National Library of Energy BETA

Sample records for 3d magnetic structure

  1. A 3D Magnetic Structure Of Izu-Oshima Volcano And Their Changes...

    Open Energy Info (EERE)

    data show that the volcanic edifice of Izu-Oshima Volcano has a mean magnetization intensity ranging from 10.4 to 12.1 Am. The derived 3D magnetic structure shows low...

  2. Numerical integration of structural elements in NIKE3D and DYNA3D

    SciTech Connect (OSTI)

    Maker, B.N.; Whirley, R.G.; Engelmann, B.E.

    1992-08-05

    The beam and shell elements found in many linear elastic finite element codes accept integrated cross sectional properties as input, and produce solutions using classical beam and shell theory. These theories are built upon the equation of resultant forces and moments with integrals of assumed stress distributions over the cross section. In contrast, the structural elements in NIKE3D and DYNA3D are formulated to represent nonlinear geometric and material behavior. Thus stress distributions may not necessarily be representable by simple functions of cross section variables. In NIKE3D and DYNA3D, the Hughes-Liu beam element and all shell elements accommodate these more general stress distributions by computing stresses at various points in the cross section. The integration of stresses within each element is then performed numerically, using a variety of methods. This report describes these numerical integration procedures in detail, and highlights their application to engineering problems. Several other features of the structural elements are also described, including force and moment resultants, user-defined reference surfaces, and user-defined integration rules. Finally, the shear correction factor is described in a section which relates results from NIKE3D and DYNA3D to those obtained from classical beam theory.

  3. A Novel Approach for Introducing 3D Cloud Spatial Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Approach for Introducing 3D Cloud Spatial Structure Into 1D Radiative Transfer For original submission and image(s), see ARM Research Highlights http:www.arm.govscience...

  4. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect (OSTI)

    Howison, Mark; Wes Bethel, E.

    2014-05-29

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  5. X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals

    SciTech Connect (OSTI)

    Iota, V; Park, J; Baer, B; Yoo, C; Shen, G

    2003-11-18

    The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at high pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d-band occupancy, and are

  6. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect (OSTI)

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  7. Automating the determination of 3D protein structure

    SciTech Connect (OSTI)

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  8. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOE Patents [OSTI]

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  9. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect (OSTI)

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  10. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    Energy Science and Technology Software Center (OSTI)

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less

  11. The ITER 3D Magnetic Diagnostic Response to Applied n=3 and n=4 RMP's

    SciTech Connect (OSTI)

    Lazerson, S A

    2014-09-01

    The ITER magnetic diagnostic response to applied n=3 and n=4 RMPs has been calculated for the 15MA scenario. The VMEC code was utilized to calculate free boundary 3D ideal MHD equilibria, where the non-stellarator symmetric terms were included in the calculation. This allows an assessment to be made of the possible boundary displacements due to RMP application in ITER. As the VMEC code assumes a continuous set of nested flux surface, the possibility of island and stochastic region formation is ignored. At the start of the current at-top (L-Mode) application of n = 4 RMP's indicates approximately 1 cm peak-to-peak displacements on the low field side of the plasma while later in the shot (H-mode) perturbations as large as 3 cm are present. Forward modeling of the ITER magnetic diagnostics indicates significant non-axisymmetric plasma response, exceeding 10% the axisymmetric signal in many of the flux loops. Magnetic field probes seem to indicate a greater robustness to 3D effects but still indicate large sensitivities to 3D effects in a number of sensors. Forward modeling of the diagnostics response to 3D equilibria allows assessment of diagnostics design and control scenarios.

  12. Measurement of 3D plasma response to external magnetic perturbations in the presence of a rotating external kink

    SciTech Connect (OSTI)

    Shiraki, Daisuke; Angelini, Sarah M.; Byrne, Patrick J.; DeBono, Bryan A.; Hughes, Paul E.; Levesque, Jeffrey P.; Mauel, Michael E.; Navratil, Gerald A.; Peng, Qian; Rhodes, Dov J.; Stoafer, Christopher C.; Maurer, David A.; Rath, Nikolaus

    2013-10-15

    The detailed measurements of the 3D plasma response to applied external magnetic perturbations in the presence of a rotating external kink are presented, and compared with the predictions of a single-helicity linear model of kink mode dynamics. The modular control coils of the High Beta Tokamak-Extended Pulse (HBT-EP) device are used to apply resonant m/n = 3/1 magnetic perturbations to wall-stabilized tokamak plasmas with a pre-existing rotating 3/1 kink mode. The plasma response is measured in high-resolution with the extensive magnetic diagnostic set of the HBT-EP device. The spatial structures of both the naturally rotating kink mode and the externally driven response are independently measured and observed to be identical, while the temporal dynamics are consistent with the independent evolution and superposition of the two modes. This leads to the observation of a characteristic change in 3D field dynamics as a function of the applied field amplitude. This amplitude dependence is found to be different for poloidal and radial fields. The measured 3D response is compared to and shown to be consistent with the predictions of the linear single-helicity model in the “high-dissipation” regime, as reported previously [M. E. Mauel et al., Nucl. Fusion 45, 285 (2005)].

  13. Delineation of nuclear structures in 3D multicellular systems

    Energy Science and Technology Software Center (OSTI)

    2013-09-13

    A pipeline, implemented within the Insight Segmentation and Registration Toolkit (ITK) and The Visualization Toolkit (VTK) framework, to delineate each nucleus and to profile morphometric and colony organization. At an abstract level, our approach is an extension of a previously developed method for monolayer call structure models.

  14. Code System for Analysis of 3-D Reinforced Concrete Structures.

    Energy Science and Technology Software Center (OSTI)

    1999-11-22

    Version 00 NONSAP-C is a finite element program for determining the static and dynamic response of three-dimensional reinforced concrete structures. Long-term, or creep, behavior of concrete structures can also be analyzed. Nonlinear constitutive relations for concrete under short-term loads are incorporated in two time-independent models, a variable-modulus approach with orthotropic behavior induced in the concrete due to the development of different tangent moduli in different directions and an elastic-plastic model in which the concrete ismore » assumed to be a continuous, isotropic, and linearly elastic-plastic strain-hardening-fracture material. A viscoelastic constitutive model for long-term thermal creep of concrete is included. Three-dimensional finite elements available in NONSAP-C include a truss element, a multinode tendon element for prestressed and post tensioned concrete structures, an elastic-plastic membrane element to represent the behavior of cavity liners, and a general isoparametric element with a variable number of nodes for analysis of solids and thick shells.« less

  15. Accurate Band-Structure Calculations for the 3d Transition Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has developed a method to calculate accurate band structures and bandgap energies for 3d transition metal oxides using an augmented GW formalism. Significance and Impact This approach provides a computationally viable route for high-throughput prediction of band structures and optical properties in transition metal compounds. Accurate Band-Structure Calculations for the 3d Transition Metal Oxides S. Lany, Phys. Rev. B 87, 085112 (2013). Density of states (DOS) and absorption spectrum, shown for

  16. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    SciTech Connect (OSTI)

    Slough, John

    2015-02-01

    modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the

  17. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  18. Local-global alignment for finding 3D similarities in protein structures

    DOE Patents [OSTI]

    Zemla, Adam T.

    2011-09-20

    A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.

  19. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  20. A New Way to Display the 3-D Structure of Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Way to Display the 3-D Structure of Molecules Researchers have created a sort of nanoscale display case that enables new atomic-scale views of hard-to-study chemical and biological samples. Their work could help to reveal new structural details for a range of challenging molecules, such as complex chemical compounds and potentially new drugs, by stabilizing them inside metal-organic frameworks (MOFs).

  1. Connecting Global Measures of 3D Magnetic Reconnection to Local Kinetic Physics

    SciTech Connect (OSTI)

    Daughton, William Scott

    2015-07-16

    After giving the motivation for the work, slides present the topic under the following headings: Description of LAPD experiment; Actual simulation setup; Simple kinetic theory of ined-tied tearing; Diagnostics to characterizing 3D reconnection; Example #1 - short-tied system; and Example #2 - long line-tied system. Colorful simulations are shown for quasipotential vs field line exponentiation, field line integrated Ohms Law, and correlation with agyrotopy & energy conversion for example #1; and evolution of current density for largest case, field exponentiation vs quasi-potential, and time evolution of magnetic field lines for example #2. To satisfy line-tied boundary conditions, there is need for superposition of oblique modes--the simple two-mode approximation works surprisingly well. For force-free layers with bg >1, the fastest growing periodic modes are oblique with kx? ~0.5. This implies a minimum length of Ly > 2??bg. There are strong correlations between ? ? ? ? A0e (observable with spacecraft). Electron pressure tensor is the dominant non-ideal term.

  2. Magnetic Structure of 3D Sculpted Cobalt Nanoparticles | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the fields of photonics and optics as polarization filters, and as tissue scaffolds in biomedical applications. This research paves a path toward a clearer fundamental...

  3. Magnetic multilayer structure

    DOE Patents [OSTI]

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  4. DYNA3D (Nonlinear Dynamic Analysis of Structures in Three Dimensions) user's manual

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1988-04-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-eight material models and eleven equations of state to cover a wide range of material behavior. 56 refs., 46 figs.

  5. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions)

    SciTech Connect (OSTI)

    Hallquist, J.O.; Benson, D.J.

    1987-07-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-five material models and eleven equations of state to cover a wide range of material behavior.

  6. DYNA3D user's manual: (Nonlinear dynamic analysis of structures in three dimensions): Revision 5

    SciTech Connect (OSTI)

    Hallquist, J.O.; Whirley, R.G.

    1989-05-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. Using a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. The 1989 version of DYNA3D contains thirty material models and ten equations of state to cover a wide range of material behavior.

  7. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions). Revision 2

    SciTech Connect (OSTI)

    Hallquist, J.O.; Benson, D.J.

    1986-03-01

    The user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures is updated. A contact-impact algorithm permit gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains sixteen material models and nine equations of state to cover a wide range of material behavior. 40 refs., 43 figs.

  8. A new approach for magnetic curves in 3D Riemannian manifolds

    SciTech Connect (OSTI)

    Bozkurt, Zehra Gk, Ismail Yayl?, Yusuf Ekmekci, F. Nejat

    2014-05-15

    A magnetic field is defined by the property that its divergence is zero in a three-dimensional oriented Riemannian manifold. Each magnetic field generates a magnetic flow whose trajectories are curves called as magnetic curves. In this paper, we give a new variational approach to study the magnetic flow associated with the Killing magnetic field in a three-dimensional oriented Riemann manifold, (M{sup 3}, g). And then, we investigate the trajectories of the magnetic fields called as N-magnetic and B-magnetic curves.

  9. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems https://vision.lbl.gov/Software/3DMorphometry/

  10. Synthesis, structure and magnetic properties of a new iron phosphonate-oxalate with 3D framework: [Fe(O{sub 3}PCH{sub 3})(C{sub 2}O{sub 4}){sub 0.5}(H{sub 2}O)

    SciTech Connect (OSTI)

    Zhang Yangyang [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Qi Yue [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhang Ying [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liu Ziyu [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhao Yinfeng [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liu Zhongmin [Applied Catalysis Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)]. E-mail: liuzm@dicp.ac.cn

    2007-08-07

    A new iron phosphonate-oxalate [Fe(O{sub 3}PCH{sub 3})(C{sub 2}O{sub 4}){sub 0.5}(H{sub 2}O)] (1), has been synthesized under hydrothermal condition. The single-crystal X-ray diffraction studies reveal that 1 consists of layers of vertex-linked FeO{sub 6} octahedra and O{sub 3}PC tetrahedra, which are further connected by bis-chelate oxalate bridges, giving to a 3D structure with 10-membered channels. Crystal data: monoclinic, P2{sub 1}/n (no. 14), a=4.851(2)A, b=16.803(7)A, c=7.941(4)A, {beta}=107.516(6){sup o}, V=617.2(5)A{sup 3}, Z=4, R{sub 1}=0.0337 and wR{sub 2}=0.0874 for 1251 reflections [I>2{sigma}(I)]. Mossbauer spectroscopy measurement confirms the existence of high-spin Fe(III) in 1. Magnetic studies show that 1 exhibits weak ferromagnetism with T{sub N}=30K due to a weak spin canting.

  11. Monte Carlo generators for studies of the 3D structure of the nucleon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Avakian, Harut; D'Alesio, U.; Murgia, F.

    2015-01-23

    In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.

  12. Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J. -K.; Podesta, M.; et al

    2016-05-20

    Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfv´en Eigenmodes (TAE) and Global Alf´ven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfv´en continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfv´en instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less

  13. Gyrokinetic Toroidal Code: a 3D Parallel Particle-in-Cell Code to Study Microturbulence in Magnetized Plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    benchmarking and optimizing GTC on High Performance Computers Stéphane Ethier Princeton Plasma Physics Laboratory NERSC Users' Group meeting June 2006 Work Supported by DOE Contract No.DE-AC02-76CH03073 and by the DOE SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. The Gyrokinetic Toroidal Code * 3D particle-in-cell code to study microturbulence in magnetically confined fusion plasmas. * Solves the gyro-averaged Vlasov equation. * Gyrokinetic Poisson

  14. Plasma equilibrium in 3D magnetic confinement systems and soliton theory

    SciTech Connect (OSTI)

    Skovoroda, A. A.

    2009-08-15

    Single-valued conformal flux (magnetic) coordinates can always be introduced on arbitrary toroidal magnetic surfaces. It is shown how such coordinates can be obtained by transforming Boozer magnetic coordinates on the surfaces. The metrics is substantially simplified and the coordinate grid is orthogonalized at the expense of a more complicated representation of the magnetic field in conformal flux coordinates. This in turn makes it possible to introduce complex angular flux coordinates on any toroidal magnetic surface and to develop efficient methods for a complex analysis of the geometry of equilibrium magnetic surfaces. The complex analysis reveals how the plasma equilibrium problem is related to soliton theory. Magnetic surfaces of constant mean curvature are considered to exemplify this relationship.

  15. A fully implicit method for 3D quasi-steady state magnetic advection-diffusion.

    SciTech Connect (OSTI)

    Siefert, Christopher; Robinson, Allen Conrad

    2009-09-01

    We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.

  16. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    SciTech Connect (OSTI)

    Shimizu, T.

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  17. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

    SciTech Connect (OSTI)

    Kolotilina, L.; Nikishin, A.; Yeremin, A.

    1994-12-31

    The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

  18. DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics

    SciTech Connect (OSTI)

    Whirley, R.G.

    1991-05-01

    This report is the User Manual for the 1991 version of DYNA3D, and also serves as an interim User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems. 73 refs., 49 figs.

  19. Setting up boundary conditions for soil-structure interaction problems with DYNALK (a link from TENSOR to DYNA3D)

    SciTech Connect (OSTI)

    Thigpen, L.; Peterson, J.C.

    1983-08-01

    This report provides instructions on the use of the DYNALK computer program to generate boundary conditions for a soil island used in soil-structure interaction problems. DYNALK converts temporal motions from 2-D TENSOR calculations into appropriate three-dimensional boundary conditions for a DYNA3D soil-structure interaction problem. The program is operational on the CRAY-1 computer.

  20. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect (OSTI)

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie

    2014-09-14

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 and an overall minimum RMSD of 1.9 from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  1. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  2. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  3. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  4. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    SciTech Connect (OSTI)

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  5. Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP. S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP Site Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington P. W. Heck Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction One of the primary Atmospheric

  6. The 3D structure of the hadrons: recents results and experimental program at Jefferson Lab

    SciTech Connect (OSTI)

    Munoz Camacho, Carlos

    2014-04-01

    The understanding of Quantum Chromodynamics (QCD) at large distances still remains one of the main outstanding problems of nuclear physics. Studying the internal structure of hadrons provides a way to probe QCD in the non-perturbative domain and can help us unravel the internal structure of the most elementary blocks of matter. Jefferson Lab (JLab) has already delivered results on how elementary quarks and gluons create nucleon structure and properties. The upgrade of JLab to 12 GeV will allow the full exploration of the valence-quark structure of nucleons and the extraction of real threedimensional pictures. I will present recent results and review the future experimental program at JLab.

  7. Atomic-resolution 3D structure of amyloid β fibrils: The Osaka mutation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schutz, Anne K.; Wall, Joseph; Vagt, Toni; Huber, Matthias; Ovchinnikova, Oxana Y.; Cadalbert, Riccardo; Guntert, Peter; Bockmann, Anja; Glockshuber, Rudi; Meier, Beat H.

    2014-11-13

    Despite its central importance for understanding the molecular basis of Alzheimer's disease (AD), high-resolution structural information on amyloid β-peptide (Aβ) fibrils, which are intimately linked with AD, is scarce. We report an atomic-resolution fibril structure of the Aβ 1-40 peptide with the Osaka mutation (E22Δ), associated with early-onset AD. The structure, which differs substantially from all previously proposed models, is based on a large number of unambiguous intra- and intermolecular solid-state NMR distance restraints

  8. Atomic-resolution 3D structure of amyloid ? fibrils: The Osaka mutation

    SciTech Connect (OSTI)

    Schutz, Anne K.; Wall, Joseph; Vagt, Toni; Huber, Matthias; Ovchinnikova, Oxana Y.; Cadalbert, Riccardo; Guntert, Peter; Bockmann, Anja; Glockshuber, Rudi; Meier, Beat H.

    2014-11-13

    Despite its central importance for understanding the molecular basis of Alzheimer's disease (AD), high-resolution structural information on amyloid ?-peptide (A?) fibrils, which are intimately linked with AD, is scarce. We report an atomic-resolution fibril structure of the A? 1-40 peptide with the Osaka mutation (E22?), associated with early-onset AD. The structure, which differs substantially from all previously proposed models, is based on a large number of unambiguous intra- and intermolecular solid-state NMR distance restraints

  9. STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA

    SciTech Connect (OSTI)

    Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D. E-mail: PGazis@sbcglobal.net

    2015-01-20

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.

  10. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOE Patents [OSTI]

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  11. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    SciTech Connect (OSTI)

    Li, Ming; Kang, Zhan; Huang, Xiaobo

    2015-08-28

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  12. Hydrothermal synthesis and characteristics of 3-D hydrated bismuth oxalate coordination polymers with open-channel structure

    SciTech Connect (OSTI)

    Chen Xinxiang; Cao Yanning; Zhang Hanhui Chen Yiping; Chen Xuehuan; Chai Xiaochuan

    2008-05-15

    Two new 3-D porous bismuth coordination polymers, (C{sub 5}NH{sub 6}){sub 2}[Bi{sub 2}(H{sub 2}O){sub 2}(C{sub 2}O{sub 4}){sub 4}].2H{sub 2}O 1 and (NH{sub 4})[Bi(C{sub 2}O{sub 4}){sub 2}].3H{sub 2}O 2, have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic symmetry, P2{sub 1}/c space group with a=10.378(2) A, b=17.285(3) A, c=16.563(5) A, {alpha}=90 deg., {beta}=119.66(2) deg., {gamma}=90 deg., V=2581.8(10) A{sup 3}, Z=4, R{sub 1}=0.0355 and wR{sub 2}=0.0658 for unique 4713 reflections I >2{sigma}(I). Compound 2 crystallizes in the tetragonal symmetry, I4{sub 1}/amd space group with a=11.7026(17) A, b=11.7026(17) A, c=9.2233(18) A, {alpha}=90 deg., {beta}=90 deg., {gamma}=90 deg., V=1263.1(4) A{sup 3}, Z=32, R{sub 1}=0.0208 and wR{sub 2}=0.0518 for unique 359 reflections I> 2{sigma}(I). Compounds 1 and 2 are 3-D open-framework structures with a 6{sup 6} uniform net, which consist of honeycomb-like layers connected to each other by oxalate units. While different guest molecules fill in their cavities of honeycomb-like layers, study of ultrasonic treatment on 2 indicates the replacement of NH{sub 4}{sup +} by K{sup +} on potassium ion exchange. Thermogravimetric analysis indicates that the open-channel frameworks are thermally stable up to 200 deg. C, and other characterizations are also described by elemental analysis, IR and ultraviolet-visible diffuse reflectionintegral spectrum (UV-Vis DRIS). - Graphical abstract: Two novel 3-D extended porous coordination polymers have been synthesized by hydrothermal method. Both compounds are 3-D open-framework structures with a 6{sup 6} uniform net, which consist of honeycomb-like layers connected to each other by oxalate units. While different guest molecules fill in their cavities of honeycomb-like layers. Study of ultrasonic treatment on 2 indicates the replacement of NH{sub 4}{sup +} by K{sup +} on potassium ion exchange.

  13. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    SciTech Connect (OSTI)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  14. The linearly scaling 3D fragment method for large scale electronic structure calculations

    SciTech Connect (OSTI)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  15. DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics, User manual. Revision 1

    SciTech Connect (OSTI)

    Whirley, R.G.; Engelmann, B.E.

    1993-11-01

    This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.

  16. DYNA3D

    SciTech Connect (OSTI)

    Kennedy, T. )

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, and resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack 'Tuesday' high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  17. STELLOPT Modeling of the 3D Diagnostic Response in ITER

    SciTech Connect (OSTI)

    Lazerson, Samuel A

    2013-05-07

    The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.

  18. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, Myles A.; Morris, Robert S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  19. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  20. DYNA3D96. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Lin, J.

    1993-11-01

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  1. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ionsmore » on the spinel lattice.« less

  2. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    SciTech Connect (OSTI)

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice.

  3. 3D Rotation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy 3D Printed Tool for Building Aircraft Achieves Guinness World Records Title 3D Printed Tool for Building Aircraft Achieves Guinness World Records Title August 30, 2016 - 2:07pm Addthis Official measurement of the 3D printed trim tool co-developed by Oak Ridge National Laboratory and The Boeing Company exceeded the required minimum size to achieve the Guinness World Records title of largest solid 3D printed item. Official measurement of the 3D printed trim tool

  4. Synthesis and structure of a 2D → 3D framework with coexistence of hydrogen bonds and polythreading character

    SciTech Connect (OSTI)

    Zhang, Ming-Dao Zhuang, Qi-Fan; Xu, Jing; Cao, Hui

    2015-12-15

    The title complex, ([Co(BPPA)(5-OH-bdc)] · (H{sub 2}O)){sub n} was prepared under hydrothermal conditions based on two ligands, namely, bis(4-(pyridin-4-yl)phenyl)amine (BPPA) and 5-hydroxyisophthalic acid (5-OH-H{sub 2}bdc). 5-OH-bdc{sup 2–} anions coordinated to Co atoms to give layers in crystal. BPPA ligands coordinate to Co atoms and thread into the adjacent layers. There are hydrogen bonds between adjacent layers, giving rise to a 2D → 3D framework.

  5. Plated lamination structures for integrated magnetic devices

    DOE Patents [OSTI]

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  6. F3D

    Energy Science and Technology Software Center (OSTI)

    003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms http://camera.lbl.gov/software

  7. Yb{sub 5}Ni{sub 4}Sn{sub 10} and Yb{sub 7}Ni{sub 4}Sn{sub 13}: New polar intermetallics with 3D framework structures

    SciTech Connect (OSTI)

    Lei Xiaowu; Sun Zhongming; Li Longhua; Zhong Guohua; Hu Chunli; Mao Jianggao

    2010-04-15

    The title compounds have been obtained by solid state reactions of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction studies. Yb{sub 5}Ni{sub 4}Sn{sub 10} adopts the Sc{sub 5}Co{sub 4}Si{sub 10} structure type and crystallizes in the tetragonal space group P4/mbm (No. 127) with cell parameters of a=13.785(4) A, c=4.492 (2) A, V=853.7(5) A{sup 3}, and Z=2. Yb{sub 7}Ni{sub 4}Sn{sub 13} is isostructural with Yb{sub 7}Co{sub 4}InGe{sub 12} and crystallizes in the tetragonal space group P4/m (No. 83) with cell parameters of a=11.1429(6) A, c=4.5318(4) A, V=562.69(7) A{sup 3}, and Z=1. Both structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are occupied by the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic. These results are in agreement with those from temperature-dependent resistivity and magnetic susceptibility measurements. - Graphical abstract: Two new ytterbium nickel stannides, namely, Yb{sub 5}Ni{sub 4}Sn{sub 10} and Yb{sub 7}Ni{sub 4}Sn{sub 13}, have been synthesized and structurally characterized by single-crystal X-ray diffraction studies. Both their structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are situated by all the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic, which are in accordance with the results from temperature-dependent resistivity and magnetic susceptibility measurements.

  8. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    SciTech Connect (OSTI)

    Ciller, Carlos; De Zanet, Sandro I.; Rüegsegger, Michael B.; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L.; Kowal, Jens H.; and others

    2015-07-15

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

  9. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Graphene's 3D Counterpart Print Monday, 21 July 2014 08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form

  10. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can exist as a form of quantum matter called a three--dimensional topological Dirac semi--metal (3DTDS). This is the first experimental confirmation of 3D Dirac fermions...

  11. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

  12. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    some exciting phenomena and applications of graphene in 3D materials-it also gives rise to many unusual properties. In addition to these unusual properties, the 3DTDS is the...

  13. Nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials

    SciTech Connect (OSTI)

    Yan, Tao; Li, Ruiyi; Li, Zaijun

    2014-03-01

    Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: The paper reported the microwave synthesis of nickelcobalt layered double hydroxide/graphene composite. The novel synthesis method is rapid, green, efficient and can be well used to the mass production. The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. The composite offers excellent supercapacitive performance. This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickelcobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g{sup ?1} at the current density of 1 A g{sup ?1}. The specific capacitance can remain 1274.7 F g{sup ?1} at the current density of 15 A g{sup ?1} and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be potentially applied in

  14. RAG-3D: A search tool for RNA 3D substructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  15. RAG-3D: A search tool for RNA 3D substructures

    SciTech Connect (OSTI)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.

  16. Freezing and Melting of 3D Complex Plasma Structures under Microgravity Conditions Driven by Neutral Gas Pressure Manipulation

    SciTech Connect (OSTI)

    Khrapak, S. A.; Klumov, B. A.; Huber, P.; Thomas, H. M.; Ivlev, A. V.; Morfill, G. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Petrov, O. F.; Fortov, V. E.; Malentschenko, Yu.; Volkov, S.

    2011-05-20

    Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.

  17. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect (OSTI)

    Pyka, Grzegorz; Kerckhofs, Greet

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  18. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional

  19. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional

  20. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional

  1. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene's 3D Counterpart Print ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon. The discovery promises exciting new things to come for the high--tech industry, including much faster transistors and far more compact hard drives. Researchers discovered that sodium bismuthide can exist as a form of quantum matter called a three--dimensional

  2. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted

  3. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect (OSTI)

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  4. Mapping strain gradients in the FIB-structured InGaN/GaN multilayered films with 3D x-ray microbeam.

    SciTech Connect (OSTI)

    Barabash, R. I.; Gao, Y. F.; Ice, G. E.; Barabash, O. M.; Chung, J.; Liu, W.; Lohmeyer, H.; Sebald, K.; Gutowski, J.; Bottcher, T.; Hommel, D.; Kroger, R.

    2010-11-25

    This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence ({mu}-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation of complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent.

  5. Analysis of the rotational structure in the high-resolution infrared spectra of trans-hexatriene-2-d1 and -3-d1

    SciTech Connect (OSTI)

    Craig, Norman C.; Chen, Yihui; van Besien, Herman; Blake, Thomas A.

    2014-09-01

    The 2-d1 and 3-d1 isotopologues of trans-hexatriene have been synthesized, and their high-resolution (0.0015 cm-1) IR spectra have been recorded. For each of the isotopologues the rotational structure in four C-type bands for out-of-plane vibrational modes has been analyzed, and the ground state combination differences (GSCDs) have been pooled. Ground state rotational constants have been fitted to the GSCDs. For the 2-d species, A0, B0, and C0 values of 0.7837254(5), 0.0442806(3), and 0.0419299(2) cm-1 were fitted to 2450 GSCDs. For the 3-d species, A0, B0, and C0 values of 0.7952226(8), 0.0446149(7), and 0.0422661(4) cm-1 were fitted to 2234 GSCDs. For the eleven out-of-plane modes of the two isotopologues, predictions of anharmonic wavenumbers and harmonic intensities have been computed and compared with experiment where possible.

  6. 3D Structures of Biomolecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    However, it is only applicable primarily to macromolecules in the lower molecular weight ... With the prospects of X-ray free electron lasers (X-FEL) (5, 6), the radiation damage ...

  7. A novel 3D structure composed of strings of hierarchical TiO{sub 2} spheres formed on TiO{sub 2} nanobelts with high photocatalytic properties

    SciTech Connect (OSTI)

    Jiang, Yongjian; Li, Meicheng; Song, Dandan; Li, Xiaodan; Yu, Yue

    2014-03-15

    A novel hierarchical titanium dioxide (TiO{sub 2}) composite nanostructure with strings of anatase TiO{sub 2} hierarchical micro-spheres and rutile nanobelts framework (TiO{sub 2} HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO{sub 2} nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m{sup 2}/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO{sub 2} HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO{sub 2} may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries. -- Graphical abstract: Novel TiO{sub 2} with anatase micro-spheres and rutile nanobelts is synthesized. Enhanced photocatalysis is attributed to hierarchical structures (3D spheres), conductive channel (1D nanobelts) and large specific surface area (2D nanosheet). Highlights: • The novel TiO{sub 2} nanostructure (HSN) is fabricated for the first time. • HSN is composed of strings of anatase hierarchical spheres and rutile nanobelt. • HSN presents a larger S{sub BET} of 191 m{sup 2}/g, 3 times larger than the Degussa P25 (59 m{sup 2}/g). • HSN owns three kinds of dimensional TiO{sub 2} (1D, 2D and 3D) simultaneously. • HSN exhibits better photocatalytic performance compared with Degussa P25.

  8. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Chu, R.; Amakai, M.; Lung, H.C.; Ishigai, T.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  9. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Kennedy, T.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, and resultant plasticity. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  10. Static & Dynamic Response of 3D Solids

    Energy Science and Technology Software Center (OSTI)

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  11. Laser spectroscopy of the 4s4p {sup 3}P{sub 2} - 4s3d {sup 1}D{sub 2} transition on magnetically trapped calcium atoms

    SciTech Connect (OSTI)

    Dammalapati, U.; Norris, I.; Burrows, C.; Riis, E.

    2011-06-15

    Laser excitation of the 4s4p {sup 3}P{sub 2} - 4s3d {sup 1}D{sub 2} transition in atomic calcium has been observed and the wavelength determined to 1530.5298(6) nm. The metastable 4s4p {sup 3}P{sub 2} atoms were magnetically trapped in the quadrupole magnetic field of a magneto-optical trap. This state represents the only ''loss'' channel for the calcium atoms when laser cooled on the 4s{sup 2} {sup 1}S{sub 0} - 4s4p {sup 1}P{sub 1} transition. A rate equation model shows that an order of magnitude more atoms are trapped in this state compared with those taking part in the main cooling cycle. Excitation of the {sup 3}P{sub 2} atoms back up to the 4s3d {sup 1}D{sub 2} state provides a means of accessing these atoms. Efficient repumping is achieved if the 1530-nm laser is used in conjunction with a 672-nm laser driving the 4s3d {sup 1}D{sub 2} - 4s5p {sup 1}P{sub 1} transition. In the present experiment, we detected about 4.5x10{sup 4} trapped {sup 3}P{sub 2} atoms, a relatively low atom density, and measured a lifetime of approximately 1 s, which is limited by background collisions.

  12. 3-D seismology in the Arabian Gulf

    SciTech Connect (OSTI)

    Al-Husseini, M.; Chimblo, R.

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  13. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  14. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  15. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  16. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  17. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  18. 3-D Model for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

  19. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E.

    1993-11-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  20. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E.

    1993-11-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  1. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack `Tuesday` high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  2. DYNA3D; Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  3. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  4. DYNA3D. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    Whirley, R.G.

    1989-05-01

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  5. Explicit 3-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (OSTI)

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less

  6. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect (OSTI)

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  7. Structural modulations and magnetic properties of off-stoichiometric...

    Office of Scientific and Technical Information (OSTI)

    magnetic shape memory alloys Prev Next Title: Structural modulations and magnetic properties of off-stoichiometric Ni-Mn-Ga magnetic shape memory alloys Authors: ...

  8. X-ray imaging of vortex cores in confined magnetic structures

    SciTech Connect (OSTI)

    Fischer, P.; Im, M.-Y.; Kasai, S.; Yamada, K.; Ono, T.; Thiaville, A.

    2011-02-11

    Cores of magnetic vortices in micron-sized NiFe disk structures, with thicknesses between 150 and 50 nm, were imaged and analysed by high resolution magnetic soft X-ray microscopy. A decrease of the vortex core radius was observed, from #24; ~38 to 18 nm with decreasing disk thickness. By comparing with full 3D micromagnetic simulations showing the well-known barrel structure, we obtained excellent agreement taking into account instrumental broadening and a small perpendicular anisotropy. The proven magnetic spatial resolution of better than 25 nm was sufficient to identify a negative dip close to the vortex core, originating from stray fields of the core. Magnetic vortex structures can serve as test objects for evaluating sensitivity and spatial resolution of advanced magnetic microscopy techniques.

  9. Electron Temperature Structures Associated With Magnetic Tearing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures Associated With Magnetic Tearing Modes in the Madison Symmetric Torus By Hillary Dianne Stephens A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN - MADISON 2010 i Abstract Tearing mode induced magnetic islands have a significant impact on the thermal char- acteristics of magnetically confined plasmas such as those in the reversed-field pinch. Using a state-of-the-art Thomson scattering

  10. Investigations on the electronic, structural, magnetic properties...

    Office of Scientific and Technical Information (OSTI)

    ...-memory behavior in Tisub 2CoX (XAl, Ga, In) Citation Details In-Document Search Title: Investigations on the electronic, structural, magnetic properties related to shape-memory ...

  11. LLNL-Earth3D

    Energy Science and Technology Software Center (OSTI)

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  12. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  13. Electronic structure and 3d-4f exchange interactions in zircon-type RCrO{sub 4} oxides (R=Dy, Ho and Gd)

    SciTech Connect (OSTI)

    Ray, Avijeet Maitra, Tulika

    2015-06-24

    Using first principles density functional theory (DFT) calculations within GGA and GGA+U approximations we studied both ferromagnetic (FM) and antiferromagnetic (AFM) phases of zircon type RCrO{sub 4} (R= Dy, Ho, Gd) oxides. We estimated and compared the 3d-4f exchange interaction strengths J between the nearest neighbor R{sup 3+} and Cr{sup 5+} ions for R=Dy, Gd. Our results predict that DyCrO{sub 4}, GdCrO{sub 4} and HoCrO{sub 4} have ferromagnetic ground state which is consistent with experimental observations.

  14. Dual-spacecraft reconstruction of a three-dimensional magnetic...

    Office of Scientific and Technical Information (OSTI)

    The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by 390 km) better predicts magnetic field ...

  15. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  16. SAND contact in DYNA3D

    SciTech Connect (OSTI)

    Whirley, R.G.; Engelmann, B.E.

    1992-08-25

    This paper describes some recent developments in adaptive contact algorithms for the transient analysis of penetration and material failure in DYNA3D. A failure criterion is defined for volumes of potentially failing material on each side of a contact surface. As material within an element fails, the element is deleted from the calculation and the contact surface is adaptively redefined to include the newly exposed outer material boundary. This algorithm admits arbitrary combinations of shell and solid elements to allow modeling of composite or honeycomb structures. The algorithms and their efficiency are illustrated with several DYNA3D simulations and results are compared with experimental data.

  17. VisIt - 3D Scientific Visualization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VisIt VisIt - 3D Scientific Visualization Description and Overview VisIt is a point-and-click 3D scientific visualization application that supports most common visualization techniques (e.g., iso-contouring and volume rendering) on structured and unstructured grids. Due to its distributed and parallel architecture, VisIt is able to handle very large datasets interactively. In addition, VisIt is extensible, allowing users to add data loaders or additional analysis tools to VisIt. The NERSC

  18. 3D Modeling Engine Representation Summary Report

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  19. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    SciTech Connect (OSTI)

    Velas, K. M.; Milroy, R. D.

    2014-01-15

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  20. Shim3d Helmholtz Solution Package

    Energy Science and Technology Software Center (OSTI)

    2009-01-29

    This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less

  1. INGRID; 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    Stillman, D.W.; Rainsberger, R.

    1985-07-01

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  2. INGRID. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    Christon, M.A.; Dovey, D.; Stillman, D.W.; Hallquist, J.O.; Rainsberger, R.B.

    1992-09-01

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  3. INGRID. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    Stillman, D.W.; Rainsberger, R.

    1985-07-01

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D (ESTSC. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  4. INGRID. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    Stillman, D.W.; Rainsberger, R.

    1985-07-01

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  5. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect (OSTI)

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  6. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    SciTech Connect (OSTI)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-03-20

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  7. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  8. Structure and magnetic properties of three-dimensional (La,Sr)MnO{sub 3} nanofilms on ZnO nanorod arrays

    SciTech Connect (OSTI)

    Gao Haiyong; Gao Puxian; Shimpi, Paresh; Guo Yanbing; Cai Wenjie; Lin Huijan; Staruch, M.; Jain, Menka

    2011-03-21

    Three-dimensional (3D) cubic perovskite (La,Sr)MnO{sub 3} (LSMO) nanofilms have been deposited on ZnO nanorod arrays with controlled dimensionality and crystallinity by radio frequency (rf) magnetron sputtering and post thermal annealing. Compared to the two-dimensional (2D) LSMO nanofilm on flat Si, the structure and magnetic properties of 3D LSMO nanofilms on ZnO nanorod arrays have a strong anisotropic morphology and thickness dependence. Ferromagnetic property has been observed in both 2D and 3D LSMO nanofilms while a ferromagnetic-superparamagnetic transition was revaled in 3D LSMO nanofilms on ZnO nanorod array with decreasing nanofilm thickness, due to a large surface dispersion effect. The LSMO/ZnO nanofilm/nanorod structures could open up new avenues for intriguing magnetic properties studies and applications of nanoscale perovskites.

  9. Method and apparatus for control of a magnetic structure

    DOE Patents [OSTI]

    Challenger, Michael P.; Valla, Arthur S.

    1996-06-18

    A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.

  10. SNL3dFace

    Energy Science and Technology Software Center (OSTI)

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  11. Magnetic structure of an imbalanced Fermi gas in an optical lattice

    SciTech Connect (OSTI)

    Wunsch, B.; Fritz, L.; Zinner, N. T.; Demler, E.; Manousakis, E.

    2010-01-15

    We analyze the repulsive fermionic Hubbard model on square and cubic lattices with spin imbalance and in the presence of a parabolic confinement. We analyze the magnetic structure as a function of the repulsive interaction strength and polarization. In the first part of the article, we perform unrestricted Hartree-Fock calculations for the two-dimensional (2D) case and find that above a critical interaction strength U{sub c} the system turns ferromagnetic at the edge of the trap, which is in agreement with the ferromagnetic Stoner instability of a homogeneous system away from half-filling. For Ustructure in the Mott region in the center and a partially polarized compressible edge. The antiferromagnetic order in the Mott plateau is perpendicular to the direction of the imbalance. In this regime, the same qualitative behavior is expected for 2D and three-dimensional (3D) systems. In the second part of the article, we give a general discussion of magnetic structures above U{sub c}. We argue that spin conservation leads to nontrivial textures, both in the ferromagnetic polarization at the edge and for the Neel order in the Mott plateau. We discuss differences in magnetic structures for 2D and 3D cases.

  12. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  13. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  14. Design for reliability of BEoL and 3-D TSV structures – A joint effort of FEA and innovative experimental techniques

    SciTech Connect (OSTI)

    Auersperg, Jürgen; Vogel, Dietmar; Auerswald, Ellen; Rzepka, Sven; Michel, Bernd

    2014-06-19

    Copper-TSVs for 3D-IC-integration generate novel challenges for reliability analysis and prediction, e.g. the need to master multiple failure criteria for combined loading including residual stress, interface delamination, cracking and fatigue issues. So, the thermal expansion mismatch between copper and silicon leads to a stress situation in silicon surrounding the TSVs which is influencing the electron mobility and as a result the transient behavior of transistors. Furthermore, pumping and protrusion of copper is a challenge for Back-end of Line (BEoL) layers of advanced CMOS technologies already during manufacturing. These effects depend highly on the temperature dependent elastic-plastic behavior of the TSV-copper and the residual stresses determined by the electro deposition chemistry and annealing conditions. That’s why the authors pushed combined simulative/experimental approaches to extract the Young’s-modulus, initial yield stress and hardening coefficients in copper-TSVs from nanoindentation experiments, as well as the temperature dependent initial yield stress and hardening coefficients from bow measurements due to electroplated thin copper films on silicon under thermal cycling conditions. A FIB trench technique combined with digital image correlation is furthermore used to capture the residual stress state near the surface of TSVs. The extracted properties are discussed and used accordingly to investigate the pumping and protrusion of copper-TSVs during thermal cycling. Moreover, the cracking and delamination risks caused by the elevated temperature variation during BEoL ILD deposition are investigated with the help of fracture mechanics approaches.

  15. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  16. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  17. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  18. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  19. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  20. 3D Charge Order Found in Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Charge Order Found in Superconductor Print Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction (RSXD), a technique sensitive to both structure and electronic state at

  1. GPU-Accelerated Denoising in 3D (GD3D)

    Energy Science and Technology Software Center (OSTI)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  2. Method of using triaxial magnetic fields for making particle structures

    DOE Patents [OSTI]

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  3. SciTech Connect: "3d printing"

    Office of Scientific and Technical Information (OSTI)

    3d printing" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "3d printing" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  4. Restructuring of RELAP5-3D

    SciTech Connect (OSTI)

    George Mesina; Joshua Hykes

    2005-09-01

    The RELAP5-3D source code is unstructured with many interwoven logic flow paths. By restructuring the code, it becomes easier to read and understand, which reduces the time and money required for code development, debugging, and maintenance. A structured program is comprised of blocks of code with one entry and exit point and downward logic flow. IF tests and DO loops inherently create structured code, while GOTO statements are the main cause of unstructured code. FOR_STRUCT is a commercial software package that converts unstructured FORTRAN into structured programming; it was used to restructure individual subroutines. Primarily it transforms GOTO statements, ARITHMETIC IF statements, and COMPUTED GOTO statements into IF-ELSEIF-ELSE tests and DO loops. The complexity of RELAP5-3D complicated the task. First, FOR_STRUCT cannot completely restructure all the complex coding contained in RELAP5-3D. An iterative approach of multiple FOR_STRUCT applications gave some additional improvements. Second, FOR_STRUCT cannot restructure FORTRAN 90 coding, and RELAP5-3D is partially written in FORTRAN 90. Unix scripts for pre-processing subroutines into coding that FOR_STRUCT could handle and post-processing it back into FORTRAN 90 were written. Finally, FOR_STRUCT does not have the ability to restructure the RELAP5-3D code which contains pre-compiler directives. Variations of a file were processed with different pre-compiler options switched on or off, ensuring that every block of code was restructured. Then the variations were recombined to create a completely restructured source file. Unix scripts were written to perform these tasks, as well as to make some minor formatting improvements. In total, 447 files comprising some 180,000 lines of FORTRAN code were restructured. These showed significant reduction in the number of logic jumps contained as measured by reduction in the number of GOTO statements and line labels. The average number of GOTO statements per subroutine

  5. 3D Wavelet-Based Filter and Method

    DOE Patents [OSTI]

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  6. Elastoplastic shell analysis in DYNA3D

    SciTech Connect (OSTI)

    Whirley, R.G. )

    1991-01-01

    Computer simulation of the elastoplastic behavior of thin shell structures under transient dynamic loads play an important role in many programs at Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. Often the loads are severe and the structure undergoes plastic (or permanent) deformation. These simulations are effectively performed using DYNA3D, an explicit nonlinear finite element code developed at LLNL for simulating and analyzing the large-deformation dynamic response of solids and structures. It is generally applicable to problems where the loading and response are of short duration and contain significant high-frequency components. Typical problems of this type include the contact of two impacting bodies and the resulting elastoplastic structural behavior. The objective of this investigation was to examine and improve upon the elastoplastic shell modeling capability in DYNA3D. This article summarizes the development of a new four-node quadrilateral finite element shell formulation, the YASE shell, and compares two basic methods (the stress-resultant and the thickness-resultant methods) employed in elastoplastic constitutive algorithms for shell structure modeling.

  7. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect (OSTI)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  8. 3-D Mesh Generation Nonlinear Systems

    Energy Science and Technology Software Center (OSTI)

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surfacemore » equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.« less

  9. 3D reconstruction of tensors and vectors

    SciTech Connect (OSTI)

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  10. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Work performed on ALS Beamline 12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys....

  11. Temperature dependent structural variation from 2D supramolecular network to 3D interpenetrated metal–organic framework: In situ cleavage of S–S and C–S bonds

    SciTech Connect (OSTI)

    Ugale, Bharat; Singh, Divyendu; Nagaraja, C.M.

    2015-03-15

    Two new Zn(II)–organic compounds, [Zn(muco)(dbds){sub 2}(H{sub 2}O){sub 2}] (1) and [Zn(muco)(dbs)] (2) (where, muco=trans, trans-muconate dianion, dbds=4,4′-dipyridyldisulfide and dbs=4,4′-dipyridylsulfide) have been synthesized from same precursors but at two different temperatures. Both the compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectroscopy, thermal analysis and photoluminescence studies. Compound 1 prepared at room temperature possesses a molecular structure extended to 2D supramolecular network through (H–O…H) hydrogen-bonding interactions. Compound 2, obtained at high temperature (100 °C) shows a 3-fold interpenetrating 3D framework constituted by an in situ generated dbs linker by the cleavage of S–S and C–S bonds of dbds linker. Thus, the influence of reaction temperature on the formation of two structural phases has been demonstrated. Both 1 and 2 exhibit ligand based luminescence emission owing to n→π⁎ and π→π⁎ transitions and also high thermal stabilities. - Graphical abstract: The influence of temperature on the formation of two structural phases, a 2D supramolecular network and a 3D 3-fold interpenetrating framework has been demonstrated and their luminescence emission is measured. - Highlights: • Two new Zn(II)–organic compounds were synthesized by tuning reaction temperatures. • Temperature induced in situ generation of dbs linker has been observed. • The compounds exhibit high thermal stability and luminescence emission properties. • The effect of temperature on structure, dimension and topology has been presented.

  12. ShowMe3D

    Energy Science and Technology Software Center (OSTI)

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  13. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with opposite alignments of the sample magnetization direction and x-ray helicity vector. ... To determine the origin of peak B, the researchers compared experimental results to atomic ...

  14. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    SciTech Connect (OSTI)

    Patarroyo, Manuel E.; Almonacid, Hannia; Moreno-Vranich, Armando

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  15. Modification of structure and magnetic anisotropy of epitaxial...

    Office of Scientific and Technical Information (OSTI)

    films by hydrogen reduction Citation Details In-Document Search Title: Modification of structure and magnetic anisotropy of epitaxial CoFeO films by hydrogen reduction ...

  16. X-Ray Diffraction Microscopy of Magnetic Structures (Journal...

    Office of Scientific and Technical Information (OSTI)

    Prev Next Title: X-Ray Diffraction Microscopy of Magnetic Structures Authors: Turner, Joshua J. ; Huang, Xiaojing ; Krupin, Oleg ; Seu, Keoki A. ; Parks, Daniel ; Kevan,...

  17. 3-D Metals | Open Energy Information

    Open Energy Info (EERE)

    Metals Jump to: navigation, search Name 3-D Metals Facility 3-D Metals Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Valley City OH...

  18. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect (OSTI)

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ?4?nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  19. Finite element modeling of magnetic compression using coupled electromagnetic-structural codes

    SciTech Connect (OSTI)

    Hainsworth, G.; Leonard, P.J.; Rodger, D.; Leyden, C.

    1996-05-01

    A link between the electromagnetic code, MEGA, and the structural code, DYNA3D has been developed. Although the primary use of this is for modelling of Railgun components, it has recently been applied to a small experimental Coilgun at Bath. The performance of Coilguns is very dependent on projectile material conductivity, and so high purity aluminium was investigated. However, due to its low strength, it is crushed significantly by magnetic compression in the gun. Although impractical as a real projectile material, this provides useful benchmark experimental data on high strain rate plastic deformation caused by magnetic forces. This setup is equivalent to a large scale version of the classic jumping ring experiment, where the ring jumps with an acceleration of 40 kG.

  20. 3D Elastic Seismic Wave Propagation Code

    Energy Science and Technology Software Center (OSTI)

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  1. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction

    SciTech Connect (OSTI)

    Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

    2010-01-01

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

  2. Non-linear tearing of 3D null point current sheets

    SciTech Connect (OSTI)

    Wyper, P. F. Pontin, D. I.

    2014-08-15

    The manner in which the rate of magnetic reconnection scales with the Lundquist number in realistic three-dimensional (3D) geometries is still an unsolved problem. It has been demonstrated that in 2D rapid non-linear tearing allows the reconnection rate to become almost independent of the Lundquist number (the “plasmoid instability”). Here, we present the first study of an analogous instability in a fully 3D geometry, defined by a magnetic null point. The 3D null current layer is found to be susceptible to an analogous instability but is marginally more stable than an equivalent 2D Sweet-Parker-like layer. Tearing of the sheet creates a thin boundary layer around the separatrix surface, contained within a flux envelope with a hyperbolic structure that mimics a spine-fan topology. Efficient mixing of flux between the two topological domains occurs as the flux rope structures created during the tearing process evolve within this envelope. This leads to a substantial increase in the rate of reconnection between the two domains.

  3. Synthesis, characterization and magnetic property of a new 3D iron phosphite: |C{sub 4}N{sub 3}H{sub 14}|[Fe{sub 3}(HPO{sub 3}){sub 4}F{sub 2}(H{sub 2}O){sub 2}] with intersecting channels

    SciTech Connect (OSTI)

    Qiao Jian; Zhang Lirong; Yu Yang; Li Guanghua; Jiang Tianchan; Huo Qisheng; Liu Yunling

    2009-07-15

    A new open-framework iron (III) phosphite |C{sub 4}N{sub 3}H{sub 14}|[Fe{sub 3}(HPO{sub 3}){sub 4}F{sub 2}(H{sub 2}O){sub 2}] has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent. Single-crystal X-ray diffraction analysis reveals that the compound crystallizes in the monoclinic space group C2/c having unit cell parameters a=12.877(3) A, b=12.170(2) A, c=12.159(2) A, beta=93.99(3){sup o}, V=1900.9(7) A{sup 3}, and Z=4 with R{sub 1}=0.0447, wR{sub 2}=0.0958. The complex structure consists of HPO{sub 3} pseudo-tetrahedra and {l_brace}Fe{sub 3}O{sub 14}F{sub 2}{r_brace} trimer building units. The assembly of these building units generates 3D inorganic framework with intersecting 6-, 8-, and 10-ring channels. The DETA cations are located in the 10-ring channels linked by hydrogen bonds. The Moessbauer spectrum shows that there exhibit two crystallographically independent iron (III) atoms. And the magnetic investigation shows the presence of antiferromagnetic interactions. Further characterization of the title compound was performed using X-ray powder diffraction (XRD), infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP) and elemental analyses. - Graphical abstract: A new three-dimensional iron phosphite with intersecting 6-, 8-, 10-ring channels has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent.

  4. Experimental observation of 3-D, impulsive reconnection events in a laboratory plasma

    SciTech Connect (OSTI)

    Dorfman, S.; Ji, H.; Yamada, M.; Yoo, J.; Lawrence, E.; Myers, C.; Tharp, T. D.

    2014-01-15

    Fast, impulsive reconnection is commonly observed in laboratory, space, and astrophysical plasmas. In this work, impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The two-fluid, impulsive reconnection events observed on the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys Plasmas 4, 1936 (1997)] cannot be explained by 2-D models and are therefore fundamentally three-dimensional. Several signatures of flux ropes are identified with these events; 3-D high current density regions with O-point structure form during a slow buildup period that precedes a fast disruption of the reconnecting current layer. The observed drop in the reconnection current and spike in the reconnection rate during the disruption are due to ejection of these flux ropes from the layer. Underscoring the 3-D nature of the events, strong out-of-plane gradients in both the density and reconnecting magnetic field are found to play a key role in this process. Electromagnetic fluctuations in the lower hybrid frequency range are observed to peak at the disruption time; however, they are not the key physics responsible for the impulsive phenomena observed. Important features of the disruption dynamics cannot be explained by an anomalous resistivity model. An important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations is also revisited. The wider layers observed in MRX may be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a 3-D two-fluid model is proposed to explain how the observed out-of-plane variation may lead to a localized region of enhanced reconnection that spreads in the direction of the out-of-plane electron flow, ejecting flux ropes from the layer in a 3-D manner.

  5. RELAP5-3D User Problems

    SciTech Connect (OSTI)

    Riemke, Richard Allan

    2001-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  6. RELAP5-3D User Problems

    SciTech Connect (OSTI)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  7. Giant Controllable Magnetization Changes Induced by Structural...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Giant Controllable Magnetization ... Type: Accepted Manuscript Journal Name: Scientific Reports Additional Journal Information: Journal ...

  8. Picture of the Week: An explosion of 3D printing technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure. May 24, 2015 An explosion of 3D printing technology x View image on Flickr Additive Manufacturing, known also as 3D printing, allows for the rapid production of...

  9. RT3D tutorials for GMS users

    SciTech Connect (OSTI)

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  10. TAURUS. 3-d Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1991-05-01

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  11. TAURUS. 3-d Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1992-03-03

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  12. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1984-05-01

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  13. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1993-11-30

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  14. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Whirley, R.G.

    1992-03-03

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  15. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect (OSTI)

    Kennedy, T.

    1992-03-03

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  16. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  17. Depth-resolved magnetic and structural analysis of relaxing epitaxial...

    Office of Scientific and Technical Information (OSTI)

    Depth-resolved magnetic and structural analysis of relaxing epitaxial Sr 2 CrReO 6 <...

  18. Chemical pressure effects on structural, dielectric and magnetic...

    Office of Scientific and Technical Information (OSTI)

    Chemical pressure effects on structural, dielectric and magnetic properties of solid solutions Mnsub 3-xCosub xTeOsub 6 Citation Details In-Document Search Title: Chemical ...

  19. Uniaxial pressure effect on structural and magnetic phase transitions...

    Office of Scientific and Technical Information (OSTI)

    and its comparison with as-grown and annealed BaFe 2 As 2 Prev Next Title: Uniaxial pressure effect on structural and magnetic phase transitions in NaFeAs and its ...

  20. Magnetic anisotropy and domain structure of the layered manganite...

    Office of Scientific and Technical Information (OSTI)

    1.64Mnsub 2Osub 7 Citation Details In-Document Search Title: Magnetic anisotropy and domain structure of the layered manganite Lasub 1.36Srsub 1.64Mnsub 2Osub ...

    1. X-Ray Diffraction Microscopy of Magnetic Structures

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing ...

    2. A 3D Geostatistical Mapping Tool

      Energy Science and Technology Software Center (OSTI)

      1999-02-09

      This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

    3. Electronic band structure of magnetic bilayer graphene superlattices

      SciTech Connect (OSTI)

      Pham, C. Huy; Nguyen, T. Thuong

      2014-09-28

      Electronic band structure of the bilayer graphene superlattices with ?-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

    4. Recent Improvements To The RELAP5-3D Code

      SciTech Connect (OSTI)

      Richard A. Riemke; Paul D. Bayless; S. Michael Modro

      2006-06-01

      The RELAP5-3D computer program has been recently improved. Changes were made as follows: (1) heat structures are allowed to be decoupled from hydrodynamic components, (2) built-in material properties for heat structures have been made consistent with those in MATPRO and the Nuclear Systems Materials Handbook (they are now documented in the RELAP5-3D manual, (3) Schrock's flow quality correlation is now used for a downward oriented junction from a horizontal volume for the stratification entrainment/pullthrough model.

    5. Fabrication of 3D Silicon Sensors

      SciTech Connect (OSTI)

      Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

      2012-06-06

      Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

    6. Annealing effects on the structural and magnetic properties of

      Office of Scientific and Technical Information (OSTI)

      off-stoichiometric Fe-Mn-Ga ferromagnetic shape memory alloys (Journal Article) | SciTech Connect Journal Article: Annealing effects on the structural and magnetic properties of off-stoichiometric Fe-Mn-Ga ferromagnetic shape memory alloys Citation Details In-Document Search This content will become publicly available on May 7, 2017 Title: Annealing effects on the structural and magnetic properties of off-stoichiometric Fe-Mn-Ga ferromagnetic shape memory alloys Annealing plays an important

    7. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

      SciTech Connect (OSTI)

      Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

      2015-03-15

      Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.

    8. How We 3D-Print Aerogel

      SciTech Connect (OSTI)

      2015-04-23

      A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

    9. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D ...

    10. Climate Change Capacity Development (C3D+) | Open Energy Information

      Open Energy Info (EERE)

      Capacity Development (C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) AgencyCompany...

    11. 3-D simulations of multiple beam klystrons

      SciTech Connect (OSTI)

      Smithe, David N.; Bettenhausen, Mike; Ludeking, Larry; Caryotakis, G.; Sprehn, Daryl; Scheitrum, Glenn [Mission Research Corporation, 8560 Cinderbed Rd., Suite 700, Newington, Virginia 22122 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States)

      1999-05-07

      The MAGIC3D simulation code is being used to assess the multi-dimensional physics issues relating to the design and operation of multiple beam klystrons. Investigations, to date, include a detailed study of the mode structure of the cavities in the 19-beam hexagonally packed geometry and a study of the velocity spread caused by the cavity mode's field profile. Some attempts to minimize this effect are investigated. Additional simulations have provided quantification of the beam loading Q in a dual input cavity, and optimization of a dual output cavity. An important goal of the simulations is an accurate picture of beam transport along the length of the MBK. We have quantified the magnitude and spatial variation of the beam-line space charge interactions within a cavity gap. Present simulations have demonstrated the transport of the beam through three cavities (the present limits of our simulation size) without difficulty; additional length simulations are expected. We have also examined unbalanced beam-line scenarios, e.g., one beam-line suppressed, and find little disturbance to the transport in individual cavity tests, with results for multiple cavity transport expected.

    12. Parallel 3D Fast Fourier Transform Functions

      Energy Science and Technology Software Center (OSTI)

      2008-12-19

      BigFFT is a scalable implementation of a three dimensional Fast Fourier Transform operation. Functions are included for forward and backward real-to-complex 3D transforms.

    13. 3D TORUS V1.0

      Energy Science and Technology Software Center (OSTI)

      002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0 http://www.openfabrics.org/git?p=sashak/management.git;a=sum

    14. Nonlaser-based 3D surface imaging

      SciTech Connect (OSTI)

      Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

      1994-11-15

      3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

    15. 3D Charge Order Found in Superconductor

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      3D Charge Order Found in Superconductor 3D Charge Order Found in Superconductor Print Wednesday, 08 June 2016 00:00 Despite 30 years of intense study, the explanation behind the zero-resistance current displayed by high-temperature superconductors (HTSCs) is still shrouded in complexity. HTSCs tend to be heterogeneous materials with multiple phases, and disentangling their various electronic behaviors for analysis can be difficult. At the ALS, researchers used resonant soft x-ray diffraction

    16. DYNA3D example problem manual

      SciTech Connect (OSTI)

      Lovejoy, S.C.; Whirley, R.G.

      1990-10-10

      This manual describes in detail the solution of ten example problems using the explicit nonlinear finite element code DYNA3D. The sample problems include solid, shell, and beam element types, and a variety of linear and nonlinear material models. For each example, there is first an engineering description of the physical problem to be studied. Next, the analytical techniques incorporated in the model are discussed and key features of DYNA3D are highlighted. INGRID commands used to generate the mesh are listed, and sample plots from the DYNA3D analysis are given. Finally, there is a description of the TAURUS post-processing commands used to generate the plots of the solution. This set of example problems is useful in verifying the installation of DYNA3D on a new computer system. In addition, these documented analyses illustrate the application of DYNA3D to a variety of engineering problems, and thus this manual should be helpful to new analysts getting started with DYNA3D. 7 refs., 56 figs., 9 tabs.

    17. Synthesis, structural and magnetic characterisation of the fully fluorinated compound 6H-BaFeO{sub 2}F

      SciTech Connect (OSTI)

      Clemens, Oliver; Wright, Adrian J.; Berry, Frank J.; Smith, Ronald I.; Slater, Peter R.

      2013-02-15

      The compound 6H-BaFeO{sub 2}F (P6{sub 3}/mmc) was synthesised by the low temperature fluorination of 6H-BaFeO{sub 3-d} using polyvinylidenedifluoride (PVDF) as a fluorination agent. Structural characterisation by XRD and NPD suggests that the local positions of the oxygen and fluorine atoms vary with no evidence for ordering on the anion sites. This compound shows antiferromagnetic ordering at room temperature with antiparallel alignment of the magnetic moments along the c-axis. The use of PVDF also allows the possibility of tuning the fluorine content in materials of composition 6H-BaFeO{sub 3-d}F{sub y} to any value of 0structure of the hexagonal perovskite phase 6H-BaFeO{sub 2}F. Highlights: Black-Right-Pointing-Pointer The crystal structure of the hexagonal perovskite phase 6H-BaFeO{sub 2}F. Black-Right-Pointing-Pointer H-BaFeO{sub 2}F and 6H-BaFeO{sub 3-d}F{sub y} were prepared via low temperature fluorination using PVDF. Black-Right-Pointing-Pointer A structural investigation of the compounds BaFeO{sub 2}F is presented in detail. Black-Right-Pointing-Pointer This analysis suggests differences for the local coordination of O{sup 2-} and F{sup -} anions. Black-Right-Pointing-Pointer H-BaFeO{sub 2}F shows antiferromagnetic ordering at 300 K. Black-Right-Pointing-Pointer The magnetic moments align parallel to the a-axis.

    18. Cu{sup II} coordination polymers based on 5-methoxyisophthalate and flexible N-donor ligands: Structures and magnetic properties

      SciTech Connect (OSTI)

      Chang, Xin-Hong; Qin, Jian-Hua; Ma, Lu-Fang; Wang, Li-Ya

      2014-04-01

      Three Cu{sup II} coordination polymers, ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib)]){sub n} (1), ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib){sub 2}]){sub n} (2) and ([Cu(CH{sub 3}O-ip)(bbip)]∙2H{sub 2}O){sub n} (3) (CH{sub 3}O-H{sub 2}ip is 5-methoxyisophthalic acid, bmib is 1,4-bis(2-methylimidazol-1-yl)butane and bbip is 1,3-bis(1H-benzimidazolyl)propane), have been synthesized by hydrothermal methods. Complexes 1–3 were structurally characterized by elemental analysis, infrared (IR) spectra and X-ray single-crystal diffraction. Complex 1 shows a 3D six-connected self-penetrating network based on paddlewheel secondary building units. Complex 2 has a 3-fold interpenetrating 3D diamond framework. Complex 3 possesses a 1D tube-like chain. Thermo-gravimetric and magnetic properties of 1–3 were also investigated. - Graphical abstract: Structures and magnetic properties of copper(II) coordination polymers constructed from 5-methoxyisophthalate linker and two flexible N-donor ancillary ligands. Three copper(II) coordination polymers with 5-methoxyisophthalate and two related flexible N-donor ancillary ligands have been synthesized and structurally characterized. Moreover, thermal behaviors and magnetic properties of these complexes have also been investigated. - Highlights: • Three Cu(II) coordination polymers were synthesized. • The conformations of N-donor ligands and pH value have an effect on the final structures. • The magnetic properties of 1–3 have been investigated.

    19. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures

      SciTech Connect (OSTI)

      Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.

      2015-01-15

      In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics.

    20. Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Lore, J. D.; Canik, J. M.; Feng, Y.; Ahn, J. -W.; Maingi, R.; Soukhanovskii, V.

      2012-05-09

      The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which aremore » a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.« less

    1. Generation of magnetic structures on the solar photosphere

      SciTech Connect (OSTI)

      Gangadhara, R. T.; Krishan, V.; Bhowmick, A. K.; Chitre, S. M.

      2014-06-20

      The lower solar atmosphere is a partially ionized plasma consisting of electrons, ions, and neutral atoms. In this, which is essentially a three-fluid system, the Hall effect arises from the treatment of the electrons and ions as two separate fluids and the ambipolar diffusion arises from the inclusion of neutrals as the third fluid. The Hall effect and ambipolar diffusion have been shown to be operational in a region beginning from near the photosphere up to the chromosphere. In a partially ionized plasma, the magnetic induction is subjected to ambipolar diffusion and the Hall drift in addition to the usual resistive dissipation. These nonlinear effects create sharp magnetic structures which then submit themselves to various relaxation mechanisms. A first-principles derivation of these effects in a three-fluid system and an analytic solution to the magnetic induction equation in a stationary state are presented, which in the general case includes the Hall effect, ambipolar diffusion, and ohmic dissipation. The temporal evolution of the magnetic field is then investigated under the combined as well as the individual effects of the Hall drift and ambipolar diffusion to demonstrate the formation of steep magnetic structures and the resultant current sheet formation. These structures have just the right features for the release of magnetic energy into the solar atmosphere.

    2. Electron vortex magnetic holes: A nonlinear coherent plasma structure

      SciTech Connect (OSTI)

      Haynes, Christopher T. Burgess, David; Sundberg, Torbjorn; Camporeale, Enrico

      2015-01-15

      We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

    3. DYNA3D Code Practices and Developments

      SciTech Connect (OSTI)

      Lin, L.; Zywicz, E.; Raboin, P.

      2000-04-21

      DYNA3D is an explicit, finite element code developed to solve high rate dynamic simulations for problems of interest to the engineering mechanics community. The DYNA3D code has been under continuous development since 1976[1] by the Methods Development Group in the Mechanical Engineering Department of Lawrence Livermore National Laboratory. The pace of code development activities has substantially increased in the past five years, growing from one to between four and six code developers. This has necessitated the use of software tools such as CVS (Concurrent Versions System) to help manage multiple version updates. While on-line documentation with an Adobe PDF manual helps to communicate software developments, periodically a summary document describing recent changes and improvements in DYNA3D software is needed. The first part of this report describes issues surrounding software versions and source control. The remainder of this report details the major capability improvements since the last publicly released version of DYNA3D in 1996. Not included here are the many hundreds of bug corrections and minor enhancements, nor the development in DYNA3D between the manual release in 1993[2] and the public code release in 1996.

    4. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

      2015-07-03

      X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

    5. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

      SciTech Connect (OSTI)

      Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

      2015-07-03

      X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.

    6. Some remarks on shell element analysis with DYNA3D and NIKE3D

      SciTech Connect (OSTI)

      Whirley, R.G.; Engelmann, B.E.; Maker, B.N.; Spelce, T.E.

      1992-03-24

      There has been some confusion in the user community recently regarding the various shell element formulations now available in DYNA3D (Whirley and Hadlquist, 1991) and NIKE3D (Maker, Ferencz, and Hallquist, 1991). In particular, questions have been raised about the behavior of these elements under large strain, and the display of meaningful results from such problems using TAURUS (Spelce and Hallquist, 1991). This brief report is intended to aid the DYNA/NIKE user community by elaborating on the formulation of the DYNA3D/NIKE3D shell elements and on the display of shell data using TAURUS. In the following discussion no attempt is made to give a complete description of the theoretical development or implementation of any of the elements. Readers interested in a more complete discussion of the shell elements in DYNA3D and NIKE3D are directed to the published papers cited in the code User Manuals.

    7. Further improvements on TRACE 3-D

      SciTech Connect (OSTI)

      Rusthoi, D.P.; Lysenko, W.P.; Crandall, K.R.

      1997-08-01

      TRACE 3-D, an interactive beam-dynamics program that calculates the envelopes of a bunched beam (including linear space-charge forces) through a user-defined transport system, has undergone several upgrades in physics, coding, and capabilities. Recent modifications include centroid tracking (and misalignment capabilities) and an improved beam description that allows study of some nonlinear effects such as wakefields. The Fortran code has been made portable and runs on numerous platforms. It can be used with a variety of graphics packages. The additional beamline elements, new commands, expanded fitting capabilities, improved beam description, and coding modifications have extended TRACE 3-D`s usefulness and applicability to the accelerator community. These changes are documented in the third edition of TRACE 3-D Documentation.

    8. 3-D Finite Element Heat Transfer

      Energy Science and Technology Software Center (OSTI)

      1992-02-01

      TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

    9. Ames Lab 101: 3D Metals Printer

      SciTech Connect (OSTI)

      Ott, Ryan

      2014-02-13

      To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

    10. 3D face analysis for demographic biometrics

      SciTech Connect (OSTI)

      Tokola, Ryan A; Mikkilineni, Aravind K; Boehnen, Chris Bensing

      2015-01-01

      Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

    11. Ames Lab 101: 3D Metals Printer

      ScienceCinema (OSTI)

      Ott, Ryan

      2014-06-04

      To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

    12. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

      SciTech Connect (OSTI)

      Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

      2010-07-15

      Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

    13. Synthesis, crystal structure, and magnetism of A2Co12As7 (A=Ca, Y, Ce–Yb)

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Tan, Xiaoyan; Ovidiu Garlea, V.; Chai, Ping; Geondzhian, Andrey Y.; Yaroslavtsev, Alexander A.; Xin, Yan; Menushenkov, Alexey P.; Chernikov, Roman V.; Shatruk, Michael

      2015-08-28

      In this study, ternary intermetallics, A2Co12As7 (A=Ca, Y, Ce–Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P63/m variant of the Zr2Fe12P7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1), respectively, at room temperature. Magnetic behavior ofmore » A2Co12As7 is generally characterized by ferromagnetic ordering of Co 3d moments at 100–140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr–Sm to ferromagnetic for A=Ce and Eu–Yb. Finally, polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce2Co12As7 and Nd2Co12As7, respectively.« less

    14. Theoretical manual for DYNA3D

      SciTech Connect (OSTI)

      Hallquist, J.O.

      1983-03-01

      This report provides a theoretical manual for DYNA3D, a vectorized explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids. A contact-impact algorithm that permits gaps and sliding along material interfaces is described. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. DYNA3D is operational on the CRAY-1 and CDC7600 computers.

    15. Superconducting magnetic energy storage apparatus structural support system

      DOE Patents [OSTI]

      Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

      1992-01-01

      A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

    16. Competing anisotropies on 3d sub-lattice of YNi{sub 4x}Co{sub x}B compounds

      SciTech Connect (OSTI)

      Caraballo Vivas, R. J.; Rocco, D. L.; Reis, M. S.; Caldeira, L.; Coelho, A. A.

      2014-08-14

      The magnetic anisotropy of 3d sub-lattices has an important rule on the overall magnetic properties of hard magnets. Intermetallics alloys with boron (R-Co/Ni-B, for instance) belong to those hard magnets family and are useful objects to help to understand the magnetic behavior of 3d sub-lattice, specially when the rare earth ions R do not have magnetic nature, like YCo{sub 4}B ferromagnetic material. Interestingly, YNi{sub 4}B is a paramagnetic material and Ni ions do not contribute to the magnetic anisotropy. We focused therefore our attention to YNi{sub 4x}Co{sub x}B series, with x?=?0, 1, 2, 3, and 4. The magnetic anisotropy of these compounds is deeper described using statistical and preferential models of Co occupation among the possible Wyckoff positions into the CeCo{sub 4}B type hexagonal structure. We found that the preferential model is the most suitable to explain the magnetization experimental data.

    17. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

      SciTech Connect (OSTI)

      Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Ho, Kai -Ming

      2015-06-23

      The structures and magnetic properties of Co-Zr-B alloys near the composition of Co5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co11Zr2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co5Zr phase and larger than that of the low-temperature Co5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.

    18. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Ho, Kai -Ming

      2015-06-23

      The structures and magnetic properties of Co-Zr-B alloys near the composition of Co5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co11Zr2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that themore » magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co5Zr phase and larger than that of the low-temperature Co5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.« less

    19. Directing Matter: Toward Atomic-Scale 3D Nanofabrication

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; Lupini, Andrew R.; Rack, Philip D.; Unocic, Raymond R.; Sumpter, Bobby G.; Kalinin, Sergei V.; Belianinov, Alex; Ovchinnikova, Olga S.

      2016-05-16

      Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3Dmore » structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.« less

    20. Electronically- and crystal-structure-driven magnetic structures...

      Office of Scientific and Technical Information (OSTI)

      The synthesis of the new equiatomic RScSb ( R La-Nd, Sm, Gd-Tm, Lu, Y) compounds has ... (La-Nd, Sm) and the CeFeSi-type (P4 nmm) structure for the heavier R ( R Gd-Tm, Lu, Y). ...

    1. Nanoscale Magnetic Structure of Ferromagnet/Antiferromagnet Manganite Multilayers

      SciTech Connect (OSTI)

      Niebieskikwiat, D.; Hueso, L. E.; Borchers, J. A.; Mathur, N. D.; Salamon, M. B.

      2007-12-14

      We use polarized neutron reflectometry and dc magnetometry to obtain a comprehensive picture of the magnetic structure of a series of La{sub 2/3}Sr{sub 1/3}MnO{sub 3}/Pr{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0{<=}t{sub A}{<=}7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to ferromagnetic (FM) inclusions within the AFM matrix is maximized at t{sub A}{approx}3 nm. This enhancement of FM moment occurs at the matching between layer thickness and cluster size, implying the possibility of tuning phase separation by imposing appropriate geometrical constraints which favor the accommodation of FM nanoclusters within the ''non-FM'' material.

    2. TRACE3D. Interactive Beam-Dynamics Program

      SciTech Connect (OSTI)

      Singleton, L.; Yao, C.Y.

      1993-12-01

      TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phase space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.

    3. RELAP5-3D Developer Guidelines and Programming Practices

      SciTech Connect (OSTI)

      Dr. George L Mesina

      2014-03-01

      Our ultimate goal is to create and maintain RELAP5-3D as the best software tool available to analyze nuclear power plants. This begins with writing excellent programming and requires thorough testing. This document covers development of RELAP5-3D software, the behavior of the RELAP5-3D program that must be maintained, and code testing. RELAP5-3D must perform in a manner consistent with previous code versions with backward compatibility for the sake of the users. Thus file operations, code termination, input and output must remain consistent in form and content while adding appropriate new files, input and output as new features are developed. As computer hardware, operating systems, and other software change, RELAP5-3D must adapt and maintain performance. The code must be thoroughly tested to ensure that it continues to perform robustly on the supported platforms. The coding must be written in a consistent manner that makes the program easy to read to reduce the time and cost of development, maintenance and error resolution. The programming guidelines presented her are intended to institutionalize a consistent way of writing FORTRAN code for the RELAP5-3D computer program that will minimize errors and rework. A common format and organization of program units creates a unifying look and feel to the code. This in turn increases readability and reduces time required for maintenance, development and debugging. It also aids new programmers in reading and understanding the program. Therefore, when undertaking development of the RELAP5-3D computer program, the programmer must write computer code that follows these guidelines. This set of programming guidelines creates a framework of good programming practices, such as initialization, structured programming, and vector-friendly coding. It sets out formatting rules for lines of code, such as indentation, capitalization, spacing, etc. It creates limits on program units, such as subprograms, functions, and modules. It

    4. Crashworthiness simulations with DYNA3D

      SciTech Connect (OSTI)

      Schauer, D.A.; Hoover, C.G.; Kay, G.J.; Lee, A.S.; De Groot, A.J.

      1996-04-01

      Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soil has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.

    5. Azimuthally Anisotropic 3D Velocity Continuation

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Burnett, William; Fomel, Sergey

      2011-01-01

      We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

    6. 3D Technology for intelligent trackers

      SciTech Connect (OSTI)

      Lipton, Ronald; /Fermilab

      2010-09-01

      At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

    7. Sandia Modifies Delft3D Turbine Model

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Modifies Delft3D Turbine Model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

    8. GEN3D Ver. 1.37

      Energy Science and Technology Software Center (OSTI)

      2012-01-04

      GEN3D is a three-dimensional mesh generation program. The three-dimensional mesh is generated by mapping a two-dimensional mesh into threedimensions according to one of four types of transformations: translating, rotating, mapping onto a spherical surface, and mapping onto a cylindrical surface. The generated three-dimensional mesh can then be reoriented by offsetting, reflecting about an axis, and revolving about an axis. GEN3D can be used to mesh geometries that are axisymmetric or planar, but, due to three-dimensionalmore » loading or boundary conditions, require a three-dimensional finite element mesh and analysis. More importantly, it can be used to mesh complex three-dimensional geometries composed of several sections when the sections can be defined in terms of transformations of two dimensional geometries. The code GJOIN is then used to join the separate sections into a single body. GEN3D reads and writes twodimensional and threedimensional mesh databases in the GENESIS database format; therefore, it is compatible with the preprocessing, postprocessing, and analysis codes used by the Engineering Analysis Department at Sandia National Laboratories, Albuquerque, NM.« less

    9. DREAM3D simulations of inner-belt dynamics

      SciTech Connect (OSTI)

      Cunningham, Gregory Scott

      2015-05-26

      A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, ?, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and ?-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of ? and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

    10. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing A screenshot of the cover of the 3D blade ...

    11. Magnetic structures of FeTiO{sub 3}-Fe{sub 2}O{sub 3} solid solution thin films studied by soft X-ray magnetic circular dichroism and ab initio multiplet calculations

      SciTech Connect (OSTI)

      Hojo, H. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Fujita, K. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Matoba, T.; Tanaka, K.; Ikeno, H.; Mizoguchi, T.; Tanaka, I.; Nakamura, T.; Takeda, Y.; Okane, T.

      2014-03-17

      The solid solutions between ilmenite (FeTiO{sub 3}) and hematite (α-Fe{sub 2}O{sub 3}) have recently attracted considerable attention as a spintronic material due to their interesting magnetic and electrical properties. In this study, the electronic and magnetic structures of epitaxially grown 0.6FeTiO{sub 3}·0.4Fe{sub 2}O{sub 3} solid solution thin films were investigated by combining x-ray absorption near-edge structure (XANES), x-ray magnetic circular dichroism (XMCD) for two different crystallographic projections, and first-principles theoretical calculations. The Fe L-edge XANES and XMCD spectra reveal that Fe is in the mixed-valent Fe{sup 2+}–Fe{sup 3+} states while Fe{sup 2+} ions are mainly responsible for the magnetization. Moreover, the experimental Fe L-edge XANES and XMCD spectra change depending on the incident x-ray directions, and the theoretical spectra explain such spectral features. We also find a large orbital magnetic moment, which can originate the magnetic anisotropy of this system. On the other hand, although the valence state of Ti was interpreted to be 4+ from the Ti L-edge XANES, XMCD signals indicate that some electrons are present in the Ti-3d orbital, which are coupled antiparallel to the magnetic moment of Fe{sup 2+} ions.

    12. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

      SciTech Connect (OSTI)

      Chai, Feng [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Chen, YiPing, E-mail: ypchen007@sina.com [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China)

      2013-06-01

      Two Keggin-type heteropolytungstates, [Co(phen)?]?[CoW??O??]9H?O 1 (phen=1,10-phenanthroline) and [Fe(phen)?]?[FeW??O??]H?OH?O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UVDRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)?]? cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 050 mT in the range of 6001000 cm?, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

    13. Beam and Truss Finite Element Verification for DYNA3D

      SciTech Connect (OSTI)

      Rathbun, H J

      2007-07-16

      The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.

    14. Visualization and Analysis of 3D Gene Expression Data (Technical...

      Office of Scientific and Technical Information (OSTI)

      Technical Report: Visualization and Analysis of 3D Gene Expression Data Citation Details In-Document Search Title: Visualization and Analysis of 3D Gene Expression Data Recent...

    15. Interferometrically Defined 3D Pyrolyzed-Carbon Sensors. (Conference...

      Office of Scientific and Technical Information (OSTI)

      Conference: Interferometrically Defined 3D Pyrolyzed-Carbon Sensors. Citation Details In-Document Search Title: Interferometrically Defined 3D Pyrolyzed-Carbon Sensors. Abstract ...

    16. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Addthis Description Innovation in the design ...

    17. PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic...

      Office of Scientific and Technical Information (OSTI)

      PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic Random Media Citation Details In-Document Search Title: PSTD Simulations of Multiple Light Scattering in 3-D ...

    18. Characterization and Modeling via 3D Reconstructions of Laser...

      Office of Scientific and Technical Information (OSTI)

      Characterization and Modeling via 3D Reconstructions of Laser Welds in Stainless Steel. Citation Details In-Document Search Title: Characterization and Modeling via 3D...

    19. Electronic structure and magnetic properties of NaOsO3 (Journal...

      Office of Scientific and Technical Information (OSTI)

      Electronic structure and magnetic properties of NaOsO3 Title: Electronic structure and magnetic properties of NaOsO3 Authors: Du, Yongping ; Wan, Xiangang ; Sheng, Li ; Dong, ...

    20. Organic Spintronics: Influence of Interface Structure and Magnetism |

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      MIT-Harvard Center for Excitonics Spintronics: Influence of Interface Structure and Magnetism December 14, 2010 at 3pm/36-428 Jagadeesh Moodera Francis Bitter Laboratory, Massachusetts Institute of Technology moodera-small_001 abstract: The unique properties of organic molecules towards reaching molecular level spintronics, has led to the emergence of the field of organic spintronics. The complexity of the charge and spin transport in organic semiconductors (OS) makes their study extremely

    1. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

      SciTech Connect (OSTI)

      Marzolf, A.; Folsom, M.

      2010-08-31

      This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

    2. 3D RoboMET Characterization

      SciTech Connect (OSTI)

      Madison, Jonathan D.; Susan, Donald F.; Kilgo, Alice C.

      2015-10-01

      The goal of this project is to generate 3D microstructural data by destructive and non-destructive means and provide accompanying characterization and quantitative analysis of such data. This work is a continuing part of a larger effort to relate material performance variability to microstructural variability. That larger effort is called “Predicting Performance Margins” or PPM. In conjunction with that overarching initiative, the RoboMET.3D™ is a specific asset of Center 1800 and is an automated serialsectioning system for destructive analysis of microstructure, which is called upon to provide direct customer support to 1800 and non-1800 customers. To that end, data collection, 3d reconstruction and analysis of typical and atypical microstructures have been pursued for the purposes of qualitative and quantitative characterization with a goal toward linking microstructural defects and/or microstructural features with mechanical response. Material systems examined in FY15 include precipitation hardened 17-4 steel, laser-welds of 304L stainless steel, thermal spray coatings of 304L and geological samples of sandstone.

    3. fdm3d_sndV1.0

      Energy Science and Technology Software Center (OSTI)

      2001-06-06

      FORTRAN90 software computes synthetic induction log responses in fully 3D anistropic geoelectric media.

    4. Magnetic field adjustment structure and method for a tapered wiggler

      DOE Patents [OSTI]

      Halbach, Klaus

      1988-01-01

      An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

    5. Cryogenic expansion joint for large superconducting magnet structures

      DOE Patents [OSTI]

      Brown, Robert L.

      1978-01-01

      An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

    6. The magnetic and electronic structure of vanadyl pyrophosphate from density functional theory

      SciTech Connect (OSTI)

      Cheng, Mu-Jeng; Nielsen, Robert J.; Tahir-Kheli, Jamil; Goddard III, William A.

      2011-01-01

      We have studied the magnetic structure of the high symmetry vanadyl pyrophosphate ((VO)?P?O?, VOPO), focusing on the spin exchange couplings, using density functional theory (B3LYP) with the full three-dimensional periodicity. VOPO involves four distinct spin couplings: two larger couplings exist along the chain direction (a-axis), which we predict to be antiferromagnetic, JOPO = ?156.8 K and JO = ?68.6 K, and two weaker couplings appear along the c (between two layers) and b directions (between two chains in the same layer), which we calculate to be ferromagnetic, Jlayer = 19.2 K and Jchain = 2.8 K. Based on the local density of states and the response of spin couplings to varying the cell parameter a, we found that JOPO originates from a super-exchange interaction through the bridging OPO unit. In contrast, JO results from a direct overlap of 3dx?y orbitals on two vanadium atoms in the same V2O8 motif, making it very sensitive to structural fluctuations. Based on the variations in VO bond length as a function of strain along a, we found that the VO bonds of V(OPO)2V are covalent and rigid, whereas the bonds of V(O)2V are fragile and dative. These distinctions suggest that compression along the a-axis would have a dramatic impact on JO, changing the magnetic structure and spin gap of VOPO. This result also suggests that assuming JO to be a constant over the range of 2300 K whilst fitting couplings to the experimental magnetic susceptibility is an invalid method. Regarding its role as a catalyst, the bonding pattern suggests that O2 can penetrate beyond the top layers of the VOPO surface, converting multiple V atoms from the +4 to +5 oxidation state, which seems crucial to explain the deep oxidation of n-butane to maleic anhydride.

    7. 3D Multigroup Sn Neutron Transport Code

      Energy Science and Technology Software Center (OSTI)

      2001-02-14

      ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forwardmore » and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.« less

    8. 3D Diagnostic Of Complex Plasma

      SciTech Connect (OSTI)

      Hall, Edward; Samsonov, Dmitry

      2011-11-29

      This paper reports the development of a three-dimensional(3D) dust particle position diagnostic for complex plasmas. A beam produce by Light Emitting Diodes(LEDs) is formed into horizontal sheet, for the illumination of the particles. The light sheet has a vertical colour gradient across its width, from two opposing colours. The light scattered from the particles is imaged with the camera from above. The horizontal coordinates are measured from the positions on the image. The third coordinate is determined from the colour which represents a position on the gradient of the light sheet. The use of LEDs as a light source reduces a variation in Mie scattered intensity from the particles due to the particle size distribution. The variation would induce a large vertical positional error.

    9. Process for 3D chip stacking

      DOE Patents [OSTI]

      Malba, Vincent

      1998-01-01

      A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

    10. Process for 3D chip stacking

      DOE Patents [OSTI]

      Malba, V.

      1998-11-10

      A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

    11. MOSSFRAC: An anisotropic 3D fracture model

      SciTech Connect (OSTI)

      Moss, W C; Levatin, J L

      2006-08-14

      Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.

    12. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

      SciTech Connect (OSTI)

      Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

      2013-04-15

      Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

    13. DYNA3D: a finite element program for supercomputers

      SciTech Connect (OSTI)

      Benson, D.J.; Hallquist, J.O.

      1986-01-01

      DYNA3D is an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. 8 refs., 15 figs.

    14. A new elastoplastic shell element formulation for DYNA3D

      SciTech Connect (OSTI)

      Engelmann, B.E.; Whirley, R.G.

      1990-08-01

      The analysis of shell structures undergoing dynamic elastoplastic deformation is an important capability of DYNA3D. This paper presents an improved formulation for a 4-node quadrilateral shell element for explicit dynamic analysis. The proposed element is derived from a three-field weak form, and incorporates recently developed assumed strain methods for improved accuracy. In addition, the element is formulated in a large-displacement small-strain setting for minimum cost. Complex nonlinear constitutive models are easily incorporated into this formulation. Numerical examples illustrating the accuracy, robustness, and speed of the new element are shown. 13 refs., 3 tabs.

    15. A 3D POM–MOF composite based on Ni(ΙΙ) ion and 2,2´-bipyridyl-3,3´-dicarboxylic acid: Crystal structure and proton conductivity

      SciTech Connect (OSTI)

      Wei, Meilin; Wang, Xiaoxiang; Sun, Jingjing; Duan, Xianying

      2013-06-01

      We have succeeded in constructing a 3D POM–MOF, (H[Ni(Hbpdc)(H₂O)₂]₂[PW₁₂O₄₀]·8H₂O)n (H₂bpdc=2,2´-bipyridyl-3,3´-dicarboxylic acid), by the controllable self-assembly of H₂bpdc, Keggin-anions and Ni²⁺ ions based on the electrostatic and coordination interactions. Interestingly, Hbpdc⁻ as polydentate organic ligands and Keggin-anion as polydentate inorganic ligands are covalently linked transition-metal nickel at the same time. The title complex represents a new example of introducing the metal N-heterocyclic multi-carboxylic acid frameworks into POMs chemistry. Based on Keggin-anions being immobilized as part of the metal N-heterocyclic multi-carboxylic acid framework, the title complex realizes four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs. Its water adsorption isotherm at room temperature and pressure shows that the water content in it was 31 cm³ g⁻¹ at the maximum allowable humidity, corresponding to 3.7 water molecules per unit formula. It exhibits good proton conductivities (10⁻⁴–10⁻³ S cm⁻¹) at 100 °C in the relative humidity range 35–98%. The corresponding activation energy (E{sub a}) of conductivity was estimated to be 1.01 eV. - Graphical abstract: A POM–MOF composite constructed by Keggin-type polyanion, Ni²⁺ and H₂bpdc shows good proton conductivities of 10⁻⁴–10⁻³ S cm⁻¹ at 100 °C under 35–98% RH. - Highlights: • A POM–MOF was constructed by combining metal N-heterocyclic multi-carboxylic acid framework and Keggin anion. • It opens a pathway for design and synthesis of multifunctional hybrid materials based on two building units. • Three types of potential proton-carriers have been assembled in the 1D hydrophilic channels of the POM–MOF. • It achieved such proton conductivities as 10⁻⁴–10⁻³ S cm⁻¹ at 100 °C in the RH range 35–98%.

    16. The magnetic structure of EuCu2Sb2

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.

      2015-05-06

      Antiferromagnetic ordering of EuCu2Sb2 which forms in the tetragonal CaBe2Ge2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (Bhf) reaches 28.7(2) T at 2.1 K, indicating a full Eu2+ magnetic moment. Bhf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μB which is the full free-ion moment expected for the Eu2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less

    17. Neutron powder diffraction study of the layer organic-inorganic hybrid iron(II) methylphosphonate-hydrate, Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)

      SciTech Connect (OSTI)

      Leone, Philippe Bellitto, Carlo; Bauer, Elvira M.; Righini, Guido; Andre, Gilles; Bouree, Francoise

      2008-11-15

      The crystal and magnetic structures of the hybrid organic-inorganic layer compound Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)] have been studied by neutron powder diffraction as a function of temperature down to 1.5 K. The neutron diffraction pattern recorded at 200 K shows that the fully deuterated compound crystallizes in one of the two known forms of the undeuterated Fe[(CH{sub 3}PO{sub 3})(H{sub 2}O)]. The crystal structure is orthorhombic, space group Pmn2{sub 1}, with the following unit-cell parameters: a=5.7095(1) A, b=8.8053(3) A and c=4.7987(1) A; Z=2. The crystal structure remains unchanged on cooling from 200 to 1.5 K. Moreover, at low temperature, Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)] shows a commensurate magnetic structure (k=(0,0,0)). As revealed by bulk susceptibility measurements on Fe[(CH{sub 3}PO{sub 3})(H{sub 2}O)], the magnetic structure corresponds to a canted antiferromagnet with a critical temperature T{sub N}=25 K. Neutron powder diffraction reveals that below T{sub N}=23.5 K the iron magnetic moments in Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)] are antiferromagnetically coupled and oriented along the b-axis, perpendicular to the inorganic layers. No ferromagnetic component is observable in the neutron powder diffraction experiment, due to its too small value (<0.1{mu}{sub B}). - Graphical abstract: Crystal structure and magnetic structure of Fe[(CD{sub 3}PO{sub 3})(D{sub 2}O)].

    18. Fabrication and applications of sub-micron 2D and 3D periodic...

      Office of Scientific and Technical Information (OSTI)

      In-Document Search Title: Fabrication and applications of sub-micron 2D and 3D periodic carbon structures. Abstract not provided. Authors: Burckel, David Bruce ; Polsky, Ronen ;...

    19. Unexpected crystal and magnetic structures in MnCu4In and MnCu4Sn

      SciTech Connect (OSTI)

      Provino, A.; Paudyal, D.; Fornasini, ML; Dhiman, I.; Dhar, SK.; Das, A.; Mudryk, Y.; Manfrinetti, P.; Pecharsky, VK

      2013-01-29

      We discovered a new compound MnCu4In with its own hexagonal structure type (hP12-P63mc, ternary ordered derivative of the hexagonal MgZn2-type) that becomes ferromagnetic at TC = 540 K. This transition temperature is higher than that found in the MnCu2In and MnCu2Sn alloys. In contrast, the homologous compound MnCu4Sn, which crystallizes in the cubic MgCu4Sn-type, orders antiferromagnetically with TN = 110 K. The neutron diffraction studies show ferromagnetic spin orientation in the {1 0 1} plane in MnCu4In with a magnetic moment of 4.5 ?B/Mn at 22 K, and a corresponding value of 4.7 ?B/Mn in the antiferromagnetic MnCu4Sn with propagation vector View the MathML source. The first-principles electronic structure calculations show that the unexpected difference in both magnetic and crystal structures of MnCu4In and MnCu4Sn is due to the difference in the Mn-3d bands and exchange interactions relating to different crystal anisotropy, coordination numbers, and interatomic distances.

    20. Streamlining of the RELAP5-3D Code

      SciTech Connect (OSTI)

      Mesina, George L; Hykes, Joshua; Guillen, Donna Post

      2007-11-01

      RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The

    1. Octupolar out-of-plane magnetic field structure generation during collisionless magnetic reconnection in a stressed X-point collapse

      SciTech Connect (OSTI)

      Graf von der Pahlen, J.; Tsiklauri, D.

      2014-06-15

      The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.

    2. JAS3D v. 2.4

      Energy Science and Technology Software Center (OSTI)

      2009-06-29

      JAS3D is a three-dimensional finite element program originally designed to solve Lagrangian quasistatic non-linear mechanics problems, and subsequently extended to include both implicit and explicit dynamics. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. Innovative multilevel nonlinear iterative methods are used to solve the equations. A wide variety of material constitutive models are available, and contact interface logic is implemented. Two Lagrangian uniform-strain elements are available: an eighth-node hexahedronmore » for solids and a four-node quadrilateral for shells. Both use hourglass stiffness to control zero-energy modes. In addition, a version of the hexahedron is available with uniform pressure and a deviatoric response scalable from the mean response of the original element up to a fully-integrated response. Bodies under analysis may be loaded by surface pressures and concentrated forces, specified displacements, or body forces from gravity, steady-state transport, or thermal expansion.« less

    3. Models the Electromagnetic Response of a 3D Distribution using MP COMPUTERS

      Energy Science and Technology Software Center (OSTI)

      1999-05-01

      EM3D models the electromagnetic response of a 3D distribution of conductivity, dielectric permittivity and magnetic permeability within the earth for geophysical applications using massively parallel computers. The simulations are carried out in the frequency domain for either electric or magnetic sources for either scattered or total filed formulations of Maxwell''s equations. The solution is based on the method of finite differences and includes absorbing boundary conditions so that responses can be modeled up into themore » radar range where wave propagation is dominant. Recent upgrades in the software include the incorporation of finite size sources, that in addition to dipolar source fields, and a low induction number preconditioner that can significantly reduce computational run times. A graphical user interface (GUI) is bundled with the software so that complicated 3D models can be easily constructed and simulated with the software. The GUI also allows for plotting of the output.« less

    4. Structural and magnetic stability of Fe{sub 2}NiSi

      SciTech Connect (OSTI)

      Gupta, Dinesh C. Bhat, Idris Hamid Chauhan, Mamta

      2014-04-24

      Full-potential ab-initio calculations in the stable F-43m phase have been performed to investigate the structural and magnetic properties of Fe{sub 2}NiSi inverse Heusler alloys. The spin magnetic moment distributions show that present material is ferromagnetic in stable F-43m phase. Further, spin resolved electronic structure calculations show that the discrepancy in magnetic moments of Fe-I and Fe-II depend upon the hybridization of Fe with the main group element. It is found that the main group electron concentration is predominantly responsible in establishing the magnetic properties, formation of magnetic moments and the magnetic order for present alloy.

    5. Visualization and Analysis of 3D Gene Expression Data (Technical...

      Office of Scientific and Technical Information (OSTI)

      Technical Report: Visualization and Analysis of 3D Gene Expression Data Citation Details In-Document Search Title: Visualization and Analysis of 3D Gene Expression Data You are...

    6. 3D Visualization of Water Transport in Ferns

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

    7. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April...

    8. FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

      Open Energy Info (EERE)

      FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D...

    9. Ames Lab 101: Real-Time 3D Imaging

      ScienceCinema (OSTI)

      Zhang, Song

      2012-08-29

      Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

    10. 3D J-Integral Capability in Grizzly

      SciTech Connect (OSTI)

      Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

      2014-09-01

      This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

    11. Structural and magnetic properties of the Kagome antiferromagnet YbBaCo{sub 4}O{sub 7}

      SciTech Connect (OSTI)

      Huq, A.; Mitchell, J.F. . E-mail: mitchell@anl.gov; Zheng, H.; Chapon, L.C.; Radaelli, P.G.; Knight, K.S.; Stephens, P.W.

      2006-04-15

      The mixed-valent compound YbBaCo{sub 4}O{sub 7} is built up of Kagome sheets of CoO{sub 4} tetrahedra, linked in the third dimension by a triangular layer of CoO{sub 4} tetrahedra in an analogous fashion to that found in the known geometrically frustrated magnets such as pyrochlores and SrCr{sub 9} {sub x} Ga{sub 12-9} {sub x} O{sub 19} (SCGO). We have undertaken a study of the structural and magnetic properties of this compound using combined high-resolution powder neutron and synchrotron X-ray diffraction. YbBaCo{sub 4}O{sub 7} undergoes a first-order trigonal{sup {yields}}orthorhombic phase transition at 175 K. We show that this transition occurs as a response to a markedly underbonded Ba{sup 2+} site in the high-temperature phase and does not appear to involve charge ordering of Co{sup 2+}/Co{sup 3+} ions in the tetrahedra. The symmetry lowering relieves the geometric frustration of the structure, and a long-range-ordered 3-D antiferromagnetic state develops below 80 K.

    12. Structure and magnetism of epitaxial rare-earth-transition-metal films

      SciTech Connect (OSTI)

      Fullerton, E.E.; Sowers, C.H.; Pearson, J.P.; Bader, S.D.

      1996-10-01

      Growth of epitaxial transition-metal superlattices; has proven essential in elucidating the role of crystal orientation and structure on magnetic properties such as giant magnetoresistance, interlayer coupling, and magnetic surface anisotropies. Extending these studies to the growth of epitaxial rare earth-transition metal (RE-TM) films and superlattices promises to play an equally important role in exploring and optimizing the properties of hard magnets. For instance, Skomski and Coey predict that a giant energy product (120 MG Oe) is possible in multilayer structures consisting of aligned hard-magnet layers exchanged coupled with soft-phase layers with high magnetization. Epitaxy provides one route to synthesizing such exchange-hardened magnets on controlled length scales. Epitaxial growth also allows the magnetic properties to be tailored by controlling the crystal orientation and the anisotropies of the magnetic layers and holds the possibility of stabilizing metastable phases. This paper describes the epitaxy and magnetic properties for several alloys.

    13. An unusual 3D interdigitated architecture assembled from Keggin polyoxometalates and dinuclear copper(II) complexes

      SciTech Connect (OSTI)

      Pang, Haijun; Yang, Ming; Kang, Lu; Ma, Huiyuan; Liu, Bo; Li, Shaobin; Liu, Heng

      2013-02-15

      A novel organic-inorganic hybrid compound, [Cu{sub 2}(bipy){sub 3}({mu}{sub 1}-H{sub 2}O){sub 2}({mu}{sub 2}-H{sub 2}O)({mu}{sub 2}-OH)(H{sub 2}BW{sub 12}O{sub 40})]{center_dot}4 H{sub 2}O (1) (bipy=4,4 Prime -bipy), has been synthesized in hydrothermal condition and characterized by elemental analysis, IR spectrum, TG analysis and single-crystal X-ray diffraction. Compound 1 possesses poly-pendant layered motifs composed of 12-tungstoborates and dinuclear copper(II) complexes, in which the mono-coordinated bipy molecules are orderly appended to both sides of the layer, respectively. Adjacent layers mutually engage in a zipper-like pattern to result in a novel 3D interdigitated architecture. The variable-temperature magnetic susceptibility of 1 showed that there existed weak antiferromagnetic interaction in 1. Toward the reduction of hydrogen peroxide, 1 has good electrocatalytic activity and remarkable stability. - A new compound has been obtained, which represents the first interdigitated architecture assembled by POMs and dinuclear copper(II) complexes. Highlights: Black-Right-Pointing-Pointer The first example of interdigitated architecture assembled by POMs and dinuclear copper(II) complexes is observed. Black-Right-Pointing-Pointer A zipper-like pattern is observed in the structure. Black-Right-Pointing-Pointer The IR, TG, XRPD, magnetism and electrochemical property of the title compound were studied.

    14. DYNA3D: A computer code for crashworthiness engineering

      SciTech Connect (OSTI)

      Hallquist, J.O.; Benson, D.J.

      1986-09-01

      A finite element program with crashworthiness applications has been developed at LLNL. DYNA3D, an explicit, fully vectorized, finite deformation structural dynamics program, has four capabilities that are critical for the efficient and realistic modeling crash phenomena: (1) fully optimized nonlinear solid, shell, and beam elements for representing a structure; (2) a broad range of constitutive models for simulating material behavior; (3) sophisticated contact algorithms for impact interactions; (4) a rigid body capability to represent the bodies away from the impact region at a greatly reduced cost without sacrificing accuracy in the momentum calculations. Basic methodologies of the program are briefly presented along with several crashworthiness calculations. Efficiencies of the Hughes-Liu and Belytschko-Tsay shell formulations are considered.

    15. World's First 3-D Printed Car | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      World's First 3-D Printed Car World's First 3-D Printed Car Addthis Description The video is about a partnership between Local Motors and Oak Ridge National Laboratory to print the world's first 3-D printed car-the Strati-at the 2014 International Manufacturing Technology Show

    16. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

      SciTech Connect (OSTI)

      Dibildox, Gerardo Baka, Nora; Walsum, Theo van; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro

      2014-09-15

      Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

    17. RESTRUCTURING RELAP5-3D FOR NEXT GENERATION NUCLEAR PLANT ANALYSIS

      SciTech Connect (OSTI)

      Donna Post Guillen; George L. Mesina; Joshua M. Hykes

      2006-06-01

      RELAP5-3D is used worldwide for analyzing nuclear reactors under both operational transients and postulated accident conditions. Development of the RELAP code series began in 1975 and since that time the code has been continuously improved, enhanced, verified and validated [1]. Since RELAP5-3D will continue to be the premier thermal hydraulics tool well into the future, it is necessary to modernize the code to accommodate the incorporation of additional capabilities to support the development of the next generation of nuclear reactors [2]. This paper discusses the reengineering of RELAP5-3D into structured code.

    18. Structure and magnetic properties of the pyrochlore iridate Y2Ir2O7...

      Office of Scientific and Technical Information (OSTI)

      Structure and magnetic properties of the pyrochlore iridate Y2Ir2O7 Citation Details ... Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud ...

    19. US-Japan seminar on magnetic multilayered structures held in Kauai, Hawaii on 15-17 May 1992

      SciTech Connect (OSTI)

      Not Available

      1992-05-17

      This seminar included the following topics: Advancement in soft magnetic materials by means of multilayering, Elastic moduli of metallic multilayered films measured by Brillouin Scattering method, Structural aspects of the superlattices under high pressure, Structural influence on the magnetic anisotropy of Co/Pd superlattices, Low dimensional magnetic and structural effects in single crystals grown by molecular beam epitaxy, Polarized neutron reflection and diffraction from magnetic superlattices, and Nuclear magnetic resonance studies of magnetic multilayers.

    20. New local potential useful for genome annotation and 3D modeling (Journal

      Office of Scientific and Technical Information (OSTI)

      Article) | SciTech Connect Journal Article: New local potential useful for genome annotation and 3D modeling Citation Details In-Document Search Title: New local potential useful for genome annotation and 3D modeling A new potential energy function representing the conformational preferences of sequentially local regions of a protein backbone is presented. This potential is derived from secondary structure probabilities such as those produced by neural network-based prediction methods. The

    1. 3-d-interactive-scouring-methodology

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Sixty percent of bridge failures are the result of riverbed erosion (scour) at bridge support structures, and about 1 in 20 bridges are classified as scour critical, meaning that ...

    2. Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis

      SciTech Connect (OSTI)

      Zhang, C.; Yamanouchi, M. Ikeda, S.; Sato, H.; Fukami, S.; Matsukura, F.; Ohno, H.

      2014-05-07

      We investigate in-plane current-induced magnetization reversal under an in-plane magnetic field in Hall bar shaped devices composed of Ta/CoFeB/MgO structures with perpendicular magnetic easy axis. The observed relationship between the directions of current and magnetization switching and Ta thickness dependence of magnetization switching current are accordance with those for magnetization reversal by spin transfer torque originated from the spin Hall effect in the Ta layer.

    3. Small-angle X-ray Scattering from Magnetic Clusters and Structural Grains

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      in Magnetic Recording Media | Stanford Synchrotron Radiation Lightsource Small-angle X-ray Scattering from Magnetic Clusters and Structural Grains in Magnetic Recording Media Friday, July 31, 2015 Historically, areal density increases in longitudinal hard disk drive media technology have been driven by reduction of grain size. However, since its introduction in 2006, the perpendicular magnetic recording media grain size has remained more or less constant at around 9 nm. Perpendicular

    4. Simulation of underwater explosion benchmark experiments with ALE3D

      SciTech Connect (OSTI)

      Couch, R.; Faux, D.

      1997-05-19

      Some code improvements have been made during the course of this study. One immediately obvious need was for more flexibility in the constitutive representation for materials in shell elements. To remedy this situation, a model with a tabular representation of stress versus strain and rate dependent effects was implemented. This was required in order to obtain reasonable results in the IED cylinder simulation. Another deficiency was in the ability to extract and plot variables associated with shell elements. The pipe whip analysis required the development of a scheme to tally and plot time dependent shell quantities such as stresses and strains. This capability had previously existed only for solid elements. Work was initiated to provide the same range of plotting capability for structural elements that exist with the DYNA3D/TAURUS tools. One of the characteristics of these problems is the disparity in zoning required in the vicinity of the charge and bubble compared to that needed in the far field. This disparity can cause the equipotential relaxation logic to provide a less than optimal solution. Various approaches were utilized to bias the relaxation to obtain more optimal meshing during relaxation. Extensions of these techniques have been developed to provide more powerful options, but more work still needs to be done. The results presented here are representative of what can be produced with an ALE code structured like ALE3D. They are not necessarily the best results that could have been obtained. More experience in assessing sensitivities to meshing and boundary conditions would be very useful. A number of code deficiencies discovered in the course of this work have been corrected and are available for any future investigations.

    5. Structure and magnetic properties of Ce₃(Ni/Al/Ga)₁₁-A...

      Office of Scientific and Technical Information (OSTI)

      ...AlGa)-A new phase with the LaAl structure type Prev Next Title: Structure and magnetic properties of Ce(NiAlGa)-A new phase with the ...

    6. Tailorable 3D microfabrication for photonic applications: two-polymer microtransfer molding (proceedings paper)

      SciTech Connect (OSTI)

      Lee, Jae-Hwang; kim, Chang-Hwan; Constant, Kristen; Ho, Kai-Ming

      2006-02-28

      For photonic devices, extending beyond the planar regime to the third dimension can allow a higher degree of integration and novel functionalities for applications such as photonic crystals and integrated optical circuits. Although conventional photolithography can achieve both high quality and structural control, it is still costly and slow for three-dimensional (3D) fabrication. Moreover, as diverse functional polymers emerge, there is potential to develop new techniques for quick and economical fabrication of 3D structures. We present a 3D microfabrication technique based on the soft lithographic technique, called two-polymer microtransfer molding (2P-{micro}TM) to accomplish low cost, high structural fidelity and tailorable 3D microfabrication for polymers. Using 2P-{micro}TM, highly layered polymeric microstructures are achievable by stacking planar structures layer by layer. For increased processing control, the surface chemistry of the polymers is characterized as a function of changing ultraviolet dosage to optimize yield in layer transfer. We discuss the application of the 2P-{micro}TM to build polymer templates for woodpile photonic crystals, and demonstrate methods for converting the polymer templates to dielectric and metallic photonic crystal structures. Finally, we will show that 2P-{micro}TM is promising for fabricating 3D polymeric optical waveguides.

    7. Effect of milling time on magnetic properties and structures of bulk Sm-Co/{alpha}-(Fe, Co) nanocomposite magnets

      SciTech Connect (OSTI)

      Shen, Y.; Huang, M. Q.; Turgut, Z.; Lucas, M. S.; Michel, E.; Horwath, J. C.

      2012-04-01

      Bulk Sm-Co/{alpha}-(Fe,Co) nanocomposite magnets were fabricated by hot pressing composite powders prepared by high-energy ball milling of magnetically hard SmCo{sub 5} powder and magnetically soft Fe powder. The bulk magnets had a nanocomposite structure consisting of Sm-Co matrix (1:5 H and 1:7 H phases) and {alpha}-(Fe,Co) phases. The Fe-Co particles were distributed uniformly in the Sm-Co matrix. The milling time strongly affects the structures and the magnetic properties of the bulk magnets. Increasing milling time led to a decrease of the amount of 1:5 H phase, an increase in the phase fraction of the 1:7 H phase, and a decrease in the amount of soft phase, which resulted in an increase in magnetization and a decrease in coercivity. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) analyses revealed that inter-diffusion took place between the Sm-Co matrix and Fe particles during the processing.

    8. Advanced Characterization: 3D chemistry and structure at sub...

      Office of Scientific and Technical Information (OSTI)

      MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: ...

    9. A Lagrangian Interpretation of 3D Tropical Cloud Structure: ...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Retrievals with Satellite Data A. M. Vogelmann, K. L. Johnson, M. P. Jensen, M. A. Miller, and M. J. Bartholomew Brookhaven National Laboratory Upton, New York M. P. Jensen...

    10. 3-D Finite Element Analysis of Induction Logging in a Dipping Formation

      SciTech Connect (OSTI)

      EVERETT,MARK E.; BADEA,EUGENE A.; SHEN,LIANG C.; MERCHANT,GULAMABBAS A.; WEISS,CHESTER J.

      2000-07-20

      Electromagnetic induction by a magnetic dipole located above a dipping interface is of relevance to the petroleum well-logging industry. The problem is fully three-dimensional (3-D) when formulated as above, but reduces to an analytically tractable one-dimensional (1-D) problem when cast as a small tilted coil above a horizontal interface. The two problems are related by a simple coordinate rotation. An examination of the induced eddy currents and the electric charge accumulation at the interface help to explain the inductive and polarization effects commonly observed in induction logs from dipping geological formations. The equivalence between the 1-D and 3-D formulations of the problem enables the validation of a previously published finite element solver for 3-D controlled-source electromagnetic induction.

    11. Interactive initialization of 2D/3D rigid registration

      SciTech Connect (OSTI)

      Gong, Ren Hui; Gler, zgr; Krkloglu, Mustafa; Lovejoy, John; Yaniv, Ziv

      2013-12-15

      Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 5.0 mm with an average interaction time of 146.3 73.0 s, and the AR-based method had mTREs of 7.2 3.2 mm with interaction times of 44 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 5.0 mm with an average interaction time of 132.1 66.4 s, and the AR-based method had mTREs of 8.3 5.0 mm with interaction times of 58 52 s. Conclusions: Based on the authors

    12. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

      Broader source: Energy.gov [DOE]

      Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

    13. Assessing the RELAPS-3D Heat Conduction Enclosure Model

      SciTech Connect (OSTI)

      McCann, Larry D.

      2008-09-30

      Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.

    14. 3-D Combustion Simulation Strategy Status, Future Potential,...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      D Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel ...

    15. 3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD...

      Open Energy Info (EERE)

      3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Abstract Knowledge of the subsurface electrical resistivityconductivity can contribute to a better...

    16. Energy Department Unveils 3D-Printed Building; New Initiatives...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      ... Energy Department Unveils 3D-Printed Building; New Initiatives During Industry Day DOE Announces JUMP Initiative Winners, Launches New Crowdsourcing Calls at Bay Area Maker Faire

    17. RELAP5-3D V. 4.X.X

      Energy Science and Technology Software Center (OSTI)

      000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL

    18. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      WORKING TOGETHER TO BUILD A FASTER AND LEANER FUTURE FOR WIND TURBINE BLADE MANUFACTURING ... For the wind industry, 3D printing could transform turbine blade mold manufacturing, ...

    19. How 3D Printers Work | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      3D Printers Work How 3D Printers Work June 19, 2014 - 9:28am Addthis How does 3D printing work? Watch a 3D printing timelapse video and read on below to learn everything you need to know about this game-changing innovation that is capturing the imagination of major manufacturers and hobbyists alike. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene Former Videographer What are

    20. 3-D Printer Speeds Metals Research | Critical Materials Institute

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      3-D Printer Speeds Metals Research The Critical Materials Institute has a new 3D printer for metals research. Ryan Ott, principal investigator at the Ames Laboratory and the CMI, is using 3D printing technology to discover new materials. He uses the printer to produce a large variety of alloys in less time than needed in traditional casting methods. "Metal 3D printers are slowly becoming more commonplace," Ott said. "They can be costly, and are often limited to small-scale

    1. Early Career: Emergent Atomic and Magnetic Structures | The Ames...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Updates They're Alive Read More Caught in the Act Read More Previous Pause Next Characterization Determining the nature of the macromolecule-mediated magnetic...

    2. Saturable inductor and transformer structures for magnetic pulse compression

      DOE Patents [OSTI]

      Birx, Daniel L.; Reginato, Louis L.

      1990-01-01

      Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

    3. 3D model generation using an airborne swarm

      SciTech Connect (OSTI)

      Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.

      2015-03-31

      Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithms computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

    4. RELAP5-3D Architectural Developments in 2004

      SciTech Connect (OSTI)

      Dr. George L. Mesina

      2004-08-01

      Currently, RELAP5 is undergoing a transformation that will replace much of its coding with equivalent structured Fortran 90 coding. Four efforts are underway to modernize the code architecture of RELAP5-3D. These are parallelization, vectorization, code restructuring, and conversion to Fortran 90. The first two improve code run speed via on computer platforms of certain architectures. These code modifications have little effect on normal code performance on non-vector and non-parallel computers because they are mostly done with compiler directives. The third and fourth efforts involve considerable rewriting of the source code. The third code improvement effort addresses code readability and maintainability. These are being greatly enhanced by application of a Fortran code-restructuring tool. The fourth effort is conversion to Fortran 90. The bulk of the coding is being rewritten in Fortran 90. This is a ground up reworking of the coding that begins with completely reorganizing the underlying database and continues with the source code. It will reach every part of RELAP5-3D. Each of these efforts is discussed in detail in a different section. Section 1 relates background information. Section 2 covers the parallelization effort. Section 3 covers the efforts to vectorize the code. Section 4 covers the code restructuring. Section 5 covers the Fortran 90 effort. Outline Background: longevity, maintenance & development, reliability, speed Parallelization: KAI to OpenMP, previous work & current, domain decomposition, done. Vectorization: Speed - Fed init, vectors in PCs, INL Cray SV1, R5 Phant, EXV, results. Code Restructuring: Reason to restructure, study of restruct, For Study: what it does, Fortran 90: Modernization -

    5. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code

      SciTech Connect (OSTI)

      Wiengarten, T.; Kleimann, J.; Fichtner, H.; Kühl, P.; Kopp, A.; Heber, B.; Kissmann, R.

      2014-06-10

      The transport of energetic particles such as cosmic rays is governed by the properties of the plasma being traversed. While these properties are rather poorly known for galactic and interstellar plasmas due to the lack of in situ measurements, the heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric transport of energetic particles are structures such as corotating interaction regions, which, due to strongly enhanced magnetic field strengths, turbulence, and associated shocks, can act as diffusion barriers on the one hand, but also as accelerators of low energy CRs on the other hand as well. In a two-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with a numerical magnetohydrodynamic (MHD) setup (this paper), which will serve as an input to a transport code employing a stochastic differential equation approach (second paper). In this first paper, we present results from 3D MHD simulations with our code CRONOS: for validation purposes we use analytic boundary conditions and compare with similar work by Pizzo. For a more realistic modeling of solar wind conditions, boundary conditions derived from synoptic magnetograms via the Wang-Sheeley-Arge (WSA) model are utilized, where the potential field modeling is performed with a finite-difference approach in contrast to the traditional spherical harmonics expansion often utilized in the WSA model. Our results are validated by comparing with multi-spacecraft data for ecliptical (STEREO-A/B) and out-of-ecliptic (Ulysses) regions.

    6. Structures and magnetic properties of Co-Zr-B magnets studied...

      Office of Scientific and Technical Information (OSTI)

      polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the "interruption"...

    7. Electric-dipole allowed and intercombination transitions among the 3d{sup 5}, 3d{sup 4}4s and 3d{sup 4}4p levels of Fe IV

      SciTech Connect (OSTI)

      Deb, Narayan C.; Hibbert, Alan

      2010-07-15

      Oscillator strengths and transition rates for the electric-dipole (E1) allowed and intercombination transitions among 3d{sup 5}, 3d{sup 4}4s and 3d{sup 4}4p levels of Fe IV are calculated using the CIV3 code of Hibbert and coworkers. Using the Hartree-Fock functions up to 3d orbitals we have also optimized 4s, 4p, 4d, 4f, 5s, 5p and 5d orbitals of which 4s and 4p are taken to be spectroscopic and the remaining orbitals represent corrections to the spectroscopic orbitals or the correlation effects. The J-dependent levels of 108 LS states are included in the calculation and the relativistic effects are accounted for via the Breit-Pauli operator. Configurations are chosen in two steps: (a) two promotions were allowed from the 3p, 3d, 4s and 4p subshells, using all the orbitals; and (b) selective promotions from the 3s subshell are included, but only to the 3s and 4s orbitals. The ab initio fine-structure levels are then fine tuned to reproduce observed energy levels as closely as possible, and the resulting wavefunctions are used to calculate oscillator strengths and transition rates for all possible E1 transitions. For many of these transitions, the present results show good agreement between the length and velocity forms while for some transitions, some large disagreements are found with other available results. The complete list of weighted oscillator strengths, transition rates, and line strengths for transitions among the fine structure levels of the three lowest configurations are presented in ascending order of wavelength.

    8. 3-D seismic benefits from exploration through development: An Exxon perspective

      SciTech Connect (OSTI)

      Johnson, M.G.; Gaskins, G.M. ); Greenlee, S.M. )

      1993-09-01

      Exxon has participated in over 370 three-dimensional (3-D) seismic surveys in 13 countries since the late-1970s. The world-wide distribution of our experience is led by western Europe, the Gulf of Mexico, and Canada. These surveys have added significant value to our upstream operations and we consider 3-D seismic to be the single most important technology to ensure the effective and cost-efficient exploration and development of our oil and gas fields. Exxon is applying 3-D seismic technology in established exploration trends, the early phases of field delineation, development decision making, and exploitation. Our use of 3-D seismic surveys has led to the addition of new reserves, drilling of fewer dry or marginal exploration wells, and optimization of the number and placement of delineation, development, and secondary recovery wells. These benefits are a result of superior structural definition, more detailed reservoir descriptions, reservoir fluid content characterizations, and quantitative interpretation methods. Although 3-D seismic surveys are expensive, when balanced against potential investments in nonproductive acreage, a costly dry hole or two, a misplaced platform, incorrect assumptions on reservoir extent and geometry, or perhaps premature field abandonment, 3-D seismic surveys in most areas are money well spent.

    9. 3-D Galaxy-mapping Project Enters Construction Phase

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      3-D Galaxy-mapping Project Enters Construction Phase DESI (Dark Energy Spectroscopic Instrument) - a 3-D sky-mapping project that will measure the light of millions of galaxies and explore the nature of dark energy - has received approval to move forward with construction, which is scheduled to begin next year. Observations will start in January 2019.

    10. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; Stanford, Michael G.; Plank, Harald; Rack, Philip D.

      2016-06-10

      Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less

    11. X-Ray Diffraction Microscopy of Magnetic Structures

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      This method can be used at any coherent light source, such as x-ray free-electron lasers, where ultra-short pulses would freeze-frame magnetic changes, offering the potential for ...

    12. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

      SciTech Connect (OSTI)

      Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

      2010-02-01

      Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

    13. Current Drive for Plasma Via Vertically-Structured Permanent Magnet System.

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      | Princeton Plasma Physics Lab Current Drive for Plasma Via Vertically-Structured Permanent Magnet System. This invention uses the rotatoin of permanent magnets to generate a plasma current with toroidal fusion confinement devices. This particular device strategically places two rings of magnets above and below the ferromagnetic core in order to maximize both the efficiency and plasma current. No.: M-872 Inventor(s): Ali Zolfaghari

    14. Phonon and magnetic structure in δ-plutonium from density-functional theory

      SciTech Connect (OSTI)

      Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.

      2015-10-30

      We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment (DLM) method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, However, the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.

    15. First principle study of structural, electronic and magnetic properties of zigzag boron nitride nanoribbon: Role of vacancies

      SciTech Connect (OSTI)

      Kumar, Arun; Bahadur, Amar; Mishra, Madhukar; Vasudeva, Neena

      2015-05-15

      We study the effect of vacancies on the structural, electronic and magnetic properties of zigzag boron nitride nanoribbon (ZBNNR) by using first principle calculations. We find that the shift of the vacancies with respect to the ribbon edges causes change in the structural geometry, electronic structure and magnetization of ZBNNR. These vacancies also produce band gap modulation and consequently results the magnetization of ZBNNR.

    16. Real time 3D and heterogeneous data fusion

      SciTech Connect (OSTI)

      Little, C.Q.; Small, D.E.

      1998-03-01

      This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

    17. F3D Image Processing and Analysis for Many - and Multi-core Platforms

      SciTech Connect (OSTI)

      2014-10-01

      F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizing for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expedites any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.

    18. Building the 3-D jugsaw puzzle: Applications of sequence stratigraphy to 3-D reservoir characterization, Permian basin

      SciTech Connect (OSTI)

      Tinker, S.W.

      1996-04-01

      Reservoir characterization involves the quantification, integration, reduction, and analysis of geological, petrophysical, seismic, and engineering data. This is no small task. A principal goal of reservoir characterization is to derive a spatial understanding of interwell heterogeneity. Traditionally, geologic attempts to characterize interwell heterogeneity have been done using hand-drawn or computer-generated two-dimensional (2-D) maps and cross sections. Results can be improved dramatically using three-dimensional (3-D) interpretation and analysis techniques. Three-dimensional reservoir characterization requires the same input data used in 2-D approaches, and the cost is equal to, and commonly lower than, traditional 2-D methods. The product of 3-D reservoir characterization is a 3-D reservoir model. The language used to communicate the results of a 3-D reservoir model is visualization; i.e., visual images of numerical data. All of the available log and core data in a model area are incorporated in a 3-D model, but the data are depicted as colored cells rather than as log traces. The integrity of the 3-D reservoir model is largely a function of the stratigraphic framework. Interpreting the correct stratigraphic framework for a subsurface reservoir is the most difficult and creative part of the 3-D modeling process. Sequence and seismic stratigraphic interpretation provide the best stratigraphic framework for 3-D reservoir modeling. The purpose of this paper is to discuss the pro- cess of 3-D deterministic reservoir modeling and to illustrate the advantages of using a sequence stratigraphic framework in 3-D modeling. Mixed carbonate and siliciclastic sediment outcrop and subsurface examples from the Permian basin of west Texas and New Mexico will be used as examples, but the concepts and techniques can be applied to reservoirs of any age.

    19. Comparison of 2D and 3D gamma analyses

      SciTech Connect (OSTI)

      Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; ODaniel, Jennifer

      2014-02-15

      Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (evaluated dose distributions) and Monte Carlo-recalculated (reference dose distributions) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted

    20. Suitability for 3D Printed Parts for Laboratory Use

      SciTech Connect (OSTI)

      Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia

      2014-08-01

      3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

    1. 3D Printing a Classic Shelby Cobra | Department of Energy

      Energy Savers [EERE]

      7pt.2PerformanceBasedServiceAcquisition.pdf 37pt.2PerformanceBasedServiceAcquisition.pdf (1022.17 KB) More Documents & Publications Acquisitions___Communications.pdf Acquisition Guide Chapter 7.1 - Acquisition Planning One Acquisition Solution for Integrated Services (OASIS) - Brad DeMers, General Services Administration (GSA)

      3D Printed Shelby Cobra 3D Printed Shelby Cobra Description ORNL's newly printed 3D car will be showcased at the 2015 NAIAS in Detroit. This "laboratory on

    2. 3D Printed Shelby Cobra | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      3D Printed Shelby Cobra 3D Printed Shelby Cobra Description ORNL's newly printed 3D car will be showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy's Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a

    3. 3D Printing a Classic | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      D Printing a Classic 3D Printing a Classic January 15, 2015 - 4:02pm Addthis The team from the Oak Ridge Manufacturing Demonstration Facility is at the Detroit Auto Show this week to display their latest accomplishment: a 3D-printed, electric-motor driven, Shelby Cobra. In just six weeks, the team went from designing the car in digital models, to 3D printing the frame and other parts with fiber-reinforced composite material, to assembling, finishing, and painting the final product. President

    4. Magnetic structure of light nuclei from lattice QCD

      SciTech Connect (OSTI)

      Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Beane, Silas R.

      2015-12-09

      Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei with $A\\le4$, along with the cross-section for the $M1$ transition $np\\rightarrow d\\gamma$, at the flavor SU(3)-symmetric point where the pion mass is $m_\\pi\\sim 806$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter non-trivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with $\\beta_p=5.22(+0.66/-0.45)(0.23) \\times 10^{-4}$ fm$^3$ and $\\beta_n=1.253(+0.056/-0.067)(0.055) \\times 10^{-4}$ fm$^3$, exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses and its magnetic polarizability, $\\beta_{nn}=1.872(+0.121/-0.113)(0.082) \\times 10^{-4}$ fm$^3$ differs significantly from twice that of the neutron. A linear combination of deuteron scalar and tensor polarizabilities is determined by the energies of the $j_z=\\pm 1$ deuteron states, and is found to be $\\beta_{d,\\pm 1}=4.4(+1.6/-1.5)(0.2) \\times 10^{-4}$ fm$^3$. The magnetic polarizabilities of the three-nucleon and four-nucleon systems are found to be positive and similar in size to those of the proton, $\\beta_{^{3}\\rm He}=5.4(+2.2/-2.1)(0.2) \\times 10^{-4}$ fm$^3$, $\\beta_{^{3}\\rm H}=2.6(1.7)(0.1) \\times 10^{-4}$ fm$^3$, $\\beta_{^{4}\\rm He}=3.4(+2.0/-1.9)(0.2) \\times 10^{-4}$ fm$^3$. Mixing between the $j_z=0$ deuteron state and the spin-singlet $np$ state induced by the background magnetic field is used to extract the short-distance two-nucleon counterterm, ${\\bar L}_1$, of the pionless effective theory for $NN$ systems (equivalent to the meson-exchange current

    5. Magnetic structure of light nuclei from lattice QCD

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Beane, Silas R.

      2015-12-09

      Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei withmore » $$A\\le4$$, along with the cross-section for the $M1$ transition $$np\\rightarrow d\\gamma$$, at the flavor SU(3)-symmetric point where the pion mass is $$m_\\pi\\sim 806$$ MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter non-trivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with $$\\beta_p=5.22(+0.66/-0.45)(0.23) \\times 10^{-4}$$ fm$^3$ and $$\\beta_n=1.253(+0.056/-0.067)(0.055) \\times 10^{-4}$$ fm$^3$, exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses and its magnetic polarizability, $$\\beta_{nn}=1.872(+0.121/-0.113)(0.082) \\times 10^{-4}$$ fm$^3$ differs significantly from twice that of the neutron. A linear combination of deuteron scalar and tensor polarizabilities is determined by the energies of the $$j_z=\\pm 1$$ deuteron states, and is found to be $$\\beta_{d,\\pm 1}=4.4(+1.6/-1.5)(0.2) \\times 10^{-4}$$ fm$^3$. The magnetic polarizabilities of the three-nucleon and four-nucleon systems are found to be positive and similar in size to those of the proton, $$\\beta_{^{3}\\rm He}=5.4(+2.2/-2.1)(0.2) \\times 10^{-4}$$ fm$^3$, $$\\beta_{^{3}\\rm H}=2.6(1.7)(0.1) \\times 10^{-4}$$ fm$^3$, $$\\beta_{^{4}\\rm He}=3.4(+2.0/-1.9)(0.2) \\times 10^{-4}$$ fm$^3$. Mixing between the $j_z=0$ deuteron state and the spin-singlet $np$ state induced by the background magnetic field is used to extract the short-distance two-nucleon counterterm, $${\\bar L}_1$$, of the pionless effective theory for $NN$ systems (equivalent to the

    6. ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS

      SciTech Connect (OSTI)

      Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; Ciardi, A.; Hartigan, P.; Lebedev, S. V.; Chittenden, J. P.

      2012-09-20

      Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

    7. Electronically- and crystal-structure-driven magnetic structures and physical properties of RScSb (R = rare earth) compounds. A neutron diffraction, magnetization and heat capacity study

      SciTech Connect (OSTI)

      Ritter, C; Dhar, S K; Kulkarni, R; Provino, A; Paudyal, Durga; Manfrinetti, Pietro; Gschneidner, Karl A

      2014-08-14

      The synthesis of the new equiatomic RScSb ( R = La-Nd, Sm, Gd-Tm, Lu, Y) compounds has been recently reported. These rare earth compounds crystallize in two different crystal structures, adopting the CeScSi-type ( I 4/ mmm) for the lighter R (La-Nd, Sm) and the CeFeSi-type (P4 /nmm) structure for the heavier R ( R = Gd-Tm, Lu, Y). Here we report the results of neutron diffraction, magnetization and heat capacity measurements on some of these compounds ( R = Ce, Pr, Nd, Gd and Tb). Band structure calculations have also been performed on CeScSb and GdScGe (CeScSi-type), and on GdScSb and TbScSb (CeFeSi-type) to compare and understand the exchange interactions in CeScSi and CeFeSi structure types. The neutron diffraction investigation shows that all five compounds order magnetically, with the highest transition temperature of 66 K in TbScSb and the lowest of about 9 K in CeScSb. The magnetic ground state is simple ferromagnetic (τ = [0 0 0]) in CeScSb, as well in NdScSb for 32 >T > 22 K. Below 22 K a second magnetic transition, with propagation vector τ = [¼ ¼ 0], appears in NdScSb. PrScSb has a magnetic structure within, determined by mostly ferromagnetic interactions and antiferromagnetic alignment of the Pr-sites connected through the I-centering ( τ = [1 0 0]). A cycloidal spiral structure with a temperature dependent propagation vector τ = [δ δ ½] is found in TbScSb. The results of magnetization and heat capacity lend support to the main conclusions derived from neutron diffraction. As inferred from a sharp peak in magnetization, GdScSb orders antiferromagnetically at 56 K. First principles calculations show lateral shift of spin split bands towards lower energy from the Fermi level as the CeScSi-type structure changes to the CeFeSi-type structure. This rigid shift may force the system to transform from exchange split ferromagnetic state to the antiferromagnetic state in RScSb compounds (as seen for example in GdScSb and TbScSb) and is proposed to

    8. Soft x-ray ptychography studies of nanoscale magnetic and structural...

      Office of Scientific and Technical Information (OSTI)

      Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films Citation Details In-Document Search This content will become publicly ...

    9. Interrelation between Structure Magnetic Properties in La0.5Sr0...

      Office of Scientific and Technical Information (OSTI)

      Title: Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3 Differing anisotropic strain induced from the underlying substrates not only control the long-range ...

    10. Structure symmetry determination and magnetic evolution in Sr2Ir1...

      Office of Scientific and Technical Information (OSTI)

      evolution in Sr2Ir1-xRhxO4 This content will become publicly available on November 23, 2016 Prev Next Title: Structure symmetry determination and magnetic evolution in ...

    11. LOW-STATE MAGNETIC STRUCTURES IN POLARS: NATURE OR NURTURE?

      SciTech Connect (OSTI)

      Kafka, S.; Tappert, C.; Ribeiro, T.; Honeycutt, R. K.; Hoard, D. W.

      2010-10-01

      We present an orbit-resolved study of the magnetic cataclysmic variable (MCV) BL Hyi in its low state, and we explore the origin of its H{alpha} emission line components, their properties, and their possible formation mechanism. We tentatively associate one of the line components with a high-velocity component also seen in the high state. We propose a scenario in which streaming prominence-like magnetic loops (super-prominences) are kept in place by magnetic field interactions between the white dwarf and the donor star and are responsible for the high-velocity line components in the Balmer lines. We also discuss how this is in accord with the standard scenario of the secular evolution for MCVs. Finally, we offer an observational test of our ideas and present challenges for future theoretical studies.

    12. Structural performance of the first SSC (Superconducting Super Collider) Design B dipole magnet

      SciTech Connect (OSTI)

      Nicol, T.H.

      1989-09-01

      The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs.

    13. 3-D seismic and reservoir modeling, ram prospect, Viosca Knoll Block 912, offshore Gulf of Mexico

      SciTech Connect (OSTI)

      Carew, W.; Ostendorf, P.F. ); Krum, G.K. )

      1993-09-01

      Ram prospect is a large stratigraphic trap located in Viosca Knoll Block 912/956/957, offshore Alabama in 3500-ft water depth. Reservoirs are Pliocene and Miocene gas- and oil-bearing deep-water sands deposited as fan complexes in an intraslope basin. The field has been proved by a total of 12 well penetrations and is nearing the development stage. In an effort to predict reservoir performance and recovery efficiencies, we constructed three-dimensional (3-D) reservoir models Exxon's in-house 3-D modeling program (GEOSET). Reservoir simulation studies will be based upon these 3-D geological models. We used 3-D seismic data to map seismic attributes around the prospect and well control to calibrate the seismic attributes based on known reservoir characteristics, thereby deriving a facies map for the entire field. Top/base structure, gross isopach, facies polygons, porosity, and Vshale were input into GEOSET to define the overall reservoir container and fill. The paucity of well data was compensated by using the 3-D-seismic based facies as a guide to filling polygons and by creating [open quotes]pseudowells[close quotes] from the real well data. These pseudowells aided in correlating within and between polygons. The resulting 3-D models (total porosity, effective porosity, Vsand) faithfully reflect the heterogeneity inferred from both 3-D seismic data and well control and provide visualization of reservoir continuity much better than models derived from well data alone. The models serve as a framework within which one can perform reservoir simulations and run various sensitivities. Additionally, the GEOSET porosity models can provide an alternative reservoir volume calculation.

    14. 3D Printing Comes of Age | Department of Energy

      Broader source: Energy.gov (indexed) [DOE]

      and used only for prototype builds, to performing on the real factory floor. Watch the video about the 3D printing demonstration. Learn more about the Advanced Manufacturing Office

    15. 3D-Printed Car by Local Motors- The Strati

      Broader source: Energy.gov [DOE]

      A timelapse video of the production process behind The Strati - the 3D-printed car by Local Motors, which manufactured with Oak Ridge National Laboratory (ORNL) and delivered at the International Manufacturing Technology Show (IMTS) in September of 2014.

    16. The Development and Application of SCDAP-3D

      SciTech Connect (OSTI)

      Coryell, E.W.; Harvego, E.A.; Siefken, L.J.

      2002-03-05

      The SCDAP-3D computer code (Coryell 2001) has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the analysis of severe reactor accidents. A prominent feature of SCDAP-3D relative to other versions of the code is its linkage to the state-of-the-art thermal/hydraulic analysis capabilities of RELAP5-3D. Enhancements to the severe accident models include the ability to simulate high burnup and alternative fuel, as well as modifications to support advanced reactor analyses, such as those described by the Department of Energy's Generation IV (GenIV) initiative. Initial development of SCDAP-3D is complete and two widely varying but successful applications of the code are summarized. The first application is to large break loss of coolant accident analysis performed for a reactor with alternative fuel, and the second is a calculation of International Standard Problem 45 (ISP-45) or the QUENCH 6 experiment.

    17. Development and Application of RELAP5-3D

      SciTech Connect (OSTI)

      Coryell, Eric Wesley; Harvego, Edwin Allan; Siefken, Larry James

      2002-04-01

      The SCDAP-3D computer code (Coryell 2001) has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the analysis of severe reactor accidents. A prominent feature of SCDAP-3D relative to other versions of the code is its linkage to the state-of-the-art thermal/hydraulic analysis capabilities of RELAP5-3D. Enhancements to the severe accident models include the ability to simulate high burnup and alternative fuel, as well as modifications to support advanced reactor analyses, such as those described by the Department of Energy's Generation IV (GenIV) initiative. Initial development of SCDAP-3D is complete and two widely varying but successful applications of the code are summarized. The first application is to large break loss of coolant accident analysis performed for a reactor with alternative fuel, and the second is a calculation of International Standard Problem 45 (ISP-45) or the QUENCH 6 experiment.

    18. 3D Printed Car at the International Manufacturing Technology...

      Office of Environmental Management (EM)

      Image: Courtesy of Local Motors Carbon Fiber Pellets 4 of 6 Carbon Fiber Pellets Pellets of plastic mixed with carbon fiber were used in the production process of the 3D-printed ...

    19. Metasurface skin invisibility cloak makes 3D objects disappear

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Metasurface skin invisibility cloak makes 3D objects disappear Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on ...

    20. Full-3D Waveform Tomography for Southern California | Argonne...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Full-3D Waveform Tomography for Southern California Authors: Lee, E., Chenm P., Jordan, ... Model Version 4.0 (CVM4) in Southern California as initial model, a staggered-grid ...

    1. Future of 3D Printing | GE Global Research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      In 2016, GE will enter a new jet engine into service called the CFM LEAP-the first in GE's line to incorporate 3D-printed parts. Specifically, it will be a combustion component ...

    2. 3D Covalent Organic Framework Materials database (Dataset) |...

      Office of Scientific and Technical Information (OSTI)

      Citation Details In-Document Search Title: 3D Covalent Organic Framework Materials ... DOE Contract Number: AC02-05CH11231 Resource Type: Dataset Data Type: Numeric Data ...

    3. Microseismicity and 3-D Mapping of an Active Geothermal Field...

      Open Energy Info (EERE)

      suggests an intersecting network of fractures with both NE and approximately NW trends. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the VpVs ratio are...

    4. 3D Printed Microscope for Mobile Devices that Cost Pennies

      ScienceCinema (OSTI)

      Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

      2015-06-23

      Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

    5. Printing 3D Catalytic Devices | The Ames Laboratory

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Printing 3D Catalytic Devices An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. Ames Laboratory scientist Igor...

    6. 3D Printed Microscope for Mobile Devices that Cost Pennies

      SciTech Connect (OSTI)

      Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

      2014-09-15

      Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

    7. LLNL researchers outline what happens during metal 3D printing...

      National Nuclear Security Administration (NNSA)

      are fused by a laser or electron beam based on a 3D computer-aided design (CAD) model. ... NNSA's systems administrators keep the computers running Meet a Machine: Explosive science ...

    8. Roaming Mars and Space: 3D Technology Exploration from Home ...

      Energy Savers [EERE]

      Linda Silverman Senior Advisor, Tech-to-Market Office Erin Twamley Project and Web ... It is part of a growing culture of 3D Web innovation. Visit the code library. DOE's ...

    9. Development and Optimization of Viable Human Platforms through 3D Printing

      SciTech Connect (OSTI)

      Parker, Paul R.; Moya, Monica L.; Wheeler, Elizabeth K.

      2015-08-21

      3D printing technology offers a unique method for creating cell cultures in a manner far more conducive to accurate representation of human tissues and systems. Here we print cellular structures capable of forming vascular networks and exhibiting qualities of natural tissues and human systems. This allows for cheaper and readily available sources for further study of biological and pharmaceutical agents.

    10. Researchers 3D print ultralight supercapacitors | National Nuclear Security

      National Nuclear Security Administration (NNSA)

      Administration | (NNSA) 3D print ultralight supercapacitors Monday, February 22, 2016 - 12:00am NNSA Blog The micro-architectured, ultra-lightweight supercapacitor material is able to retain energy on par with those made with electrodes 10 to 100 times thinner. For the first time ever, scientists at Lawrence Livermore National Laboratory and UC Santa Cruz have successfully 3D-printed supercapacitors using an ultra-lightweight graphene aerogel, opening the door to novel, unconstrained designs

    11. Metasurface skin invisibility cloak makes 3D objects disappear

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Metasurface skin invisibility cloak makes 3D objects disappear Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) Invisibility skin cloaks on the microscopic scale might prove valuable for hiding the detailed layout of microelectronic components or for security encryption purposes. This image is a A 3-D illustration of a metasurface skin cloak made from

    12. Texture splats for 3D vector and scalar field visualization

      SciTech Connect (OSTI)

      Crawfis, R.A.; Max, N.

      1993-04-06

      Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.

    13. Hanford Site - 100-HR-3-D | Department of Energy

      Office of Environmental Management (EM)

      D Hanford Site - 100-HR-3-D July 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Hanford Site, WA Responsible DOE Office: Office of Environmental Management Plume Name: 100-HR-3-D Remediation Contractor: CHPRC PBS Number: 30 Report Last Updated: July 2014 with CY2013 data Contaminants Halogenated VOCs/SVOCs Present?: No Fuel Present? No Metals Present? Yes Isotopes Present? Yes Explosives Present? No Other Contaminants? No

    14. Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Im, Mi-Young; Lee, Ki-Suk; Vogel, Andreas; Hong, Jung-Il; Meier, Guido; Fischer, Peter

      2014-12-17

      The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we showmore » that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays.« less

    15. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

      SciTech Connect (OSTI)

      Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

      2014-09-01

      Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

    16. PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature Authors: Flory, J.D., Shinde, S., Lin, S., Liu, Y., Yan, H., Ghirlanda, G., and Fromme, P. Title: PNA-peptide Assembly in a 3D DNA Nanocage at Room Temperature Source: J. Am. Chem. Soc. Year: 2013 Volume: 135 (18) Pages: 6985-6993 ABSTRACT: Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems is still a great challenge. Conversely, DNA

    17. Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}

      SciTech Connect (OSTI)

      Soni, S.; Dalela, S.; Kumar, Sudish; Meena, R. S.; Vats, V. S.

      2015-06-24

      In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.

    18. Magnetic and structural properties of yellow europium oxide compound and Eu(OH){sub 3}

      SciTech Connect (OSTI)

      Lee, Dongwook; Seo, Jiwon; Valladares, Luis de los Santos; Avalos Quispe, O.; Barnes, Crispin H.W.

      2015-08-15

      A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH){sub 3}. The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxide compound weakened. The magnetic properties of Eu(OH){sub 3} were also examined. Although Eu{sup 3+} is present in Eu(OH){sub 3}, a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH){sub 3}) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened.

    19. 3D electromagnetic inversion for environmental site characterization

      SciTech Connect (OSTI)

      Alumbaugh, D.L.; Newman, G.A.

      1997-04-01

      A 3-D non-linear electromagnetic inversion scheme has been developed to produce images of subsurface conductivity structure from electromagnetic geophysical data. The solution is obtained by successive linearized model updates where full forward modeling is employed at each iteration to compute model sensitivities and predicted data. Regularization is applied to the problem to provide stability. Because the inverse part of the problem requires the solution of 10`s to 100`s of thousands of unknowns, and because each inverse iteration requires many forward models to be computed, the code has been implemented on massively parallel computer platforms. The use of the inversion code to image environmental sites is demonstrated on a data set collected with the Apex Parametrics {open_quote}MaxMin I-8S{close_quote} over a section of stacked barrels and metal filled boxes at the Idaho National Laboratory`s {open_quote}Cold Test Pit{close_quote}. The MaxMin is a loop-loop frequency domain system which operates from 440 Hz up to 56 kHz using various coil separations; for this survey coil separations of 15, 30 and 60 feet were employed. The out-of phase data are shown to be of very good quality while the in-phase are rather noisy due to slight mispositioning errors, which cause improper cancellation of the primary free space field in the receiver. Weighting the data appropriately by the estimated noise and applying the inversion scheme is demonstrated to better define the structure of the pit. In addition, comparisons are given for single coil separations and multiple separations to show the benefits of using multiple offset data.

    20. Periodic magnetic structures generated by spinpolarized currents in nanostripes

      SciTech Connect (OSTI)

      Volkov, Oleksii M. Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri; Mertens, Franz G.

      2013-11-25

      The influence of a transverse spinpolarized current on long ferromagnetic nanostripes is studied numerically. The magnetization behavior is analyzed for all range of the applied currents, up to the saturation. It is shown that the saturation current is a nonmonotonic function of the stripe width. A number of stable periodic magnetization structures are observed below the saturation. Type of the periodical structure depends on the stripe width. Besides the onedimensional domain structure, typical for narrow wires, and the twodimensional vortexantivortex lattice, typical for wide films, a number of intermediate structures are observed, e.g., crosstie and diamond state.

    1. LayTracks3D: A new approach for meshing general solids using medial axis transform

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Quadros, William Roshan

      2015-08-22

      This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less

    2. 2D?3D polycatenated and 3D?3D interpenetrated metalorganic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

      SciTech Connect (OSTI)

      Erer, Hakan; Ye?ilel, Okan Zafer; Ar?c?, Mrsel; Keskin, Seda; Bykgngr, Orhan

      2014-02-15

      Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metalorganic frameworks, namely, [Zn(-tdc)(H{sub 2}O)(-dib)]{sub n} (1), [Cd(-tdc)(H{sub 2}O)(-dib)]{sub n} (2), and ([Cd{sub 2}({sub 3}-tdc){sub 2}(-dimb){sub 2}](H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metalorganic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: Complexes 1 and 2 display polycatenated 2D+2D?3D framework. Complex 3 exhibits a new 4-fold interpenetrating 3D framework. Complex 1 adsorbs the highest amount of H{sub 2} at 100 bar and

    3. Synthesis, crystal structure, and magnetism of A2Co12As7 (A=Ca, Y, Ce–Yb)

      SciTech Connect (OSTI)

      Tan, Xiaoyan; Ovidiu Garlea, V.; Chai, Ping; Geondzhian, Andrey Y.; Yaroslavtsev, Alexander A.; Xin, Yan; Menushenkov, Alexey P.; Chernikov, Roman V.; Shatruk, Michael

      2015-08-28

      In this study, ternary intermetallics, A2Co12As7 (A=Ca, Y, Ce–Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P63/m variant of the Zr2Fe12P7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1), respectively, at room temperature. Magnetic behavior of A2Co12As7 is generally characterized by ferromagnetic ordering of Co 3d moments at 100–140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr–Sm to ferromagnetic for A=Ce and Eu–Yb. Finally, polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce2Co12As7 and Nd2Co12As7, respectively.

    4. From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal

      SciTech Connect (OSTI)

      Zheng, J.; Birktoft, J; Yi, C; Tong, W; Ruojie, S; Constantinou, P; Ginell, S; Chenge, M; Seeman, N

      2009-01-01

      We live in a macroscopic three-dimensional (3D) world, but our best description of the structure of matter is at the atomic and molecular scale. Understanding the relationship between the two scales requires a bridge from the molecular world to the macroscopic world. Connecting these two domains with atomic precision is a central goal of the natural sciences, but it requires high spatial control of the 3D structure of matter1. The simplest practical route to producing precisely designed 3D macroscopic objects is to form a crystalline arrangement by self-assembly, because such a periodic array has only conceptually simple requirements: a motif that has a robust 3D structure, dominant affinity interactions between parts of the motif when it self-associates, and predictable structures for these affinity interactions. Fulfilling these three criteria to produce a 3D periodic system is not easy, but should readily be achieved with well-structured branched DNA motifs tailed by sticky ends2. Complementary sticky ends associate with each other preferentially and assume the well-known B-DNA structure when they do so3; the helically repeating nature of DNA facilitates the construction of a periodic array. It is essential that the directions of propagation associated with the sticky ends do not share the same plane, but extend to form a 3D arrangement of matter. Here we report the crystal structure at 4?Angstroms resolution of a designed, self-assembled, 3D crystal based on the DNA tensegrity triangle4. The data demonstrate clearly that it is possible to design and self-assemble a well-ordered macromolecular 3D crystalline lattice with precise control.

    5. Recent Heat Transfer Improvements to the RELAP5-3D Code

      SciTech Connect (OSTI)

      Riemke, Richard A; Davis, Cliff B; Oh, Chang

      2007-05-01

      The heat transfer section of the RELAP5-3D computer program has been recently improved. The improvements are as follows: (1) the general cladding rupture model was modified (more than one heat structure segment connected to the hydrodynamic volume and heat structure geometry’s internal gap pressure), (2) the cladding rupture model was modified for reflood, and (3) the heat transfer minor edits/plots were extended to include radiation/enclosure heat flux and generation (internal heat source).

    6. Extra Dimensions: 3D and Time in PDF Documentation

      SciTech Connect (OSTI)

      Graf, N.A.; /SLAC

      2012-04-11

      Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.

    7. Advanced 3D Sensing and Visualization System for Unattended Monitoring

      SciTech Connect (OSTI)

      Carlson, J.J.; Little, C.Q.; Nelson, C.L.

      1999-01-01

      The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

    8. Highly compressible 3D periodic graphene aerogel microlattices

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

      2015-04-22

      Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less

    9. Large scale magnetic fields and coherent structures in nonuniform unmagnetized plasma

      SciTech Connect (OSTI)

      Jucker, Martin; Andrushchenko, Zhanna N.; Pavlenko, Vladimir P.

      2006-07-15

      The properties of streamers and zonal magnetic structures in magnetic electron drift mode turbulence are investigated. The stability of such large scale structures is investigated in the kinetic and the hydrodynamic regime, for which an instability criterion similar to the Lighthill criterion for modulational instability is found. Furthermore, these large scale flows can undergo further nonlinear evolution after initial linear growth, which can lead to the formation of long-lived coherent structures consisting of self-bound wave packets between the surfaces of two different flow velocities with an expected modification of the anomalous electron transport properties.

    10. Magnetic Processing of Structural Components for Transportation Vehicles

      SciTech Connect (OSTI)

      Mackiewicz-Ludtka, G.; Ludtka, G. M.; Fleming, S.; del Prado Villasana, J.

      2011-09-30

      The specific goal of this project was to develop and evaluate the effect of magnetic processing as a viable and new technology to manufacture side‐rails for heavy trucks; and to demonstrate the applicability of this technology for an industrial truck/automotive process. The targeted performance enhancements for this project were to increase the hardness or strength of two families of alloys (comparable carbon contents but one alloy system incorporating hardenability improving additions of titanium and boron) by 15 to 20%. Thermomagnetic processing has been shown to make significant and unprecedented, simultaneous improvements in yield strength and ultimate tensile strength with no loss of ductility for the truck rail application investigated in this project. Improvements in the ultimate tensile strength and yield strength in the range 20 to 30% have been measured even for the lower hardenability alloy samples that only received a very low magnetic field tempering treatment at a tempering temperature that was 67% lower than the current non-magnetic field enhanced commercial process and for a brief tempering time of 20% of the time required in their current process at the higher temperature. These significant developments, that require further demonstration and investigation on current commercial and other alloy systems, promise the evolution of a much more energy efficient and lower-carbon footprint process to be used in the future to produce stronger, tougher, and lighter weight truck rails. The property increases in the truck rails themselves will enable lighter weight truck side-rails to be produced which will reduce the overall weight of heavy duty trucks which will reduce fuel consumption and be an enabler of the goals of the DOE EERE SuperTruck Program where fuel consumption reductions of 50% are targeted for the future generation of trucks.

    11. Comment on "Magnetic Structure of Gd2Ti2O7"

      SciTech Connect (OSTI)

      Stewart, John Ross; Ehlers, Georg; Wills, A S; Bramwell, S T; Gardner, Jason

      2012-01-01

      M. W. Long and collaborators [ Phys. Rev. B 83 054422 (2011)] recently proposed magnetic structures for gadolinium titanate that differ from those previously reported by us [ J. R. Stewart, G. Ehlers, A. S. Wills, S. T. Bramwell and J. S. Gardner J. Phys.: Condens. Matter 16 L321 (2004)]. In this Comment, we show that the calculated structure factors, S(Q), of the newly proposed models are inconsistent with our neutron powder diffraction data. Long and colleagues were led to reconsider the magnetic structure of gadolinium titanate on the basis of a number of theoretical and experimental assumptions. We argue that these assumptions have no basis in fact and conclude that they provide no reason to doubt our published magnetic structures.

    12. Study of negative hydrogen ion beam optics using the 3D3V PIC model

      SciTech Connect (OSTI)

      Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

      2015-04-08

      The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

    13. Kinetic control of structural and magnetic states in LuBaCo4O7.

      SciTech Connect (OSTI)

      Avci, S.; Chmaissem, O.; Zheng, H.; Huq, A.; Khalyavin, D.; Stephens, P.; Suchomel, M.; Manuel, P.; Mitchell, J.

      2012-01-01

      The RBaCo{sub 4}O{sub 7} (R = Ca, Y, Tb, Ho, Tm, Yb, Lu) compounds provide a novel topology for studying the competition between triangular geometry and magnetic order. Here, we report the structural and magnetic behavior of the Lu member of this series via neutron and synchrotron x-ray diffraction, magnetization, and resistivity measurements. We determined sequential phase transitions and a strong competition between a stable and a metastable low-temperature state that critically depends on controlled cooling rates and the associated heat removal kinetics. No evidence for long-range ordered magnetism was detected by neutron diffraction at any temperature. However, very slow spin dynamics are evidenced by time-dependent neutron diffraction measurements and can be explained by several competing magnetic phases with incommensurate short-range correlations coexisting in this material.

    14. 3D circuit integration for Vertex and other detectors

      SciTech Connect (OSTI)

      Yarema, Ray; /Fermilab

      2007-09-01

      High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

    15. RELAP5-3D Code Validation for RBMK Phenomena

      SciTech Connect (OSTI)

      Fisher, James Ebberly

      1999-09-01

      The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

    16. RELAP5-3D code validation for RBMK phenomena

      SciTech Connect (OSTI)

      Fisher, J.E.

      1999-09-01

      The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

    17. Making 3D Printed Christmas Ornaments | GE Global Research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Making 3D Printed Christmas Ornaments Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Making 3D Printed Christmas Ornaments Thomas The Elf 2011.12.20 Hi everybody! I am back again this year, bringing you some more holiday cheer from the GE Global Research labs! As an encore to the redesign of Santa's sleigh and

    18. Characterization of 3D Cirrus Cloud and Radiation Fields Using

      Office of Scientific and Technical Information (OSTI)

      ARS/AIRS/MODIS data and its Application to Climate Model (Technical Report) | SciTech Connect Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model Citation Details In-Document Search Title: Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model During the report period, we have made the following research accomplishments. First, we performed analysis for a

    19. Supercomputer Helps Model 3D Map of Adolescent Universe

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Supercomputer Helps Model 3D Map of Adolescent Universe Supercomputer Helps Model 3D Map of Adolescent Universe Researchers Demonstrate Novel Technique for High-Resolution Universe Maps October 17, 2014 Contact: Kate Greene, kgreene@lbl.gov, 510-486-4404 Using extremely faint light from galaxies 10.8 billion light years away, scientists have created one of the most complete, three-dimensional maps of a slice of the adolescent universe-just 3 billion years after the Big Bang. The map shows a web

    20. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

      SciTech Connect (OSTI)

      Bai Xianchen; Yang Jianhua; Zhang Jiande

      2012-08-15

      By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

    1. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

      SciTech Connect (OSTI)

      Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

      2014-05-28

      We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

    2. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

      SciTech Connect (OSTI)

      Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

      2013-01-01

      Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

    3. Ab initio study of structural, electronic, magnetic alloys: XTiSb (X = Co, Ni and Fe)

      SciTech Connect (OSTI)

      Ibrir, M. Berri, S.; Lakel, S.; Alleg, S.; Bensalem, R.

      2015-03-30

      Structural, electronic and magnetic properties of three semi-Heusler compounds of CoTiSb, NiTiSb and FeTiSb were calculated by the method (FP-LAPW) which is based on the DFT code WIEN2k. We used the generalized gradient approximation (GGA (06)) for the term of the potential exchange and correlation (XC) to calculate structural properties, electronic properties and magnetic properties. Structural properties obtained as the lattice parameter are in good agreement with the experimental results available for the electronic and magnetic properties was that: CoTiSb is a semiconductor NiTiSb is a metal and FeTiSb is a half-metal ferromagnetic.

    4. Electronic structure and magnetic properties of disordered Co{sub 2}FeAl Heusler alloy

      SciTech Connect (OSTI)

      Jain, Vishal Jain, Vivek Sudheesh, V. D. Lakshmi, N. Venugopalan, K.

      2014-04-24

      The effects of disorder on the magnetic properties of Co{sub 2}FeAl alloy are reported. X-ray diffraction exhibit A2-type disordered structure. Room temperature Mössbauer studies show the presence of two sextets with hyperfine field values of 31T and 30T along with a nonmagnetic singlet. The electronic structure of ordered and disordered Co{sub 2}FeAl alloys, investigated by means of the KKR Green's-function method shows that the magnetic moment of the ordered structure is 5.08μ{sub B} and is 5.10μ{sub B} when disordered. However, a much higher magnetic moment of 5.74μ{sub B} is observed experimentally.

    5. Application of DYNA3D in large scale crashworthiness calculations

      SciTech Connect (OSTI)

      Benson, D.J.; Hallquist, J.O.; Igarashi, M.; Shimomaki, K.; Mizuno, M.

      1986-01-01

      This paper presents an example of an automobile crashworthiness calculation. Based on our experiences with the example calculation, we make recommendations to those interested in performing crashworthiness calculations. The example presented in this paper was supplied by Suzuki Motor Co., Ltd., and provided a significant shakedown for the new large deformation shell capability of the DYNA3D code. 15 refs., 3 figs.

    6. Extra Dimensions: 3D and Time in PDF Documentation

      SciTech Connect (OSTI)

      Graf, Norman A.; /SLAC

      2011-11-10

      High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.

    7. Nano-Composite Material Development for 3-D Printers

      SciTech Connect (OSTI)

      Satches, Michael Randolph

      2015-10-14

      The objectives of the project was to create a graphene reinforced polymer nano-composite viable in a commercial 3-D printer; study the effects of ultra-high loading of graphene in polymer matrices; and determine the functional upper limit of graphene loading.

    8. Q3dComms Version 0.9

      Energy Science and Technology Software Center (OSTI)

      2012-01-05

      Q3dComms provides an interface to the commercial package Quest30 . Quest30 connectors called "channels" can be directly mapped to Umbra connectors using this tool. Furthermore, virtual 30 worlds created in Quest30 can be connected to Umbra with this tool.

    9. Effects of a weakly 3-D equilibrium on ideal magnetohydrodynamic instabilities

      SciTech Connect (OSTI)

      Hegna, C. C.

      2014-07-15

      The effect of a small three-dimensional equilibrium distortion on an otherwise axisymmetric configuration is shown to be destabilizing to ideal magnetohydrodynamic modes. The calculations assume that the 3-D fields are weak and that shielding physics is present so that no islands appear in the resulting equilibrium. An eigenfunction that has coupled harmonics of different toroidal mode number is constructed using a perturbation approach. The theory is applied to the case of tokamak H-modes with shielded resonant magnetic perturbations (RMPs) present indicating RMPs can be destabilizing to intermediate-n peeling-ballooning modes.

    10. Translation, Enhancement, Filtering, and Visualization of Large 3D Triangle Mesh

      Energy Science and Technology Software Center (OSTI)

      1997-04-21

      The runthru system consists of five programs: workcell filter, just do it, transl8g, decim8, and runthru. The workcell filter program is useful if the source of your 3D triangle mesh model is IGRIP. It will traverse a directory structure of Deneb IGRIP files and filter out any IGRIP part files that are not referenced by an accompanying IGRIP work cell file. The just do it program automates translating and/or filtering of large numbers of partsmore » that are organized in hierarchical directory structures. The transl8g program facilitates the interchange, topology generation, error checking, and enhancement of large 3D triangle meshes. Such data is frequently used to represent conceptual designs, scientific visualization volume modeling, or discrete sample data. Interchange is provided between several popular commercial and defacto standard geometry formats. Error checking is included to identify duplicate and zero area triangles. Model engancement features include common vertex joining, consistent triangle vertex ordering, vertex noemal vector averaging, and triangle strip generation. Many of the traditional O(n2) algorithms required to provide the above features have been recast and are o(nlog(n)) which support large mesh sizes. The decim8 program is based on a data filter algorithm that significantly reduces the number of triangles required to represent 3D models of geometry, scientific visualization results, and discretely sampled data. It eliminates local patches of triangles whose geometries are not appreciably different and replaces them with fewer, larger triangles. The algorithm has been used to reduce triangles in large conceptual design models to facilitate virtual walk throughs and to enable interactive viewing of large 3D iso-surface volume visualizations. The runthru program provides high performance interactive display and manipulation of 3D triangle mesh models.« less

    11. Design of 3D eye-safe middle range vibrometer

      SciTech Connect (OSTI)

      Polulyakh, Valeriy; Poutivski, Iouri

      2014-05-27

      Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t?30psec) and low energy (E?200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P?30mW). Both lasers perform on the eye-safe wavelength 1.5 ?m. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

    12. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping

      SciTech Connect (OSTI)

      Lee, J. J.; Xing, G. Z. Yi, J. B.; Li, S.; Chen, T.; Ionescu, M.

      2014-01-06

      Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200 Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

    13. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

      SciTech Connect (OSTI)

      Deca, J.; Lapenta, G. [Centre for Mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium)] [Centre for Mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium); Marchand, R. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)] [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Markidis, S. [High Performance Computing and Visualization Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization Department, KTH Royal Institute of Technology, Stockholm (Sweden)

      2013-10-15

      We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

    14. Simion 3D Version 6.0 User`s Manual

      SciTech Connect (OSTI)

      Dahl, D.A.

      1995-11-01

      The original SIMION was an electrostatic lens analysis and design program developed by D.C. McGilvery at Latrobe University, Bundoora Victoria, Australia, 1977. SIMION for the PC, developed at the Idaho National Engineering Laboratory, shares little more than its name with the original McGilvery version. INEL`s fifth major SIMION release, version 6.0, represents a quantum improvement over previous versions. This C based program can model complex problems using an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 10,000,000 points. SIMION 3D`s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs have been greatly extended in versatility and power. A new geometry file option supports the definition of highly complex array geometry. Extensive algorithm modifications have dramatically improved this version`s computational speed and accuracy.

    15. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

      SciTech Connect (OSTI)

      Mock, Raymond Cecil

      2007-06-01

      The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

    16. F3D Image Processing and Analysis for Many - and Multi-core Platforms

      Energy Science and Technology Software Center (OSTI)

      2014-10-01

      F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizingmore » for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expedites any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.« less

    17. Three tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole and different aromatic carboxylates: Assembly, structures, electrochemical and magnetic properties

      SciTech Connect (OSTI)

      Wang, Xiu-Li; Zhao, Wei; Zhang, Ju-Wen; Lu, Qi-Lin

      2013-02-15

      Three new tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole (atrz) and three types of aromatic carboxylates, [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(DNBA){sub 6}] (1), [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(1,3-BDC){sub 3}]{center_dot}2H{sub 2}O (2) and [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(SIP){sub 2}]{center_dot}4H{sub 2}O (3) (HDNBA=3,5-dinitrobenzoic acid, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid and NaH{sub 2}SIP=sodium 5-sulfoisophthalate), have been hydrothermally synthesized and structurally characterized. Complex 1 displays a single-molecular Cu{sup II}{sub 4} cluster structure, which is further connected by the intermolecular hydrogen-bonding interactions to form a 2D supramolecular layer. In 2, there also exist tetranuclear Cu{sup II}{sub 4} clusters, which are linked by the 1,3-BDC anions to give a 3D NaCl-type framework. In 3, the Cu{sup II}{sub 4} clusters are connected by the carboxyl and sulfo groups of SIP anions to generate 3D (4,8)-connected framework with a (4{sup 10}{center_dot}6{sup 14}{center_dot}8{sup 4})(4{sup 5}{center_dot}6){sub 2} topology. The atrz ligand conduces to the construction of tetranuclear copper(II) clusters and the carboxylates with different non-carboxyl substituent show important effects on the final structures of the title complexes. The electrochemical and magnetic properties of 1-3 have been investigated. - Graphical abstract: Three tetranuclear copper(II) cluster-based complexes based on different carboxylates have been synthesized under hydrothermal conditions. The carboxylate anions play a key role in the formation of three different structures. Highlights: Black-Right-Pointing-Pointer Three new tetranuclear copper(II) cluster-based complexes have been obtained. Black-Right-Pointing-Pointer The atrz conduces to the construction of tetranuclear copper(II) clusters. Black-Right-Pointing-Pointer Carboxylates show important effect on the structures of

    18. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

      SciTech Connect (OSTI)

      Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

      2012-04-04

      Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

    19. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

      SciTech Connect (OSTI)

      Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

      2004-05-06

      Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

    20. Anisotropic thermal expansion of a 3D metal–organic framework with hydrophilic and hydrophobic pores

      SciTech Connect (OSTI)

      Kondo, Atsushi Maeda, Kazuyuki

      2015-01-15

      A 3D flexible metal–organic framework (MOF) with 1D hydrophilic and hydrophobic pores shows anisotropic thermal expansion with relatively large thermal expansion coefficient (α{sub a}=−21×10{sup −6} K{sup −1} and α{sub c}=79×10{sup −6} K{sup −1}) between 133 K and 383 K. Temperature change gives deformation of both pores, which expand in diameter and elongate in length on cooling and vice versa. The thermally induced structural change should be derived from a unique framework topology like “lattice fence”. Silica accommodation changes not only the nature of the MOF but also thermal responsiveness of the MOF. Since the hydrophobic pores in the material are selectively blocked by the silica, the MOF with the silica is considered as a hydrophilic microporous material. Furthermore, inclusion of silica resulted in a drastic pore contraction in diameter and anisotropically changed the thermal responsiveness of the MOF. - Graphical abstract: A 3D metal–organic framework with hydrophilic and hydrophobic pores shows anisotropic thermal expansion behavior. The influence of silica filler in the hydrophobic pore was investigated. - Highlights: • Thermally induced structural change of a 3D MOF with a lattice fence topology was investigated. • The structural change was analyzed by synchrotron X-ray diffraction patterns. • Temperature change induces anisotropic thermal expansion/contraction of the MOF. • Silica inclusion anisotropically changes the thermal responsiveness of the MOF.

    1. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

      2014-11-07

      High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

    2. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

      SciTech Connect (OSTI)

      Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

      2014-11-07

      High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.

    3. Low-temperature crystal and magnetic structure of α – RuCl3

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Cao, Huibo B.; Yan, Jiaqiang; Bridges, Craig A.; Lumsden, Mark D.; Mandrus, D. G.; Chakoumakos, Bryan C.; Nagler, Stephen E.; Banerjee, A.; Tennant, D. A.

      2016-04-19

      Here, single crystals of the Kitaev spin-liquid candidate α – RuCl3 have been studied to determine the low-temperature bulk properties, the structure, and the magnetic ground state. Refinements of x-ray diffraction data show that the low-temperature crystal structure is described by space group C2/m with a nearly perfect honeycomb lattice exhibiting less than 0.2% in-plane distortion. The as-grown single crystals exhibit only one sharp magnetic transition at TN = 7 K. The magnetic order below this temperature exhibits a propagation vector of k=(0,1,1/3), which coincides with a three-layer stacking of the C2/m unit cells. Magnetic transitions at higher temperatures upmore » to 14 K can be introduced by deformations of the crystal that result in regions in the crystal with a two-layer stacking sequence. The best-fit symmetry-allowed magnetic structure of the as-grown crystals shows that the spins lie in the ac plane, with a zigzag configuration in each honeycomb layer. The three-layer repeat out-of-plane structure can be refined as a 120° spiral order or a collinear structure with a spin direction of 35° away from the a axis. The collinear spin configuration yields a slightly better fit and also is physically preferred. The average ordered moment in either structure is less than 0.45(5) μB per Ru3+ ion.« less

    4. Magnetic structure and spin excitations in BaMn2Bi2

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Calder, Stuart A.; Saparov, Bayrammurad I; Cao, H. B.; Niedziela, Jennifer L.; Lumsden, Mark D.; Sefat, Athena Safa; Christianson, Andrew D.

      2014-02-19

      We present a single crystal neutron scattering study of BaMn2Bi2, a recently synthesized material with the same ThCr2Si2type structure found in several Fe-based unconventional superconducting materials. We show long range magnetic order, in the form of a G-type antiferromagnetic structure, to exist up to 390 K with an indication of a structural transition at 100 K. Utilizing inelastic neutron scattering we observe a spin-gap of 16 meV, with spin-waves extending up to 55 meV. We find these magnetic excitations are well fit to a J1-J2-Jc Heisenberg model and present values for the exchange interactions. The spin wave spectrum appears tomore » be unchanged by the 100 K structural phase transition.« less

    5. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

      SciTech Connect (OSTI)

      Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

      2010-03-15

      The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

    6. Advanced computational tools for 3-D seismic analysis

      SciTech Connect (OSTI)

      Barhen, J.; Glover, C.W.; Protopopescu, V.A.

      1996-06-01

      The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

    7. Architectural Advancements in RELAP5-3D

      SciTech Connect (OSTI)

      Dr. George L. Mesina

      2005-11-01

      As both the computer industry and field of nuclear science and engineering move forward, there is a need to improve the computing tools used in the nuclear industry to keep pace with these changes. By increasing the capability of the codes, the growing modeling needs of nuclear plant analysis will be met and advantage can be taken of more powerful computer languages and architecture. In the past eighteen months, improvements have been made to RELAP5-3D [1] for these reasons. These architectural advances include code restructuring, conversion to Fortran 90, high performance computing upgrades, and rewriting of the RELAP5 Graphical User Interface (RGUI) [2] and XMGR5 [3] in Java. These architectural changes will extend the lifetime of RELAP5-3D, reduce the costs for development and maintenance, and improve it speed and reliability.

    8. 3-D laser patterning process utilizing horizontal and vertical patterning

      DOE Patents [OSTI]

      Malba, Vincent; Bernhardt, Anthony F.

      2000-01-01

      A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

    9. 3-D seismic has renewed the search for stratigraphic traps

      SciTech Connect (OSTI)

      Garvey, C.F. ); Gibson, W.R.

      1992-09-01

      Exploration activity has been stimulated in two Lower Permian oil plays of the West Texas Permian basin by a string of economically successful well completions beginning in early 1991. This paper reports that stratigraphic oil targets in each of these trends were identified by new geologic analysis and three dimensional (3-D) seismic methods. The locations of these discoveries are shown. The two Wolfcamp carbonate detrital formations are characterized by clusters of rich oil accumulations in discontinuous reservoir pods that are relatively small in aerial extent. These objectives are generally encountered at drilling depths of about 8,000 to 9,000 ft. 3-D seismic proved to be a cost effective exploration and exploitation technique in these plays.

    10. DYNA3D Non-reflecting Boundary Conditions - Test Problems

      SciTech Connect (OSTI)

      Zywicz, E

      2006-09-28

      Two verification problems were developed to test non-reflecting boundary segments in DYNA3D (Whirley and Engelmann, 1993). The problems simulate 1-D wave propagation in a semi-infinite rod using a finite length rod and non-reflecting boundary conditions. One problem examines pure pressure wave propagation, and the other problem explores pure shear wave propagation. In both problems the non-reflecting boundary segments yield results that differ only slightly (less than 6%) during a short duration from their corresponding theoretical solutions. The errors appear to be due to the inability to generate a true step-function compressive wave in the pressure wave propagation problem and due to segment integration inaccuracies in the shear wave propagation problem. These problems serve as verification problems and as regression test problems for DYNA3D.

    11. A new automatic contact formulation in DYNA3D

      SciTech Connect (OSTI)

      Whirley, R.G.; Engelmann, B.E.

      1993-08-01

      This paper presents a new approach for the automatic definition and treatment of mechanical contact in DYNA3D. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but must maintain high reliability and acceptable computational costs. The major features of the proposed new method include automatic identification of potentially contacting surfaces during the initialization phase, a new high-performance contact search procedure, and the use of a well-defined surface normal which allows a consistent treatment of shell intersection and corner contact conditions without ad-hoc rules. Three examples are presented which illustrate the performance of newly proposed algorithm in the public DYNA3D code.

    12. Nano-Composite Material Development for 3-D Printers

      SciTech Connect (OSTI)

      Satches, Michael Randolph

      2015-12-01

      Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matrices and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.

    13. Computerized fluid movement mapping and 3-D visualization

      SciTech Connect (OSTI)

      Al-Awami, A.A.; Poore, J.W.; Sizer, J.P.

      1995-11-01

      Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

    14. TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES

      SciTech Connect (OSTI)

      Albrecht-Schmitt, Thomas

      2012-03-01

      This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.

    15. 3-D Combustion Simulation Strategy Status, Future Potential, and

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Application Issues | Department of Energy D Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrylser 2004_deer_steiner.pdf (2.16 MB) More Documents & Publications Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications Advancement in Fuel Spray and Combustion

    16. A material model driver for DYNA3D

      SciTech Connect (OSTI)

      Hallquist, J.O.; Whirley, R.G.

      1990-02-22

      This report describes a material model driver which has recently been implemented in the DYNA3D code. The material model driver allows plotting of the constitutive response predicted by a material model under a given load path. This capability is particularly useful when fitting complex material models to experimental data. The plotting capability of the material model driver facilitates comparison of the simulated material stress-strain behavior with actual material test results. 1 ref., 6 figs., 4 tabs.

    17. Homogeneous and Interfacial Catalysis in 3D Controlled Environment | The

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Ames Laboratory Homogeneous and Interfacial Catalysis in 3D Controlled Environment FWP/Project Description: Project Leader(s): Marek Pruski Principal Investigators: Marek Pruski, Aaron Sadow, Igor Slowing Key Scientific Personnel: Takeshi Kobayashi This collaborative research effort is geared toward bringing together the best features of homogeneous and heterogeneous catalysis for developing new catalytic principles. Novel silica-based, single-site mesoporous catalysts with controlled,

    18. 3-D Experimental Fracture Analysis at High Temperature

      SciTech Connect (OSTI)

      John H. Jackson; Albert S. Kobayashi

      2001-09-14

      T*e, which is an elastic-plastic fracture parameter based on incremental theory of plasticity, was determined numerically and experimentally. The T*e integral of a tunneling crack in 2024-T3 aluminum, three point bend specimen was obtained through a hybrid analysis of moire interferometry and 3-D elastic-plastic finite element analysis. The results were verified by the good agreement between the experimentally and numerically determined T*e on the specimen surface.

    19. 3D, Flash, Induced Current Readout for Silicon Sensors

      SciTech Connect (OSTI)

      Parker, Sherwood I.

      2014-06-07

      A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

    20. Magnetic and structural properties of Zn doped MnV{sub 2}O{sub 4}

      SciTech Connect (OSTI)

      Shahi, Prashant; Shukla, K. K.; Singh, Rahul; Chatterjee, Sandip; Das, A.; Ghosh, A. K.; Nigam, A. K.

      2014-04-24

      The magnetization, Neutron diffraction and X-ray diffraction of Zn doped MnV{sub 2}O{sub 4} as a function of temperature have been measured. It has been observed, with increase of Zn the non-linear orientation of Mn spins with the V spins will decrease which effectively decrease the structural transition temperature more rapidly than Curie Temperature.

    1. Extremely accurate sequential verification of RELAP5-3D

      SciTech Connect (OSTI)

      Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

      2015-11-19

      Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method of manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.

    2. Extremely accurate sequential verification of RELAP5-3D

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

      2015-11-19

      Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method ofmore » manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.« less

    3. Parallel 3-D method of characteristics in MPACT

      SciTech Connect (OSTI)

      Kochunas, B.; Dovvnar, T. J.; Liu, Z.

      2013-07-01

      A new parallel 3-D MOC kernel has been developed and implemented in MPACT which makes use of the modular ray tracing technique to reduce computational requirements and to facilitate parallel decomposition. The parallel model makes use of both distributed and shared memory parallelism which are implemented with the MPI and OpenMP standards, respectively. The kernel is capable of parallel decomposition of problems in space, angle, and by characteristic rays up to 0(104) processors. Initial verification of the parallel 3-D MOC kernel was performed using the Takeda 3-D transport benchmark problems. The eigenvalues computed by MPACT are within the statistical uncertainty of the benchmark reference and agree well with the averages of other participants. The MPACT k{sub eff} differs from the benchmark results for rodded and un-rodded cases by 11 and -40 pcm, respectively. The calculations were performed for various numbers of processors and parallel decompositions up to 15625 processors; all producing the same result at convergence. The parallel efficiency of the worst case was 60%, while very good efficiency (>95%) was observed for cases using 500 processors. The overall run time for the 500 processor case was 231 seconds and 19 seconds for the case with 15625 processors. Ongoing work is focused on developing theoretical performance models and the implementation of acceleration techniques to minimize the number of iterations to converge. (authors)

    4. DOE Science Showcase - 3D Printing | OSTI, US Dept of Energy...

      Office of Scientific and Technical Information (OSTI)

      ... Ames Lab Video of the 3D printer in action, YouTube 3D printing yields advantages for US ITER engineers, ORNL 3D Printing Rises to the Occasion, ORNL "Printing" Tiny batteries, DOE ...

    5. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni{sub 2}XGa (X=Mn,Fe,Co) from first-principles calculations

      SciTech Connect (OSTI)

      Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

      2011-01-01

      The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni{sub 2}XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni{sub 2}MnGa have been calculated. The formation energies of the cubic phase of Ni{sub 2}XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni{sub 2}MnGa to Ni{sub 2}CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below E{sub F}. There are two bond types existing in Ni{sub 2}XGa: one is between neighboring Ni atoms in Ni{sub 2}MnGa; the other is between Ni and X atoms in Ni{sub 2}FeGa and Ni{sub 2}CoGa alloys.

    6. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography

      SciTech Connect (OSTI)

      Zhang, D.; Ray, N. M.; Petuskey, W. T.; Smith, D. J.; McCartney, M. R.

      2014-08-28

      We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (?90?C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

    7. Imaging magnetic domain structure in sub-500 nm thin film elements

      SciTech Connect (OSTI)

      Kirk, K. J.; McVitie, S.; Chapman, J. N.; Wilkinson, C. D. W.

      2001-06-01

      Magnetic imaging in the transmission electron microscope (TEM) has been used to examine submicron elements with the aim of discovering down to what element size complex domain patterns can form. The elements were squares, circles, triangles, and pentagons in the size range 100{endash}500 nm and were made from 36 nm Co films or 8 nm Ni{sub 80}Fe{sub 20} (NiFe) with in-plane magnetization. The magnetic domain structures in these elements were imaged at high resolution using the differential phase contrast imaging mode in a TEM. Nonuniform magnetization structures were seen in the images. Vortices were present at remanence in all shapes of 36-nm-thick Co elements down to 100 nm size and in circular NiFe elements down to 116 nm diameter. Triangular NiFe elements did not have a vortex state at remanence, instead the magnetization curved round within the element but did not achieve complete flux closure. In simulations of square and circular NiFe elements, it was found that defects at the edges of the elements encouraged reversal by a vortex mechanism, whereas for simulated elements with no defects, reversal was by rotation and occurred at much lower fields. {copyright} 2001 American Institute of Physics.

    8. Focused ion beam and scanning electron microscopy for 3D materials...

      Office of Scientific and Technical Information (OSTI)

      microscopy for 3D materials characterization. Citation Details In-Document Search Title: Focused ion beam and scanning electron microscopy for 3D materials characterization. ...

    9. Team develops 3-D sensor array for detection of neural responses

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      3-D sensor array for detection of neural responses Team develops 3-D sensor array for detection of neural responses Los Alamos researchers and collaborators have demonstrated a...

    10. Final Report - Study of Shortwave Spectra in Fully 3D Environment...

      Office of Scientific and Technical Information (OSTI)

      Report - Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning ... Title: Final Report - Study of Shortwave Spectra in Fully 3D Environment. Synergy Between ...

    11. Final Report - Study of Shortwave Spectra in Fully 3D Environment...

      Office of Scientific and Technical Information (OSTI)

      3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements Citation Details In-Document Search Title: Final Report - Study of Shortwave Spectra in Fully 3D ...

    12. Photo 3D-Printer, Image Credit, Ames Lab | OSTI, US Dept of Energy...

      Office of Scientific and Technical Information (OSTI)

      Photo 3D-Printer, Image Credit, Ames Lab Critical Materials Institute speed metals research with 3D printer. Default Caption and Credits Read More: Critical Materials Institute ...

    13. Development of 3D Simulation Training and Testing for Home Energy...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      of 3D Simulation Training and Testing for Home Energy Score Assessor Candidates Development of 3D Simulation Training and Testing for Home Energy Score Assessor Candidates This ...

    14. Imaging of magnetic DW injection processed in patterened Ni80Fe20 structures

      SciTech Connect (OSTI)

      Bryan, M. T.; Basu, S.; Fry, P. W.; Schrefl, T.; Gibbs, M.R.J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.

      2009-03-23

      Magnetization reversal in patterned ferromagnetic nanowires usually occurs via domain wall (DW) nucleation and propagation from one end (or both ends) of the wire which can be significantly reduced by a large, magnetically soft pad on one of the wire ends. These 'nucleation pads' reverse at lower fields than an isolated nanowire and introduce a DW to the wire from the wire end attached to the pad. Once a critical 'injection' field is reached, the DW sweeps through the wire, reversing its magnetization. Nucleation pads are frequently used as part of nanowire devices and experimental structures. Magnetic-field-driven shift register memory can include an injection pad to write data while those attached to nanowire spiral turn sensors act as both a source and sink of domain walls. Both of these devices use two-dimensional wire circuits and therefore require the use of orthogonal in-plane magnetic fields to drive domain walls through wires of different orientations. These bi-axial fields can significantly alter the fields at which DW injection occurs and control the number of different injection modes. We have used magnetic transmission soft X-ray microscopy (M-TXM) [6] providing 25nm spatial resolution to image the evolution of magnetization configurations in patterned 24nm thick Ni{sub 80}Fe{sub 20} rectangular nucleation pads and attached wires during DW injection. The structures consisted of 2 {micro}m x 3 {micro}m nucleation pads with wires of width 200 nm, 300 nm or 500 nm attached Comparing the magnetic configuration of the injection pads with micromagnetic models, we find that the relative orientation of closure domains in the remanent magnetization configuration of injection pads determines the reversal pathway that follows, although this is further affected by applied transverse fields. Micromagnetic simulations were performed using a hybrid finite element/boundary element code. The magnetic elements were designed with 20 nm thickness and discretized into a

    15. Development and New Directions for the RELAP5-3D Graphical Users Interface

      SciTech Connect (OSTI)

      Mesina, George Lee

      2001-09-01

      The direction of development for the RELAP5 Graphical User Interfaces (RGUI) has been extended. In addition to existing plans for displaying all aspects of RELAP5 calculations, the plan now includes plans to display the calculations of a variety of codes including SCDAP, RETRAN and FLUENT. Recent work has included such extensions along with the previously planned and user-requested improvements and extensions. Visualization of heat-structures has been added. Adaptations were made for another computer program, SCDAP-3D, including plant core views. An input model builder for generating RELAP5-3D input files was partially implemented. All these are reported. Plans for future work are also summarized. These include an input processor that transfers steady-state conditions into an input file.

    16. Observations of imposed ordered structures in a dusty plasma at high magnetic field

      SciTech Connect (OSTI)

      Thomas, Edward Lynch, Brian; Konopka, Uwe; Merlino, Robert L.; Rosenberg, Marlene

      2015-03-15

      Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the “dust grid” and point out potential implications and applications of these observations.

    17. External-field-free magnetic biosensor

      SciTech Connect (OSTI)

      Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

      2014-03-24

      In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm??200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

    18. DYNA3D, INGRID, and TAURUS: an integrated, interactive software system for crashworthiness engineering

      SciTech Connect (OSTI)

      Benson, D.J.; Hallquist, J.O.; Stillman, D.W.

      1985-04-01

      Crashworthiness engineering has always been a high priority at Lawrence Livermore National Laboratory because of its role in the safe transport of radioactive material for the nuclear power industry and military. As a result, the authors have developed an integrated, interactive set of finite element programs for crashworthiness analysis. The heart of the system is DYNA3D, an explicit, fully vectorized, large deformation structural dynamics code. DYNA3D has the following four capabilities that are critical for the efficient and accurate analysis of crashes: (1) fully nonlinear solid, shell, and beam elements for representing a structure, (2) a broad range of constitutive models for representing the materials, (3) sophisticated contact algorithms for the impact interactions, and (4) a rigid body capability to represent the bodies away from the impact zones at a greatly reduced cost without sacrificing any accuracy in the momentum calculations. To generate the large and complex data files for DYNA3D, INGRID, a general purpose mesh generator, is used. It runs on everything from IBM PCs to CRAYS, and can generate 1000 nodes/minute on a PC. With its efficient hidden line algorithms and many options for specifying geometry, INGRID also doubles as a geometric modeller. TAURUS, an interactive post processor, is used to display DYNA3D output. In addition to the standard monochrome hidden line display, time history plotting, and contouring, TAURUS generates interactive color displays on 8 color video screens by plotting color bands superimposed on the mesh which indicate the value of the state variables. For higher quality color output, graphic output files may be sent to the DICOMED film recorders. We have found that color is every bit as important as hidden line removal in aiding the analyst in understanding his results. In this paper the basic methodologies of the programs are presented along with several crashworthiness calculations.

    19. 3-D Seismic Exploration Project, Ute Indian Tribe, Uintah and Ouray Reservation, Uintah County, Utah

      SciTech Connect (OSTI)

      Eckels, Marc T.

      2002-09-09

      The objectives of this North Hill Creek 3-D seismic survey were to: (1) cover as large an area as possible with available budget; (2) obtain high quality data throughout the depth range of the prospective geologic formations of 2,000' to 12,000' to image both gross structures and more subtle structural and stratigraphic elements; (3) overcome the challenges posed by a hard, reflective sandstone that cropped out or was buried just a few feet below the surface under most of the survey area; and (4) run a safe survey.

    20. Uncertainty Analysis of RELAP5-3D

      SciTech Connect (OSTI)

      Alexandra E Gertman; Dr. George L Mesina

      2012-07-01

      As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

    1. Double-reconnected magnetic structures driven by Kelvin-Helmholtz vortices at the Earth's magnetosphere

      SciTech Connect (OSTI)

      Borgogno, D.; Califano, F.; Pegoraro, F.; Faganello, M.

      2015-03-15

      In an almost collisionless magnetohydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted, e.g., through the propagation of Alfvn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae (see, e.g., A. F. Rappazzo and E. N. Parker, Astrophys. J. 773, L2 (2013) and references therein) is a paradigmatic case. Here, we investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere.

    2. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

      SciTech Connect (OSTI)

      Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Fukano, A.

      2015-04-08

      In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.

    3. Uncertainty Analysis for RELAP5-3D

      SciTech Connect (OSTI)

      Aaron J. Pawel; Dr. George L. Mesina

      2011-08-01

      In its current state, RELAP5-3D is a 'best-estimate' code; it is one of our most reliable programs for modeling what occurs within reactor systems in transients from given initial conditions. This code, however, remains an estimator. A statistical analysis has been performed that begins to lay the foundation for a full uncertainty analysis. By varying the inputs over assumed probability density functions, the output parameters were shown to vary. Using such statistical tools as means, variances, and tolerance intervals, a picture of how uncertain the results are based on the uncertainty of the inputs has been obtained.

    4. West Flank Coso FORGE Magnetotelluric 3D Data

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Doug Blankenship

      2016-01-01

      This is the 3D version of the MT data for the West Flank FORGE area.The Coso geothermal field has had three Magnetotelluric (MT) datasets collected including surveys in 2003, 2006, and 2011. The final collection, in 2011, expanded the survey to the west and covers the West Flank of FORGE area.This most recent data set was collected by Schlumberger/WesternGeco and inverted by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy; the 2003 and 2006 data were integrated for these inversions in the present study.

    5. Correlated electron pseudopotentials for 3d-transition metals

      SciTech Connect (OSTI)

      Trail, J. R. Needs, R. J.

      2015-02-14

      A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc ? Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

    6. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

      SciTech Connect (OSTI)

      Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

      2006-08-24

      3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

    7. A non-conforming 3D spherical harmonic transport solver

      SciTech Connect (OSTI)

      Van Criekingen, S.

      2006-07-01

      A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

    8. System and method for 3D printing of aerogels

      DOE Patents [OSTI]

      Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

      2016-03-08

      A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

    9. Development of techniques in magnetic resonance and structural studies of the prion protein

      SciTech Connect (OSTI)

      Bitter, Hans-Marcus L.

      2000-07-01

      Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging

    10. Magnetic and Structural Design of a 15 T $Nb_3Sn$ Accelerator Depole Model

      SciTech Connect (OSTI)

      Kashikhin, V. V.; Andreev, N.; Barzi, E.; Novitski, I.; Zlobin, A. V.

      2015-01-01

      Hadron Colliders (HC) are the most powerful discovery tools in modern high energy physics. A 100 TeV scale HC with a nominal operation field of at least 15 T is being considered for the post-LHC era. The choice of a 15 T nominal field requires using the Nb3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance. The experience gained during the 11-T dipole R&D campaign is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T $Nb_3Sn$ dipole and the steps towards the demonstration model.

    11. Giant Controllable Magnetization Changes Induced by Structural Phase Transitions in a Metamagnetic Artificial Multiferroic

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Bennett, S. P.; Wong, A. T.; Glavic, A.; Herklotz, A.; Urban, C.; Valmianski, I.; Biegalski, M. D.; Christen, H. M.; Ward, T. Z.; Lauter, V.

      2016-03-04

      We realize that a controllable metamagnetic transition from AFM to FM ordering would open the door to a plethora of new spintronics based devices that, rather than reorienting spins in a ferromagnet, harness direct control of a materials intrinsic magnetic ordering. In this study FeRh films with drastically reduced transition temperatures and a large magneto-thermal hysteresis were produced for magnetocaloric and spintronics applications. Remarkably, giant controllable magnetization changes (measured to be as high has ~25%) are realized and by manipulating the strain transfer from the external lattice when subjected to two structural phase transitions of BaTiO3 (001) single crystal substrate.more » These magnetization changes are the largest seen to date to be controllably induced in the FeRh system. Using polarized neutron reflectometry we reveal how just a slight in plane surface strain change at ~290C results in a massive magnetic transformation in the bottom half of the film clearly demonstrating a strong lattice-spin coupling in FeRh. By means of these substrate induced strain changes we show a way to reproducibly explore the effects of temperature and strain on the relative stabilities of the FM and AFM phases in multi-domain metamagnetic systems. In our study also demonstrates for the first time the depth dependent nature of a controllable magnetic order using strain in an artificial multiferroic heterostructure.« less

    12. Structural and magnetic characterization of electro-crystallized magnetite nanoparticles under constant current

      SciTech Connect (OSTI)

      Mosivand, Saba; Kazeminezhad, Iraj

      2015-10-15

      Graphical abstract: Structural and magnetic properties of electro-crystallized magnetite nanoparticles under constant current were studied. All samples were characterized using XRD, SEM, VSM, and Mössbauer spectrometry. - Highlights: • The effect of applied current on morphology and properties of Fe{sub 3}O{sub 4} is studied. • The particle size and morphology are controllable by adjusting the current. • The magnetization depends on particle size, type of surfactant and applied current. • The clear correlation between magnetization and the mean particle size is observed. - Abstract: The effect of applied current on the morphology, particle size, structure, and magnetic properties of magnetite nanoparticles prepared by electro-crystallization method was studied. The synthesis was performed in an electrochemical cell containing two iron electrodes and an aqueous solution of sodium sulfate, and either thiourea, sodium butanoate, or β-cyclodextrine as organic stabilizer. All the samples were characterized by XRD, SEM, VSM, and Mössbauer spectroscopy. X-ray diffraction patterns, clearly confirmed that all products have the cubic spinel Fe{sub 3}O{sub 4} crystal structure. Electron microscope images of the samples showed that their mean particle size is in the range 20–80 nm, and depends critically on the applied current and type of the organic additives. Specific magnetization of the samples at room temperature ranges from 60 to 90 A m{sup 2} kg{sup −1}, depending on the growth conditions. Room temperature Mössbauer spectra are typical of nonstoichiometric Fe{sub 3−δ}O{sub 4}, with a small excess of Fe{sup 3+}, 0.06 ≤ δ ≤ 0.17.

    13. Modeling moving systems with RELAP5-3D

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.

      2015-12-04

      RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

    14. Image Appraisal for 2D and 3D Electromagnetic Inversion

      SciTech Connect (OSTI)

      Alumbaugh, D.L.; Newman, G.A.

      1999-01-28

      Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

    15. DYNA3D Material Model 71 - Solid Element Test Problem

      SciTech Connect (OSTI)

      Zywicz, E

      2008-01-24

      A general phenomenological-based elasto-plastic nonlinear isotropic strain hardening material model was implemented in DYNA3D for use in solid, beam, truss, and shell elements. The constitutive model, Model 71, is based upon conventional J2 plasticity and affords optional temperature and rate dependence (visco-plasticity). The expressions for strain hardening, temperature dependence, and rate dependence allow it to represent a wide variety of material responses. Options to capture temperature changes due to adiabatic heating and thermal straining are incorporated into the constitutive framework as well. The verification problem developed for this constitutive model consists of four uni-axial right cylinders subject to constant true strain-rate boundary conditions. Three of the specimens have different constant strain rates imposed, while the fourth specimen is subjected to several strain rate jumps. The material parameters developed by Fehlmann (2005) for 21-6-9 Nitronic steel are utilized. As demonstrated below, the finite element (FE) simulations are in excellent agreement with the theoretical responses and indicated the model is functioning as desired. Consequently, this problem serves as both a verification problem and regression test problem for DYNA3D.

    16. ASIC for High Rate 3D Position Sensitive Detectors

      SciTech Connect (OSTI)

      Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

      2010-06-16

      We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

    17. Modeling moving systems with RELAP5-3D

      SciTech Connect (OSTI)

      Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.

      2015-12-04

      RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.

    18. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

      SciTech Connect (OSTI)

      George L Mesina; David Aumiller; Francis Buschman

      2014-07-01

      Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

    19. THE THOMSON SURFACE. III. TRACKING FEATURES IN 3D

      SciTech Connect (OSTI)

      Howard, T. A.; DeForest, C. E.; Tappin, S. J.; Odstrcil, D.

      2013-03-01

      In this, the final installment in a three-part series on the Thomson surface, we present simulated observations of coronal mass ejections (CMEs) observed by a hypothetical polarizing white light heliospheric imager. Thomson scattering yields a polarization signal that can be exploited to locate observed features in three dimensions relative to the Thomson surface. We consider how the appearance of the CME changes with the direction of trajectory, using simulations of a simple geometrical shape and also of a more realistic CME generated using the ENLIL model. We compare the appearance in both unpolarized B and polarized pB light, and show that there is a quantifiable difference in the measured brightness of a CME between unpolarized and polarized observations. We demonstrate a technique for using this difference to extract the three-dimensional (3D) trajectory of large objects such as CMEs. We conclude with a discussion on how a polarizing heliospheric imager could be used to extract 3D trajectory information about CMEs or other observed features.

    20. Recent progress in 3-D imaging of sea freight containers

      SciTech Connect (OSTI)

      Fuchs, Theobald Schön, Tobias Sukowski, Frank; Dittmann, Jonas; Hanke, Randolf

      2015-03-31

      The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

    1. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE 3D LEGACY SURVEY

      SciTech Connect (OSTI)

      Zhang Yong; Hsia, Chih-Hao; Kwok, Sun E-mail: xiazh@hku.hk

      2012-01-20

      We used the data from the Spitzer Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) to investigate the mid-infrared (MIR) properties of planetary nebulae (PNs) and PN candidates. In previous studies of GLIMPSE I and II data, we have shown that these MIR data are very useful in distinguishing PNs from other emission-line objects. In the present paper, we focus on the PNs in the field of the GLIMPSE 3D survey, which has a more extensive latitude coverage. We found a total of 90 Macquarie-AAO-Strasbourg (MASH) and MASH II PNs and 101 known PNs to have visible MIR counterparts in the GLIMPSE 3D survey area. The images and photometry of these PNs are presented. Combining the derived IRAC photometry at 3.6, 4.5, 5.8, and 8.0 {mu}m with the existing photometric measurements from other infrared catalogs, we are able to construct spectral energy distributions (SEDs) of these PNs. Among the most notable objects in this survey is the PN M1-41, whose GLIMPSE 3D image reveals a large bipolar structure of more than 3 arcmin in extent.

    2. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

      SciTech Connect (OSTI)

      Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

      2007-02-01

      A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

    3. MAGNETS

      DOE Patents [OSTI]

      Hofacker, H.B.

      1958-09-23

      This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

    4. OSTIblog Articles in the 3D Printing Topic | OSTI, US Dept of Energy Office

      Office of Scientific and Technical Information (OSTI)

      of Scientific and Technical Information 3D Printing Topic 3-D Printing - A powerful tool gains momentum by Kathy Chambers 29 May, 2014 in 17530 3D%20printed%20perforated%20metal%20box.jpg 3-D Printing - A powerful tool gains momentum Read more about 17530 3D printing technology is gaining fresh momentum in Department of Energy (DOE) research endeavors. 3D printing is achieved using an additive manufacturing process that creates 3D objects directly from a computer model, depositing material

    5. Two coordination polymers of manganese(II) isophthalate and their preparation, structures, and magnetic properties

      SciTech Connect (OSTI)

      Chen Jinxi; Wang Jingjing; Ohba, Masaaki

      2012-01-15

      Two manganese coordination polymers, [Mn{sub 2}(ip){sub 2}(dmf)]{center_dot}dmf (1) and [Mn{sub 4}(ip){sub 4}(dmf){sub 6}]{center_dot}2dmf (2) (ip=isophthalate; dmf=N,N-dimethylformamide), have been synthesized and characterized. X-ray crystal structural data reveal that compound 1 crystallizes in triclinic space group P-1, a=9.716(3) A, b=12.193(3) A, c=12.576(3) A, {alpha}=62.19(2) Degree-Sign , {beta}=66.423(17) Degree-Sign , {gamma}=72.72(2) Degree-Sign , Z=2, while compound 2 crystallizes in monoclinic space group Cc, a=19.80(3) A, b=20.20(2) A, c=18.01(3) A, {beta}=108.40(4) Degree-Sign , Z=4. Variable-temperature magnetic susceptibilities of compounds 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent Mn(II) ions. - Graphical abstract: Three-dimensional porous and two-dimensional layered manganese isophthalates have been prepared. Magnetic susceptibility measurements exhibit overall weak antiferromagnetic interactions between the Mn(II) ions in both compounds. Highlights: Black-Right-Pointing-Pointer Two manganese isophthalates have been prepared. Black-Right-Pointing-Pointer Compound 1 adopts a three-dimensional porous structure. Black-Right-Pointing-Pointer Compound 2 adopts a two-dimensional layered structure. Black-Right-Pointing-Pointer Magnetic properties of both compounds are investigated.

    6. Design of a superconducting 28 GHz ion source magnet for FRIB using a shell-based support structure

      SciTech Connect (OSTI)

      Felice, H.; Rochepault, E.; Hafalia, R.; Caspi, S.; Dietderich, D. R.; Prestemon, S. O.; Machicoane, G.; Pozdeyev, E.; Bultman, N.; Rao, X.

      2014-12-05

      The Superconducting Magnet Program at the Lawrence Berkeley National Laboratory (LBNL) is completing the design of a 28 GHz NbTi ion source magnet for the Facility for Rare Isotope Beams (FRIB). The design parameters are based on the parameters of the ECR ion source VENUS in operation at LBNL since 2002 featuring a sextupole-in-solenoids configuration. Whereas most of the magnet components (such as conductor, magnetic design, protection scheme) remain very similar to the VENUS magnet components, the support structure of the FRIB ion source uses a different concept. A shell-based support structure using bladders and keys is implemented in the design allowing fine tuning of the sextupole preload and reversibility of the magnet assembly process. As part of the design work, conductor insulation scheme, coil fabrication processes and assembly procedures are also explored to optimize performance. We present the main features of the design emphasizing the integrated design approach used at LBNL to achieve this result.

    7. RELAP5-3D Restart and Backup Verification Testing

      SciTech Connect (OSTI)

      Dr. George L Mesina

      2013-09-01

      Existing testing methodology for RELAP5-3D employs a set of test cases collected over two decades to test a variety of code features and run on a Linux or Windows platform. However, this set has numerous deficiencies in terms of code coverage, detail of comparison, running time, and testing fidelity of RELAP5-3D restart and backup capabilities. The test suite covers less than three quarters of the lines of code in the relap directory and just over half those in the environmental library. Even in terms of code features, many are not covered. Moreover, the test set runs many problems long past the point necessary to test the relevant features. It requires standard problems to run to completion. This is unnecessary for features can be tested in a short-running problem. For example, many trips and controls can be tested in the first few time steps, as can a number of fluid flow options. The testing system is also inaccurate. For the past decade, the diffem script has been the primary tool for checking that printouts from two different RELAP5-3D executables agree. This tool compares two output files to verify that all characters are the same except for those relating to date, time and a few other excluded items. The variable values printed on the output file are accurate to no more than eight decimal places. Therefore, calculations with errors in decimal places beyond those printed remain undetected. Finally, fidelity of restart is not tested except in the PVM sub-suite and backup is not specifically tested at all. When a restart is made from any midway point of the base-case transient, the restart must produce the same values. When a backup condition occurs, the code repeats advancements with the same time step. A perfect backup can be tested by forcing RELAP5 to perform a backup by falsely setting a backup condition flag at a user-specified-time. Comparison of the calculations of that run and those produced by the same input w/o the spurious condition should be

    8. Blanket 3-D coverage-its successful application in exploring a mature area, cental Dutch offshore

      SciTech Connect (OSTI)

      Herber, R.; Elders, C.; Lamens, J.; Bachmann, M.; Ferrer, F.S. )

      1993-09-01

      In the K and L blocks of the Dutch sector of the southern North Sea, the Rotliegende Sandstone forms the main objective. Drilling started in 1968, and to date 36 Rotliegende gas fields have been discovered in Nederlandse Aardolie Maatschappij (NAM) operated acreage with volumes in place ranging between 2 and 50 x 10[sup 9]m[sup 3]. Approximately 70% of these fields were discovered using two-dimensional seismic, but as exploration progressed an increasing number of wells were found water bearing. The main cause of failure is lack of structural integrity, due to high Rotliegende fault density and highly variable overburden dominated by Zechstein salt and Chalk grabens. Three-dimensional (3-D) seismic acquisition started in 1981 but at first was typically limited to small production surveys covering existing gas fields. In 1986, acquisition of block-wide exploration 3-D surveys began. This has resulted in a present-day coverage of some 5000 km[sup 2], representing 95% of NAM-operated central offshore K and L blocks. Interpretation of these surveys revealed many undrilled structures, inspiring a second phase of exploration drilling with a high success ratio of 80%. As drilling activity progressed in the earliest covered blocks, however, a number of structurally conclusive dry wells were drilled, and remaining individual prospects are small. Therefore, a third exploration phase now has started, concentrating on hydrocarbon habitat reviews making use of detailed 3-D interpretation of seismic attributes. The reconstruction of tectonic history and and updated charge model are expected to lead to an improved definition of remaining potential in these mature blocks.

    9. 3D Model of the Neal Hot Springs Geothermal Area

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Faulds, James E.

      The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

    10. Modeling the GFR with RELAP5-3D

      SciTech Connect (OSTI)

      Cliff B. Davis; Theron D. Marshall; K. D. Weaver

      2005-09-01

      Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.

    11. 3D Model of the San Emidio Geothermal Area

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      James E. Faulds

      The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30 eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

    12. Visualizing 3D velocity fields near contour surfaces. Revision 1

      SciTech Connect (OSTI)

      Max, N.; Crawfis, R.; Grant, C.

      1994-08-08

      Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphics pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

    13. Automatic contact in DYNA3D for vehicle crashworthiness

      SciTech Connect (OSTI)

      Whirley, R.G.; Engelmann, B.E.

      1993-07-15

      This paper presents a new formulation for the automatic definition and treatment of mechanical contact in explicit nonlinear finite element analysis. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but faces significant challenges in reliability and computational costs. This paper discusses in detail a new four-step automatic contact algorithm. Key aspects of the proposed method include automatic identification of adjacent and opposite surfaces in the global search phase, and the use of a smoothly varying surface normal which allows a consistent treatment of shell intersection and corner contact conditions without ad-hoc rules. The paper concludes with three examples which illustrate the performance of the newly proposed algorithm in the public DYNA3D code.

    14. Shell Element Verification & Regression Problems for DYNA3D

      SciTech Connect (OSTI)

      Zywicz, E

      2008-02-01

      A series of quasi-static regression/verification problems were developed for the triangular and quadrilateral shell element formulations contained in Lawrence Livermore National Laboratory's explicit finite element program DYNA3D. Each regression problem imposes both displacement- and force-type boundary conditions to probe the five independent nodal degrees of freedom employed in the targeted formulation. When applicable, the finite element results are compared with small-strain linear-elastic closed-form reference solutions to verify select aspects of the formulations implementation. Although all problems in the suite depict the same geometry, material behavior, and loading conditions, each problem represents a unique combination of shell formulation, stabilization method, and integration rule. Collectively, the thirty-six new regression problems in the test suite cover nine different shell formulations, three hourglass stabilization methods, and three families of through-thickness integration rules.

    15. 3D deformation field throughout the interior of materials.

      SciTech Connect (OSTI)

      Jin, Huiqing; Lu, Wei-Yang

      2013-09-01

      This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

    16. 3D Model of the Neal Hot Springs Geothermal Area

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Faulds, James E.

      2013-12-31

      The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

    17. 3D Model of the San Emidio Geothermal Area

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      James E. Faulds

      2013-12-31

      The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

    18. Exploration 3-D Seismic Field Test/Native Tribes Initiative

      SciTech Connect (OSTI)

      Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

      1999-04-27

      To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

    19. 3D imaging of semiconductor components by discrete laminography

      SciTech Connect (OSTI)

      Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

      2014-06-19

      X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

    20. 3D Model of the San Emidio Geothermal Area

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      James E. Faulds

      2013-12-31

      The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30 eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

    1. 3D target array for pulsed multi-sourced radiography

      DOE Patents [OSTI]

      Le Galloudec, Nathalie Joelle

      2016-02-23

      The various technologies presented herein relate to the generation of x-rays and other charged particles. A plurality of disparate source materials can be combined on an array to facilitate fabrication of co-located mixed tips (point sources) which can be utilized to form a polychromatic cloud, e.g., a plurality of x-rays having a range of energies and or wavelengths, etc. The tips can be formed such that the x-rays are emitted in a direction different to other charged particles to facilitate clean x-ray sourcing. Particles, such as protons, can be directionally emitted to facilitate generation of neutrons at a secondary target. The various particles can be generated by interaction of a laser irradiating the array of tips. The tips can be incorporated into a plurality of 3D conical targets, the conical target sidewall(s) can be utilized to microfocus a portion of a laser beam onto the tip material.

    2. Implementing inverted master-slave 3D semiconductor stack

      DOE Patents [OSTI]

      Coteus, Paul W.; Hall, Shawn A.; Takken, Todd E.

      2016-03-08

      A method and apparatus are provided for implementing an enhanced three dimensional (3D) semiconductor stack. A chip carrier has an aperture of a first length and first width. A first chip has at least one of a second length greater than the first length or a second width greater than the first width; a second chip attached to the first chip, the second chip having at least one of a third length less than the first length or a third width less than the first width; the first chip attached to the chip carrier by connections in an overlap region defined by at least one of the first and second lengths or the first and second widths; the second chip extending into the aperture; and a heat spreader attached to the chip carrier and in thermal contact with the first chip for dissipating heat from both the first chip and second chip.

    3. Energy flow in passive and active 3D cochlear model

      SciTech Connect (OSTI)

      Wang, Yanli; Steele, Charles; Puria, Sunil

      2015-12-31

      Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

    4. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy

      SciTech Connect (OSTI)

      Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma

      2010-07-15

      was more with 3D than IMRT plans (P<0.01). For a given patient, mean dose and dose to 30% rectum and bladder were less with 3D than IMRT plans for prostate or prostate+SV volumes <65 (38/48) and 85 cm{sup 3} (39/48), respectively (P<0.01). The larger the dose to rectum or bladder with 3D plans, the larger also was the dose to these structures with IMRT (P<0.001). For both 3D and IMRT plans, dose to rectum and bladder increased with the increase in the volumes of prostate and seminal vesicles (P<0.02 to 0.001). Conclusions: Volumes of prostate and seminal vesicles provide a reproducible and consistent basis for considering patients for treatment with image-guided 3D or IMRT plans. Patients with prostate and prostate+SV volumes <65 and 85 cm{sup 3}, respectively, would be suitable for 3D-CRT. Patients with prostate and prostate+SV volumes >65 and 85 cm{sup 3}, respectively, might get benefit from IMRT.

    5. Structure symmetry determination and magnetic evolution in Sr2Ir1–xRhxO4

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Ye, Feng; Wang, Xiaoping; Hoffmann, Christina; Wang, Jinchen; Chi, Songxue; Matsuda, Masaaki; Chakoumakos, Bryan C.; Fernandez-Baca, Jaime A.; Cao, Gang

      2015-11-23

      We use single-crystal neutron diffraction to determine the crystal structure symmetry and to study the magnetic evolution in the rhodium doped iridates Sr2Ir1–xRhxO4 (0 ≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I41/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21 μB/Ir for x = 0 to 0.18 μB/Ir for x = 0.12. As a result, the magnetic structure at x = 0.12 is different from thatmore » of the parent compound while the moments remain in the basal plane.« less

    6. Fragility of ferromagnetic double exchange interactions and pressure tuning of magnetism in 3d–5d double perovskite Sr₂FeOsO₆

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Veiga, L. S. I.; Fabbris, G.; van Veenendaal, M.; Souza-Neto, N. M.; Feng, H. L.; Yamaura, K.; Haskel, D.

      2015-06-19

      The ability to tune exchange (magnetic) interactions between 3d transition metals in perovskite structures has proven to be a powerful route to discovery of novel properties. Here we demonstrate that the introduction of 3d-5d exchange pathways in double perovskites enables additional tunability, a result of the large spatial extent of 5d wave functions. Using x-ray probes of magnetism and structure at high pressure, we show that compression of Sr₂FeOsO₆ drives an unexpected continuous change in the sign of Fe-Os exchange interactions and a transition from antiferromagnetic to ferrimagnetic order. We analyze the relevant electron-electron interactions, shedding light into fundamental differencesmore » with the more thoroughly studied 3d-3d systems.« less

    7. Fragility of ferromagnetic double exchange interactions and pressure tuning of magnetism in 3d–5d double perovskite Sr₂FeOsO₆

      SciTech Connect (OSTI)

      Veiga, L. S. I.; Fabbris, G.; van Veenendaal, M.; Souza-Neto, N. M.; Feng, H. L.; Yamaura, K.; Haskel, D.

      2015-06-19

      The ability to tune exchange (magnetic) interactions between 3d transition metals in perovskite structures has proven to be a powerful route to discovery of novel properties. Here we demonstrate that the introduction of 3d-5d exchange pathways in double perovskites enables additional tunability, a result of the large spatial extent of 5d wave functions. Using x-ray probes of magnetism and structure at high pressure, we show that compression of Sr₂FeOsO₆ drives an unexpected continuous change in the sign of Fe-Os exchange interactions and a transition from antiferromagnetic to ferrimagnetic order. We analyze the relevant electron-electron interactions, shedding light into fundamental differences with the more thoroughly studied 3d-3d systems.

    8. Preliminary Results of 3D-DDTC Pixel Detectors for the ATLAS Upgrade

      SciTech Connect (OSTI)

      La Rosa, Alessandro; /CERN; Boscardin, M.; /Fond. Bruno Kessler, Povo; Dalla Betta, G.-F.; /Trento U. /INFN, Trento; Darbo, G.; Gemme, C.; /INFN, Genoa; Pernegger, H.; /CERN; Piemonte, C.; /Fond. Bruno Kessler, Povo; Povoli, M.; /Trento U. /INFN, Trento; Ronchin, S.; /Fond. Bruno Kessler, Povo; Zoboli, A.; /Trento U. /INFN, Trento; Zorzi, N.; /Fond. Bruno Kessler, Povo; Bolle, E.; /Oslo U.; Borri, M.; /INFN, Turin /Turin U.; Da Via, C.; /Manchester U.; Dong, S.; /SLAC; Fazio, S.; /Calabria U.; Grenier, P.; /SLAC; Grinstein, S.; /Barcelona, IFAE; Gjersdal, H.; /Oslo U.; Hansson, P.; /SLAC; Huegging, F.; /Bonn U. /SLAC /INFN, Turin /Turin U. /Oslo U. /Bergen U. /Oslo U. /Prague, Tech. U. /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

      2012-04-04

      3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180 GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200 {mu}m, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110 {mu}m to 150 {mu}m. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am{sup 241} {gamma}-ray sources, charge collection tests with Sr90 {beta}-source and an overview of preliminary results from the CERN beam test.

    9. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

      SciTech Connect (OSTI)

      Bachetti, Matteo; Burderi, Luciano; Romanova, Marina M.; Kulkarni, Akshay; Salvo, Tiziana di

      2010-07-15

      3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M.

    10. Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems

      SciTech Connect (OSTI)

      Warren, T.L.; Tabbara, M.R.

      1997-05-01

      In certain penetration events the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for modeling the target as well as the need for a contact algorithm. This technique substantially reduces execution time. In this spirit, a forcing function which is derived from a spherical-cavity expansion analysis has been implemented in PRONTO 3D. This implementation is capable of computing the structural and component responses of a projectile due to three dimensional penetration events. Sample problems demonstrate good agreement with experimental and analytical results.

    11. Dy-V magnetic interaction and local structure bias on the complex spin and orbital ordering in Dy₁₋xTbxVO₃ (x=0 and 0.2)

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Yan, J.-Q.; Cao, H. B.; McGuire, M. A.; Ren, Y.; Sales, B. C.; Mandrus, D. G.

      2013-06-10

      The spin and orbital ordering in Dy₁₋xTbxVO₃ (x=0 and 0.2) was studied by measuring x-ray powder diffraction, magnetization, specific heat, and neutron single-crystal diffraction. The results show that G-OO/C-AF and C-OO/G-AF phases coexist in Dy0.8Tb0.20VO3 in the temperature range 2–60 K, and the volume fraction of each phase is temperature and field dependent. The ordering of Dy moments at T* = 12 K induces a transition from G-OO/C-AF to a C-OO/G-AF phase. Magnetic fields suppress the long-range order of Dy moments and thus the C-OO/G-AF phase below T*. The polarized moments induced at the Dy sublattice by external magnetic fieldsmore » couple to the V 3d moments, and this coupling favors the G-OO/C-AF state. Also discussed is the effect of the Dy-V magnetic interaction and local structure distortion on the spin and orbital ordering in Dy₁₋xTbxVO₃.« less

    12. Magnetic structure of Yb2Pt2Pb: Ising moments on the Shastry-Sutherland lattice

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Miiller, W.; Zaliznyak, I.; Wu, L. S.; Kim, M. S.; Orvis, T.; Simonson, J. W.; Gamza, M.; McNally, D. M.; Nelson, C. S.; Ehlers, G.; et al

      2016-03-22

      Neutron diffraction measurements were carried out on single crystals and powders of Yb2Pt2Pb, where Yb moments form two interpenetrating planar sublattices of orthogonal dimers, a geometry known as Shastry-Sutherland lattice, and are stacked along the c axis in a ladder geometry. Yb2Pt2Pb orders antiferromagnetically at TN=2.07K, and the magnetic structure determined from these measurements features the interleaving of two orthogonal sublattices into a 5×5×1 magnetic supercell that is based on stripes with moments perpendicular to the dimer bonds, which are along (110) and (–110). Magnetic fields applied along (110) or (–110) suppress the antiferromagnetic peaks from an individual sublattice, butmore » leave the orthogonal sublattice unaffected, evidence for the Ising character of the Yb moments in Yb2Pt2Pb that is supported by point charge calculations. Furthermore, specific heat, magnetic susceptibility, and electrical resistivity measurements concur with neutron elastic scattering results that the longitudinal critical fluctuations are gapped with ΔE≃0.07meV.« less

    13. Electronic structure and magnetic properties of RuFe{sub 3}N nitride

      SciTech Connect (OSTI)

      Santos, A.V. dos; Kuhnen, C.A.

      2009-11-15

      Self-consistent band structure calculations were performed on nitride RuFe{sub 3}N in order to investigate its magnetic and ground state properties. The Linear Muffin-Tin Orbital (LMTO) method was employed and calculations were performed at several lattice parameters so as to obtain the RuFe{sub 3}N equilibrium volume. Nonmagnetic and ferromagnetic LMTO calculations have shown that the RuFe{sub 3}N stable stage is ferromagnetic with constant lattice equilibrium of 7.2502 atomic units (a.u.). At equilibrium volume the LMTO calculations have given magnetic moments of 1.25 and 1.63 mu{sub B} at Ru and Fe sites, respectively, and no magnetic moment at N sites. The analysis of states density at equilibrium volume as well as the results for charge transfer illustrates why this ruthenium nitride is ferromagnetic. The LMTO calculations anticipate that the magnetic moment, the hyperfine field (the Fermi contact) and the isomer shift show a strong dependence on the lattice spacing. - Graphical Abstract: Total energy curves, versus lattice spacing for the RuFe{sub 3}N nitride. It is observed an energy difference between ferromagnetic and paramagnetic states, which provides high critic pressure.

    14. A simulation technique for 3D MR-guided acoustic radiation force imaging

      SciTech Connect (OSTI)

      Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

      2015-02-15

      Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

    15. Cosmic magnetism

      SciTech Connect (OSTI)

      Seymour, P.

      1986-01-01

      This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

    16. Contact Interface Verification for DYNA3D Scenario 1: Basic Contact

      SciTech Connect (OSTI)

      McMichael, L D

      2006-05-10

      A suite of test problems has been developed to examine contact behavior within the nonlinear, three-dimensional, explicit finite element analysis (FEA) code DYNA3D (Lin, 2005). The test problems address the basic functionality of the contact algorithms, including the behavior of various kinematic, penalty, and Lagrangian enforcement formulations. The results from the DYNA3D analyses are compared to closed form solutions to verify the contact behavior. This work was performed as part of the Verification and Validation efforts of LLNL W Program within the NNSA's Advanced Simulation and Computing (ASC) Program. DYNA3D models the transient dynamic response of solids and structures including the interactions between disjoint bodies (parts). A wide variety of contact surfaces are available to represent the diverse interactions possible during an analysis, including relative motion (sliding), separation and gap closure (voids), and fixed relative position (tied). The problem geometry may be defined using a combination of element formulations, including one-dimensional beam and truss elements, two-dimensional shell elements, and three-dimensional solid elements. Consequently, it is necessary to consider various element interactions for each contact algorithm being verified. Most of the contact algorithms currently available in DYNA3D are examined; the exceptions are the Type 4--Single Surface Contact and Type 11--SAND algorithms. It is likely that these algorithms will be removed since their functionality is embodied in other, more robust, contact algorithms. The automatic contact algorithm is evaluated using the Type 12 interface. Two other variations of automatic contact, Type 13 and Type 14, offer additional means to adapt the interface domain, but share the same search and restoration algorithms as Type 12. The contact algorithms are summarized in Table 1. This report and associated test problems examine the scenario where one contact surface exists between two

    17. Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films

      SciTech Connect (OSTI)

      Li, Yueqing; Liu, E. K.; Wu, G. H.; Wang, Wenhong; Liu, Zhongyuan

      2014-12-14

      We report on a systematical study of the structure, magnetism, and magnetotransport behavior of the hexagonal MnNiGa films deposited on thermally oxidized Si (001) substrates by magnetron sputtering. X-ray diffractions reveal that all the films deposited at different temperatures crystallized in hexagonal Ni{sub 2}In-type structure (space group P6{sub 3}/mmc). Scanning electron microscopy observations show that the surface morphology of the films varies with deposition temperature, and energy dispersive spectroscopy analysis shows compositions of the films remain nearly unchanged, independent of the deposition temperature. Magnetic measurements indicate that all films are ferromagnetic and exhibit a magnetic anisotropy behavior. The magnetoresistance (MR) exhibits a negative temperature- and field-dependent behavior. The possible origin of the negative MR is discussed. Furthermore, we found that the Hall effect is dominated by an anomalous Hall effect (AHE) only due to skew scattering independent of the deposition temperature of films. Moreover, the anomalous Hall resistivity presents a non-monotonously temperature-dependent behavior.

    18. Probing structure-property relationships in perpendicularly magnetized Fe/Cu(001) using MXLD and XPD

      SciTech Connect (OSTI)

      Cummins, T.R.; Waddill, G.D.; Goodman, K.W.

      1997-04-01

      Magnetic X-ray Linear Dichroism (MXLD) in Photoelectron Spectroscopy and X-Ray Photoelectron Diffraction (XPD) of the Fe 3p core level have been used to probe the magnetic structure-property relationships of perpendicularly magnetized Fe/Cu(001), in an element-specific fashion. A strong MEXLD effect was observed in the high resolution photoelectron spectroscopy of the Fe 3p at {open_quotes}normal{close_quotes} emission and was used to follow the loss of perpendicular ferromagnetic ordering as the temperature was raised toward room temperature. In parallel with this, {open_quotes}Forward Focussing{close_quotes} in XPD was used as a direct measure of geometric structure in the overlayer. These results and the implications of their correlation will be discussed. Additionally, an investigation of the effect of Mn doping of the Fe/Cu(001) will be described. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

    19. Unexpected crystal and magnetic structures in MnCu4In and MnCu4Sn...

      Office of Scientific and Technical Information (OSTI)

      SciTech Connect Search Results Journal Article: Unexpected crystal and magnetic structures ... OSTI Identifier: 1096858 Report Number(s): IS-J 7964 Journal ID: 1359-6454 DOE Contract ...

    20. Searching for Auxetics with DYNA3D and ParaDyn

      SciTech Connect (OSTI)

      Hoover, W G; Hoover, C G

      2004-09-11

      We sought to simulate auxetic behavior by carrying out dynamic analyses of mesoscopic model structures. We began by generating nearly periodic cellular structures. Four-node 'Shell' elements and eight-node 'Brick' elements are the basic building blocks for each cell. The shells and bricks obey standard elastic-plastic continuum mechanics. The dynamical response of the structures was next determined for a three-stage loading process: (1) homogeneous compression; (2) viscous relaxation; (3) uniaxial compression. The simulations were carried out with both serial and parallel computer codes--DYNA3D and ParaDyn--which describe the deformation of the shells and bricks with a robust contact algorithm. We summarize the results found here.