A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes...
data show that the volcanic edifice of Izu-Oshima Volcano has a mean magnetization intensity ranging from 10.4 to 12.1 Am. The derived 3D magnetic structure shows low...
Numerical integration of structural elements in NIKE3D and DYNA3D
Maker, B.N.; Whirley, R.G.; Engelmann, B.E.
1992-08-05
The beam and shell elements found in many linear elastic finite element codes accept integrated cross sectional properties as input, and produce solutions using classical beam and shell theory. These theories are built upon the equation of resultant forces and moments with integrals of assumed stress distributions over the cross section. In contrast, the structural elements in NIKE3D and DYNA3D are formulated to represent nonlinear geometric and material behavior. Thus stress distributions may not necessarily be representable by simple functions of cross section variables. In NIKE3D and DYNA3D, the Hughes-Liu beam element and all shell elements accommodate these more general stress distributions by computing stresses at various points in the cross section. The integration of stresses within each element is then performed numerically, using a variety of methods. This report describes these numerical integration procedures in detail, and highlights their application to engineering problems. Several other features of the structural elements are also described, including force and moment resultants, user-defined reference surfaces, and user-defined integration rules. Finally, the shear correction factor is described in a section which relates results from NIKE3D and DYNA3D to those obtained from classical beam theory.
A Novel Approach for Introducing 3D Cloud Spatial Structure
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Novel Approach for Introducing 3D Cloud Spatial Structure Into 1D Radiative Transfer For original submission and image(s), see ARM Research Highlights http:www.arm.govscience...
GPU-accelerated denoising of 3D magnetic resonance images
Howison, Mark; Wes Bethel, E.
2014-05-29
The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.
X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals
Iota, V; Park, J; Baer, B; Yoo, C; Shen, G
2003-11-18
The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at high pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d-band occupancy, and are
Advancements in 3D Structural Analysis of Geothermal Systems
Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David
2013-06-23
Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1
Automating the determination of 3D protein structure
Rayl, K.D.
1993-12-31
The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.
3D and 4D magnetic susceptibility tomography based on complex MR images
Chen, Zikuan; Calhoun, Vince D
2014-11-11
Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.
3D Imaging with Structured Illumination for Advanced Security Applications
Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.
2015-09-01
Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.
Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields
Energy Science and Technology Software Center (OSTI)
2000-02-21
SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less
The ITER 3D Magnetic Diagnostic Response to Applied n=3 and n=4 RMP's
Lazerson, S A
2014-09-01
The ITER magnetic diagnostic response to applied n=3 and n=4 RMPs has been calculated for the 15MA scenario. The VMEC code was utilized to calculate free boundary 3D ideal MHD equilibria, where the non-stellarator symmetric terms were included in the calculation. This allows an assessment to be made of the possible boundary displacements due to RMP application in ITER. As the VMEC code assumes a continuous set of nested flux surface, the possibility of island and stochastic region formation is ignored. At the start of the current at-top (L-Mode) application of n = 4 RMP's indicates approximately 1 cm peak-to-peak displacements on the low field side of the plasma while later in the shot (H-mode) perturbations as large as 3 cm are present. Forward modeling of the ITER magnetic diagnostics indicates significant non-axisymmetric plasma response, exceeding 10% the axisymmetric signal in many of the flux loops. Magnetic field probes seem to indicate a greater robustness to 3D effects but still indicate large sensitivities to 3D effects in a number of sensors. Forward modeling of the diagnostics response to 3D equilibria allows assessment of diagnostics design and control scenarios.
Shiraki, Daisuke; Angelini, Sarah M.; Byrne, Patrick J.; DeBono, Bryan A.; Hughes, Paul E.; Levesque, Jeffrey P.; Mauel, Michael E.; Navratil, Gerald A.; Peng, Qian; Rhodes, Dov J.; Stoafer, Christopher C.; Maurer, David A.; Rath, Nikolaus
2013-10-15
The detailed measurements of the 3D plasma response to applied external magnetic perturbations in the presence of a rotating external kink are presented, and compared with the predictions of a single-helicity linear model of kink mode dynamics. The modular control coils of the High Beta Tokamak-Extended Pulse (HBT-EP) device are used to apply resonant m/n = 3/1 magnetic perturbations to wall-stabilized tokamak plasmas with a pre-existing rotating 3/1 kink mode. The plasma response is measured in high-resolution with the extensive magnetic diagnostic set of the HBT-EP device. The spatial structures of both the naturally rotating kink mode and the externally driven response are independently measured and observed to be identical, while the temporal dynamics are consistent with the independent evolution and superposition of the two modes. This leads to the observation of a characteristic change in 3D field dynamics as a function of the applied field amplitude. This amplitude dependence is found to be different for poloidal and radial fields. The measured 3D response is compared to and shown to be consistent with the predictions of the linear single-helicity model in the “high-dissipation” regime, as reported previously [M. E. Mauel et al., Nucl. Fusion 45, 285 (2005)].
Delineation of nuclear structures in 3D multicellular systems
Energy Science and Technology Software Center (OSTI)
2013-09-13
A pipeline, implemented within the Insight Segmentation and Registration Toolkit (ITK) and The Visualization Toolkit (VTK) framework, to delineate each nucleus and to profile morphometric and colony organization. At an abstract level, our approach is an extension of a previously developed method for monolayer call structure models.
Code System for Analysis of 3-D Reinforced Concrete Structures.
Energy Science and Technology Software Center (OSTI)
1999-11-22
Version 00 NONSAP-C is a finite element program for determining the static and dynamic response of three-dimensional reinforced concrete structures. Long-term, or creep, behavior of concrete structures can also be analyzed. Nonlinear constitutive relations for concrete under short-term loads are incorporated in two time-independent models, a variable-modulus approach with orthotropic behavior induced in the concrete due to the development of different tangent moduli in different directions and an elastic-plastic model in which the concrete ismore » assumed to be a continuous, isotropic, and linearly elastic-plastic strain-hardening-fracture material. A viscoelastic constitutive model for long-term thermal creep of concrete is included. Three-dimensional finite elements available in NONSAP-C include a truss element, a multinode tendon element for prestressed and post tensioned concrete structures, an elastic-plastic membrane element to represent the behavior of cavity liners, and a general isoparametric element with a variable number of nodes for analysis of solids and thick shells.« less
Accurate Band-Structure Calculations for the 3d Transition Metal Oxides
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
has developed a method to calculate accurate band structures and bandgap energies for 3d transition metal oxides using an augmented GW formalism. Significance and Impact This approach provides a computationally viable route for high-throughput prediction of band structures and optical properties in transition metal compounds. Accurate Band-Structure Calculations for the 3d Transition Metal Oxides S. Lany, Phys. Rev. B 87, 085112 (2013). Density of states (DOS) and absorption spectrum, shown for
Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities
Slough, John
2015-02-01
modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the
3-D seismic velocity and attenuation structures in the geothermal field
Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)
2013-09-09
We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.
Local-global alignment for finding 3D similarities in protein structures
Zemla, Adam T.
2011-09-20
A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.
3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang
2015-05-05
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less
A New Way to Display the 3-D Structure of Molecules
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A New Way to Display the 3-D Structure of Molecules Researchers have created a sort of nanoscale display case that enables new atomic-scale views of hard-to-study chemical and biological samples. Their work could help to reveal new structural details for a range of challenging molecules, such as complex chemical compounds and potentially new drugs, by stabilizing them inside metal-organic frameworks (MOFs).
Connecting Global Measures of 3D Magnetic Reconnection to Local Kinetic Physics
Daughton, William Scott
2015-07-16
After giving the motivation for the work, slides present the topic under the following headings: Description of LAPD experiment; Actual simulation setup; Simple kinetic theory of ined-tied tearing; Diagnostics to characterizing 3D reconnection; Example #1 - short-tied system; and Example #2 - long line-tied system. Colorful simulations are shown for quasipotential vs field line exponentiation, field line integrated Ohms Law, and correlation with agyrotopy & energy conversion for example #1; and evolution of current density for largest case, field exponentiation vs quasi-potential, and time evolution of magnetic field lines for example #2. To satisfy line-tied boundary conditions, there is need for superposition of oblique modes--the simple two-mode approximation works surprisingly well. For force-free layers with b_{g} >1, the fastest growing periodic modes are oblique with k_{x}? ~0.5. This implies a minimum length of L_{y} > 2??b_{g}. There are strong correlations between ? ? ? ? A_{0e} (observable with spacecraft). Electron pressure tensor is the dominant non-ideal term.
Magnetic Structure of 3D Sculpted Cobalt Nanoparticles | Argonne...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
in the fields of photonics and optics as polarization filters, and as tissue scaffolds in biomedical applications. This research paves a path toward a clearer fundamental...
Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.
2016-07-05
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
DYNA3D (Nonlinear Dynamic Analysis of Structures in Three Dimensions) user's manual
Hallquist, J.O.
1988-04-01
This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-eight material models and eleven equations of state to cover a wide range of material behavior. 56 refs., 46 figs.
DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions)
Hallquist, J.O.; Benson, D.J.
1987-07-01
This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-five material models and eleven equations of state to cover a wide range of material behavior.
DYNA3D user's manual: (Nonlinear dynamic analysis of structures in three dimensions): Revision 5
Hallquist, J.O.; Whirley, R.G.
1989-05-01
This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. Using a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. The 1989 version of DYNA3D contains thirty material models and ten equations of state to cover a wide range of material behavior.
DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions). Revision 2
Hallquist, J.O.; Benson, D.J.
1986-03-01
The user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures is updated. A contact-impact algorithm permit gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains sixteen material models and nine equations of state to cover a wide range of material behavior. 40 refs., 43 figs.
A new approach for magnetic curves in 3D Riemannian manifolds
Bozkurt, Zehra Gk, Ismail Yayl?, Yusuf Ekmekci, F. Nejat
2014-05-15
A magnetic field is defined by the property that its divergence is zero in a three-dimensional oriented Riemannian manifold. Each magnetic field generates a magnetic flow whose trajectories are curves called as magnetic curves. In this paper, we give a new variational approach to study the magnetic flow associated with the Killing magnetic field in a three-dimensional oriented Riemann manifold, (M{sup 3}, g). And then, we investigate the trajectories of the magnetic fields called as N-magnetic and B-magnetic curves.
Energy Science and Technology Software Center (OSTI)
003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems https://vision.lbl.gov/Software/3DMorphometry/
Zhang Yangyang [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Qi Yue [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhang Ying [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liu Ziyu [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhao Yinfeng [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liu Zhongmin [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)]. E-mail: liuzm@dicp.ac.cn
2007-08-07
A new iron phosphonate-oxalate [Fe(O{sub 3}PCH{sub 3})(C{sub 2}O{sub 4}){sub 0.5}(H{sub 2}O)] (1), has been synthesized under hydrothermal condition. The single-crystal X-ray diffraction studies reveal that 1 consists of layers of vertex-linked FeO{sub 6} octahedra and O{sub 3}PC tetrahedra, which are further connected by bis-chelate oxalate bridges, giving to a 3D structure with 10-membered channels. Crystal data: monoclinic, P2{sub 1}/n (no. 14), a=4.851(2)A, b=16.803(7)A, c=7.941(4)A, {beta}=107.516(6){sup o}, V=617.2(5)A{sup 3}, Z=4, R{sub 1}=0.0337 and wR{sub 2}=0.0874 for 1251 reflections [I>2{sigma}(I)]. Mossbauer spectroscopy measurement confirms the existence of high-spin Fe(III) in 1. Magnetic studies show that 1 exhibits weak ferromagnetism with T{sub N}=30K due to a weak spin canting.
Monte Carlo generators for studies of the 3D structure of the nucleon
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Avakian, Harut; D'Alesio, U.; Murgia, F.
2015-01-23
In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J. -K.; Podesta, M.; et al
2016-05-20
Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfv´en Eigenmodes (TAE) and Global Alf´ven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfv´en continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfv´en instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
benchmarking and optimizing GTC on High Performance Computers Stéphane Ethier Princeton Plasma Physics Laboratory NERSC Users' Group meeting June 2006 Work Supported by DOE Contract No.DE-AC02-76CH03073 and by the DOE SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. The Gyrokinetic Toroidal Code * 3D particle-in-cell code to study microturbulence in magnetically confined fusion plasmas. * Solves the gyro-averaged Vlasov equation. * Gyrokinetic Poisson
Plasma equilibrium in 3D magnetic confinement systems and soliton theory
Skovoroda, A. A.
2009-08-15
Single-valued conformal flux (magnetic) coordinates can always be introduced on arbitrary toroidal magnetic surfaces. It is shown how such coordinates can be obtained by transforming Boozer magnetic coordinates on the surfaces. The metrics is substantially simplified and the coordinate grid is orthogonalized at the expense of a more complicated representation of the magnetic field in conformal flux coordinates. This in turn makes it possible to introduce complex angular flux coordinates on any toroidal magnetic surface and to develop efficient methods for a complex analysis of the geometry of equilibrium magnetic surfaces. The complex analysis reveals how the plasma equilibrium problem is related to soliton theory. Magnetic surfaces of constant mean curvature are considered to exemplify this relationship.
A fully implicit method for 3D quasi-steady state magnetic advection-diffusion.
Siefert, Christopher; Robinson, Allen Conrad
2009-09-01
We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.
3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere
Shimizu, T.
2015-10-15
The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.
Kolotilina, L.; Nikishin, A.; Yeremin, A.
1994-12-31
The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.
Whirley, R.G.
1991-05-01
This report is the User Manual for the 1991 version of DYNA3D, and also serves as an interim User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems. 73 refs., 49 figs.
Thigpen, L.; Peterson, J.C.
1983-08-01
This report provides instructions on the use of the DYNALK computer program to generate boundary conditions for a soil island used in soil-structure interaction problems. DYNALK converts temporal motions from 2-D TENSOR calculations into appropriate three-dimensional boundary conditions for a DYNA3D soil-structure interaction problem. The program is operational on the CRAY-1 computer.
Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie
2014-09-14
To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 and an overall minimum RMSD of 1.9 from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.
X-Ray Diffraction Microscopy of Magnetic Structures
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the
X-Ray Diffraction Microscopy of Magnetic Structures
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the
X-Ray Diffraction Microscopy of Magnetic Structures
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the
Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Syratchev, I.; /CERN
2009-06-19
In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP Site Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington P. W. Heck Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction One of the primary Atmospheric
The 3D structure of the hadrons: recents results and experimental program at Jefferson Lab
Munoz Camacho, Carlos
2014-04-01
The understanding of Quantum Chromodynamics (QCD) at large distances still remains one of the main outstanding problems of nuclear physics. Studying the internal structure of hadrons provides a way to probe QCD in the non-perturbative domain and can help us unravel the internal structure of the most elementary blocks of matter. Jefferson Lab (JLab) has already delivered results on how elementary quarks and gluons create nucleon structure and properties. The upgrade of JLab to 12 GeV will allow the full exploration of the valence-quark structure of nucleons and the extraction of real threedimensional pictures. I will present recent results and review the future experimental program at JLab.
Atomic-resolution 3D structure of amyloid β fibrils: The Osaka mutation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Schutz, Anne K.; Wall, Joseph; Vagt, Toni; Huber, Matthias; Ovchinnikova, Oxana Y.; Cadalbert, Riccardo; Guntert, Peter; Bockmann, Anja; Glockshuber, Rudi; Meier, Beat H.
2014-11-13
Despite its central importance for understanding the molecular basis of Alzheimer's disease (AD), high-resolution structural information on amyloid β-peptide (Aβ) fibrils, which are intimately linked with AD, is scarce. We report an atomic-resolution fibril structure of the Aβ 1-40 peptide with the Osaka mutation (E22Δ), associated with early-onset AD. The structure, which differs substantially from all previously proposed models, is based on a large number of unambiguous intra- and intermolecular solid-state NMR distance restraints
Atomic-resolution 3D structure of amyloid ? fibrils: The Osaka mutation
Schutz, Anne K.; Wall, Joseph; Vagt, Toni; Huber, Matthias; Ovchinnikova, Oxana Y.; Cadalbert, Riccardo; Guntert, Peter; Bockmann, Anja; Glockshuber, Rudi; Meier, Beat H.
2014-11-13
Despite its central importance for understanding the molecular basis of Alzheimer's disease (AD), high-resolution structural information on amyloid ?-peptide (A?) fibrils, which are intimately linked with AD, is scarce. We report an atomic-resolution fibril structure of the A? 1-40 peptide with the Osaka mutation (E22?), associated with early-onset AD. The structure, which differs substantially from all previously proposed models, is based on a large number of unambiguous intra- and intermolecular solid-state NMR distance restraints
STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA
Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D. E-mail: PGazis@sbcglobal.net
2015-01-20
The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.
3-D photo-patterning of refractive index structures in photosensitive thin film materials
Potter, Jr., Barrett George; Potter, Kelly Simmons
2002-01-01
A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.
Li, Ming; Kang, Zhan; Huang, Xiaobo
2015-08-28
Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.
Chen Xinxiang; Cao Yanning; Zhang Hanhui Chen Yiping; Chen Xuehuan; Chai Xiaochuan
2008-05-15
Two new 3-D porous bismuth coordination polymers, (C{sub 5}NH{sub 6}){sub 2}[Bi{sub 2}(H{sub 2}O){sub 2}(C{sub 2}O{sub 4}){sub 4}].2H{sub 2}O 1 and (NH{sub 4})[Bi(C{sub 2}O{sub 4}){sub 2}].3H{sub 2}O 2, have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic symmetry, P2{sub 1}/c space group with a=10.378(2) A, b=17.285(3) A, c=16.563(5) A, {alpha}=90 deg., {beta}=119.66(2) deg., {gamma}=90 deg., V=2581.8(10) A{sup 3}, Z=4, R{sub 1}=0.0355 and wR{sub 2}=0.0658 for unique 4713 reflections I >2{sigma}(I). Compound 2 crystallizes in the tetragonal symmetry, I4{sub 1}/amd space group with a=11.7026(17) A, b=11.7026(17) A, c=9.2233(18) A, {alpha}=90 deg., {beta}=90 deg., {gamma}=90 deg., V=1263.1(4) A{sup 3}, Z=32, R{sub 1}=0.0208 and wR{sub 2}=0.0518 for unique 359 reflections I> 2{sigma}(I). Compounds 1 and 2 are 3-D open-framework structures with a 6{sup 6} uniform net, which consist of honeycomb-like layers connected to each other by oxalate units. While different guest molecules fill in their cavities of honeycomb-like layers, study of ultrasonic treatment on 2 indicates the replacement of NH{sub 4}{sup +} by K{sup +} on potassium ion exchange. Thermogravimetric analysis indicates that the open-channel frameworks are thermally stable up to 200 deg. C, and other characterizations are also described by elemental analysis, IR and ultraviolet-visible diffuse reflectionintegral spectrum (UV-Vis DRIS). - Graphical abstract: Two novel 3-D extended porous coordination polymers have been synthesized by hydrothermal method. Both compounds are 3-D open-framework structures with a 6{sup 6} uniform net, which consist of honeycomb-like layers connected to each other by oxalate units. While different guest molecules fill in their cavities of honeycomb-like layers. Study of ultrasonic treatment on 2 indicates the replacement of NH{sub 4}{sup +} by K{sup +} on potassium ion exchange.
The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations
Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang
2009-06-26
The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.
The linearly scaling 3D fragment method for large scale electronic structure calculations
Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang
2009-07-28
The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.
Whirley, R.G.; Engelmann, B.E.
1993-11-01
This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.
Kennedy, T. )
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, and resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack 'Tuesday' high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
STELLOPT Modeling of the 3D Diagnostic Response in ITER
Lazerson, Samuel A
2013-05-07
The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.
Magnetic cellulose-derivative structures
Walsh, Myles A.; Morris, Robert S.
1986-09-16
Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.
Magnetic cellulose-derivative structures
Walsh, M.A.; Morris, R.S.
1986-09-16
Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.
DYNA3D96. Explicit 3-D Hydrodynamic FEM Program
Lin, J.
1993-11-01
DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.
2015-12-08
In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ionsmore » on the spinel lattice.« less
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn_{2}O_{4}
Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.
2015-12-08
In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn_{2}O_{4}. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn^{3+} ions on the spinel lattice.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| Department of Energy 3D Printed Tool for Building Aircraft Achieves Guinness World Records Title 3D Printed Tool for Building Aircraft Achieves Guinness World Records Title August 30, 2016 - 2:07pm Addthis Official measurement of the 3D printed trim tool co-developed by Oak Ridge National Laboratory and The Boeing Company exceeded the required minimum size to achieve the Guinness World Records title of largest solid 3D printed item. Official measurement of the 3D printed trim tool
Zhang, Ming-Dao Zhuang, Qi-Fan; Xu, Jing; Cao, Hui
2015-12-15
The title complex, ([Co(BPPA)(5-OH-bdc)] · (H{sub 2}O)){sub n} was prepared under hydrothermal conditions based on two ligands, namely, bis(4-(pyridin-4-yl)phenyl)amine (BPPA) and 5-hydroxyisophthalic acid (5-OH-H{sub 2}bdc). 5-OH-bdc{sup 2–} anions coordinated to Co atoms to give layers in crystal. BPPA ligands coordinate to Co atoms and thread into the adjacent layers. There are hydrogen bonds between adjacent layers, giving rise to a 2D → 3D framework.
Plated lamination structures for integrated magnetic devices
Webb, Bucknell C.
2014-06-17
Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
Energy Science and Technology Software Center (OSTI)
003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms http://camera.lbl.gov/software
Lei Xiaowu; Sun Zhongming; Li Longhua; Zhong Guohua; Hu Chunli; Mao Jianggao
2010-04-15
The title compounds have been obtained by solid state reactions of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction studies. Yb{sub 5}Ni{sub 4}Sn{sub 10} adopts the Sc{sub 5}Co{sub 4}Si{sub 10} structure type and crystallizes in the tetragonal space group P4/mbm (No. 127) with cell parameters of a=13.785(4) A, c=4.492 (2) A, V=853.7(5) A{sup 3}, and Z=2. Yb{sub 7}Ni{sub 4}Sn{sub 13} is isostructural with Yb{sub 7}Co{sub 4}InGe{sub 12} and crystallizes in the tetragonal space group P4/m (No. 83) with cell parameters of a=11.1429(6) A, c=4.5318(4) A, V=562.69(7) A{sup 3}, and Z=1. Both structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are occupied by the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic. These results are in agreement with those from temperature-dependent resistivity and magnetic susceptibility measurements. - Graphical abstract: Two new ytterbium nickel stannides, namely, Yb{sub 5}Ni{sub 4}Sn{sub 10} and Yb{sub 7}Ni{sub 4}Sn{sub 13}, have been synthesized and structurally characterized by single-crystal X-ray diffraction studies. Both their structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are situated by all the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic, which are in accordance with the results from temperature-dependent resistivity and magnetic susceptibility measurements.
Ciller, Carlos; De Zanet, Sandro I.; Rüegsegger, Michael B.; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L.; Kowal, Jens H.; and others
2015-07-15
Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Graphene's 3D Counterpart Graphene's 3D Counterpart Print Monday, 21 July 2014 08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
can exist as a form of quantum matter called a three--dimensional topological Dirac semi--metal (3DTDS). This is the first experimental confirmation of 3D Dirac fermions...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
some exciting phenomena and applications of graphene in 3D materials-it also gives rise to many unusual properties. In addition to these unusual properties, the 3DTDS is the...
Yan, Tao; Li, Ruiyi; Li, Zaijun
2014-03-01
Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: The paper reported the microwave synthesis of nickelcobalt layered double hydroxide/graphene composite. The novel synthesis method is rapid, green, efficient and can be well used to the mass production. The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. The composite offers excellent supercapacitive performance. This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g{sup ?1} at the current density of 1 A g{sup ?1}. The specific capacitance can remain 1274.7 F g{sup ?1} at the current density of 15 A g{sup ?1} and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be potentially applied in
RAG-3D: A search tool for RNA 3D substructures
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar
2015-08-24
In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less
RAG-3D: A search tool for RNA 3D substructures
Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar
2015-08-24
In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.
Khrapak, S. A.; Klumov, B. A.; Huber, P.; Thomas, H. M.; Ivlev, A. V.; Morfill, G. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Petrov, O. F.; Fortov, V. E.; Malentschenko, Yu.; Volkov, S.
2011-05-20
Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.
Pyka, Grzegorz; Kerckhofs, Greet
2014-01-15
In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted
Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.
2012-01-20
Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.
Mapping strain gradients in the FIB-structured InGaN/GaN multilayered films with 3D x-ray microbeam.
Barabash, R. I.; Gao, Y. F.; Ice, G. E.; Barabash, O. M.; Chung, J.; Liu, W.; Lohmeyer, H.; Sebald, K.; Gutowski, J.; Bottcher, T.; Hommel, D.; Kroger, R.
2010-11-25
This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence ({mu}-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation of complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent.
Craig, Norman C.; Chen, Yihui; van Besien, Herman; Blake, Thomas A.
2014-09-01
The 2-d1 and 3-d1 isotopologues of trans-hexatriene have been synthesized, and their high-resolution (0.0015 cm-1) IR spectra have been recorded. For each of the isotopologues the rotational structure in four C-type bands for out-of-plane vibrational modes has been analyzed, and the ground state combination differences (GSCDs) have been pooled. Ground state rotational constants have been fitted to the GSCDs. For the 2-d species, A0, B0, and C0 values of 0.7837254(5), 0.0442806(3), and 0.0419299(2) cm-1 were fitted to 2450 GSCDs. For the 3-d species, A0, B0, and C0 values of 0.7952226(8), 0.0446149(7), and 0.0422661(4) cm-1 were fitted to 2234 GSCDs. For the eleven out-of-plane modes of the two isotopologues, predictions of anharmonic wavenumbers and harmonic intensities have been computed and compared with experiment where possible.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
However, it is only applicable primarily to macromolecules in the lower molecular weight ... With the prospects of X-ray free electron lasers (X-FEL) (5, 6), the radiation damage ...
Jiang, Yongjian; Li, Meicheng; Song, Dandan; Li, Xiaodan; Yu, Yue
2014-03-15
A novel hierarchical titanium dioxide (TiO{sub 2}) composite nanostructure with strings of anatase TiO{sub 2} hierarchical micro-spheres and rutile nanobelts framework (TiO{sub 2} HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO{sub 2} nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m{sup 2}/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO{sub 2} HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO{sub 2} may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries. -- Graphical abstract: Novel TiO{sub 2} with anatase micro-spheres and rutile nanobelts is synthesized. Enhanced photocatalysis is attributed to hierarchical structures (3D spheres), conductive channel (1D nanobelts) and large specific surface area (2D nanosheet). Highlights: • The novel TiO{sub 2} nanostructure (HSN) is fabricated for the first time. • HSN is composed of strings of anatase hierarchical spheres and rutile nanobelt. • HSN presents a larger S{sub BET} of 191 m{sup 2}/g, 3 times larger than the Degussa P25 (59 m{sup 2}/g). • HSN owns three kinds of dimensional TiO{sub 2} (1D, 2D and 3D) simultaneously. • HSN exhibits better photocatalytic performance compared with Degussa P25.
DYNA3D. Explicit 3-d Hydrodynamic FEM Program
Chu, R.; Amakai, M.; Lung, H.C.; Ishigai, T.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-d Hydrodynamic FEM Program
Kennedy, T.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, and resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
Static & Dynamic Response of 3D Solids
Energy Science and Technology Software Center (OSTI)
1996-07-15
NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.
Dammalapati, U.; Norris, I.; Burrows, C.; Riis, E.
2011-06-15
Laser excitation of the 4s4p {sup 3}P{sub 2} - 4s3d {sup 1}D{sub 2} transition in atomic calcium has been observed and the wavelength determined to 1530.5298(6) nm. The metastable 4s4p {sup 3}P{sub 2} atoms were magnetically trapped in the quadrupole magnetic field of a magneto-optical trap. This state represents the only ''loss'' channel for the calcium atoms when laser cooled on the 4s{sup 2} {sup 1}S{sub 0} - 4s4p {sup 1}P{sub 1} transition. A rate equation model shows that an order of magnitude more atoms are trapped in this state compared with those taking part in the main cooling cycle. Excitation of the {sup 3}P{sub 2} atoms back up to the 4s3d {sup 1}D{sub 2} state provides a means of accessing these atoms. Efficient repumping is achieved if the 1530-nm laser is used in conjunction with a 672-nm laser driving the 4s3d {sup 1}D{sub 2} - 4s5p {sup 1}P{sub 1} transition. In the present experiment, we detected about 4.5x10{sup 4} trapped {sup 3}P{sub 2} atoms, a relatively low atom density, and measured a lifetime of approximately 1 s, which is limited by background collisions.
3-D seismology in the Arabian Gulf
Al-Husseini, M.; Chimblo, R.
1995-08-01
Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host
3-D Model for Deactivation & Decommissioning
Broader source: Energy.gov [DOE]
The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...
DYNA3D. Explicit 3-D Hydrodynamic FEM Program
Whirley, R.G.; Englemann, B.E.
1993-11-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-d Hydrodynamic FEM Program
Whirley, R.G.; Englemann, B.E.
1993-11-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-D Hydrodynamic FEM Program
Whirley, R.G.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D; Explicit 3-d Hydrodynamic FEM Program
Whirley, R.G.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-d Hydrodynamic FEM Program
Whirley, R.G.; Englemann, B.E. )
1993-11-30
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
DYNA3D. Explicit 3-D Hydrodynamic FEM Program
Whirley, R.G.
1989-05-01
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
Explicit 3-D Hydrodynamic FEM Program
Energy Science and Technology Software Center (OSTI)
2000-11-07
DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less
Explicit 3-D Hydrodynamic FEM Program
2000-11-07
DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.
Structural modulations and magnetic properties of off-stoichiometric...
Office of Scientific and Technical Information (OSTI)
magnetic shape memory alloys Prev Next Title: Structural modulations and magnetic properties of off-stoichiometric Ni-Mn-Ga magnetic shape memory alloys Authors: ...
X-ray imaging of vortex cores in confined magnetic structures
Fischer, P.; Im, M.-Y.; Kasai, S.; Yamada, K.; Ono, T.; Thiaville, A.
2011-02-11
Cores of magnetic vortices in micron-sized NiFe disk structures, with thicknesses between 150 and 50 nm, were imaged and analysed by high resolution magnetic soft X-ray microscopy. A decrease of the vortex core radius was observed, from #24; ~38 to 18 nm with decreasing disk thickness. By comparing with full 3D micromagnetic simulations showing the well-known barrel structure, we obtained excellent agreement taking into account instrumental broadening and a small perpendicular anisotropy. The proven magnetic spatial resolution of better than 25 nm was sufficient to identify a negative dip close to the vortex core, originating from stray fields of the core. Magnetic vortex structures can serve as test objects for evaluating sensitivity and spatial resolution of advanced magnetic microscopy techniques.
Electron Temperature Structures Associated With Magnetic Tearing
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Structures Associated With Magnetic Tearing Modes in the Madison Symmetric Torus By Hillary Dianne Stephens A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN - MADISON 2010 i Abstract Tearing mode induced magnetic islands have a significant impact on the thermal char- acteristics of magnetically confined plasmas such as those in the reversed-field pinch. Using a state-of-the-art Thomson scattering
Investigations on the electronic, structural, magnetic properties...
Office of Scientific and Technical Information (OSTI)
...-memory behavior in Tisub 2CoX (XAl, Ga, In) Citation Details In-Document Search Title: Investigations on the electronic, structural, magnetic properties related to shape-memory ...
Energy Science and Technology Software Center (OSTI)
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
None
2014-02-26
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
Ray, Avijeet Maitra, Tulika
2015-06-24
Using first principles density functional theory (DFT) calculations within GGA and GGA+U approximations we studied both ferromagnetic (FM) and antiferromagnetic (AFM) phases of zircon type RCrO{sub 4} (R= Dy, Ho, Gd) oxides. We estimated and compared the 3d-4f exchange interaction strengths J between the nearest neighbor R{sup 3+} and Cr{sup 5+} ions for R=Dy, Gd. Our results predict that DyCrO{sub 4}, GdCrO{sub 4} and HoCrO{sub 4} have ferromagnetic ground state which is consistent with experimental observations.
Dual-spacecraft reconstruction of a three-dimensional magnetic...
Office of Scientific and Technical Information (OSTI)
The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by 390 km) better predicts magnetic field ...
Ercius, Peter
2014-06-27
Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas
Whirley, R.G.; Engelmann, B.E.
1992-08-25
This paper describes some recent developments in adaptive contact algorithms for the transient analysis of penetration and material failure in DYNA3D. A failure criterion is defined for volumes of potentially failing material on each side of a contact surface. As material within an element fails, the element is deleted from the calculation and the contact surface is adaptively redefined to include the newly exposed outer material boundary. This algorithm admits arbitrary combinations of shell and solid elements to allow modeling of composite or honeycomb structures. The algorithms and their efficiency are illustrated with several DYNA3D simulations and results are compared with experimental data.
VisIt - 3D Scientific Visualization
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
VisIt VisIt - 3D Scientific Visualization Description and Overview VisIt is a point-and-click 3D scientific visualization application that supports most common visualization techniques (e.g., iso-contouring and volume rendering) on structured and unstructured grids. Due to its distributed and parallel architecture, VisIt is able to handle very large datasets interactively. In addition, VisIt is extensible, allowing users to add data loaders or additional analysis tools to VisIt. The NERSC
3D Modeling Engine Representation Summary Report
Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang
2014-09-01
Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.
Velas, K. M.; Milroy, R. D.
2014-01-15
A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.
Shim3d Helmholtz Solution Package
Energy Science and Technology Software Center (OSTI)
2009-01-29
This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less
INGRID; 3-D Mesh Generation Nonlinear Systems
Stillman, D.W.; Rainsberger, R.
1985-07-01
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.
INGRID. 3-D Mesh Generation Nonlinear Systems
Christon, M.A.; Dovey, D.; Stillman, D.W.; Hallquist, J.O.; Rainsberger, R.B.
1992-09-01
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.
INGRID. 3-D Mesh Generation Nonlinear Systems
Stillman, D.W.; Rainsberger, R.
1985-07-01
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D (ESTSC. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.
INGRID. 3-D Mesh Generation Nonlinear Systems
Stillman, D.W.; Rainsberger, R.
1985-07-01
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.
3-D Mesh Generation Nonlinear Systems
1994-04-07
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.
MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES
Uritsky, Vadim M.; Davila, Joseph M.
2012-03-20
Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.
2006-12-12
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.
Gao Haiyong; Gao Puxian; Shimpi, Paresh; Guo Yanbing; Cai Wenjie; Lin Huijan; Staruch, M.; Jain, Menka
2011-03-21
Three-dimensional (3D) cubic perovskite (La,Sr)MnO{sub 3} (LSMO) nanofilms have been deposited on ZnO nanorod arrays with controlled dimensionality and crystallinity by radio frequency (rf) magnetron sputtering and post thermal annealing. Compared to the two-dimensional (2D) LSMO nanofilm on flat Si, the structure and magnetic properties of 3D LSMO nanofilms on ZnO nanorod arrays have a strong anisotropic morphology and thickness dependence. Ferromagnetic property has been observed in both 2D and 3D LSMO nanofilms while a ferromagnetic-superparamagnetic transition was revaled in 3D LSMO nanofilms on ZnO nanorod array with decreasing nanofilm thickness, due to a large surface dispersion effect. The LSMO/ZnO nanofilm/nanorod structures could open up new avenues for intriguing magnetic properties studies and applications of nanoscale perovskites.
Method and apparatus for control of a magnetic structure
Challenger, Michael P.; Valla, Arthur S.
1996-06-18
A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.
Energy Science and Technology Software Center (OSTI)
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less
Magnetic structure of an imbalanced Fermi gas in an optical lattice
Wunsch, B.; Fritz, L.; Zinner, N. T.; Demler, E.; Manousakis, E.
2010-01-15
We analyze the repulsive fermionic Hubbard model on square and cubic lattices with spin imbalance and in the presence of a parabolic confinement. We analyze the magnetic structure as a function of the repulsive interaction strength and polarization. In the first part of the article, we perform unrestricted Hartree-Fock calculations for the two-dimensional (2D) case and find that above a critical interaction strength U{sub c} the system turns ferromagnetic at the edge of the trap, which is in agreement with the ferromagnetic Stoner instability of a homogeneous system away from half-filling. For Ustructure in the Mott region in the center and a partially polarized compressible edge. The antiferromagnetic order in the Mott plateau is perpendicular to the direction of the imbalance. In this regime, the same qualitative behavior is expected for 2D and three-dimensional (3D) systems. In the second part of the article, we give a general discussion of magnetic structures above U{sub c}. We argue that spin conservation leads to nontrivial textures, both in the ferromagnetic polarization at the edge and for the Neel order in the Mott plateau. We discuss differences in magnetic structures for 2D and 3D cases.
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.
2009-02-03
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.
High performance hybrid magnetic structure for biotechnology applications
Humphries, David E; Pollard, Martin J; Elkin, Christopher J
2005-10-11
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.
Auersperg, Jürgen; Vogel, Dietmar; Auerswald, Ellen; Rzepka, Sven; Michel, Bernd
2014-06-19
Copper-TSVs for 3D-IC-integration generate novel challenges for reliability analysis and prediction, e.g. the need to master multiple failure criteria for combined loading including residual stress, interface delamination, cracking and fatigue issues. So, the thermal expansion mismatch between copper and silicon leads to a stress situation in silicon surrounding the TSVs which is influencing the electron mobility and as a result the transient behavior of transistors. Furthermore, pumping and protrusion of copper is a challenge for Back-end of Line (BEoL) layers of advanced CMOS technologies already during manufacturing. These effects depend highly on the temperature dependent elastic-plastic behavior of the TSV-copper and the residual stresses determined by the electro deposition chemistry and annealing conditions. That’s why the authors pushed combined simulative/experimental approaches to extract the Young’s-modulus, initial yield stress and hardening coefficients in copper-TSVs from nanoindentation experiments, as well as the temperature dependent initial yield stress and hardening coefficients from bow measurements due to electroplated thin copper films on silicon under thermal cycling conditions. A FIB trench technique combined with digital image correlation is furthermore used to capture the residual stress state near the surface of TSVs. The extracted properties are discussed and used accordingly to investigate the pumping and protrusion of copper-TSVs during thermal cycling. Moreover, the cracking and delamination risks caused by the elevated temperature variation during BEoL ILD deposition are investigated with the help of fracture mechanics approaches.
3D Charge Order Found in Superconductor
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at
3D Charge Order Found in Superconductor
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at
3D Charge Order Found in Superconductor
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at
3D Charge Order Found in Superconductor
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at
3D Charge Order Found in Superconductor
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at
3D Charge Order Found in Superconductor
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at
GPU-Accelerated Denoising in 3D (GD3D)
Energy Science and Technology Software Center (OSTI)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less
Method of using triaxial magnetic fields for making particle structures
Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.
2005-01-18
A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.
SciTech Connect: "3d printing"
Office of Scientific and Technical Information (OSTI)
3d printing" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "3d printing" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...
George Mesina; Joshua Hykes
2005-09-01
The RELAP5-3D source code is unstructured with many interwoven logic flow paths. By restructuring the code, it becomes easier to read and understand, which reduces the time and money required for code development, debugging, and maintenance. A structured program is comprised of blocks of code with one entry and exit point and downward logic flow. IF tests and DO loops inherently create structured code, while GOTO statements are the main cause of unstructured code. FOR_STRUCT is a commercial software package that converts unstructured FORTRAN into structured programming; it was used to restructure individual subroutines. Primarily it transforms GOTO statements, ARITHMETIC IF statements, and COMPUTED GOTO statements into IF-ELSEIF-ELSE tests and DO loops. The complexity of RELAP5-3D complicated the task. First, FOR_STRUCT cannot completely restructure all the complex coding contained in RELAP5-3D. An iterative approach of multiple FOR_STRUCT applications gave some additional improvements. Second, FOR_STRUCT cannot restructure FORTRAN 90 coding, and RELAP5-3D is partially written in FORTRAN 90. Unix scripts for pre-processing subroutines into coding that FOR_STRUCT could handle and post-processing it back into FORTRAN 90 were written. Finally, FOR_STRUCT does not have the ability to restructure the RELAP5-3D code which contains pre-compiler directives. Variations of a file were processed with different pre-compiler options switched on or off, ensuring that every block of code was restructured. Then the variations were recombined to create a completely restructured source file. Unix scripts were written to perform these tasks, as well as to make some minor formatting improvements. In total, 447 files comprising some 180,000 lines of FORTRAN code were restructured. These showed significant reduction in the number of logic jumps contained as measured by reduction in the number of GOTO statements and line labels. The average number of GOTO statements per subroutine
3D Wavelet-Based Filter and Method
Moss, William C.; Haase, Sebastian; Sedat, John W.
2008-08-12
A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.
Elastoplastic shell analysis in DYNA3D
Whirley, R.G. )
1991-01-01
Computer simulation of the elastoplastic behavior of thin shell structures under transient dynamic loads play an important role in many programs at Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. Often the loads are severe and the structure undergoes plastic (or permanent) deformation. These simulations are effectively performed using DYNA3D, an explicit nonlinear finite element code developed at LLNL for simulating and analyzing the large-deformation dynamic response of solids and structures. It is generally applicable to problems where the loading and response are of short duration and contain significant high-frequency components. Typical problems of this type include the contact of two impacting bodies and the resulting elastoplastic structural behavior. The objective of this investigation was to examine and improve upon the elastoplastic shell modeling capability in DYNA3D. This article summarizes the development of a new four-node quadrilateral finite element shell formulation, the YASE shell, and compares two basic methods (the stress-resultant and the thickness-resultant methods) employed in elastoplastic constitutive algorithms for shell structure modeling.
Molecular structure and motion in zero field magnetic resonance
Jarvie, T.P.
1989-10-01
Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.
3-D Mesh Generation Nonlinear Systems
Energy Science and Technology Software Center (OSTI)
1994-04-07
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surfacemore » equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.« less
3D reconstruction of tensors and vectors
Defrise, Michel; Gullberg, Grant T.
2005-02-17
Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.
X-Ray Diffraction Microscopy of Magnetic Structures
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Lensless Imaging of Magnetic Nanostructures Work performed on ALS Beamline 12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys....
Ugale, Bharat; Singh, Divyendu; Nagaraja, C.M.
2015-03-15
Two new Zn(II)–organic compounds, [Zn(muco)(dbds){sub 2}(H{sub 2}O){sub 2}] (1) and [Zn(muco)(dbs)] (2) (where, muco=trans, trans-muconate dianion, dbds=4,4′-dipyridyldisulfide and dbs=4,4′-dipyridylsulfide) have been synthesized from same precursors but at two different temperatures. Both the compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectroscopy, thermal analysis and photoluminescence studies. Compound 1 prepared at room temperature possesses a molecular structure extended to 2D supramolecular network through (H–O…H) hydrogen-bonding interactions. Compound 2, obtained at high temperature (100 °C) shows a 3-fold interpenetrating 3D framework constituted by an in situ generated dbs linker by the cleavage of S–S and C–S bonds of dbds linker. Thus, the influence of reaction temperature on the formation of two structural phases has been demonstrated. Both 1 and 2 exhibit ligand based luminescence emission owing to n→π⁎ and π→π⁎ transitions and also high thermal stabilities. - Graphical abstract: The influence of temperature on the formation of two structural phases, a 2D supramolecular network and a 3D 3-fold interpenetrating framework has been demonstrated and their luminescence emission is measured. - Highlights: • Two new Zn(II)–organic compounds were synthesized by tuning reaction temperatures. • Temperature induced in situ generation of dbs linker has been observed. • The compounds exhibit high thermal stability and luminescence emission properties. • The effect of temperature on structure, dimension and topology has been presented.
Energy Science and Technology Software Center (OSTI)
2012-01-05
ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less
Electronic Structure and Magnetism in Diluted Magnetic Semiconductors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
... with opposite alignments of the sample magnetization direction and x-ray helicity vector. ... To determine the origin of peak B, the researchers compared experimental results to atomic ...
Patarroyo, Manuel E.; Almonacid, Hannia; Moreno-Vranich, Armando
2012-01-20
Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.
Modification of structure and magnetic anisotropy of epitaxial...
Office of Scientific and Technical Information (OSTI)
films by hydrogen reduction Citation Details In-Document Search Title: Modification of structure and magnetic anisotropy of epitaxial CoFeO films by hydrogen reduction ...
X-Ray Diffraction Microscopy of Magnetic Structures (Journal...
Office of Scientific and Technical Information (OSTI)
Prev Next Title: X-Ray Diffraction Microscopy of Magnetic Structures Authors: Turner, Joshua J. ; Huang, Xiaojing ; Krupin, Oleg ; Seu, Keoki A. ; Parks, Daniel ; Kevan,...
3-D Metals | Open Energy Information
Metals Jump to: navigation, search Name 3-D Metals Facility 3-D Metals Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Valley City OH...
Platinum dendritic nanoparticles with magnetic behavior
Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang
2014-07-21
Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ?4?nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.
Finite element modeling of magnetic compression using coupled electromagnetic-structural codes
Hainsworth, G.; Leonard, P.J.; Rodger, D.; Leyden, C.
1996-05-01
A link between the electromagnetic code, MEGA, and the structural code, DYNA3D has been developed. Although the primary use of this is for modelling of Railgun components, it has recently been applied to a small experimental Coilgun at Bath. The performance of Coilguns is very dependent on projectile material conductivity, and so high purity aluminium was investigated. However, due to its low strength, it is crushed significantly by magnetic compression in the gun. Although impractical as a real projectile material, this provides useful benchmark experimental data on high strain rate plastic deformation caused by magnetic forces. This setup is equivalent to a large scale version of the classic jumping ring experiment, where the ring jumps with an acceleration of 40 kG.
3D Elastic Seismic Wave Propagation Code
Energy Science and Technology Software Center (OSTI)
1998-09-23
E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.
Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.
2010-01-01
The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.
Non-linear tearing of 3D null point current sheets
Wyper, P. F. Pontin, D. I.
2014-08-15
The manner in which the rate of magnetic reconnection scales with the Lundquist number in realistic three-dimensional (3D) geometries is still an unsolved problem. It has been demonstrated that in 2D rapid non-linear tearing allows the reconnection rate to become almost independent of the Lundquist number (the “plasmoid instability”). Here, we present the first study of an analogous instability in a fully 3D geometry, defined by a magnetic null point. The 3D null current layer is found to be susceptible to an analogous instability but is marginally more stable than an equivalent 2D Sweet-Parker-like layer. Tearing of the sheet creates a thin boundary layer around the separatrix surface, contained within a flux envelope with a hyperbolic structure that mimics a spine-fan topology. Efficient mixing of flux between the two topological domains occurs as the flux rope structures created during the tearing process evolve within this envelope. This leads to a substantial increase in the rate of reconnection between the two domains.
Qiao Jian; Zhang Lirong; Yu Yang; Li Guanghua; Jiang Tianchan; Huo Qisheng; Liu Yunling
2009-07-15
A new open-framework iron (III) phosphite |C{sub 4}N{sub 3}H{sub 14}|[Fe{sub 3}(HPO{sub 3}){sub 4}F{sub 2}(H{sub 2}O){sub 2}] has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent. Single-crystal X-ray diffraction analysis reveals that the compound crystallizes in the monoclinic space group C2/c having unit cell parameters a=12.877(3) A, b=12.170(2) A, c=12.159(2) A, beta=93.99(3){sup o}, V=1900.9(7) A{sup 3}, and Z=4 with R{sub 1}=0.0447, wR{sub 2}=0.0958. The complex structure consists of HPO{sub 3} pseudo-tetrahedra and {l_brace}Fe{sub 3}O{sub 14}F{sub 2}{r_brace} trimer building units. The assembly of these building units generates 3D inorganic framework with intersecting 6-, 8-, and 10-ring channels. The DETA cations are located in the 10-ring channels linked by hydrogen bonds. The Moessbauer spectrum shows that there exhibit two crystallographically independent iron (III) atoms. And the magnetic investigation shows the presence of antiferromagnetic interactions. Further characterization of the title compound was performed using X-ray powder diffraction (XRD), infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP) and elemental analyses. - Graphical abstract: A new three-dimensional iron phosphite with intersecting 6-, 8-, 10-ring channels has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent.
Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma
Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D.
2014-01-15
Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.
Riemke, Richard Allan
2001-09-01
The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.
Riemke, Richard Allan
2002-09-01
The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.
Giant Controllable Magnetization Changes Induced by Structural...
Office of Scientific and Technical Information (OSTI)
Citation Details In-Document Search Title: Giant Controllable Magnetization ... Type: Accepted Manuscript Journal Name: Scientific Reports Additional Journal Information: Journal ...
Picture of the Week: An explosion of 3D printing technology
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
structure. May 24, 2015 An explosion of 3D printing technology x View image on Flickr Additive Manufacturing, known also as 3D printing, allows for the rapid production of...
Clement, T.P.; Jones, N.L.
1998-02-01
RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.
TAURUS. 3-d Finite Element Code Postprocessor
Whirley, R.G.
1991-05-01
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-d Finite Element Code Postprocessor
Whirley, R.G.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1984-05-01
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1993-11-30
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Kennedy, T.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
X-Ray Diffraction Microscopy of Magnetic Structures
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...
Depth-resolved magnetic and structural analysis of relaxing epitaxial...
Office of Scientific and Technical Information (OSTI)
Depth-resolved magnetic and structural analysis of relaxing epitaxial