels as guests. It is interesting that 1 undergoes a single-crystal-to-single-crystal transformation to another complex 2 when the guest MeOH molecules in the channels are exchanged by water molecules. Magnetic study indicates anti-ferromagnetic couplings exist in the two complexes and the guest exchange in the complex has little influence on the magnetism. - Graphical abstract: A porous complex 1 with rare (10,3)-d net was gained, and 1 underwent a single-crystal-to-single-crystal transformation to another phase 2. Highlights: Black-Right-Pointing-Pointer New (10,3)-d net was obtained with pyrazine-2-carboxylate ligands as a triangular node. Black-Right-Pointing-Pointer The complex 1 has a 1D channel filled with methanol molecules as guests. Black-Right-Pointing-Pointer 1 could undergo SCSC structural transition to 2 after guests exchanged. Black-Right-Pointing-Pointer Antiferromagnetic interactions were found in 1 and 2.

Yang, Qian [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China) [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Department of Chemistry, Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071 (China); Zhao, Jiong-Peng, E-mail: horryzhao@yahoo.com [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China)] [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Liu, Zhong-Yi [College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387 (China)] [College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387 (China)

2012-12-15T23:59:59.000Z

5

Edge structure preserving 3-D image denoising  

Science Conference Proceedings (OSTI)

In various applications, including magnetic resonance imaging (MRI) and functional MRI (fMRI), 3- D images get increasingly popular. To improve reliability of subsequent image analyses, 3-D image denoising is often a necessary pre-processing step, which ... Keywords: edge-preserving image restoration, jump regression analysis, surface estimation

Peihua Qiu; Partha Sarathi Mukherjee

2011-01-01T23:59:59.000Z

6

Thermobonded 3D Nonwoven Wool Structures.  

E-Print Network (OSTI)

??The aims of this study were to form uncompressed thermobonded 3D wool nonwoven shell structures in one continuous process, and to study the controlling factors… (more)

Nassar, Khaled Mansour Abd el hafez

2010-01-01T23:59:59.000Z

7

3D-Simulation Studies of SNS Ring Doublet Magnets  

E-Print Network (OSTI)

3D-SIMULATION STUDIES OF SNS RING DOUBLET MAGNETS* J.G. Wang # , SNS/ORNL, Oak Ridge, TN 37831-6471, U.S.A. N.the Spallation Neutron Source (SNS) at ORNL employs in its

Wang, J.G.; Tsoupas N.; Venturini, M.

2005-01-01T23:59:59.000Z

8

Magnetism In 3d Transition Metals at High Pressures  

SciTech Connect

This research project examined the changes in electronic and magnetic properties of transition metals and oxides under applied pressures, focusing on complex relationship between magnetism and phase stability in these correlated electron systems. As part of this LDRD project, we developed new measurement techniques and adapted synchrotron-based electronic and magnetic measurements for use in the diamond anvil cell. We have performed state-of-the-art X-ray spectroscopy experiments at the dedicated high-pressure beamline HP-CAT (Sector 16 Advanced Photon Source, Argonne National Laboratory), maintained in collaboration with of University of Nevada, Las Vegas and Geophysical Laboratory of The Carnegie Institution of Washington. Using these advanced measurements, we determined the evolution of the magnetic order in the ferromagnetic 3d transition metals (Fe, Co and Ni) under pressure, and found that at high densities, 3d band broadening results in diminished long range magnetic coupling. Our experiments have allowed us to paint a unified picture of the effects of pressure on the evolution of magnetic spin in 3d electron systems. The technical and scientific advances made during this LDRD project have been reported at a number of scientific meetings and conferences, and have been submitted for publication in technical journals. Both the technical advances and the physical understanding of correlated systems derived from this LDRD are being applied to research on the 4f and 5f electron systems under pressure.

Iota, V

2006-02-09T23:59:59.000Z

9

3D-Simulation Studies of SNS Ring Doublet Magnets  

SciTech Connect

The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublemagnets with large aperture of R=15.1 cm an relatively short iron-to-iron distance of 51.4 cm. These quads have much extended fringe field, and magnetic interferences among them in the doublet assemblies is not avoidable. Though each magnet in the assemblies has been individually mapped to high accuracy of lower than 0.01 percent level, the experimental data including the magnetic interference effect will not be available. We have performed 3D computing simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data for the SNS commissioning and operation.

Wang, J.G.; Tsoupas N.; Venturini, M.

2005-05-05T23:59:59.000Z

10

3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D  

E-Print Network (OSTI)

We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {\\lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that t...

Lobel, A; Blomme, R

2010-01-01T23:59:59.000Z

11

Automating the determination of 3D protein structure  

SciTech Connect

The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

Rayl, K.D.

1993-12-31T23:59:59.000Z

12

Plenary lecture 2: local surface approximation for edge structure preserving 3-D image denoising  

Science Conference Proceedings (OSTI)

In various applications, including magnetic resonance imaging (MRI) and functional MRI (fMRI), 3-D images get increasingly popular. To improve reliability of subsequent image analyses, 3-D image denoising is often a necessary pre-processing step, which ...

Peihua Qiu

2011-01-01T23:59:59.000Z

13

A Magnetic Diagnostic Code for 3D Fusion Equilibria  

SciTech Connect

A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The code is validated against a vacuum shot on the Large Helical Device (LHD) where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the LHD.

Samuel A. Lazerson, S. Sakakibara and Y. Suzuki

2013-03-12T23:59:59.000Z

14

Finding short structural motifs for re-construction of proteins 3D structure  

Science Conference Proceedings (OSTI)

With a view to find useful building blocks (short structural motifs) for reconstruction of 3D structure of proteins, we propose a modified neural gas learning algorithm that we call structural neural gas (SNG) algorithm. The SNG is applied on a benchmark ... Keywords: Building blocks, Neural gas, Protein folding, Structural motifs, Two-stage-clustering

Nikhil R. Pal; Rupan Panja

2013-02-01T23:59:59.000Z

15

3D calculations of a fixed field alternating gradient synchrotron magnet  

SciTech Connect

A Spallation neutron source for materials science studies was designed at Argonne and required a fixed field alternating gradient (FFAG) synchrotron magnet. 3D electrostatic calculations were made to obtain the unsaturated magnet pole shape. This pole shape was refined using 3D magnetostatic calculations that included the steel permeability and coil geometry. Details of the calculations are given concerning such things as: size of the problem and how to split it up, the number and shape of the finite elements, choosing the electrostatic potential correctly and selecting the potential of the desired pole. 5 figs.

Lari, R.J.

1985-01-01T23:59:59.000Z

16

3D Alfven wave behaviour around proper and improper magnetic null points  

E-Print Network (OSTI)

Context: MHD waves and magnetic null points are both prevalent in many astrophysical plasmas, including the solar atmosphere. Interaction between waves and null points has been implicated as a possible mechanism for localised heating events. Aims: Here we investigate the transient behaviour of the Alfven wave about fully 3D proper and improper 3D magnetic null points. Previously, the behaviour of fast magnetoacoustic waves at null points in 3D, cold MHD was considered by Thurgood & McLaughlin (Astronomy & Astrophysics, 2012, 545, A9). Methods: We introduce an Alfven wave into the vicinity of both proper and improper null points by numerically solving the ideal, $\\beta=0$ MHD equations using the LARE3D code. A magnetic fieldline and flux-based coordinate system permits the isolation of resulting wave-modes and the analysis of their interaction. Results: We find that the Alfven wave propagates throughout the region and accumulates near the fan-plane, causing current build up. For different values of nul...

Thurgood, J O

2013-01-01T23:59:59.000Z

17

Gravity observations and 3D structure of the Earth , F. Chambat  

E-Print Network (OSTI)

1 Gravity observations and 3D structure of the Earth Y. Ricard1 , F. Chambat Laboratoire des, Michigan-Ann Harbor University, USA. Short title: GRAVITY OBSERVATIONS AND 3D STRUCTURE OF THE EARTH 1. The determination of Earth's gravity field has benefited from various gravity missions that have been launched

18

Spiral mining using attributes from 3d molecular structures  

Science Conference Proceedings (OSTI)

Active responses from analysts play an essential role in obtaining insights into structure activity relationships (SAR) from drug data. Experts often think of hypotheses, and they want to reflect these ideas in the attribute generation and selection ...

Takashi Okada; Masumi Yamakawa; Hirotaka Niitsuma

2003-10-01T23:59:59.000Z

19

Thrift: Local 3D Structure Recognition Alex Flint, Anthony Dick, Anton van den Hengel  

E-Print Network (OSTI)

Thrift: Local 3D Structure Recognition Alex Flint, Anthony Dick, Anton van den Hengel School of Computer Science The University of Adelaide North Terrace, Adelaide, 5005 South Australia, Australia {alex.flint

van den Hengel, Anton

20

Synthesis and structure of a new family of 3d-4f heterometallic compounds Rb{sub 7}LnFe{sub 6}O{sub 2}(PO{sub 4}){sub 8} (Ln=Sm, Eu, Gd, Dy): Magnetic properties of the Sm-, Gd-, Dy-derivatives  

SciTech Connect

A new family of mixed lanthanide(III) and iron(III) oxo-phosphate phases, Rb{sub 7}LnFe{sub 6}O{sub 2}(PO{sub 4}){sub 8} (Ln=Sm 1, Eu 2, Gd 3, Dy 4), was isolated by using a high-temperature, solid-state method in molten-salt media. The X-ray single-crystal structure analysis shows that these isomorphic derivatives crystallize in a triclinic space group P-1 (no. 2); Z=1. The 3-D framework of these 3d-4f oxo-phosphates are comprised of LnO{sub 6} octahedral, FeO{sub 5} trigonal bipyramidal (tbp), and {mu}{sub 3}-oxo [Fe{sub 4}O{sub 18}] tetrameric units interconnected through PO{sub 4} tetrahedra. The preliminary results of the temperature-dependent magnetic susceptibility measurements for selected compounds (1, 3, 4) reveal antiferromagnetic-like behavior. 1 shows a weak antiferromagnetric ordering at T{sub N}={approx}7 K while others show little evidence of long-range magnetic order down to 2 K. All three compounds have measured magnetic moments significantly smaller than the expected values. - Graphical abstract: The extended framework is described by the connectivity of three distinct types of paramagnetic units. The temperature-dependent, lower than expected effective magnetic moments are reported. Highlights: Black-Right-Pointing-Pointer A new family of mixed lanthanide(III) and iron(III) oxo-phosphates is isolated. Black-Right-Pointing-Pointer Features PO{sub 4}-linked paramagnetic units of LnO{sub 6}, FeO{sub 5}, and {mu}{sub 3}-oxo [Fe{sub 4}O{sub 18}]. Black-Right-Pointing-Pointer Sm-derivative orders at T{sub N}{approx}7 K while Gd- and Dy-derivatives show absence of order.

Sanjeewa, Liurukara D.; Palmer West, J. [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States); Hwu, Shiou-Jyh, E-mail: shwu@clemson.edu [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Particle energization in 3D magnetic reconnection of relativistic pair plasmas  

Science Conference Proceedings (OSTI)

We present large scale 3D particle-in-cell simulations to examine particle energization in magnetic reconnection of relativistic electron-positron (pair) plasmas. The initial configuration is set up as a relativistic Harris equilibrium without a guide field. These simulations are large enough to accommodate a sufficient number of tearing and kink modes. Contrary to the non-relativistic limit, the linear tearing instability is faster than the linear kink instability, at least in our specific parameters. We find that the magnetic energy dissipation is first facilitated by the tearing instability and followed by the secondary kink instability. Particles are mostly energized inside the magnetic islands during the tearing stage due to the spatially varying electric fields produced by the outflows from reconnection. Secondary kink instability leads to additional particle acceleration. Accelerated particles are, however, observed to be thermalized quickly. The large amplitude of the vertical magnetic field resulting from the tearing modes by the secondary kink modes further help thermalizing the non-thermal particles generated from the secondary kink instability. Implications of these results for astrophysics are briefly discussed.

Liu Wei; Yin Lin; Albright, B. J.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liang, Edison P. [Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States); Li Hui

2011-05-15T23:59:59.000Z

22

Micro-CT for the quantification of 3D voids within damaged structures  

SciTech Connect

Micro X-ray Computed Tomography (MXCT) is widely used in the materials community to examine the internal structure of materials for voids and cracks due to damage or casting, or other defects. Most research in this area focuses on the qualitative aspect of the image, simply answering; Are there voids present? Here we present an ongoing study of the quantified incipient spall voids in Cu with different grain sizes, using a gas gun with various velocities. Data analysis packages for MXCT are just now becoming able to dimensionally measure and produce statistics on the voids-present. In order to make the size of the features in the 3D image quantifiable, the question, how many radiographs are required to render the object dimensionally accurate in 3D, must be answered. A series of data sets has been coUected, varying the number of radiographs collected in order to determine the appropriate number required.

Patterson, Brian M [Los Alamos National Laboratory; Hamilton, Christopher E [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Dennis - Koller, Darcie [Los Alamos National Laboratory; Bronkhorst, C. A. [Los Alamos National Laboratory; Hansen, B. L. [Los Alamos National Laboratory

2011-01-26T23:59:59.000Z

23

BIOFUELS 3D Database  

Science Conference Proceedings (OSTI)

BIOFUEL Database. NIST Home. BIOFUEL 3-D Structures ( Help / Contact / Rate Our Product and Services / NIST privacy policy ). Search: ...

24

Engineering Magnetic Anisotropy in Nanostructured 3d and 4f Ferromagnets  

E-Print Network (OSTI)

Thermomagnetic energy harvesting device using piezoelectricThermomagnetic energy harvesting device using piezoelectricusing piezoelectric elements to convert the magnetic energy

Hsu, Chin-Jui

2012-01-01T23:59:59.000Z

25

Structural control Architecture Optimization for 3-D Systems Using Advanced Multi-Objective Genetic Algorithms  

E-Print Network (OSTI)

The architectures of the control devices in active control algorithm are an important fact in civil structural buildings. Traditional research has limitations in finding the optimal architecture of control devices such as using predefined numbers or locations of sensors and dampers within the 2-and 3-dimensional (3-D) model of the structure. Previous research using single-objective optimization only provides limited data for defining the architecture of sensors and control devices. The Linear Quadratic Gaussian (LQG) control algorithm is used as the active control strategy. The American Society of Civil Engineers (ASCE) control benchmark building definition is used to develop the building system model. The proposed gene manipulation genetic algorithm (GMGA) determines the near-optimal Pareto fronts which consist of varying numbers and locations of sensors and control devices for controlling the ASCE benchmark building by considering multi-objectives such as interstory drift and minimizing the number of the control devices. The proposed GMGA reduced the central processing unit (CPU) run time and produced more optimal Pareto fronts for the 2-D and 3-D 20-story building models. Using the GMGA provided several benefits: (1) the possibility to apply any presuggested multi-objective optimization mechanism; (2) the availability to perform a objective optimization problem; (3) the adoptability of the diverse encoding provided by the GA; (4) the possibility of including the engineering judgment in generating the next generation population by using a gene creation mechanisms; and (5) the flexibility of the gene creation mechanism in applying and changing the mechanism dependent on optimization problem. The near-optimal Pareto fronts obtained offer the structural engineer a diverse choice in designing control system and installing the control devices. The locations and numbers of the dampers and sensors in each story are highly dependent on the sensor locations. By providing near-Pareto fronts of possible solutions to the engineer that also consider diverse earthquakes, the engineer can get normalized patterns of architectures of control devices and sensors about random earthquakes.

Cha, Young Jin

2008-12-01T23:59:59.000Z

26

The effect of anisotropic heat transport on magnetic islands in 3-D configurations  

SciTech Connect

An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlueter current effects. Implications for finite pressure-induced island healing are discussed.

Schlutt, M. G.; Hegna, C. C. [University of Wisconsin-Madison, 1500 Engineering Drive, 510 ERB, Madison, Wisconsin 53706 (United States)

2012-08-15T23:59:59.000Z

27

Syntheses, crystal structures and properties of two unusual pillared-layer 3d-4f Ln-Cu heterometallic coordination polymers  

Science Conference Proceedings (OSTI)

Two unusual pillared-layer 3d-4f Ln-Cu heterometallic coordination polymers, {l_brace}[Ln{sub 2}Cu{sub 5}Br{sub 4}(IN){sub 7}(H{sub 2}O){sub 6}].H{sub 2}O{r_brace}{sub n} (Ln=Eu (1) and Gd (2), HIN=isonicotinic acid), have been synthesized under hydrothermal conditions, and characterized by elemental analysis, IR, thermal analysis and single-crystal X-ray diffraction. The structure determination reveals that 1 and 2 are isostructural and feature a novel three-dimensional pillared-layer hetrometallic structure built upon the linkages of one-dimensional (1D) linear Ln-carboxylate chains, zero-dimensional (0D) Ln-carboxylate Ln{sub 2}(IN){sub 8} dimers, rare 1D zigzag [Cu{sub 5}Br{sub 4}]{sub n} inorganic chains and IN{sup -} pillars. In both 3D structures, there are Ln-carboxylate layers resulted from the connections of 1D Ln-carboxylate chains and 0D Ln{sub 2}(IN){sub 8} dimers through O-H...O hydrogen bondings. The luminescent properties of 1 have been investigated. The magnetic properties of 1 and 2 have also been studied. - Graphical abstract: Two unusual pillared-layer Eu (Gd)-Cu heterometallic coordination polymers have been hydrothermally synthesized. The luminescent properties of Eu-Cu compound and magnetic properties of both compounds are investigated. Highlights: > Two unusual 3D pillared-layer Eu (Gd)-Cu heterometallic coordination polymers have been synthesized. > 1D and 0D Ln-carboxylate motifs construct layers by O-H...O hydrogen bondings. > In both the structures, there are rare 1D zigzag Cu/Br inorganic chains. > Luminescent properties of Eu-Cu compound and magnetic properties of both the compounds are investigated.

Fan Leqing, E-mail: lqfan@hqu.edu.cn [College of Materials Science and Engineering, Key Laboratory for Functional Materials of Fujian Higher Education, Huaqiao University, Xiamen, Fujian 361021 (China); Wu Jihuai, E-mail: jhwu@hqu.edu.cn [College of Materials Science and Engineering, Key Laboratory for Functional Materials of Fujian Higher Education, Huaqiao University, Xiamen, Fujian 361021 (China); Huang Yunfang [College of Materials Science and Engineering, Key Laboratory for Functional Materials of Fujian Higher Education, Huaqiao University, Xiamen, Fujian 361021 (China)

2011-09-15T23:59:59.000Z

28

Gyrokinetic Toroidal Code: a 3D Parallel Particle-in-Cell Code to Study Microturbulence in Magnetized Plasmas  

NLE Websites -- All DOE Office Websites (Extended Search)

benchmarking and benchmarking and optimizing GTC on High Performance Computers Stéphane Ethier Princeton Plasma Physics Laboratory NERSC Users' Group meeting June 2006 Work Supported by DOE Contract No.DE-AC02-76CH03073 and by the DOE SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. The Gyrokinetic Toroidal Code * 3D particle-in-cell code to study microturbulence in magnetically confined fusion plasmas. * Solves the gyro-averaged Vlasov equation. * Gyrokinetic Poisson equation solved in real space. * Low noise δf method. * Global code (full torus as opposed to only a flux tube). * Massively parallel: typical runs done on 1024 processors. * Electrostatic approximation with adiabatic electrons. * Nonlinear and fully self-consistent. * Written in Fortran 90/95

29

New results on the resistivity structure of Merapi Volcano(Indonesia), derived from 3D restricted inversion of long-offsettransient electromagnetic data  

SciTech Connect

Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.

Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent

2006-06-14T23:59:59.000Z

30

A new 3D nickel(II) framework composed of large rings: Ionothermal synthesis and crystal structure  

SciTech Connect

Ionothermal reaction between Ni{sup 2+} and 1,3,5-benzentricarboxylic acid (H{sub 3}BTC) with [AMI]Cl (AMI=1-amyl-3-methylimidazolium) as the reaction medium produced a novel 3D mixed-ligand metal-organic framework [AMI][Ni{sub 3}(BTC){sub 2}(OAc)(MI){sub 3}] (1) (MI=1-methylimidazole) with [AMI]{sup +} incorporated in the framework. The framework is formed by connecting 2D planes, made up of 32- and 48-membered rings, through 1D chains composed of 32-membered rings. The two BTC{sup 3-} ligands in 1 show the same connectivity mode with two bidentate and one {mu}{sub 2} bridging carboxylic groups. This is a new connectivity mode to the already existing 17 in the Ni-BTC system. The role of MI and [AMI]Cl in the structure formation is discussed. - Graphical Abstract: A novel 3D framework [AMI][Ni{sub 3}(BTC){sub 2}(OAc)(MI){sub 3}] is obtained in ionothermal system with [AMI]{sup +} incorporating in the cavities as structure directing template and BTC{sup 3-} showing a new coordination fashion. The 3D framework is constructed by 2D layers linked with 1D double chains. The title compound has the middle thermal stability at ca. 280 deg. C.

Xu Ling [Department of Chemistry, BK-21 School of Chemical Materials Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Eun-Young [Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kwon, Young-Uk [Department of Chemistry, BK-21 School of Chemical Materials Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)], E-mail: ywkwon@skku.edu

2008-11-15T23:59:59.000Z

31

Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP. S...  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite and Surface Data Synergy for Developing Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP Site Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington P. W. Heck Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the

32

Discretely-observable continuous time quantum walks on Möbius strips and other exotic structures in 3D integrated photonics  

E-Print Network (OSTI)

We theoretically analyze the dynamical evolution of photonic quantum walks on M\\"obius strips and other exotic structures in 3D integrated photonics. Our flexible design allows discrete observations of continuous time quantum walks of photons in a variety of waveguide arrays. Furthermore, our design allows one to inject photons during the evolution, allowing the possibility of interacting with the photons as they are 'walking'. We find that non-trivial array topologies introduce novel time-dependent symmetries of the two-photon correlations. These properties allow a large degree of control for quantum state engineering of multimode entangled states in these devices.

Michael Delanty; M. J. Steel

2012-07-31T23:59:59.000Z

33

3D Imaging of Lattice Structure and Dopant Distribution in Silicon ...  

Science Conference Proceedings (OSTI)

Design of Pre-Weakening and Evaluation of Structural Safety for Explosive ... Crystallization Temperature of Pd-Cu-Si System Using Integrated Thin Film Samples ... Mechanical Properties of 5083 Aluminium Welds after Manual and Automatic ...

34

Design of structurally-sound masonry buildings using 3D static analysis  

E-Print Network (OSTI)

In the design of buildings, structural analysis is traditionally performed after the aesthetic design has been determined and has little in uence on the overall form. This thesis presents methods to integrate architectural ...

Whiting, Emily Jing Wei

2012-01-01T23:59:59.000Z

35

Determining the 3-D fracture structure in the Geysers geothermal reservoir  

DOE Green Energy (OSTI)

The bulk of the steam at the Geysers geothermal field is produced from fractures in a relatively impermeable graywacke massif which has been heated by an underlying felsite intrusion. The largest of these fractures are steeply dipping right lateral strike-slip faults which are subparallel to the NW striking Collayomi and Mercuryville faults which form the NE and SW boundaries of the known reservoir. Where the graywacke source rock outcrops at the surface it is highly sheared and fractured over a wide range of scale lengths. Boreholes drilled into the reservoir rock encounter distinct ''steam entries'' at which the well head pressure jumps from a few to more than one hundred psi. This observation that steam is produced from a relatively small number of major fractures has persuaded some analysts to use the Warren and Root (1963) dual porosity model for reservoir simulation purposes. The largest fractures in this model are arranged in a regular 3-D array which partitions the reservoir into cubic ''matrix'' blocks. The net storage and transport contribution of all the smaller fractures in the reservoir are lumped into average values for the porosity and permeability of these matrix blocks which then feed the large fractures. Recent improvements of this model largely focus on a more accurate representation of the transport from matrix to fractures (e.g. Pruess et al., 1983; Ziminerman et al., 1992), but the basic geometry is rarely questioned. However, it has long been recognized that steam entries often occur in clusters separated by large intervals of unproductive rock (Thomas et al., 1981). Such clustering of fixtures at all scale lengths is one characteristic of self-similar distributions in which the fracture distribution is scale-independent. Recent studies of the geometry of fracture networks both in the laboratory and in the field are finding that such patterns are self-similar and can be best described using fractal geometry. Theoretical simulations of fracture development in heterogeneous media also produce fractal patterns. However, a physical interpretation of the mechanics which produce the observed fractal geometry remains an active area of current research. Two hypotheses for the physical cause of self-similarity are the Laplacian growth of fractures in a self-organized critical stress field, and the evolution of percolation clusters in a random medium. Each predicts a different, fractal dimension. The more important questions from a reservoir engineering point of view are: (1) is the network of fractures in the Geysers reservoir fractal and if so over what range of fracture sizes is the self-similarity observed and what is its fractal dimension, and (2) do the conventional dual porosity numerical simulation schemes provide an adequate description of flow and heat mining at the Geysers? Other papers in this volume by Acuna, Ershaghi, and Yortsos (1992) and Mukhopodhyoy and Sahimi (1992) address the second question. The primary objective of this paper is to try to answer the first. Toward this goal we have mapped fracture patterns in surface exposures of the graywacke source rock at the outcrop scale (meters), at the road-cut scale (tens of meters) and at the regional scale (kilometers). We have also examined cores collected at depth from the graywacke reservoir rocks, and analyzed drilling logs making use of the pattern of steam entries as well as the fluctuations in drilling rate.

Sammis, Charles G.; Linji An; Iraj Ershaghi

1992-01-01T23:59:59.000Z

36

A motion sensor interactive interface for viewing and manipulating protein structural data in 3D  

Science Conference Proceedings (OSTI)

We propose a fun, interactive way to view and alter protein structural data by hand via motion sensors and voice activation. This will enable users to freely zoom, rotate, and view a protein through a friendly hands-on experience. Multiple view and rotation ...

Robyn Moncrief; William Gobber

2012-08-01T23:59:59.000Z

37

Linearly scaling 3D fragment method for large-scale electronic structure calculations  

Science Conference Proceedings (OSTI)

We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively ...

Lin-Wang Wang; Byounghak Lee; Hongzhang Shan; Zhengji Zhao; Juan Meza; Erich Strohmaier; David H. Bailey

2008-11-01T23:59:59.000Z

38

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

39

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

40

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations  

Science Conference Proceedings (OSTI)

The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

2009-06-26T23:59:59.000Z

42

Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations  

Science Conference Proceedings (OSTI)

We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.

Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.

2008-07-01T23:59:59.000Z

43

Linear scaling 3D fragment method for large-scale electronic structure calculations  

Science Conference Proceedings (OSTI)

We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39% of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFT calculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N{sup 3}) methods, and the potential for petascale computation using the LS3DF method.

Wang, Lin-Wang; Wang, Lin-Wang; Lee, Byounghak; Shan, HongZhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David

2008-07-11T23:59:59.000Z

44

Two 100 Mpc-scale structures in the 3-D distribution of radio galaxies and their implications  

E-Print Network (OSTI)

We present unequivocal evidence for a huge (~80 x 100 x 100 Mpc^3) super-structure at redshift z=0.27 in the 3-D distribution of radio galaxies from the TONS08 sample, confirming tentative evidence for such a structure from the 7C redshift survey (7CRS). A second, newly discovered super-structure is also less securely found at redshift 0.35 (of dimensions ~100 x 100 x 100 Mpc^3). We present full observational details on the TONS08 sample which was constructed to probe structures in the redshift range 0 3 mJy) radio galaxies in the same 25 deg^2 area as part-II of the 7CRS. Out of the total sample size of 84 radio galaxies, at least 25 are associated with the two ~100 Mpc-scale super-structures. We use quasi-linear structure formation theory to estimate the number of such structures expected in the TONS08 volume if the canonical value for radio galaxy bias is assumed. Under this assumption, the structures represent ~ 4-5 sigma peaks in the primordial density field and their expected number is low (~10^-2 - 10^-4). Fortunately, there are several plausible explanations (many of which are testable) for these low probabilities in the form of potential mechanisms for boosting the bias on large scales. These include: the association of radio galaxies with highly biased rich clusters in super-structures, enhanced triggering by group/group mergers, and enhanced triggering and/or redshift space distortion in collapsing systems as the growth of super-structures moves into the non-linear regime (abridged).

Kate Brand; Steve Rawlings; Gary J. Hill; Mark Lacy; Ewan Mitchell; Joe Tufts

2003-05-06T23:59:59.000Z

45

Cyanide clusters of ReII with 3d metal ions and their magnetic properties: incorporating anisotropic ions into metal-cyanide clusters with high spin magnetic ground states  

E-Print Network (OSTI)

Clusters of metal ions that possess large numbers of magnetically coupled unpaired electrons have attracted much interest in recent years due to their fascinating magnetic behavior. With an appreciable component of magnetic anisotropy, these large-spin paramagnetic molecules can exhibit an energy barrier to inversion of their magnetic dipole, leading to spontaneous magnetization and magnetic hysteresis below a critical temperature. Since this behavior is a property of an individual clusters rather than a collection of molecules, this phenomenon has been dubbed ??Single Molecule Magnetism??. Our approach to the study of new high-spin systems has been to exert a measure of synthetic control in the preparation of clusters. Specifically we are employing highly anisotropic metal ions with the anticipation that these ions would engender large overall magnetic anisotropy in the resulting clusters. The first step in this process was the development of the chemistry of two new d5 ReII (S = ??) complexes, namely [ReII(triphos)(CH3CN)3][PF6]2 and [Et4N][ReII(triphos)(CN)3]. The magnetic, optical and electrochemical properties were studied and theoretical models were developed to describe the origin of the large temperature independent paramagnetism that was observed. Next, we successfully employed transition metal cyanide chemistry using the ReII building blocks to prepare a family of isostructural, cubic clusters of the general formula {[MCl]4[Re(triphos)(CN)3]4} M = Mn, Fe, Co, Ni, Cu, Zn whose 3d ions adopt local tetrahedral geometries. Within the clusters, magnetic exchange is observed between the paramagnetic ions, which has been modeled using an Ising exchange model to account for the dominating anisotropy of the ReII ion. Despite the high pseudo-symmetry of the clusters (Td), this work has yielded a rare example of a metal-cyanide single molecule magnet, {[MCl]4[Re(triphos)(CN)3]4} with an S = 8 ground state, D = -0.39 cm-1 and an effective energy barrier for magnetization reversal of Ueff = 8.8 cm-1. The elucidation of this family of isostructural clusters has also allowed us to pursue fundamental work on the structure/property relationships of the exotic, paramagnetic ReII ion. As the clusters are soluble, stable compounds, the future of this chemistry lies in the development of a true building-block approach to ??super-clusters?? that exhibit very high ground state spin values.

Schelter, Eric John

2003-05-01T23:59:59.000Z

46

Computed 3-D Structures  

Science Conference Proceedings (OSTI)

... parameterization: enthalpy of formation, dipole moment, ionization energy, and molecular ... Tinker software package [8,6]. Final optimization, at the ...

2013-07-15T23:59:59.000Z

47

Microvessel structure formation in a 3D perfused co-culture of rat hepatocytes and liver endothelial cells  

E-Print Network (OSTI)

Many liver physiological and pathophysiological behaviors are not adequately captured by current in vitro hepatocyte culture methods. A 3D perfused microreactor previously demonstrated superior hepatic functional maintenance ...

Hwa, Albert J

2006-01-01T23:59:59.000Z

48

STELLOPT Modeling of the 3D Diagnostic Response in ITER  

SciTech Connect

The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.

Lazerson, Samuel A

2013-05-07T23:59:59.000Z

49

3D joint inversion of gradient and total-field magnetic data Kristofer Davis and Yaoguo Li, Center for Gravity, Electrical, and Magnetics, Colorado School of Mines, Golden,  

E-Print Network (OSTI)

field and the derivative of its source to relate both data sets to a common source distribution. Our (Nelson, 1988) as well as enhancing the conventional gridding of total-field data by creating pseudo for the total-field and gradient data using a common 3D source distribution based on relationship between

50

Magnetic cellulose-derivative structures  

DOE Patents (OSTI)

Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

Walsh, Myles A. (Falmouth, MA); Morris, Robert S. (Fairhaven, MA)

1986-09-16T23:59:59.000Z

51

Magnetic cellulose-derivative structures  

DOE Patents (OSTI)

Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

Walsh, M.A.; Morris, R.S.

1986-09-16T23:59:59.000Z

52

3D Shape Research  

Science Conference Proceedings (OSTI)

Shape Analysis Research Project. Summary: ... We have organized two workshops on 3D shape retrieval and two shape retrieval contests. ...

2010-10-05T23:59:59.000Z

53

Studies of the magnetic structure at the ferromagnet - antiferromagnet interface  

SciTech Connect

Antiferromagnetic layers are a scientifically challenging component in magneto-electronic devices such as magnetic sensors in hard disk heads, or magnetic RAM elements. In this paper we show that photo-electron emission microscopy (PEEM) is capable of determining the magnetic structure at the interface of ferromagnets and antiferromagnets with high spatial resolution (down to 20 nm). Dichroism effects at the L edges of the magnetic 3d transition metals, using circularly or linearly polarized soft x-rays from a synchrotron source, give rise to a magnetic image contrast. Images, acquired with the PEEM2 experiment at the Advanced Light Source, show magnetic contrast for antiferromagnetic LaFeO{sub 3}, microscopically resolving the magnetic domain structure in an antiferromagnetically ordered thin film for the first time. Magnetic coupling between LaFeO{sub 3} and an adjacent Co layer results in a complete correlation of their magnetic domain structures. From field dependent measurements a unidirectional anisotropy resulting in a local exchange bias of up to 30 Oe in single domains could be deduced. The elemental specificity and the quantitative magnetic sensitivity render PEEM a perfect tool to study magnetic coupling effects in multi-layered thin film samples.

Scholl, A.; Nolting, F.; Stohr, J.; Luning, J.; Seo, J.W.; Locquet, J.-P.; Anders, S.; Ohldag, H.; Padmore, H.A.

2001-01-02T23:59:59.000Z

54

A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes...  

Open Energy Info (EERE)

Login | Sign Up Wiki Browse Latinoamrica Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy...

55

Tracking Efficiency And Charge Sharing of 3D Silicon Sensors at Different Angles in a 1.4T Magnetic Field  

Science Conference Proceedings (OSTI)

A 3D silicon sensor fabricated at Stanford with electrodes penetrating throughout the entire silicon wafer and with active edges was tested in a 1.4 T magnetic field with a 180 GeV/c pion beam at the CERN SPS in May 2009. The device under test was bump-bonded to the ATLAS pixel FE-I3 readout electronics chip. Three readout electrodes were used to cover the 400 {micro}m long pixel side, this resulting in a p-n inter-electrode distance of {approx} 71 {micro}m. Its behavior was confronted with a planar sensor of the type presently installed in the ATLAS inner tracker. Time over threshold, charge sharing and tracking efficiency data were collected at zero and 15{sup o} angles with and without magnetic field. The latest is the angular configuration expected for the modules of the Insertable B-Layer (IBL) currently under study for the LHC phase 1 upgrade expected in 2014.

Gjersdal, H.; /Oslo U.; Bolle, E.; /Oslo U.; Borri, M.; /Turin U.; Da Via, C.; /Manchester U.; Dorholt, O.; /Oslo U.; Fazio, S.; /Calabria U.; Grenier, P.; /SLAC; Grinstein, S. /Barcelona U.; Hansson, P.; /SLAC; Hasi, J.; /SLAC; Hugging, F.; /Bonn U.; Jackson, P.; /SLAC; Kenney, C.; /SLAC; Kocian, M.; /SLAC; La Rosa, A.; /CERN; Mastroberardino, A.; /Calabria U.; Nordahl, P.; /Oslo U.; Rivero, F.; /Turin U.; Rohne, O.; /Oslo U.; Sandaker, H.; /Bergen U.; Sjobaek, K.; /Oslo U. /Prague, Tech. U. /SLAC /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

2012-05-07T23:59:59.000Z

56

3D Microstructure Studies  

Science Conference Proceedings (OSTI)

Jun 26, 2012 ... 2012 Summer School on 3D Microstructure Studies ... analysis of serial section data and synthetic microstructure generation, executables are.

57

Web3D  

Science Conference Proceedings (OSTI)

... Progress in creating 3D for the Web by Sandy Ressler, a member of the Information Access Division (IAD) in ITL, and others was noted in a recent ...

58

Liquid cooling for 3D-ICs  

Science Conference Proceedings (OSTI)

This paper investigated micro-channel based liquid cooling in 3D-ICs. Specifically, the structure of 3D-IC with micro-channels, and its thermal/hydrodynamic modeling are studied. Also, the design challenges of micro-channel heat sinks in 3D-IC are summarized. Keywords: microchannel heat sink, liquid cooling, 3D-IC, thermal modeling, hydrodynamic modeling

Bing Shi; Ankur Srivastava

2011-07-01T23:59:59.000Z

59

Geometrically exact 3D beam element for arbitrary large rigid-elastic deformation analysis of aerospace structures  

Science Conference Proceedings (OSTI)

This paper presents a geometrically exact beam theory and a corresponding displacement-based finite-element formulation for modeling and analysis of highly flexible beam components of multibody systems undergoing huge static/dynamic rigid-elastic deformations. ... Keywords: Flexible multibody systems, Geometrically exact beam theory, Jaumann strains, Nonlinear finite element analysis, Nonlinear structural mechanics

Genyong Wu; Xingsuo He; P. Frank Pai

2011-04-01T23:59:59.000Z

60

Use of a fast Fourier transform (FFT) 3D time-dependent Schroedinger equation solver in molecular electronic structure  

Science Conference Proceedings (OSTI)

An implicit split-operator FFT algorithm for the numerical solution of the time-dependent Schroedinger equation is implemented for the electronic structure of H{sub 2}{sup +} and H{sub 2}. The covalent versus separated-atoms behavior is described by two distinct steady states to which the imaginary-time Schroedinger solution evolves for small or large internuclear distances, respectively.

Ritchie, B. [Lawrence Livermore National Lab., CA (United States); Weatherford, C.A. [Florida A and M Univ., Tallahassee, FL (United States). Physics Dept.

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography  

Science Conference Proceedings (OSTI)

Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

Nelson, George; Harris, William; Izzo, John; Grew, Kyle N. (Connecticut); (USARL)

2012-01-20T23:59:59.000Z

62

Hydrogen effect on the morphology and structure of 3D porous titanium in the HFCVD-diamond growth environment  

Science Conference Proceedings (OSTI)

Titanium hydride was obtained from hydrogenation process on pure titanium (Ti) using a hot filament chemical vapor deposition reactor. The Ti samples were produced from powder metallurgy technique and present three-dimensional porosity. The experimental parameters of the hydrogenation process were controlled in a similar way as those for diamond growth. The pressure inside the reactor was kept at 6.6 kPa for a H{sub 2} flow rate of 100 sccm and hydrogenation time of 1 hour. The distance from the filaments to the Ti surface was kept at 5 mm. Hydrogenation processes were carried out at different temperatures of 773, 873, 973 and 1073 K. The morphology of the titanium hydrides was studied by scanning electron microscopy. The images showed an increase in the roughness titanium surface as well as the formation of cracks due to the hydride titanium precipitation. The structure of these titanium hydrides was analyzed by X-ray diffraction, performed through {theta}-2{theta} scans from 1 to 15{sup o} grazing incident angle. The results revealed that the temperature enhanced the titanium hydride concentration in the samples with a predominant precipitation of TiH phase for the four temperatures studied. - Highlights: {yields} Hydrogen quickly spread out in the Ti matrix reacting and generating TiH phases. {yields} The higher the hydrogenation temperature the higher the amount of TiH formation. {yields} The volume increasing associated with the TiH formation caused tensions in the Ti metallic matrix. {yields} The TiH increases the Ti surface roughness influencing the grain size reduction.

Braga, N.A., E-mail: neilabraga@ufam.edu.br [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal do Amazonas, UFAM, 69077-000, Manaus, Am (Brazil); Ferreira, N.G., E-mail: neidenei@las.inpe.br [Instituto Nacional de Pesquisas Espaciais, INPE, 12245-970, Sao Jose dos Campos, SP (Brazil); Baldan, M.R., E-mail: baldan@las.inpe.br [Instituto Nacional de Pesquisas Espaciais, INPE, 12245-970, Sao Jose dos Campos, SP (Brazil)

2011-10-15T23:59:59.000Z

63

3-D structural and seismic stratigraphic interpretation of the Guasare-Misoa Interval, VLE 196 Area, Block V, Lamar Field, Lake Maracaibo, Venezuela  

E-Print Network (OSTI)

In this study, the structure, depositional system, and the seismic stratigraphy of the VLE 196 area, Block V in Lamar Field were interpreted using 3-D seismic data and well logs to characterize structural and depositional settings of the Guasare-Misoa interval. To demonstrate structural settings of the study area 3-D seismic data were interpreted. Three main seismic reflectors, which are the Late Eocene unconformity, Guasare, and La Luna formations, were picked. The most dominant structure in the area is the VLE 400 Fault which was interpreted as a left-lateral strike-slip reverse fault due to its behaviors as a reverse fault in cross sections and as a strike-slip fault in strike sections. The VLE 400 Fault subdivides the VLE 196 area into two main structural blocks, a downthrown block in the western part and the upthrown block in the eastern part of the field where the hydrocarbons were trapped. Several en echelon normal and reverse faults were located along the both sides of the area. The main importance of these faults are that they fractured the La Luna source rock and created migration pathways through the reservoir layers of the Misoa Formation. To interpret depositional system of the Guasare-Misoa interval, tops of the C4 and C5 intervals and associated C4 layers were picked based on well logs and lithofacies maps were prepared. The results of this part of the study show that the sandstones of the Misoa Formation are delta front and fluvial/distributary channel facies of delta system. The net sand thickness map of the C4 interval also exhibits southeast northwest contour patterns reflecting depositional axes in the area. Shaly units of the C4 interval interpreted as potential seals and are of variable thickness and extend. Seismic stratigraphic interpretation of the area shows that the four main seismic facies are dominant which mainly represent the recent sediments, "C" sands of the Misoa Formation, underlying Colon and Mito Juan shales, and basement respectively. Some distributary eroded channel fill structures were also observed within the Misoa Formation, but they were not continuous through the area because of the intensive faulting.

Arzuman, Sadun

2002-12-01T23:59:59.000Z

64

FO3D: formatting objects for PDF3D  

Science Conference Proceedings (OSTI)

3D is useful in many real-world applications beyond computer games. The efficiency of communication is greatly enhanced by combining interlinked verbal descriptions with 3D content. However, there is a wide gap between the great demand for 3D content ... Keywords: PDF 3D, XSL-FO

Gerald Buchgraber; René Berndt; Sven Havemann; Dieter W. Fellner

2010-07-01T23:59:59.000Z

65

3D Structures of Biomolecules  

NLE Websites -- All DOE Office Websites (Extended Search)

difficulty requires the development of the new methodologies. One approach is to use NMR to image protein molecules in solvent. However, it is only applicable primarily to...

66

Magnetic Structure Determination from Neutron Diffraction Data  

NLE Websites -- All DOE Office Websites (Extended Search)

logo logo Magnetic Structure Determination from Neutron Diffraction Data September 17 - 20, 2012 logo Oak Ridge National Laboratory - Oak Ridge, Tennessee, USA About the Workshop Program Lecture Notes Useful Links Organizers Travel & Lodging Wireless Networking Photos filler About the Workshop molecule The Magnetic Structure Determination Workshop 2012 concluded on September 20. The aim of this workshop was to enhance the community studying magnetism in materials by learning from experts the essential theoretical foundations to magnetic representation analysis and work through real examples to gain experience in solving and refining magnetic structures from neutron powder and single crystal diffraction data. Invited speakers: Juan Rodríguez-Carvajal (ILL, Grenoble)

67

Fabrication techniques for 3D metamaterials in the mid-infrared.  

Science Conference Proceedings (OSTI)

The authors have developed two versions of a flexible fabrication technique known as membrane projection lithography that can produce nearly arbitrary patterns in '212 D' and fully three-dimensional (3D) structures. The authors have applied this new technique to the fabrication of split ring resonator-based metamaterials in the midinfrared. The technique utilizes electron beam lithography for resolution, pattern design flexibility, and alignment. The resulting structures are nearly three orders of magnitude smaller than equivalent microwave structures that were first used to demonstrate a negative index material. The fully 3D structures are highly isotropic and exhibit both electrically and magnetically excited resonances for incident transverse electromagnetic waves.

Ellis, A. Robert; Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

2010-05-01T23:59:59.000Z

68

X3D: Extensible 3D Graphics for Web Authors  

Science Conference Proceedings (OSTI)

In the early days of the Web a need was recognized for a language to display 3D objects through a browser. An HTML-like language, VRML, was proposed in 1994 and became the standard for describing interactive 3D objects and worlds on the Web. 3D Web courses ... Keywords: Computer Graphics

Don Brutzman; Leonard Daly

2007-04-01T23:59:59.000Z

69

3D in Web Pages  

Science Conference Proceedings (OSTI)

3D in Web Pages. This page is currently under construction! Return to Visualization. *. Bookmark and Share. Return to Visualization.

2011-12-05T23:59:59.000Z

70

Stereoscopic 3D line drawing  

Science Conference Proceedings (OSTI)

This paper discusses stereoscopic 3D imaging based on line drawing of 3D shapes. We describe the major issues and challenges in generating stereoscopic 3D effects using lines only, with a couple of relatively simple approaches called each-eye-based and ... Keywords: binocular rivalry, line drawing, line stylization, non-photorealism, stereo coherence, stereoscopy

Yongjin Kim; Yunjin Lee; Henry Kang; Seungyong Lee

2013-07-01T23:59:59.000Z

71

Particle trajectories and acceleration during 3D fan reconnection  

E-Print Network (OSTI)

Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.

S. Dalla; P. K. Browning

2008-11-07T23:59:59.000Z

72

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

73

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

74

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

75

Efficient Calculations of 3-D FFTs on Spiral Contours  

Science Conference Proceedings (OSTI)

This paper proposes a fast algorithm, called the SpiralFFT, that computes samples of the 3-D discrete Fourier transform of an object of interest along spiral contours in frequency space. This type of sampling geometry is prevalent in 3-D magnetic resonance ... Keywords: Chirp Z-transform, Nonuniform FFT, Spiral MRI

Christopher K. Turnes; Justin Romberg

2012-03-01T23:59:59.000Z

76

Engines - 3-D Animation Shows Complex Geometry of Diesel Particulates  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Animation Shows Complex Geometry of Diesel Particulates Diesel particulate matter has a very complex geometry Most studies have observed these three-dimensional structures in...

77

3D assembly and actuation of nanopatterned membranes using nanomagnets  

E-Print Network (OSTI)

A new method for aligning and actuating membranes for 3D nano-assembly based on the interactions of nanomagnets has been developed. Arrays of nanopatterned magnetic material are integrated onto thin-film membranes. It is ...

Nichol, Anthony John

2011-01-01T23:59:59.000Z

78

Core-Shell Structured Magnetic Ternary Nanocubes  

DOE Green Energy (OSTI)

While transition metal-doped ferrite nanoparticles constitute an important class of soft magnetic nanomaterials with spinel structures, the ability to control the shape and composition would enable a wide range of applications in homogeneous or heterogeneous reactions such as catalysis and magnetic separation of biomolecules. This report describes novel findings of an investigation of core-shell structured MnZn ferrite nanocubes synthesized in organic solvents by manipulating the reaction temperature and capping agent composition in the absence of the conventionally-used reducing agents. The core-shell structure of the highly-monodispersed nanocubes (~20 nm) are shown to consist of an Fe3O4 core and an (Mn0.5Zn0.5)(Fe0.9, Mn1.1)O4 shell. In comparison with Fe3O4 and other binary ferrite nanoparticles, the core-shell structured nanocubes were shown to display magnetic properties regulated by a combination of the core-shell composition, leading to a higher coercivity (~350 Oe) and field-cool/zero-field-cool characteristics drastically different from many regular MnZn ferrite nanoparticles. The findings are discussed in terms of the unique core-shell composition, the understanding of which has important implication to the exploration of this class of soft magnetic nanomaterials in many potential applications such as magnetic resonance imaging, fuel cells, and batteries.

Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N.; Wang, Chong M.; Chernova, Natalya; Engelhard, Mark H.; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

2010-12-01T23:59:59.000Z

79

Magnetic filamentary structures in the $?^{2}$ dynamo spectrum in plasmas  

E-Print Network (OSTI)

Kinney et al [PPL \\textbf{1},(1994)] have investigated plasma filamentary structure dynamics. More recently, Wilkin et al [Phys Rev Lett \\textbf{99}:134501,(2007)] have shown that kinetic energy spectrum of magnetic structures in small-scale dynamos, are predominantly filamentary. Kirilov et al [PRE (2009)] have shown that use of the boundary values of the mean-field isotropic helical turbulent ${\\alpha}^{2}$-dynamo, could determine the morphology of dynamo instability. In this paper, filamentary Frenet frame in diffusive media, displays the existence of kinematic chaotic dynamo in 3D Euclidean space ${\\textbf{E}^{3}}$. In 2D, either no dynamo action spectrum is found, in agreement with Cowling anti-dynamo theorem, or slow dynamos [PPL \\textbf{15},(2008)]. Curvature and diffusion effects are encodded in the matrix representation of ${\\alpha}^{2}$-dynamo operator. Instead of principal scalar curvatures ${\\kappa}_{1}$ and ${\\kappa}_{2}$ of the surface of structures, only one scalar curvature ${\\kappa}$ is needed to determine dynamos spectra. Filament thickness, increases with scalar curvature, as happens in solar physics.

Garcia de Andrade

2009-06-05T23:59:59.000Z

80

Multiscale dynamics of solar magnetic structures  

E-Print Network (OSTI)

Multiscale topological complexity of solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying this dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al., 2007) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of Grassberger - Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

Vadim M. Uritsky; Joseph M. Davila

2011-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mining subsidence prediction based on 3D stratigraphic model and visualization  

Science Conference Proceedings (OSTI)

3D phenomenon involved in mining subsidence was Classified, summarized and aggregated, established the hierarchical structure that describing the geologic phenomena and engineering phenomena of stratum structure. Proposed a 3D stratigraphic model that ... Keywords: 3D stratigraphic model, 3D visualization, DEMs-TEN model, mining subsidence prediction

Ruisheng Jia; Yanjun Peng; Hongmei Sun

2011-01-01T23:59:59.000Z

82

New results on the resistivity structure of Merapi Volcano (Indonesia), derived from 3D restricted inversion of long-offset transient electromagnetic data  

E-Print Network (OSTI)

structure of Newberry Volcano, Oregon, J. Geophys. Res. ,below 100 and 10 at Newberry Volcano (Oregon) (Fitterman etfound in boreholes at Newberry Volcano (Oregon), where the

Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl, Carsten; Tezkan, Bulent

2006-01-01T23:59:59.000Z

83

New results on the resistivity structure of Merapi Volcano (Indonesia), derived from 3D restricted inversion of long-offset transient electromagnetic data  

E-Print Network (OSTI)

B. E. , 1993. Electrical resistivities of crustal ?uids, J.G. E. , 1942. The electrical resistivity log as an aid inthe electrical structure, DC resistivity soundings on the

Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl, Carsten; Tezkan, Bulent

2006-01-01T23:59:59.000Z

84

3-D Model for Deactivation & Decommissioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work space, which would give managers and supervisors a more powerful tool for planning and communicating safety issues and work sequences to personnel executing the physical D&D tasks. 3-D Model for Deactivation & Decommissioning More Documents & Publications D&D Toolbox Robotic Deployment of High Resolution Laser Imaging for Characterization D&D and Risk Assessment Tools 3-D Model for Deactivation & Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D

85

3D Reconstruction from Multiple Images Part 1: Principles  

Science Conference Proceedings (OSTI)

This issue discusses methods to extract three-dimensional (3D) models from plain images. In particular, the 3D information is obtained from images for which the camera parameters are unknown. The principles underlying such uncalibrated structure-from-motion ...

Theo Moons; Luc Van Gool; Maarten Vergauwen

2010-04-01T23:59:59.000Z

86

3D Materials Science 2014: Technical Program  

Science Conference Proceedings (OSTI)

Experimental techniques for 3D data acquisition; Advances in reconstruction algorithms; Image processing and digital representation of 2D and 3D ...

87

3D Materials Science 2014: Home Page  

Science Conference Proceedings (OSTI)

2nd International Congress on 3D Materials Science 2014. June 29 – July 2, 2014 • Annecy, France. The International Congress on 3D Materials Science seeks ...

88

Restructuring of RELAP5-3D  

SciTech Connect

The RELAP5-3D source code is unstructured with many interwoven logic flow paths. By restructuring the code, it becomes easier to read and understand, which reduces the time and money required for code development, debugging, and maintenance. A structured program is comprised of blocks of code with one entry and exit point and downward logic flow. IF tests and DO loops inherently create structured code, while GOTO statements are the main cause of unstructured code. FOR_STRUCT is a commercial software package that converts unstructured FORTRAN into structured programming; it was used to restructure individual subroutines. Primarily it transforms GOTO statements, ARITHMETIC IF statements, and COMPUTED GOTO statements into IF-ELSEIF-ELSE tests and DO loops. The complexity of RELAP5-3D complicated the task. First, FOR_STRUCT cannot completely restructure all the complex coding contained in RELAP5-3D. An iterative approach of multiple FOR_STRUCT applications gave some additional improvements. Second, FOR_STRUCT cannot restructure FORTRAN 90 coding, and RELAP5-3D is partially written in FORTRAN 90. Unix scripts for pre-processing subroutines into coding that FOR_STRUCT could handle and post-processing it back into FORTRAN 90 were written. Finally, FOR_STRUCT does not have the ability to restructure the RELAP5-3D code which contains pre-compiler directives. Variations of a file were processed with different pre-compiler options switched on or off, ensuring that every block of code was restructured. Then the variations were recombined to create a completely restructured source file. Unix scripts were written to perform these tasks, as well as to make some minor formatting improvements. In total, 447 files comprising some 180,000 lines of FORTRAN code were restructured. These showed significant reduction in the number of logic jumps contained as measured by reduction in the number of GOTO statements and line labels. The average number of GOTO statements per subroutine dropped from 8.8 before restructuring to 5.3 afterwards, a reduction of 40%. The maximum number of GOTO statements in any subroutine dropped from 213 to 99, a factor of 2.1. Finally, the maximum number of statement labels dropped from 210 to 43, a factor of nearly 5. While many blocks of code remain unstructured, a much greater fraction of the code is now structured. These measurements indicate a serious reduction in degree of interweaving of logic paths.

George Mesina; Joshua Hykes

2005-09-01T23:59:59.000Z

89

A High-Throughput 3-D X-ray Microtomography System with Real-Time 3-D  

NLE Websites -- All DOE Office Websites (Extended Search)

Throughput 3-D X-ray Microtomography System with Real-Time 3-D Throughput 3-D X-ray Microtomography System with Real-Time 3-D Reconstruction A high-throughput x-ray microtomography system (XMS) that can acquire, reconstruct, and interactively display rendered 3-D images of a sample at micrometer-scale resolution within minutes has been developed at Advanced Photon Source (APS) beamline 2-BM, which is managed by the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT). This system could bring better understanding of an array of scientific and technological problems, ranging from failure in microelectronic devices to structures in biological samples. A rendered image from a three-dimensional tomographic reconstruction of a cricket, obtained with the x-ray microtomography system. The image has been digitally cut at different planes to show the internal structures of the cricket's head.

90

Geometric Analysis, Visualization, and Conceptualization of 3D...  

NLE Websites -- All DOE Office Websites (Extended Search)

(1) Acquire information about the inside of an object, and generate a 3D image data set (2) Define the regions (geometric structures) of interest (3) Create a geometric...

91

3D reconstruction of emission and absorption in planetary nebulae  

Science Conference Proceedings (OSTI)

This paper addresses the problem of reconstructing the 3D structure of planetary nebulae from 2D observations. Assuming axial symmetry, our method jointly reconstructs the distribution of dust and ionized gas in the nebulae from observations at two different ...

Andrei Lin?u; Hendrik P. A. Lensch; Marcus Magnor; Sascha El-Abed; Hans-Peter Seidel

2007-09-01T23:59:59.000Z

92

3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System  

DOE Green Energy (OSTI)

Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of the tool in a low risk environment. The Dixie Valley site offered an environment where the tool could locate near-well fractures associated with steam development. The Lost Hills field measurements yielded a data set suitable for 3D imaging. The Geo-BLT data corresponded to existing conventional logging data and showed clear indications, in several depth intervals, of near-well 3D structure. Subsequent 3D inversion of these data produced a model consistent with non-planar water flow in specific layers. The Dixie Valley measurements identified structures associated with dike intrusions and water inflow at particular depths. Preliminary analysis suggests these structures are steeply dipping, which is consistent with the geology.

Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P

2002-05-29T23:59:59.000Z

93

Dynamic 3-D Digital Structure: Program Overview  

Science Conference Proceedings (OSTI)

High-Speed Fracture Phenomena of Glass Bottle by Underwater Shock Wave · High-throughput Evaluation of Crystallization Temperature of Pd-Cu-Si System ...

94

3D Materials Science 2014: Home Page  

Science Conference Proceedings (OSTI)

The International Congress on 3D Materials Science seeks to provide the ... assess the state-of-the-art within the various elements of 3D materials science, but to ...

95

High throughput 3-D tissue cytometry  

E-Print Network (OSTI)

This thesis presents the ongoing technological development of high throughput 3-D tissue cytometry.and its applications in biomedicine. 3-D tissue cytometry has been developed in our laboratory based on two-photon microscopy ...

Kwon, Hyuk-Sang, 1971-

2007-01-01T23:59:59.000Z

96

A view-sequential 3D display  

E-Print Network (OSTI)

This thesis outlines the various techniques for creating electronic 3D displays and analyzes their commercial potential. The thesis argues for the use of view-sequential techniques in the design of 3D displays based on ...

Cossairt, Oliver S. (Oliver Strider), 1978-

2003-01-01T23:59:59.000Z

97

3D Shape Searching for Manufacturing Apps.  

Science Conference Proceedings (OSTI)

3D Shape Searching for Manufacturing Applications. Principal Investigator: Afzal Godil (301) 975-4262 afzal.godil@nist.gov. ...

2010-10-05T23:59:59.000Z

98

3-D Space as New Frontier  

Science Conference Proceedings (OSTI)

... of an MP3 song file. And artists are experimenting with creating unconventional 3-D works. Adding a spatial dimension ...

99

3D metamaterials for the thermal infrared.  

Science Conference Proceedings (OSTI)

Metamaterials form a new class of artificial electromagnetic materials that provides the device designer with the ability to manipulate the flow of electromagnetic energy in ways that are not achievable with naturally occurring materials. However, progress toward practical implementation of metamaterials, particularly at infrared and visible frequencies, has been hampered by a combination of absorptive losses; the narrow band nature of the resonant metamaterial response; and the difficulty in fabricating fully 3-dimensional structures. They describe the progress of a recently initiated program at Sandia National Laboratories directed toward the development of practical 3D metamaterials operating in the thermal infrared. They discuss their analysis of fundamental loss limits for different classes of metamaterials. In addition, they discuss new design approaches that they are pursuing which reduce the reliance on metallic structures in an effort to minimize ohmic losses.

Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

2010-06-01T23:59:59.000Z

100

Characterizing 3D shapes using fractal dimension  

Science Conference Proceedings (OSTI)

Developments in techniques for modeling and digitizing have made the use of 3D models popular to a large number of new applications. With the diffusion and spreading of 3D models employment, the demand for efficient search and retrieval methods is high. ... Keywords: 3D shape descriptor, complexity, fractal dimension

Danilo Medeiros Eler; Rosane Minghim; Odemir Martinez Bruno / André Ricardo Backes

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction  

DOE Green Energy (OSTI)

The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

2010-01-01T23:59:59.000Z

102

Structural Study on Moving Magnet Compressor for Stirling Engine  

Science Conference Proceedings (OSTI)

The article describes a structural study on moving magnet compressor for Stirling engine. The performance of Stirling engine is determined by the linear compressor. The article first establishes mathematics models for ordinary linear compressors and ... Keywords: Stirling engine, moving magnet linear compressor, CAE, magnet field analysis

Ding Guozhong; Zhang Xiaoqing; He Mingshun; Shu Shuiming

2010-06-01T23:59:59.000Z

103

Gravitational influences on magnetic field structure in accretion disks  

E-Print Network (OSTI)

Black holes and compact objects are often surrounded by structures known as accretion disks which consist of ionized plasma. Due to the immense forces present in the disk, interesting and complex magnetic field structures ...

Schneck, Kristiana E. (Kristiana Elizabeth)

2010-01-01T23:59:59.000Z

104

Solar Particle Acceleration at Reconnecting 3D Null Points  

E-Print Network (OSTI)

Context: The strong electric fields associated with magnetic reconnection in solar flares are a plausible mechanism to accelerate populations of high energy, non-thermal particles. One such reconnection scenario occurs at a 3D magnetic null point, where global plasma flows give rise to strong currents in the spine axis or fan plane. Aims: To understand the mechanism of charged particle energy gain in both the external drift region and the diffusion region associated with 3D magnetic reconnection. In doing so we evaluate the efficiency of resistive spine and fan models for particle acceleration, and find possible observables for each. Method: We use a full orbit test particle approach to study proton trajectories within electromagnetic fields that are exact solutions to the steady and incompressible magnetohydrodynamic equations. We study single particle trajectories and find energy spectra from many particle simulations. The scaling properties of the accelerated particles with respect to field and plasma para...

Stanier, Adam J; Dalla, Silvia

2012-01-01T23:59:59.000Z

105

FELIX 3d display: human-machine interface for interactive real three-dimensional imaging  

Science Conference Proceedings (OSTI)

Flat 2D screens cannot display complex 3D structures without the usage of different slices of the 3D model. A volumetric display, like the FELIX 3D Display can solve this problem. It provides space-filling images and is characterized by “multi-viewer” ...

Knut Langhans; Klaas Oltmann; Sebastian Reil; Lars Goldberg; Hannes Hatecke

2005-11-01T23:59:59.000Z

106

3D-Orientation space; filters and sampling Frank G. A. Faas, Lucas J. van Vliet  

E-Print Network (OSTI)

3D-Orientation space; filters and sampling Frank G. A. Faas, Lucas J. van Vliet Pattern Recognition, The Netherlands {faas,lucas}@ph.tn.tudelft.nl Keywords: 3D-orientation space, 3D-orientation selective filters The orientation space transform is a concept that can deal with multiple oriented structures at a sin- gle

van Vliet, Lucas J.

107

Magnetic Structure Analysis from Neutron Powder Diffraction Data Using GSAS  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Structure Analysis from Neutron Powder Diffraction Data Using GSAS Magnetic Structure Analysis from Neutron Powder Diffraction Data Using GSAS This set of web pages provides reference information from the Magnetic Structure Analysis from Neutron Powder Diffraction Data Using GSAS workshop presented at the 2006 American Conference on Neutron Scattering held in St. Charles, IL, June 18-22, 2006. Workshop Schedule: 9:00-9:05 am: Introduction (B.H. Toby) 9:05-9:50 am: History, Color symmetry & Shubnikov space groups (B. Chakoumous) Lecture notes: History and Color symmetry & Shubnikov space groups 9:50-10:20 am: Magnetic extinctions classes & common magnetic structure types (R.B. Von Dreele) Lecture Notes Break 10:50-11:45 am: Overview of representational analysis & FullProf implementation (L.C. Chapon) Lecture Notes and Accompanying files

108

VISUALS: 3-D Animation of Dislocation Glide  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Animation of edge-screw dislocation glide. Citation: van der Pluijm, Ben. "3-D Animation of Dislocation Glide." Teach the Earth: The SERC ...

109

3-D Motion Estimation Using Range Data  

Science Conference Proceedings (OSTI)

... Digital Object Identifier 10.1109/TITS.2006.883112 ... sequences were constructed via 3-D object-oriented graphics library (OOGL) files. ... SPIE—Adv. ...

2009-02-03T23:59:59.000Z

110

3D Materials Science 2012: Technical Program  

Science Conference Proceedings (OSTI)

3D Materials Science 2012: Technical Program July 8-12, 2012 • Seven Springs Mountain Resort • Seven Springs, Pennsylvania. View Session Sheets.

111

On Volume Based 3D Display Techniques  

Science Conference Proceedings (OSTI)

In the case of certain applications in which a need exists to visualize and interact with voluminous data sets and complex 3-D geometrical models, the conventional computer interface inhibits key human-computer interaction processes. Here, several deficiencies ... Keywords: 3-D Display, Cathode Ray Sphere, Computed Holography, Electroholography, Image Space, Static-Volume Display, Swept-Volume Display, Varifocal Display, Visualization, Volumetric Display

Barry G. Blundell

2011-10-01T23:59:59.000Z

112

A Memory Efficient 3-D DWT Architecture  

Science Conference Proceedings (OSTI)

This paper proposes a memory efficientreal-time 3-D DWT algorithm and its architectural implementation. As the running JD-DWT refreshes the wavelet coefficients with the arrival of every two newframes, the latency of the conventional 3D-DWT reduces by ...

B. Das; Swapna Banerjee

2003-01-01T23:59:59.000Z

113

3D Simulations in Environmental Impact Assessment  

Science Conference Proceedings (OSTI)

The increase of petrol cost and the failure of Kyoto agreement generated huge investments in renewable energy sources. In recent times a lot of local authorities allowed wind farm location. In many cases, environmental impact assessments do not take ... Keywords: 3D CAD models, 3D GIS analysis, Multimedia techniques, Viewshed, Visual impact assessment, Wind farm

Maria Danese; Giuseppe Las Casas; Beniamino Murgante

2008-06-01T23:59:59.000Z

114

Hardware trust implications of 3-D integration  

Science Conference Proceedings (OSTI)

3-D circuit-level integration is a chip fabrication technique in which two or more dies are stacked and combined into a single circuit through the use of vertical electroconductive posts. Since the dies may be manufactured separately, 3-D circuit integration ...

Ted Huffmire; Timothy Levin; Michael Bilzor; Cynthia E. Irvine; Jonathan Valamehr; Mohit Tiwari; Timothy Sherwood; Ryan Kastner

2010-10-01T23:59:59.000Z

115

A 3-D Link between Antibiotic Resistance and Brain Disease  

NLE Websites -- All DOE Office Websites (Extended Search)

A 3-D Link between Antibiotic Resistance and Brain Disease A 3-D Link between Antibiotic Resistance and Brain Disease The story of what makes certain types of bacteria resistant to a specific antibiotic has a sub-plot that gives insight into the cause of a rare form of brain degeneration among children, according to investigators at St. Jude Children's Research Hospital. The story takes a twist as key differences among the structures of its main molecular characters disappear and reappear as they are assembled in the cell. The story is based on a study of the three-dimensional (3-D) structure of an enzyme called pantothenate kinase, which triggers the first step in the production coenzyme A (CoA), a molecule that is indispensable to all forms of life. Enzymes are proteins that speed up biochemical reactions. CoA plays a pivotal role in the cells' ability to extract energy from fatty

116

3-D Model for Deactivation & Decommissioning | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-D Model for Deactivation & Decommissioning 3-D Model for Deactivation & Decommissioning The design and production of 3-D scale models that replicate the highly contaminated...

117

SHREC 2010 - Shape Retrieval Contest based on Generic 3D ...  

Science Conference Proceedings (OSTI)

... this track is to evaluate the performance of 3D shape retrieval approaches on a Generic 3D shape benchmark based on the Google 3D Warehouse. ...

118

MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS  

SciTech Connect

Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

Kusano, K.; Bamba, Y.; Yamamoto, T. T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Iida, Y.; Toriumi, S. [Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Asai, A., E-mail: kusano@nagoya-u.jp [Unit of Synergetic Studies for Space, Kyoto University, 17 Kitakazan Ohmine-cho, Yamashina-ku, Kyoto 607-8471 (Japan)

2012-11-20T23:59:59.000Z

119

Structural Steel Attenuation of External Magnetic Fields in Buildings  

Science Conference Proceedings (OSTI)

This report investigates the passive attenuation of external power-frequency magnetic fields caused by structural steel members used in commercial building construction. This effect has not been considered in previous assessments of the field levels inside buildings.

2007-04-26T23:59:59.000Z

120

ISReal: an open platform for semantic-based 3D simulations in the 3D internet  

Science Conference Proceedings (OSTI)

We present the first open and cross-disciplinary 3D Internet research platform, called ISReal, for intelligent 3D simulation of realities. Its core innovation is the comprehensively integrated application of semantic Web technologies, semantic services, ...

Patrick Kapahnke; Pascal Liedtke; Stefan Nesbigall; Stefan Warwas; Matthias Klusch

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

3D Magnetotelluric characterization of the COSO GeothermalField  

DOE Green Energy (OSTI)

Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

122

A geoscience perspective on immersive 3D gridded data visualization  

Science Conference Proceedings (OSTI)

We describe visualization software, Visualizer, that was developed specifically for interactive, visual exploration in immersive virtual reality (VR) environments. Visualizer uses carefully optimized algorithms and data structures to support the high ... Keywords: 3D data visualization, Immersive visualization, Interactive exploration, Virtual reality

Magali I. Billen; Oliver Kreylos; Bernd Hamann; Margarete A. Jadamec; Louise H. Kellogg; Oliver Staadt; Dawn Y. Sumner

2008-09-01T23:59:59.000Z

123

Performance Analysis of Leading HPC Architectures With Beambeam3D  

Science Conference Proceedings (OSTI)

High energy colliders are essential to study the inner structure of nuclear and elementary particles. A parallel particle simulation code, BeamBeam3D, has been developed and actively used to model the beam dynamics and to optimize the performance of ... Keywords: HPC application, accelerator modeling, performance optimization, performance tuning

Hongzhang Shan; Erich Strohmaier; Ji Qiang

2008-02-01T23:59:59.000Z

124

Photo tourism: exploring photo collections in 3D  

Science Conference Proceedings (OSTI)

We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each ... Keywords: image-based modeling, image-based rendering, photo browsing, structure from motion

Noah Snavely; Steven M. Seitz; Richard Szeliski

2006-07-01T23:59:59.000Z

125

Special Section on 3D Object Retrieval: Efficient 3D object recognition using foveated point clouds  

Science Conference Proceedings (OSTI)

Recent hardware technologies have enabled acquisition of 3D point clouds from real world scenes in real time. A variety of interactive applications with the 3D world can be developed on top of this new technological scenario. However, a main problem ... Keywords: 3D object recognition, Moving fovea, Point cloud

Rafael Beserra Gomes, Bruno Marques Ferreira Da Silva, Lourena Karin De Medeiros Rocha, Rafael Vidal Aroca, Luiz Carlos Pacheco Rodrigues Velho, Luiz Marcos Garcia GonçAlves

2013-08-01T23:59:59.000Z

126

3D Visualization of Water Transport in Ferns  

NLE Websites -- All DOE Office Websites (Extended Search)

3D Visualization of Water Transport 3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called xylem. However, in trees such as eucalyptus or redwood, the xylem tissue-better known as wood-bears the weight of the branches and leaves, giving rise to the often massive canopies characteristic of these species. We know much about water transport in woody plants, but considerably less about primitive plants such as ferns. Not only have ferns played an important role in the evolution of trees and shrubs but collectively, these plant forms are a fascinating study in contrasts because ferns use xylem strictly for water transport, leaving structural support to other tissues. Given the global distribution and impressive diversity of ferns, how has their xylem evolved to deal with variable habitat water availability?

127

A heightened radiosensitivity of stromal fibroblasts in 3D matrix  

NLE Websites -- All DOE Office Websites (Extended Search)

heightened radiosensitivity of stromal fibroblasts in 3D matrix heightened radiosensitivity of stromal fibroblasts in 3D matrix X. Liu, K. McHenry & Z. Yuan. Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115 Our recent study suggested that stromal fibroblasts can sensitize cocultured epithelial cells to radiation exposure. Since stromal fibroblasts exhibit highly elongated cytoplasmic extensions (pseudopodia), which as shown in our previous study are essential to guide neighboring epithelial cells to form branching ducts, we asked whether radiation could interfere with the formation of fibroblasts' pseudopodium, which would then impair their ability to structurally and functionally support the associated epithelial cells. For this, HMFs were seeded in 3D and were either mock-treated or irradiated 24 h

128

ARM - Publications: Science Team Meeting Documents: Application of 3D  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of 3D Radiative Transfer to Mountains Application of 3D Radiative Transfer to Mountains Chen, Yong UCLA Hall, Alex University of California, Los Angeles Liou, Kuo-Nan UCLA A large part of the land surface is not flat, but vertically structured. In mountain terrain, accurate calculations of the net radiation for slopes of varying gradient and orientation are of considerable importance in determining the energy budget of the surface. In order to evaluate the surface variations of total solar irradiance, it is necessary to calculate the direct, diffuse and terrain-reflected components. A 3D Monte Carlo radiative transfer model has been developed and applied to mountain surfaces to study the diurnal and seasonal changes in surface fluxes by choosing 9 different solar zenith angles, including noon, sunrise+1/2 hour,

129

Extending 2-D Smoothed Local Symmetries to 3-D  

E-Print Network (OSTI)

3-D Smoothed Local Symmetries (3-D SLS's) are presented as a representation for three-dimensional shapes. 3-D SLS's make explicit the perceptually salient features of 3-D objects and are especially suited to representing ...

Braunegg, David J.

130

AOCS Official Method Cd 3d-63  

Science Conference Proceedings (OSTI)

Acid Value AOCS Official Method Cd 3d-63 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION The acid value is the number of milligrams of potassium hydroxide necess

131

3D TORUS V1.0  

Energy Science and Technology Software Center (OSTI)

002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

132

AOCS Official Method Ca 3d-02  

Science Conference Proceedings (OSTI)

Determination of Sediment in Crude Fats and Oils—Centrifuge Method AOCS Official Method Ca 3d-02 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads AOCS DEFINITION...

133

geom3d.html - CECM  

E-Print Network (OSTI)

Line: AreConcurrent AreCoplanar AreParallel ArePerpendicular AreSkewLines ... In this case, the power of the geom3d package is dependent on the power of ...

134

Test Beam Results of 3D Silicon Pixel Sensors for the ATLAS upgrade  

SciTech Connect

Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance. Full and partial 3D pixel detectors have been tested, with and without a 1.6T magnetic field, in high energy pion beams at the CERN SPS North Area in 2009. Sensors characteristics have been measured as a function of the beam incident angle and compared to a regular planar pixel device. Overall full and partial 3D devices have similar behavior. Magnetic field has no sizeable effect on 3D performances. Due to electrode inefficiency 3D devices exhibit some loss of tracking efficiency for normal incident tracks but recover full efficiency with tilted tracks. As expected due to the electric field configuration 3D sensors have little charge sharing between cells.

Grenier, P.; /SLAC; Alimonti, G.; /INFN, Milan; Barbero, M.; /Bonn U.; Bates, R.; /Glasgow U.; Bolle, E.; /Oslo U.; Borri, M.; /Manchester U.; Boscardin, M.; /Fond. Bruno Kessler, Povo; Buttar, C.; /Glasgow U.; Capua, M.; /Calabria U. /INFN, Cosenza; Cavalli-Sforza, M.; /Barcelona, IFAE; Cobal, M.; /Udine U. /INFN, Udine; Cristofoli, A.; /Udine U. /INFN, Udine; Dalla Betta, G.F.; /Trento U. /INFN, Trento; Darbo, G.; /INFN, Genoa; Da Via, C.; /Manchester U.; Devetak, E.; /SUNY, Stony Brook; DeWilde, B.; /SUNY, Stony Brook; Di Girolamo, B.; /CERN; Dobos, D.; /CERN; Einsweiler, K.; /LBL, Berkeley; Esseni, D.; /Udine U. /INFN, Udine /Calabria U. /INFN, Cosenza /Barcelona, Inst. Microelectron. /Manchester U. /CERN /LBL, Berkeley /INFN, Genoa /INFN, Genoa /Udine U. /INFN, Udine /Oslo U. /ICREA, Barcelona /Barcelona, IFAE /SINTEF, Oslo /SINTEF, Oslo /SLAC /SLAC /Bergen U. /New Mexico U. /Bonn U. /SLAC /Freiburg U. /VTT Electronics, Espoo /Bonn U. /SLAC /Freiburg U. /SLAC /SINTEF, Oslo /Manchester U. /Barcelona, IFAE /Bonn U. /Bonn U. /CERN /Manchester U. /SINTEF, Oslo /Barcelona, Inst. Microelectron. /Calabria U. /INFN, Cosenza /Udine U. /INFN, Udine /Manchester U. /VTT Electronics, Espoo /Glasgow U. /Barcelona, IFAE /Udine U. /INFN, Udine /Hawaii U. /Freiburg U. /Manchester U. /Barcelona, Inst. Microelectron. /CERN /Fond. Bruno Kessler, Povo /Prague, Tech. U. /Trento U. /INFN, Trento /CERN /Oslo U. /Fond. Bruno Kessler, Povo /INFN, Genoa /INFN, Genoa /Bergen U. /New Mexico U. /Udine U. /INFN, Udine /SLAC /Oslo U. /Prague, Tech. U. /Oslo U. /Bergen U. /SUNY, Stony Brook /SLAC /Calabria U. /INFN, Cosenza /Manchester U. /Bonn U. /SUNY, Stony Brook /Manchester U. /Bonn U. /SLAC /Fond. Bruno Kessler, Povo

2011-08-19T23:59:59.000Z

135

Electric field in 3D gravity with torsion  

E-Print Network (OSTI)

It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

M. Blagojevi?; B. Cvetkovi?

2008-04-11T23:59:59.000Z

136

3-D Simulations of Ergospheric Disk Driven Poynting Jets  

E-Print Network (OSTI)

This Letter reports on 3-dimensional simulations of Kerr black hole magnetospheres that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). In particular, we study powerful Poynting flux dominated jets that are driven from dense gas in the equatorial plane in the ergosphere. The physics of which has been previously studied in the simplified limit of an ergopsheric disk. For high spin black holes, $a/M > 0.95$, the ergospheric disk is prominent in the 3-D simulations and is responsible for greatly enhanced Poynting flux emission. Any large scale poloidal magnetic flux that is trapped in the equatorial region leads to an enormous release of electromagnetic energy that dwarfs the jet energy produced by magnetic flux threading the event horizon. The implication is that magnetic flux threading the equatorial plane of the ergosphere is a likely prerequisite for the central engine of powerful FRII quasars.

Brian Punsly

2007-04-05T23:59:59.000Z

137

Evaluating Extensible 3D (X3D) Graphics For Use in Software Visualisation.  

E-Print Network (OSTI)

??3D web software visualisation has always been expensive, special purpose, and hard to program. Most of the technologies used require large amounts of scripting, are… (more)

Anslow, Craig

2008-01-01T23:59:59.000Z

138

3D-Printerens Udbredelse; The Diffusion of the 3D-Printer.  

E-Print Network (OSTI)

??This Paper investigates the 3D Printers curent state of diffusion and impact on modernity with use of Rogers theory of diffusion of innovation in relation… (more)

Lindhardt, Tobias

2013-01-01T23:59:59.000Z

139

An FPGA-based 3D Graphics System; Ett FPGA-baserat 3D-grafiksystem.  

E-Print Network (OSTI)

?? This report documents the work done by the author to design and implement a 3D graphics system on an FPGA (Field Programmable Gate Array).… (more)

Knutsson, Niklas

2005-01-01T23:59:59.000Z

140

3D engine for immersive virtual environments  

E-Print Network (OSTI)

The purpose of this project is to develop a software framework, a 3D engine, which will generate images to be projected onto facets of a spatially immersive display (SID). The goal is to develop a software library to support the creation of images of specified 3D environments which are specific to the display geometries of a polyhedral class of SIDs. Part of this goal is developing auxiliary software to allow this library to be thoroughly tested. When properly working, the images being displayed on adjoining faces of the SID appear spatially and temporally consistent with one another, creating the illusion that the user is within a surrounding three-dimensional space.

Anderson, Christopher Dean

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Convergence of Ginzburg-Landau functionals in 3-d superconductivity  

E-Print Network (OSTI)

In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.

Sisto Baldo; Robert L. Jerrard; Giandomenico Orlandi; Mete Soner

2011-02-23T23:59:59.000Z

142

3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open  

Open Energy Info (EERE)

CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 3D Magnetotelluric characterization of the COSO Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring

143

CONSEQUENCES OF MAGNETIC FIELD STRUCTURE FOR HEAT TRANSPORT IN MAGNETOHYDRODYNAMICS  

SciTech Connect

Interfaces between hot and cold magnetized plasmas exist in various astrophysical contexts, for example, where hot outflows impinge on an ambient interstellar medium. It is of interest to understand how the structure of the magnetic field spanning the interface affects the temporal evolution of the temperature gradient. Here, we explore the relation between the magnetic field topology and the heat transfer rate by adding various fractions of tangled versus ordered field across a hot-cold interface that allows the system to evolve to a steady state. We find a simple mathematical relation for the rate of heat conduction as a function of the initial ratio of ordered-to-tangled field across the interface. We discuss potential implications for the astrophysical context of magnetized wind blown bubbles around evolved stars.

Li Shule; Frank, Adam; Blackman, Eric, E-mail: shuleli@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

2012-03-20T23:59:59.000Z

144

3-D Airflow Measurement Using Smoke Particles  

Science Conference Proceedings (OSTI)

A new 3-D PIV-technique that is applicable to low velocity airflow in a real space such as indoor airflow is proposed, and its performance is inspected through a simulation and an experimental application. In this technique, two parallel planes separated ... Keywords: PIV, indoor airflow, pattern tracking, simulation, wind tunnel experiment

A. Kaga; K. Yamaguchi; Y. Inoue; A. Kondo

1998-08-01T23:59:59.000Z

145

3-D hydro + cascade model at RHIC  

E-Print Network (OSTI)

We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

Chiho Nonaka; Steffen A. Bass

2005-10-11T23:59:59.000Z

146

Blender 3D Architecture, Buildings, and Scenery  

Science Conference Proceedings (OSTI)

DETAIL This book will show you how to create realistic architectural models in Blender. Blender is an open-source 3D animation program released as free software. It can be used for modeling, texturing, skinning, animating, and so on. It runs on all the ...

Allan Brito

2008-06-01T23:59:59.000Z

147

3-D hydro + cascade model at RHIC  

E-Print Network (OSTI)

We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

Nonaka, C; Nonaka, Chiho; Bass, Steffen A.

2006-01-01T23:59:59.000Z

148

Joint watermarking and progressive geometric compression of 3D meshes  

Science Conference Proceedings (OSTI)

With the ever-increasing development of digital technologies and digital 3D models, the question of 3D mesh protection has becoming more and more important. One of the problems in digital watermarking is to decide how to embed in a 3D mesh as many bits ... Keywords: 3D compression, blind watermarking, dither modulation, semi-regular 3D meshes, wavelet transform

Ines Bouzidi; Azza Ouled Zaid; Meha Hachani; William Puech

2013-06-01T23:59:59.000Z

149

Customizing mesoscale self-assembly with 3D printing  

E-Print Network (OSTI)

Self-assembly due to capillary forces is a common method for generating 2D mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost 3D printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new ways to low cost microfabrication.

M. Poty; G. Lumay; N. Vandewalle

2013-10-17T23:59:59.000Z

150

Electronic Structure and Transport in Magnetic Multilayers  

SciTech Connect

ORNL assisted Seagate Recording Heads Operations in the development of CIPS pin Valves for application as read sensors in hard disk drives. Personnel at ORNL were W. H. Butler and Xiaoguang Zhang. Dr. Olle Heinonen from Seagate RHO also participated. ORNL provided codes and materials parameters that were used by Seagate to model CIP GMR in their heads. The objectives were to: (1) develop a linearized Boltzmann transport code for describing CIP GMR based on realistic models of the band structure and interfaces in materials in CIP spin valves in disk drive heads; (2) calculate the materials parameters needed as inputs to the Boltzmann code; and (3) transfer the technology to Seagate Recording Heads.

None

2008-02-18T23:59:59.000Z

151

Making 3D work: a classification of visual depth cues, 3D display technologies and their applications  

Science Conference Proceedings (OSTI)

3D display technologies improve perception and interaction with 3D scenes, and hence can make applications more effective and efficient. This is achieved by simulating depth cues used by the human visual system for 3D perception. The type of employed ... Keywords: 3D display technologies, applications of 3D display technologies, classification, depth cues, stereo perception

Mostafa Mehrabi, Edward M. Peek, Burkhard C. Wuensche, Christof Lutteroth

2013-01-01T23:59:59.000Z

152

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the  

NLE Websites -- All DOE Office Websites (Extended Search)

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the Nanoscale Scientists studying osteoporosis and other skeletal diseases are interested in the 3D structure of bone and its responses to conditions such as weightlessness, radiation (of particular interest to astronauts) and vitamin D deficiency. The current gold standard, micro-computed tomography (micro-CT), provides 3D images of trabeculae, the small interior struts of bone tissue, and electron microscopy can provide nanometer resolution of thin tissue slices. Hard X-ray transmission microscopy has provided the first 3D view of bone structure within individual trabeculae on the nanoscale. figure 1 Figure 1 Micro-CT (left) shows trabecular structure inside of bone. Transmission X-ray microscopy (TXM; center and right) can reveal localized details of osteocyte lacunae and their processes.

153

Explicit transient thermal simulation of liquid-cooled 3D ICs  

Science Conference Proceedings (OSTI)

The high heat flux and compact structure of three-dimensional circuits (3D ICs) make conventional air-cooled devices more subsceptible to overheating. Liquid cooling is an alternative that can improve heat dissipation, and reduce thermal issues. Fast ... Keywords: 3D ICs, compact thermal model, finite difference method, liquid-cooling

Alain Fourmigue, Giovanni Beltrame, Gabriela Nicolescu

2013-03-01T23:59:59.000Z

154

Multitouch puppetry: creating coordinated 3D motion for an articulated arm  

Science Conference Proceedings (OSTI)

Controlling a high-dimensional structure like a 3D humanoid skeleton is a challenging task. Intuitive interfaces that allow non-experts to perform character animation with standard input devices would open up many possibilities. Therefore, we propose ... Keywords: 3D user interfaces, character animation, multitouch interaction

Michael Kipp; Quan Nguyen

2010-11-01T23:59:59.000Z

155

Printed optics: 3D printing of embedded optical elements for interactive devices  

Science Conference Proceedings (OSTI)

We present an approach to 3D printing custom optical elements for interactive devices labelled Printed Optics. Printed Optics enable sensing, display, and illumination elements to be directly embedded in the casing or mechanical structure ... Keywords: 3d printing, additive manufacturing, display, light, optics, projection, rapid prototyping, sensing

Karl Willis; Eric Brockmeyer; Scott Hudson; Ivan Poupyrev

2012-10-01T23:59:59.000Z

156

3D Materials Science 2014: Meeting Registration  

Science Conference Proceedings (OSTI)

Administrative & Policy Manual. Scroll up. Scroll down. Technical Divisions Home · TMS Committees Home · Electronic, Magnetic & Photonic Materials ...

157

3-D Model for Deactivation & Decommissioning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project & Identifier Project & Identifier Tech Stage: Deployment In-Situ Decommissioning: SR09171 SRS Area Closure Projects: PBS SR-0040 3-D models of the R reactor building and P reactor vessel were delivered to SRS Area Closure Projects Page 1 of 2 Tech Fact Sheet Savannah River Site South Carolina 3-D Model for Deactivation & Decommissioning Challenge Planning for the safe and controlled deactivation and decommissioning (D&D) of highly contaminated nuclear facilities requires that engineers and managers fully understand the work space in which personnel and equipment will operate. It also requires that they effectively communicate safety concerns and work sequences to the personnel who will perform the work. This crucial knowledge is conveyed in

158

3D Technology for intelligent trackers  

SciTech Connect

At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

Lipton, Ronald; /Fermilab

2010-09-01T23:59:59.000Z

159

3-D Metals | Open Energy Information  

Open Energy Info (EERE)

Metals Metals Jump to: navigation, search Name 3-D Metals Facility 3-D Metals Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Valley City OH Coordinates 41.2481362°, -81.88305616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2481362,"lon":-81.88305616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

SHREC 2013 - Large Scale Sketch-Based 3D Shape ...  

Science Conference Proceedings (OSTI)

... It is also popular and important for related applications such as sketch-based modeling and recognition, as well as 3D animation production via 3D ...

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Available Technologies: Integrated Profiling of 3D Cell ...  

Integrated Profiling of 3D Cell Culture Models and 3D Microscopy. 2013-177. ABSTRACT: Researchers at Berkeley Lab have developed a screening platform ...

162

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal...  

Open Energy Info (EERE)

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3-D...

163

3D Technologies for Large Area Trackers  

E-Print Network (OSTI)

We describe technologies which can be developed to produce large area, low cost pixelated tracking detec- tors. These utilize wafer-scale 3D electronics and sensor technologies currently being developed in industry. This can result in fully active sensor/readout chip tiles which can be assembled into large area arrays with good yield and minimal dead area. The ability to connect though the bulk of the device can also provide better electrical performance and lower mass.

Deptuch, G; Johnson, M; Kenney, C; Lipton, R; Narian, M; Parker, S; Shenai, A; Spiegel, L; Thom, J; Ye, Z

2013-01-01T23:59:59.000Z

164

3D Technologies for Large Area Trackers  

E-Print Network (OSTI)

We describe technologies which can be developed to produce large area, low cost pixelated tracking detec- tors. These utilize wafer-scale 3D electronics and sensor technologies currently being developed in industry. This can result in fully active sensor/readout chip tiles which can be assembled into large area arrays with good yield and minimal dead area. The ability to connect though the bulk of the device can also provide better electrical performance and lower mass.

G. Deptuch; U. Heintz; M. Johnson; C. Kenney; R. Lipton; M. Narian; S. Parker; A. Shenai; L. Spiegel; J. Thom; Z. Ye

2013-07-16T23:59:59.000Z

165

What is a flux tube? On the magnetic field topology of buoyant flux structures  

E-Print Network (OSTI)

What is a flux tube? On the magnetic field topology of buoyant flux structures Fausto Cattaneo study the topology of field lines threading buoyant magnetic flux struc- tures. The magnetic structures ­ Sun: interior ­ Sun: magnetic fields ­ Stars: spots 1 Current address: Department of Mathematics

166

Comparison of stochastic filtering methods for 3D tracking  

Science Conference Proceedings (OSTI)

In the recent years, the 3D visual research has gained momentum with publications appearing for all aspects of 3D including visual tracking. This paper presents a review of the literature published for 3D visual tracking over the past five years. The ... Keywords: 3D tracking, Articulated object tracking, Condensation algorithm, Kalman filter, Motion cue, Particle filter

Yasir Salih; Aamir Saeed Malik

2011-10-01T23:59:59.000Z

167

AgentCubes: Incremental 3D end-user development  

Science Conference Proceedings (OSTI)

3D game development can be an enticing way to attract K-12 students to computer science, but designing and programming 3D games is far from trivial. Students need to achieve a certain level of 3D fluency in modeling, animation, and programming to be ... Keywords: Computational thinking, End-user development, Game design, IT fluency, Incremental 3D, Visual programming

Andri Ioannidou; Alexander Repenning; David C. Webb

2009-08-01T23:59:59.000Z

168

Natural Language Generation Journeys to Interactive 3D Worlds*  

E-Print Network (OSTI)

as they explain and demonstrate complex phenomena. In 3D interactive fiction systems, user- directed avatars that charac- terize physical devices must be clearly explained. NLG delivered with speech synthesis will need of interactive 3D worlds: self- . ." explaining 3D environments, habitable 3D learning en- vironments

169

QUANTIFYING THE EVOLVING MAGNETIC STRUCTURE OF ACTIVE REGIONS  

SciTech Connect

The topical and controversial issue of parameterizing the magnetic structure of solar active regions has vital implications in the understanding of how these structures form, evolve, produce solar flares, and decay. This interdisciplinary and ill-constrained problem of quantifying complexity is addressed by using a two-dimensional wavelet transform modulus maxima (WTMM) method to study the multifractal properties of active region photospheric magnetic fields. The WTMM method provides an adaptive space-scale partition of a fractal distribution, from which one can extract the multifractal spectra. The use of a novel segmentation procedure allows us to remove the quiet Sun component and reliably study the evolution of active region multifractal parameters. It is shown that prior to the onset of solar flares, the magnetic field undergoes restructuring as Dirac-like features (with a Hoelder exponent, h = -1) coalesce to form step functions (where h = 0). The resulting configuration has a higher concentration of gradients along neutral line features. We propose that when sufficient flux is present in an active region for a period of time, it must be structured with a fractal dimension greater than 1.2, and a Hoelder exponent greater than -0.7, in order to produce M- and X-class flares. This result has immediate applications in the study of the underlying physics of active region evolution and space weather forecasting.

Conlon, Paul A.; McAteer, R.T. James; Gallagher, Peter T.; Fennell, Linda, E-mail: mcateer@nmsu.ed [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

2010-10-10T23:59:59.000Z

170

Pedestal Plasma Control With Small 3D Magnetic Fields  

E-Print Network (OSTI)

Bull. Am. Phys. Soc. 56, 293 (2011)53rd American Physical Society Annual Meeting of Division of Plasma Physics Salt Lake City Utah, US, 2011999618952

Evans, T.E.

2011-08-03T23:59:59.000Z

171

Thermal via placement in 3D ICs  

E-Print Network (OSTI)

As thermal problems become more evident, new physical design paradigms and tools are needed to alleviate them. Incorporating thermal vias into integrated circuits (ICs) is a promising way of mitigating thermal issues by lowering the thermal resistance of the chip itself. However, thermal vias take up valuable routing space, and therefore, algorithms are needed to minimize their usage while placing them in areas where they would make the greatest impact. With the developing technology of three-dimensional integrated circuits (3D ICs), thermal problems are expected to be more prominent, and thermal vias can have a larger impact on them than in traditional 2D ICs. In this paper, thermal vias are assigned to specific areas of a 3D IC and used to adjust their effective thermal conductivities. The thermal via placement method makes iterative adjustments to these thermal conductivities in order to achieve a desired maximum temperature objective. Finite element analysis (FEA) is used in formulating the method and in calculating temperatures quickly during each iteration. As a result, the method efficiently achieves its thermal objective while minimizing the thermal via utilization.

Brent Goplen

2005-01-01T23:59:59.000Z

172

3D Hall MHD Modeling of Solar Wind Plasma Spectra  

E-Print Network (OSTI)

We present fully self consistent 3D simulations of compressible Hall MHD plasma that describe spectral features relevant to the solar wind plasma. We find that a $k^{-7/3}$ spectrum sets in for the fluctuations that are smaller than ion gyro radius. We further investigate scale dependent anisotropy led by nonlinear processes relevant to the solar wind plasma. Our work is important particularly in understanding the role of wave and nonlinear cascades in the evolution of the solar wind, structure formation at the largest scales.

Shaikh, Dastgeer

2009-01-01T23:59:59.000Z

173

Validation for 2D/3D registration I: A new gold standard data set  

Science Conference Proceedings (OSTI)

Purpose: In this article, the authors propose a new gold standard data set for the validation of two-dimensional/three-dimensional (2D/3D) and 3D/3D image registration algorithms. Methods: A gold standard data set was produced using a fresh cadaver pig head with attached fiducial markers. The authors used several imaging modalities common in diagnostic imaging or radiotherapy, which include 64-slice computed tomography (CT), magnetic resonance imaging using Tl, T2, and proton density sequences, and cone beam CT imaging data. Radiographic data were acquired using kilovoltage and megavoltage imaging techniques. The image information reflects both anatomy and reliable fiducial marker information and improves over existing data sets by the level of anatomical detail, image data quality, and soft-tissue content. The markers on the 3D and 2D image data were segmented using ANALYZE 10.0 (AnalyzeDirect, Inc., Kansas City, KN) and an in-house software. Results: The projection distance errors and the expected target registration errors over all the image data sets were found to be less than 2.71 and 1.88 mm, respectively. Conclusions: The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D and 3D/3D registration algorithms for image guided therapy.

Pawiro, S. A.; Markelj, P.; Pernus, F.; Gendrin, C.; Figl, M.; Weber, C.; Kainberger, F.; Noebauer-Huhmann, I.; Bergmeister, H.; Stock, M.; Georg, D.; Bergmann, H.; Birkfellner, W. [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria); Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Trzaska Cesta 25, Ljubljana SI-1000 (Slovenia); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria); University Clinic of Radiology, Division of Osteoradiology, Medical University of Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria); Department of Biomedical Research, Medical University Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria); University Clinic of Radiotherapy, Division of Medical Radiation Physics, Medical University of Vienna, Waehringer Guertel 18-20, AKH, Vienna A-1090 (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria)

2011-03-15T23:59:59.000Z

174

Printed optics: 3d printing of embedded optical elements for interactive devices  

E-Print Network (OSTI)

a b c d Figure 1: Custom optical elements are fabricated with 3D printing and embedded in interactive devices, opening up new possibilities for interaction including: unique display surfaces made from 3D printed ‘light pipes ’ (a), novel internal illumination techniques (b), custom optical sensors (c), and embedded optoelectronics (d). We present an approach to 3D printing custom optical elements for interactive devices labelled Printed Optics. Printed Optics enable sensing, display, and illumination elements to be directly embedded in the casing or mechanical structure of an interactive device. Using these elements, unique display surfaces, novel illumination techniques, custom optical sensors, and embedded optoelectronic components can be digitally fabricated for rapid, high fidelity, highly customized interactive devices. Printed Optics is part of our long term vision for interactive devices that are 3D printed in their entirety. In this paper we explore the possibilities for this vision afforded by fabrication of custom optical elements using today’s 3D printing technology.

Karl D. D. Willis; Eric Brockmeyer; Scott E. Hudson; Ivan Poupyrev

2012-01-01T23:59:59.000Z

175

Modeling of Magnetic and Structural Phase Transformations in Co ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title, Modeling ... Advances in Rare-earth Free Permanent Magnets · Anisotropic Curie

176

A Mean Field Analysis of the Exchange Coupling (J) for Non-cubic Prussian Blue Analogue Magnets  

SciTech Connect

Mean field expressions based on the simple Heisenberg model were derived to correlate the intra- and interlayer exchange couplings to the critical temperatures, Tc, for three metallocyanide-based magnets with extended 2- and 3-D structure types. These expressions were used to estimate the exchange coupling, J, for 2-D ferrimagnetic [NEt4]2MnII3(CN)8, 3-D antiferromagnetic [NEt4]MnII3(CN)7, and 3-D antiferromagnetic interpenetrating 3-D MnII(CN)2. The type and magnitude of the exchange coupling are in accord with the previously reported magnetic data.

DaSilva, Jack G. [University of Utah; McConnell, Amber C. [University of Utah; Fishman, Randy Scott [ORNL; Miller, Joel S. [University of Utah

2012-01-01T23:59:59.000Z

177

Streamlining of the RELAP5-3D Code  

Science Conference Proceedings (OSTI)

RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The methodology employed follows Dijkstra's structured programming paradigm, which is based on splitting programs into sub-sections, each with single points of entry and exit and in which control is passed downward through the structure with no unconditional branches to higher levels. GO TO commands are typically avoided, since they alter the flow and control of a program’s execution by allowing a jump from one place in the routine to another. The restructuring of RELAP5-3D subroutines is complicated by several issues. The first is use of code other than standard FORTRAN77. The second is restructuring limitations of FOR_STRUCT. The third is existence of pre-compiler directives and the complication of nested directives. Techniques were developed to overcome all these difficulties and more and these are reported. By implementing these developments, all subroutines of RELAP were restructured. Measures of code improvement relative to maintenance and development are presented.

Mesina, George L; Hykes, Joshua; Guillen, Donna Post

2007-11-01T23:59:59.000Z

178

LANSCE | Lujan Center | Thrust Area | Local Structure, Magnetism, and  

NLE Websites -- All DOE Office Websites (Extended Search)

User Instruments User Instruments Reflectometers Asterix SPEAR Powder Diffractometers HIPD HIPPO NPDF Engineering Diffraction SMARTS Chemical Spectroscopy FDS Small Angle Scattering LQD Protein Crystallography PCS Inelastic Neutron Spectrometer Pharos Single Crystal Diffractometer SCD Contacts Lujan Center Leader Mark Bourke 505.667.6069 Deputy Leader (Interim) Anna Llobet 505.665.1367 Experimental Area Manager) Charles Kelsey 505.665.5579 Experiment Coordinator Leilani Conradson 505.665.9505 User Office Administrator Lisa Padilla 505.667.5649 Administrative Assistant Melissa Martinez 505.665.0391 Thrust Area Local Structure, Magnetism, and Nanomaterials The Lujan Neutron Scattering Center encompasses a set of powder diffractometers, instrument scientist specialists, and sample environments (pressure, temperature, and magnetic field) equipped to address challenges

179

Magnetic field adjustment structure and method for a tapered wiggler  

DOE Patents (OSTI)

An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

Halbach, Klaus (Berkeley, CA)

1988-01-01T23:59:59.000Z

180

Metal-organic coordination architectures of azole heterocycle ligands bearing acetic acid groups: Synthesis, structure and magnetic properties  

SciTech Connect

Four new coordination complexes with azole heterocycle ligands bearing acetic acid groups, [Co(L{sup 1}){sub 2}]{sub n} (1), [CuL{sup 1}N{sub 3}]{sub n} (2), [Cu(L{sup 2}){sub 2}.0.5C{sub 2}H{sub 5}OH.H{sub 2}O]{sub n} (3) and [Co(L{sup 2}){sub 2}]{sub n} (4) (here, HL{sup 1}=1H-imidazole-1-yl-acetic acid, HL{sup 2}=1H-benzimidazole-1-yl-acetic acid) have been synthesized and structurally characterized. Single-crystal structure analysis shows that 3 and 4 are 2D complexes with 4{sup 4}-sql topologies, while another 2D complex 1 has a (4{sup 3}){sub 2}(4{sup 6})-kgd topology. And 2 is a 3D complex composed dinuclear mu{sub 1,1}-bridging azido Cu{sup II} entities with distorted rutile topology. The magnetic properties of 1 and 2 have been studied. - Graphical Abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with azole heterocycle ligands bearing acetic acid groups are reported.

Hu Bowen; Zhao Jiongpeng; Yang Qian; Hu Tongliang; Du Wenping [Department of Chemistry, Nankai University, Tianjin 300071 (China); Bu Xianhe, E-mail: buxh@nankai.edu.c [Department of Chemistry, Nankai University, Tianjin 300071 (China)

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vectorial Radio Interferometry with LOPES 3D  

E-Print Network (OSTI)

One successful detection technique for high-energy cosmic rays is based on the radio signal emitted by the charged particles in an air shower. The LOPES experiment at Karlsruhe Institute of Technology, Germany, has made major contributions to the evolution of this technique. LOPES was reconfigured several times to improve and further develop the radio detection technique. In the latest setup LOPES consisted of 10 tripole antennas. With this, LOPES 3D was the first cosmic ray experiment measuring all three vectorial field components at once and thereby gaining the full information about the electric field vector. We present an analysis based on the data taken with special focus on the benefits of a direct measurement of the vertical polarization component. We demonstrate that by measuring all polarization components the detection and reconstruction efficiency is increased and noisy single channel data can be reconstructed by utilising the information from the other two channels of one antenna station.

Huber, D; Arteaga, J C; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Isar, P G; Kampert, K H; Kang, D; Krömer, O; Kuijpers, J; Link, K; ?uczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmid, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Wommer, M; Zabierowski, J; Zensus, J A

2013-01-01T23:59:59.000Z

182

3D Diagnostic Of Complex Plasma  

SciTech Connect

This paper reports the development of a three-dimensional(3D) dust particle position diagnostic for complex plasmas. A beam produce by Light Emitting Diodes(LEDs) is formed into horizontal sheet, for the illumination of the particles. The light sheet has a vertical colour gradient across its width, from two opposing colours. The light scattered from the particles is imaged with the camera from above. The horizontal coordinates are measured from the positions on the image. The third coordinate is determined from the colour which represents a position on the gradient of the light sheet. The use of LEDs as a light source reduces a variation in Mie scattered intensity from the particles due to the particle size distribution. The variation would induce a large vertical positional error.

Hall, Edward; Samsonov, Dmitry [Department of Electrical Engineering and Electronics, University of Liverpool, L69 3BX (United Kingdom)

2011-11-29T23:59:59.000Z

183

Cryogenic expansion joint for large superconducting magnet structures  

DOE Patents (OSTI)

An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

Brown, Robert L. (Kingston, TN)

1978-01-01T23:59:59.000Z

184

Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report  

Science Conference Proceedings (OSTI)

This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

Jerry Y. Harrington

2012-09-21T23:59:59.000Z

185

Preparation, magnetism and electronic structures of cadmium technetates  

SciTech Connect

Due to the scarcity of the artificial transition metal technetium, studies on the solid-state properties of its oxides have been rarely undertaken. We have prepared a new technetium metal oxide system that include the 4d metal in two separate oxidation states and have characterized the new phases' crystal structures and magnetic properties. One phase Cd{sub 2}Tc{sub 2}O{sub 7} was prepared through the vapor-phase reaction of the heptaoxide Tc{sub 2}O{sub 7} with Cd metal; the other phase, CdTcO{sub 3}, was prepared through the solid state reaction of TcO{sub 2} with CdO. High-resolution synchrotron X-ray diffraction was used to characterize the crystal structures and stoichiometries of the two new technetates. At room temperature, Cd{sub 2}Tc{sub 2}O{sub 7} takes on the pyrochlore structure with a = 10.18118(1) {angstrom}, space group, Fd{bar 3}m and Z = 8. CdTcO{sub 3} has the GdFeO{sub 3}-type structure with space group Pbnm and a = 5.38881(1) {angstrom}, b = 5.46504(1) {angstrom}, and c = 7.71272(1){angstrom}. The magnetic susceptibility behavior of Cd{sub 2}Tc{sub 2}O{sub 7} is strikingly similar to that observed in Cd{sub 2}Re{sub 2}O{sub 7}, with a broad transition close to 200 K. The magnetic behavior of Cd{sub 2}Tc{sub 2}O{sub 7} is also compared with that of isomorphous Pb{sub 2}Tc{sub 2}O{sub 6} and Bi{sub 2}Tc{sub 2}O{sub 7}, also presented in this study. The magnetic susceptibility of the distorted perovskite phase CdTcO{sub 3} is weakly temperature dependent, with no obvious signs of an ordering transition below 300 K. Electronic band structure calculations performed to simulate electronic densities of states indicate that the Fermi level is located in a 't{sub 2g}' band of the octahedrally coordinated Tc cations and therefore metallic conductivity in both CdTcO{sub 3} and Cd{sub 2}Tc{sub 2}O{sub 7}.

Rodriguez, Efrain E.; Poineau, Frédéric; Llobet, Anna; Thompson, Joe D.; Seshadri, Ram; Cheetham, Anthony K. (UNLV); (NIST); (UCSB); (Cambridge); (LANL)

2012-02-07T23:59:59.000Z

186

3D ultrasound imaging for prosthesis fabrication and diagnostic imaging  

SciTech Connect

The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

Morimoto, A.K.; Bow, W.J.; Strong, D.S. [and others

1995-06-01T23:59:59.000Z

187

Focused ion beam induced structural modifications in thin magnetic films  

SciTech Connect

Focused ion beam techniques are one way to modify locally the properties of magnetic thin films. We report on structural investigations of 50 nm thick non-ordered nano-crystalline Permalloy (Ni{sub 81}Fe{sub 19}) films modified by 30 keV Ga{sup +} focused ion beam (FIB) irradiation. From the x-ray diffraction (XRD) measurements a considerable crystallite growth and a material texturing towards (111)-direction with a linearly increasing lattice constant was observed. In addition, cross-sectional transmission electron microscope (XTEM) images show that crystallites are growing through the entire film at high irradiation fluences. Extended x-ray absorption fine structure (EXAFS) analysis shows a perfect near-order coordination corresponding to a face-centered (fcc) unit cell for both Fe, Ni and Ga atom surrounding. The structural changes are accompanied by a decrease of saturation polarization with increasing ion fluence. Such a behavior is attributed to the incorporation of non-magnetic Ga atoms in the Permalloy film.

Roshchupkina, O. D.; Grenzer, J.; Strache, T.; McCord, J.; Fritzsche, M.; Muecklich, A.; Baehtz, C.; Fassbender, J. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany)

2012-08-01T23:59:59.000Z

188

Synthesis, structure and magnetic properties of lanthanide cluster compounds  

E-Print Network (OSTI)

This dissertation focuses on the exploratory synthesis of compounds that contain R6ZI12 (R= Ce, Gd, Er; Z=Mn, Fe, Co, C2) clusters with the goal of finding magnetically interesting compounds. Several new compounds were made via high temperature, solid state methods and structurally characterized using x-ray diffraction. Compounds that contain isolated clusters were studied in order to understand the magnetic coupling between lanthanide atoms. The exploration of transition metal centered clusters resulted in the discovery of two new structure types, CsR(R6CoI12)2 (R=Gd and Er) and (CeI)0.26(Ce6MnI9)2. The xray crystal structure of CsEr(Er6CoI12)2 was solved in the Pa3 – space group with the cell length 18.063(2) Å at 250K (Z = 4, R1 [I>2?(I)] = 0.0459). (CeI)0.26(Ce6MnI9)2 was made by combining KI, CeI3, MnI2 and Ce metal and heating to 850°C for 500 hrs. The single crystal x-ray structure for (CeI)0.26(Ce6MnI9)2 was solved in the trigonal, P3 – space group with lattice parameters of a = 11.695(1) Å c = 10.8591(2) Å (Z = 2, R1 [I>2?(I)] = 0.0895). The magnetic susceptibilities of hexanuclear gadolinium clusters in the compounds Gd(Gd6ZI12) (Z = Co, Fe or Mn), CaxGd1-x(Gd6MnI12) and CsGd(Gd6CoI12)2 are reported. The single-crystal structure of Gd(Gd6CoI12) and CaxGd1-x(Gd6MnI12) are reported here as well. The compound with a closed shell of cluster bonding electrons, Gd(Gd6CoI12), exhibits the effects of antiferromagnetic coupling over the entire range of temperatures measured (4 - 300 K). Clusters with unpaired, delocalized cluster bonding electrons (CBEs) exhibit enhanced susceptibilities consistent with strong ferromagnetic coupling, except at lower temperatures (less than 30 K) where intercluster antiferromagnetic coupling suppresses the susceptibilities. Four new compounds containing Gd6C2 clusters have been found: Gd6C2I11, Gd(Gd6C2I12), CsGd(Gd6C2I12)2 and Cs(Gd6C2I12). Gd6C2I11 and Cs(Gd6C2I12) crystallized in the P?1 space group while Gd(Gd6C2I12) and CsGd(Gd6C2I12)2 crystallized in the R?3 and Pa?3 space groups respectively. The magnetic susceptibility data for Cs(Gd6C2I12) indicate strong intracluster ferromagnetic coupling, but antiferromagnetic coupling suppresses the susceptibility below 150 K. DFT calculations on CsGd6C2I12 and molecular models indicate that the magnetic coupling between the basal Gd atoms is stronger than the magnetic coupling involving the axial Gd atoms in the distorted clusters.

Sweet, Lucas Edward

2008-12-01T23:59:59.000Z

189

Fabrication of 3-D cubic unit cells with measured IR resonances.  

Science Conference Proceedings (OSTI)

3-D cubic unit cell arrays containing split ring resonators were fabricated and characterized. The unit cells are {approx}3 orders-of-magnitude smaller than microwave SRR-based metamaterials and exhibit both electrically and magnetically excited resonances for normally incident TEM waves in addition to showing improved isotropic response.

Ellis, A. Robert; Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ginn, James Cleveland, III; Ten Eyck, Gregory A.

2010-03-01T23:59:59.000Z

190

Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching  

Science Conference Proceedings (OSTI)

A novel fully automated system is introduced to facilitate lesion detection in dynamic contrast-enhanced, magnetic resonance mammography (DCE-MRM). The system extracts breast regions from pre-contrast images using a cellular neural network, generates ... Keywords: 3D template matching, Cellular neural network, Lesion detection, MR mammography, Segmentation

Gökhan Erta?; H.Özcan Gülçür; Onur Osman; Osman N. Uçan; Mehtap Tunac?; Memduh Dursun

2008-01-01T23:59:59.000Z

191

RESTRUCTURING RELAP5-3D FOR NEXT GENERATION NUCLEAR PLANT ANALYSIS  

Science Conference Proceedings (OSTI)

RELAP5-3D is used worldwide for analyzing nuclear reactors under both operational transients and postulated accident conditions. Development of the RELAP code series began in 1975 and since that time the code has been continuously improved, enhanced, verified and validated [1]. Since RELAP5-3D will continue to be the premier thermal hydraulics tool well into the future, it is necessary to modernize the code to accommodate the incorporation of additional capabilities to support the development of the next generation of nuclear reactors [2]. This paper discusses the reengineering of RELAP5-3D into structured code.

Donna Post Guillen; George L. Mesina; Joshua M. Hykes

2006-06-01T23:59:59.000Z

192

3D Visualization of Water Transport in Ferns  

NLE Websites -- All DOE Office Websites (Extended Search)

3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

193

Software: VARI3D - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Software VARI3D (Perturbation Theory Codes) Bookmark and Share Standard Code Description VARI3D is a generalized...

194

Software: DIF3D-K - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Argonne Energy Showcase 2012 Software DIF3D-K (Diffusion and Transport Theory Codes) Bookmark and Share Standard Code Description Name of Program: DIF3D-K 1.5: A...

195

3-D Tin-Carbon Fiber Paper Electrodes for Electrochemically ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Energy Storage: Materials, Systems and Applications. Presentation Title, 3-D ...

196

Novel Metamaterial 'Flat Lens' Creates 3D Images in Free ...  

Science Conference Proceedings (OSTI)

Novel Metamaterial 'Flat Lens' Creates 3D Images in Free Space. From NIST Tech Beat: May 28, 2013. ...

2013-05-29T23:59:59.000Z

197

An unusual 3D interdigitated architecture assembled from Keggin polyoxometalates and dinuclear copper(II) complexes  

SciTech Connect

A novel organic-inorganic hybrid compound, [Cu{sub 2}(bipy){sub 3}({mu}{sub 1}-H{sub 2}O){sub 2}({mu}{sub 2}-H{sub 2}O)({mu}{sub 2}-OH)(H{sub 2}BW{sub 12}O{sub 40})]{center_dot}4 H{sub 2}O (1) (bipy=4,4 Prime -bipy), has been synthesized in hydrothermal condition and characterized by elemental analysis, IR spectrum, TG analysis and single-crystal X-ray diffraction. Compound 1 possesses poly-pendant layered motifs composed of 12-tungstoborates and dinuclear copper(II) complexes, in which the mono-coordinated bipy molecules are orderly appended to both sides of the layer, respectively. Adjacent layers mutually engage in a zipper-like pattern to result in a novel 3D interdigitated architecture. The variable-temperature magnetic susceptibility of 1 showed that there existed weak antiferromagnetic interaction in 1. Toward the reduction of hydrogen peroxide, 1 has good electrocatalytic activity and remarkable stability. - A new compound has been obtained, which represents the first interdigitated architecture assembled by POMs and dinuclear copper(II) complexes. Highlights: Black-Right-Pointing-Pointer The first example of interdigitated architecture assembled by POMs and dinuclear copper(II) complexes is observed. Black-Right-Pointing-Pointer A zipper-like pattern is observed in the structure. Black-Right-Pointing-Pointer The IR, TG, XRPD, magnetism and electrochemical property of the title compound were studied.

Pang, Haijun; Yang, Ming; Kang, Lu [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China)] [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Ma, Huiyuan, E-mail: mahy017@nenu.edu.cn [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China)] [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Liu, Bo, E-mail: liubo200400@vip.sina.com [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China)] [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Li, Shaobin; Liu, Heng [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China)] [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China)

2013-02-15T23:59:59.000Z

198

Geek-Up[6.17.2011]: Metallic Glass and 3D Plasmon Rulers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7.2011]: Metallic Glass and 3D Plasmon Rulers 7.2011]: Metallic Glass and 3D Plasmon Rulers Geek-Up[6.17.2011]: Metallic Glass and 3D Plasmon Rulers June 17, 2011 - 5:41pm Addthis Check out a short animation of a 3D plasmon ruler as it delivers optical information about the structural dynamics of an attached protein and read more below. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? The discovery of a new property of glass offers new insight into the atomic structure and behavior of metallic glasses, which are in products such as anti-theft tags and power transformers. A new ruler could help provide scientists with unprecedented details into a variety of biological events, including the interaction between DNA and enzymes, protein folding and cell membrane vibrations.

199

RELAP5-3D Compressor Model  

SciTech Connect

A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

James E. Fisher; Cliff B. Davis; Walter L. Weaver

2005-06-01T23:59:59.000Z

200

3-D hydro + cascade model at RHIC  

E-Print Network (OSTI)

We present a 3-D hydro + cascade model, in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the final state interaction effects on physical observables. 1. FREEZEOUT PROCESS AND VISCOSITY IN HYDRODYNAMICS Hydrodynamic models have been very successful in describing the collective behavior of matter at RHIC, such as single particle spectra and elliptic flow. In particular the strong elliptic flow which, for the first time, reaches the hydrodynamic limit at RHIC, provides us with a new understanding of the nature of the quark-gluon plasma (QGP) created at RHIC as strongly interacting or correlated QGP [ 1]. However there exist a number of experimental observations that contradict ideal hydrodynamic models: transverse momentum spectra above 2 GeV, elliptic flow at large pseudo-rapdities ? and Hanbury Brown- Twiss (HBT) interferometry. These observations suggest that there exist limitations to the application of a simple ideal hydrodynamic model to RHIC physics and that an improvement on an ideal hydrodynamic model is needed in order to obtain a comprehensive and unified description of the data from the point of view of hydrodynamics. In general, hydrodynamic models require initial conditions, an equations of state (EoS)

Chiho Nonakaa A; Steffen A. Bass

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reconstructing 3D buildings from Lidar data  

E-Print Network (OSTI)

Accurate 3D surface models in urban areas are essential for a variety of applications, such as visualization, GIS, and mobile communications. Since manual surface reconstruction is very costly and time consuming, the development of automated algorithms is of great importance. On the other hand LIDAR data is a relatively new technology for obtaining Digital Surface Models (DSM) of the earth’s surface. It is a fast method for sampling the earth’s surface with a high density and high point accuracy. In this paper a new approach for building extraction from LIDAR data is presented. The approach utilizes the geometric properties of urban buildings for the reconstruction of the building wire-frames from the LIDAR data. We start by finding the candidate building points that are used to populate a plane parameter space. After filling the plane parameter space, we find the planes that can represent the building roof surfaces. Roof regions are then extracted and the plane parameters are refined using a robust estimation technique and the geometric constraint between adjacent roof facets. The region boundaries are extracted and used to form the building wireframes. The algorithm is tested on two buildings from a locally acquired LIDAR data sets. The test results show some success in extracting urban area buildings. 1.

Ahmed F. Elaksher; James S. Bethel

2002-01-01T23:59:59.000Z

202

Derivation of new 3D discrete ordinate equations  

Science Conference Proceedings (OSTI)

The Sn equations have been the workhorse of deterministic radiation transport calculations for many years. Here we derive two new angular discretizations of the 3D transport equation. The first set of equations, derived using Lagrange interpolation and collocation, retains the classical Sn structure, with the main difference being how the scattering source is calculated. Because of the formal similarity with the classical S n equations, it should be possible to modify existing computer codes to take advantage of the new formulation. In addition, the new S n-like equations correctly capture delta function scattering. The second set of equations, derived using a Galerkin technique, does not retain the classical Sn structure because the streaming term is not diagonal. However, these equations can be cast into a form similar to existing methods developed to reduce ray effects. Numerical investigation of both sets of equations is under way. (authors)

Ahrens, C. D. [Colorado School of Mines, Dept. of Applied Mathematics and Statistics, Program in Nuclear Science and Engineering, Golden, CO 80401-1887 (United States)

2012-07-01T23:59:59.000Z

203

3Book: a 3D electronic smart book  

Science Conference Proceedings (OSTI)

This paper describes the 3Book, a 3D interactive visualization of a codex book as a component for various digital library and sensemaking systems. The book is designed to hold large books and to support sensemaking operations by readers. The book includes ... Keywords: 3D UI, 3D books, eBooks, electronic publishing, sensemaking, spreading activation

Stuart K. Card; Lichan Hong; Jock D. Mackinlay; Ed H. Chi

2004-05-01T23:59:59.000Z

204

Underwater Localization in Sparse 3D Acoustic Sensor Networks  

E-Print Network (OSTI)

Underwater Localization in Sparse 3D Acoustic Sensor Networks Wei Cheng1,2, Amin Y. Teymorian the localization problem in sparse 3D underwater sensor networks. Considering the fact that depth information is typically available for underwater sensors, we transform the 3D underwater positioning problem into its two

Cheng, Xiuzhen "Susan"

205

Keypoint identification and feature-based 3D face recognition  

Science Conference Proceedings (OSTI)

We present a feature-based 3D face recognition algorithm and propose a keypoint identification technique which is repeatable and identifies keypoints where shape variation is high in 3D faces. Moreover, a unique 3D coordinate basis can be defined locally ...

Ajmal Mian; Mohammed Bennamoun; Robyn Owens

2007-08-01T23:59:59.000Z

206

Natural Language Generation Journeys to Interactive 3D Worlds  

E-Print Network (OSTI)

physical devices must be clearly explained. NLG delivered with speech synthesis will need to be care- fully of interactive 3D worlds: self- explaining 3D environments, habitable 3D learning en- vironments,and interactive3. Kenan Institute for Engineering, Technology and Science and a corporate gift from Novell, Inc

Lester, James C.

207

3D thermal-aware floorplanner using a MOEA approximation  

Science Conference Proceedings (OSTI)

Two of the major concerns in 3D stacked technology are heat removal and power density distribution. In our work, we propose a novel 3D thermal-aware floorplanner. Our contributions include:1.A novel multi-objective formulation to consider the thermal ... Keywords: 3D architecture, Evolutionary algorithm, Hot spots, Reliability, Temperature, Thermal-aware floorplan, Through silicon vias optimization

David Cuesta; José L. Risco-Martin; José L. Ayala; J. Ignacio Hidalgo

2013-01-01T23:59:59.000Z

208

Alignment of Continuous Video onto 3D Point Clouds  

Science Conference Proceedings (OSTI)

We propose a general framework for aligning continuous (oblique) video onto 3D sensor data. We align a point cloud computed from the video onto the point cloud directly obtained from a 3D sensor. This is in contrast to existing techniques where the 2D ... Keywords: Index Terms- Alignment, pose estimation, motion stereo, range data, sensor fusion, 3D model and visualization.

Wenyi Zhao; David Nister; Steve Hsu

2005-08-01T23:59:59.000Z

209

A new look at 3D seismic interpretation  

SciTech Connect

New ways are being developed to quickly extract and more thoroughly analyze the information contained in the 3D seismic data. These interpretation techniques were used to evaluate a 3D survey at Fortescue field (Gippsland basin, Australia) before starting a 13-well infill drilling program in 1994. Oil was discovered in the top of the LaTrobe (TOL) group at Fortescue field. Following appraisal drilling and platform installation, production started in 1983. To mitigate recent production decline and develop remaining reserves, a 13-well infill drilling program was proposed in 1993. Fortescue field is a west-southwest dipping monocline with oil trapped stratigraphically beneath an erosional unconformity in 13 separate elastic reservoirs. The reservoirs dip approximately 2{degree} more steeply than the overlying erosional truncation surface, causing older sections to progressively subcrop in an easterly direction. The 13 proposed infill wells relied completely or partially on oil being trapped structurally updip from existing completions. To effectively capture these reserves, wells were targeted to intersect reservoirs along the low-angle sand truncation face. The ability to identify and map the top and base reservoir edges along the subcrop surface was critical for well success. The goal of this study was to quickly and accurately identify nine reservoir subcrop edges, determine the remaining reserves updip from existing completions, and identify the geological risk associated with each proposed well.

Vinson, T.E.; Standley, P.; Jager, G.; Kidd, G.

1996-07-01T23:59:59.000Z

210

Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of  

E-Print Network (OSTI)

Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of solid oxide fuel, France 1 Introduction SOFC3D is a computer program, which simulates the behaviour of a solid oxide fuel or the channels, the electrical potential \\Phi at any point of the solid part of the SOFC, and the molar fractions

Herbin, Raphaèle

211

Nanostructured 3-D Architectures | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

materials can be achieved by capitalizing on the hierarchical design of 3-dimensional nano-lattices. Such structural metamaterials exhibit superior thermomechanical properties at...

212

Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and their Influence on Activity and Selectivity  

SciTech Connect

Recent breakthroughs in synthesis in nanosciences have achieved control of size and shapes of nanoparticles that are relevant for catalyst design. In this article, we review the advance of synthesis of nanoparticles, fabrication of two and three dimensional model catalyst system, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles in the 1-10 nm range permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticle on chemical reactivity and selectivity. We review the importance of size and shape of nanoparticles to determine the reaction selectivity in multi-path reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are discussed.

Somorjai, Gabor A.; Park, Jeong Y.

2008-02-13T23:59:59.000Z

213

Nonlinear dynamics of drift structures in a magnetized dissipative plasma  

SciTech Connect

A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense and localized, while the cyclone is less intense and has a larger size. In the course of further evolution, the cyclone persists for a relatively longer time, while the anticyclone breaks into small-scale vortices and dissipation hastens this process. It is found that the relaxation of the vortex by viscous dissipation differs in character from that by the frictional force. The time scale on which the vortex is damped depends strongly on its typical size: larger scale vortices are longer lived structures. It is shown that, as the instability develops, the initial vortex is amplified and the lifetime of the dipole pair components-cyclone and anticyclone-becomes longer. As time elapses, small-scale noise is generated in the system, and the spatial structure of the perturbation potential becomes irregular. The pattern of interaction of solitary vortex structures among themselves and with the medium shows that they can take part in strong drift turbulence and anomalous transport of heat and matter in an inhomogeneous magnetized plasma.

Aburjania, G. D.; Rogava, D. L. [Tbilisi State University, I. Vekua Institute of Applied Mathematics (Georgia); Kharshiladze, O. A. [Ivane Javakhishvili Tbilisi State University (Georgia)

2011-06-15T23:59:59.000Z

214

Structure and Dynamics of the Sun's Open Magnetic Field  

E-Print Network (OSTI)

The solar magnetic field is the primary agent that drives solar activity and couples the Sun to the Heliosphere. Although the details of this coupling depend on the quantitative properties of the field, many important aspects of the corona - solar wind connection can be understood by considering only the general topological properties of those regions on the Sun where the field extends from the photosphere out to interplanetary space, the so-called open field regions that are usually observed as coronal holes. From the simple assumptions that underlie the standard quasi-steady corona-wind theoretical models, and that are likely to hold for the Sun, as well, we derive two conjectures on the possible structure and dynamics of coronal holes: (1) Coronal holes are unique in that every unipolar region on the photosphere can contain at most one coronal hole. (2) Coronal holes of nested polarity regions must themselves be nested. Magnetic reconnection plays the central role in enforcing these constraints on the field topology. From these conjectures we derive additional properties for the topology of open field regions, and propose several observational predictions for both the slowly varying and transient corona/solar wind.

S. K. Antiochos; C. R. DeVore; J. T. Karpen; Z. Mikic

2007-05-30T23:59:59.000Z

215

Intermittent heating in the solar corona employing a 3D MHD model  

E-Print Network (OSTI)

We investigate the spatial and temporal evolution of the heating of the corona of a cool star such as our Sun in a three-dimensional magneto-hydrodynamic (3D MHD) model. We solve the 3D MHD problem numerically in a box representing part of the (solar) corona. The energy balance includes Spitzer heat conduction along the magnetic field and optically thin radiative losses. The self-consistent heating mechanism is based on the braiding of magnetic field lines rooted in the convective photosphere. Magnetic stress induced by photospheric motions leads to currents in the atmosphere which heat the corona through Ohmic dissipation. While the horizontally averaged quantities, such as heating rate, temperature or density, are relatively constant in time, the simulated corona is highly variable and dynamic, on average reaching temperatures and densities as found in observations. The strongest heating per particle is found in the transition region from the chromosphere to the corona. The heating is concentrated in curren...

Bingert, Sven

2011-01-01T23:59:59.000Z

216

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field,  

Open Energy Info (EERE)

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Details Activities (0) Areas (0) Regions (0) Abstract: Three-dimensional (3-D) interpretation was carried out for the magnetotelluric (MT) data obtained in a geothermal area in Indonesia. The inversion scheme was based on the linearized leastsquares method with smoothness regularization. In addition to the subsurface resistivity structure, static shifts were also included as unknown parameters in the inversion. Forward modeling was by the finite difference scheme. The sensitivity matrix was computed once for a homogeneous half space and used

217

3D Magnetotelluric Characterization Of The Geothermal Anomaly In The  

Open Energy Info (EERE)

Magnetotelluric Characterization Of The Geothermal Anomaly In The Magnetotelluric Characterization Of The Geothermal Anomaly In The Llucmajor Aquifer System (Majorca, Spain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Magnetotelluric Characterization Of The Geothermal Anomaly In The Llucmajor Aquifer System (Majorca, Spain) Details Activities (0) Areas (0) Regions (0) Abstract: In the Llucmajor aquifer system (Majorca Island, Spain) some geothermal evidences have appeared. This phenomenon is not isolated to Majorca and it is present in other areas, where it can be associated with structural conditions, especially to the extensional event suffered by the island after the Alpine Orogeny. However, the origin of this anomaly in Llucmajor is not well known, and there is no surface geological evidence of

218

3D Magnetotelluic characterization of the Coso Geothermal Field | Open  

Open Energy Info (EERE)

Magnetotelluic characterization of the Coso Geothermal Field Magnetotelluic characterization of the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Magnetotelluic characterization of the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in understanding geothermal systems by imaging the geometry, bounds and controlling structures in existing production, and thereby perhaps suggesting new areas for field expansion. To these ends, a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system. Acquiring good quality MT data in producing geothermal systems is a challenge due to production related electromagnetic (EM) noise and, in the

219

Neutron Diffraction Study of Crystal Structure and Magnetic ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Magnetic refrigeration based on the magnetocaloric effect ... Small and Wide Angle Neutron Scattering for Industrial Applications at HANARO.

220

3D-Orientation Space; Filters and Sampling Frank G.A. Faas and Lucas J. van Vliet  

E-Print Network (OSTI)

3D-Orientation Space; Filters and Sampling Frank G.A. Faas and Lucas J. van Vliet Pattern,lucas}@ph.tn.tudelft.nl Abstract. The orientation space transform is a concept that can deal with multiple oriented structures at a single location. In this paper we extend the orientation space transform to 3D images producing a 5D

van Vliet, Lucas J.

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

3D Arm Motion Tracking for Home-based Rehabilitation  

E-Print Network (OSTI)

Chapter 13 3D Arm Motion Tracking for Home-based Rehabilitation Y. Tao and H. Hu 13.1 Introduction This paper presents a real-time hybrid solution to articulated 3D arm motion tracking for home-based of articulated objects, e.g., human upper limbs. The purpose is to develop a 3D motion tracking model for home-based

Hu, Huosheng

222

Magnetic structure of the low beta, quasi-perpendicular shock  

Science Conference Proceedings (OSTI)

ISEE 1 and 2 magnetic field measurements are used to examine the structure of the low beta, quasi-perpendicular shock. A shock crossing database consisting of ISEE 1 satellite crossings from the beginning of the mission in 1977 to the end of 1980 is utilized to identify shock crossings for this study. A set of 20 low beta, quasi-perpendicular shock crossings are drawn from the database for study. Analysis of the shock overshoots indicates that the strength of the overshoot of low beta, quasi-perpendicular shocks increases as the ratio of the Mach number to the first critical Mach number (or ratio of criticality) increases. There are subcritical crossings which have nonnegligible overshoots and other subcritical crossings which exhibit no overshoot. Wave analysis shows that the power of the downstream waves also increases as a function of this ratio of criticality. Upstream of the shock, large-amplitude, low-frequency whistler mode and higher-frequency (f {approximately} 1 Hz) whistler waves are evident for subcritical and marginally critical shocks. The lower-frequency whistlers are right-hand elliptically polarized and phase stand upstream of the shock, propagating along the shock normal direction. The thickness of the shock is found to be within a factor of 1 and 2 times greater than the wavelength of this precursor wave. This result is inconsistent with the conjecture that the shock is merely the last amplified cycle of the precursor wave, for if this were true, the thickness of the shock from minimum to maximum would be one half of the precursor wavelength. These ion cyclotron waves appear to result from the excitation of the Alfven ion cyclotron (AIC) instability. Ion cyclotron waves act to pitch angle scatter the ions downstream of the shock and remove the temperature anisotropy. A transitional behavior in the noncoplanar component of the magnetic field occurs at or about the first critical Mach number. 34 refs., 12 figs., 1 tab.

Farris, M.H.; Russell, C.T. [Univ. of California, Los Angeles, CA (United States)

1993-09-01T23:59:59.000Z

223

3D Materials Science 2012: Housing and Travel  

Science Conference Proceedings (OSTI)

International Conference on 3D Materials Science 2012. July 8-12, 2012 • Seven Springs Mountain Resort • Seven Springs, Pennsylvania. Download Exhibits ...

224

3D Materials Science 2014: Housing and Travel - TMS  

Science Conference Proceedings (OSTI)

2nd International Congress on 3D Materials Science 2014. June 29 – July 2, 2014 • Annecy, France. CONGRESS LOCATION. Near Geneva, L'Impérial Palace ...

225

Climate Change Capacity Development (C3D+) | Open Energy Information  

Open Energy Info (EERE)

C3D+) C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) Agency/Company /Organization United Nations Institute for Training and Research (UNITAR) Partner Caribbean Climate Change Community Centre (CCCCC), Climate System Analysis Group at UCT Cape Town (CSAG), Environment and Development Action in the Third World (ENDA-TM), University of Cape Town-Energy Research Centre, South Pacific Regional Environment Programme (SPREP), Munasinghe Institute (MIND), Center for International Forestry Research, International Institute for Sustainable Development (IISD), Stockholm Environment Institute Sector Climate Topics Low emission development planning Resource Type Training materials

226

Applications of 3D Experimental Techniques Across Length Scales  

Science Conference Proceedings (OSTI)

Jul 11, 2012... Experimental Techniques Across Length Scales: Non-Destructive Techniques .... The efficient image-processing pipeline provides a full 3D ...

227

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High ...  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... High Energy Density Lithium Capacitors Using Carbon-Carbon Electrodes.

228

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

NA, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Citation...

229

Digital Representation of 3D Microstructures - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 10, 2012 ... Storage and Sharing of Large 3D Imaging Datasets: Richard Boardman1; Ian Sinclair1; Simon Cox1; Philippa Reed1; Kenji Takeda1; Jeremy ...

230

Supercapacitive Performance with Nanofibers on 3D-interconnected ...  

Science Conference Proceedings (OSTI)

The hierarchical 1D MnO2 nanofibers are grown by using a facile chemical bath deposition (CBD) method on 3D graphene foam. A synthesis of ...

231

Identificering af teknologi gennem narrativer; 3D print.  

E-Print Network (OSTI)

??Denne rapport arbejder med en gennemgang af den såkaldte 3D printer teknologi. Denne vil sættes i sammenhæng med et teknologifilosofisk ’form of life ? forståelse… (more)

Petersen, Mikael

2011-01-01T23:59:59.000Z

232

From Digital to Physical: Computational Aspects of 3D Manufacturing.  

E-Print Network (OSTI)

??The desktop publishing revolution of the 1980s is currently repeating itself in 3D, referred to as desktop manufacturing. Online services such as Shapeways have become… (more)

Baecher, Moritz Niklaus

2013-01-01T23:59:59.000Z

233

Vector Graphics for Real-time 3D Rendering.  

E-Print Network (OSTI)

??Algorithms are presented that enable the use of vector graphics representations of images in texture maps for 3D real time rendering. Vector graphics images are… (more)

Qin, Zheng

2009-01-01T23:59:59.000Z

234

RELAP5-3D V. 4.X.X  

Energy Science and Technology Software Center (OSTI)

000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL   

235

Assessing the RELAPS-3D Heat Conduction Enclosure Model  

SciTech Connect

Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.

McCann, Larry D.

2008-09-30T23:59:59.000Z

236

3D and 4D Characterization and Evaluation  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... Here, we present a novel X-ray microscope featuring high detector resolution, which enables 3D imaging of materials with micron-scale ...

237

Reconstruction of 3D Points From Uncalibrated Underwater Video.  

E-Print Network (OSTI)

??This thesis presents a 3D reconstruction software pipeline that is capable of generating point cloud data from uncalibrated underwater video. This research project was undertaken… (more)

Cavan, Neil

2011-01-01T23:59:59.000Z

238

Text from the http://web3d  

Science Conference Proceedings (OSTI)

... Sandy Ressler, of the Information Access Division, played a key role in ensuring that the Web3D Consortium and ISO Moving Picture Experts Group ...

239

LOPES 3D reconfiguration and first measurements  

E-Print Network (OSTI)

The Radio detection technique of high-energy cosmic rays is based on the radio signal emitted by the charged particles in an air shower due to their deflection in the Earth's magnetic field. The LOPES experiment at Karlsruhe Institute of Technology, Germany with its simple dipoles made major contributions to the revival of this technique. LOPES is working in the frequency range from 40 to 80 MHz and was reconfigured several times to improve and further develop the radio detection technique. In the current setup LOPES consists of 10 tripole antennas which measure the complete electric field vector of the radio emission from cosmic rays. LOPES is the first experiment measuring all three vectorial components at once and thereby gaining the full information about the electric field vector and not only a two-dimensional projection. Such a setup including also measurements of the vertical electric field component is expected to increase the sensitivity to inclined showers and help to advance the understanding of th...

Huber, D; Arteaga, J C; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Buchholz, P; Cantoni, E; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Finger, M; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Wommer, M; Zabierowski, J; Zensus, J A

2013-01-01T23:59:59.000Z

240

RELAP5-3D Architectural Developments in 2004  

Science Conference Proceedings (OSTI)

Currently, RELAP5 is undergoing a transformation that will replace much of its coding with equivalent structured Fortran 90 coding. Four efforts are underway to modernize the code architecture of RELAP5-3D. These are parallelization, vectorization, code restructuring, and conversion to Fortran 90. The first two improve code run speed via on computer platforms of certain architectures. These code modifications have little effect on normal code performance on non-vector and non-parallel computers because they are mostly done with compiler directives. The third and fourth efforts involve considerable rewriting of the source code. The third code improvement effort addresses code readability and maintainability. These are being greatly enhanced by application of a Fortran code-restructuring tool. The fourth effort is conversion to Fortran 90. The bulk of the coding is being rewritten in Fortran 90. This is a ground up reworking of the coding that begins with completely reorganizing the underlying database and continues with the source code. It will reach every part of RELAP5-3D. Each of these efforts is discussed in detail in a different section. Section 1 relates background information. Section 2 covers the parallelization effort. Section 3 covers the efforts to vectorize the code. Section 4 covers the code restructuring. Section 5 covers the Fortran 90 effort. Outline Background: longevity, maintenance & development, reliability, speed Parallelization: KAI to OpenMP, previous work & current, domain decomposition, done. Vectorization: Speed - Fed init, vectors in PCs, INL Cray SV1, R5 Phant, EXV, results. Code Restructuring: Reason to restructure, study of restruct, For Study: what it does, Fortran 90: Modernization -

Dr. George L. Mesina

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Lagrangian Interpretation of 3D Tropical Cloud Structure: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

the distributions requires further investigation, the implications are that TWP-Microbase retrieval would provide information about the tropical cloud water content for 2...

242

EXPLORING RNA AND PROTEIN 3D STRUCTURES BY GEOMETRIC ALGORITHMS  

E-Print Network (OSTI)

excitation functions J. Nastula, W. Kosek, B. Kolaczek Space Research Centre, Polish Academy of Sciences; Chao, 1993; Eubanks et al., 1988; Hide and Dickey, 1991; Kosek et al., 1995; Kuehne et al., 1993 with time (Kuehne et al., 1993; Nastula, 1992, 1995a; Kosek et al., 1995). Until now the relationship

Whitton, Mary C.

243

Poster Session 1: 3D Interfaces, Microstructural Evolution, Structure ...  

Science Conference Proceedings (OSTI)

Jul 9, 2012... if the radioactive species will stay trapped or be recycled back into the plasma. .... One of the main questions is how to evaluate the non-local party of the .... The present simulation showed good agreement with the experimental data. .... However, only chronological mapping of the proliferation of voids or ...

244

3D Modeling of Dendritic Grain Structures in Turbine Blade ...  

Science Conference Proceedings (OSTI)

modern aircraft engines and land-based power-plants. .... Figure 2 illustrates the grid generation for a close-up detail of a turbine blade geometry. (junction ...

245

Effect of milling time on magnetic properties and structures of bulk Sm-Co/{alpha}-(Fe, Co) nanocomposite magnets  

Science Conference Proceedings (OSTI)

Bulk Sm-Co/{alpha}-(Fe,Co) nanocomposite magnets were fabricated by hot pressing composite powders prepared by high-energy ball milling of magnetically hard SmCo{sub 5} powder and magnetically soft Fe powder. The bulk magnets had a nanocomposite structure consisting of Sm-Co matrix (1:5 H and 1:7 H phases) and {alpha}-(Fe,Co) phases. The Fe-Co particles were distributed uniformly in the Sm-Co matrix. The milling time strongly affects the structures and the magnetic properties of the bulk magnets. Increasing milling time led to a decrease of the amount of 1:5 H phase, an increase in the phase fraction of the 1:7 H phase, and a decrease in the amount of soft phase, which resulted in an increase in magnetization and a decrease in coercivity. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) analyses revealed that inter-diffusion took place between the Sm-Co matrix and Fe particles during the processing.

Shen, Y. [UDRI, University of Dayton, Dayton, Ohio 45469 (United States); AFRL, Wright-Patterson Air Force Base, Ohio 45433 (United States); Huang, M. Q.; Turgut, Z. [AFRL, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES Inc., Dayton, Ohio 45432 (United States); Lucas, M. S. [AFRL, Wright-Patterson Air Force Base, Ohio 45433 (United States); UTC, Dayton, Ohio 45432 (United States); Michel, E. [AFRL, Wright-Patterson Air Force Base, Ohio 45433 (United States); Wright State University, Dayton, Ohio 45435 (United States); Horwath, J. C. [AFRL, Wright-Patterson Air Force Base, Ohio 45433 (United States)

2012-04-01T23:59:59.000Z

246

Evaluating the X3D schema with semantic web tools  

Science Conference Proceedings (OSTI)

X3D has been evolving for nearly 20 years (counting the VRML era). This long period, covering a wide range of uses (Computer-Aided Design, medical, Geographic Information System ...) has led to a lot of possibly inconsistent or even conflicting features. ... Keywords: X3D, XML schema, ontology

Marc Petit; Henry Boccon-Gibod; Christophe Mouton

2012-08-01T23:59:59.000Z

247

Using projective invariant properties for efficient 3d reconstruction  

Science Conference Proceedings (OSTI)

3D reconstruction over long sequences has been to the main problem of computer vision. Projective reconstruction is known to be an important process for 3D reconstruction in Euclidean space. In this paper, we present a new projective reconstruction algorithm ...

Bo-Ra Seok; Yong-Ho Hwang; Hyun-Ki Hong

2005-07-01T23:59:59.000Z

248

Third-space architecture for learning in 3D  

Science Conference Proceedings (OSTI)

Learning can be increasingly untethered to home, work or school spaces by means of integrative cloud services coupled with 3D worlds, and mobile, collaboratively driven use of digital "third space." A 3rd-space, portable and modular design ... Keywords: learning in 3D, model-based reasoning, virtual environments, visual simulation

Andrew G. Stricker; Kimberly-Combs Hardy; Elizabeth S. Stricker; Toni A. Scribner; John A. Cook; Cynthia A. Calongne; Kathryn L. Flitter; Fil J. Arenas

2011-04-01T23:59:59.000Z

249

Similarity based retrieval from a 3D human database  

Science Conference Proceedings (OSTI)

In this paper, we describe a framework for similarity based retrieval from a 3D human database. Our technique is based on both body and head shape representation and retrieval based on similarity of both of them. The 3D human database used in our study ... Keywords: body and head shape, human database, retrieval, similarity

Afzal Godil; Sandy Ressler

2005-07-01T23:59:59.000Z

250

A camcorder for 3D underwater reconstruction of archeological objects  

E-Print Network (OSTI)

A camcorder for 3D underwater reconstruction of archeological objects A. Meline1 , J. Triboulet1 Cedex 5, France 2 Université de Nîmes, Place Gabriele Péri, 30021 Nîmes, France Abstract- The underwater cartography has made great progress in the last decade. In this paper, we discuss of the 3D underwater

Paris-Sud XI, Université de

251

Middleware for streaming 3D progressive meshes over lossy networks  

Science Conference Proceedings (OSTI)

Streaming 3D graphics have been widely used in multimedia applications such as online gaming and virtual reality. However, a gap exists between the zero-loss-tolerance of the existing compression schemes and the lossy network transmissions. In this article, ... Keywords: 3D streaming, progressive compression

H. Li; M. Li; B. Prabhakaran

2006-11-01T23:59:59.000Z

252

Development of a 3D atmospheric radiative transfer model  

Science Conference Proceedings (OSTI)

The 3D atmospheric radiative transfer model is established based on MODTRAN4. Moreover, the methods of calculating the ratio of atmospheric transmission, path radiation and single scattering solar radiation are presented. This 3D model is running by ... Keywords: MODTRAN4, atmospheric radiative transfer model, infrared radiation

Zhifeng Lu; Ge Li; Gang Guo; Kedi Huang

2008-05-01T23:59:59.000Z

253

Skeletal input for user interaction in X3D  

Science Conference Proceedings (OSTI)

Recent developments in depth sensor technology enable developers to use skeletal input in interactive 3D environments with high user fluctuation like museum exhibits. However, the question of how to use natural user input and body movement to control ... Keywords: Kinect, X3D, natural interaction

Manuel Olbrich; Tobias Franke; Jens Keil; Sven Hertling

2013-06-01T23:59:59.000Z

254

BeThere: 3D mobile collaboration with spatial input  

Science Conference Proceedings (OSTI)

We present BeThere, a proof-of-concept system designed to explore 3D input for mobile collaborative interactions. With BeThere, we explore 3D gestures and spatial input which allow remote users to perform a variety of virtual interactions ... Keywords: around device interaction, augmented reality, collaboration, depth sensors

Rajinder S. Sodhi; Brett R. Jones; David Forsyth; Brian P. Bailey; Giuliano Maciocci

2013-04-01T23:59:59.000Z

255

3D Modelling of Carbon Allotropes Used in Nanotechnology  

Science Conference Proceedings (OSTI)

Graphene, Carbon nanoribbons, Carbon nanotubes and Fullerene (Buckyball) are allotropes of carbon which are widely used in Nanotechnology research due to their remarkable properties. Electrical and mechanical properties of those allotropes vary with ... Keywords: Graphene, Carbon nanoribbons, Carbon nanotubes, Fullerines, 3D modelling, java3D

M. R. M. Mufthas; C. S. Rupasinghe

2010-05-01T23:59:59.000Z

256

Power-Aware 3D Computer Graphics Rendering  

Science Conference Proceedings (OSTI)

Real-time 3D Graphics rendering consumes significant power because of its very high computation and memory access rate. Due to variation in workload and perceptual tolerance, power-awareness can optimize this power consumption significantly, thus facilitating ... Keywords: 3D Graphics, low-power, reconfigurable, shading, texture mapping

Jeongseon Euh; Jeevan Chittamuru; Wayne Burleson

2005-01-01T23:59:59.000Z

257

Shape-based retrieval and analysis of 3D models  

Science Conference Proceedings (OSTI)

Large repositories of 3D data are rapidly becoming available in several fields, including mechanical CAD, molecular biology, and computer graphics. As the number of 3D models grows, there is an increasing need for computer algorithms to help people find ...

Thomas Funkhouser; Michael Kazhdan

2004-08-01T23:59:59.000Z

258

The unreal editor as a Web 3D authoring environment  

Science Conference Proceedings (OSTI)

Epic Games provides a free game level editor with titles based on its Unreal engine. The editor provides a rich set of authoring tools that can be used to create fully interactive environments. This paper describes a tool that converts Unreal levels ... Keywords: 3D, Unreal, VRML, X3D, authoring, game, tool

David Arendash

2004-04-01T23:59:59.000Z

259

Building information modeling: the Web3D application for AEC  

Science Conference Proceedings (OSTI)

There is currently a dramatic shift in the Architecture, Engineering, and Construction (AEC) industry to embrace Building Information Modeling (BIM) as a tool that can assist in integrating the fragmented industry by eliminating inefficiencies and redundancies, ... Keywords: BIM, IFC, Web3D, X3D, architecture, building information modeling, construction, engineering, visualization

Dace A. Campbell

2007-04-01T23:59:59.000Z

260

3D printing rises to the occasion | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Features Features 2014 2013 2012 2011 2010 News Home | ORNL | News | Features | 2013 SHARE 3D printing rises to the occasion ORNL group shows how it's done, one layer at a time A perforated metal box produced by an Arcam 3D printer. This detailed A perforated metal box produced by an Arcam 3D printer. This detailed "calibration" part illustrates some of the versatility of 3D printing. Photo: Jason Richards (hi-res image) Things have come a long way since the mid-1980s when 3D Systems cofounder Chuck Hull worked out the technology to print objects in three dimensions, one very thin layer at a time. Hull called his new technology "stereolithography." In it, a guided beam of ultraviolet light is focused on a vat of liquid polymer, solidifying areas where it hits. When one layer is complete, the

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Savings in 3-D | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy savings in 3-D Energy savings in 3-D ORNL researchers show production, energy advantages of additive manufacturing ORNL 3-D printer in use. ORNL 3-D printer in use. Researchers at the Department of Energy's Oak Ridge National Laboratory are working with aircraft makers to determine energy savings through the use of additive manufacturing, also known as 3-D printing. Sachin Nimbalkar and his ORNL colleagues are printing airplane parts to show additive manufacturing's potential as a technology that should be considered foundational to processes seeking more energy efficiency. Additive manufacturing builds products precisely, layer by layer, and is distinctly different from traditional subtractive manufacturing processes, which take raw material and cut it down into a desired shape and size.

262

Saturable inductor and transformer structures for magnetic pulse compression  

DOE Patents (OSTI)

Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

Birx, Daniel L. (Londonderry, NH); Reginato, Louis L. (Orinda, CA)

1990-01-01T23:59:59.000Z

263

Influence of Heat Treatment on the Structure and Magnetic ...  

Science Conference Proceedings (OSTI)

Application of Nd-Fe-B Magnets to the Megawatt Scale Generator for the Wind Turbine · Bonded Magnetocaloric Powders for the Refrigeration Application.

264

3D Magnetotelluic characterization of the Coso GeothermalField  

Science Conference Proceedings (OSTI)

Electrical resistivity may contribute to progress inunderstanding geothermal systems by imaging the geometry, bounds andcontrolling structures in existing production, and thereby perhapssuggesting new areas for field expansion. To these ends, a dense grid ofmagnetotelluric (MT) stations plus a single line of contiguous bipolearray profiling has been acquired over the east flank of the Cosogeothermal system. Acquiring good quality MT data in producing geothermalsystems is a challenge due to production related electromagnetic (EM)noise and, in the case of Coso, due to proximity of a regional DCintertie power transmission line. To achieve good results, a remotereference completely outside the influence of the dominant source of EMnoise must be established. Experimental results so far indicate thatemplacing a reference site in Amargosa Valley, NV, 65 miles from the DCintertie, isstill insufficient for noise cancellation much of the time.Even though the DC line EM fields are planar at this distance, theyremain coherent with the nonplanar fields in the Coso area hence remotereferencing produces incorrect responses. We have successfully unwrappedand applied MT times series from the permanent observatory at Parkfield,CA, and these appear adequate to suppress the interference of thecultural EM noise. The efficacy of this observatory is confirmed bycomparison to stations taken using an ultra-distant reference site eastof Socorro, NM. Operation of the latter reference was successful by usingfast ftp internet communication between Coso Junction and the New MexicoInstitute of Mining and Technology, using the University of Utah site asintermediary, and allowed referencing within a few hours of datadownloading at Coso. A grid of 102 MT stations was acquired over the Cosogeothermal area in 2003 and an additional 23 stations were acquired toaugment coverage in the southern flank of the first survey area in 2005.These data have been inverted to a fully three-dimensional conductivitymodel. Initial analysis of the Coso MT data was carried out using 2D MTimaging. An initial 3D conductivity model was constructed from a seriesof 2D resistivity images obtained using the inline electric fieldmeasurements (Zyx impedance elements) along several measurementtransects. This model was then refined through a 3D inversion process.This model shows the controlling geological structures possiblyinfluencing well production at Coso and correlations with mapped surfacefeatures such as faults and regional geoelectric strike. The 3D modelalso illustrates the refinement in positioning of conductivity contactswhen compared to isolated 2D inversion transects. The conductivity modelhas also been correlated with microearthquake locations, well fluidproduction intervals and most importantly with an acoustic and shearvelocity model derived by Wu and Lees (1999). This later correlationshows the near-vertical high conductivity structure on the eastern flankof the producing field is also a zone of increased acoustic velocity andincreased Vp/Vs ratio bounded by mapped fault traces. South of theDevil's Kitchen is an area of high geothermal well density, where highlyconductive near surface material is interpreted as a clay cap alterationzone manifested from the subsurface geothermal fluids and relatedgeochemistry. Beneath the clay cap, however, the conductivity isnondescript, whereas the Vp/Vs ratio is enhanced over the productionintervals. It is recommended that more MT data sites be acquired to thesouthwest of the Devil's Kitchen area to better refine the conductivitymodel in that area.

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2007-04-23T23:59:59.000Z

265

A New Class of Magnetic Materials with Novel Structural Order | U.S. DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Class of Magnetic Materials with Novel Structural Order A New Class of Magnetic Materials with Novel Structural Order Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » June 2013 A New Class of Magnetic Materials with Novel Structural Order The discovery of the first binary magnetic quasicrystals will enable the unraveling of the fundamental relationship between the structure and magnetism in aperiodic materials. Print Text Size: A A A Subscribe FeedbackShare Page

266

Coupled electromagnetic structural analysis of a dc magnet for a MHD power generator  

DOE Green Energy (OSTI)

A coupled electromagnetic and nonlinear structural analysis of a 4.5 tesla superconducting MHD dipole magnet is presented. The magnet design combines the latest in cable-in-conduit conductor (CICC) technology, a novel quasi-momentless support configuration, and finite element modeling to demonstrate the viability of this retrofit magnet concept. With the conductor participating as a major structural element, the support system is greatly simplified, and the overall cost and risk of the magnet system is reduced. Two and three-dimensional models are used to evaluate the concept and demonstrate how the full simulation is accomplished in one ANSYS computer run.

Myatt, R.L.; Martin, P.G. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Fusion Center] [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Fusion Center

1994-09-01T23:59:59.000Z

267

3-D nonlinear force-free field reconstruction of solar active region 11158 by direct boundary integral equation  

E-Print Network (OSTI)

A 3-D coronal magnetic field is reconstructed for NOAA 11158 on Feb 14, 2011. A GPU-accelerated direct boundary integral equation (DBIE) method is implemented. This is about 1000 times faster than the original DBIE used on solar NLFFF modeling. Using the SDO/HMI vector magnetogram as the bottom boundary condition, the reconstructed magnetic field lines are compared with the projected EUV loop structures from different views three-dimensionally by SDO/AIA and STEREO A/B spacecraft simultaneously for the first time. They show very good agreement so that the topological configurations of the magnetic fields can be analyzed, thus its role in the flare process of the active region can be better understood. A quantitative comparison with some stereoscopically reconstructed coronal loops shows that the present averaged misalignment angles are at the same order as the state-of-the-art results obtained with reconstructed coronal loops as prescribed conditions and better than other NLFFF methods. It is found that the o...

Wang, Rui; Tan, Baolin

2013-01-01T23:59:59.000Z

268

CSY3019 -Graphics Programming Assignment 2: Development of 2D/3D graphics software: Java 3D (50%)  

E-Print Network (OSTI)

CSY3019 - Graphics Programming Assignment 2: Development of 2D/3D graphics software: Java 3D (50, directional, point and spot lighting (to model windows and/or strip lights). · User defined or loaded geometry. Front Sheet & Title Page · Table of contents · Introduction · Analysis · Design · Implementation

Hill, Gary

269

Magnetic structure of Loihi Seamount, an active hotspot volcano in the Hawaiian Island chain  

E-Print Network (OSTI)

The use of geophysical techniques to image the interiors of active volcanoes can provide a better understanding of their structure and plumbing. The need for such information is especially critical for undersea volcanoes, whose environment makes them difficult to investigate. Because undersea volcanoes are made up of highly magnetic basaltic rock, it is possible to use variations in the magnetic field to explore the internal structure of such edifices. This study combines magnetic survey data from 12 research cruises to make a magnetic anomaly map of volcanically active Loihi, located in the Hawaiian Island chain. NRM intensities and susceptibility measurements were measured from recovered rock samples and suggest that magnetic properties of Loihi are widely varied (NRM intensities range from 1-157 A/m and susceptibilities from 1.26 x 10-3 to 3.62 x 10-2 S.I.). The average NRM intensity is 26 A/m. The size and strength of magnetic source bodies were determined by using various modeling techniques. A strongly magnetized shield can explain most of the anomaly with a large nonmagnetic zone inside, beneath the summit. Prominent magnetic highs are located along Loihi's north and south rift zone dikes and modeling solutions suggest strongly magnetized source bodies in these areas as well as a thin, magnetic layer atop the nonmagnetic zone. The strong magnetic anomalies found along the volcano's rift zones cannot be readily attributed to recent lava flows at the surface. Instead, the source bodies must continue several kilometers in depth to give reasonable magnetization values and are interpreted as dike intrusions. Nonmagnetic anomalies at the summit and south of the summit suggest the presence of a magma system. The model solution suggests Loihi is an inhomogeneously magnetized seamount with highly magnetic dike intrusions along the rift zones with a nonmagnetic body at its center overlain with a magnetic layer.

Lamarche, Amy J.

2003-12-01T23:59:59.000Z

270

Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture  

Science Conference Proceedings (OSTI)

Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

2010-02-01T23:59:59.000Z

271

Scalable and deterministic routing with guaranteed delivery in 3d wireless sensor networks  

Science Conference Proceedings (OSTI)

Firstly, I have proposed a routing scheme for 3D wireless networks, which is based on Harmonic Volumetric Embedding (HVE). More specifically, my proposed solution is based on a unit tetrahedron cell (UTC) mesh structure. It is a one-to-one map that yields ...

Su Xia / Hongyi Wu, Miao Jin

2012-01-01T23:59:59.000Z

272

Simultaneous power and thermal integrity driven via stapling in 3D ICs  

Science Conference Proceedings (OSTI)

The existing work on via-stapling in 3D integrated circuits optimizes power and thermal integrity separately and uses steadystate thermal analysis. This paper presents the first in-depth study on simultaneous power and thermal integrity driven viastapling ... Keywords: structured and parameterized model order reduction, thermal modeling and management

Hao Yu; Joanna Ho; Lei He

2006-11-01T23:59:59.000Z

273

Dynamic picking system for 3D seismic data: Design and evaluation  

Science Conference Proceedings (OSTI)

In the framework of data interpretation for petroleum exploration, this paper contributes two contributions for visual exploration aiming to manually segment surfaces embedded in volumetric data. Resulting from a user-centered design approach, the first ... Keywords: 3D interaction, Dynamic picking, Focus+context, Manual segmentation, Projective slice, Structural interpretation, Volumetric data

Pierre Salom; Remi Megret; Marc Donias; Yannick Berthoumieu

2009-07-01T23:59:59.000Z

274

Architecture and 3D device simulation of a PIN diode-based Gamma radiation detector  

Science Conference Proceedings (OSTI)

In this paper, we present a new IC-based gamma radiation detector. We report 3D simulation results for the PIN diode structure which is used in this detector, along with a discussion of the architecture of the readout electronics for this detector. Gamma ... Keywords: pin diode, radiation detection, solid-state

Amr Elshennawy; Craig M. Marianno; Sunil P. Khatri

2013-05-01T23:59:59.000Z

275

Biomimetic synthesis of zinc oxide 3D architectures with gelatin as matrix  

Science Conference Proceedings (OSTI)

Peanut-like and flower-like zinc oxide 3D architectures were synthesized via a facile biomimetic process using gelatin as matrix. Techniques of XRD, SEM, HRTEM, FT-IR, and UV-vis absorption spectra were used to characterize the structure and property ...

Yong Gan; Fubo Gu; Dongmei Han; Zhihua Wang; Guangsheng Guo

2010-01-01T23:59:59.000Z

276

Imaging nanoscale magnetic structures with polarized soft x-ray photons  

SciTech Connect

Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

Fischer, P.; Im, M.-Y.

2010-01-18T23:59:59.000Z

277

Acoustic double layer structures in dense magnetized electron-positron-ion plasmas  

SciTech Connect

The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

Akhtar, N.; Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 44000 (Pakistan); Department of Physics and Applied Mathematics, PIEAS, P. O. Nilore, Islamabad 44000 (Pakistan)

2011-11-15T23:59:59.000Z

278

CONSTRAINING PRIMORDIAL MAGNETIC FIELDS THROUGH LARGE-SCALE STRUCTURE  

Science Conference Proceedings (OSTI)

We study primordial magnetic field effects on the matter perturbations in the universe. We assume magnetic field generation prior to the big bang nucleosynthesis (BBN), i.e., during the radiation-dominated epoch of the universe expansion, but do not limit analysis by considering a particular magnetogenesis scenario. Contrary to previous studies, we limit the total magnetic field energy density and not the smoothed amplitude of the magnetic field at large (of the order of 1 Mpc) scales. We review several cosmological signatures, such as halo abundance, thermal Sunyaev-Zel'dovich effect, and Ly{alpha} data. For a cross-check, we compare our limits with that obtained through the cosmic microwave background faraday rotation effect and BBN. The limits range between 1.5 nG and 4.5 nG for n{sub B} in (- 3; -1.5).

Kahniashvili, Tina; Natarajan, Aravind; Battaglia, Nicholas [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Maravin, Yurii [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States); Tevzadze, Alexander G., E-mail: tinatin@andrew.cmu.edu [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia)

2013-06-10T23:59:59.000Z

279

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea  

Open Energy Info (EERE)

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Abstract The local fault and dike structures in Puna, southeastern Hawaii, are of interest both in terms of electricity productionand volcanic hazard monitoring. The geothermal powerplant at Puna has a 30 MW capacity and is built on a sectionof the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955 and 1960.The Puna Borehole Network was established in 2006 inorder to provide detailed seismic data about the Puna geothermal field. The array consists of eight 3-component borehole

280

3D Atlas vertical plate oil transmission line field calculations. Final report  

DOE Green Energy (OSTI)

Because of questions regarding current density and inductance estimates of the Atlas oil transmission line in the region where the vertical plates connect to the disk line, calculations using the 3D FE program Flux3d were initiated. Flux3d inductance values are nearly that estimated by D. Scudder. Calculations for three base designs of E. Ballard and D. Pierce were completed where several variations for each base design were used to determine the important parameters affecting inductance and to check inductance consistency. Flux3d showed for the first base design a very high current density of 36MA/m at the connection between the vertical and horizontal ground plates resulting in a magnetic pressure of 120 kpsi. The second base design modified this connection to reduce the current density to 20MA/m and 36 kpsi and for design 3 current density is 17MA/m. Maximum current density on the hot plates is 20MA/m for all 3 designs. These values assumed 1.2MA per VTL or 45.6MA total system current. Electrical fields on the top of the hot plate near the disk line connection is about 50% greater than the nominal value near the center of the vertical plates.

NONE

1997-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Visualising Memory Graphs: Interactive Debugging using Java3D  

E-Print Network (OSTI)

that three dimensional visualisation cau be a useful tool for debugging, program analysis, and a viable - 3D Modelling in Java 6 3 Requirements 9 4 Design 10 4.1 Preliminaries 10 4.1.1 Creating

Oxford, University of

282

Software: DIF3D - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

D D Software: ETOE-2 MC2-2 SDX DIF3D DIF3DK VIM REBUS-3 RCT ORIGEN-RA VARI3D SE2-ANL (SUPERENERGY2) SAS4A/SASSYS-1 SAS-DIF3DK MSET PRODIAG Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Software DIF3D (Diffusion and Transport Theory Codes) Bookmark and Share Standard Code Description NAME AND TITLE DIF3D 10.0: Code System Using Variational Nodal Methods and Finite Difference Methods to Solve Neutron Diffusion and Transport Theory Problems. CONTRIBUTOR K. L. Derstine Nuclear Engineering Division Argonne National Laboratory, Argonne, Illinois 60439. CODING LANGUAGE AND COMPUTER Fortran 90 and C source code for Linux PCs, MacOSX and SUN, (C00784MNYCP00).

283

3-D Earth model more accurately pinpoints explosions  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty Organization with more accurately locating all types of explosions. October 25, 2013 A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole. This model is used as the starting point to calculate the full SALSA3D velocity model. A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole.

284

Robust and Efficient 3D Recognition by Alignment  

E-Print Network (OSTI)

Alignment is a prevalent approach for recognizing 3D objects in 2D images. A major problem with current implementations is how to robustly handle errors that propagate from uncertainties in the locations of image ...

Alter, Tao Daniel

1992-09-01T23:59:59.000Z

285

Perceptually-motivated graphics, visualization and 3D displays  

Science Conference Proceedings (OSTI)

This course presents timely, relevant examples on how researchers have leveraged perceptual information for optimization of rendering algorithms, to better guide design and presentation in (3D stereoscopic) display media, and for improved visualization ...

Ann McNamara; Katerina Mania; Marty Banks; Christopher Healey

2010-07-01T23:59:59.000Z

286

Tracking 3-D Rotations with the Quaternion Bingham Filter  

E-Print Network (OSTI)

A deterministic method for sequential estimation of 3-D rotations is presented. The Bingham distribution is used to represent uncertainty directly on the unit quaternion hypersphere. Quaternions avoid the degeneracies of ...

Glover, Jared

2013-03-27T23:59:59.000Z

287

Development and Implementation of 3-D, High-speed Tomography...  

NLE Websites -- All DOE Office Websites (Extended Search)

operations such as fluid-bed combustors, coal gasifiers, carbon capture processes, and Fischer-Tropsch synthesis. A dedicated 3-D ECVT for imaging fluidized-bed systems will...

288

3D Graphics for Everyday Communication Takeo Igarashi  

E-Print Network (OSTI)

the region surrounded by the silhouette, making wide areas fat and narrow areas thin. Teddy, our prototype implemented using standard 3D rendering engines, and the painted models are stored as standard textured

Igarashi, Takeo

289

Full-3D Waveform Tomography for Southern California | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitted by mkaczmar on October 3, 2012 - 09:19 Authors: Lee, E., Chenm P., Jordan, T.H., Maechling, P.J., Denolle, M., Beroza, G.C. Our full-3D tomography (F3DT) uses...

290

Building a database of 3D scenes from user annotations  

E-Print Network (OSTI)

In this paper, we wish to build a high quality database of images depicting scenes, along with their real-world three-dimensional (3D) coordinates. Such a database is useful for a variety of applications, including training ...

Russell, Bryan C.

291

3D Radiation Field Estimation Algorithm v1.0  

Science Conference Proceedings (OSTI)

The product is a calculational subprogram to be used within CAD, Laser scan or GIS software products to extrapolate / interpolate gamma radiation dose rates at 3-D locations for which no field survey data had been ...

2013-04-24T23:59:59.000Z

292

Investigation of 3-D Heat Transfer Effects in Fenestration Products.  

E-Print Network (OSTI)

??ABSTRACT INVESTIGATION OF 3-D HEAT TRANSFER EFFECTS IN FENESTRATION PRODUCTS SEPTEMBER 2010 SNEH KUMAR B. TECH., INDIAN INSTITUTE OF TECHNOLOGY, CHENNAI INDIA M.S.M.E., UNIVERSITY OF… (more)

Kumar, Sneh

2010-01-01T23:59:59.000Z

293

The Shapes of a 3D Grain Growth Microstructure  

Science Conference Proceedings (OSTI)

P2-28: Characterization of Pores and Cracks in Underwater Welds by µCT and Digital Optical Microscopy · P3-01: 3D Visualisation of Crystallographic Pitting.

294

P3-01: 3D Visualisation of Crystallographic Pitting  

Science Conference Proceedings (OSTI)

P2-28: Characterization of Pores and Cracks in Underwater Welds by µCT and Digital Optical Microscopy · P3-01: 3D Visualisation of Crystallographic Pitting.

295

Further Analysis of 3D Magnetotelluric Measurements Over the Coso  

Open Energy Info (EERE)

Further Analysis of 3D Magnetotelluric Measurements Over the Coso Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Further Analysis of 3D Magnetotelluric Measurements Over the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: At last year's GRC annual meeting we presented initial results of a 3D investigation of the Coso Geothermal field utilizing a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling over the east flank of the field (Newman et al., 2005). Motivation for this study is that electrical resistivity/ conductivity mapping can contribute to better improved understanding of enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling

296

3-D Earth model more accurately pinpoints explosions  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty Organization with more accurately locating all types of explosions. October 25, 2013 A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole. This model is used as the starting point to calculate the full SALSA3D velocity model. A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station at the North Pole.

297

Topobo : a 3-D constructive assembly system with kinetic memory  

E-Print Network (OSTI)

We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

Raffle, Hayes Solos, 1974-

2004-01-01T23:59:59.000Z

298

The road to 3D EDA tool readiness  

Science Conference Proceedings (OSTI)

Today's SoCs/SIPs face numerous design challenges as increased integration of system components on a single die stretches the limits of technology and design capacity. 3D integration, where multiple dies are stacked and interconnected in the vertical ...

Charles Chiang; Subarna Sinha

2009-01-01T23:59:59.000Z

299

Fixed-outline thermal-aware 3D floorplanning  

Science Conference Proceedings (OSTI)

In this paper, we present a novel algorithm for 3D floorplanning with fixed outline constraints and a particular emphasis on thermal awareness. A computationally efficient thermal model that can be used to guide the thermal-aware floorplanning algorithm ...

Linfu Xiao; Subarna Sinha; Jingyu Xu; Evangeline F. Y. Young

2010-01-01T23:59:59.000Z

300

Brief description of image based 3D face recognition methods  

Science Conference Proceedings (OSTI)

The goal of this paper is to presents Brief Description of literature on Image Based human and machine recognition of faces during 1987 to 2010. Machine recognition of faces has several applications. As one of the most successful applications of image ... Keywords: 3D Face Recognition, 3D Morphable Model, Categorization, Face Detection, Face Recognition from Image Sequences, Independent Component Analysis, Linear Discriminate Analysis, Principal Component Analysis, Video based face recognition, research Issues

Sushma Jaiswal; Sarita Singh Bhadauria; Rakesh Singh Jadon; Tarun Kumar Divakar

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals  

E-Print Network (OSTI)

Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

Ian B. Burgess; Joanna Aizenberg; Marko Loncar

2012-11-29T23:59:59.000Z

302

Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona  

E-Print Network (OSTI)

We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex than straight line and ring current fields sometimes used in solar flux rope models. The axial flux in magnetic fields around confined current structures may be affected by the writhe of these current structures such that the field twists preferentially with the same handedness as the writhe. This property of fields around confined current structures with writhe may be relevant to classes of coronal magnetic flux rope, including structures observed to have sigmoidal forms in soft X-rays and prominence magnetic fields. For example, ``bald patches'' and the associated heating by Parker current sheet dissipation seem likely. Thus some measurements of flux rope magnetic helicities may derive from external, near-potential fields. The predicted hemispheric preference for positive and negative magnetic helicities is consistent with observational results for prominences and sigmoids and past theoretical results for flux rope internal fields.

G. J. D. Petrie

2007-02-06T23:59:59.000Z

303

Dilute magnetic semiconductor Cu2FeSnS4 nanocrystals with a novel zincblende structure  

Science Conference Proceedings (OSTI)

Diluted magnetic semiconductor Cu2FeSnS4 nanocrystals with a novel zincblende structure have been successfully synthesized by a hot-injection approach. Cu+, Fe2+, and Sn4+ ions occupy the same position in the ...

Xiaolu Liang; Xianhua Wei; Daocheng Pan

2012-01-01T23:59:59.000Z

304

Structural performance of the first SSC (Superconducting Super Collider) Design B dipole magnet  

Science Conference Proceedings (OSTI)

The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs.

Nicol, T.H.

1989-09-01T23:59:59.000Z

305

ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS  

SciTech Connect

Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

Huarte-Espinosa, M.; Frank, A.; Blackman, E. G. [Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY 14627-0171 (United States); Ciardi, A. [LERMA, Universite Pierre et Marie Curie, Observatoire de Paris, F-92195 Meudon (France); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V.; Chittenden, J. P. [Blackett Laboratory, Imperial College London, SW7 2BW London (United Kingdom)

2012-09-20T23:59:59.000Z

306

Scalable Thick-Film Magnetics: Nano Structured Scalable Thick-Film Magnetics  

SciTech Connect

ADEPT Project: Magnetic components are typically the largest components in a power converter. To date, however, researchers haven't found an effective way to reduce their size without negatively impacting their performance. And, reducing the size of the converter's other components isn't usually an option because shrinking them can also diminish the effectiveness of the magnetic components. GE is developing smaller magnetic components for power converters that maintain high performance levels. The company is building smaller components with magnetic films. These films are created using the condensation of a vaporized form of the magnetic material. It's a purely physical process that involves no chemical reactions, so the film composition is uniform. This process makes it possible to create a millimeter-thick film deposition over a wide surface area fairly quickly, which would save on manufacturing costs. In fact, GE can produce 1-10 millimeter-thick films in hours. The magnetic components that GE is developing for this project could be used in a variety of applications, including solar inverters, electric vehicles, and lighting.

None

2011-01-01T23:59:59.000Z

307

Ultra high energy cosmic rays and the large scale structure of the galactic magnetic field  

E-Print Network (OSTI)

We study the deflection of ultra high energy cosmic ray protons in different models of the regular galactic magnetic field. Such particles have gyroradii well in excess of 1 kpc and their propagation in the galaxy reflects only the large scale structure of the galactic magnetic field. A future large experimental statistics of cosmic rays of energy above 10$^{19}$ eV could be used for a study of the large scale structure of the galactic magnetic field if such cosmic rays are indeed charged nuclei accelerated at powerful astrophysical objects and if the distribution of their sources is not fully isotropic.

Todor Stanev

1996-07-17T23:59:59.000Z

308

Probing the structure of local magnetic field of solar features with helioseismology  

E-Print Network (OSTI)

Motivated by the problem of local solar subsurface magnetic structure, we have used numerical simulation to investigate the propagation of waves through monolithic magnetic flux tubes of different size. A cluster model can be a good approximation to simulate sunspots as well as solar plage regions which are composed of an ensemble of compactly packed thin flux tubes. Simulations of this type is a powerful tool to probe the structure and the dynamic of various solar features which are related directly to solar magnetic field activity.

Daiffallah, Khalil

2013-01-01T23:59:59.000Z

309

Analysis of Slanted Air-gap Structure of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation  

E-Print Network (OSTI)

Analysis of Slanted Air-gap Structure of Interior Permanent Magnet Synchronous Motor with Brushless permanent magnet synchronous motor (IPMSM) for application in a hybrid electric vehicle. This unique slanted permanent magnet synchronous motor FEA finite element analysis PM permanent magnet II. INTRODUCTION

Tolbert, Leon M.

310

Nanoflare statistics in an active region 3D MHD coronal model  

E-Print Network (OSTI)

Context. We investigate the statistics of the spatial and temporal distribution of the coronal heating in a three-dimensional magneto- hydrodynamical (3D MHD) model. The model describes the temporal evolution of the corona above an observed active region. The model is driven by photospheric granular motions which braid the magnetic field lines. This induces currents and their dissipation heats the plasma. We evaluate the transient heating as subsequent heating events and analyze their statistics. The results are then interpreted in the context of observed flare statistics and coronal heating mechanisms. Methods. To conduct the numerical experiment we use a high order finite difference code which solves the partial differential equations for the conservation of mass, the momentum and energy balance, and the induction equation. The energy balance includes the Spitzer heat conduction and the optical thin radiative loss in the corona. Results. The temporal and spatial distribution of the Ohmic heating in the 3D M...

Bingert, Sven

2012-01-01T23:59:59.000Z

311

Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior  

E-Print Network (OSTI)

Recent overwhelming evidences show that the sun strongly influences the Earth's climate and environment. Moreover existence of life on this Earth mainly depends upon the sun's energy. Hence, understanding of physics of the sun, especially the thermal, dynamic and magnetic field structures of its interior, is very important. Recently, from the ground and space based observations, it is discovered that sun oscillates near 5 min periodicity in millions of modes. This discovery heralded a new era in solar physics and a separate branch called helioseismology or seismology of the sun has started. Before the advent of helioseismology, sun's thermal structure of the interior was understood from the evolutionary solution of stellar structure equations that mimicked the present age, mass and radius of the sun. Whereas solution of MHD equations yielded internal dynamics and magnetic field structure of the sun's interior. In this presentation, I review the thermal, dynamic and magnetic field structures of the sun's inter...

Hiremath, K M

2012-01-01T23:59:59.000Z

312

Magnetic properties and crystal structure of RENiA1 and UniA1 hydrides.  

DOE Green Energy (OSTI)

RENiAl (RE = rare-earth metal) and UNiAl compounds crystallizing in the hexagonal ZrNiAl-type structure (space group P{bar 6}2m) can absorb up to 2 and 3 hydrogen (deuterium) atoms per formula unit, respectively. Hydrogenation leads to a notable lattice expansion and modification of magnetic properties. However, the impact of hydrogenation on magnetism is the opposite for 4f- and 5f-materials: TN(T{sub c})is lowered in the case of rare-earth hydrides, while for UNiAlH(D){sub x} it increases by an order of magnitude. Here we present results of magnetic and structure studies performed of these compounds, focusing on the correlation between magnetic and structural variations and discussing possible reasons of the striking difference in effect of hydrogenation on rare-earth and actinide intermetallics.

Bordallo, H. N.; Drulis, H.; Havela, L.; Iwasieczko, W.; Kolomiets, A. V.; Nakotte, H.; Refaja, D.; Yartys, V. A.

1999-08-11T23:59:59.000Z

313

Study of Various Slanted Air-gap Structures of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation  

E-Print Network (OSTI)

Study of Various Slanted Air-gap Structures of Interior Permanent Magnet Synchronous Motor of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field magnet machine, synchronous motors, torque. I. NOMENCLATURE BFE brushless field excitation IPMSM interior

Tolbert, Leon M.

314

Extra Dimensions: 3D and Time in PDF Documentation  

SciTech Connect

Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.

Graf, N.A.; /SLAC

2012-04-11T23:59:59.000Z

315

Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection  

Science Conference Proceedings (OSTI)

By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

Bai Xianchen; Yang Jianhua; Zhang Jiande [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

2012-08-15T23:59:59.000Z

316

Virtual Frog Dissection: Interactive 3D Graphics Via the Web  

NLE Websites -- All DOE Office Websites (Extended Search)

Dissection: Interactive 3D Graphics Via the Web Dissection: Interactive 3D Graphics Via the Web David Robertson, William Johnston, and Wing Nip Imaging and Distributed Computing Group Lawrence Berkeley National Laboratory Published in Proceedings, The Second International WWW Conference '94: Mosaic and the Web, Chicago, IL (1994). Hyperlinks have been updated periodically to replace stale links. ABSTRACT We have developed a set of techniques for providing interactive 3D graphics via the World Wide Web (WWW) as part of the ``Whole Frog'' project [ 1 ]. We had three goals: (1) to provide K-12 biology students with the ability to explore the anatomy of a frog with a virtual dissection tool; (2) to show the feasibility of interactive visualization over the Web; and (3) to show the possibility for the Web and its associated browsers to be an

317

Building Energy Software Tools Directory: Look3D  

NLE Websites -- All DOE Office Websites (Extended Search)

Look3D Look3D Look3D logo. A Windows program that creates three-dimensional, full-color surface plots from columnar data. These surface plots can be rotated and customized. Keywords three-dimensional, full-color surface plots from columnar data, energy-use data Validation/Testing N/A Expertise Required No special expertise required. Users International. Audience Anyone analyzing time series data. Input ASCII space delimited numeric files. Input should have time stamp for maximum usability. Output Visualization on screen. Computer Platform Windows 3.1 or higher. Programming Language Visual C++ (source not available). Strengths Particularly useful for visualizing load profile changes over time. Weaknesses N/A Contact Company: Energy Systems Laboratory Address: Building Energy Analysis Division

318

An ant colony optimization approach for solving the nuclear magnetic resonance structure based assignment problem  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance (NMR) Spectroscopy is an important technique that allows determining protein structure in solution. An important problem in protein structure determination using NMR spectroscopy is the mapping of peaks to corresponding amino ... Keywords: ant colony optimization, backbone resonance assignments, n15-labeled, nmr

Jeyhun Aslanov; Bülent Çatay; Mehmet Serkan Apaydin

2013-07-01T23:59:59.000Z

319

Simulation of rock fracture with the 3-D SHALE code  

SciTech Connect

The 3-D SHALE code simulates the propagation of stress waves and the occurrence of fracture in brittle solids. The physical models and numerical methods in this code are similar to those used in 2-D SHALE. We describe the 3-D code and present sample calculations for blasting in oil shale with a single isolated charge, an infinite array of charges, and an isolated pair of charges. These calculations illustrate the use of the code to simulate dynamic phenomena in complex geometric configurations. Some useful code improvements and possible applications are discussed. 8 references, 7 figures.

Nichols, B.D.; Adams, T.F.

1985-01-01T23:59:59.000Z

320

3D Object Digitization: Majority Interpolation and Marching Cubes  

E-Print Network (OSTI)

In a previous paper we showed that a 3D object can be digitized without changing the topology if the object is r-regular and if the reconstruction method fulfills certain requirements. In this paper we give two important examples for such reconstruction methods. First, we introduce Majority Interpolation, an algorithm to interpolate sampling points at doubled resolution such that topological ambiguities are resolved. Second, we show how the well-known Marching Cubes algorithm has to be modified such that it is topology preserving. This is the first approach of digitizing 3D objects which guarantees topology preservation for voxel-based or polygonal surface-based reconstructions. 1

Peer Stelldinger

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Structure and magnetic properties of Co-W clusters produced by inert gas condensation  

SciTech Connect

In this article, inert-gas condensation was used to synthesize Co-W clusters. The formation, structure, and magnetic properties of the clusters were investigated. Sub-10-nm clusters were obtained, and the structures and average sizes were strongly dependent on sputtering power. At low sputtering powers, the clusters were predominantly amorphous, while, at high sputtering power, the clusters were crystalline. X ray diffraction and transmission electron microscopy revealed clusters with hcp structure at high sputtering power. The magnetic properties were dependent on the sputtering power and temperature, with the highest coercivity of 810?Oe at 10 K for high sputtering power.

Golkar, Farhad; Kramer, Matthew; Zhang, Y.; McCallum, R.W.; Skomski, R.; Sellmyer, D.J.; Shield, J.E.

2012-03-06T23:59:59.000Z

322

Structure and magnetic properties of Co-W clusters produced by inert gas condensation  

Science Conference Proceedings (OSTI)

In this article, inert-gas condensation was used to synthesize Co-W clusters. The formation, structure, and magnetic properties of the clusters were investigated. Sub-10-nm clusters were obtained, and the structures and average sizes were strongly dependent on sputtering power. At low sputtering powers, the clusters were predominantly amorphous, while, at high sputtering power, the clusters were crystalline. X ray diffraction and transmission electron microscopy revealed clusters with hcp structure at high sputtering power. The magnetic properties were dependent on the sputtering power and temperature, with the highest coercivity of 810 Oe at 10 K for high sputtering power.

Golkar, Farhad [Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588 (United States); Kramer, M. J.; Zhang, Y.; McCallum, R. W. [Ames Laboratory, Ames, Iowa 50011 (United States); Skomski, R.; Sellmyer, D. J. [Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Shield, J. E. [Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

2012-04-01T23:59:59.000Z

323

Atomic structure and magnetic properties of Fe1-xCox alloys  

SciTech Connect

Using genetic algorithm with first-principle calculations, we searched for low-energy crystal structures of Fe1?xCox alloys. We found that Fe1?xCox alloys are highly configurationally degenerate with many additional off-stoichiometric stable structures to the well-known B2 structure. The average magnetic moment of Fe atom increases with concentration of Co in the alloy, while that of Co atom is almost constant, which are consistent with experiments and earlier studies. The magnetic moment of Fe atom is strongly dependent on the number of Co nearest neighbor and it increases with this number.

Nguyen, Manh Cuong; Zhao, Xin; Ji, Min; Wang, Cai-Zhuang; Harmon, Bruce; Ho, Kai-Ming

2012-03-09T23:59:59.000Z

324

High Entropy Alloys a New Class of Structural Materials: Magnetism ...  

Science Conference Proceedings (OSTI)

Perspectives on Phonons and Electron-Phonon Scattering in High-Temperature Superconductors · Prediction and Design of Materials from Crystal Structures to ...

325

Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation  

E-Print Network (OSTI)

This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to part...

Hohlmann, M

2013-01-01T23:59:59.000Z

326

Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation  

E-Print Network (OSTI)

This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to partner with industry in taking on such a challenge.

M. Hohlmann

2013-09-03T23:59:59.000Z

327

ARIES-CS MAGNET CONDUCTOR AND STRUCTURE EVALUATION  

E-Print Network (OSTI)

treatment!. Because of the additive manufacturing method for the structure inARIES-CS, described by Waganer coil structure. For ARIES-CS, additive manufacturing10 is the fab- rication method chosen implications on cost and manufacturing requirements. Concepts with both con- ventional and advanced

California at San Diego, University of

328

Extraction and integration of window in a 3d building model from ground view images  

E-Print Network (OSTI)

Details of the building facades are needed for high quality fly-through visualization or simulation applications. Windows form a key structure in the detailed facade reconstruction. In this paper, given calibrated facade texture (i.e. the rectified texture), we extract and reconstruct the 3D window structure of the building. We automatically extract windows (rectangles in the rectified image) using a profile projection method, which exploits the regularity of the vertical and horizontal window placement. We classify the extracted windows using 2D dimensions and image texture information. The depth of the extracted windows is automatically computed using window classification information and image line features. A single ground view image is enough to compute 3D depths of the facade windows in our approach. 1

Sung Chun Lee; Ram Nevatia

2004-01-01T23:59:59.000Z

329

Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.  

SciTech Connect

The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

Mock, Raymond Cecil

2007-06-01T23:59:59.000Z

330

Illuminating clay: a 3-D tangible interface for landscape analysis  

Science Conference Proceedings (OSTI)

This paper describes a novel system for the real-time computational analysis of landscape models. Users of the system - called Illuminating Clay - alter the topography of a clay landscape model while the changing geometry is captured in real-time by ... Keywords: 3D laser scanner, DEM, GIS, landscape design, physical models, tangible user interface

Ben Piper; Carlo Ratti; Hiroshi Ishii

2002-04-01T23:59:59.000Z

331

3D hybrid simulation code using curvilinear coordinates  

Science Conference Proceedings (OSTI)

A new simulation code using the hybrid approximation for modeling extraterrestrial plasma processes is described, which can be used in an arbitrary three-dimensional, ordered, hexahedral grid. Maxwell's equations are transformed using common tensor analysis ... Keywords: 3D, curvilinear, hybrid, plasma, simulation

T. Bagdonat; U. Motschmann

2002-12-01T23:59:59.000Z

332

Unencumbered 3D interaction with see-through displays  

Science Conference Proceedings (OSTI)

Augmented Reality (AR) systems that employ user-worn display and sensor technology can be problematic for certain applications as the technology might, for instance, be encumbering to the user or limit the deployment options of the system. Spatial AR ... Keywords: 3D, augmented reality, gesture, interaction, interface, mixed reality, pose, public display, see-through, spatial display, touch

Alex Olwal

2008-10-01T23:59:59.000Z

333

Zigbee-based Internet of Things in 3D Terrains  

Science Conference Proceedings (OSTI)

This paper focuses on the Zigbee-based Internet of Things (IoTs) in 3D terrains. A novel simulation model for IoT is proposed. The effects of various terrains, node's mobility and traffic loads are investigated in this study. Many comprehensive studies ...

Mu-Sheng Lin, Jenq-Shiou Leu, Kuen-Han Li, Jean-Lien C. Wu

2013-08-01T23:59:59.000Z

334

3D porosity prediction from seismic inversion and neural networks  

Science Conference Proceedings (OSTI)

In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack ... Keywords: Feed-forward neural network, Matlab, Reservoir characterization, Seismic inversion

Emilson Pereira Leite; Alexandre Campane Vidal

2011-08-01T23:59:59.000Z

335

Extracting and depicting the 3D shape of specular surfaces  

Science Conference Proceedings (OSTI)

Many materials including water, plastic and metal have specular surface characteristics. Specular reflections have commonly been considered a nuisance for the recovery of object shape. However, the way that reflections are distorted across the surface ... Keywords: 3D shape perception, model of cortical form processing, non-photorealistic rendering

Ulrich Weidenbacher; Pierre Bayerl; Roland Fleming; Heiko Neumann

2005-08-01T23:59:59.000Z

336

Extra Dimensions: 3D and Time in PDF Documentation  

Science Conference Proceedings (OSTI)

High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.

Graf, Norman A.; /SLAC

2011-11-10T23:59:59.000Z

337

Reinforced concrete perforation and penetration simulation using AUTODYN-3D  

Science Conference Proceedings (OSTI)

3D hydrocode simulation on the perforation and penetration of reinforced concrete target has been performed. The simulation aims to examine the influence of the following constitutive models for concrete on a projectile's residual velocity: (1) constant-yield ... Keywords: Constitutive model, Hydrocode, Perforation, Projectile, Reinforced concrete

C. Y. Tham

2005-08-01T23:59:59.000Z

338

Editing the topology of 3D models by sketching  

Science Conference Proceedings (OSTI)

We present a method for modifying the topology of a 3D model with user control. The heart of our method is a guided topology editing algorithm. Given a source model and a user-provided target shape, the algorithm modifies the source so that the ... Keywords: skeleton, sketching, topology repair

Tao Ju; Qian-Yi Zhou; Shi-Min Hu

2007-08-01T23:59:59.000Z

339

Using X3D for medical training simulations  

Science Conference Proceedings (OSTI)

Nowadays medical training simulators play an important role in education and further training of surgeons. With Virtual Reality based training systems it is possible to simulate a surgery under realistic conditions. Input data for the visualization of ... Keywords: GPU raycasting, X3D, haptics, medical training simulators, volume rendering

Yvonne Jung; Ruth Recker; Manuel Olbrich; Ulrich Bockholt

2008-08-01T23:59:59.000Z

340

Interactive painterly stylization of images, videos and 3D animations  

Science Conference Proceedings (OSTI)

We introduce a real-time system that converts images, video, or 3D animation sequences to artistic renderings in various painterly styles. The algorithm, which is entirely executed on the GPU, can efficiently process 512 resolution frames containing ... Keywords: GPU processing, non-photorealistic rendering, painterly rendering, particle systems, video processing

Jingwan Lu; Pedro V. Sander; Adam Finkelstein

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Auto-tuning 3-D FFT library for CUDA GPUs  

Science Conference Proceedings (OSTI)

Existing implementations of FFTs on GPUs are optimized for specific transform sizes like powers of two, and exhibit unstable and peaky performance i.e., do not perform as well in other sizes that appear in practice. Our new auto-tuning 3-D FFT on CUDA ...

Akira Nukada; Satoshi Matsuoka

2009-11-01T23:59:59.000Z

342

Programmable rendering of line drawing from 3D scenes  

Science Conference Proceedings (OSTI)

This article introduces a programmable approach to nonphotorealistic line drawings from 3D models, inspired by programmable shaders in traditional rendering. This approach relies on the assumption generally made in NPR that style attributes (color, thickness, ... Keywords: Line drawing, nonphotorealistic rendering (NPR), style

Stéphane Grabli; Emmanuel Turquin; Frédo Durand; François X. Sillion

2010-03-01T23:59:59.000Z

343

Prototypes for automated architectural 3D-layout  

Science Conference Proceedings (OSTI)

Prototypes for automated spatial layout in architecture focus on approaches, which define occupiable space as an orthogonal 2D-grid and use algorithms to allocate each rectangle of the grid to a particular function. However, these approaches are limiting ... Keywords: 3D-modeling and automated spatial layout, euclidean and non-euclidean geometries, satisfiability

Henriette Bier; Adriaan De Jong; Niels Brouwers; Marijn Heule; Hans Van Maaren / Gijs Van Der Hoorn

2007-09-01T23:59:59.000Z

344

3D atmospheric modeling based on MODTRAN4  

Science Conference Proceedings (OSTI)

All the factors of atmospheric environment that influence the transmission of infrared radiation were analyzed in detail in the paper. Taking horizontally varying atmospheric property into consideration, a 3D model of atmospheric transmission of infrared ... Keywords: MODTRAN4, infrared radiation, model, path radiation, ratio of atmospheric transmission, simulation, single scatter solar radiation

Ge Li; Zhifeng Lu; Gang Guo; Kedi Huang

2008-06-01T23:59:59.000Z

345

A survey on CAD methods in 3D garment design  

Science Conference Proceedings (OSTI)

With the advance in virtual reality applications, garment industry has strived for new developments. This paper reviews state-of-the-art CAD methods in 3D garment design. A large range of techniques are selected and organized into several key modules ... Keywords: CAD methods, Feature modeling, Garments

Yong-Jin Liu; Dong-Liang Zhang; Matthew Ming-Fai Yuen

2010-08-01T23:59:59.000Z

346

3D Hydro + Cascade model at RHIC and LHC  

Science Conference Proceedings (OSTI)

Using the 3D Hydro + UrQMD model which can explain hot and bulk QCD matter created at RHIC successfully, we show a prediction of one particle distributions and flow at LHC. Besides, we discuss the QCD critical point search in heavy ion collisions from point of view of quantitative analyses.

Nonaka, Chiho [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

2010-05-12T23:59:59.000Z

347

Designing stories: practices of narrative in 3D computer games  

Science Conference Proceedings (OSTI)

Drawing on theories from game-, film-, and theatre studies, this paper explores two primary ways in which 3D computer games deal with stories. As evident in how these games are creatively designed and publically discussed, one of these approaches focuses ... Keywords: film, game design, immersion, media comparison, narratology, presentation, representation, storytelling, theatre

Teun Dubbelman

2011-08-01T23:59:59.000Z

348

Drilling into Complex 3D Models with Gimlenses Cyprien Pindat  

E-Print Network (OSTI)

-Neira et al. 1992]. For instance, Boeing's 777 air- liner was entirely modeled using CAD software into complex 3D models with gimlenses. In Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology (VRST '13). ACM. 223-230. c ACM, 2013. This is the author's version of the work. It is posted here

Recanati, Catherine

349

3Book: A Scalable 3D Virtual Book  

E-Print Network (OSTI)

This paper describes the 3Book, a 3D interactive visualization of a codex book as a component for digital library and information-intensive applications. The 3Book is able to represent books of almost unlimited length, allows users to read large format books, and has features to enhance reading and sensemaking.

Stuart K. Card; Lichan Hong; Jock D. Mackinlay; Ed H. Chi; H. Chi

2004-01-01T23:59:59.000Z

350

3Book: A 3D Electronic Smart Book  

E-Print Network (OSTI)

This paper describes the 3Book, a 3D interactive visualization of a codex book as a component for various digital library and sensemaking systems. The book is designed to hold large books and to support sensemaking operations by readers. The book includes methods in which the automatic semantic analysis of the book's content is used to dynamically tailor access.

Stuart K. Card; Lichan Hong; Jock D. Mackinlay; Ed H. Chi; H. Chi

2004-01-01T23:59:59.000Z

351

Camera and projector arrays for immersive 3D video  

Science Conference Proceedings (OSTI)

Applying recent advances in multi-imager capture and multi-projector display, we combine capabilities through the Nizza multimedia dataflow architecture to deliver low-cost wide-VGA-quality low-latency autostereoscopic 3D display of live video on a single ... Keywords: autostereo immersive display, multi-viewpoint capture, multi-viewpoint display

Harlyn Baker; Zeyu Li

2009-05-01T23:59:59.000Z

352

The wise cursor: assisted selection in 3D serious games  

Science Conference Proceedings (OSTI)

In recent years, the evolution of 3D graphics hardware and software has lead to a growing interest for serious games in three-dimensional virtual environments for learning, training, and rehabilitation. Many of these games are based on a first-person-shooter ... Keywords: Accessible user interfaces, Interactive selection, Navigation in virtual environments, Serious games

Sergio Moya; Sergi Grau; Dani Tost

2013-06-01T23:59:59.000Z

353

Development of Multi-modal 3D Characterization Systems to ...  

Science Conference Proceedings (OSTI)

P1-04: 3D Microstructural Characterization of Uranium Oxide as a Surrogate Nuclear ... P1-15: Gating System Optimisation Design Study of a Cast Automobile ... P2-27: Characterization of Carbonate Rocks through X-ray Microtomography.

354

3D Characterization of Microstructural Evolution in Anisotropic ...  

Science Conference Proceedings (OSTI)

P1-04: 3D Microstructural Characterization of Uranium Oxide as a Surrogate Nuclear ... P1-15: Gating System Optimisation Design Study of a Cast Automobile ... P2-27: Characterization of Carbonate Rocks through X-ray Microtomography.

355

Stereoscopic architecture of 3-D ready DLP-based HDTVs  

Science Conference Proceedings (OSTI)

DLP® Technology has existed for over twenty years with a wide range of products currently in production. The legacy of DLP technology includes innovations such as single-chip color displays and SmoothPicture™ technology. Recent technological ... Keywords: 3-D, DLP, HDTV, stereoscopic

Keith Elliott; David Hutchison

2008-08-01T23:59:59.000Z

356

Underwater 3D Mapping: Experiences and Lessons learned  

Science Conference Proceedings (OSTI)

This paper provides details on the development of a tool to aid in 3D coral reef mapping designed to be operated by a single diver and later integrated into an autonomous robot. We discuss issues that influence the deployment and development of underwater ...

Andrew Hogue; Andrew German; James Zacher; Michael Jenkin

2006-06-01T23:59:59.000Z

357

Generalized holomorphic Szegö kernel in 3D spheroids  

Science Conference Proceedings (OSTI)

Monogenic orthogonal polynomials over 3D prolate spheroids were previously introduced and shown to have some remarkable properties. In particular, the underlying functions take values in the quaternions (identified with R^4), and are generally assumed ... Keywords: Chebyshev polynomials, Ferrer's associated Legendre functions, Hyperbolic functions, Prolate spheroidal monogenics, Quaternion analysis, Szegö kernel function

J. Morais; K. I. Kou; W. SpröíIg

2013-02-01T23:59:59.000Z

358

Addressing thermal and power delivery bottlenecks in 3D circuits  

Science Conference Proceedings (OSTI)

The enhanced packing densities facilitated by 3D integrated circuit technology also has an unwanted side-effect, in the form of increasing the amount of current per unit footprint of the chip, as compared to a 2D design. This has ramifications on two ...

Sachin S. Sapatnekar

2009-01-01T23:59:59.000Z

359

FEM based 3D tumor growth prediction for kidney tumor  

Science Conference Proceedings (OSTI)

It is important to predict the tumor growth so that appropriate treatment can be planned especially in the early stage. In this paper, we propose a finite element method (FEM) based 3D tumor growth prediction system using longitudinal kidney tumor images. ... Keywords: finite element method, kidney tumor, segmentation, tumor growth prediction

Xinjian Chen; Ronald Summers; Jianhua Yao

2010-09-01T23:59:59.000Z

360

3D Imaging of Evaporating Fuel Droplets by Stereoscopic PIV  

Science Conference Proceedings (OSTI)

A gun-type burner is a widely used oil burner for industrial and domestic applications. The oil is pressure-atomized and mixed with air generating a recirculating, swirling flow. Because of the surrounding flame, fuel droplets evaporate, being difficult ... Keywords: 3D PIV, Stereoscopic PIV, droplet dynamics, spray combustion

V. Palero; Y. Ikeda

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The effect of highly structured cosmic magnetic fields on ultra-high energy cosmic ray propagation  

E-Print Network (OSTI)

The possibility that the magnetic field is strongly correlated with the large-scale structure of the universe has been recently considered in the literature. In this scenario the intergalactic magnetic field has a strong ($\\mu$G) regular component spanning tens of Mpc but localized in sheets and filaments, while the vast voids in between are almost free of magnetic field. If true, this could have important consequences on the propagation of ultra-high energy cosmic rays, and severely affect our capacity of doing astronomy with charged particles. A quantitative discussion of these effects is given in the present work.

Gustavo Medina Tanco

1998-08-07T23:59:59.000Z

362

Simion 3D Version 6.0 User`s Manual  

SciTech Connect

The original SIMION was an electrostatic lens analysis and design program developed by D.C. McGilvery at Latrobe University, Bundoora Victoria, Australia, 1977. SIMION for the PC, developed at the Idaho National Engineering Laboratory, shares little more than its name with the original McGilvery version. INEL`s fifth major SIMION release, version 6.0, represents a quantum improvement over previous versions. This C based program can model complex problems using an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 10,000,000 points. SIMION 3D`s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs have been greatly extended in versatility and power. A new geometry file option supports the definition of highly complex array geometry. Extensive algorithm modifications have dramatically improved this version`s computational speed and accuracy.

Dahl, D.A.

1995-11-01T23:59:59.000Z

363

A constraint-satisfaction approach for 3D vision/touch-based object recognition  

Science Conference Proceedings (OSTI)

We present a technique for recognizing polyhedral objects by integrating visual and tactile data. The problem is formulated as a constraint-satisfaction problem (CSP) to provide a unified framework for integrating different types of sensory data. To ... Keywords: 3D vision/touch-based object recognition, computational complexity, constraint handling, constraint-satisfaction approach, correspondence uncertainty, data integration, erroneous model object elimination, image recognition, local-consistency enforcing, object recognition, polyhedral objects, scene perceptual structures, tactile data, visual data

1995-08-01T23:59:59.000Z

364

Three tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole and different aromatic carboxylates: Assembly, structures, electrochemical and magnetic properties  

SciTech Connect

Three new tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole (atrz) and three types of aromatic carboxylates, [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(DNBA){sub 6}] (1), [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(1,3-BDC){sub 3}]{center_dot}2H{sub 2}O (2) and [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(SIP){sub 2}]{center_dot}4H{sub 2}O (3) (HDNBA=3,5-dinitrobenzoic acid, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid and NaH{sub 2}SIP=sodium 5-sulfoisophthalate), have been hydrothermally synthesized and structurally characterized. Complex 1 displays a single-molecular Cu{sup II}{sub 4} cluster structure, which is further connected by the intermolecular hydrogen-bonding interactions to form a 2D supramolecular layer. In 2, there also exist tetranuclear Cu{sup II}{sub 4} clusters, which are linked by the 1,3-BDC anions to give a 3D NaCl-type framework. In 3, the Cu{sup II}{sub 4} clusters are connected by the carboxyl and sulfo groups of SIP anions to generate 3D (4,8)-connected framework with a (4{sup 10}{center_dot}6{sup 14}{center_dot}8{sup 4})(4{sup 5}{center_dot}6){sub 2} topology. The atrz ligand conduces to the construction of tetranuclear copper(II) clusters and the carboxylates with different non-carboxyl substituent show important effects on the final structures of the title complexes. The electrochemical and magnetic properties of 1-3 have been investigated. - Graphical abstract: Three tetranuclear copper(II) cluster-based complexes based on different carboxylates have been synthesized under hydrothermal conditions. The carboxylate anions play a key role in the formation of three different structures. Highlights: Black-Right-Pointing-Pointer Three new tetranuclear copper(II) cluster-based complexes have been obtained. Black-Right-Pointing-Pointer The atrz conduces to the construction of tetranuclear copper(II) clusters. Black-Right-Pointing-Pointer Carboxylates show important effect on the structures of title complexes. Black-Right-Pointing-Pointer Magnetic properties and electrochemical behaviors have been reported.

Wang, Xiu-Li, E-mail: wangxiuli@bhu.edu.cn [Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000 (China)] [Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000 (China); Zhao, Wei; Zhang, Ju-Wen; Lu, Qi-Lin [Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000 (China)] [Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000 (China)

2013-02-15T23:59:59.000Z

365

Modelling magnetically dominated and radiatively cooling jets  

E-Print Network (OSTI)

Using 3D-MHD Eulerian-grid numerical simulations, we study the formation and evolution of rising magnetic towers propagating into an ambient medium. The towers are generated from a localized injection of pure magnetic energy. No rotation is imposed on the plasma. We compare the evolution of a radiatively cooling tower with an adiabatic one, and find that both bend due to pinch instabilities. Collimation is stronger in the radiative cooling case; the adiabatic tower tends to expand radially. Structural similarities are found between these towers and the millimeter scale magnetic towers produced in laboratory experiments.

Huarte-Espinosa, Martin; Blackman, Eric

2010-01-01T23:59:59.000Z

366

Footprint structures due to resonant magnetic perturbations in DIII-D  

SciTech Connect

Numerical modeling of the typical footprint structures on the target plates of a divertor tokamak is presented. In the tokamak DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] toroidal mode number n=3 resonant magnetic perturbations are responsible for characteristic footprint stripes. The numerics can resolve substructures within each footprint stripe, which are related to the internal magnetic topology. It is shown that the footprint structures on the inner target plate can be predicted by the unstable manifolds of the separatrix and the q=4 resonant surface. By their intersection with the divertor target plate the unstable manifolds form the footprint boundary and substructures within. Based on the manifold analysis, the boundaries and interior structures of the footprints are explained. A direct connection of all magnetic resonances inside the stochastic plasma volume to the target plates is verified.

Wingen, A.; Spatschek, K. H. [Institut fuer Theoretische Physik, Heinrich-Heine-Universitaet Duesseldorf, D-40225 Duesseldorf (Germany); Evans, T. E. [General Atomics, San Diego, California 92186-5608 (United States)

2009-04-15T23:59:59.000Z

367

A Theoretical Study of the Magnetic Structure of Bulk Iron with Radiation Defects  

SciTech Connect

A fundamental understanding of the radiation damage effects in solids is of great importance in assisting the development of improved materials with ultra-high strength, toughness, and radiation resistance for nuclear energy applications. In this presentation, we show our recent theoretical investigation on the magnetic structure evolution of bulk iron in the region surrounding the radiation defects. We applied the locally self-consistent multiple scattering method (LSMS), a linear scaling ab-initio method based on density functional theory with local spin density approximation, to the study of the magnetic structure in a low energy cascade in a 10,000-atom sample for a series of time steps for the evolution of the defects. The primary damage state and the evolution of all defects in the sample were simulated using molecular dynamics with empirical, embedded-atom inter-atomic potentials. We also discuss the importance of thermal effect on the magnetic structure evolution.

Wang, Yang [Pittsburgh Supercomputing Center; Stoller, Roger E [ORNL; Rusanu, Aurelian [ORNL; Nicholson, Don M [ORNL; Eisenbach, Markus [ORNL; Stocks, George Malcolm [ORNL

2011-01-01T23:59:59.000Z

368

Quantifying fluid distribution and phase connectivity with a simple 3D cubic pore network model constrained by NMR and MICP data  

Science Conference Proceedings (OSTI)

A computer algorithm is implemented to construct 3D cubic pore networks that simultaneously honor nuclear magnetic resonance (NMR) and mercury injection capillary pressure (MICP) measurements on core samples. The algorithm uses discretized pore-body ... Keywords: Fluid distribution, Invasion percolation, Mercury injection capillary pressure, Nuclear magnetic resonance, Pore network, Relative permeability, Tight-gas sandstone

Chicheng Xu, Carlos Torres-Verdín

2013-12-01T23:59:59.000Z

369

Parallel 3-D S{sub N} performance for DANTSYS/MPI on the Cray T3D  

Science Conference Proceedings (OSTI)

A data parallel version of the 3-D transport solver in DANTSYS has been in use on the SIMD CM-200`s at LANL since 1994. This version typically obtains grind times of 150--200 nanoseconds on a 2,048 PE CM-200. The authors have now implemented a new message passing parallel version of DANTSYS, referred to as DANTSYS/MPI, on the 512 PE Cray T3D at Los Alamos. By taking advantage of the SPMD architecture of the Cray T3D, as well as its low latency communications network, they have managed to achieve grind times of less than 10 nanoseconds on real problems. DANTSYS/MPI is fully accelerated using DSA on both the inner and outer iterations. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents two simple performance models for the transport sweep which accurately predict the grind time as a function of the number of PE`s and problem size, or scalability.

Baker, R.S.; Alcouffe, R.E. [Los Alamos National Lab., NM (United States). Transport Methods Group

1997-05-01T23:59:59.000Z

370

P1-03: 3D Microstructural Architectures for Metal and Alloy ...  

Science Conference Proceedings (OSTI)

P2-03: 3D Characterization of High Burn-up MOX Fuel · P2-04: 3D Identification of Inclusions in NiTi Alloy after Electropolishing · P2-05: Advances in 3D Imaging  ...

371

A New Filtering Strategy for Noise Reduction on High Noise 3D Data ...  

Science Conference Proceedings (OSTI)

P2-03: 3D Characterization of High Burn-up MOX Fuel · P2-04: 3D Identification of Inclusions in NiTi Alloy after Electropolishing · P2-05: Advances in 3D Imaging  ...

372

P3-17: Modeling 3D Grain Coarsening Based on Tomography Data  

Science Conference Proceedings (OSTI)

P2-03: 3D Characterization of High Burn-up MOX Fuel · P2-04: 3D Identification of Inclusions in NiTi Alloy after Electropolishing · P2-05: Advances in 3D Imaging  ...

373

The Influence of Microstructure on 3D Crack Morphologies in a New ...  

Science Conference Proceedings (OSTI)

P2-03: 3D Characterization of High Burn-up MOX Fuel · P2-04: 3D Identification of Inclusions in NiTi Alloy after Electropolishing · P2-05: Advances in 3D Imaging  ...

374

Full waveform inversion of a 3-D source inside an artificial rock  

E-Print Network (OSTI)

of a 3-D Source Inside an Artificial Rock Albert C. To andof a 3-D source inside an artificial rock plate inof a 3-D source inside an artificial rock plate is

To, A C; Glaser, Steven D

2005-01-01T23:59:59.000Z

375

Developing a power-efficient and low-cost 3D NoC using smart GALS-based vertical channels  

Science Conference Proceedings (OSTI)

Shorter global interconnects enable 3D NoC structures to offer higher performance, improved packaging density, and lower interconnect power consumption to CMPs and SoCs compared to their 2D counterparts. However, substantial challenges such as high peak ... Keywords: 3D Networks-on-Chip, Bidirectional Bisynchronous Vertical Channels, Forecasting-based dynamic power management

Amir-Mohammad Rahmani; Pasi Liljeberg; Juha Plosila; Hannu Tenhunen

2013-06-01T23:59:59.000Z

376

Segmenting and Analyzing 3D Serial Sections for Microstructural ...  

Science Conference Proceedings (OSTI)

First Principles Modeling of Shape Memory Alloy Magnetic Refrigeration Materials ... Different Generations of Gamma Prime Precipitates in a Commercial Nickel ...

377

3D Microstructural Characterization of Laser Deposited Titanium ...  

Science Conference Proceedings (OSTI)

First Principles Modeling of Shape Memory Alloy Magnetic Refrigeration Materials ... Different Generations of Gamma Prime Precipitates in a Commercial Nickel ...

378

3D Mt Resistivity Imaging For Geothermal Resource Assessment And  

Open Energy Info (EERE)

Resistivity Imaging For Geothermal Resource Assessment And Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Details Activities (3) Areas (2) Regions (0) Abstract: MT and TDEM surveys acquired in 2005 were integrated with existing MT and TDEM data recovered from obsolete formats to characterize the geometry of the geothermal reservoir. An interpretation based on the correlation of the 3D MT resistivity with well properties indicated that most of the previous exploration wells had been tarted close to but not in the center of areas tha appeared most likely to be permeable. Such

379

Architectural Advancements in RELAP5-3D  

SciTech Connect

As both the computer industry and field of nuclear science and engineering move forward, there is a need to improve the computing tools used in the nuclear industry to keep pace with these changes. By increasing the capability of the codes, the growing modeling needs of nuclear plant analysis will be met and advantage can be taken of more powerful computer languages and architecture. In the past eighteen months, improvements have been made to RELAP5-3D [1] for these reasons. These architectural advances include code restructuring, conversion to Fortran 90, high performance computing upgrades, and rewriting of the RELAP5 Graphical User Interface (RGUI) [2] and XMGR5 [3] in Java. These architectural changes will extend the lifetime of RELAP5-3D, reduce the costs for development and maintenance, and improve it speed and reliability.

Dr. George L. Mesina

2005-11-01T23:59:59.000Z

380

Automatic generation of bas-reliefs from 3D shapes  

E-Print Network (OSTI)

generated by our method and their profiles (middle images). A bas-relief of the Stanford Armadillo model on a bended cylinder (most-right image). In this paper, we introduce and study a new problem of converting a given 3D shape (or a 2.5D range data) into a bas-relief. The problem can be considered as a geometry counterpart of the HDR image compression problem widely studied in computer graphics. In our approach to the shape bas-reliefing problem, we combine the concepts of mesh saliency, shape exaggerating, and discrete differential coordinates. The final bas-relief has a small width, preserves salient features of the original 3D shape, and, therefore, can be used for shape decorating purposes. 1

Wenhao Song; Alexander Belyaev; Hans-peter Seidel

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Twist Accumulation and Topology Structure of a Solar Magnetic Flux Rope  

E-Print Network (OSTI)

To study the build up of a magnetic flux rope before a major flare and coronal mass ejection (CME), we compute the magnetic helicity injection, twist accumulation, and the topology structure of the three dimensional magnetic field, which is derived by the nonlinear force-free field model. The Extreme-ultraviolet Imaging Telescope on board the Solar and Heliospheric Observatory observed a series of confined flares without any CME before a major flare with a CME at 23:02 UT on 2005 January 15 in active region NOAA 10720. We derive the vector velocity at eight time points from 18:27 UT to 22:20 UT with the differential affine velocity estimator for vector magnetic fields, which were observed by the Digital Vector Magnetograph at Big Bear Solar Observatory. The injected magnetic helicity is computed with the vector magnetic and velocity fields. The helicity injection rate was (-16.47 \\pm 3.52) \\times 10^{40} Mx^2/hr. We find that only about 1.8% of the injected magnetic helicity became finally the internal helici...

Guo, Y; Cheng, X; Zhao, J; Pariat, E

2013-01-01T23:59:59.000Z

382

Electric fields in solar magnetic structures due to gradient driven instabilities: heating and acceleration of particles  

E-Print Network (OSTI)

The electrostatic instabilities driven by the gradients of the density, temperature and magnetic field, are discussed in their application to solar magnetic structures. Strongly growing modes are found for some typical plasma parameters. These instabilities i) imply the presence of electric fields that can accelerate the plasma particles in both perpendicular and parallel directions with respect to the magnetic field vector, and ii) can stochastically heat ions. The perpendicular acceleration is to the leading order determined by the $\\bmath{E}\\times \\bmath{B}$-drift acting equally on both ions and electrons, while the parallel acceleration is most effective on electrons. The experimentally confirmed stochastic heating is shown to act mainly in the direction perpendicular to the magnetic field vector and acts stronger on heavier ions. The energy release rate and heating may exceed for several orders of magnitude the value accepted as necessary for a self-sustained heating in the solar corona. The energy sourc...

Vranjes, J

2009-01-01T23:59:59.000Z

383

Development of a 3D GIS database model for geotechnical analysis incorporating geostatistics.  

E-Print Network (OSTI)

??The application of 3D GIS and geostatistical tools in geotechnical fields enables geotechnical engineers to think spatially and make decision wisely. To support the 3D… (more)

Gao, Shan.

2010-01-01T23:59:59.000Z

384

Adding a True 3-D Display to a Raster Graphics System  

Science Conference Proceedings (OSTI)

This Experimental 3-D Graphics System Can Be Added to Standard Raster Graphics Systems at Modest Expense. It Promises Much Broader Access to Effective 3-D Display.

H. Fuchs; S. M. Pizer; Li Ching Tsai; S. H. Bloomberg; E. R. Heinz

1982-07-01T23:59:59.000Z

385

3-d lattice SU(3) free energy to four loops  

E-Print Network (OSTI)

We report on the perturbative computation of the 3d lattice Yang-Mills free energy to four loops by means of Numerical Stochastic Perturbation Theory. The known first and second orders have been correctly reproduced; the third and fourth order coefficients are new results and the known logarithmic IR divergence in the fourth order has been correctly identified. Progress is being made in switching to the gluon mass IR regularization and the related inclusion of the Faddeev-Popov determinant.

F. Di Renzo; A. Mantovi; V. Miccio; Y. Schroder; C. Torrero

2004-09-27T23:59:59.000Z

386

Low dose and bystander responses in a 3-D human skin model  

NLE Websites -- All DOE Office Websites (Extended Search)

and bystander responses in a 3-D human skin model and bystander responses in a 3-D human skin model Sally A. Amundson Columbia University Medical Center Abstract Significant structural abnormalities develop within several days of exposure of the 3-dimensional normal human skin tissue model EPI-200 (MatTek) to high or low doses of low LET radiation. Disruption of the basal layer occurs following high radiation doses, and premature cornification is evident after both high and low dose exposures. In bystander tissue that is near irradiated portions of the tissue, but is not itself irradiated, we also observe premature cornification, increased apoptosis and micronucleus formation. Changes in global gene expression also occur in both directly irradiated and bystander EPI-200 tissue. Although the unfolding over time

387

Low dose and bystander responses in a 3-D human skin model  

NLE Websites -- All DOE Office Websites (Extended Search)

and bystander responses in a 3-D human skin model. and bystander responses in a 3-D human skin model. Sally A. Amundson and Alexandre Mezentsev Columbia University Medical Center, Center for Radiological Research, New York, NY 10032 Significant structural abnormalities develop within several days of exposure of the 3-dimensional normal human skin tissue model EPI-200 (MatTek) to high or low doses of low LET radiation. Disruption of the basal layer occurs following high radiation doses, and premature cornification is evident after both high and low dose exposures. In bystander tissue that is near irradiated portions of the tissue, but is not itself irradiated, we also observe premature cornification, increased apoptosis and micronucleus formation. Changes in global gene expression also occur

388

A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates  

E-Print Network (OSTI)

A shell/3D modeling technique developed which local three-dimensional solid finite element model used only immediate vicinity delamination front. The goal was combine the accuracy the three-dimensional solution with the computational efficiency plate shell finite element model. Multi-point constraints provided kinematically compatible interface between local three-dimensional model global structural model which has been meshed with plate shell finite elements. Double Cantilever Beam (DCB), Notched Flexure (ENF), Single Bending (SLB) specimens were modeled using shell/3D technique study feasibility pure mode (DCB), mode (ENF) mixed mode I/II (SLB) cases. Mixed mode strain energy release rate distributions were computed across the width specimens using virtual crack closure technique. Specimens a unidirectional layup and with multidirectional layup where delamination located between two non-zero degree plies were simulated. For a local three-dimensional model, extending minimum about thr...

Ronald Krueger; T. Kevin O' Brien

2001-01-01T23:59:59.000Z

389

Development of an embedded 3D graphics processor  

E-Print Network (OSTI)

Limitations in processing ability cause major graphical enhancements, such as support for real-time 3D graphics, to be next to impossible within embedded devices. Due to the size, power, and heat dissipation requirements, modern graphics hardware is usually restricted to systems on the scale of personal computers or larger. For this thesis, we have defined a 3D graphics co-processor that is targeted to work on a more embedded scale. The system is specified by limiting it to fixed-point light processing and rasterization. A set of object primitives and instructions are defined to adequately describe almost any scene. These primitives are used to design the algorithms and architecture behind a set of modular functional units. The units are used to realize the processor requirements and features, which include light processing, z-buffering, texturing, and transparency. In order to ensure that the system architecture is versatile in its design, the functional units are analyzed for performance, reconfigurability, and possible trade-offs. A set of both synchronous and asynchronous architectures are proposed using the functional unit blocks. Through cycle accurate comparative simulation, we analyzed the effectiveness of each architecture and found that a hybrid architecture provides the best hardware to speed trade-off between the architectures considered. An appropriate system interface and parallel configuration are also discussed. The end result of the thesis provides a road map for anyone designing a general purpose or application optimized embedded 3D co-processor.

Murray, Brian

2002-01-01T23:59:59.000Z

390

TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES  

SciTech Connect

This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.

Thomas Albrecht-Schmitt

2012-03-01T23:59:59.000Z

391

Magnet Design of a Prototype Structure for the X-ray FELs at TESLA  

E-Print Network (OSTI)

Magnet Design of a Prototype Structure for the X-ray FELs at TESLA M. Tischer, J. Pflüger Hamburger Synchrotronstrahlungslabor HASYLAB, DESY, Notkestr. 85, D-22603 Hamburg, Germany Abstract XFEL undulators for the TESLA device is suggested so that both field integrals are trimmed close to zero for all gaps. TESLA­FEL 2000

392

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil  

E-Print Network (OSTI)

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993

Watts, A. B. "Tony"

393

Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization  

E-Print Network (OSTI)

This paper deals with the EEG/MEG neuroimaging problem: given measurements of scalp electric potential differences (EEG: electroencephalogram) and extracranial magnetic fields (MEG: magnetoencephalogram), find the 3D distribution of the generating electric neuronal activity. This problem has no unique solution. Only particular solutions with "good" localization properties are of interest, since neuroimaging is concerned with the localization of brain function. In this paper, a general family of linear imaging methods with exact, zero error localization to point-test sources is presented. One particular member of this family is sLORETA (standardized low resolution brain electromagnetic tomography; Pascual-Marqui, Methods Find. Exp. Clin. Pharmacol. 2002, 24D:5-12; http://www.unizh.ch/keyinst/NewLORETA/sLORETA/sLORETA-Math01.pdf). It is shown here that sLORETA has no localization bias in the presence of measurement and biological noise. Another member of this family, denoted as eLORETA (exact low resolution brain electromagnetic tomography; Pascual-Marqui 2005: http://www.research-projects.unizh.ch/p6990.htm), is a genuine inverse solution (not merely a linear imaging method) with exact, zero error localization in the presence of measurement and structured biological noise. The general family of imaging methods is further extended to include data-dependent (adaptive) quasi-linear imaging methods, also with the exact, zero error localization property.

Roberto D. Pascual-Marqui

2007-10-17T23:59:59.000Z

394

Fe/Si(001) Ferromagnetic Layers: Reactivity, Local Atomic Structure and Magnetism  

SciTech Connect

Ultrathin ferromagnetic Fe layers on Si(001) have recently been synthesized using the molecular beam epitaxy (MBE) technique, and their structural and magnetic properties, as well as their interface reactivity have been investigated. The study was undertaken as function of the amount of Fe deposited and of substrate temperature. The interface reactivity was characterized by Auger electron spectroscopy (AES). The surface structure was characterized by low-energy electron diffraction (LEED). The magnetism was investigated by magneto-optical Kerr effect (MOKE). A higher deposition temperature stabilizes a better surface ordering, but it also enhances Fe and Si interdiffusion and it therefore decreases the magnetism. Despite the rapid disappearance of the long range order with Fe deposition at room temperature, the material exhibits a significant uniaxial in-plane magnetic anisotropy. For the Fe deposition performed at high temperature (500 deg. C), a weak ferromagnetism is still observed, with saturation magnetization of about 10% of the value obtained previously. MOKE studies allowed inferring the main properties of the distinct formed layers.

Lungu, G. A.; Costescu, R. M.; Husanu, M. A.; Gheorghe, N. G. [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele-Ilfov (Romania)

2011-10-03T23:59:59.000Z

395

The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology  

Science Conference Proceedings (OSTI)

The Geological Surveying and Investigation in 3 Dimensions (GSI3D) software tool and methodology has been developed over the last 15 years. Since 2001 this has been in cooperation with the British Geological Survey (BGS). To-date over a hundred BGS geologists ... Keywords: 3D geological modelling, 3D visualisation, Geoscience education, Knowledge capture, Systematic geological surveying

Holger Kessler; Steve Mathers; Hans-Georg Sobisch

2009-06-01T23:59:59.000Z

396

Center for Energy Efficiency and Renewable Energy at University of Massachusetts 3D Model of Heat Transfer and Fluid3D Model of Heat Transfer and Fluid  

E-Print Network (OSTI)

Center for Energy Efficiency and Renewable Energy at University of Massachusetts 3D Model of Heat for Energy Efficiency and Renewable Energy at University of Massachusetts 3D Model of Heat Transfer and Fluid WindowModeling a 3D Window Future WorkFuture Work #12;Center for Energy Efficiency and Renewable Energy

Massachusetts at Amherst, University of

397

3D stepper motor system and its GUI A report for project-in-lieu-of-thesis  

E-Print Network (OSTI)

-reluctance step motor 10 2.2 Permanent-magnet step motor 11 2.3 Hybrid step motor 12 3 GUI design essentials 13 41 3D stepper motor system and its GUI design A report for project-in-lieu-of-thesis for masters;2 Table of Content Abstract 3 1. Introduction 4 2. Technology of the step motor system 8 2.1 Variable

Abidi, Mongi A.

398

Three-dimensional Thermal and Airflow (3D-TAF) Model of a Dome-covered  

NLE Websites -- All DOE Office Websites (Extended Search)

Three-dimensional Thermal and Airflow (3D-TAF) Model of a Dome-covered Three-dimensional Thermal and Airflow (3D-TAF) Model of a Dome-covered House in Canada Speaker(s): Yaolin Lin Date: October 6, 2009 - 12:00pm Location: 90-3122 A dome-covered house is an example of sustainable design that draws from biological forms in nature. A three-dimensional thermal and air flow (3D-TAF) model was developed to estimate the energy needs of a dome-covered house. This model has two components: a thermal model to calculate the temperature; and an air flow model to find the velocities, which are needed to estimate the surface convection. The two models are solved iteratively at every time step until they converge. I will present the numerical methods for solving the mathematical models, and compared the results with other simulated and experimental results from similar structures. I will

399

Bridge to Fuel Cell Molecular Catalysis: 3D Non-Platinum Group Metal  

NLE Websites -- All DOE Office Websites (Extended Search)

Bridge to Fuel Cell Molecular Catalysis: 3D Non-Platinum Group Metal Bridge to Fuel Cell Molecular Catalysis: 3D Non-Platinum Group Metal Catalyst in MEAs Title Bridge to Fuel Cell Molecular Catalysis: 3D Non-Platinum Group Metal Catalyst in MEAs Publication Type Journal Article Year of Publication 2012 Authors Zhu, Xiaobing, John B. Kerr, Qinggang He, Gi Suk Hwang, Zulima Martin, Kyle Clark, Adam Z. Weber, and Nana Zhao Journal ECS Transactions Volume 45 Issue 2 Pagination 143 - 152 Date Published 04/2012 ISSN 1938-6737 Abstract Transition metal porphyrin complexes have been mounted in a three dimensional homogenous distribution inside the ionomer of catalyst layers in MEAs to achieve competitive fuel cell catalysis activity. The effect of electrode components including ionomer, carbon, catalyst, and mediator, and ionomer film thickness, is investigated in fuel cell molecular catalysis system. Membrane electrode assembly (MEA) durability testing has been conducted. SEM and TEM techniques are employed to investigate molecular catalysis electrode micro- and nano- structure and morphology. To date, surprisingly, the best fuel cell performance, i.e. 1280 mA/cm2 of maximum/short-circuit current density is achieved, approaching that of Pt-based electrode, indicating higher turnover frequencies than Pt although with poorer voltages.

400

A Shell/3d Modeling Technique For Delaminations In Composite Laminates  

E-Print Network (OSTI)

A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a plate or shell finite element model. Multi-point constraints provide a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with plate or shell finite elements. For simple double cantilever beam (DCB), end notched flexure (ENF), and single leg bending (SLB) specimens, mixed mode energy release rate distributions were computed across the width from nonlinear finite element analyses using the virtual crack closure technique. The analyses served to test the accuracy of the shell/3D technique for the pure mode I case (DCB), mode II case (ENF) and a mixed mode I/II case (SLB). Specimens with a unidirectional layup where the delamination is located between two 0° pl...

Ronald Krueger

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The magnetic and crystal structures of Sr2IrO4: A neutron diffraction study  

SciTech Connect

We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambigu- ously determines the magnetic and crystal structures, and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) B/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) B/site for the a-axis and the b-axis, respectively. It is intriguing that forbidden nuclear reflections of space group I41/acd are also observed in a wide temperature range from 4 K to 600 K, which suggests a reduced crystal structure symmetry. This neutron scattering work provides a direct, well-refined experimen- tal characterization of the magnetic and crystal structures that are crucial to the understanding of the unconventional magnetism existent in this unusual magnetic insulator.

Ye, Feng [ORNL; Chi, Songxue [ORNL; Chakoumakos, Bryan C [ORNL; Fernandez-Baca, Jaime A [ORNL; Qi, Tongfei [University of Kentucky; Cao, Gang [University of Kentucky

2013-01-01T23:59:59.000Z

402

Uncertainty Analysis of RELAP5-3D  

SciTech Connect

As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

Alexandra E Gertman; Dr. George L Mesina

2012-07-01T23:59:59.000Z

403

Mobile, hardware-accelerated urban 3D maps in 3G networks  

Science Conference Proceedings (OSTI)

3D maps can visualize static and dynamic features of real environments, and act as 3D gateways to location-based information. Insufficient network speed has been a major bottleneck for dynamic download of 3D content for mobile devices. 3G network technologies ... Keywords: 3D maps, VRML, mobile computing, wireless networks

Antti Nurminen

2007-04-01T23:59:59.000Z

404

A non-conforming 3D spherical harmonic transport solver  

Science Conference Proceedings (OSTI)

A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

Van Criekingen, S. [Commissariat a l'Energie Atomique CEA-Saclay, DEN/DM2S/SERMA/LENR Bat 470, 91191 Gif-sur-Yvette, Cedex (France)

2006-07-01T23:59:59.000Z

405

3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK  

SciTech Connect

3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

2006-08-24T23:59:59.000Z

406

Development of Advanced Nanomanufacturing: 3D Integration and High Speed Directed Self-assembly  

E-Print Network (OSTI)

Development of nanoscience and nanotechnology requires rapid and robust nanomanufacturing processes to produce nanoscale materials, structures and devices. The dissertation aims to contribute to two major challenging and attractive topics in nanomanufacturing. Firstly, this research develops fabrication techniques for three dimensional (3D) structures and integrates them into functional devices and systems. Secondly, a novel process is proposed and studied for rapid and efficient manipulation of nanomaterials using a directed self-assembly process. The study begins with the development of nanoimprint lithography for nanopatterning and fabrication of 3D multilayer polymeric structures in the micro- and nano-scale, by optimizing the layer-transfer and transfer-bonding techniques. These techniques allow the integration of microfluidic and photonic systems in a single chip for achieving ultracompact lab-on-a-chip concept. To exemplify the integration capability, a monolithic fluorescence detection system is proposed and the approaches to design and fabricate the components, such as a tunable optical filter and optical antennas are addressed. The nanoimprint lithography can also be employed to prepare nanopatterned polymer structures as a template to guide the self-assembly process of nanomaterials, such as single-walled carbon nanotubes (SWNTs). By introducing the surface functionalization, electric field and ultrasonic agitation into the process, we develop a rapid and robust approach for effective placement and alignment of SWNTs. These nanomanufacturing processes are successfully developed and will provide a pathway to the full realization of the lab-on-a-chip concept and significantly contribute to the applications of nanomaterials.

Li, Huifeng

2010-08-01T23:59:59.000Z

407

The inner structure of collisionless magnetic reconnection: The electron-frame dissipation measure and Hall fields  

Science Conference Proceedings (OSTI)

It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.

Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

2011-12-15T23:59:59.000Z

408

Realizacao domestica e escolar de foto e video 3D  

E-Print Network (OSTI)

English: Industry does not give attention to the small domestic or professional market of digital technologies for 3D images. What was done on the XX century by using photographic film is not know available to the common people, though the facilities are even better. Some technique developed in Brasil twenty years ago and the use of conventional domestic photo or video cameras allows fot making pictures and films at home by using digital conversions for editing, and two-color goggles. The anaglyphic technique, the same NASA employs to show Mars images to the public, is not employed in Brazil yet. We must analize the reasons for that. Portugues: A industria nao tem dado atencao ao mercado domestico ou profissional de pequena escala nas novas tecnologias digitais para imagem 3D. O que foi feito ao longo do seculo XX usando filme fotografico nao esta hoje ao alcance das pessoas, sendo que a facilidade de uso e muito maior. Tecnicas desenvolvidas no Brasil ha mais de vinte anos, e o uso de simples cameras convencionais de fotografia e video permitem realizar fotos e filmes caseiros por meio de conversoes digitais na edicao e o uso de oculos bicolor. A tecnica anagifica, a mesma que a NASA usa para mostrar ao publico as imagens de Marte, por exemplo, nao teve espaco no Brasil ainda. Devemos analisar os motivos que podem estar influenciando e os caminhos para mudar isso.

Jose J. Lunazzi

2012-12-19T23:59:59.000Z

409

3-D seismic acquisition gains momentum in transition zone  

Science Conference Proceedings (OSTI)

The hydrocarbon-rich Gulf of Mexico continues to be an active seismic data acquisition arena, with seismic crews working at a rapid-fire pace to acquire 3-D databases on a regional scale. Lately, however, many contractors are looking shoreward to what will be the next active site for data acquisition and exploratory drilling--the coastal transition zone, which extends roughly five miles either side of the coastline. Diverse terrain causes acquisition efforts to shift frequently between land, water and marsh. Each environment carries its own unique acquisition requirements, which means a wide variety of equipment must be constantly available. Need for multiple permits from multiple sources lends itself to a formidable permitting maze, and environmental problems are prevailing in this sensitive wetlands area. With this in mind, Fairfield and Seismic Exchange, Inc., have teamed in a joint venture to produce the world`s largest non-exclusive 3-D seismic transition zone program. The project will build on Fairfield`s massive shallow water effort, which is nearly complete.

Lawrence, M.A. [Fairfield Industries Inc., Houston, TX (United States)

1996-05-01T23:59:59.000Z

410

Flying Triangulation - towards the 3D movie camera  

E-Print Network (OSTI)

Flying Triangulation sensors enable a free-hand and motion-robust 3D data acquisition of complex shaped objects. The measurement principle is based on a multi-line light-sectioning approach and uses sophisticated algorithms for real-time registration (S. Ettl et al., Appl. Opt. 51 (2012) 281-289). As "single-shot principle", light sectioning enables the option to get surface data from one single camera exposure. But there is a drawback: A pixel-dense measurement is not possible because of fundamental information-theoretical reasons. By "pixel-dense" we understand that each pixel displays individually measured distance information, neither interpolated from its neighbour pixels nor using lateral context information. Hence, for monomodal single-shot principles, the 3D data generated from one 2D raw image display a significantly lower space-bandwidth than the camera permits. This is the price one must pay for motion robustness. Currently, our sensors project about 10 lines (each with 1000 pixels), reaching an co...

Willomitzer, Florian; Faber, Christian; Häusler, Gerd

2013-01-01T23:59:59.000Z

411

ASIC for High Rate 3D Position Sensitive Detectors  

Science Conference Proceedings (OSTI)

We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

2010-06-16T23:59:59.000Z

412

How to Extract the Geometry and Topology from Very Large 3D Segmentations  

E-Print Network (OSTI)

Segmentation is often an essential intermediate step in image analysis. A volume segmentation characterizes the underlying volume image in terms of geometric information--segments, faces between segments, curves in which several faces meet--as well as a topology on these objects. Existing algorithms encode this information in designated data structures, but require that these data structures fit entirely in Random Access Memory (RAM). Today, 3D images with several billion voxels are acquired, e.g. in structural neurobiology. Since these large volumes can no longer be processed with existing methods, we present a new algorithm which performs geometry and topology extraction with a runtime linear in the number of voxels and log-linear in the number of faces and curves. The parallelizable algorithm proceeds in a block-wise fashion and constructs a consistent representation of the entire volume image on the hard drive, making the structure of very large volume segmentations accessible to image analysis. The paral...

Andres, Bjoern; Kroeger, Thorben; Hamprecht, Fred A

2010-01-01T23:59:59.000Z

413

Determination of the most probable slip surface in 3D slopes considering the effect of earthquake force direction  

Science Conference Proceedings (OSTI)

Considering the effect of earthquake forces on stability of slopes has always been of crucial importance in seismic analysis of geotechnical structures like dams, roads and embankments and there has been much concern about stability of cuts, fills and ... Keywords: 3D slopes, Earthquake force inclination, Stability analysis

A. Ahangar-Asr; M. M. Toufigh; A. Salajegheh

2012-08-01T23:59:59.000Z

414

Investigation of structure, magnetic, and transport properties of Mn-doped SiC films  

SciTech Connect

Mn-doped SiC films were fabricated by radio frequency magnetron sputtering technique. The structure, composition, and magnetic and transport properties of the films were investigated. The results show the films have the 3C-SiC crystal structure and the doped Mn atoms in the form of Mn{sup 2+} ions substitute for C sites in SiC lattice. All the films are ferromagnetic at 300 K, and the ferromagnetism in films arises from the doped Mn atoms and some extended defects. In addition, the saturation magnetization increases with the Mn-doped concentration increasing. The Mn doping does not change the semiconductor characteristics of the SiC films.

Sun Xianke [School of Material Science and Engineering, Tianjin University, Tianjin 300172 (China); Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384 (China); Guo Ruisong [School of Material Science and Engineering, Tianjin University, Tianjin 300172 (China); An Yukai [Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384 (China); School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Liu Jiwen [School of Material Science and Engineering, Tianjin University, Tianjin 300172 (China); Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384 (China); School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

2013-07-15T23:59:59.000Z

415

Preliminary Results of 3D-DDTC Pixel Detectors for the ATLAS Upgrade  

SciTech Connect

3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180 GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200 {mu}m, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110 {mu}m to 150 {mu}m. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am{sup 241} {gamma}-ray sources, charge collection tests with Sr90 {beta}-source and an overview of preliminary results from the CERN beam test.

La Rosa, Alessandro; /CERN; Boscardin, M.; /Fond. Bruno Kessler, Povo; Dalla Betta, G.-F.; /Trento U. /INFN, Trento; Darbo, G.; Gemme, C.; /INFN, Genoa; Pernegger, H.; /CERN; Piemonte, C.; /Fond. Bruno Kessler, Povo; Povoli, M.; /Trento U. /INFN, Trento; Ronchin, S.; /Fond. Bruno Kessler, Povo; Zoboli, A.; /Trento U. /INFN, Trento; Zorzi, N.; /Fond. Bruno Kessler, Povo; Bolle, E.; /Oslo U.; Borri, M.; /INFN, Turin /Turin U.; Da Via, C.; /Manchester U.; Dong, S.; /SLAC; Fazio, S.; /Calabria U.; Grenier, P.; /SLAC; Grinstein, S.; /Barcelona, IFAE; Gjersdal, H.; /Oslo U.; Hansson, P.; /SLAC; Huegging, F.; /Bonn U. /SLAC /INFN, Turin /Turin U. /Oslo U. /Bergen U. /Oslo U. /Prague, Tech. U. /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

2012-04-04T23:59:59.000Z

416

Measurement of the magnetic fine structure of the 10G and 10H states of helium  

Science Conference Proceedings (OSTI)

The magnetic fine-structure intervals separating the four members of the 10G and 10H manifolds of helium have been measured with a precision of 0.1% using a fast-beam microwave-optical resonance technique. The results are found to be in good agreement with theory, illustrating that the two-electron wave function is very nearly hydrogenic. The measurements are also used to determine the small exchange energies of the 10G and 10H states.

Hessels, E.A.; Sturrus, W.G.; Lundeen, S.R.; Cok, D.R.

1987-06-01T23:59:59.000Z

417

Graphical interface for quantitative monitoring of 3D MRI data  

E-Print Network (OSTI)

The recent development of techniques in magnetic resonance imaging allows for the noninvasive monitoring of cartilage for disease progression, effects of lifestyle change, and results of medical interventions. In particular, ...

Gerber, Meredith L

2005-01-01T23:59:59.000Z

418

Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy  

Science Conference Proceedings (OSTI)

Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin [Department of Medical Sciences, Ewha Womans University, Seoul 158-710 (Korea, Republic of); Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul 158-710 (Korea, Republic of)

2013-02-15T23:59:59.000Z

419

Magnetic Structures  

Science Conference Proceedings (OSTI)

... Reentrant Spin-Glass Order Parameter in (Fe 0.3 Ni 0.7 ) 75 P 16 B ... JW Lynn, G. Bendele, S. Pagola, PW Stephens, LM Liable-Sands, AL Rheingold ...

420

Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Animation Shows 3-D Animation Shows Complex Geometry of Diesel Particulates to someone by E-mail Share Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Facebook Tweet about Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Twitter Bookmark Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Google Bookmark Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Delicious Rank Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Digg Find More places to share Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on AddThis.com... 3-D Animation Shows Complex Geometry of Diesel Particulates

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FOUR-FLUID MODEL AND NUMERICAL SIMULATIONS OF MAGNETIC STRUCTURES IN THE HELIOSHEATH  

Science Conference Proceedings (OSTI)

The first part of this paper extends the three-fluid model of Avinash and Zank for magnetic structures in the heliosheath to a four-fluid model consisting of electrons, pick-up ions (PUIs), solar wind ions (SWIs), and neutral hydrogen. The PUIs are generated by neutrals via charge exchange with SWI. Since the kinetic pressure of PUI is nearly three to four times the pressure of SWI, these are more suited to mediate small-scale structures in the heliosheath such as magnetic holes (MH)/humps etc. The constant energy exchange between these two fluids drives them nonadiabatic. The PUIs are isothermal ({gamma} = 1) while SWIs are nonadiabatic with an index {gamma} {approx} 1.25. The four-fluid model captures these effects via a modified equation of state for PUI and SWI. The phase space of time-independent solutions in terms of the Mach numbers of PUI and SWI is constructed to delineate the parameter space which allows structure formation in the heliosheath. The second part of the paper examines the stability of the time-independent solutions computed in the first part by evolving them via a full system of Hall-MHD equations. The simulation results show that these solutions are not quite stable. As the structure propagates it develops growing oscillations in the wings. Concomitantly, there are changes in the amplitude and width of the structure. This instability could be due to local changes in the velocity of the structure and reflects an exchange between the kinetic and magnetic parts of the total energy. Our results about the presence of growing oscillations in the wings of solitary wave solutions are consistent with the recent analysis of MHs in the heliosheth by Burlaga et al. Their analysis also shows evidence for the presence of oscillations and instabilities in the wings of MHs in the heliosheath.

Avinash, K. [Department of Physics and Astrophysics, University of Delhi, 110007, India. (India); Cox, Sean M.; Shaikh, Dastgeer; Zank, G. P. [Centre for Space Plasma and Aeronomic Research, University of Alabama, Hunstville, AL 35899 (United States)

2009-04-10T23:59:59.000Z

422

Fast 3D Surface Extraction 2 pages (including abstract)  

SciTech Connect

Ocean scientists searching for isosurfaces and/or thresholds of interest in high resolution 3D datasets required a tedious and time-consuming interactive exploration experience. PISTON research and development activities are enabling ocean scientists to rapidly and interactively explore isosurfaces and thresholds in their large data sets using a simple slider with real time calculation and visualization of these features. Ocean Scientists can now visualize more features in less time, helping them gain a better understanding of the high resolution data sets they work with on a daily basis. Isosurface timings (512{sup 3} grid): VTK 7.7 s, Parallel VTK (48-core) 1.3 s, PISTON OpenMP (48-core) 0.2 s, PISTON CUDA (Quadro 6000) 0.1 s.

Sewell, Christopher Meyer [Los Alamos National Laboratory; Patchett, John M. [Los Alamos National Laboratory; Ahrens, James P. [Los Alamos National Laboratory

2012-06-05T23:59:59.000Z

423

Einstein gravity as a 3D conformally invariant theory  

E-Print Network (OSTI)

We give an alternative description of the physical content of general relativity that does not require a Lorentz invariant spacetime. Instead, we find that gravity admits a dual description in terms of a theory where local size is irrelevant. The dual theory is invariant under foliation preserving 3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume (for the spatially compact case). Locally, this symmetry is identical to that of Horava-Lifshitz gravity in the high energy limit but our theory is equivalent to Einstein gravity. Specifically, we find that the solutions of general relativity, in a gauge where the spatial hypersurfaces have constant mean extrinsic curvature, can be mapped to solutions of a particular gauge fixing of the dual theory. Moreover, this duality is not accidental. We provide a general geometric picture for our procedure that allows us to trade foliation invariance for conformal invariance. The dual theory provides a new proposal for the theory space of quantum gravity.

Henrique Gomes; Sean Gryb; Tim Koslowski

2010-10-12T23:59:59.000Z

424

3D deformation field throughout the interior of materials.  

SciTech Connect

This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

Jin, Huiqing; Lu, Wei-Yang

2013-09-01T23:59:59.000Z

425

Automatic image alignment for 3d environment modeling  

E-Print Network (OSTI)

We describe an approach for automatically registering color images with 3D laser scanned models. We use the chisquare statistic to compare color images to polygonal models texture mapped with acquired laser reflectance values. In complicated scenes we find that the chi-square test is not robust enough to permit an automatic global registration approach. Therefore, we introduce two techniques for obtaining initial pose estimates that correspond to a coarse alignment of the data. The first method is based on rigidly attaching a camera to a laser scanner and the second utilizes object tracking to decouple these imaging devices. The pose estimates serve as an initial guess for our optimization method, which maximizes the chi-square statistic over a local space of transformations in order to automatically determine the proper alignment. 1.

Nathaniel Williams Kok-lim Low

2004-01-01T23:59:59.000Z

426

Exploration 3-D Seismic Field Test/Native Tribes Initiative  

SciTech Connect

To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

1999-04-27T23:59:59.000Z

427

3-D Seismic Methods For Geothermal Reservoir Exploration And  

Open Energy Info (EERE)

Methods For Geothermal Reservoir Exploration And Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: 3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Details Activities (5) Areas (1) Regions (0) Abstract: A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally

428

Generation of shock/discontinuity compound structures through magnetic reconnection in the geomagnetic tail  

Science Conference Proceedings (OSTI)

We use 1-D hybrid code to simulate the generation and evolution of MHD discontinuities associated with magnetic reconnection in a current sheet. It is found that the leakage of slow shock (SS) downstream particles to upstream region tends to increase the ion parallel temperature and temperature anisotropy with {beta}{sub i||}/{beta}{sub i Up-Tack } Much-Greater-Than 1, where {beta}{sub i||}({beta}{sub i Up-Tack }) is the ion parallel (perpendicular) beta. As a result, the propagation speed of rotational discontinuity (RD) is highly reduced and RD becomes attached to SS, leading to formation of various compound structures in the reconnection outflow region. Four types of compound structure are found in our simulations: (a) RD-SS compound structure: the RD is attached to the leading part of SS, (b) SS-RD (DD) compound structure: RD is attached to the rear part of SS, (c) SS-RD-SS compound structure: RD is trapped inside SS, and (d) switch-off slow shock (SSS) with a rotational wave train. The type of compound structure generated depends on initial ion beta {beta}{sub i0} and magnetic shear angle {phi}. RD tends to move in front of SS to form an RD-SS compound structure for cases with low {beta}{sub i0}. RD stays behind SS and form an SS-RD (DD) compound structure for large {beta}{sub i0}. The SS-RD-SS compound structure is formed for intermediate values of {beta}{sub i0}. When the shear angle is 180 Degree-Sign , SSS with a wave train is formed.

Weng, C. J. [Department of Physics, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Space Science, National Central University, Jungli 320, Taiwan (China); Lin, C. C. [Chemical Systems Research Division, Chung-Shan Institute of Science and Technology, Longtan 325, Taiwan (China); Lee, L. C. [Institute of Earth Science, Academia Sinica, Nankang 115, Taiwan (China); Institute of Space Science, National Central University, Jungli 320, Taiwan (China); Chao, J. K. [Institute of Space Science, National Central University, Jungli 320, Taiwan (China)

2012-12-15T23:59:59.000Z

429

Parametric Characterisation of Porous 3D Bioscaffolds Fabricated ...  

Science Conference Proceedings (OSTI)

Structural Competition and Phase Transformations in Binary Ti-Nb Alloys for Biomedical Applications · Structure and Fracture Resistance of Armored Fish Scales.

430

International Training Program in Support of Safety Analysis: 3D S.UN.COP-Scaling, Uncertainty and 3D Thermal-Hydraulics/Neutron-Kinetics Coupled Codes Seminars  

Science Conference Proceedings (OSTI)

Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers and vendors, nuclear fuel companies, research organizations, consulting companies, and technical support organizations. The computer code user represents a source of uncertainty that can influence the results of system code calculations. This influence is commonly known as the 'user effect' and stems from the limitations embedded in the codes as well as from the limited capability of the analysts to use the codes. Code user training and qualification is an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In other words, the program aims at contributing towards solving the problem of user effect. The 3D S.UN.COP (Scaling, Uncertainty and 3D COuPled code calculations) seminars have been organized as follow-up of the proposal to IAEA for the Permanent Training Course for System Code Users [1]. Five seminars have been held at University of Pisa (2003, 2004), at The Pennsylvania State University (2004), at University of Zagreb (2005) and at the School of Industrial Engineering of Barcelona (2006). It was recognized that such courses represented both a source of continuing education for current code users and a mean for current code users to enter the formal training structure of a proposed 'permanent' stepwise approach to user training. The 3D S.UN.COP 2006 was successfully held with the attendance of 33 participants coming from 18 countries and 28 different institutions (universities, vendors, national laboratories and regulatory bodies). More than 30 scientists (coming from 13 countries and 23 different institutions) were involved in the organization of the seminar, presenting theoretical aspects of the proposed methodologies and holding the training and the final examination. A certificate (LA Code User grade) was released to participants that successfully solved the assigned problems. A sixth seminar will be organized in 2007 at the Texas A and M University involving more than 30 scientists between lecturers and code developers. (http://dimnp.ing.unipi.it/3dsuncop/2007). (authors)

Petruzzi, Alessandro; D'Auria, Francesco [University of Pisa, Lungarno Pacinotti, 43 - 56126 Pisa (Italy); Bajs, Tomislav [University of Zagreb, Trg marsala Tita 14, HR-10000 Zagreb (Croatia); Reventos, Francesc [School of Industrial Engineering, Technical University of Catalonia - UPC, Seccion de Ingeniera Nuclear, Av. Diagonal No. 647, Pabellon C, 08028 Barcelona (Spain)

2006-07-01T23:59:59.000Z

431

Parsec-scale Magnetic-Field Structures in HEAO-1 BL Lacs  

E-Print Network (OSTI)

We present very long baseline interferometry polarization images of an X-ray selected sample of BL Lacertae objects belonging to the first High Energy Astronomy Observatory (HEAO-1) and the ROSAT-Green Bank (RGB) surveys. These are primarily high-energy-peaked BL Lacs (HBLs) and exhibit core-jet radio morphologies on pc-scales. They show moderately polarized jet components, similar to those of low-energy-peaked BL Lacs (LBLs). The fractional polarization in the unresolved cores of the HBLs is, on average, lower than in the LBLs, while the fractional polarizations in the pc-scale jets of HBLs and LBLs are comparable. However a difference is observed in the orientation of the inferred jet magnetic fields -- while LBL jets are well-known to preferentially exhibit transverse magnetic fields, the HBL jets tend to display longitudinal magnetic fields. Although a `spine-sheath' jet velocity structure, along with larger viewing angles for HBLs could produce the observed magnetic field configuration, differences in ot...

Kharb, P; Shastri, P

2007-01-01T23:59:59.000Z

432

Parsec-scale Magnetic-Field Structures in HEAO-1 BL Lacs  

E-Print Network (OSTI)

We present very long baseline interferometry polarization images of an X-ray selected sample of BL Lacertae objects belonging to the first High Energy Astronomy Observatory (HEAO-1) and the ROSAT-Green Bank (RGB) surveys. These are primarily high-energy-peaked BL Lacs (HBLs) and exhibit core-jet radio morphologies on pc-scales. They show moderately polarized jet components, similar to those of low-energy-peaked BL Lacs (LBLs). The fractional polarization in the unresolved cores of the HBLs is, on average, lower than in the LBLs, while the fractional polarizations in the pc-scale jets of HBLs and LBLs are comparable. However a difference is observed in the orientation of the inferred jet magnetic fields -- while LBL jets are well-known to preferentially exhibit transverse magnetic fields, the HBL jets tend to display longitudinal magnetic fields. Although a `spine-sheath' jet velocity structure, along with larger viewing angles for HBLs could produce the observed magnetic field configuration, differences in other properties of LBLs and HBLs, such as their total radio power, cannot be fully reconciled with the different-angle scenario alone. Instead it appears that LBLs and HBLs differ intrinsically, perhaps in the spin rates of their central black holes.

P. Kharb; D. Gabuzda; P. Shastri

2007-11-07T23:59:59.000Z

433

Solid state nuclear magnetic resonance methodology and applications to structure determination of peptides, proteins and amyloid fibrils  

E-Print Network (OSTI)

Several methodological developments and applications of multidimensional solid-state nuclear magnetic resonance to biomolecular structure determination are presented. Studies are performed in uniformly 3C, 15N isotope ...

Jaroniec, Christopher P

2003-01-01T23:59:59.000Z

434

A moving target: responding to magnetic and structural disorder in lanthanide- and actinide-based superconductors  

SciTech Connect

The effects of various chemical substitutions and induced lattice disorder in the Ce- and Pu-based 115 superconductors are reviewed, with particular emphasis on results from x-ray absorption fine structure (XAFS) measurements. The competition between spin, charge, and lattice interactions is at the heart of many of the strongly-correlated ground states in materials of current interest, such as in colossal magnetoresistors and high-temperature superconductors. This relationship is particularly strong in the CeTIn{sub 5} and PuTGa{sub 5} series (T = Co, Rh, Ir) of heavy-fermion superconductors. In these systems (figure 1), competition between bulk magnetic and non-magnetic ground states, as well as between superconducting and normal states, are directly related to local properties around the lanthanide or actinide ion, such as the nearest-neighbor bond lengths and the local density of states at the Fermi level. Tiny changes in the latter values can easily tip the balance from one ground state to another. This paper reviews recent work by the authors exploring the relationship between local crystal and electronic structure and ground state magnetic and conducting properties in the Ce- and Pu-based 115 materials.

Bauer, Eric D [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Booth, C H [LBNL

2009-01-01T23:59:59.000Z

435

R&D ERL: Magnetic measurements of the ERL magnets  

SciTech Connect

The magnet system of ERL consists of G5 solenoids, 6Q12 quadrupoles with 0.58 T/m gradient, 3D60 dipoles with 0.4 T central field, 15 and 30 degree Z-bend injection line dipole/quadrupole combined function magnets, and extraction line magnets. More details about the magnets can be found in a report by G. Mahler. Field quality in all the 6Q12 quadrupoles, 3D60 dipoles and the injection line magnets has been measured with either a rotating coil, or a Hall probe mapper. This report presents the results of these magnetic measurements.

Jain, A.

2010-08-01T23:59:59.000Z

436

Programmers Manual for the PVM Coupling Interface in RELAP5-3D  

Science Conference Proceedings (OSTI)

This report describes the implementation of the PVM API in the RELAP5-3D© computer code. The information in the report is intended for programmers wanting to correct or extend RELAP5-3D©.

Walter L Weaver III

2005-03-01T23:59:59.000Z

437

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers  

E-Print Network (OSTI)

RF amplifiers are demonstrated using a three- dimensional (3D) wafer-scale integration technology based on silicon-on-insulator (SOI) CMOS process. This new 3D implementation reduces the amplifier size and shortens ...

Keast, Craig L.

438

Design and fabrication of a modular multi-material 3D printer  

E-Print Network (OSTI)

This thesis presents 3DP-0, a modular, multi-material 3D printer. Currently, 3D printers available on the market are typically expensive and difficult to develop. In addition, the simultaneous use of multiple materials in ...

Lan, Justin (Justin T.)

2013-01-01T23:59:59.000Z

439

Wildfire forecasting using an open source 3D multilayer geographical framework  

Science Conference Proceedings (OSTI)

This abstract describes the development of a wildfire forecasting plugin using Capaware. Capaware is designed as an easy to use open source framework to develop 3D graphics applications over large geographic areas offering high performance 3D visualization ...

Modesto Castrillón; Pedro A. Jorge; Adrián Macías; Antonio J. Sánchez; Javier Sánchez; José P. Suárez; Agustín Trujillo; Izzat Sabbagh; Ignacio J. López; Rafael J. Nebot

2009-08-01T23:59:59.000Z

440

Efficient 3D building model generation from 2D floor plans  

E-Print Network (OSTI)

3D building models are beneficial to architects, interior designers, and ordinary people in visualizing indoor space in three dimensions. 3D building models appear to be more aesthetic to ordinary people than architectural ...

Kashlev, Dmitry

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Design and analysis of a concrete modular housing system constructed with 3D panels  

E-Print Network (OSTI)

An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

Sarcia, Sam Rhea, 1982-

2004-01-01T23:59:59.000Z

442

Statistical methods for 2D-3D registration of optical and LIDAR images  

E-Print Network (OSTI)

Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...

Mastin, Dana Andrew

2009-01-01T23:59:59.000Z

443

Structural controlled magnetic anisotropy in Heusler L1{sub 0}-MnGa epitaxial thin films  

Science Conference Proceedings (OSTI)

Ferromagnetic L1{sub 0}-MnGa thin films have been epitaxially grown on GaN, sapphire, and MgO substrates using molecular beam epitaxy. Using diffraction techniques, the epitaxial relationships are determined. It is found that the crystalline orientation of the films differ due to the influence of the substrate. By comparing the magnetic anisotropy to the structural properties, a clear correlation could be established indicating that the in-plane and out-of-plane anisotropy is directly determined by the crystal orientation of the film and could be controlled via selection of the substrates. This result could be helpful in tailoring magnetic anisotropy in thin films for spintronic applications.

Wang Kangkang; Lu Erdong; Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Knepper, Jacob W.; Yang Fengyuan [Department of Physics, Ohio State University, 191 Woodruff Ave., Columbus, Ohio 43210 (United States)

2011-04-18T23:59:59.000Z

444

The structure and dynamics of self-assembling colloidal monolayers in oscillating magnetic fields  

E-Print Network (OSTI)

Many fascinating phenomena such as large-scale collective flows, enhanced fluid mixing and pattern formation have been observed in so-called active fluids, which are composed of particles that can absorb energy and dissipate it into the fluid medium. For active particles immersed in liquids, fluid-mediated viscous stresses can play an important role on the emergence of collective behavior. Here, we experimentally investigate their role in the dynamics of self-assembling magnetically-driven colloidal particles which can rapidly form organized hexagonal structures. We find that viscous stresses reduce hexagonal ordering, generate smaller clusters, and significantly decrease the rate of cluster formation, all while holding the system at constant number density. Furthermore, we show that time and length scales of cluster formation depend on the Mason number (Mn), or ratio of viscous to magnetic forces, scaling as t / Mn and L / Mn^(1/2). Our results suggest that viscous stresses hinder collective behavior in a se...

Koser, Alison E; Arratia, Paulo E

2013-01-01T23:59:59.000Z

445

3D Elemental Mapping of Cells using Electron and Ion Beams  

Science Conference Proceedings (OSTI)

3D Elemental Mapping of Cells Using Electron and Ion Beams. Summary: Although it is the most commonly used technique ...

2012-10-02T23:59:59.000Z

446

3D TiO2 Nanoarchitecture Fabricated by Pulsed Chemical Vapor ...  

Science Conference Proceedings (OSTI)

Approaching Multimaterial 3D Nanostructured Gas Phase Nanoxerographic Printers · Carbon Nanotube Coatings Laser Power and Energy Measurements.

447

Kinetics Control towards ZnO 3D Nanostructure - Programmaster.org  

Science Conference Proceedings (OSTI)

Approaching Multimaterial 3D Nanostructured Gas Phase Nanoxerographic Printers · Carbon Nanotube Coatings Laser Power and Energy Measurements.

448

2D/3D registration algorithm for lung brachytherapy  

Science Conference Proceedings (OSTI)

Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

Zvonarev, P. S. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Juravinski Cancer Centre, Medical Physics, Hamilton, Ontario L8V 5C2 (Canada); Sur, R. K. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Juravinski Cancer Centre, Radiation Oncology, Hamilton, Ontario L8V 5C2 (Canada)

2013-02-15T23:59:59.000Z

449

MPSalsa 3D Simulations of Chemically Reacting Flows  

DOE Data Explorer (OSTI)

Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

450

Rayleigh Quotient Iteration in 3D, Deterministic Neutron Transport  

Science Conference Proceedings (OSTI)

Today's "grand challenge" neutron transport problems require 3-D meshes with billions of cells, hundreds of energy groups, and accurate quadratures and scattering expansions. Leadership-class computers provide platforms on which high-fidelity fluxes can be calculated. However, appropriate methods are needed that can use these machines effectively. Such methods must be able to use hundreds of thousands of cores and have good convergence properties. Rayleigh quotient iteration (RQI) is an eigenvalue solver that has been added to the Sn code Denovo to address convergence. Rayleigh quotient iteration is an optimal shifted inverse iteration method that should converge in fewer iterations than the more common power method and other shifted inverse iteration methods for many problems of interest. Denovo's RQI uses a new multigroup Krylov solver for the fixed source solutions inside every iteration that allows parallelization in energy in addition to space and angle. This Krylov solver has been shown to scale successfully to 200,000 cores: for example one test problem scaled from 69,120 cores to 190,080 cores with 98% efficiency. This paper shows that RQI works for some small problems. However, the Krylov method upon which it relies does not always converge because RQI creates ill-conditioned systems. This result leads to the conclusion that preconditioning is needed to allow this method to be applicable to a wider variety of problems.

Slaybaugh, R [University of Wisconsin; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Wilson, P. [University of Wisconsin

2012-01-01T23:59:59.000Z

451

DYNA3D analysis of the DT-20 shipping container  

SciTech Connect

A DYNA3D model of the DT-20 shipping container was constructed. Impact onto a rigid steel surface at a velocity of 44 ft/sec (30 foot gravity drop) was studied. The orientation of most interest was a side-drop, but end and corner drops were also studied briefly. The assembly for the baseline side impact contained a 150 lb. payload. During this drop, the outer drum sustains plastic strains of up to 0.15, with most the deformation near the rim. The plywood/Celotex packing is crushed about 3 inches. The inner sealed can sees significant stresses, but barely reaches the onset of yielding in some local areas. Based on hand calculations, the bolts joining the can halves could see stresses near 50 ksi. It is felt that overall, the container should survive this drop. However, detailed modeling of the rim closure and the center bolted joint was not possible due to time constraints. Furthermore, better material models and properties are needed for the Celotex, plywood, and honeycomb in particular. 39 figs., 1 tab.

Logan, R.W.; Lovejoy, S.C.

1991-08-22T23:59:59.000Z

452

DYNA3D/ParaDyn Regression Test Suite Inventory  

Science Conference Proceedings (OSTI)

The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of production release 10.1 in September 2010. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark in the corresponding column. The definition of ''feature'' has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds, compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.

Lin, J I

2011-01-25T23:59:59.000Z

453

Crashworthiness analysis using advanced material models in DYNA3D  

DOE Green Energy (OSTI)

As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.

Logan, R.W.; Burger, M.J.; McMichael, L.D. [Lawrence Livermore National Lab., CA (United States); Parkinson, R.D. [Kaiser Aluminum & Chemical Corp., Pleasanton, CA (United States). Center for Technology

1993-10-22T23:59:59.000Z

454

STRUCTURE OF NON-FORCE-FREE MAGNETIC FLUX ROPES IN AN AMBIENT MEDIUM  

Science Conference Proceedings (OSTI)

The structure of non-force-free equilibrium magnetic flux ropes in an ambient medium of specified pressure p{sub a} is studied. A flux rope is a self-organized magnetized plasma structure consisting of a localized channel of electric current and the magnetic field arising from this current. An analytic method is developed to obtain one-dimensional equilibrium solutions satisfying c {sup -1} J Multiplication-Sign B - {nabla}p = 0 subject to the requirements that (1) all physical quantities be nonsingular and continuous, (2) pressure p(r) be physically admissible-real and non-negative, and (3) the magnetic field profile have ''minimum complexity''. The solutions are shown to be characterized by two parameters, B{sup *}{sub t}{identical_to} B-bar{sub t}/(8{pi}p{sub a}){sup 1/2} and B*{sub p} {identical_to} B{sub pa} /(8{pi}p{sub a} ){sup 1/2}, where B-bar{sub t} is the toroidal (axial) field averaged over the cross-sectional radius a and B{sub pa} is the poloidal (azimuthal) field at the edge of the current channel (r = a). The physical constraint on pressure defines equilibrium boundaries in the B*{sub t}-B*{sub p} space beyond which no physical solutions exist. The method is illustrated with a number of families of solutions governed by distinct physical constraints. The force-free limit with p{sub a} {ne} 0 is investigated and is found to be characterized by plasma {beta} = {infinity}. The local Alfven speed V{sub A} and plasma {beta} are computed. The results are scale-invariant.

Chen, James, E-mail: James.Chen@nrl.navy.mil [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2012-12-20T23:59:59.000Z

455

Spectral-Driven Isometry-Invariant Matching of 3D Shapes  

Science Conference Proceedings (OSTI)

This paper presents a matching method for 3D shapes, which comprises a new technique for surface sampling and two algorithms for matching 3D shapes based on point-based statistical shape descriptors. Our sampling technique is based on critical points ... Keywords: 3D model retrieval, Feature points, Isometry-invariant matching, Laplace-Beltrami operator, Local statistical shape descriptors

Mauro R. Ruggeri; Giuseppe Patanè; Michela Spagnuolo; Dietmar Saupe

2010-09-01T23:59:59.000Z

456

Stochastic Modelling and 3D Minimum Variance RecursiveEstimation of Image Sequences  

Science Conference Proceedings (OSTI)

In this paper the 3D minimum variance filtering problem is considered. The proposed spatiotemporal filter is derived according to the assumption that the 3D signal can be modelled by an ensemble of smooth 3D gaussian random fields. The resulting ... Keywords: image processing, optimal filtering, stochastic modelling

L. Jetto

1999-07-01T23:59:59.000Z

457

Geometry and context for semantic correspondences and functionality recognition in man-made 3D shapes  

Science Conference Proceedings (OSTI)

We address the problem of automatic recognition of functional parts of man-made 3D shapes in the presence of significant geometric and topological variations. We observe that under such challenging circumstances, the context of a part within a 3D shape ... Keywords: 3D shape segmentation, graph kernels, shape correspondence, shape similarity

Hamid Laga, Michela Mortara, Michela Spagnuolo

2013-09-01T23:59:59.000Z

458

Robust algorithm for tunnel closing in 3D volumetric objects based on topological characteristics of points  

Science Conference Proceedings (OSTI)

In this letter, we propose a robust, linear in time modification of Aktouf, Bertrand and Perroton's algorithm for tunnel (3D hole) closing in 3D volumetric objects. Our algorithm is insensitive to small distortions and branches. The algorithm has been ... Keywords: 3D image processing, Crack bridging, Skeletonisation, Topological numbers, Tunnel closing

Marcin Janaszewski; Micha? Postolski; Laurent Babout

2011-12-01T23:59:59.000Z

459

A dual-mode user interface for accessing 3D content on the world wide web  

Science Conference Proceedings (OSTI)

The Web evolved from a text-based system to the current rich and interactive medium that supports images, 2D graphics, audio and video. The major media type that is still missing is 3D graphics. Although various approaches have been proposed (most notably ... Keywords: 3D graphics, 3D web, hypertext, user interface

Jacek Jankowski; Stefan Decker

2012-04-01T23:59:59.000Z

460

DRAM-based FPGA enabled by three-dimensional (3d) memory stacking (abstract only)  

Science Conference Proceedings (OSTI)

Motivated by the emerging three-dimensional (3D integration technologies, this paper studies the potential of applying 3D memory stacking to enable FPGA devices use on-chip DRAM cells to store configuration data. In current design practice, FPGAs do ... Keywords: 3d integration, dram-based fpga, memory stacking

Yangyang Pan; Tong Zhang

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d magnetic structure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Review: 3D geo-database research: Retrospective and future directions  

Science Conference Proceedings (OSTI)

3D geo-database research is a promising field to support challenging applications such as 3D urban planning, environmental monitoring, infrastructure management, and early warning or disaster management and response. In these fields, interdisciplinary ... Keywords: 3D GIS, Geo-data modelling, Geo-database, Information systems for geo- and environmental sciences

Martin Breunig; Sisi Zlatanova

2011-07-01T23:59:59.000Z

462

Exploring performance, power, and temperature characteristics of 3D systems with on-chip DRAM  

Science Conference Proceedings (OSTI)

3D integration enables stacking DRAM layers on processor cores within the same chip. On-chip memory has the potential to dramatically improve performance due to lower memory access latency and higher bandwidth. Higher core performance increases power ... Keywords: embedded systems, power characteristics, temperature characteristics, 3D systems, on-chip DRAM, 3D integration, on-chip memory

Jie Meng; Daniel Rossell; Ayse K. Coskun

2011-07-01T23:59:59.000Z

463

Co-optimization of TSV assignment and micro-channel placement for 3D-ICs  

Science Conference Proceedings (OSTI)

The three dimensional circuit (3D-IC) brings forth new challenges to physical design such as allocation and management of through-silicon-vias (TSVs). Meanwhile, the thermal issues in 3D-IC becomes significant necessitating the use of active cooling ... Keywords: 3d-ic, liquid cooling, micro-channel, tsv assignment

Bing Shi; Caleb Serafy; Ankur Srivastava

2013-05-01T23:59:59.000Z

464

Usability tests for improvement of 3D navigation in multiscale environments  

Science Conference Proceedings (OSTI)

The interest in virtual 3D environments has increased in the past years due to the popularization of the technology and the huge human ability to visually convey and grasp information. However, unlike the real world, 3D navigation, especially in multiscale ... Keywords: 3D navigation, cubemap, multiscale environments, usability

Tathiane Mendonça Andrade; Daniel Ribeiro Trindade; Eduardo Ribeiro Silva; Alberto Barbosa Raposo; Simone Diniz Junqueira Barbosa

2011-07-01T23:59:59.000Z