Powered by Deep Web Technologies
Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

3D Laser Imaging at Highway Speed Kelvin CP Wang  

E-Print Network [OSTI]

3D Laser Imaging at Highway Speed Kelvin CP Wang And the Team Formerly at the University Concrete Consortium Meeting Oklahoma City Sheraton Hotel #12;3D Laser Imaging for Pavements Mature Potential to Cover Most if Not All Data Collection on Pavement Surface How to Obtain True 1mm 3D Visual

2

Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis  

SciTech Connect (OSTI)

We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

Greenberg, M.; Ebel, D.S. (AMNH)

2009-03-19T23:59:59.000Z

3

Imaging atoms in 3-D  

SciTech Connect (OSTI)

Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

Ercius, Peter

2013-10-31T23:59:59.000Z

4

Imaging atoms in 3-D  

ScienceCinema (OSTI)

Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

Ercius, Peter

2014-06-27T23:59:59.000Z

5

3D Imaging Of Wet Granular Matter  

E-Print Network [OSTI]

3D Imaging Of Wet Granular Matter Leonard Goff Advisor: Dr. Wolfgang Losert With Application to Penetrometer Insertion #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert CoffeeSand Gravel Oops! #12;3D Imaging Of Wet Granular Matter Leonard Goff, Advisor: Dr. Wolfgang Losert

Anlage, Steven

6

3D Imaging Technology Conference & Applications Workshop  

E-Print Network [OSTI]

2nd London 3D Imaging Technology Conference & Applications Workshop 3D scanning and vertical, Greece, bilalis@dpem.tuc.gr Abstract. The new 3D scanning technology had changed the way and opened new from some 3D scanning approaches, which were applied for the first time in the southern part of Europe

Aristomenis, Antoniadis

7

3D Mapping Solutions GmbH Kinematic 3D Laser Scanning  

E-Print Network [OSTI]

1 3D Mapping Solutions GmbH Kinematic 3D Laser Scanning for Road or Railway Construction Surveys 1. International Conference on Machine Control & Guidance ­ June 24­26, 2008, ETH Zürich 3D Mapping Solutions GmbH info@3d-mapping.de · Kinematic Survey of Road and Railway Networks for What we are doing

8

3D2D3D photonic crystal heterostructures fabricated by direct laser writing  

E-Print Network [OSTI]

3D­2D­3D photonic crystal heterostructures fabricated by direct laser writing M. Deubel and M fabricate photoresist templates for 3D­2D­3D photonic crystal heterostruc- tures for what we believe for the microfabrication and testing of broadband, 3D air­waveguide microcir- cuitry in photonic bandgap materials. © 2006

John, Sajeev

9

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

10

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization DOE...

11

3D Imaging Symposium, Friday 11:00 3D APPROACHES IN PALEOANTHROPOLOGY USING GEOMETRIC MOR-  

E-Print Network [OSTI]

3D Imaging Symposium, Friday 11:00 3D APPROACHES IN PALEOANTHROPOLOGY USING GEOMETRIC MOR, Eugene, OR; ROSENBERGER, Alfred, Brooklyn College/CUNY, Brooklyn, NY The emergence of 3D GM (geometric- ble to easily collect data in a true 3D sense, such as sets of homologous landmarks or com- plete

Delson, Eric

12

Computational 3D and reflectivity imaging with high photon efficiency  

E-Print Network [OSTI]

Imaging the 3D structure and reflectivity of a scene can be done using photon-counting detectors. Traditional imagers of this type typically require hundreds of detected photons per pixel for accurate 3D and reflectivity ...

Shin, Dongeek

2014-01-01T23:59:59.000Z

13

Ames Lab 101: Real-Time 3D Imaging  

ScienceCinema (OSTI)

Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

Zhang, Song

2012-08-29T23:59:59.000Z

14

3D RECONSTRUCTION FROM A SINGLE IMAGE Diego Rother  

E-Print Network [OSTI]

3D RECONSTRUCTION FROM A SINGLE IMAGE By Diego Rother and Guillermo Sapiro IMA Preprint Series. 1 3D Reconstruction from a Single Image Diego Rother and Guillermo Sapiro Abstract-- A probabilistic framework for 3D object reconstruction from a single image is introduced in this work. First

15

3D imaging and ranging by time-correlated single  

E-Print Network [OSTI]

3D imaging and ranging by time-correlated single photon counting by A. M. Wallace, 6. S. Buller and A. C. Walker 3D imaging is an important tool for metrology and reverse engineering of components and architecturalsurveying. In this article, we review briefly the principal methods in current use for 3D imaging

Buller, Gerald S.

16

Analyzing 3D Images of the Brain NICHOLAS AYACHE  

E-Print Network [OSTI]

Analyzing 3D Images of the Brain NICHOLAS AYACHE OVERVIEW During the past 5 years, there has been research. Along these lines, and focusing on 3D images of the brain obtained with CT, MRI, SPECT, and PET for an objective analysis of 3D images of the brain. Such methods include segmentation, shape analysis, rigid

Paris-Sud XI, Université de

17

Content-oriented 3D reconstruction from image streams  

E-Print Network [OSTI]

the automatisation of SaM from image sequences and videosby the input images to improve 3D reconstructions in SaMMo- tion (SaM). Structure and Motion from image sequences or

Knoblauch, Daniel

2011-01-01T23:59:59.000Z

18

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Principal Investigator: Greg Newman, Michael Fehler Organizations: LBL & MIT Track Name April...

19

Computational imaging for 3D phase and coherence retrieval |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational imaging for 3D phase and coherence retrieval Wednesday, December 10, 2014 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Laura Waller (UC Berkeley) Program...

20

3-D capacitance density imaging system  

DOE Patents [OSTI]

A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

Fasching, G.E.

1988-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

INTERACTION WITH 3D IMAGE DATA THROUGH VOLUME RENDERED VIEWS.  

E-Print Network [OSTI]

, since the 3D image dataset is operated on directly and not transformed into a simple 3 #12; binary weighted compositing with gradient and depth shading. The algorithm is highly optimized for rapid rendering large aggregate computimg power present in many hospitals and laboratories. Mapping from the rendered

Pelizzari, Charles A.

22

LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS  

E-Print Network [OSTI]

LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS Thorsten Schulz and Hilmar, EAWAG Email: michele.steiner@eawag.ch Abstract: Terrestrial laser scanning was applied to acquire 3D the catchment area of a road with respect to a pilot plant. As laser scanning requires only a few minutes

Giger, Christine

23

3D acoustic imaging applied to the Baikal Neutrino Telescope  

E-Print Network [OSTI]

A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 meter square; acoustic pulses were "linear sweep-spread signals" - multiple-modulated wide-band signals (10-22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with a accuracy of ~0.2 m (along the beam) and ~1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

K. G. Kebkal; R. Bannasch; O. G. Kebkal; A. I. Panfilov; R. Wischnewski

2008-11-07T23:59:59.000Z

24

Image Appraisal for 2D and 3D Electromagnetic Inversion  

SciTech Connect (OSTI)

Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

Alumbaugh, D.L.; Newman, G.A.

1999-01-28T23:59:59.000Z

25

High-resolution 3-D refractive index imaging and Its biological applications  

E-Print Network [OSTI]

This thesis presents a theory of 3-D imaging in partially coherent light under a non-paraxial condition. The transmission cross-coefficient (TCC) has been used to characterize partially coherent imaging in a 2- D and 3-D ...

Sung, Yongjin

2011-01-01T23:59:59.000Z

26

Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays  

SciTech Connect (OSTI)

Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

Jacobsen, Chris

2014-12-07T23:59:59.000Z

27

Femtosecond Laser Brings 3-D to Microfluidics Microfluidic devices have submillimeter channels designed to control the  

E-Print Network [OSTI]

Femtosecond Laser Brings 3-D to Microfluidics Microfluidic devices have submillimeter channels capable biological assays for such applications as bedside clinical diagnostics. Traditional microfluidics-dimensional geometries. The investigators, in the Groisman Microfluidics and Kleinfeld Neurophysics laboratories, begin

Kleinfeld, David

28

GPU-accelerated denoising of 3D magnetic resonance images  

SciTech Connect (OSTI)

The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

Howison, Mark; Wes Bethel, E.

2014-05-29T23:59:59.000Z

29

SEEING 3D OBJECTS IN A SINGLE 2D IMAGE Diego Rother  

E-Print Network [OSTI]

SEEING 3D OBJECTS IN A SINGLE 2D IMAGE By Diego Rother and Guillermo Sapiro IMA Preprint SeriesD segmentation, object recognition, and 3D reconstruction from a single image is introduced in this paper. The proposed approach partitions 3D space into voxels and estimates the voxel states

30

Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the kneeimage quality and diagnostic performance  

E-Print Network [OSTI]

SB (2007) High-resolution 3D cartilage imaging with IDEALMa Thomas M. Link Isotropic 3D fast spin-echo imaging versusintermediate-weighted (IM-w) 3D fast spin-echo (FSE) se-

2009-01-01T23:59:59.000Z

31

Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities  

E-Print Network [OSTI]

Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping August 2013; accepted 7 September 2013; published 13 November 2013. [1] 3-D Hydraulic tomography (3-D HT (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple

Barrash, Warren

32

3-D Seismic Methods for Shallow Imaging Beneath Pavement  

E-Print Network [OSTI]

The research presented in this dissertation focuses on survey design and acquisition of near-surface 3D seismic reflection and surface wave data on pavement. Increased efficiency for mapping simple subsurface interfaces through a combined use...

Miller, Brian

2013-05-31T23:59:59.000Z

33

Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy  

SciTech Connect (OSTI)

Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin [Department of Medical Sciences, Ewha Womans University, Seoul 158-710 (Korea, Republic of); Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul 158-710 (Korea, Republic of)

2013-02-15T23:59:59.000Z

34

3D Harmonic Mapping and Tetrahedral Meshing of Brain Imaging Data  

E-Print Network [OSTI]

3D Harmonic Mapping and Tetrahedral Meshing of Brain Imaging Data Yalin Wang1 , Xianfeng Gu2 , Paul algorithm finds a harmonic map from a 3-manifold to a 3D solid sphere and the second is a novel sphere of magnetic resonance images (MRI). A heat flow method is used to solve the volumetric harmonic mapping

Thompson, Paul

35

Creating Precise 3D Microstructures Using Laser Direct-write Bimetallic Thermal Resist Grayscale Photomasks  

E-Print Network [OSTI]

research demonstrated Sn/In and Bi/In bimetallic thermal resists are promising new materials for direct/In bimetallic thermal resists as a masking material, we used a modified form of interference lithographyCreating Precise 3D Microstructures Using Laser Direct-write Bimetallic Thermal Resist Grayscale

Chapman, Glenn H.

36

Simulation of chemical vapor infiltration and deposition based on 3D images: a local scale approach  

E-Print Network [OSTI]

infiltration of ceramic matrix composites is presented. This computational model requires a 3D representation/reaction problems; Random walks; 3D image-based modeling 1. Introduction Ceramic Matrix Composites and Carbon with a matrix. One of the most efficient ones is Chemical Vapor Infiltration (CVI), by which gaseous precursors

Boyer, Edmond

37

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

E-Print Network [OSTI]

We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

Zhang, Haijiang

2012-01-01T23:59:59.000Z

38

acoustic 3-d imaging: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

landmarks or com- plete Delson, Eric 20 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

39

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

40

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

- Iceland partners receiving own funding * Barriers - Barrier A: Site selection and resource assessment - Barrier B: Site characterization - Barrier I: Images of fractures...

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

3D Mt Resistivity Imaging For Geothermal Resource Assessment...  

Open Energy Info (EERE)

Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference LibraryAdd...

42

Ultra-Shallow Imaging Using 2D & 3D Seismic Reflection Methods  

E-Print Network [OSTI]

The research presented in this dissertation focuses on the survey design, acquisition, processing, and interpretation of ultra-shallow seismic reflection (USR) data in two and three dimensions. The application of 3D USR methods to image multiple...

Sloan, Steven D.

2008-01-01T23:59:59.000Z

43

Fitting 3D Models on Central Catadioptric Images Eric Marchand, Franois Chaumette  

E-Print Network [OSTI]

Fitting 3D Models on Central Catadioptric Images Eric Marchand, François Chaumette Abstract, IRISA, Lagadic, F-35000 Rennes, France ; e- mail marchand@irisa.fr similar approaches can be considered

Boyer, Edmond

44

E-Print Network 3.0 - accelerated 3d-osem image Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated 3d-osem image Page: << < 1 2 3 4 5 > >> 1 Abstract--With a regularized...

45

3-D laser Doppler velocimetry study of incompressible flow through an orifice plate  

E-Print Network [OSTI]

of Advisory Committee: Dr. Gerald Morrison Orifice meters are used extensively in the U. S. for the measurement of natural gas. Uncertainty of metering accuracy has resulted in an estimated 250 million dollars annually in mis-charges. This has led... to the need for basic research on orifice meters in an attempt to improve the accuracy of existing metering facilities. The objective of this present study was to use a 3-D LDV (laser Doppler velocimeter) to obtain detailed velocity and turbulence...

Panak, David Leo

2012-06-07T23:59:59.000Z

46

Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging  

E-Print Network [OSTI]

Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging F Jamme1, 2 coupled to an infrared microscope allows imaging at the so-called diffraction limit. Thus, numerous infrared beamlines around the world have been developed for infrared chemical imaging. Infrared microscopes

Paris-Sud XI, Université de

47

3D and 4D magnetic susceptibility tomography based on complex MR images  

DOE Patents [OSTI]

Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

Chen, Zikuan; Calhoun, Vince D

2014-11-11T23:59:59.000Z

48

Tracking brain deformations in time-sequences of 3D US images  

E-Print Network [OSTI]

, a collaboration between The Fraunhofer Institute (Germany), Fokker Control System (Netherlands), Imperial College of innovative and low-cost image guided surgery tools. The difficulty relies both in the complex nature registration, 3D ultrasound images, Tracking 1 Introduction The use of stereotactic systems is now a quite

Boyer, Edmond

49

AN APPROACH FOR INTERSUBJECT ANALYSIS OF 3D BRAIN IMAGES BASED ON CONFORMAL GEOMETRY  

E-Print Network [OSTI]

AN APPROACH FOR INTERSUBJECT ANALYSIS OF 3D BRAIN IMAGES BASED ON CONFORMAL GEOMETRY Guangyu Zou Emission Tomography (PET) and Diffusion Tensor Imaging (DTI) have accelerated brain research in many aspects. In order to better understand the synergy of the many processes involved in normal brain function

Hua, Jing

50

A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING  

E-Print Network [OSTI]

A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING JENS FISCHER.weiss@pfh.research.philips.com HEIDRUN SCHUMANN University of Rostock, Computer Science Department, D­18051 Rostock,Germany schumann radiologists during invasive and non­invasive magnetic resonance imaging. We use pre­acquired and real time

Schumann, Heidrun

51

3D BLOB BASED BRAIN TUMOR DETECTION AND SEGMENTATION IN MR IMAGES Chen-Ping Yu1  

E-Print Network [OSTI]

3D BLOB BASED BRAIN TUMOR DETECTION AND SEGMENTATION IN MR IMAGES Chen-Ping Yu1 , Guilherme Ruppert to 28,079 mm3 in volume. Us- ing 20 clinical 3D MR scans containing from 1 to 15 tumors per scan: (1) an automated brain tumor detection algorithm for clinical 3D MR images; (2) a novel unsupervised

52

3D Fluorescent and Reflective Imaging of Whole Stardust Tracks in Aerogel  

SciTech Connect (OSTI)

The NASA Stardust mission returned to earth in 2006 with the cometary collector having captured over 1,000 particles in an aerogel medium at a relative velocity of 6.1 km/s. Particles captured in aerogel were heated, disaggregated and dispersed along 'tracks' or cavities in aerogel, singular tracks representing a history of one capture event. It has been our focus to chemically and morphologically characterize whole tracks in 3-dimensions, utilizing solely non-destructive methods. To this end, we have used a variety of methods: 3D Laser Scanning Confocal Microscopy (LSCM), synchrotron X-ray fluorescence (SXRF), and synchrotron X-ray diffraction (SXRD). In the past months we have developed two new techniques to aid in data collection. (1) We have received a new confocal microscope which has enabled autofluorescent and spectral imaging of aerogel samples. (2) We have developed a stereo-SXRF technique to chemically identify large grains in SXRF maps in 3-space. The addition of both of these methods to our analytic abilities provides a greater understanding of the mechanisms and results of track formation.

Greenberg, M.; Ebel, D.S. (AMNH)

2011-11-07T23:59:59.000Z

53

Adaptive Multiresolution Denoising Filter for 3D MR Images Pierrick Coup1  

E-Print Network [OSTI]

Adaptive Multiresolution Denoising Filter for 3D MR Images Pierrick Coupé1 , José V. Manjon2 method has been applied on a T1-w MR image of 170x256x256 voxels acquired on a 1.5T Philips Gyroscan , Montserrat Robles2 , D. Louis Collins1 . 1 McConnell Brain Imaging Centre, Montréal Neurological Institute

Boyer, Edmond

54

Speckle-free laser imaging  

E-Print Network [OSTI]

Many imaging applications require increasingly bright illumination sources, motivating the replacement of conventional thermal light sources with light emitting diodes (LEDs), superluminescent diodes (SLDs) and lasers. Despite their brightness, lasers and SLDs are poorly suited for full-field imaging applications because their high spatial coherence leads to coherent artifacts known as speckle that corrupt image formation. We recently demonstrated that random lasers can be engineered to provide low spatial coherence. Here, we exploit the low spatial coherence of specifically-designed random lasers to perform speckle-free full-field imaging in the setting of significant optical scattering. We quantitatively demonstrate that images generated with random laser illumination exhibit higher resolution than images generated with spatially coherent illumination. By providing intense laser illumination without the drawback of coherent artifacts, random lasers are well suited for a host of full-field imaging applicatio...

Redding, Brandon; Cao, Hui

2011-01-01T23:59:59.000Z

55

3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.  

SciTech Connect (OSTI)

A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

2007-02-01T23:59:59.000Z

56

3D Shape from Silhouette Points in Registered 2D Images Using Conjugate Gradient Method  

E-Print Network [OSTI]

3D Shape from Silhouette Points in Registered 2D Images Using Conjugate Gradient Method Andrzej version of the conjugate gradient method. We take advantage of the structure of the problem to make polynomial function. The approximate problem is solved using a nonlinear conjugate gradient solver that takes

Hoff, William A.

57

Validation of Plaster Endocast Morphology Through 3D CT Image Analysis  

E-Print Network [OSTI]

Validation of Plaster Endocast Morphology Through 3D CT Image Analysis P. Thomas Schoenemann,1 by creating endo- casts out of rubber latex shells filled with plaster. The extent to which the method questions. Pairs of virtual endocasts (VEs) created from high-resolution CT scans of corresponding latex/plaster

Schoenemann, P. Thomas

58

d Technical Note RING ARRAY TRANSDUCERS FOR REAL-TIME 3-D IMAGING OF AN ATRIAL  

E-Print Network [OSTI]

with a matching layer. Real-time 3-D rendered images of an en face view of a Gore Helex septal occluder in a water-Yakub and Oralkan 2011). Atrial septal defects (ASD) comprise up to 7% of total congenital heart lesions and as much as 25% of congenital heart disease in adults (Kaplan 1993). ASDs may go undetected for decades

Smith, Stephen

59

3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots  

E-Print Network [OSTI]

while facing a decline in agricultural soil quality including increased mechanical impe- dance of soil3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots Jesse L as a combination of growth-induced mechanical buckling modulated by the growth medium and a simultaneous twisting

Cohen, Itai

60

3D multi-scale imaging of experimental fracture generation in shale gas reservoirs.  

E-Print Network [OSTI]

in research and shale unconventional reservoirs that will provide you with the skills to enter the oil and gas3D multi-scale imaging of experimental fracture generation in shale gas reservoirs. Supervisory-grained organic carbon-rich rocks (shales) are increasingly being targeted as shale gas "reservoirs". Due

Henderson, Gideon

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ultrafast imaging of complex systems in 3-D at near atomic resolution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on ultrafast timescales using extremely intense X-ray free-electron laser (XFEL) pulses. One important step toward ultrafast imaging of samples with a single X-ray shot is...

62

3D segmentation of mouse organs from MR images using deformable simplex mesh models G. Hamarneh1  

E-Print Network [OSTI]

3D segmentation of mouse organs from MR images using deformable simplex mesh models G. Hamarneh1 , H. Delingette2 , M. Henkelman1 1 Hospital for Sick Children, Toronto, ON, Canada, 2 INRIA brains and kidneys from MR images. Algorithmic details and 3D segmentation results are presented

Hamarneh, Ghassan

63

Model--Based 3D Scene Analysis from Stereoscopic Image Sequences An approach for the modelling of complex 3D scenes like outdoor street views from a sequence of  

E-Print Network [OSTI]

the problems stated above for building a true 3D model of a complex scene from a sequence of stereoscopic image for the modelling of complex 3D scenes like outdoor street views from a sequence of stereoscopic image pairs geometry is generated. Not only the scene geometry but also surface texture is stored within the model. 3D

64

TERRESTRIAL 3D-LASER SCANNER ZLS07 DEVELOPED AT ETH ZURICH: AN OVERVIEW OF ITS CONFIGURATION,  

E-Print Network [OSTI]

Utility Cavern ABSTRACT This paper introduces the terrestrial 3D-laser scanner ZLS07 which has been and the application of underground utility cavern acquisition for water and sewage engineering are presented. For utility cavern acquisitions, the ZLS07 is guided headfirst through a manhole into the utility cavern

65

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

3D Computer Vision and Video Computing 3D Vision3D Vision CSC I6716 Fall 2010 Topic 1 of Part II Camera Models Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu #12;3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

66

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision Topic 1 of Part II Camera Models CSC I6716 Spring2011 Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing 3D Vision3D Vision Closely Related Disciplines Image Processing ­ images to mages Computer

Zhu, Zhigang

67

Integration of an optical fiber taper with an optical microresonator fabricated in glass by femtosecond laser 3D micromachining  

E-Print Network [OSTI]

We report on fabrication of a microtoroid resonator of a high-quality factor (i. e., Q-factor of ~3.24x10^6 measured under the critical coupling condition) using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber taper to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21x10^5 as measured in air.

Song, Jiangxin; Tang, Jialei; Qiao, Lingling; Cheng, Ya

2014-01-01T23:59:59.000Z

68

Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers  

SciTech Connect (OSTI)

Purpose: A quantitative 3D intramodality ultrasound (US) imaging system was verified for daily in-room prostate localization, and compared to prostate localization based on implanted fiducial markers (FMs).Methods: Thirteen prostate patients underwent multiple US scans during treatment. A total of 376 US-scans and 817 matches were used to determine the intra- and interoperator variability. Additionally, eight other patients underwent daily prostate localization using both US and electronic portal imaging (EPI) with FMs resulting in 244 combined US-EPI scans. Scanning was performed with minimal probe pressure and a correction for the speed of sound aberration was performed. Uncertainties of both US and FM methods were assessed. User variability of the US method was assessed.Results: The overall US user variability is 2.6 mm. The mean differences between US and FM are: 2.5 {+-} 4.0 mm (LR), 0.6 {+-} 4.9 mm (SI), and -2.3 {+-} 3.6 mm (AP). The intramodality character of this US system mitigates potential errors due to transducer pressure and speed of sound aberrations.Conclusions: The overall accuracy of US (3.0 mm) is comparable to our FM workflow (2.2 mm). Since neither US nor FM can be considered a gold standard no conclusions can be drawn on the superiority of either method. Because US imaging captures the prostate itself instead of surrogates no invasive procedure is required. It requires more effort to standardize US imaging than FM detection. Since US imaging does not involve a radiation burden, US prostate imaging offers an alternative for FM EPI positioning.

Meer, Skadi van der; Bloemen-van Gurp, Esther; Hermans, Jolanda; Voncken, Robert; Heuvelmans, Denys; Gubbels, Carol; Fontanarosa, Davide; Visser, Peter; Lutgens, Ludy; Gils, Francis van [Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada)

2013-07-15T23:59:59.000Z

69

3-D readout-electronics packaging for high-bandwidth massively paralleled imager  

DOE Patents [OSTI]

Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

Kwiatkowski, Kris (Los Alamos, NM); Lyke, James (Albuquerque, NM)

2007-12-18T23:59:59.000Z

70

3D Local Binary Pattern for PET image classification by SVM Application to early Alzheimer disease diagnosis  

E-Print Network [OSTI]

3D Local Binary Pattern for PET image classification by SVM Application to early Alzheimer disease of Fluorodeoxyglucose PET scans might become a possibility to make early diagnosis more efficient. Temporal and parietal lobes are the main location of medical findings. We have clues that in PET images these lobes contain

Paris-Sud XI, Université de

71

Phys. Med. Biol. 43 (1998) 10011013. Printed in the UK PII: S0031-9155(98)90627-3 High-resolution 3D Bayesian image reconstruction using  

E-Print Network [OSTI]

-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner Jinyi Qi, Richard M Leahy of high-resolution 3D images from the microPET small-animal scanner. Resolution recovery is achieved 2 mm when using an analytic 3D reprojection (3DRP) method with a ramp filter. These results also

Leahy, Richard M.

72

Single Image 3D Object Detection and Pose Estimation for Grasping Menglong Zhu1, Konstantinos G. Derpanis2, Yinfei Yang1, Samarth Brahmbhatt1  

E-Print Network [OSTI]

Single Image 3D Object Detection and Pose Estimation for Grasping Menglong Zhu1, Konstantinos G Daniilidis1 Abstract-- We present a novel approach for detecting objects and estimating their 3D pose in single images of cluttered scenes. Objects are given in terms of 3D models without accompanying texture

Plotkin, Joshua B.

73

METAMATERIALS: Large-area printed 3D negative-index metamaterial is flexible -Laser Focus World http://www.laserfocusworld.com/articles/print/volume-47/issue-8/world-news/metamaterials-large-area-printed-3d-negative-index-metamaterial-is-flexible.html[8/1  

E-Print Network [OSTI]

METAMATERIALS: Large-area printed 3D negative-index metamaterial is flexible - Laser Focus World-area printed 3D negative-index metamaterial is flexible METAMATERIALS: Large-area printed 3D negative, with the advent of a printing process that produces large-area 3D multilayer optical NIMs --8.7 ? 8.7 cm square

Rogers, John A.

74

Accelerated Short-TE 3D Proton Echo-Planar Spectroscopic Imaging Using 2D-SENSE with  

E-Print Network [OSTI]

Accelerated Short-TE 3D Proton Echo-Planar Spectroscopic Imaging Using 2D-SENSE with a 32-Channel times and 2D acceleration with a large array coil is expected to provide high acceleration capability using a 32-channel array coil can be accelerated 8-fold (R 4 2) along y-z to achieve a minimum

75

3D heart reconstruction.  

E-Print Network [OSTI]

??The purpose of this thesis was to achieve a 3D reconstruction of the four heart chambers using 2D echocardiographic images. A level set algorithm based (more)

Roxo, Diogo

2011-01-01T23:59:59.000Z

76

F3D  

Energy Science and Technology Software Center (OSTI)

003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms http://camera.lbl.gov/software

77

Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord  

E-Print Network [OSTI]

Defaults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal systems is a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with neither contrast agent nor a destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is a crucial tool for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries. In particular, it s...

Fratini, Michela; Campi, Gaetano; Brun, Francesco; Tromba, Giuliana; Modregger, Peter; Bucci, Domenico; Battaglia, Giuseppe; Spadon, Raffaele; Mastrogiacomo, Maddalena; Requardt, Herwig; Giove, Federico; Bravin, Alberto; Cedola, Alessia

2014-01-01T23:59:59.000Z

78

Scannerless laser range imaging using loss modulation  

DOE Patents [OSTI]

A scannerless 3-D imaging apparatus is disclosed which utilizes an amplitude modulated cw light source to illuminate a field of view containing a target of interest. Backscattered light from the target is passed through one or more loss modulators which are modulated at the same frequency as the light source, but with a phase delay .delta. which can be fixed or variable. The backscattered light is demodulated by the loss modulator and detected with a CCD, CMOS or focal plane array (FPA) detector to construct a 3-D image of the target. The scannerless 3-D imaging apparatus, which can operate in the eye-safe wavelength region 1.4-1.7 .mu.m and which can be constructed as a flash LADAR, has applications for vehicle collision avoidance, autonomous rendezvous and docking, robotic vision, industrial inspection and measurement, 3-D cameras, and facial recognition.

Sandusky, John V. (Albuquerque, NM)

2011-08-09T23:59:59.000Z

79

Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations  

SciTech Connect (OSTI)

During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P. [Commissariat a l'Energie Atomique et Aux Energies Alternatives, CEA Cadarache, DEN, F-13108 Saint-Paul-Les-Durance (France)

2012-07-01T23:59:59.000Z

80

The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures  

SciTech Connect (OSTI)

In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: We examine influence of the image resolution on ?CT-based morphological analysis. Surface properties influence accuracy of ?CT-based morphology of porous structures. Total porosity was the least sensitive to surface complexity and scan voxel size. The beam thickness analysis was overestimated by the surface roughness. Voxel size customization can significantly reduce a cost of the ?CT-based analysis.

Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Universit de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Lige (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, B-3001 Leuven (Belgium)

2014-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E3D3D

82

Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry  

E-Print Network [OSTI]

In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a three dimensional laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently f...

Crua, Cyril

2015-01-01T23:59:59.000Z

83

3D Reconstruction of the Human Jaw from A Sequence of Images  

E-Print Network [OSTI]

repeated acquisition of radiographs may result in undesired side effects. Obtaining a plaster model the analysis of X-rays and plaster models. In [l], a computer-vision technique was de- veloped for the acquisition and processing of 3D pro- files of dental imprints which still requires a plaster mode1

Farag, Aly A.

84

3D seismic imaging of buried Younger Dryas mass movement flows: Lake Windermere, UK  

E-Print Network [OSTI]

, , Luke J.W. Pinson a , Jonathan M. Bull a , Justin K. Dix a , Timothy J. Henstock a , John W. Davis offshore using tradi- tional 3D seismic methods (e.g., Frey-Martinez et al., 2005; Gee et al., 2006; Bull.g., Frey-Martinez et al., 2005). From this, a well- developed set of indicators for flow direction

Southampton, University of

85

TOWARDS ROBUST 3D FACE RECOGNITION FROM NOISY RANGE IMAGES WITH LOW RESOLUTION  

E-Print Network [OSTI]

application or access control for high-security areas like an airport control tower. Face recognition systems. Our work resulted in the development of a real-time system for the process- ing of three data and process it efficiently and in real-time. Furthermore, our 3D face recognition system

Nabben, Reinhard

86

Automatic Bilateral Symmetry Midsagittal Plane Extraction from Pathological 3D Neuroradiological Images  

E-Print Network [OSTI]

, bleed, stroke of the human brain can be determined by a symmetry-based analysis of neural scans showing the brain's 3D internal structure. Detecting departures of this internal structure from its normal bilateral the ideal symmetry plane midsagittalwith respect to which the brain is invariant under re ection

87

Science Highlight July 2011 Better Batteries through Nanoscale 3D Chemical Imaging  

E-Print Network [OSTI]

as the technology of choice in soon-to-be marketed models, further improvements in their energy density, cost, cycle energy density devices. Hence, monitoring changes in electrodes during battery operation (i.e., insertion the promise of adding a new dimension, 3D nanoscale chemical and architectural visualization

Wechsler, Risa H.

88

SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES  

SciTech Connect (OSTI)

The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than do the other modes. A conclusion of the study is that 9-C seismic data contain more rock and fluid information and more sequence and facies information than do 3-C seismic data; 9-C data should therefore be acquired in multicomponent seismic programs whenever possible.

John Beecherl; Bob A. Hardage

2004-07-01T23:59:59.000Z

89

2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability  

SciTech Connect (OSTI)

Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of permeability will result from images between 2 and 4 lm resolution. To reduce permeability underestimation from analyses of high-resolu- tion images, a resolution threshold between 3 and 15 lm was found to be effective, but it is not known whether this range is applicable beyond the samples studied here.

Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

2013-09-03T23:59:59.000Z

90

High throughput 3D optical microscopy : from image cytometry to endomicroscopy  

E-Print Network [OSTI]

Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

Choi, Heejin

2014-01-01T23:59:59.000Z

91

to appear in the International Journal of Imaging Systems and Technology, special issue on 3D Imaging Real-Time Volume Rendering  

E-Print Network [OSTI]

to appear in the International Journal of Imaging Systems and Technology, special issue on 3D volume visualization hardware comes a new challenge: effectively harnessing the visu- alization power- gorithms such as perspective rendering, overlapping volumes, and geometry mixing within volumes. We examine

Chen, Baoquan

92

3D nano-structures for laser nano-manipulation Gediminas Seniutinas1,2, Lorenzo Rosa*1,2, Gediminas Gervinskas1,2,  

E-Print Network [OSTI]

534 3D nano-structures for laser nano-manipulation Gediminas Seniutinas1,2, Lorenzo Rosa*1-Institut. License and terms: see end of document. Abstract The resputtering of gold films from nano-holes defined of the nano-holes. The extraordinary transmission through the patterns of such nano-wells was investigated

Boyer, Edmond

93

3-D Spectral IP Imaging: Non-Invasive Characterization DE FG02 96ER 14714  

SciTech Connect (OSTI)

The Earth Resources Laboratory (ERL) performed a broad foundational study of spectral induced polarization (SIP) for site characterization. The project encompassed laboratory studies of microgeometry and chemistry effects on Induced Polarization (IP), an investigation of electromagnetic coupling (emc) noise, and development of 3D modeling and inversion codes. The major finding of the project is that emc noise presents a critical limitation for field implementation of SIP and conventional correction methods are inadequate. The project developed a frequency domain 3D complex resistivity modeling and inversion code Laboratory experiments were conducted to study the effects of solution chemistry and microgeometry on the SIP response of sandstone. Results indicate that changes in chemistry affect the magnitude of the spectral IP response and changes in microgeometry affect the shape of the spectral IP response. The developed physiochemical IP model can be used to invert spectral IP data for an apparent grain size distribution. Laboratory studies over the last twenty years have shown that SIP data must be acquired over several decades of frequency and include frequencies greater than 1kHz. A model of the components of emc noise has been developed and investigation with this model showed that inductive coupling is the most significant component. The study concluded that emc limits the frequency range of usable field data to approximately 100 Hz and below for typical site conditions. Several correction schemes have been developed based on treating emc as noise to be removed from the data, but our investigation has shown that these are not adequate for high frequencies, greater than 100Hz. Laboratory studies have demonstrated that the greatest response is the frequency range greater than 1KHz, hence the emc problem must be resolved for field implementation of SIP to advance. The ERL developed 2D/3D time domain codes that perform inversions for charge abilities based on schemes introduced by Siegel (1959). The ERL has also developed a 3D complex resistivity code for inversion of frequency domain IP data. The algorithm accommodates a general earth model with a complex electrical resistivity as a function of frequency and 3-D spatial position. The forward problem is solved by the complex biconjugate gradient method, while the regularized inverse problem is solved by the nonlinear conjugate gradient method. Time domain field data was acquired along a single survey line at the FS-12 plume, Massachusetts Military Reservation. The data was inverted with the developed 2D time domain code with the results having an excellent match to monitoring well data. The data was further analyzed by an innovative scheme where a ''gross spectral chargeability'' was determined from time domain data. The results show that there is valuable information in the spectra of the data.

Morgan, F. Dale; Rodi, William; Lesmes, David

2000-06-01T23:59:59.000Z

94

3D Tomographic Imaging Of The Southern Apennines (Italy)- A Statistica...  

Open Energy Info (EERE)

Imaging Of The Southern Apennines (Italy)- A Statistical Approach To Estimate The Model Uncertainty And Resolution Jump to: navigation, search OpenEI Reference LibraryAdd to...

95

Pose-invariant 3D Proximal Femur Estimation through Bi-Planar Image Segmentation with  

E-Print Network [OSTI]

Abstract. Low-dose CT-like imaging systems offer numerous perspec- tives in terms of clinical application method. 1 Introduction Low-dose X-ray imaging has gained significant attention during the recent years through curvature driven unsupervised clustering acting on the geodesic distances between vertices. Second

Simon, Loïc

96

A systematic approach for 2D-image to 3D-range registration in urban environments  

E-Print Network [OSTI]

applicable to models of any type (i.e. 3D point clouds, 3D meshes, CAD, SketchUp, etc.). Our system first

Stamos, Ioannis

97

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Fall 2010 Topic 3 of Part II Stereo Vision Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images taken

Zhu, Zhigang

98

3D Computer Vision and Video Computing 3D Vision3D Vision  

E-Print Network [OSTI]

1 3D Computer Vision and Video Computing 3D Vision3D Vision CSc I6716 Spring 2011 Topic 3 of Part II Stereo Vision p g Zhigang Zhu, City College of New York zhu@cs.ccny.cuny.edu 3D Computer Vision and Video Computing Stereo VisionStereo Vision Problem Infer 3D structure of a scene from two or more images

Zhu, Zhigang

99

Laser focus compensating sensing and imaging device  

DOE Patents [OSTI]

A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a Cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the Cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the Cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a Cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

Vann, C.S.

1993-08-31T23:59:59.000Z

100

3D RECONSTRUCTION OF PLANT ROOTS FROM MRI IMAGES Hannes Schulz1  

E-Print Network [OSTI]

distance measure by a multi-scale vesselness measure. As a result, paths running within good root candidates are preferred over paths in bare soil. We test this method using both virtually generated MRI) and Nuclear Magnetic Resonance Imaging (MRI) (Brown et al., 1990; Jahnke et al., 2009; Southon and Jones, 1992

Behnke, Sven

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CREATION OF 3D MODELS FROM LARGE UNSTRUCTURED IMAGE AND VIDEO J. Hollick1  

E-Print Network [OSTI]

Vehicles (UAV) and Remotely Operated underwater Vehicles (ROV). In these applications commodity camera, Photogrammetry, Underwater, Video ABSTRACT: Exploration of various places using low-cost camera solutions over. This research can also be applied to the capture of image sets using sensor platforms such as Unmanned Aerial

102

Deformable model for 3D intramodal nonrigid breast image registration with fiducial skin markers  

E-Print Network [OSTI]

of FSM, finite element method (FEM) is used to distribute the markers' displacements linearly over with rigid registration technique. Keywords: Intramodal image registration, finite element method, deformable, we developed a finite element method (FEM) deformable breast model to correct motion artifacts

103

Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993--September 22, 1996  

SciTech Connect (OSTI)

The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground.

NONE

1998-12-31T23:59:59.000Z

104

Local volume changes of the corpus callosum from 3D MR images of wildtype and knockout mouse brains G. Hamarneh1  

E-Print Network [OSTI]

CC from the MR images (Figure 1a) using Livewire, a semi-automatic segmentation tool provided by AmiraLocal volume changes of the corpus callosum from 3D MR images of wildtype and knockout mouse brains G. Hamarneh1 , J. Chen1 , N. Lifshitz1 , J. Henderson2 , M. Henkelman1 1 Hospital for Sick Children

Hamarneh, Ghassan

105

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-03-31T23:59:59.000Z

106

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N. P. Paulsson

2005-09-30T23:59:59.000Z

107

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2006-05-05T23:59:59.000Z

108

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-08-21T23:59:59.000Z

109

Surface Shape Description of 3D Data from Under Vehicle Inspection Robot  

E-Print Network [OSTI]

Surface Shape Description of 3D Data from Under Vehicle Inspection Robot Sreenivas R. Sukumar1 capabilities to a multi-modal under vehicle inspection robot. In this paper, we outline the various design challenges towards the automation of the 3D scene modeling task. We employ laser-based range imaging

Abidi, Mongi A.

110

Program stat3d.c /* Program: stat3d.c */  

E-Print Network [OSTI]

85 Program stat3d.c /************************************************************************/ /* */ /* Program: stat3d.c */ /* Purpose: To read in a 3-D image and output phase volumes */ /* and report("Phase Volume Surface Volume Surface \

Bentz, Dale P.

111

Integrated Photonics Research Conference, Santa Barbara, July 1999 Efficiency Analysis of Quantum Well Lasers using PICS3D  

E-Print Network [OSTI]

focus on the analysis of loss mechanisms in 1.55µm InGaAsP/InP ridge-waveguide laser diodes (Fig. 1 stack is sandwiched between 100nm thick InGaAsP separate confinement layers (SCLs). Broad area ridge.67 and the internal optical absorption i = 14cm-1 . Since both the loss parameters depend on the cavity length

Bowers, John

112

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

Bjorn N. P. Paulsson

2006-09-30T23:59:59.000Z

113

Reconstruction quasi-dense et mod`eles 3D `a partir d'une sequence d'images Quasi-Dense Reconstruction and 3D Models from Image Sequence  

E-Print Network [OSTI]

, Kowloon, Hong Kong SAR. lhuillie@lasmea.univ-bpclermont.fr quan@cs.ust.hk Papiers et d´emos: wwwlasmea calibr´ees ainsi qu'un syst`eme associ´e de reconstruction de mod`eles 3D. La principale in- novation est). Abstract This paper proposes a quasi-dense reconstruction from un- calibrated sequence and a companion

Paris-Sud XI, Université de

114

Adaptive Geometric Tessellation For 3D Reconstruction of Anisotropically Developing Cells In Multilayer Tissues From Sparse Volumetric Microscopy Images  

E-Print Network [OSTI]

sparse confocal stacks of SAM images we show that this modelcell pair between two SAM slice images using local graphthe boundary of the image slice for each SAM cross section,

Chakraborty, Anirban; Perales, Mariano Manuel; Reddy, Venugopala Gonehal; Roy-Chowdhury, Amit

2013-01-01T23:59:59.000Z

115

Fish embryo multimodal imaging by laser Doppler digital holography  

E-Print Network [OSTI]

A laser Doppler imaging scheme combined to an upright microscope is proposed. Quantitative Doppler imaging in both velocity norm and direction, as well as amplitude contrast of either zebrafish flesh or vasculature is demonstrated.

Verrier, Nicolas; Picart, Pascal; Gross, Michel

2015-01-01T23:59:59.000Z

116

Three-Dimensional (3D) high-speed imaging and fabrication system based on ultrafast optical pulse manipulation  

E-Print Network [OSTI]

Laser scanning systems for two-photon microscopy and fabrication have been proven to be excellent in depth-resolving capability for years. However, their applications have been limited to laboratory use due to their intrinsic ...

Kim, Daekeun

117

Nonlinear formation of holographic images of obscurations in laser beams  

E-Print Network [OSTI]

Nonlinear formation of holographic images of obscurations in laser beams C. Clay Widmayer, David of obscurations in laser beams. The predictions of the model are found to be in good agreement with measurements the intensity and fluence of the beam at each component in the laser chain. Dam- age threats to the system can

118

Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays  

E-Print Network [OSTI]

We develop tomographic techniques for image synthesis on displays composed of compact volumes of light-attenuating material. Such volumetric attenuators recreate a 4D light field or high-contrast 2D image when illuminated ...

Wetzstein, Gordon

119

Hollywood 3D: Recognizing Actions in 3D Natural Scenes Simon Hadfield Richard Bowden  

E-Print Network [OSTI]

Hollywood 3D: Recognizing Actions in 3D Natural Scenes Simon Hadfield Richard Bowden Centre-class variations. It is made even more challenging when complex 3D actions are projected down to the image plane, losing a great deal of information. The recent emergence of 3D data, both in broadcast content

Bowden, Richard

120

3D Magnetotelluic characterization of the Coso Geothermal Field  

E-Print Network [OSTI]

and Neubauer, F. M. , 2003, 3D inversion of a scalar radio3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMALMT imaging. An initial 3D conductivity model was constructed

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Plume Image Profiling of UV Laser Desorbed Biomolecules  

SciTech Connect (OSTI)

An experimental system, based upon the techniques of UV and IR laser desorption with time of flight mass spectrometry, has been constructed to enable the production and characterization of neutral biomolecular targets. The feasibility of the laser desorption technique for the purpose of radiation interaction experiments is investigated here. Fluorescent dye tagging and laser induced fluorescence imaging has been used to help characterize the laser produced plumes of biomolecules revealing their spatial density profiles and temporal evolution. Peak target thicknesses of 2x10{sup 12} molecules cm{sup -2} were obtained 30 {mu}s after laser desorption.

Merrigan, T. L.; Hunniford, C.A.; McCullough, R. W. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, UK, BT7 1NN (United Kingdom); Timson, D. J. [School of Biological Sciences, Queen's University Belfast, Belfast, UK, BT9 7BL (United Kingdom); Catney, M. [Andor Technology plc., 7 Millennium Way, Springvale Business Park, Belfast, UK, BT12 7AL (United Kingdom)

2008-12-08T23:59:59.000Z

122

Imaging System With Confocally Self-Detecting Laser.  

DOE Patents [OSTI]

The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

Webb, Robert H. (Lincoln, MA); Rogomentich, Fran J. (Concord, MA)

1996-10-08T23:59:59.000Z

123

3D Printing Electronics  

E-Print Network [OSTI]

Login Register Home Videos Jobs Games 3D Printing Electronics Design Software Designer Edge for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

Stryk, Oskar von

124

Comparison of 2D Radiographic Images and 3D Cone Beam Computed Tomography for Positioning Head-and-Neck Radiotherapy Patients  

SciTech Connect (OSTI)

Purpose: To assess the positioning accuracy using two-dimensional kilovoltage (2DkV) imaging and three-dimensional cone beam CT (CBCT) in patients with head and neck (H and N) cancer receiving radiation therapy. To assess the benefit of patient-specific headrest. Materials and Methods: All 21 patients studied were immobilized using thermoplastic masks with either a patient-specific vacuum bag (11 of 21, IMA) or standard clear plastic (10 of 21, IMB) headrests. Each patient was imaged with a pair of orthogonal 2DkV images in treatment position using onboard imaging before the CBCT procedure. The 2DkV and CBCT images were acquired weekly during the same session. The 2DkV images were reviewed by oncologists and also analyzed by a software tool based on mutual information (MI). Results: Ninety-eight pairs of assessable 2DkV-CBCT alignment sets were obtained. Systematic and random errors were <1.6 mm for both 2DkV and CBCT alignments. When we compared shifts determined by CBCT and 2DkV for the same patient setup, statistically significant correlations were observed in all three major directions. Among all CBCT couch shifts, 4.1% {>=} 0.5 cm and 18.7% {>=} 0.3 cm, whereas among all 2DkV (MI) shifts, 1.7% {>=} 0.5 cm and 11.2% {>=} 0.3 cm. Statistically significant difference was found on anteroposterior direction between IMA and IMB with the CBCT alignment only. Conclusions: The differences between 2D and 3D alignments were mainly caused by the relative flexibility of certain H and N structures and possibly by rotation. Better immobilization of the flexible neck is required to further reduce the setup errors for H and N patients receiving radiotherapy.

Li Heng [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)], E-mail: xrzhu@mdanderson.org; Zhang Lifei; Dong Lei; Tung, Sam [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ahamad, Anesa M.D.; Chao, K. S. Clifford; Morrison, William H.; Rosenthal, David I.; Schwartz, David L. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Garden, Adam S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

2008-07-01T23:59:59.000Z

125

3D NUCLEAR SEGMENTAT  

Energy Science and Technology Software Center (OSTI)

003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems https://vision.lbl.gov/Software/3DMorphometry/

126

Spiso-3D operation manual (US Patent 8,077,945 B2) Section 1. Introduction : Spiso-3D is an automated software calculating optical 3D  

E-Print Network [OSTI]

1 Spiso-3D operation manual (US Patent 8,077,945 B2) Section 1. Introduction : Spiso-3D is an automated software calculating optical 3D images of neurons mathematically to analyze dendrites and spines (= post synapses). Spiso-3D software was developed by Kawato's laboratory (University of Tokyo

Kawato, Suguru

127

METRIC FOR AUTOMATED DETECTION AND IDENTIFICATION OF 3D CAD ELEMENTS IN 3D SCANNED  

E-Print Network [OSTI]

of 3D Computer-Aided Design (CAD) engines and more generally of Building Information Models on one side states is critical for performing efficient building and infrastructure construction, maintenance, and management. Three- dimensional (3D) laser scanners have the potential to be successfully applied

Bosché, Frédéric

128

Impact of the cracks lost in the imaging process on computing linear elastic properties from 3D microtomographic images of Berea sandstone  

E-Print Network [OSTI]

With the current developments in imaging/computational techniques and resources, computational rock physics has been emerging as a new field of study. Properties of rocks are examined by carrying out extensive numerical ...

Toksoz, M. Nafi

129

3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS  

SciTech Connect (OSTI)

This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

Marzolf, A.; Folsom, M.

2010-08-31T23:59:59.000Z

130

3D Printing Prof. Hank Dietz & Paul Eberhart  

E-Print Network [OSTI]

3D Printing Prof. Hank Dietz & Paul Eberhart September 28, 2013 University of Kentucky Electrical/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer "The whole is greater than the sum of its parts." ­ Aristotle #12;Additive 3D Building Material

Dietz, Henry G. "Hank"

131

Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed  

SciTech Connect (OSTI)

A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

Qussai Marashdeh

2012-09-30T23:59:59.000Z

132

A 3D Ultrasound Study of Sinus Tract Formation in Hidradenitis Suppurativa  

E-Print Network [OSTI]

classified as Hurley 1. B. 3D ultrasound image demonstratesclassified as Hurley 1. B. and C. 3D ultrasounds demonstrateas Hurley 2. B. and C. 3D ultrasound images show involvement

Wortsman, Ximena; Jemec, Gregor

2013-01-01T23:59:59.000Z

133

to appear in the International Journal of Imaging Systems and Technology, special issue on 3D Imaging RealTime Volume Rendering  

E-Print Network [OSTI]

to appear in the International Journal of Imaging Systems and Technology, special issue on 3D­powered, commodity volume visualization hardware comes a new challenge: effectively harnessing the visu­ alization­ gorithms such as perspective rendering, overlapping volumes, and geometry mixing within volumes. We examine

Chen, Baoquan

134

Near-field imaging of quantum cascade laser transverse modes  

E-Print Network [OSTI]

. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using: We report near field imaging of the transverse lasing modes of quantum cascade lasers. A mid-infrared. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Meller-Larsen, "Near-infrared

135

Direct laser additive fabrication system with image feedback control  

DOE Patents [OSTI]

A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)

2002-01-01T23:59:59.000Z

136

LASER ULTRASONIC IMAGING FOR IMPACT DAMAGE VISUALIZATION IN COMPOSITE STRUCTURE  

E-Print Network [OSTI]

LASER ULTRASONIC IMAGING FOR IMPACT DAMAGE VISUALIZATION IN COMPOSITE STRUCTURE Chao Zhang1 , Jinhao Qiu1* , Hongli Ji1 1 State Key Laboratory of Mechanics and Control of Mechanical Structures ultrasonic scanning technique has great potential for damage evaluation in various applications. In order

Boyer, Edmond

137

Observation of Self-Similar Behavior of the 3D, Nonlinear Rayleigh-Taylor Instability  

SciTech Connect (OSTI)

The Rayleigh-Taylor unstable growth of laser-seededm 3D broadband perturbations was experimentally measured in the laser-seeded, planar plastic foils.

Sadot, O.; Smalyuk, V.A.; Delettrez, J. A.; Meyerhofer, D.D.; Sangster, T.C.; Betti, R.; Goncharov, V.N.; Shvarts, D.

2005-12-29T23:59:59.000Z

138

3D Plasmon Ruler  

SciTech Connect (OSTI)

In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

None

2011-01-01T23:59:59.000Z

139

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

140

adaptive 3-d segmentation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Farag, Aly A. 343 946 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 10, OCTOBER 1999 Model-Based Quantitation of 3-D Magnetic Biology and Medicine Websites Summary: of 3-D...

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A 3D finite-element modelling investigation into optimal survey parameters and direct imaging for marine controlled-source electromagnetic surveys  

E-Print Network [OSTI]

Relatively little is known about marine controlled-source electromagnetic surveys (MCSEM) used to detect hydrocarbon reservoirs. Typical MCSEM require the use of inversion to generate a model of the subsurface. We utilize a 3D finite-element forward...

Lau, Ryan

2007-09-17T23:59:59.000Z

142

3D Rendering and Ray Casting Michael Kazhdan  

E-Print Network [OSTI]

3D Rendering and Ray Casting Michael Kazhdan (600.357 / 600.457) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 #12;Rendering · Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D) #12;3D Rendering Example What issues must be addressed by a 3D rendering system? #12;Overview

Kazhdan, Michael

143

Holographic laser Doppler imaging of pulsatile blood flow  

E-Print Network [OSTI]

We report on wide-field imaging of pulsatile motion induced by blood flow using heterodyne holographic interferometry on the thumb of a healthy volunteer, in real-time. Optical Doppler images were measured with green laser light by a frequency-shifted Mach-Zehnder interferometer in off-axis configuration. The recorded optical signal was linked to local instantaneous out-of-plane motion of the skin at velocities of a few hundreds of microns per second, and compared to blood pulse monitored by plethysmoraphy during an occlusion-reperfusion experiment.

Bencteux, Jeffrey; Kostas, Thomas; Bayat, Sam; Atlan, Michael

2015-01-01T23:59:59.000Z

144

Femtosecond diffractive imaging with a soft-X-ray free-electron laser  

E-Print Network [OSTI]

LETTERS Femtosecond diffractive imaging with a soft-X-ray free-electron laser HENRY N. CHAPMAN1 of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 ? 1013 W cm-2 pulse by one10 . X-ray free-electron lasers (FELs) are expected to permit diffractive imaging at high

Loss, Daniel

145

Exploration of 3D Printing.  

E-Print Network [OSTI]

??3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most (more)

Lin, Zeyu

2014-01-01T23:59:59.000Z

146

Abstract--This study aimed to compare MR thermal mapping during Laser-induced Interstitial Thermal Therapy (LITT) to thermal lesions observed macroscopically, in order to estimate the 3D size of the coagulative necrosis. Laser irradiation was  

E-Print Network [OSTI]

fiber inside the metastasis. Laser energy is transmitted via this optical fiber resulting in a well for an accurate positioning of the optical fibers in the target area, for real-time monitoring of the thermal of the coagulative necrosis. Laser irradiation was performed ex-vivo with a 980 nm laser in pig liver in a open low

Paris-Sud XI, Université de

147

3d X 3d X SrTiO3Ti 2p 3d  

E-Print Network [OSTI]

XX 3d X 3d X X XX X XX SrTiO3Ti 2p 3d SrTiO3Ti 2p 3d 2p 2p SrTiO3 ts) 2p3/2 (t2g) 2p3/2 (e ) 2p1/2 (eg)2p SrTiO3 3d unit (t2g) (eg) (eg)2p1/2 (t2g)3d (Ti Fe Cu) arb. ( 2g) (Ti, Fe, Cu) y(ansitynten 3d In 3d 468464460456 · Photon Energy (e

Katsumoto, Shingo

148

Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators  

E-Print Network [OSTI]

A, Iuliano L, Violante MG. 3D printing technique applied toTengg-Kobligk H, et al. 3D printing based on imaging data:biocompatible, sterilizable 3D printing material, and its

2015-01-01T23:59:59.000Z

149

3D global and regional patterns of human fetal subplate growth determined in utero  

E-Print Network [OSTI]

010-0286-5 ORIGINAL ARTICLE 3D global and regional patternsof multislice MRI for 3D in utero fetal brain imagethe developing brain anatomy in 3D from in utero imaging. We

2011-01-01T23:59:59.000Z

150

Three-dimensional laser micromachining and imaging of biocompatible polymers  

E-Print Network [OSTI]

lamination [3], and 3D printing [4]. All of these methods, with the exception of melt molding, require

Oldenburg, Amy

151

3D Spectroscopy and the Virtual Observatory  

E-Print Network [OSTI]

Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

Bryan W. Miller

2007-08-15T23:59:59.000Z

152

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGet AssistanceCatalyticNationalMansfieldGraphene's 3D

153

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3D Counterpart Print ALS researchers have

154

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3D Counterpart Print ALS researchers

155

Graphene's 3D Counterpart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3D Counterpart Print ALS

156

Design of 3D eye-safe middle range vibrometer  

SciTech Connect (OSTI)

Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t?30psec) and low energy (E?200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P?30mW). Both lasers perform on the eye-safe wavelength 1.5 ?m. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

Polulyakh, Valeriy [Advanced Data Security, 1933 O'Toole Way, San Jose, CA 95131 (United States); Poutivski, Iouri [Terimber Corporation, 2456 Homewood Drive, San Jose, CA 95128, USA and Facebook Inc, 1601 Willow Road, Menlo Park, CA 94025 (United States)

2014-05-27T23:59:59.000Z

157

3D Wavelet-Based Filter and Method  

DOE Patents [OSTI]

A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

Moss, William C. (San Mateo, CA); Haase, Sebastian (San Francisco, CA); Sedat, John W. (San Francisco, CA)

2008-08-12T23:59:59.000Z

158

Observing Warm Clouds in 3D Using ARM Scanning Cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

159

Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging  

DOE Patents [OSTI]

The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

1996-12-17T23:59:59.000Z

160

Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging  

DOE Patents [OSTI]

The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

Anderson, Roger N. (New York, NY); Boulanger, Albert (New York, NY); Bagdonas, Edward P. (Brookline, MA); Xu, Liqing (New Milford, NJ); He, Wei (New Milford, NJ)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models  

E-Print Network [OSTI]

of affordable new desktop fabrication techniques such as 3D printing and laser cutting, physical models are used cur- rent 3D printing technology. ACM CLASSIFICATION: H5.2 [Information interfaces and presentation

Keinan, Alon

162

3D modeling with silhouettes  

E-Print Network [OSTI]

With the increasing power of computers and the spread of dedicated graphics hardware, 3D content has become ubiquitous in every field, from medicine to video games. However, designing 3D models remains a time-consuming and ...

Rivers, Alec (Alec Rothmyer)

2010-01-01T23:59:59.000Z

163

Idea Generation 3D printing  

E-Print Network [OSTI]

2012 Idea Generation 3D printing at nanoscale Cruising on electrical roads Pushing back against Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab

Papadopouli, Maria

164

3 D interactive pictorial maps  

E-Print Network [OSTI]

of simplififcation and exaggeration.. . . . . . . . . . . . . . 21 8 3 D polygonal text in Maya. . . . . . . . . . . . . . . . . . . . . . . . 22 9 Final 3 D model of Italy with text. . . . . . . . . . . . . . . . . . . . 23 10 Top view of 3 D model of France... the files in a format that is suitable for web viewing. 15 CHAPTER IV METHODOLOGY There are three major steps to making an interactive pictorial map. The fifrst step is to build the 3 D model using a modeling software, Maya. The second step is to apply...

Naz, Asma

2005-02-17T23:59:59.000Z

165

Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval Mohamed Chaouch, Anne Verroust-Blondet  

E-Print Network [OSTI]

Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval Mohamed Chaouch, Anne.Chaouch,Anne.Verroust}@inria.fr Shape Modeling International'06, Matsushima, June 14-16, 2006 Abstract We present a new approach for 3D model indexing and retrieval using 2D/3D shape descriptors based on silhou- ettes or depth-buffer images

Paris-Sud XI, Université de

166

3D Tissue Scaffolds BIOMATERIALS  

E-Print Network [OSTI]

3D Tissue Scaffolds BIOMATERIALS Our goal is to develop measurement tools and reference materials for assessing the impact of the physical and chemical properties of 3D tissue scaffolds on cellular response. These tools will be used to explore the relationship between cellular response on 2D surfaces to that in 3D

167

Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy  

SciTech Connect (OSTI)

Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.

Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

2013-04-15T23:59:59.000Z

168

Imaging laser analysis of building materials - practical examples  

SciTech Connect (OSTI)

The Laser induced Breakdown Spectroscopy (LIBS) is supplement and extension of standard chemical methods and SEM- or Micro-RFA-applications for the evaluation of building materials. As a laboratory method LIBS is used to gain color coded images representing composition, distribution of characteristic ions and/or ingress characteristic of damaging substances. To create a depth profile of element concentration a core has to be taken and split along the core axis. LIBS was proven to be able to detect all important elements in concrete, e. g. Chlorine, Sodium or Sulfur, which are responsible for certain degradation mechanisms and also light elements like lithium or hydrogen. Practical examples are given and a mobile system for on-site measurements is presented.

Wilsch, G.; Schaurich, D.; Wiggenhauser, H. [BAM, Federal Institute for Materials Research and Testing, Berlin (Germany)

2011-06-23T23:59:59.000Z

169

Single molecule imaging with longer x-ray laser pulses  

E-Print Network [OSTI]

In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

Martin, Andrew V; Caleman, Carl; Quiney, Harry M

2015-01-01T23:59:59.000Z

170

Francis Engelmann 3D Laser Scanning of  

E-Print Network [OSTI]

Prototype . . . . . . 24 Discussion . . . . . . . . . . . . . . . . 25 #12;Contents vii 3.2.4 PCB - Arduino

171

Automatic generation of boundary conditions using Demons non-rigid image registration for use in 3D modality-independent elastography  

E-Print Network [OSTI]

was successfully performed in silico using magnetic resonance and X-ray computed tomography image data with known to lung cancer in cancer-induced mortality among women. For 2009, the American Cancer Society projected by X-ray mammography. Palpation is limited by its subjective nature and a short range of detection

Miga, Michael I.

172

1618 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 4, AUGUST 2004 4 Compton Imaging Using a 3-D Position-Sensitive  

E-Print Network [OSTI]

Engineering and Health Physics Fellowship sponsored by the U.S. Department of Energy Office of Nuclear Energy1618 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 4, AUGUST 2004 4 Compton Imaging Using a 3, Student Member, IEEE, Zhong He, Senior Member, IEEE, and Feng Zhang, Student Member, IEEE Abstract

He, Zhong

173

Learning 3D Object Templates by Hierarchical Quantization of Geometry and Appearance Spaces  

E-Print Network [OSTI]

Learning 3D Object Templates by Hierarchical Quantization of Geometry and Appearance Spaces Wenze for learning 3D object tem- plates from view labeled object images. The 3D template is defined in a joint-sampled discrete space. Using information gain as a criterion, the best 3D template can be searched through the AND

Zhu, Song Chun

174

High-throughput imaging of heterogeneous cell organelles with an X-ray laser  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.

Hantke, Max, F.

175

3D World Building System  

SciTech Connect (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2013-10-30T23:59:59.000Z

176

3D World Building System  

ScienceCinema (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2014-02-26T23:59:59.000Z

177

Process for 3D chip stacking  

DOE Patents [OSTI]

A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

Malba, Vincent (Livermore, CA)

1998-01-01T23:59:59.000Z

178

Process for 3D chip stacking  

DOE Patents [OSTI]

A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

Malba, V.

1998-11-10T23:59:59.000Z

179

Real time 3D and heterogeneous data fusion  

SciTech Connect (OSTI)

This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

Little, C.Q.; Small, D.E.

1998-03-01T23:59:59.000Z

180

Accepting the T3D  

SciTech Connect (OSTI)

In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

Rich, D.O.; Pope, S.C.; DeLapp, J.G.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tubular Enhanced Geodesic Active Contours for Continuum Robot Detection using 3D Ultrasound  

E-Print Network [OSTI]

Tubular Enhanced Geodesic Active Contours for Continuum Robot Detection using 3D Ultrasound continuum robots in 3D ultrasound images. The proposed approach combines geodesic active contours Enhanced Geodesic Active Contours (TEGAC), is demonstrated through ex vivo intracardiac experiments

Dupont, Pierre

182

A convenient alignment approach for x-ray imaging experiments based on laser positioning devices  

SciTech Connect (OSTI)

This study presents a two-laser alignment approach for facilitating the precise alignment of various imaging and measuring components with respect to the x-ray beam. The first laser constantly pointed to the output window of the source, in a direction parallel to the path along which the components are placed. The second laser beam, originating from the opposite direction, was calibrated to coincide with the first laser beam. Thus, a visible indicator of the direction of the incident x-ray beam was established, and the various components could then be aligned conveniently and accurately with its help.

Zhang Da; Donovan, Molly; Wu Xizeng; Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233 (United States); Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

2008-11-15T23:59:59.000Z

183

Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si  

SciTech Connect (OSTI)

Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ?50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2013-09-30T23:59:59.000Z

184

Projecting 2D Gene Expression Data Into 3D and 4D Space  

E-Print Network [OSTI]

imaging of wholemount stained sam- ples. The two-dimensional images thus generated are, in fact games typically generate virtual 3D objects by texture mapping an image onto a 3D polygonal frame mapping images of gene expression data onto b-spline based embryo models. This approach, known as UV

Vize, Peter D.

185

TOPAZ3D. 3-D Finite Element Heat Transfer  

SciTech Connect (OSTI)

TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)

1992-02-24T23:59:59.000Z

186

Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

187

Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

Seibert, M. Marvin; Ekeberg, Tomas

188

Laser radar VI; Proceedings of the Meeting, Los Angeles, CA, Jan. 23-25, 1991  

SciTech Connect (OSTI)

Topics presented include lidar wind shear detection for commercial aircraft, centroid tracking of range-Doppler images, an analytic approach to centroid performance analysis, simultaneous active/passive IR vehicle detection, and resolution limits for high-resolution imaging lidar. Also presented are laser velocimetry applications, the application of laser radar to autonomous spacecraft landing, 3D laser radar simulation for autonomous spacecraft landing, and ground based CW atmospheric Doppler lidar performamce modeling.

Becherer, R.J.

1991-01-01T23:59:59.000Z

189

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Half-Life 2

Kazhdan, Michael

190

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Crysis 3

Kazhdan, Michael

191

3D imaging system for clinical applications  

E-Print Network [OSTI]

Mowforth,P.H. Ayoub,A.F. Jin,J. Moos,K.F. Niblett,T.B. Siebert,J.P. Urquhart,C.W. Wray,D. Medical Electronics 26, p.p. 59-63, 1995. pp 59-63

Mowforth, P.H.; Ayoub, A.F.; Jin, J.; Moos, K.F.; Niblett, T.B.; Siebert, J.P.

192

Characterization of 3D Photovoltaics  

E-Print Network [OSTI]

Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers The U.S. Photovoltaic Industry Roadmap

193

Propagation Beam Consideration for 3D THz Computed Tomography  

E-Print Network [OSTI]

Propagation Beam Consideration for 3D THz Computed Tomography B. Recur, 1, J.P. Guillet, 2 I. Manek, "Refraction losses in terahertz computed tomography," Opt. Commun. 283, 2050­2055 (2010). 8. S. Nadar, H, "Accelerated image reconstruction using ordered subsets of projection data," IEEE Trans. Med. Imaging 13, 601

Boyer, Edmond

194

Fully-automatic laser welding and micro-sculpting with universal in situ inline coherent imaging  

E-Print Network [OSTI]

Though new affordable high power laser technologies make possible many processing applications in science and industry, depth control remains a serious technical challenge. Here we show that inline coherent imaging, with line rates up to 312 kHz and microsecond-duration capture times, is capable of directly measuring laser penetration depth in a process as violent as kW-class keyhole welding. We exploit ICI's high speed, high dynamic range and robustness to interference from other optical sources to achieve fully automatic, adaptive control of laser welding as well as ablation, achieving micron-scale sculpting in vastly different heterogeneous biological materials.

Webster, Paul J L; Ji, Yang; Galbraith, Christopher M; Kinross, Alison W; Van Vlack, Cole; Fraser, James M

2014-01-01T23:59:59.000Z

195

Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems as Modeled by DIRSIG  

E-Print Network [OSTI]

Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems as Modeled by DIRSIG FOR IMAGING SCIENCE Title of Dissertation: Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems. Signature Date 3 #12;Validation of 3D Radiative Transfer in Coastal-Ocean Water Systems as Modeled by DIRSIG

Salvaggio, Carl

196

Custom 3D-Printed Rollers for Frieze Pattern Cookies Robert Hanson  

E-Print Network [OSTI]

Custom 3D-Printed Rollers for Frieze Pattern Cookies Robert Hanson Towson University, Emeritus a method for converting images of repeating patterns, e.g., Roman friezes or Escher tessellations, into 3D-printed the world of mathematics and the art of cooking. Fractal cookies based on stretching and folding [1] and 3D-printed

197

3D VIDEO QUALITY EVALUATION WITH DEPTH QUALITY VARIATIONS Gustavo Leon, Hari Kalva, and Borko Furht  

E-Print Network [OSTI]

3D VIDEO QUALITY EVALUATION WITH DEPTH QUALITY VARIATIONS Gustavo Leon, Hari Kalva, and Borko Furht on 3D video perception on autostereoscopic displays. This study was done using objective as well image quality and compression on the perceived 3D experience. Another objective is to evaluate the use

Kalva, Hari

198

3D reconstruction of tensors and vectors  

SciTech Connect (OSTI)

Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

Defrise, Michel; Gullberg, Grant T.

2005-02-17T23:59:59.000Z

199

A prototype fan-beam optical CT scanner for 3D dosimetry  

SciTech Connect (OSTI)

Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, {lambda} = 543 nm) with line-generating lens, and a laser diode module (LDM, {lambda} = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE{sup TM} dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to {approx}40% in magnitude. The flask registration technique was shown to achieve submillimetre and subdegree placement accuracy. Dosimetry protocol investigations emphasize the need to allow gel dosimeters to cool gradually and to be scanned while at room temperature. Preliminary tests show that considerable noise reduction can be achieved with sinogram filtering and by binning image pixels into more clinically relevant grid sizes. Conclusions: This paper describes a new optical CT scanner for 3D radiation dosimetry. Tests demonstrate that it is capable of imaging both absorption-based and scatter-based samples of high opacities. Imaging protocol and gel dosimeter manufacture techniques have been adapted to produce optimal reconstruction results. These optimal results will require suitable filtering and binning techniques for noise reduction purposes.

Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

2013-06-15T23:59:59.000Z

200

Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks  

SciTech Connect (OSTI)

We present a theoretical investigation on the formation of hot images in an intense laser beam through cascaded Kerr medium disks, to disclose the distribution and intensity of hot images in high-power disk amplifiers. It is shown that multiple hot images from an obscuration may be formed, instead of one hot image as reported previously in the literature. This gives a clear explanation for the curious damage pattern of hot images, namely, damage sites appearing on alternating optics in periodic trains. Further analysis demonstrates that the distribution and intensity of hot images depend closely on the number of Kerr medium disks, the distance from the obscuration to the front of the first disk downstream, the space between two neighboring disks, and the thickness and B integral of each disk. Moreover, we take two cascaded Kerr medium disks for example to detail multiple hot images from an obscuration and confirm the theoretical results by numerical simulations.

Wang Youwen; Wen Shuangchun; You Kaiming; Tang Zhixiang; Deng Jianqin; Zhang Lifu; Fan Dianyuan

2008-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

3D N = 4 Gauge Theory Compactication  

E-Print Network [OSTI]

Outline 3D N = 4 Gauge Theory Compactication Twistors 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler Metrics Richard Eager UCSB Friday, October 17th, 2008, 4:00 p.m. Richard Eager UCSB 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler M #12;Outline 3D N = 4 Gauge Theory Compactication Twistors

Bigelow, Stephen

202

ALBOTA ET AL. Three-Dimensional Imaging Laser Radars with Geiger-Mode Avalanche Photodiode Arrays  

E-Print Network [OSTI]

· ALBOTA ET AL. Three-Dimensional Imaging Laser Radars with Geiger-Mode Avalanche Photodiode Arrays- lanche photodiodes (APDs) operating in Geiger mode, with integrated timing circuitry for each pixel [2-Mode Avalanche Photodiode Arrays Marius A. Albota, Brian F. Aull, Daniel G. Fouche, Richard M. Heinrichs, David G

203

3D Structures of Biomolecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E3D

204

Terahertz imaging and quantum cascade laser based devices  

E-Print Network [OSTI]

The terahertz (THz) frequency range (f=0.3-10 THz, [lambda]=30-1000 lam) is much less technologically developed that the adjacent microwave and infrared frequency ranges, but offers several advantages for imaging applications: ...

Lee, Alan Wei Min

2010-01-01T23:59:59.000Z

205

Rheology of nearly ideal 3d foams  

E-Print Network [OSTI]

We probe the complex rheology of nearly ideal 3d foam by flowing through a narrow column. The foams we investigate have large bubble size, to minimize the effects of coarsening, and are very dry. Foams of this type cannot be studied via conventional rheometry. The foam flows upward through a vertical rectangular column with a 4:1 cross-sectional aspect ratio, by bubbling gas through a soapy solution at the base of our apparatus. At the column's narrow surfaces are sticky boundaries, which create shear due to the zero velocity boundary condition. As expected, the flow profile between the adjacent slippery broad faces is flat, however the profile between the narrow, sticky faces exhibits a curved velocity profile that is dependent on gas flow rate. We are able to analyze a 2d velocity profile from a 3d bulk system. We employ particle image velocimetry to measure the strain rate, and compute the stress from the pressure drop along the channel, to investigate the local stress-strain relationships in a flowing foam. We find these dry foams to have a Hershel-Bulkley exponent of 0.21, which is significantly lower (more shear thinning) than other results shown in the literature for much wetter foams.

C. D. Jones; K. N. Nordstrom; D. J. Durian

2014-04-10T23:59:59.000Z

206

Fast 3D keypoints detector and descriptor for view-based 3D objects recognition  

E-Print Network [OSTI]

Fast 3D keypoints detector and descriptor for view-based 3D objects recognition Ayet Shaiek1 Abstract. In this paper, we propose a new 3D object recognition method that employs a set of 3D keypoints extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range

Paris-Sud XI, Université de

207

Laser speckle-imaging of blood microcirculation in the brain cortex of laboratory rats in stress  

SciTech Connect (OSTI)

The results of experimental approbation of the method of laser full-field speckle-imaging for monitoring the changes in blood microcirculation state of the brain cortex of laboratory rats under the conditions of developing stroke and administration of vasodilating and vasoconstrictive agents are presented. The studies aimed at the choice of the optimal conditions of speckle-image formation and recording were performed and the software implementing an adaptive algorithm for processing the data of measurements was created. The transfer of laser radiation to the probed region of the biotissue was implemented by means of a silica-polymer optical fibre. The problems and prospects of speckle-imaging of cerebral microcirculation of blood in laboratory and clinical conditions are discussed.

Vilensky, M A; Semyachkina-Glushkovskaya, Oxana V; Timoshina, P A; Kuznetsova, Jana V; Semyachkin-Glushkovskii, I A; Agafonov, Dmitry N; Tuchin, Valerii V

2012-06-30T23:59:59.000Z

208

Car Make and Model Recognition using 3D Curve Alignment Krishnan Ramnath, Sudipta N. Sinha, Richard Szeliski  

E-Print Network [OSTI]

. Steps in constructing our 3D car model for a 2011 Honda Civic Sedan: (top) three of the images used to generate the visual hull; (middle) the visual hull; (bottom) 3D space curves projected onto the visual hull

Gupta, Abhinav

209

3D Magnetotelluric characterization of the COSO GeothermalField  

SciTech Connect (OSTI)

Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

210

Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers  

E-Print Network [OSTI]

We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.

Stern, Stephan; Filsinger, Frank; Rouze, Arnaud; Rudenko, Artem; Johnsson, Per; Martin, Andrew V; Barty, Anton; Bostedt, Christoph; Bozek, John D; Coffee, Ryan N; Epp, Sascha; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Kimmel, Nils; Khnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Rudek, Benedikt; Starodub, Dmitri G; Thgersen, Jan; Weidenspointner, Georg; White, Thomas A; Stapelfeldt, Henrik; Rolles, Daniel; Chapman, Henry N; Kpper, Jochen

2014-01-01T23:59:59.000Z

211

Part removal of 3D printed parts  

E-Print Network [OSTI]

An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

Pea Doll, Mateo

2014-01-01T23:59:59.000Z

212

The Makerbot: Desktop 3D printing  

E-Print Network [OSTI]

The Makerbot: Desktop 3D printing Matthew Roughan School of Mathematical Sciences matthew is Lots of maths hidden in something like 3D printing Geometry and Linear algebra ++ Same math used

Roughan, Matthew

213

3D model-based tracking for UAV indoor localisation  

E-Print Network [OSTI]

3D model-based tracking for UAV indoor localisation C´eline Teuli`ere, Eric Marchand, Laurent Eck set toward the peaks of the distribution. Motivated by the UAV indoor localisation problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights. Index Terms

Paris-Sud XI, Université de

214

ECG Gated Tomographic reconstruction for 3-D Rotational Coronary Angiography  

E-Print Network [OSTI]

imaging techniques to improve both the safety and the efficacy of coronary angiography interventions the ground for a platform dedicated to the planning and execution of percutaneous coronary inter- ventionsECG Gated Tomographic reconstruction for 3-D Rotational Coronary Angiography Yining HU, Lizhe XIE

Paris-Sud XI, Université de

215

3D Tomography from Few Projections in Experimental Fluid Dynamics  

E-Print Network [OSTI]

3D Tomography from Few Projections in Experimental Fluid Dynamics Stefania Petra, Andreas Schr projections due to both limited optical access to wind and water tunnels and cost S. Petra, C. Schn projection data. The latter are the pixel entries in the recorded 2D images that represent the integration

Schnörr, Christoph

216

ArrangePak-3D User's Manual  

E-Print Network [OSTI]

ArrangePak-3D User's Manual File Planes Options Help Quit Planes: 5 ­120.2732,+28.2707 poweredbyLEDA ArrangePak­3D #12; #12; ArrangePak-3D User's Manual Manipulating Arrangements of Planes in Three- chantability or #12;tness for a particular purpose. version 1.0x License: The ArrangePak-3D source code

Wismath, Stephen

217

3D Printing Prof. Hank Dietz  

E-Print Network [OSTI]

3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer #12;3D With Glue Layers of paper: printed with glue & cut Layers of powder: printed with glue Can also be printed in full color #12;3D Extrusion (RepRaps) FDM: Fused Deposition Modeling FFF: Fused

Dietz, Henry G. "Hank"

218

3D Sparse Representations Lanusse F. a  

E-Print Network [OSTI]

3D Sparse Representations Lanusse F. a Starck J.-L. a Woiselle A. c Fadili M.J. b a Laboratoire AIM Securite, 95101 Argenteuil CEDEX, France. Abstract In this chapter we review a variety of 3D sparse representations developed in recent years and adapted to different kinds of 3D signals. In particular, we describe

Starck, Jean-Luc

219

3D Postprozessor Diplomarbeit von Samuel Gerber  

E-Print Network [OSTI]

3D Postprozessor Diplomarbeit von Samuel Gerber Fachhochschule Aargau FHA University of Applied¨angsschnitt . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.4 Querschnit . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.5 3D-Bilder . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 3D Ansicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Bericht

Gerber, Samuel

220

Supersymmetric Gauge Theories in 3d  

E-Print Network [OSTI]

Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS #12;The Search for Fundamental Physics Dine. 8 #12;Supersymmetric Gauge Theories in 3d Nathan Seiberg IAS Based on work with Aharony, Intriligator, Razamat, and Willett, to appear #12;3d SUSY Gauge Theories · New lessons about dynamics

California at Santa Cruz, University of

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2D 3D * iklee)@yonsei.ac.kr  

E-Print Network [OSTI]

1 2012 2D 3D * 0 , 1 , 2 0,2 1 ( 0 skrcjstk, 2 iklee)@yonsei.ac.kr 1 rinthel Science, Yonsei University. 1 Dept. of Information Media, The University of Suwon. 2D 3D . 2D - , 3D (Disparity) 3D . . 1. 3D 3D . 3D 3D [1

Lee, In-Kwon

222

Airborne laser induced fluorescence imaging. Innovative technology summary report  

SciTech Connect (OSTI)

Laser-Induced Fluorescence (LIF) was demonstration as part of the Fernald Environmental Management Project (FEMP) Plant 1 Large Scale Demonstration and Deployment Project (LSDDP) sponsored by the US Department of Energy (DOE) Office of Science and Technology, Deactivation and Decommissioning Focus Area located at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The demonstration took place on November 19, 1996. In order to allow the contaminated buildings undergoing deactivation and decommissioning (D and D) to be opened to the atmosphere, radiological surveys of floors, walls and ceilings must take place. After successful completion of the radiological clearance survey, demolition of the building can continue. Currently, this process is performed by collecting and analyzing swipe samples for radiological analysis. Two methods are used to analyze the swipe samples: hand-held frisker and laboratory analysis. For the purpose of this demonstration, the least expensive method, swipe samples analyzed by hand-held frisker, is the baseline technology. The objective of the technology demonstration was to determine if the baseline technology could be replaced using LIF.

NONE

1999-06-01T23:59:59.000Z

223

Analysis of high resolution scatter images from laser damage experiments performed on KDP  

SciTech Connect (OSTI)

Interest in producing high damage threshold KH{sub 2}PO{sub 4} (KDP) and (D{sub x}H{sub 1-x}){sub 2}PO{sub 4} (KD*P, DKDP) for optical switching and frequency conversion applications is being driven by the system requirements for the National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL). Historically, the path to achieving higher damage thresholds has been to improve the purity of crystal growth solutions. Application of advanced filtration technology has increased the damage threshold, but gives little insight into the actual mechanisms of laser damage. We have developed a laser scatter diagnostic to better study bulk defects and laser damage mechanisms in KDP and KD*P crystals. This diagnostic consists of a cavity doubled, kilohertz class, Nd:YLF laser (527 nm) and high dynamic range CCD camera which allows imaging of bulk scatter signals. With it, we have performed damage tests at 355 nm on four different {open_quotes}vintages{close_quotes} of KDP crystals, concentrating on crystals produced via fast growth methods. We compare the diagnostic`s resolution to LLNL`s standard damage detection method of 100X darkfield microscopy and discuss its impact on damage threshold determination. We have observed the disappearance of scatter sites upon exposure to subthreshold irradiation. In contrast, we have seen scatterers appear where none previously existed. This includes isolated, large (high signal) sites as well as multiple small scatter sites which appear at fluences above 7 J/cm{sup 2} (fine tracking). However, we have not observed a strong correlation of preexisting scatter sites and laser damage sites. We speculate on the connection between the laser-induced disappearance of scatter sites and the observed increase in damage threshold with laser conditioning.

Runkel, M.; Woods, B.; Yan, M. [and others

1996-01-05T23:59:59.000Z

224

3-D Cavern Enlargement Analyses  

SciTech Connect (OSTI)

Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.

EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.

2002-03-01T23:59:59.000Z

225

3D Multiprocessor with 3D NoC Architecture Based on Tezzaron Technology  

E-Print Network [OSTI]

1 3D Multiprocessor with 3D NoC Architecture Based on Tezzaron Technology M.H Jabbar1,2 , D. Houzet the architecture and implementation of 3D multiprocessor with 3D NoC. The 2 tiers design is based on 16 processors simulation, the purpose of this work is to accurately measure NoC performances in real 3D chip when running

Paris-Sud XI, Université de

226

Low-spatial coherence electrically-pumped semiconductor laser for speckle-free full-field imaging  

E-Print Network [OSTI]

The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically-pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ~1000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, wh...

Redding, B; Huang, X; Lee, M L; Stone, A D; Choma, M A; Cao, H

2014-01-01T23:59:59.000Z

227

1610 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012 MRI-Derived 3-D-Printed Breast Phantom  

E-Print Network [OSTI]

1610 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012 MRI-Derived 3-D-Printed Breast--We propose a 3-D-printed breast phantom for use in preclinical experimental microwave imaging studies the proce- dure for generating the 3-D-printed breast phantom and present the measured dielectric properties

Hagness, Susan C.

228

3D PRINTING FOR END PRODUCTS.  

E-Print Network [OSTI]

?? Our aim is to answer whether or not 3D printing is capable of achieving mass customization and mass production, since answering this might help (more)

Morales Cant, Karina Marisol

2012-01-01T23:59:59.000Z

229

Metrology of 3D nanostructures.  

SciTech Connect (OSTI)

We propose a superresolution technique to resolve dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent, and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of the emitter density and the noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17nm. The experimental resolution of five quantum dots located within a diffraction limited spot confirms the applicability of this approach.

Barsic, Anthony [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Piestun, Rafael [University of Colorado at Boulder, Boulder, CO] [University of Colorado at Boulder, Boulder, CO; Boye, Robert R.

2012-10-01T23:59:59.000Z

230

Large area 3D reconstructions from underwater Oscar Pizarro, Ryan Eustice and Hanumant Singh  

E-Print Network [OSTI]

and validated system for processing optical images acquired from an underwater robotic vehicle to form a 3D of processing is a bundle adjustment that provides the 3D structure, camera poses and uncertainty estimates a robotic vehicle or towed sled. Such surveys are required to study hydrothermal vents and spreading ridges

Eustice, Ryan

231

Spectroscopic characterization and imaging of laser- and unipolar arc-induced plasmas  

SciTech Connect (OSTI)

Tungsten plasmas induced by unipolar arcs were investigated using optical emission spectroscopy and imaging, and compared with laser-induced tungsten plasmas. The unipolar arcs were initiated in the linear-plasma simulator PISCES-A at UCSD under fusion relevant conditions. The electron temperature and density of the unipolar arc plasmas were in the range 0.50.7?eV and 0.72.0??10{sup 20?}m{sup ?3}, respectively, and increased with increasing negative bias voltage, but did not correlate with the surface temperature. In comparison, the electron temperature and density of the laser-induced plasmas were in the range 0.61.4?eV and 7??10{sup 19}1??10{sup 22?}m{sup ?3}, respectively.

Aussems, Damien U. B., E-mail: d.aussems@differ.nl [FOM Institute DIFFERDutch Institute for Fundamental Energy Research, Nieuwegein, NL-3430 BE (Netherlands); Nishijima, Daisuke; Brandt, Christian; Doerner, Russell P. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0417 (United States); Cardozo, Niek J. Lopes [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, Eindhoven 5612 AZ (Netherlands)

2014-08-14T23:59:59.000Z

232

3, 35433588, 2003 3-D air pollution  

E-Print Network [OSTI]

ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

Boyer, Edmond

233

Fabrication of 3D Silicon Sensors  

SciTech Connect (OSTI)

Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

2012-06-06T23:59:59.000Z

234

BEAMS3D Neutral Beam Injection Model  

SciTech Connect (OSTI)

With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

Lazerson, Samuel

2014-04-14T23:59:59.000Z

235

Fast Freehand Acquisition of 3D Objects and their Visualization  

E-Print Network [OSTI]

-world objects in a large number of fields of applications, such as the entertainment industry, design], and the application of structured light [3]. Image-based methods are, e.g., stereo vi- sion or multi-camera techniques://www.inf.fh-dortmund.de/personen/professoren/peters/ Abstract. In many applications 3d models of real-world objects are re- quired. We introduce a tool which

Peters, Gabriele

236

3D modellering og pathfinding i Java; 3D Modeling and Pathfinding in Java.  

E-Print Network [OSTI]

??English: This project explores the performance of Java3D through a large 3D?model and the possibility of running this model with a pathfinding algorithm from an (more)

Thorlund, Steffen

2009-01-01T23:59:59.000Z

237

How 3D Printers Work | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How 3D Printers Work How 3D Printers Work June 19, 2014 - 9:28am Addthis How does 3D printing work? Watch a 3D printing timelapse video and read on below to learn everything you...

238

3D view with pst-vue3d Manuel Luque (mluque5130@aol.com)  

E-Print Network [OSTI]

3D view with pst-vue3d Manuel Luque (mluque5130@aol.com) in cooperation with Herbert Vo? (voss@perce.de) 13th August 2004 1 Presentation The 3D representation of an object or a landscape is one of the most (cube, sphere etc. . . ) and many other things. I want to signal that · Regarding 3D representation, one

Mintmire, John W.

239

A smartphone interface for a wireless EEG headset with real-time 3D reconstruction  

E-Print Network [OSTI]

and 3D reconstruction. Introduction Functional brain imaging techniques including fMRI and PET provide gestures (see Fig. 1). Evaluation A major concern in mobile real-time systems is the power consumption

240

Virtual reality 3D headset based on DMD light modulators  

SciTech Connect (OSTI)

We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the users own eye lens forms a real image on the users retina.

Bernacki, Bruce E.; Evans, Allan; Tang, Edward

2014-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization  

SciTech Connect (OSTI)

There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.

Kostko, Oleg; Takahashi, Lynelle K.; Ahmed, Musahid

2011-04-05T23:59:59.000Z

242

3D Hardware Canaries Sebastien Briais4  

E-Print Network [OSTI]

surround the whole target and protect its content from physical attacks. 3D ICs are rel- atively hard reporting pre- liminary implementation results on silicon), we introduce a "hardware canary". The ca- nary

243

3-D Model for Deactivation & Decommissioning  

Broader source: Energy.gov [DOE]

The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

244

3D Printing: Convergences, Frictions, Fluidity.  

E-Print Network [OSTI]

??The emergence of desktop 3D printing is not only a technological development, but equally a social and economic phenomenon that actively (and often contentiously) co-produces (more)

Ree, Robert

2011-01-01T23:59:59.000Z

245

3D TORUS V1.0  

Energy Science and Technology Software Center (OSTI)

002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0 http://www.openfabrics.org/git?p=sashak/management.git;a=sum

246

Three dimensional (3D) optical information processing  

E-Print Network [OSTI]

Light exhibits dramatically different properties when it propagates in or interacts with 3D structured media. Comparing to 2D optical elements where the light interacts with a sequence of surfaces separated by free space, ...

Tian, Kehan

2006-01-01T23:59:59.000Z

247

3D deformation field throughout the interior of materials.  

SciTech Connect (OSTI)

This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

Jin, Huiqing; Lu, Wei-Yang

2013-09-01T23:59:59.000Z

248

Parallel phase-sensitive three-dimensional imaging camera  

DOE Patents [OSTI]

An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.

Smithpeter, Colin L. (Albuquerque, NM); Hoover, Eddie R. (Sandia Park, NM); Pain, Bedabrata (Los Angeles, CA); Hancock, Bruce R. (Altadena, CA); Nellums, Robert O. (Albuquerque, NM)

2007-09-25T23:59:59.000Z

249

Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)  

SciTech Connect (OSTI)

The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ?217 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ?10 improvement over conventional framing cameras currently employed on the NIF (?100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ?64. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

2014-11-15T23:59:59.000Z

250

T-HEMP3D user manual  

SciTech Connect (OSTI)

The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)

Turner, D.

1983-08-01T23:59:59.000Z

251

2354 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 11, NOVEMBER 2011 Laser Diagnostic Imaging of Energetically Enhanced  

E-Print Network [OSTI]

2354 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 11, NOVEMBER 2011 Laser Diagnostic Imaging of Energetically Enhanced Flames Using Direct Microwave Plasma Coupling Xing Rao, Stephen Hammack, Campbell Carter in plasma-enhanced flames, where a nonthermal microwave plasma discharge is coupled di- rectly

Lee, Tonghun

252

Sandia National Laboratories: 3-D laser projection system  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan$0.06 per09Engineerandlaser

253

3D Self-Portraits Etienne Vouga2  

E-Print Network [OSTI]

scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

O'Brien, James F.

254

3D Engineered Models for Construction Support & Available Tools  

E-Print Network [OSTI]

3D Engineered Models for Construction Support & Available Tools #12;3D Engineered Models for Construction · New web page www.fhwa.dot.gov/3d (search "fhwa 3D") ­ Specs, Standards, Details, Tech Briefs ­ Provides initial response within 24 hours of inquiry National Website and TSSC 2 #12;3D Engineered Models

255

3D Keypoints Detection for Objects Recognition Ayet Shaiek1  

E-Print Network [OSTI]

3D Keypoints Detection for Objects Recognition Ayet Shaiek1 , and Fabien Moutarde1 1 Robotics a new 3D object recognition method that employs a set of 3D local features extracted from point cloud representation of 3D views. The method makes use of the 2D organization of range data produced by 3D sensor

Paris-Sud XI, Université de

256

Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation  

DOE Patents [OSTI]

The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

Barty, Christopher P. J. (Hayward, CA); Hartemann, Frederic V. (San Ramon, CA); McNabb, Dennis P. (Alameda, CA); Pruet, Jason A. (Brentwood, CA)

2009-07-21T23:59:59.000Z

257

Laser Doppler field sensor for high resolution flow velocity imaging without camera  

SciTech Connect (OSTI)

In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

2008-09-20T23:59:59.000Z

258

Simnple, portable, 3-D projection routine  

SciTech Connect (OSTI)

A 3-D projection routine is presented for use in computer graphics applications. The routine is simple enough to be considered portable, and easily modified for special problems. There is often the need to draw three-dimensional objects on a two-dimensional plotting surface. For the object to appear realistic, perspective effects must be included that allow near objects to appear larger than distant objects. Several 3-D projection routines are commercially available, but they are proprietary, not portable, and not easily changed by the user. Most are restricted to surfaces that are functions of two variables. This makes them unsuitable for viewing physical objects such as accelerator prototypes or propagating beams. This report develops a very simple algorithm for 3-D projections; the core routine is only 39 FORTRAN lines long. It can be easily modified for special problems. Software dependent calls are confined to simple drivers that can be exchanged when different plotting software packages are used.

Wagner, J.S.

1987-04-01T23:59:59.000Z

259

Superplastic forming using NIKE3D  

SciTech Connect (OSTI)

The superplastic forming process requires careful control of strain rates in order to avoid strain localizations. A load scheduler was developed and implemented into the nonlinear finite element code NIKE3D to provide strain rate control during forming simulation and process schedule output. Often the sheets being formed in SPF are very thin such that less expensive membrane elements can be used as opposed to shell elements. A large strain membrane element was implemented into NIKE3D to assist in SPF process modeling.

Puso, M.

1996-12-04T23:59:59.000Z

260

3D Modeling Engine Representation Summary Report  

SciTech Connect (OSTI)

Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Digital multimirror devices for precision laser micromachining  

E-Print Network [OSTI]

DMD LIFT results 24 PMMA donors New 3D printing technology! BiTe semiconductor film New laser 3D printing facility...An ORC breakthrough 75 µm #12;Summary · DMDs are very useful for precise ablation

262

Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging  

SciTech Connect (OSTI)

The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh [Materials Science and Engineering, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Road, ISTB4, Tempe, Arizona 85287-5604 (United States)] [Materials Science and Engineering, Security and Defense Systems Initiative, Arizona State University, 781 E. Terrace Road, ISTB4, Tempe, Arizona 85287-5604 (United States)

2014-01-15T23:59:59.000Z

263

3D-3D registration of free formed objects using shape and texture Fernando C. M. Martins  

E-Print Network [OSTI]

3D-3D registration of free formed objects using shape and texture Fernando C. M. Martins , Hirohisa and orientation of the object in 3D space with respect to an arbitrary fixed reference, given the current measurement and the 3D object model under construction. Measurement integration is the updating of the 3D

Moura, José

264

Labeling 3D scenes for Personal Assistant Robots  

E-Print Network [OSTI]

Inexpensive RGB-D cameras that give an RGB image together with depth data have become widely available. We use this data to build 3D point clouds of a full scene. In this paper, we address the task of labeling objects in this 3D point cloud of a complete indoor scene such as an office. We propose a graphical model that captures various features and contextual relations, including the local visual appearance and shape cues, object co-occurrence relationships and geometric relationships. With a large number of object classes and relations, the model's parsimony becomes important and we address that by using multiple types of edge potentials. The model admits efficient approximate inference, and we train it using a maximum-margin learning approach. In our experiments over a total of 52 3D scenes of homes and offices (composed from about 550 views, having 2495 segments labeled with 27 object classes), we get a performance of 84.06% in labeling 17 object classes for offices, and 73.38% in labeling 17 object classe...

Koppula, Hema Swetha; Joachims, Thorsten; Saxena, Ashutosh

2011-01-01T23:59:59.000Z

265

A 3D Computer Simulation Test of the Leibowitz Hypothesis  

E-Print Network [OSTI]

Barton & Cohn A 3D Computer Simulation Test of the Leibowitzan experiment using a 3D visual simulator in which differentthan smaller ones. The use of 3D visual simulators to assess

Barton, Joseph E.; Cohn, Theodore E

2007-01-01T23:59:59.000Z

266

3-D hydro + cascade model at RHIC  

E-Print Network [OSTI]

We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

Chiho Nonaka; Steffen A. Bass

2005-11-07T23:59:59.000Z

267

Near infrared spectral imaging of explosives using a tunable laser source  

SciTech Connect (OSTI)

Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

Klunder, G L; Margalith, E; Nguyen, L K

2010-03-26T23:59:59.000Z

268

XEDS STEM Tomography For 3D Chemical Characterization Of Nanoscale Particles  

SciTech Connect (OSTI)

We present a tomography technique which couples scanning transmission electron microscopy (STEM) and X-ray energy dispersive spectrometry (XEDS) to resolve 3D distribution of elements in nanoscale materials. STEM imaging when combined with a symmetrically arranged XEDS detector design around the specimen overcomes many of the obstacles in 3D spectroscopic tomography of nanoscale materials and successfully elucidate the 3D chemical information in a large field of view of the TEM sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (O) in Li(NiMn)O2 battery cathode material. For this purpose, 2D elemental maps were acquired for a range of tilt angles and reconstructed to obtain 3D elemental distribution in an isolated Li(NiMnO2) nanoparticle. The results highlight the strength of this technique in 3D chemical analysis of nanoscale materials by successfully resolving Ni, Mn and O elemental distributions in 3D and discovering the new phenomenon of Ni surface segregation in this material. Furthermore, the comparison of simultaneously acquired HAADF STEM and XEDS STEM tomography results show that XEDS STEM tomography provides additional 3D chemical information of the material especially when there is low atomic number (Z) contrast in the material of interest.

Genc, Arda; Kovarik, Libor; Gu, Meng; Cheng, Huikai; Plachinda, Pavel; Pullan, Lee; Freitag, Bert; Wang, Chong M.

2013-08-01T23:59:59.000Z

269

Printing 3D Catalytic Devices | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printing 3D Catalytic Devices Ames Laboratory scientist Igor Slowing discusses using 3D printers to create new materials, including catalysts...

270

Spatial 3-D Infrastructure: Display-Independent Software Framework, High-Speed Rendering Electronics,  

E-Print Network [OSTI]

(GPUs) to enable real-time visualization of 3-D graphics from medical imaging, oil & gas exploration in fields as diverse as oil and gas visualization, medical imaging, command and control, and entertainment multiview and multislice rendering algorithms to exploit the performance of modern graphics processing units

Bustamante, Fabián E.

271

Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry  

SciTech Connect (OSTI)

The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

Hassan, T.A.

1992-12-01T23:59:59.000Z

272

Tuneable quantum interference in a 3D integrated circuit  

E-Print Network [OSTI]

Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract a Fisher information approaching a theoretical maximum, demonstrating the capability of the device for quantum enhanced phase measurements.

Zachary Chaboyer; Thomas Meany; L. G. Helt; Michael J. Withford; M. J. Steel

2014-09-26T23:59:59.000Z

273

ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. X, NO. X, JANUARY 2013 1 MRI-derived 3D-printed breast phantom for  

E-Print Network [OSTI]

ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. X, NO. X, JANUARY 2013 1 MRI-derived 3D-printed--We propose a 3D-printed breast phantom for use in pre-clinical experimental microwave imaging studies the procedure for generating the 3D-printed breast phantom and present the measured dielectric properties

Van Veen, Barry D.

274

A Category-Level 3-D Object Dataset: Putting the Kinect to Work Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T. Barron, Mario Fritz, Kate Saenko, Trevor Darrell  

E-Print Network [OSTI]

A Category-Level 3-D Object Dataset: Putting the Kinect to Work Allison Janoch, Sergey Karayev for a chal- lenging category-level 3D object detection dataset to the fore. We review current 3D datasets our dataset of color and depth image pairs, gathered in real domestic and office environ- ments

O'Brien, James F.

275

Fab trees for designing complex 3D printable materials ; Material design by fab trees for 3D printing .  

E-Print Network [OSTI]

??With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, (more)

Wang, Ye, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

276

Realizacao domestica e escolar de foto e video 3D  

E-Print Network [OSTI]

English: Industry does not give attention to the small domestic or professional market of digital technologies for 3D images. What was done on the XX century by using photographic film is not know available to the common people, though the facilities are even better. Some technique developed in Brasil twenty years ago and the use of conventional domestic photo or video cameras allows fot making pictures and films at home by using digital conversions for editing, and two-color goggles. The anaglyphic technique, the same NASA employs to show Mars images to the public, is not employed in Brazil yet. We must analize the reasons for that. Portugues: A industria nao tem dado atencao ao mercado domestico ou profissional de pequena escala nas novas tecnologias digitais para imagem 3D. O que foi feito ao longo do seculo XX usando filme fotografico nao esta hoje ao alcance das pessoas, sendo que a facilidade de uso e muito maior. Tecnicas desenvolvidas no Brasil ha mais de vinte anos, e o uso de simples cameras convencionais de fotografia e video permitem realizar fotos e filmes caseiros por meio de conversoes digitais na edicao e o uso de oculos bicolor. A tecnica anagifica, a mesma que a NASA usa para mostrar ao publico as imagens de Marte, por exemplo, nao teve espaco no Brasil ainda. Devemos analisar os motivos que podem estar influenciando e os caminhos para mudar isso.

Jose J. Lunazzi

2012-12-19T23:59:59.000Z

277

Techniques for interactive 3-D scientific visualization  

SciTech Connect (OSTI)

Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

Glinert, E.P. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Computer Science); Blattner, M.M. (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA). Dept. of Biomathematics California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA)); Becker, B.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National La

1990-09-24T23:59:59.000Z

278

3D Printing of Scintillating Materials  

E-Print Network [OSTI]

We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

Mishnayot, Y; Cooperstein, I; Magdassi, S; Ron, G

2014-01-01T23:59:59.000Z

279

3D Printing of Scintillating Materials  

E-Print Network [OSTI]

We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

Y. Mishnayot; M. Layani; I. Cooperstein; S. Magdassi; G. Ron

2014-06-15T23:59:59.000Z

280

3D Model Retrieval based on Adaptive Views Clustering  

E-Print Network [OSTI]

3D Model Retrieval based on Adaptive Views Clustering Tarik Filali Ansary1 , Mohamed Daoudi2 , Jean.daoudi@univ-tours.fr http://www-rech.enic.fr/miire Abstract. In this paper, we propose a method for 3D model indexing based selection of 2D views from a 3D model, and a probabilistic Bayesian method for 3D model retrieval from

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY  

E-Print Network [OSTI]

CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY ­ Master Thesis Proposal ­ BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

282

3D Printing of Functional and Biological Materials  

E-Print Network [OSTI]

! 3D Printing of Functional and Biological Materials Jennifer A. Lewis Wyss Professor)! Multimaterial 3D printing ! #12;3D antennas! Li ion microbatteries! Lightweight microlattices!Flexible sensors! 3D Printing of Integrated Electronic Devices ! #12;20 nm average , 5 ­ 50 nm

283

Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams  

SciTech Connect (OSTI)

Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M. [Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824 (United States)

2014-11-07T23:59:59.000Z

284

Mapping the Ionization State of Laser-Irradiated Ar Gas Jets With Multi-Wavelength Monochromatic X-Ray Imaging  

SciTech Connect (OSTI)

Two-dimensional monochromatic images of fast-electron stimulated Ar K{alpha} and He-{alpha} x-ray self-emission have recorded a time-integrated map of the extent of Ar{sup {approx}6+} and Ar{sup 16+} ions, respectively, within a high density (10{sup 20} cm{sup -3} atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultra-high intensity (10{sup 19} W/cm{sup 2}, 200 fs) Ti:Sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for K{alpha}) and 201 (for He-{alpha}) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830 {micro}m long) region of plasma emits K{alpha} primarily along the laser axis, while the He-{alpha} emission is confined to smaller hot spot (230 {micro}m long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry, which images in one dimension, indicate that the centroids of the K{alpha} and He-{alpha} emission regions are separated by approximately 330 {micro}m along the laser axis.

Kugland, N L; Doppner, T; Kemp, A; Schaeffer, D; Glenzer, S H; Niemann, C

2010-04-08T23:59:59.000Z

285

Restructuring of RELAP5-3D  

SciTech Connect (OSTI)

The RELAP5-3D source code is unstructured with many interwoven logic flow paths. By restructuring the code, it becomes easier to read and understand, which reduces the time and money required for code development, debugging, and maintenance. A structured program is comprised of blocks of code with one entry and exit point and downward logic flow. IF tests and DO loops inherently create structured code, while GOTO statements are the main cause of unstructured code. FOR_STRUCT is a commercial software package that converts unstructured FORTRAN into structured programming; it was used to restructure individual subroutines. Primarily it transforms GOTO statements, ARITHMETIC IF statements, and COMPUTED GOTO statements into IF-ELSEIF-ELSE tests and DO loops. The complexity of RELAP5-3D complicated the task. First, FOR_STRUCT cannot completely restructure all the complex coding contained in RELAP5-3D. An iterative approach of multiple FOR_STRUCT applications gave some additional improvements. Second, FOR_STRUCT cannot restructure FORTRAN 90 coding, and RELAP5-3D is partially written in FORTRAN 90. Unix scripts for pre-processing subroutines into coding that FOR_STRUCT could handle and post-processing it back into FORTRAN 90 were written. Finally, FOR_STRUCT does not have the ability to restructure the RELAP5-3D code which contains pre-compiler directives. Variations of a file were processed with different pre-compiler options switched on or off, ensuring that every block of code was restructured. Then the variations were recombined to create a completely restructured source file. Unix scripts were written to perform these tasks, as well as to make some minor formatting improvements. In total, 447 files comprising some 180,000 lines of FORTRAN code were restructured. These showed significant reduction in the number of logic jumps contained as measured by reduction in the number of GOTO statements and line labels. The average number of GOTO statements per subroutine dropped from 8.8 before restructuring to 5.3 afterwards, a reduction of 40%. The maximum number of GOTO statements in any subroutine dropped from 213 to 99, a factor of 2.1. Finally, the maximum number of statement labels dropped from 210 to 43, a factor of nearly 5. While many blocks of code remain unstructured, a much greater fraction of the code is now structured. These measurements indicate a serious reduction in degree of interweaving of logic paths.

George Mesina; Joshua Hykes

2005-09-01T23:59:59.000Z

286

Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas  

SciTech Connect (OSTI)

Two-dimensional imaging of gas/particle phase transition of metal oxides in their native high-temperature flow conditions, using laser-driven localized nanoplasmas, was obtained by utilizing the gap between the excitation energies of the gas and particle phases such that only the Ti atoms in the particle phase were selectively excited without detectable Bremsstrahlung background. These in situ images of the particle phase Ti distribution allow the quantitative visualization of the transition of the gas precursors to the nanoparticle phase across the flame sheet as well as diffusion of the particle concentration in the post-flame zone.

Zhang, Yiyang [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li, Shuiqing, E-mail: lishuiqing@tsinghua.edu.cn; Ren, Yihua; Yao, Qiang [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263 (United States)

2014-01-13T23:59:59.000Z

287

Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials  

SciTech Connect (OSTI)

Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

Cha, Sangwon

2008-05-15T23:59:59.000Z

288

Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams  

SciTech Connect (OSTI)

An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

Schollmeier, M.; Geissel, M.; Sefkow, A. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

289

Robotic Laser-Adaptive-Optics Imaging of 715 Kepler Exoplanet Candidates using Robo-AO  

E-Print Network [OSTI]

The Robo-AO Kepler Planetary Candidate Survey is designed to observe every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper we present the results from the 2012 observing season, searching for stars close to 715 representative Kepler planet candidate hosts. We find 53 companions, 44 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from 0.15" to 2.5" separation, with contrast ratios up to delta-m~6. We measure an overall nearby-star-probability for Kepler planet candidates of 7.4% +/- 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured plan...

Law, Nicholas M; Baranec, Christoph; Riddle, Reed; Ravichandran, Ganesh; Ziegler, Carl; Johnson, John Asher; Tendulkar, Shriharsh P; Bui, Khanh; Burse, Mahesh P; Das, H K; Dekany, Richard G; Kulkarni, Shrinivas; Punnadi, Sujit; Ramaprakash, A N

2013-01-01T23:59:59.000Z

290

AVES 3D: A NEW ONLINE RESOURCE FOR AVIAN SKELETAL ANATOMY Leon CLAESSENS, Scott EDWARDS, Rachael MARTINEZ, Mike KRZYZAK, Mark ECKARDT, Greg LESLIE, Mike MARCUCCI, Scott NEABORE, Ivan VRCEK, Sam MOSS, Kevin GRASSI  

E-Print Network [OSTI]

AVES 3D: A NEW ONLINE RESOURCE FOR AVIAN SKELETAL ANATOMY Leon CLAESSENS, Scott EDWARDS, Rachael the launch of a new National Science Foundation funded online resource for avian skeletal anatomy, www.Aves3D birds. The Aves 3D database is produced through non-contact laser scanning of skeletal material from

Claessens, Leon

291

3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer  

E-Print Network [OSTI]

3D REGULARIZED VELOCITY FROM 3D DOPPLER RADIAL VELOCITY X. Chen, J.L. Barron, R.E. Mercer Dept, Ontario, M3H 5T4 Paul.Joe@ec.gc.ca ABSTRACT The recent availability of sequences of 3D Doppler radial velocity datasets provides sufficient information to estimate the 3D velocity of Doppler storms. We present

Barron, John

292

Spiso-3D (USA Patent 8,077,945 B2) Section 1. "Spiso-3D" 3  

E-Print Network [OSTI]

1 Spiso-3D (USA Patent 8,077,945 B2) Section 1. "Spiso-3D" 3 BioInfomatics I(x) Taylor, Java 3D . graphic card graphic card . Trial version of Spiso Google down-load Neurolucida 2%Spiso-3D Kawato's laboratory Homepage http://glia.c.u-tokyo.ac.jp #12;2 Section 1, Introduction

Kawato, Suguru

293

3D as a content, 3D as a metaphor. Experiments on distributing and interfacing information about historic artefacts using  

E-Print Network [OSTI]

3D as a content, 3D as a metaphor. Experiments on distributing and interfacing information about MAP, France jyb@gamsau.map.archi.fr idu@gamsau.map.archi.fr Key Words Architectural heritage, 3D The importance we attach to 3D is probably related to the manner we perceive the world. Humans in general seem

Paris-Sud XI, Université de

294

A 3D INTENSITY MODEL BASED ON SPHERICAL HARMONICS FOR AUTOMATIC 3D SEGMENTATION OF HETEROCHROMATIN FOCI  

E-Print Network [OSTI]

A 3D INTENSITY MODEL BASED ON SPHERICAL HARMONICS FOR AUTOMATIC 3D SEGMENTATION OF HETEROCHROMATIN DKFZ Heidelberg and BIOQUANT, Research Group Genome Organization & Function ABSTRACT We introduce a 3D model-based approach for automatic segmentation of 3D fluorescent heterochromatin foci from microscopy

Rippe, Karsten

295

3D GAUSSIAN DESCRIPTOR: A NEW DESCRIPTOR FOR 3D MODELS Mohamed Chaouch and Anne Verroust-Blondet  

E-Print Network [OSTI]

3D GAUSSIAN DESCRIPTOR: A NEW DESCRIPTOR FOR 3D MODELS Mohamed Chaouch and Anne Verroust.chaouch, anne.verroust}@inria.fr ABSTRACT This paper presents a new approach to 3D shape compari- son Shape Benchmark database. Index Terms-- 3D shape retrieval, Gaussian transform 1. INTRODUCTION

Paris-Sud XI, Université de

296

2D/3D registration algorithm for lung brachytherapy  

SciTech Connect (OSTI)

Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

Zvonarev, P. S. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Juravinski Cancer Centre, Medical Physics, Hamilton, Ontario L8V 5C2 (Canada); Sur, R. K. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Juravinski Cancer Centre, Radiation Oncology, Hamilton, Ontario L8V 5C2 (Canada)

2013-02-15T23:59:59.000Z

297

Speed-line for 3D animation  

E-Print Network [OSTI]

Committee Members, Carol LaFayette John Keyser Head of Department, Mardelle Shepley December 2005 Major Subject: Visualization Sciences iii ABSTRACT Speed-Line for 3D Animation. (December 2005) Won Chan Song, B.F.A., Ringling School of Art and Design Chair... to thank my committee members, Prof. Carol LaFayette and Dr. John Keyser for their advice and feedback. My gratitude also goes to Hobart Chan for letting me borrow his car model, which saved me a huge amount of time when I was making an animation as a...

Song, Won Chan

2007-04-25T23:59:59.000Z

298

Interchanging Interactive 3-d Graphics for Astronomy  

E-Print Network [OSTI]

We demonstrate how interactive, three-dimensional (3-d) scientific visualizations can be efficiently interchanged between a variety of mediums. Through the use of an appropriate interchange format, and a unified interaction interface, we minimize the effort to produce visualizations appropriate for undertaking knowledge discovery at the astronomer's desktop, as part of conference presentations, in digital publications or as Web content. We use examples from cosmological visualization to address some of the issues of interchange, and to describe our approach to adapting S2PLOT desktop visualizations to the Web. Supporting demonstrations are available at http://astronomy.swin.edu.au/s2plot/interchange/

C. J. Fluke; D. G. Barnes; N. T. Jones

2008-12-09T23:59:59.000Z

299

APPLICATION OF 2D AND 3D MODELS FOR TEACHING OF NATURAL SCIENCES  

E-Print Network [OSTI]

by three systems: the use of a 3D scanner, 3D photography and digital video camera, plus 3D SketchUp and 3D

Outerelo. Raimundo

300

DSI3D - RCS user manual  

SciTech Connect (OSTI)

The DSI3D-RCS code is designed to numerically evaluate radar cross sections on complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D-RCS code is unique for the following reasons: Allows the use of unstructured non-orthogonal grids, allows a variety of cell or element types, reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal grids are used, preserves charge or divergence locally (and globally), is conditionally stable, is selectively non-dissipative, and is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

Madsen, N.; Steich, D.; Cook, G. [and others

1995-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Validation of Image Processing Tools for 3-D Fluorescence Microscopy.  

E-Print Network [OSTI]

Haute-Alsace IUT de Mulhouse, 61 rue Albert Camus 68093 Mulhouse Cedex 2 I.M.A.C., CRAN, UPRES-A 7039 Proofs should be send to : Alain Dieterlen Groupe Lab.El, Laboratoire MIPS IUT, 61, rue Albert Camus

Paris-Sud XI, Université de

302

3D-FFT for Signature Detection in LWIR Images  

SciTech Connect (OSTI)

Improvements in analysis detection exploitation are possible by applying whitened matched filtering within the Fourier domain to hyperspectral data cubes. We describe an implementation of a Three Dimensional Fast Fourier Transform Whitened Matched Filter (3DFFTMF) approach and, using several example sets of Long Wave Infra Red (LWIR) data cubes, compare the results with those from standard Whitened Matched Filter (WMF) techniques. Since the variability in shape of gaseous plumes precludes the use of spatial conformation in the matched filtering, the 3DFFTMF results were similar to those of two other WMF methods. Including a spatial low-pass filter within the Fourier space can improve signal to noise ratios and therefore improve detection limit by facilitating the mitigation of high frequency clutter. The improvement only occurs if the low-pass filter diameter is smaller than the plume diameter.

Medvick, Patricia A.; Lind, Michael A.; Mackey, Patrick S.; Nuffer, Lisa L.; Foote, Harlan P.

2007-11-20T23:59:59.000Z

303

Shape Analysis Methods for 3D Brain and Skull Imaging  

E-Print Network [OSTI]

in Computational Anatomy (MFCA 08), 2008. B. Gutman, Y.in Computational Anatomy (MFCA 08), 2008. xvii INTRODUCTIONin Computational Anatomy (MFCA 08), 2008. L. Yuan, Y. Wang,

Gutman, Boris Alexander

2013-01-01T23:59:59.000Z

304

3D thermography imaging standardization technique for inflammation diagnosis  

E-Print Network [OSTI]

Ju,X. Nebel,J.C. Siebert,J.P. Photonics Asia 2004, Proceedings of SPIE, Vol. 5640-46, 8-12 November 2004, Beijing, China pp 5640-46 Society of photo optical instrumentation engineers

Ju, X.

305

Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...  

Open Energy Info (EERE)

geothermal resources. Critical to the success of EGS is the successful manipulation of fluids in the subsurface to enhance permeability. Knowledge in the change in volume and...

306

Tactile Interaction with 3D Images Hiroyuki Shinoda  

E-Print Network [OSTI]

feedbacks are realized by simple device structures using the properties of the human tactile perception]. Electrical stimulations give tactile feedbacks [5][6] with no mechanical movements. These devices, the only non-contact tactile display is that of air jet. The theoretical limitation of air-jet method

Shinoda, Hiroyuki

307

Multi-crosswell profile 3D imaging and method  

DOE Patents [OSTI]

Characterizing the value of a particular property, for example, seismic velocity, of a subsurface region of ground is described. In one aspect, the value of the particular property is represented using at least one continuous analytic function such as a Chebychev polynomial. The seismic data may include data derived from at least one crosswell dataset for the subsurface region of interest and may also include other data. In either instance, data may simultaneously be used from a first crosswell dataset in conjunction with one or more other crosswell datasets and/or with the other data. In another aspect, the value of the property is characterized in three dimensions throughout the region of interest using crosswell and/or other data. In still another aspect, crosswell datasets for highly deviated or horizontal boreholes are inherently useful. The method is performed, in part, by fitting a set of vertically spaced layer boundaries, represented by an analytic function such as a Chebychev polynomial, within and across the region encompassing the boreholes such that a series of layers is defined between the layer boundaries. Initial values of the particular property are then established between the layer boundaries and across the subterranean region using a series of continuous analytic functions. The continuous analytic functions are then adjusted to more closely match the value of the particular property across the subterranean region of ground to determine the value of the particular property for any selected point within the region.

Washbourne, John K. (Houston, TX); Rector, III, James W. (Kensington, CA); Bube, Kenneth P. (Seattle, WA)

2002-01-01T23:59:59.000Z

308

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative Records Schedule1-006 Advance

309

3D Mt Resistivity Imaging For Geothermal Resource Assessment And  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Homepowering9century Green

310

Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry  

DOE Patents [OSTI]

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

2011-06-21T23:59:59.000Z

311

Laser ablation electrospray ionization (LAESI) for atmospheric pressure, In vivo, and imaging mass spectrometry  

DOE Patents [OSTI]

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation (LA) with electrospray ionization (ESI).

Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

2011-11-29T23:59:59.000Z

312

Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry  

DOE Patents [OSTI]

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos; Nemes, Peter

2014-08-19T23:59:59.000Z

313

Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry  

DOE Patents [OSTI]

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos; Nemes, Peter

2013-07-16T23:59:59.000Z

314

Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry  

DOE Patents [OSTI]

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos; Nemes, Peter

2013-07-16T23:59:59.000Z

315

Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry  

DOE Patents [OSTI]

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos; Nemes, Peter

2012-10-30T23:59:59.000Z

316

Applications of Fourier Domain Mode Locked lasers for optical coherence tomography imaging  

E-Print Network [OSTI]

Optical coherence tomography (OCT) is a micrometer-resolution imaging technique that produces cross-sectional images of sample microstructure by measuring the amplitude and echo time delay of backscattered light. OCT imaging ...

Adler, Desmond Christopher, 1978-

2009-01-01T23:59:59.000Z

317

Characterizing tensile loading responses of 3D printed samples  

E-Print Network [OSTI]

An experimental study was performed to characterize the loading response of samples manufactured through 3D printing. Tensile testing was performed on a number of 3D printed samples created through Fused Filament Fabrication ...

Haid, Christopher M

2014-01-01T23:59:59.000Z

318

Fab trees for designing complex 3D printable materials  

E-Print Network [OSTI]

With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, the tight coupling between geometry and material ...

Wang, Ye, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

319

3D Visualization of Water Transport in Ferns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

320

Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic Activity Thanks to a groundbreaking new method, scientists have created the first 3D super-resolution maps of...

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

abnormal 3-d mri: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

322

auslese von 3d: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D...

323

autostereoscopic 3d display: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or restrict themselves to light dif- fusion in volumes. We use multi-material 3D printing to fabricate objects Additional Key Words and Phrases: 3D printing, optical fibers...

324

Localization and 3D Reconstruction of Urban Scenes Using GPS  

E-Print Network [OSTI]

D models in Google earth · Manual modeling and texturing (sketch-up) · 3D model covers limited area

Haro, Antonio

325

C ? Was ist X3D/VRML?  

E-Print Network [OSTI]

C ? Die Spezifikation von VRML ist an einigen Stellen nicht eindeutig ? In X3D przisiert ? X3D hat 100+ Knoten (aufgeteilt in Components / Profiles) ? VRML hat nur 54 Knoten ? X3D hat 3 verschiedene sog. "File Encodings": ? Classic: sieht aus wie VRML; Suffix =.wrl oder.x3dv- Jede Software, die X3D lesen kann, kann (im Prinzip) auch VRML lesen

Virtuelle Realitt; Xd Vrml; G. Zachmann; Verhalten Und Animationen; Achtung Vrml Vr; G. Zachmann; Virtuelle Realitt; Simulation Ws; Xd Vrml; Vorteile Von Xd

326

3-D Earth model more accurately pinpoints explosions  

E-Print Network [OSTI]

- 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

327

Tips and Tricks for Using the 3D Interpolation Tool  

E-Print Network [OSTI]

Tips and Tricks for Using the 3D Interpolation Tool This document describes how to download the 3D interpolation tool and use it for the purpose of performing multidimensional analysis on Marine, Atmospheric, Petroleum, Geological, and Groundwater point data. The 3D interpolation tool leverages new methods to solve

Wright, Dawn Jeannine

328

Fast 3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

Fast 3D Scanning for Biometric Identification and Verification June 2011 Authors Anselmo., & Chen, A. (2011). Fast 3D Scanning for Biometric Identification and Verification. (Prepared by RTI..................................................10 Summary and Findings for Integration of Imperceptible Structured Lighting and SIS's 3D Snapshot

McShea, Daniel W.

329

3D Scanning for Biometric Identification and Verification  

E-Print Network [OSTI]

June 2010 3D Scanning for Biometric Identification and Verification Project Leads Anselmo Lastra visibility, cannot be controlled. A relatively new biometric, 3D facial recognition, holds great promise performance using 3D shape and texture matched that of the much more mature technologies of high

McShea, Daniel W.

330

3D discrete rotations using hinge angles Yohan Thibaulta,  

E-Print Network [OSTI]

3D discrete rotations using hinge angles Yohan Thibaulta, , Akihiro Sugimotob , Yukiko Kenmochia a of Informatics, Japan Abstract In this paper, we study 3D rotations on grid points computed by using only integers. For that purpose, we investigate the intersection between the 3D half- grid and the rotation

Paris-Sud XI, Université de

331

3D Engineered Models for Stringless Paving Workshop  

E-Print Network [OSTI]

3D Engineered Models for Stringless Paving Workshop As the highway industry looks for greater productivity through electronic tools and methods, 3D modeling is fast becoming a standard for project delivery quality, cost, and time benefits from using 3D modeling. For construction, this includes more accurate

332

The 3D jigsaw puzzle: mapping large indoor spaces  

E-Print Network [OSTI]

The 3D jigsaw puzzle: mapping large indoor spaces Ricardo Martin-Brualla1 , Yanling He1 , Bryan C of famous tourist sites. While current 3D reconstruction algorithms often produce a set of disconnected components (3D pieces) for indoor scenes due to scene coverage or matching failures, we make use

Anderson, Richard

333

Dynamic 3D Graphics Workload Characterization and the Architectural Implications  

E-Print Network [OSTI]

for this de#12;ciency is the absence of a detailed workload characterization of 3D applications. This paper previous similar studies because it focuses on dynamic behaviors of 3D applications, speci#12;cally, corre- lations of workload statistics among neighboring frames in interactive 3D applications. Such inter

Mitra, Tulika

334

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1  

E-Print Network [OSTI]

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

Boyer, Edmond

335

3-D Graphics in R Ohio State University  

E-Print Network [OSTI]

3-D Graphics in R Luke Keele Ohio State University December 6, 2005 Three dimensional graphics may. And it is a good choice, but to get publication quality 3-D graphics requires more work than typically re- quired to produce quality graphics with the wireframe command. The standard 3-D plot command in R is persp. While

Gotelli, Nicholas J.

336

Hierarchical 3D diffusion wavelet shape priors  

E-Print Network [OSTI]

In this paper, we propose a novel representation of prior knowledge for image segmentation, using diffusion wavelets that can reflect arbitrary continuous interdependencies in shape data. The application of diffusion ...

Langs, Georg

337

Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal  

E-Print Network [OSTI]

, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55(5), 34 (2002). 13. Daylight Solutions, Inc., www.daylightsolutions.com; Block Engineering LLC, www.blockeng.com. 14. B. G. Lee, M. A

Capasso, Federico

338

Investigation of relativistic intensity laser generated hot electron dynamics via copper K{sub ?} imaging and proton acceleration  

SciTech Connect (OSTI)

Simultaneous experimental measurements of copper K{sub ?} imaging and the maximum target normal sheath acceleration proton energies from the rear target surface are compared for various target thicknesses. For the T-cubed laser (?4 J, 400 fs) at an intensity of ?2 10{sup 19} W cm{sup ?2}, the hot electron divergence is determined to be ?{sub HWHM}?22{sup } using a K{sub ?} imaging diagnostic. The maximum proton energies are measured to follow the expected reduction with increasing target thickness. Numerical modeling produces copper K{sub ?} trends for both signal level and electron beam divergence that are in good agreement with the experiment. A geometric model describing the electron beam divergence reproduces the maximum proton energy trends observed from the experiment and the fast electron density and the peak electric field observed in the numerical modeling.

Willingale, L.; Thomas, A. G. R.; Maksimchuk, A; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109 (United States)] [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109 (United States); Morace, A. [University of California-San Diego, La Jolla, California 92093 (United States) [University of California-San Diego, La Jolla, California 92093 (United States); Universit di Milano-Biocca, Piazza della Scienza 3, 20126 Milano (Italy); Bartal, T.; Kim, J.; Beg, F. N. [University of California-San Diego, La Jolla, California 92093 (United States)] [University of California-San Diego, La Jolla, California 92093 (United States); Stephens, R. B.; Wei, M. S. [General Atomics, San Diego, California 92121 (United States)] [General Atomics, San Diego, California 92121 (United States)

2013-12-15T23:59:59.000Z

339

Semantic-based Technique for the Automation the 3D Reconstruction Process Helmi Ben Hmida, Frank Boochs  

E-Print Network [OSTI]

. This processing is based on the combination of 3D processing technologies and Semantic Web technologies. Therefore identification I. INTRODUCTION The laser scanning technology is a powerful tool for many applications; it has. This results in rich datasets with lots of useful and useless information. On one hand, the "manual" processing

Paris-Sud XI, Universit de

340

Invited Article: Coherent imaging using seeded free-electron laser pulses with variable polarization: First results and research opportunities  

SciTech Connect (OSTI)

FERMI-Elettra, the first vacuum ultraviolet and soft X-ray free-electron laser (FEL) using by default a 'seeded' scheme, became operational in 2011 and has been opened to users since December 2012. The parameters of the seeded FERMI FEL pulses and, in particular, the superior control of emitted radiation in terms of spectral purity and stability meet the stringent requirements for single-shot and resonant coherent diffraction imaging (CDI) experiments. The advantages of the intense seeded FERMI pulses with variable polarization have been demonstrated with the first experiments performed using the multipurpose experimental station operated at the diffraction and projection imaging (DiProI) beamline. The results reported here were obtained with fixed non-periodic targets during the commissioning period in 2012 using 20-32 nm wavelength range. They demonstrate that the performance of the FERMI FEL source and the experimental station meets the requirements of CDI, holography, and resonant magnetic scattering in both multi- and single-shot modes. Moreover, we present the first magnetic scattering experiments employing the fully circularly polarized FERMI pulses. The ongoing developments aim at pushing the lateral resolution by using shorter wavelengths provided by double-stage cascaded FERMI FEL-2 and probing ultrafast dynamic processes using different pump-probe schemes, including jitter-free seed laser pump or FEL-pump/FEL-probe with two color FEL pulses generated by the same electron bunch.

Capotondi, F.; Pedersoli, E.; Mahne, N.; Menk, R. H.; Passos, G.; Raimondi, L.; Svetina, C.; Sandrin, G.; Kiskinova, M. [FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Zangrando, M. [FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); CNR, Istituto Officina dei Materiali - TASC, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Bajt, S.; Barthelmess, M.; Fleckenstein, H.; Chapman, H. N. [CFEL-DESY, Notkestrasse 85, 22607 Hamburg (Germany); Schulz, J. [European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Bach, J.; Froemter, R. [Universitaet Hamburg, Institut fuer Angewandte Physik, 20355 Hamburg (Germany); Schleitzer, S.; Mueller, L.; Gutt, C. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); and others

2013-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

3D Film Making Cary Kornfeld  

E-Print Network [OSTI]

Institute of Technology, Zurich (ETHZ) 4pm, Wed., Jan. 23, 2008 Auditorium of the Center for Imaging Science traditional cinema. At ETH in Zurich Switzerland, students are required to build the equipment they use cannot be attained in a home cinema setting. Ignored is the question of viewer fatigue. Viewers begin

Zanibbi, Richard

342

Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing  

SciTech Connect (OSTI)

Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

New, Joshua Ryan [ORNL

2014-01-01T23:59:59.000Z

343

Time-resolved imaging of material response during laser-induced bulk damage in SiO2  

SciTech Connect (OSTI)

We report on time resolved imaging of the dynamic events taking place during laser-induced damage in the bulk of fused silica samples with nanosecond temporal resolution and one micron spatial resolution. These events include: shock/pressure wave formation and propagation, transient absorption, crack propagation and formation of residual stress fields. The work has been performed using a time-resolved microscope system that utilizes a probe pulse to acquire images at delay times covering the entire timeline of a damage event. Image information is enhanced using polarized illumination and simultaneously recording the two orthogonal polarization image components. For the case of fused silica, an electronic excitation is first observed accompanied by the onset of a pressure wave generation and propagation. Cracks are seen to form early in the process and reach their final size at about 25 ns into the damage event. In addition, changes that in part are attributed to transient absorption in the modified material are observed for delays up to about 200 microseconds.

Demos, S G; Negres, R A

2008-10-24T23:59:59.000Z

344

Modelling of aspherical nebulae. I. A quick pseudo-3D photoionization code  

E-Print Network [OSTI]

We describe a pseudo-3D photoionization code, NEBU_3D and its associated visualization tool, VIS_NEB3D, which are able to easily and rapidly treat a wide variety of nebular geometries, by combining models obtained with a 1D photoionization code. The only requirement for the code to work is that the ionization source is uniqu e and not extended. It is applicable as long as the diffuse ionizing radiation f ield is not dominant and strongly inhomogeneous. As examples of the capabilities of these new tools, we consider two very differ ent theoretical cases. One is that of a high excitation planetary nebula that ha s an ellipsoidal shape with two polar density knots. The other one is that of a blister HII region, for which we have also constructed a spherical model (the sp herical impostor) which has exactly the same Hbeta surface brightness distrib ution as the blister model and the same ionizing star. These two examples warn against preconceived ideas when interpreting spectroscop ic and imaging data of HII regions and planetary nebulae. The tools NEBU_3D and VIS_NEB3D, which will be made publicly available in the future, should facilitat e the performance of numerical experiments, to yield a better understanding of t he physics of aspherical ionized nebulae.

C. Morisset; G. Stasinska; M. Pena

2005-03-03T23:59:59.000Z

345

Photogrammetry & Machine Vision 1. Image sensors  

E-Print Network [OSTI]

Photogrammetry & Machine Vision 1. Image sensors (a) Fundamentals of image sensors (b) CCD image. Remondino, N. D'Apuzzo Photogrammetry and Machine Vision ­ 1. Measurement in images (b) Camera calibration of Photogrammetry and Machine Vision Fully understand: 1. Image based 3D and 4D measurement 2. Image based 3D

Giger, Christine

346

Imaging single cells in a beam of live cyanobacteria with an X-ray laser  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

Schot, Gijs, vander

347

High Spatial Resolution Thermal Imaging of Multiple Section Semiconductor Lasers Ali Shakouri*  

E-Print Network [OSTI]

and peak wavelength characteristics of active optoelectronic devices. In this paper we describe how for optoelectronic devices such as laser sources, switching/routing elements, and detectors. This is especially true (TE) coolers. However since their integration with optoelectronic devices is difficult [1

348

Coordination Polymers A Unique 3D Alternating Ferro-and  

E-Print Network [OSTI]

(3-ptz)] (3-ptz = 5-(3-pyridyl)tetrazolate),[7e] in which the metal centers are diamagnetic 3d10 cadmium

Gao, Song

349

From Digital to Physical: Computational Aspects of 3D Manufacturing.  

E-Print Network [OSTI]

??The desktop publishing revolution of the 1980s is currently repeating itself in 3D, referred to as desktop manufacturing. Online services such as Shapeways have become (more)

Baecher, Moritz Niklaus

2013-01-01T23:59:59.000Z

350

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal...  

Open Energy Info (EERE)

Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: 3-D...

351

The role of 3D printing in biological anthropology.  

E-Print Network [OSTI]

??The following work explores the role of 3D printing in biological anthropology. A case study approach is used to provide an understanding of two different (more)

Allard, Travis T.

2006-01-01T23:59:59.000Z

352

RELAP5-3D V. 4.X.X  

Energy Science and Technology Software Center (OSTI)

000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL

353

Making 3D Printed Christmas Ornaments | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This Contributor Santa's sleigh becomes "Intelligent Machine" this Christmas Using 3D Printing to Redesign Santa's Sleigh A Sneak Peek Into Santa's Smarter Sleigh Subscribe to...

354

3D Magnetotelluic characterization of the Coso GeothermalField  

SciTech Connect (OSTI)

Electrical resistivity may contribute to progress inunderstanding geothermal systems by imaging the geometry, bounds andcontrolling structures in existing production, and thereby perhapssuggesting new areas for field expansion. To these ends, a dense grid ofmagnetotelluric (MT) stations plus a single line of contiguous bipolearray profiling has been acquired over the east flank of the Cosogeothermal system. Acquiring good quality MT data in producing geothermalsystems is a challenge due to production related electromagnetic (EM)noise and, in the case of Coso, due to proximity of a regional DCintertie power transmission line. To achieve good results, a remotereference completely outside the influence of the dominant source of EMnoise must be established. Experimental results so far indicate thatemplacing a reference site in Amargosa Valley, NV, 65 miles from the DCintertie, isstill insufficient for noise cancellation much of the time.Even though the DC line EM fields are planar at this distance, theyremain coherent with the nonplanar fields in the Coso area hence remotereferencing produces incorrect responses. We have successfully unwrappedand applied MT times series from the permanent observatory at Parkfield,CA, and these appear adequate to suppress the interference of thecultural EM noise. The efficacy of this observatory is confirmed bycomparison to stations taken using an ultra-distant reference site eastof Socorro, NM. Operation of the latter reference was successful by usingfast ftp internet communication between Coso Junction and the New MexicoInstitute of Mining and Technology, using the University of Utah site asintermediary, and allowed referencing within a few hours of datadownloading at Coso. A grid of 102 MT stations was acquired over the Cosogeothermal area in 2003 and an additional 23 stations were acquired toaugment coverage in the southern flank of the first survey area in 2005.These data have been inverted to a fully three-dimensional conductivitymodel. Initial analysis of the Coso MT data was carried out using 2D MTimaging. An initial 3D conductivity model was constructed from a seriesof 2D resistivity images obtained using the inline electric fieldmeasurements (Zyx impedance elements) along several measurementtransects. This model was then refined through a 3D inversion process.This model shows the controlling geological structures possiblyinfluencing well production at Coso and correlations with mapped surfacefeatures such as faults and regional geoelectric strike. The 3D modelalso illustrates the refinement in positioning of conductivity contactswhen compared to isolated 2D inversion transects. The conductivity modelhas also been correlated with microearthquake locations, well fluidproduction intervals and most importantly with an acoustic and shearvelocity model derived by Wu and Lees (1999). This later correlationshows the near-vertical high conductivity structure on the eastern flankof the producing field is also a zone of increased acoustic velocity andincreased Vp/Vs ratio bounded by mapped fault traces. South of theDevil's Kitchen is an area of high geothermal well density, where highlyconductive near surface material is interpreted as a clay cap alterationzone manifested from the subsurface geothermal fluids and relatedgeochemistry. Beneath the clay cap, however, the conductivity isnondescript, whereas the Vp/Vs ratio is enhanced over the productionintervals. It is recommended that more MT data sites be acquired to thesouthwest of the Devil's Kitchen area to better refine the conductivitymodel in that area.

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2007-04-23T23:59:59.000Z

355

MPSalsa 3D Simulations of Chemically Reacting Flows  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

356

Teaching geometric modeling algorithms and data structures through laser scanner acquisition pipeline  

E-Print Network [OSTI]

measurements and finally its instantiation through 3D printing, are presented. Laser scanner acquisition, reconstruction and 3D printing lend well to teaching general concepts in geometric modeling for several reasons. First, starting and ending with real physical 3D objects (the talus and its 3D print) provide

Paris-Sud XI, Université de

357

Micro-CT for the quantification of 3D voids within damaged structures  

SciTech Connect (OSTI)

Micro X-ray Computed Tomography (MXCT) is widely used in the materials community to examine the internal structure of materials for voids and cracks due to damage or casting, or other defects. Most research in this area focuses on the qualitative aspect of the image, simply answering; Are there voids present? Here we present an ongoing study of the quantified incipient spall voids in Cu with different grain sizes, using a gas gun with various velocities. Data analysis packages for MXCT are just now becoming able to dimensionally measure and produce statistics on the voids-present. In order to make the size of the features in the 3D image quantifiable, the question, how many radiographs are required to render the object dimensionally accurate in 3D, must be answered. A series of data sets has been coUected, varying the number of radiographs collected in order to determine the appropriate number required.

Patterson, Brian M [Los Alamos National Laboratory; Hamilton, Christopher E [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Dennis - Koller, Darcie [Los Alamos National Laboratory; Bronkhorst, C. A. [Los Alamos National Laboratory; Hansen, B. L. [Los Alamos National Laboratory

2011-01-26T23:59:59.000Z

358

Automatic 3D modeling of palatal plaster casts Marco Andreetto  

E-Print Network [OSTI]

Automatic 3D modeling of palatal plaster casts Marco Andreetto Dept. of Information Engineer-form surfaces of anatomi- cal interest. 1. Introduction Plaster models derived from palate's impressions. A data-base with the 3D models of the plaster casts, which could be called a "virtual gypsotheque", can

Abu-Mostafa, Yaser S.

359

BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION Albert Ali Salah  

E-Print Network [OSTI]

BIOLOGICALLY MOTIVATED 3D FACE RECOGNITION by Albert Ali Salah B.S, in Computer Engineering, Bogazi of Doctor of Philosophy Graduate Program in Bogazi¸ci University 2007 #12;ii BIOLOGICALLY MOTIVATED 3D FACE. Hayim Molinas. #12;iv ACKNOWLEDGEMENTS With gratitude to my PhD advisor Lale Akarun for her boundless

360

Dynamics of Anderson localization in open 3D media  

E-Print Network [OSTI]

We develop a self-consistent theoretical approach to the dynamics of Anderson localization in open three-dimensional (3D) disordered media. The approach allows us to study time-dependent transmission and reflection, and the distribution of decay rates of quasi-modes of 3D disordered slabs near the Anderson mobility edge.

S. E. Skipetrov; B. A. van Tiggelen

2005-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Surface light fields for 3D photography Daniel N. Wood  

E-Print Network [OSTI]

Surface light fields for 3D photography Daniel N. Wood A dissertation submitted in partial This is to certify that I have examined this copy of a doctoral dissertation by Daniel N. Wood and have found for 3D photography by Daniel N. Wood Chair of Supervisory Committee: Associate Professor Brian L

Washington at Seattle, University of

362

Anatomic measurement accuracy: CT parameters and 3D rendering effects  

E-Print Network [OSTI]

Anatomic measurement accuracy: CT parameters and 3D rendering effects Brian J Whyms a, E Michael of Neuroscience #12;INTRODUCTION Measurements from 3D-CT rendering are used in research and clinical management-CT rendering techniques on measurements #12;METHODS Scanned: 3 human mandibles a phantom object Phantom

Vorperian, Houri K.

363

An Improved Vertex Caching Scheme for 3D Mesh Rendering  

E-Print Network [OSTI]

An Improved Vertex Caching Scheme for 3D Mesh Rendering Gang Lin and Thomas P.-Y. Yu Abstract to the graphics pipeline during rendering. To make effective use of the cache and facilitate rendering, it is key effective algorithm for generating a sequence for efficient rendering of 3D polygonal meshes based on greedy

Lin, Gang

364

3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM  

E-Print Network [OSTI]

been used for decades by biologists and clinicians to isolate main sites of body heat loss by biologists and clinicians to isolate main sites of body heat loss and to assist with diagnosis3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM INFLAMMATION THERMOGRAPHIE 3D

Nebel, Jean-Christophe

365

FRONTIER ADVANCING DELAUNAY TRIANGULATION OF UNORGANIZED 3D POINTS  

E-Print Network [OSTI]

FRONTIER ADVANCING DELAUNAY TRIANGULATION OF UNORGANIZED 3D POINTS INDRIYATI ATMOSUKARTO NATIONAL Science Thesis Title: Frontier Advancing Delaunay Triangulation of Unorga- nized 3D Points. Abstract Mesh the surface shapes of the objects. This thesis describes a novel frontier advancing polygonization algorithm

Leow, Wee Kheng

366

Chopper: Partitioning models into 3D-printable parts  

E-Print Network [OSTI]

3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a ...

Luo, Linjie

367

Imaging the foveal cone mosaic with a MEMS-based adaptive optics scanning laser ophthalmoscope  

E-Print Network [OSTI]

In: Porter J (ed), Adaptive optics for vision science:In: Black A (ed), Optics. Reading, MA: Addison-Wesley; 113.Optical Society of America a-Optics Image Science and Vision

Li, Yiang

2010-01-01T23:59:59.000Z

368

FSU Office of Research Program in Interdisciplinary Computing (PIC) What is 3D printing?  

E-Print Network [OSTI]

(PIC) What is 3D printing? 3D printing is a process of making. 3D printing is distinct from traditional machining techniques, which mostly organs, meat, circuit boards and batteries. 3D printing impacts nearly every

Ronquist, Fredrik

369

3D Spectroscopy in the Virtual Observatory: Current Status  

E-Print Network [OSTI]

Three cornerstones for the 3D data support in the Virtual Observatory are: (1) data model to describe them, (2) data access services providing access to fully-reduced datasets, and (3) client applications which can deal with 3D data. Presently all these components became available in the VO. We demonstrate an application of the IVOA Characterisation data model to description of IFU and Fabry-Perot datasets. Two services providing SSA-like access to 3D-spectral data and Characterisation metadata have been implemented by us: ASPID-SR at SAO RAS for accessing IFU and Fabry-Perot data from the Russian 6-m telescope, and the Giraffe Archive at the VO Paris portal for the VLT FLAMES-Giraffe datasets. We have implemented VO Paris Euro3D Client, handling Euro3D FITS format, that interacts with CDS Aladin and ESA VOSpec using PLASTIC to display spatial and spectral cutouts of 3D datasets. Though the prototype we are presenting is yet rather simple, it demonstrates how 3D spectroscopic data can be fully integrated into the VO infrastructure.

Igor Chilingarian; Francois Bonnarel; Mireille Louys; Ivan Zolotukhin; Frederic Royer; Isabelle Jegouzo; Pierre Le Sidaner; Pierre Fernique; Thomas Boch

2007-11-02T23:59:59.000Z

370

Comparison of 2D and 3D gamma analyses  

SciTech Connect (OSTI)

Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (evaluated dose distributions) and Monte Carlo-recalculated (reference dose distributions) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differencesfor example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.

Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Bosca, Ryan [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); ODaniel, Jennifer [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)] [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)

2014-02-15T23:59:59.000Z

371

3D printing rises to the occasion | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E3D3D3D

372

Oxygen line formation in 3D hydrodynamical model atmospheres  

E-Print Network [OSTI]

The formation of [O I], O I and OH lines in metal-poor stars has been studied by means of 3D hydrodynamical model atmospheres. For O I detailed 3D non-LTE calculations have been performed. While the influence of 3D model atmospheres is minor for [O I] and O I lines, the very low temperatures encountered at low metallicities have a drastic impact on the OH lines. As a result, the derived O abundances are found to be systematically overestimated in 1D analyses, casting doubts on the recent claims for a monotonic increase in [O/Fe] towards lower metallicities.

M. Asplund

2000-11-02T23:59:59.000Z

373

A low-cost, high-resolution, video-rate imaging optical radar  

SciTech Connect (OSTI)

Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

1998-04-01T23:59:59.000Z

374

The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis  

SciTech Connect (OSTI)

Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated lesions (p > 0.05). Agreement between allocated lesion scores for 2D mammography and those for the tomosynthesis series was poor. Conclusions: The realistic appearance of the 3D models of microcalcification clusters, whether malignant or benign clusters, was confirmed for 2D digital mammography images and the breast tomosynthesis datasets; this database of clusters is suitable for use in future observer performance studies related to the detectability of microcalcification clusters. Such studies include comparing 2D digital mammography to breast tomosynthesis and comparing different reconstruction algorithms.

Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford, GU2 7XX (United Kingdom); Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium)

2011-12-15T23:59:59.000Z

375

Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992  

SciTech Connect (OSTI)

The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

Hassan, T.A.

1992-12-01T23:59:59.000Z

376

Convective flow measurements in a heated cavity using pulsed laser velocimetry with digital image processing  

E-Print Network [OSTI]

. This is essentially the trapezoidal sheet shown in figure 4. The thickness of the beam remains on the order of 1-1. 5 13 x-v plane z-y plane First Lens Focal Point Second Lens Third Lens Fig. 4. Laser light passing through a trio of piano-convex cylindrical...2 U3 v1 v2 3 u4 u5 u7 u8 u6 u9 v4 v 5 v7 v8 Figure 24. Pixel positions in relation to vector components. Expressing equation (15) spatially, where uij and vij are gray level values ranging from 0 to 255 at position i and j of each region...

Chavez, Hector Luis

2012-06-07T23:59:59.000Z

377

3D assembly and actuation of nanopatterned membranes using nanomagnets  

E-Print Network [OSTI]

A new method for aligning and actuating membranes for 3D nano-assembly based on the interactions of nanomagnets has been developed. Arrays of nanopatterned magnetic material are integrated onto thin-film membranes. It is ...

Nichol, Anthony John

2011-01-01T23:59:59.000Z

378

Segmentation of 3D Meshes through Spectral Clustering  

E-Print Network [OSTI]

2 , 2/ , ji eji D W - = 2/12/1 -- = WLLO L : diagonal matrix of W 's row sums Normalization PG '04Segmentation of 3D Meshes through Spectral Clustering Rong Liu, Hao Zhang GrUVi Lab, Simon Fraser

Zhang, Richard "Hao"

379

EVENT CLASSIFICATION FOR 3-D POSITION SENSITIVE SEMICONDUCTOR DETECTORS  

E-Print Network [OSTI]

Generation Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Charge Cloud Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 iv #12;3.1.2 Experimental 3-D Detectors . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 IV

He, Zhong

380

A fast 3D full-wave solver for nanophotonics  

E-Print Network [OSTI]

Conventional fast integral equation solvers seem to be ideal approaches for simulating 3-D nanophotonic devices, as these devices are considered to be open structures, generating fields in both an interior channel and in ...

Zhang, Lei, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

3D/4D geospatial visualization using Makai Voyager  

E-Print Network [OSTI]

3D/4D geospatial visualization using Makai Voyager John C. Anderson Makai Ocean Engineering, Inc-based, geospatially-enabled software that can fuse and visualize large, multi-variable data sets that change in space

Frandsen, Jannette B.

382

Topobo : a 3-D constructive assembly system with kinetic memory  

E-Print Network [OSTI]

We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

Raffle, Hayes Solos, 1974-

2004-01-01T23:59:59.000Z

383

Multinozzle printheads for 3D printing of viscoelastic inks.  

E-Print Network [OSTI]

??A high-pressure microfluidic device for 3D extrusion printing of viscoelastic ink was developed. The device was machined out of poly(methylmethacrylate) (PMMA) using a 3-axis CNC (more)

Kranz, Stephen

2013-01-01T23:59:59.000Z

384

3D-Printed Car by Local Motors- The Strati  

Broader source: Energy.gov [DOE]

A timelapse video of the production process behind The Strati - the 3D-printed car by Local Motors, which manufactured with Oak Ridge National Laboratory (ORNL) and delivered at the International Manufacturing Technology Show (IMTS) in September of 2014.

385

An alternative derivation of the Minimal massive 3D gravity  

E-Print Network [OSTI]

By using the algebra of exterior forms and the first order formalism with constraints, an alternative derivation of the field equations for the Minimal massive 3D gravity model is presented.

Ahmet Baykal

2014-08-22T23:59:59.000Z

386

3D pose estimation and segmentation using specular cues  

E-Print Network [OSTI]

We present a system for fast model-based segmentation and 3D pose estimation of specular objects using appearance based specular features. We use observed (a) specular reflection and (b) specular flow as cues, which are ...

Raskar, Ramesh

387

Automatic 3D facial expression analysis in videos  

E-Print Network [OSTI]

with the background in videos [26] are important topics forSystem for Real-Time 3D Video. IEEE Int. Workshop onExpression Analysis in Videos Ya Chang 1 , Marcelo Vieira

Chang, Y; Vieira, M; Turk, M; Velho, L

2005-01-01T23:59:59.000Z

388

3D Representations for Software Visualization Andrian Marcus  

E-Print Network [OSTI]

research from software analysis, information visualization, human-computer interaction, and cognitive, texture, abstraction mechanism, and by supporting new manipulation techniques and user interfaces.2 [Information Interfaces and Presentation] User Interfaces Keywords: Software visualization, 3D visualization

389

Beyond 3D Printing: The New Dimensions of Additive Fabrication  

E-Print Network [OSTI]

Additive fabrication, often referred to as 3D printing, is the construction of objects by adding material. This stands in contrast to subtractive methods, which involve removing material by means of milling or cutting. ...

Keating, Steven John

390

2013 Santa Sleigh 3D Printing Winner | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineers Pick Winner of 2013 Santa Sleigh 3D Printing Design Contest Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share...

391

3D Module Placement for Congestion and Power Noise Reduction  

E-Print Network [OSTI]

3D Module Placement for Congestion and Power Noise Reduction Jacob R. Minz School of ECE Georgia that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

Lim, Sung Kyu

392

Development of an embedded 3D graphics processor  

E-Print Network [OSTI]

DEVELOPMENT OF AN EMBEDDED 3D GRAPHICS PROCESSOR A Thesis by BRIAN MURRAY Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2002 Major... Subject: Computer Engineering DEVELOPMENT OF AN EMBEDDED 3D GRAPHICS PROCESSOR A Thesis by BRIAN MURRAY Submitted to Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style...

Murray, Brian

2012-06-07T23:59:59.000Z

393

Review: 3D Printing: Social and Cultural Trajectories Symposium -3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM  

E-Print Network [OSTI]

Review: 3D Printing: Social and Cultural Trajectories Symposium - 3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM] Review: 3D Printing: Social and Cultural Trajectories Symposium BY ANGELA DALY & DARCY ALLEN ON WED

394

Toward single cell traction microscopy within 3D collagen matrices  

SciTech Connect (OSTI)

Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cellECM and cellcell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: Review of the current state of the art in 3D cell traction force microscopy. Bulk and micro-characterization of remodelable fibrous collagen gels. Strategies for performing 3D cell traction microscopy within collagen gels.

Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

2013-10-01T23:59:59.000Z

395

A 3D radiative transfer framework: II. line transfer problems  

E-Print Network [OSTI]

Higher resolution telescopes as well as 3D numerical simulations will require the development of detailed 3D radiative transfer calculations. Building upon our previous work we extend our method to include both continuum and line transfer. We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in 3D static atmospheres. The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a long-characteristics method. The approximate $\\Lambda$ operator is constructed considering nearest neighbors {\\em exactly}. The code is parallelized over both wavelength and solid angle using the MPI library. We present the results of several test cases with different values of the thermalization parameter and two choices for the temperature structure. The results are directly compared to 1D spherical tests. With our current grid setup the interior resolution is much lower in 3D than in 1D, nevertheless the 3D results agree very well with the well-tested 1D calculations. We show that with relatively simple parallelization that the code scales to very large number of processors which is mandatory for practical applications. Advances in modern computers will make realistic 3D radiative transfer calculations possible in the near future. Our current code scales to very large numbers of processors, but requires larger memory per processor at high spatial resolution.

E. Baron; Peter H. Hauschildt

2007-03-16T23:59:59.000Z

396

Time-resolved x-ray imaging of high-power laser-irradiated under-dense silica aerogels and agar foams  

SciTech Connect (OSTI)

This paper presents the results of experiments in which a high-power laser was used to irradiate low density (4 - 9 mg/cm{sup 3}) silica aerogel and agar foam targets. The laser-solid interaction and energy transport through the material were monitored with time-resolved imaging diagnostics, and the data show the production and propagation of an x-ray emission front in the plasma. The emission-front trajectory data are found to be in significant disagreement with detailed simulations, which predict a much more rapid heating of the cold material, and the data suggest that this discrepancy is not explainable by target inhomogeneities. Evidence suggests that energy transport into the cold material may be dominated by thermal conduction; however, no completely satisfactory explanation for the discrepancies is identified, and further experimental and theoretical research is necessary in order to resolve this important problem in laser-plasma interaction physics.

Koch, J.A.; Estabrook, K.G.; Bauer, J.D. [and others

1995-08-01T23:59:59.000Z

397

RGUI 1.0, New Graphical User Interface for RELAP5-3D  

SciTech Connect (OSTI)

With the advent of three-dimensional modeling in nuclear safety analysis codes, the need has arisen for a new display methodology. Currently, analysts either sort through voluminous numerical displays of data at points in a region, or view color coded interpretations of the data on a two-dimensional rendition of the plant. RGUI 1.0 provides 3D capability for displaying data. The 3D isometric hydrodynamic image is built automatically from the input deck without additional input from the user. Standard view change features allow the user to focus on only the important data. Familiar features that are standard to the nuclear industry, such as run, interact, and monitor, are included. RGUI 1.0 reduces the difficulty of analyzing complex three dimensional plants.

Mesina, George Lee; Galbraith, James Andrew

1999-04-01T23:59:59.000Z

398

Using a 3D Needle Tissue Interaction Loading basis to optimize the design of an instrumented needle  

E-Print Network [OSTI]

Using a 3D Needle ­Tissue Interaction Loading basis to optimize the design of an instrumented-IMAG UMR5525, Grenoble, France Keywords: Needle deformation; Load distribution; Instrumented needle of the needle which does not follow the planned trajectory. Furthermore, the amount of irradiation during

Paris-Sud XI, Université de

399

SPATIALLY UNSUPERVISED ANALYSIS OF WITHIN-SUBJECT FMRI DATA USING MULTIPLE EXTRAPOLATIONS OF 3D ISING FIELD PARTITION FUNCTIONS  

E-Print Network [OSTI]

SPATIALLY UNSUPERVISED ANALYSIS OF WITHIN-SUBJECT FMRI DATA USING MULTIPLE EXTRAPOLATIONS OF 3D of spatial resolution. A more challenging approach works on the unsmoothed data by intro- ducing some prior Resonance Imaging (fMRI) data, where the goal is to automatically recover activated regions and estimate

Paris-Sud XI, Université de

400

150 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 34, NO. 2, APRIL 2009 Large Area 3-D Reconstructions From  

E-Print Network [OSTI]

relief. We present a complete and validated system for processing optical images acquired from by matching overlapping submaps. The final stage of processing is a bundle adjustment that provides the 3-D hydrothermal vents and spreading ridges in geology [2], ancient shipwrecks and settle- ments in archeology [

Eustice, Ryan

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Representation and visualization of variability in a 3D anatomical atlas using the kidney as an example  

E-Print Network [OSTI]

of the human body can be constructed from cross-sectional images generated e.g. by computer tomography (CT or the Visible Korean Human. data set. Using these datasets numerous research projects for the development Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany ABSTRACT Computer-based 3D atlases allow

Lübeck, Universität zu

402

Imaging single cells in a beam of live cyanobacteria with an X-ray laser  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Diffraction pattern of a micron-sized S. elongatus cell at 1,100 eV photon energy (1.13 nm wavelength) with ~10^11 photons per square micron on the sample in ~70 fs. The signal to noise ratio at 4 nm resolution is 3.7 with 0.24 photons per Nyquist pixel. The cell was alive at the time of the exposure. The central region of the pattern (dark red) is saturated and this prevented reliable image reconstruction.

Schot, Gijs, vander

403

Tracking of the advance of the coagulation front in a laser irradiated tissue using ultrasound imaging  

E-Print Network [OSTI]

, perpendicular to the axis of rotation. T;"re signal bounced off jrcficcted from) the object, a piece of beef. This rcfiection ivas received by the transducer. The trarrsducer rvas operated on a B-Scan mode. Using this scanner the images v crc. obtained...?b('ca(is&. of he in!i&i'i'eiii, iioisc that ii as f)resent, iii th('. u!1 rasoiuid 'iiiage du(' to sl)(ck!e. Various cuive fitting pr&)(cdures like iaol&nomial curve. Gaiissian ciirve, e!liptical curve fitting etc. were examined. The data ivas analyzed hy thi...

Jagathesan, Shoban Srikrishna

1993-01-01T23:59:59.000Z

404

Femtosecond diffractive imaging with a soft-X-ray free-electron laser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) diffractive imaging with a soft-X-ray

405

NEBU_3D: A fast pseudo-3D photoionization code for aspherical planetary nebulae and HII regions  

E-Print Network [OSTI]

We describe a pseudo-3D photoionization code, NEBU_3D and its associated visualization tool, VIS_NEB3D, which are able to easily and rapidly treat a wide variety of nebular geometries, by combining models obtained with a 1D photoionization code. We also present a tool, VELNEB_3D, which can be applied to the results of 1D or 3D photoionization codes to generate emission line profiles, position-velocity maps and 3D maps in any emission line by assuming an arbitrary velocity field. As examples of the capabilities of these new tools, we consider three very different theoretical cases. The first one is a blister HII region, for which we have also constructed a spherical model (the spherical impostor) which has exactly the same Hbeta surface brightness distribution as the blister model and the same ionizing star. The second example shows how complex line profiles can be obtained even with a simple expansion law if the nebula is bipolar and the slit slightly off-center. The third example shows different ways to produce line profiles that could be attributed to a turbulent velocity field while there is no turbulence in the model.

C. Morisset; G. Stasinska; M. Pena

2005-09-22T23:59:59.000Z

406

2D?3D polycatenated and 3D?3D interpenetrated metalorganic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands  

SciTech Connect (OSTI)

Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metalorganic frameworks, namely, [Zn(-tdc)(H{sub 2}O)(-dib)]{sub n} (1), [Cd(-tdc)(H{sub 2}O)(-dib)]{sub n} (2), and ([Cd{sub 2}({sub 3}-tdc){sub 2}(-dimb){sub 2}](H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metalorganic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: Complexes 1 and 2 display polycatenated 2D+2D?3D framework. Complex 3 exhibits a new 4-fold interpenetrating 3D framework. Complex 1 adsorbs the highest amount of H{sub 2} at 100 bar and 298 K. Complexes display blue fluorescent emission bands.

Erer, Hakan [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Ye?ilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Ar?c?, Mrsel [Department of Chemistry, Faculty of Arts and Sciences, Eski?ehir Osmangazi University, 26480 Eski?ehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Ko University, ?stanbul (Turkey); Bykgngr, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz May?s University, 55139 Samsun (Turkey)

2014-02-15T23:59:59.000Z

407

SunFloor 3D: A Tool for Networks on Chip Topology Synthesis for 3D Systems on Ciprian Seiculescu , Srinivasan Murali  

E-Print Network [OSTI]

SunFloor 3D: A Tool for Networks on Chip Topology Synthesis for 3D Systems on Chips Ciprian an efficient Network on Chip (NoC) intercon- nect for a 3D SoC that not only meets the application performance constraints, but also the constraints imposed by the 3D technology, is a significant challenge. In this work

De Micheli, Giovanni

408

Advanced 3D Sensing and Visualization System for Unattended Monitoring  

SciTech Connect (OSTI)

The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

Carlson, J.J.; Little, C.Q.; Nelson, C.L.

1999-01-01T23:59:59.000Z

409

Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors  

E-Print Network [OSTI]

The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.

M. Bubna; E. Alagoz; A. Krzywda; O. Koybasi; K. Arndt; D. Bortoletto; I. Shipsey; G. Bolla; A. Kok; T. -E. Hansen; T. A. Hansen; G. U. Jensen; J. M. Brom; M. Boscardin; J. Chramowicz; J. Cumalat; G. F. Dalla Betta; M. Dinardo; A. Godshalk; M. Jones; M. D. Krohn; A. Kumar; C. M. Lei; L. Moroni; L. Perera; M. Povoli; A. Prosser; R. Rivera; A. Solano; M. M. Obertino; S. Kwan; L. Uplegger; C. D. Via; L. Vigani; S. Wagner

2014-04-30T23:59:59.000Z

410

3D gravity and non-linear cosmology  

E-Print Network [OSTI]

By the inclusion of an additional term, non-linear in the scalar curvature $R$, it is tested if dark energy could rise as a geometrical effect in 3D gravitational formulations. We investigate a cosmological fluid obeying a non-polytropic equation of state (the van der Waals equation) that is used to construct the energy-momentum tensor of the sources, representing the hypothetical inflaton in gravitational interaction with a matter contribution. Following the evolution in time of the scale factor, its acceleration, and the energy densities of constituents it is possible to construct the description of an inflationary 3D universe, followed by a matter dominated era. For later times it is verified that, under certain conditions, the non-linear term in $R$ can generate the old 3D universe in accelerated expansion, where the ordinary matter is represented by the barotropic limit of the van der Waals constituent.

F. P. Devecchi; M. L. Froehlich

2005-10-11T23:59:59.000Z

411

DOE-Imaging grant FG02-06ER15829, entitled "Developing Laser-Induced Re-Collision Electron Self-Diffraction" Brief summary of accomplishments  

SciTech Connect (OSTI)

Our principal goal was the experimental demonstration of Laser-Induced Electron Diffraction (LIED). Key steps along the development of this experimental technique have been accomplished and reported in the publications listed in this brief report. We started with measuring 3D electron momenta spectra in aligned nitrogen and oxygen molecules. Chakra Maharjan (Ph.D. student of Lew Cocke) was a lead researcher on this project. Although Chakra succeeded in obtaining those spectra, we were scooped by the publication of identical results in Science by the NRC Ottawa group. Our results were never published as a refereed article, but became a part of Chakra's Ph.D. dissertation. That Science paper was the first experimental demonstration of Laser-Induced Electron Diffraction (LIED). Chakra also worked on wavelength dependence of 3D ATI spectra of atoms and molecules using tunable OPA pulses. Another Ph.D. student, Maia Magrakvelidze (her GRA was funded by the grant), started working on COLTRIMS experiments using OPA pulses (1800 nm wavelength). After some initial experiments it became apparent that COLTRIMS did not yield sufficient count rates of electrons in the high-energy part of the spectrum to see diffraction signatures with acceptable statistics (unfavorable scaling of the electron yield with laser wavelength was partly to blame). Nevertheless, Maia managed to use COLTRIMS and OPA to measure the angular dependence of the tunneling ionization rate in D{sub 2} molecules. Following the initial trial experiments, the decision was made to switch from COLTRIMS to VMI in order to increase the count rates by a factor of {approx}100, which may have given us a chance to see LIED. Research Associate Dr. Sankar De (his salary was funded by the grant), in collaboration with Matthias Kling's group (then at MPQ Garching), proceeded to design a special multi-electrode VMI spectrometer for capturing high-energy ATI electrons and to install it in place of COLTRIMS inside our experimental chamber. That apparatus was later used for the first demonstration of field-free orientation in CO using two-color laser pulses as well as for a series of other experiments, such as pump-probe studies of molecular dynamics with few-cycle laser pulses, control of electron localization in dissociating hydrogen molecules using two-color laser pulses, and ATI spectra of Xe ionized by two-color laser pulses. In parallel, Dipanwita Ray (Ph.D. student of Lew Cocke) worked on measuring angle-resolved ATI spectra of noble gases using a stereo-ATI phasemeter as a TOF electron spectrometer. She observed the angular diffraction structures in 3D ATI spectra of Ar, Kr and Xe, which were interpreted in terms of the Quantitative Rescattering theory newly developed by C.D. Lin. We also attempted to use a much more powerful OPA (five times more energy per pulse than the one we had at JRML) available at the Advanced Laser Light Source (ALLS) in Montreal to observe LIED. Two visits to ALLS by the PI, Igor Litvinyuk, and one visit by the PI's Ph.D. student (Irina Bocharova) were funded by the grant. Though we failed to observe LIED (the repetition rate of the ALLS OPA was too low at only 100 Hz), this international collaboration resulted in several publications on other related subjects, such as the wavelength dependence of laser Coulomb explosion of hydrogen, the wavelength dependence of non-sequential double ionization of neon and argon, the demonstration of charge-resonance enhanced ionization in CO{sub 2}, and the study of non-elastic scattering processes in H{sub 2}. Theoretical efforts to account for the hydrogen Coulomb explosion experiment resulted in another paper by Maia Magrakvelidze as lead author. Although for various reasons we failed to achieve our main goal of observing LIED, we salute the recent success in this endeavor by Lou DiMauro's group (with theoretical support from our KSU colleague C.D. Lin) published in Nature, which validates our approach.

Igor V. Litvinyuk, and Itzik Ben-Itzhak

2012-04-01T23:59:59.000Z

412

STELLOPT Modeling of the 3D Diagnostic Response in ITER  

SciTech Connect (OSTI)

The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.

Lazerson, Samuel A

2013-05-07T23:59:59.000Z

413

RELAP5-3D Code Validation for RBMK Phenomena  

SciTech Connect (OSTI)

The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

Fisher, James Ebberly

1999-09-01T23:59:59.000Z

414

RELAP5-3D code validation for RBMK phenomena  

SciTech Connect (OSTI)

The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

Fisher, J.E.

1999-09-01T23:59:59.000Z

415

Modelling Gaia CCD pixels with Silvaco 3D engineering software  

E-Print Network [OSTI]

Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

Seabroke, G M; Hopkinson, G; Burt, D; Robbins, M; Holland, A

2010-01-01T23:59:59.000Z

416

3D rotational diffusion microrheology using 2D video microscopy  

E-Print Network [OSTI]

We propose a simple way to perform three-dimensional (3D) rotational microrheology using two-dimensional (2D) video microscopy. The 3D rotational brownian motion of micrometric wires in a viscous fluid is deduced from their projection on the focal plane of an optical microscope objective. The rotational diffusion coefficient of the wires of length between 1-100 \\mu m is extracted, as well as their diameter distribution in good agreement with electron microscopy measurements. This is a promising way to characterize soft visco-elastic materials, and probe the dimensions of anisotropic objects.

Rmy Colin; Minhao Yan; Loudjy Chevry; Jean-Franois Berret; Brengre Abou

2012-01-05T23:59:59.000Z

417

3D Tracking at the Nanoscale | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E3D3D Tracking

418

3D Printing in 30 Seconds | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025 PowerNetwork8th300 MHzMRIYou are3D3D

419

Press release embargoed until 6.00am Thursday 22 August 2013 Find a 3D fossil the hunt is on!  

E-Print Network [OSTI]

- the 3D printed versions are created by laser scanners that scan the fossil surface and measureD printed fossil amongst the collections at The Sedgwick Museum of Earth Sciences. It will be tricky competition, running until Thursday 12 September 2013, invites participants to find a hidden (but labelled!) 3

Cambridge, University of

420

Combined 3D PET and Optical Projection Tomography Techniques for Plant Root Phenotyping  

E-Print Network [OSTI]

New imaging techniques are in great demand for investigating underground plant roots systems which play an important role in crop production. Compared with other non-destructive imaging modalities, PET can image plant roots in natural soil and produce dynamic 3D functional images which reveal the temporal dynamics of plant-environment interactions. In this study, we combined PET with optical projection tomography (OPT) to evaluate its potential for plant root phenotyping. We used a dedicated high resolution plant PET imager that has a 14 cm transaxial and 10 cm axial field of views, and multi-bed imaging capability. The image resolution is around 1.25 mm using ML-EM reconstruction algorithm. B73 inbred maize seeds were germinated and then grown in a sealed jar with transparent gel-based media. PET scanning started on the day when the first green leaf appeared, and was carried out once a day for 5 days. Each morning, around 10 mCi of 11CO2 was administrated into a custom built plant labeling chamber. After 10 ...

Wang, Qiang; Mathews, Aswin J; Li, Ke; Topp, Christopher; O'Sullivan, Joseph A; Tai, Yuan-Chuan

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modelling of aspherical nebulae. I. A quick pseudo-3D photoionization code  

E-Print Network [OSTI]

We describe a pseudo-3D photoionization code, NEBU_3D and its associated visualization tool, VIS_NEB3D, which are able to easily and rapidly treat a wide variety of nebular geometries, by combining models obtained with a 1D photoionization code. The only requirement for the code to work is that the ionization source is uniqu e and not extended. It is applicable as long as the diffuse ionizing radiation f ield is not dominant and strongly inhomogeneous. As examples of the capabilities of these new tools, we consider two very differ ent theoretical cases. One is that of a high excitation planetary nebula that ha s an ellipsoidal shape with two polar density knots. The other one is that of a blister HII region, for which we have also constructed a spherical model (the sp herical impostor) which has exactly the same Hbeta surface brightness distrib ution as the blister model and the same ionizing star. These two examples warn against preconceived ideas when interpreting spectroscop ic and imaging data of HII regi...

Morisset, C; Pea, M

2005-01-01T23:59:59.000Z

422

School of Art & Design 3D Printing of Relief Forms onto Ceramic Tiles  

E-Print Network [OSTI]

School of Art & Design 3D Printing of Relief Forms onto Ceramic Tiles Lead: Lharne Shaw 3D printing tile production. It will also assess the feasibility of introducing a 3D slip printing system into both

Evans, Paul

423

The quaternion Bingham Distribution, 3D object detection, and dynamic manipulation  

E-Print Network [OSTI]

Over the past few years, the field of robotic computer vision has undergone a 3-D revolution. One of the biggest challenges in dealing with 3-D geometry lies in appropriately handling 3-D rotational data. To specify "where" ...

Glover, Jared Marshall

2014-01-01T23:59:59.000Z

424

Full waveform inversion of a 3-D source inside an artificial rock  

E-Print Network [OSTI]

of a 3-D Source Inside an Artificial Rock Albert C. To andof a 3-D source inside an artificial rock plate inof a 3-D source inside an artificial rock plate is

To, A C; Glaser, Steven D

2005-01-01T23:59:59.000Z

425

3D Single Particle Tracking Spectroscopy and Nanoparticles for Interrogating Complex Systems  

E-Print Network [OSTI]

2.4 Real-time 3D single-particle trackingnanoparticles using real-time 3D single-particle tracking. ( axis (Ref. [124]). (b) A 3D representation of detected

Montiel, Daniel

2012-01-01T23:59:59.000Z

426

3D Human Motion Tracking with a Coordinated Mixture ofFactor Analyzers  

E-Print Network [OSTI]

evaluation of video-based 3d person tracking. In IEEELee, C. -S. (2004). Inferring 3D body pose from silhouettesMonocular tracking of 3D human motion with a coordinated

Li, Rui; Tian, Tai-Peng; Sclaroff, Stan; Yang, Ming-Hsuan

2010-01-01T23:59:59.000Z

427

A 3D Model for Ion Beam Formation and Transport Simulation  

E-Print Network [OSTI]

g magnet section. A. Solution of the 3D Poisson Equation inexcellent. B. Solution of the 3D Poisson Equation in Frenet-of distance from the 3D simulation and 2D simulation for a

Qiang, J.; Todd, D.; Leitner, D.

2006-01-01T23:59:59.000Z

428

3D culture models of normal and malignant breast epithelial cells  

E-Print Network [OSTI]

3D culture models of normal and malignant breast epithelialcells; Lee et al. 3D culture models of normal and malignantFor correspondence: mjbissell@lbl.gov 3D culture models of

Lee, Genee Y.; Kenny, Paraic A.; Lee, Eva H.; Bissell, Mina J.

2006-01-01T23:59:59.000Z

429

2D and 3D Acoustic Source Localization Using the AML Algorithm and ENSBox Nodes  

E-Print Network [OSTI]

Networked Sensing 2D and 3D Acoustic Source Localizationhairs, median red square) 3D bearing estimates: (azimuth,1.37,1.52) (2.38,1.82) Node 153 3D AML performance UCLA

2007-01-01T23:59:59.000Z

430

Improvement of 3D Printing Resolution by the Development of Shrinkable Materials  

E-Print Network [OSTI]

derived microstructures by 3D printing: bio-and structuralScaffold development using 3D printing with a starch-basedderived microstructures by 3D printing: bio-and structural

Chia, Helena

2014-01-01T23:59:59.000Z

431

X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator  

SciTech Connect (OSTI)

We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.

Kneip, S. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); McGuffey, C.; Dollar, F.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Mangles, S. P. D.; Matsuoka, T.; Schumaker, W.; Thomas, A. G. R.; Yanovsky, V. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); Bloom, M. S.; Najmudin, Z.; Palmer, C. A. J.; Schreiber, J. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

2011-08-29T23:59:59.000Z

432

Extra Dimensions: 3D and Time in PDF Documentation  

SciTech Connect (OSTI)

High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.

Graf, Norman A.; /SLAC

2011-11-10T23:59:59.000Z

433

TCAUP FabLab 3D PRINTING ORDER FORM  

E-Print Network [OSTI]

TCAUP FabLab 3D PRINTING ORDER FORM: UNIQ NAME: Zcorp 400/310 10"x 8"x 8" ABS 8"x 8"x 12" or 10"x://www.taubmancollege.umich.edu/digital_tech/digital_fablab/ * ZCorp members below .125" are printed at student's own risk and expense. (reasonable .125"breakage

Kamat, Vineet R.

434

Large area 3D helical photonic crystals A. K. Rauba)  

E-Print Network [OSTI]

.1116/1.3640756] I. INTRODUCTION Chiral, coil-spring-like helical photonic crystal structures are useful for optical the helical lattice periodicity and coil pitch of the 3D PhC. This technique con- sists of a simple two

New Mexico, University of

435

Oct 8, 2004 Segmentation of 3D Meshes  

E-Print Network [OSTI]

matrix W using exponential kernel 2 , 2/ , ji eji D W - = 2/12/1 -- = WLLO L : diagonal matrix of W 'sOct 8, 2004 sfsdfsfd 1 Segmentation of 3D Meshes through Spectral Clustering Rong Liu, Hao Zhang Gr

Toronto, University of

436

Vacuum Compatibility of 3D-Printed Materials  

E-Print Network [OSTI]

The fabrication fidelity and vacuum properties are tested for currently available 3D-printed materials including polyamide, glass, acrylic, and sterling silver. The silver was the only material found to be suitable to ultrahigh vacuum environments due to outgassing and sublimation observed in other materials.

Povilus, A P; Vendeiro, Z; Baquero-Ruiz, M; Fajans, J

2013-01-01T23:59:59.000Z

437

Studies of the 3D surface roughness height  

SciTech Connect (OSTI)

Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.

Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris [Institute of Mechanical Engineering, Riga Technical University, Ezermalas str. 6k, Riga (Latvia)

2013-12-16T23:59:59.000Z

438

Colloidal Inks for Directed Assembly of 3-D Periodic Structures  

E-Print Network [OSTI]

during assembly, which simultaneously facilitated bonding and shape retention of the deposited elements the desired 3-D periodicity, places the most stringent demands on ink design. Direct-write techniques- controlled viscoelastic response; that is, they must be able to flow through a deposition nozzle

Lewis, Jennifer

439

S-duality in 3D gravity with torsion  

SciTech Connect (OSTI)

The deformation of the connection in three spacetime dimensions by the kinematically equivalent coframe is shown to induce a duality between the (Lorentz-) rotational and translational field momenta, for which the coupling to the deformation parameter is inverted. This new kind of strong/weak duality, pertinent to 3D, is instrumental for studying exact solutions of the 3D Poincare gauge field equations and the particle content of propagating modes on a background of constant curvature. For a topological Chern-Simons model of gravity, the propagating modes 'living' on an Anti-de Sitter (AdS) background correspond to real massive particles. Yang-Mills type generalizations and new cubic Lagrangians are found and completely classified in 3D. AdS or black hole type solutions with constant axial torsion emerge, also for these higher-order Lagrangians with new 'exotic' torsion-curvature couplings. Their pattern complies with our S-duality, with new repercussions for the field redefinition of the metric in 3D quantum gravity and the cosmological constant problem.

Mielke, Eckehard W. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico)]. E-mail: ekke@xanum.uam.mx; Maggiolo, Ali A. Rincon [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico)

2007-02-15T23:59:59.000Z

440

8, 42674308, 2008 3-D retrieval of cloud  

E-Print Network [OSTI]

ACPD 8, 4267­4308, 2008 3-D retrieval of cloud particle profiles T. Zinner et al. Title Page.0 License. Atmospheric Chemistry and Physics Discussions Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles T. Zinner 1,2 , A. Marshak 1 , S

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

3D Duo Binary Turbo Decoder Hardware Implementation  

E-Print Network [OSTI]

Abstract: Each digital communication system needs channel coding to provide a certain quality of service. With the introducation of advanced channel codes like turbo codes and LDPC codes, error correcting near theoretical shannon limit became possible. Many applications require a low error floor in addition. The classical turbo code cannot meet this demand. Increasing the number of components codes, non-binary component codes or code concatenation are solutions for this problem, but come with a large complexity increase. In 2007 a new class of turbo codes, the 3D turbo code, was introduced by Berrou. The 3D turbo code provides a very good convergence and a large minimum distance at a low complexity. To the best of our knowledge this paper presents the first hardware implementation of a 3D turbo decoder. In addition we compare the implementation complexity of the 3D turbo decoder with the 8 and 16-state duo binary turbo decoder on FPGA and in 65nm ASIC technology.

Timo Lehngik-emden; Matthias Alles; Norbert Wehn

442

Overall Dynamic Properties of 3-D periodic elastic composites  

E-Print Network [OSTI]

A method for the homogenization of 3-D periodic elastic composites is presented. It allows for the evaluation of the averaged overall frequency dependent dynamic material constitutive tensors relating the averaged dynamic ?eld variable tensors of velocity, strain, stress, and linear momentum. The formulation is based on micromechanical modeling of a representative unit cell of a composite proposed by Nemat-Nasser & Hori (1993), Nemat-Nasser et. al. (1982) and Mura (1987) and is the 3-D generalization of the 1-D elastodynamic homogenization scheme presented by Nemat-Nasser & Srivastava (2011). We show that for 3-D periodic composites the overall compliance (stiffness) tensor is hermitian, irrespective of whether the corresponding unit cell is geometrically or materially symmetric.Overall mass density is shown to be a tensor and, like the overall compliance tensor, always hermitian. The average strain and linear momentum tensors are, however, coupled and the coupling tensors are shown to be each others' hermitian transpose. Finally we present a numerical example of a 3-D periodic composite composed of elastic cubes periodically distributed in an elastic matrix. The presented results corroborate the predictions of the theoretical treatment.

Ankit Srivastava; Sia Nemat-Nasser

2011-05-27T23:59:59.000Z

443

Quantitative Data Analysis Methods for 3D Microstructure  

E-Print Network [OSTI]

Quantitative Data Analysis Methods for 3D Microstructure Characterization of Solid Oxide Cells of electrochemical ceramic devices such as solid oxide fuel and electrolyser cells depends on the distribution key properties such as ion, electron and gas transport through percolating net- works and reaction

444

Wire Congestion And Thermal Aware 3D Global Placement  

E-Print Network [OSTI]

Wire Congestion And Thermal Aware 3D Global Placement Karthik Balakrishnan, Vidit Nanda, Siddharth compro- mising total wirelength and via count. Our approach consists of two phases. First, we use a multi and global routing for global wire congestion and maximum temperature reduction. Our experimental results

Lim, Sung Kyu

445

Electromagnetic Waves Propagation in 3D Plasma Configurations  

E-Print Network [OSTI]

Electromagnetic Waves Propagation in 3D Plasma Configurations Pavel Popovich, W. Anthony Cooper in a plasma strongly depends on the frequency, therefore the tools used for wave propagation studies are very that will allow for the calculation of the fields and energy deposition of a low-frequency wave propagating

446

STUDY AND DEVELOPMENT OF MECHANICAL 3D STANDARD PARTS LIBRARY  

E-Print Network [OSTI]

technology included variant design, tabular layouts of article characteristics and parametric cad system, the method and key technology to construct parametric mechanical 3D standard parts library was introduced. Engineer could build mechanical standard part through this system automatically and improve the

Wu Yang-dong; Xie Qing-sheng; Qi Guo-ning; Lu Yu-jun

447

Ris-R-1376(EN) 3D Background  

E-Print Network [OSTI]

, Roskilde, Denmark November 2002 #12;Abstract 3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five on the drag values are observed. ISBN 87-550-3141-2 ISBN 87-550-3142-0(internet) ISSN 0106-2840 Pitney Bowes

448

RELAP5-3D Developer Guidelines and Programming Practices  

SciTech Connect (OSTI)

Our ultimate goal is to create and maintain RELAP5-3D as the best software tool available to analyze nuclear power plants. This begins with writing excellent programming and requires thorough testing. This document covers development of RELAP5-3D software, the behavior of the RELAP5-3D program that must be maintained, and code testing. RELAP5-3D must perform in a manner consistent with previous code versions with backward compatibility for the sake of the users. Thus file operations, code termination, input and output must remain consistent in form and content while adding appropriate new files, input and output as new features are developed. As computer hardware, operating systems, and other software change, RELAP5-3D must adapt and maintain performance. The code must be thoroughly tested to ensure that it continues to perform robustly on the supported platforms. The coding must be written in a consistent manner that makes the program easy to read to reduce the time and cost of development, maintenance and error resolution. The programming guidelines presented her are intended to institutionalize a consistent way of writing FORTRAN code for the RELAP5-3D computer program that will minimize errors and rework. A common format and organization of program units creates a unifying look and feel to the code. This in turn increases readability and reduces time required for maintenance, development and debugging. It also aids new programmers in reading and understanding the program. Therefore, when undertaking development of the RELAP5-3D computer program, the programmer must write computer code that follows these guidelines. This set of programming guidelines creates a framework of good programming practices, such as initialization, structured programming, and vector-friendly coding. It sets out formatting rules for lines of code, such as indentation, capitalization, spacing, etc. It creates limits on program units, such as subprograms, functions, and modules. It establishes documentation guidance on internal comments. The guidelines apply to both existing and new subprograms. They are written for both FORTRAN 77 and FORTRAN 95. The guidelines are not so rigorous as to inhibit a programmers unique style, but do restrict the variations in acceptable coding to create sufficient commonality that new readers will find the coding in each new subroutine familiar. It is recognized that this is a living document and must be updated as languages, compilers, and computer hardware and software evolve.

Dr. George L Mesina

2014-03-01T23:59:59.000Z

449

Laser Ablation Sampling of Materials Directly into the Formed Liquid Microjunction of a Continuous Flow Surface Sampling Probe/Electrospray Ionization Emitter for Mass Spectral Analysis and Imaging  

SciTech Connect (OSTI)

Transmission geometry laser ablation directly into a formed liquid microjunction of a continuous flow liquid microjunction surface sampling probe/electrospray ionization emitter was utilized for molecular and elemental detection and mass spectrometry imaging. The ability to efficiently capture and ionize ablated material was demonstrated by the detection of various small soluble n-mers of polyaniline and silver ion solvent clusters formed from laser ablation of electropolymerized polyaniline and silver thin films, respectively. In addition, analysis of surfaces that contain soluble components was accomplished by coating or laminating the sample with an insoluble film to enable liquid junction formation without directly extracting material from the surface. The ability to perform mass spectrometry imaging at a spatial resolution of about 50 m was illustrated by using laminated inked patterns on a microscope slide. In general, these data demonstrate at least an order of magnitude signal enhancement compared to the non-contact, laser ablation droplet capture-based surface sampling/ionization approaches that have been previously presented.

Ovchinnikova, Olga S [ORNL] [ORNL; Lorenz, Matthias [ORNL] [ORNL; Kertesz, Vilmos [ORNL] [ORNL; Van Berkel, Gary J [ORNL] [ORNL

2013-01-01T23:59:59.000Z

450

Development of 3D Simulation Training and Testing for Home Energy...  

Energy Savers [EERE]

Development of 3D Simulation Training and Testing for Home Energy Score Assessor Candidates Development of 3D Simulation Training and Testing for Home Energy Score Assessor...

451

An Algorithm for Computing Customized 3D Printed Implants with Curvature Constrained Channels for Enhancing  

E-Print Network [OSTI]

An Algorithm for Computing Customized 3D Printed Implants with Curvature Constrained Channels results in 3D printing and steerable needle motion planning to create customized implants containing

North Carolina at Chapel Hill, University of

452

Impact of 3D printing on global supply chains by 2020 .  

E-Print Network [OSTI]

??This thesis aims to quantitatively estimate the potential impact of 3D Printing on global supply chains. Industrial adoption of 3D Printing has been increasing gradually (more)

Bodla, Muhammad Raheel

2014-01-01T23:59:59.000Z

453

Explanatory Lifelike Avatars: Performing User-Centered Tasks in 3D Learning Environments  

E-Print Network [OSTI]

environment, a 3D learning environment for the domain of computer architecture and systems for novices, WHIZLOW, who inhabits the CPU CITY 3D learning envir

Zettlemoyer, Luke

454

The Future of Manufacturing Takes Shape: 3D Printed Car on Display...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lead, Advanced Manufacturing Office Additive manufacturing - often referred to as 3D printing - is a revolutionary way to design and build products. Until now, 3D printing has...

455

XEDS STEM Tomography For 3D Chemical CharacterizationOf Nanoscale...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XEDS STEM Tomography For 3D Chemical CharacterizationOf Nanoscale Particles. XEDS STEM Tomography For 3D Chemical CharacterizationOf Nanoscale Particles. Abstract: We present a...

456

3D head anthropometric analysis Reyes Enciso*ab  

E-Print Network [OSTI]

a current three-dimensional image-based face modeling technique using a plaster head model. We will also. In this paper we acquired and validated 3-dimensional images of a plaster head using structured-light image

Shahabi, Cyrus

457

Digital holographic imaging of aquatic species  

E-Print Network [OSTI]

The aim of this thesis is to design, develop and implement a digital holographic imaging (DHI) system, capable of capturing three-dimensional (3D) images of aquatic species. The images produced by this system are used in ...

Domnguez-Caballero, Jos Antonio

2006-01-01T23:59:59.000Z

458

Parallel 3-D S{sub N} performance for DANTSYS/MPI on the Cray T3D  

SciTech Connect (OSTI)

A data parallel version of the 3-D transport solver in DANTSYS has been in use on the SIMD CM-200`s at LANL since 1994. This version typically obtains grind times of 150--200 nanoseconds on a 2,048 PE CM-200. The authors have now implemented a new message passing parallel version of DANTSYS, referred to as DANTSYS/MPI, on the 512 PE Cray T3D at Los Alamos. By taking advantage of the SPMD architecture of the Cray T3D, as well as its low latency communications network, they have managed to achieve grind times of less than 10 nanoseconds on real problems. DANTSYS/MPI is fully accelerated using DSA on both the inner and outer iterations. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents two simple performance models for the transport sweep which accurately predict the grind time as a function of the number of PE`s and problem size, or scalability.

Baker, R.S.; Alcouffe, R.E. [Los Alamos National Lab., NM (United States). Transport Methods Group

1997-05-01T23:59:59.000Z

459

Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers  

SciTech Connect (OSTI)

A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C{sup 6+}, O{sup 8+}, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

Alejo, A.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Doria, D.; Green, A.; Jung, D.; Lewis, C. L. S.; Nersisyan, G. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom); Krygier, A. G.; Freeman, R. R. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Clarke, R.; Green, J. S.; Notley, M. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fernandez, J. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Instituto de Fusin Nuclear, Universidad Politcnica de Madrid, 28006 Madrid (Spain); Fuchs, J. [LULI, cole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Kleinschmidt, A.; Roth, M. [Institut fr Kernphysik, Technische Universitt Darmstadt, Schlogartenstrasse 9, D-64289 Darmstadt (Germany); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); and others

2014-09-15T23:59:59.000Z

460

NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT  

SciTech Connect (OSTI)

Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

2004-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Automated 3D trabecular bone structure analysis of the proximal femurprediction of biomechanical strength by CT and DXA  

E-Print Network [OSTI]

z ORIGINAL ARTICLE Automated 3D trabecular bone structureIntroduction An automated 3D segmentation algorithm wasstudy was to use an automated 3D segmentation algorithm to

2010-01-01T23:59:59.000Z

462

Multicomponent 3-D characterization of a coalbed methane reservoir  

SciTech Connect (OSTI)

Methane is produced from fractured coalbed reservoirs at Cedar Hill Field in the San Juan Basin. Fracturing and local stress are critical to production because of the absence of matrix permeability in the coals. Knowledge of the direction of open fractures, the degree of fracturing, reservoir pressure, and compartmentalization is required to understand the flow of fluids through the reservoir. A multicomponent 3-D seismic survey was acquired to aid in coalbed methane reservoir characterization. Coalbed reservoir heterogeneities, including isolated pressure cells, zones of increased fracture density, and variable fracture directions, have been interpreted through the analysis of the multicomponent data and integration with petrophysical and reservoir engineering studies. Strike-slip faults, which compartmentalize the reservoir, have been identified by structural interpretation of the 3-D P-wave seismic data. These faults form boundaries for pressure cells that have been identified by P-wave reflection amplitude anomalies.

Shuck, E.L. [Advance Geophysical Corp., Englewood, CO (United States)] [Advance Geophysical Corp., Englewood, CO (United States); Davis, T.L.; Benson, R.D. [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.] [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.

1996-03-01T23:59:59.000Z

463

Sculplexity: Sculptures of Complexity using 3D printing  

E-Print Network [OSTI]

We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

Reiss, D S; Evans, T S

2014-01-01T23:59:59.000Z

464

Beam Optics Analysis - An Advanced 3D Trajectory Code  

SciTech Connect (OSTI)

Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike [Calabazas Creek Research, Inc., 20937 Comer Drive, Saratoga, CA 95070-3753 (United States); Shephard, Mark; Bauer, Andrew; Datta, Dibyendu [Scientific Center for Computational Research, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Beal, Mark [Simmetrix, Inc., Clifton Park, NY 12065 (United States)

2006-01-03T23:59:59.000Z

465

Electric field in 3D gravity with torsion  

E-Print Network [OSTI]

It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

M. Blagojevi?; B. Cvetkovi?

2008-09-01T23:59:59.000Z

466

Statistical Physics of 3D Hairy Black Holes  

E-Print Network [OSTI]

We investigate the statistical behaviors of 3D hairy black holes in the presence of a scalar field. The present study is made in terms of two relevant parameters: rotation parameter a and B parameter related to the scalar field. More precisely, we compute various statistical quantities including the partition function for non-charged and charged black hole solutions. Using a partition function calculation, we show that the probability is independent of a and B parameters.

A. Belhaj; M. Chabab; H. EL Moumni; K. Masmar; M. B. Sedra

2014-12-29T23:59:59.000Z

467

3D, Flash, Induced Current Readout for Silicon Sensors  

SciTech Connect (OSTI)

A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

Parker, Sherwood I.

2014-06-07T23:59:59.000Z

468

Metrological analysis of a procedure for the automatic 3D modeling of dental plaster casts  

E-Print Network [OSTI]

Metrological analysis of a procedure for the automatic 3D modeling of dental plaster casts Nicola to an automatic procedure recently proposed for the 3D modeling of dental plaster casts. This contribution derives of an automatic 3D modeling procedure recently proposed and it shows the accuracy of 3D modeling dental plaster

Abu-Mostafa, Yaser S.

469

Rubrique : Tectonique Modlisation gomtrique 3D des granites Stphaniens du massif du Pelvoux (Alpes, France).  

E-Print Network [OSTI]

1 Rubrique : Tectonique Modélisation géométrique 3D des granites Stéphaniens du massif du Pelvoux (Alpes, France). 3D geometrical modelling of Stephanian granite from the Pelvoux massif (French Alps, granite, modélisation 3D, Carbonifère. Key words : Alps, Granite, 3D modelling, Carbonifere

Paris-Sud XI, Université de

470

Construction of suitable weak solutions for the 3D incompressible NSEs  

E-Print Network [OSTI]

Construction of suitable weak solutions for the 3D incompressible NSEs Jean-Luc Guermond Department-Luc Guermond Construction of suitable weak solutions for the 3D NSEs #12;Outline 1 BASIC FACTS ABOUT THE 3D NSE Jean-Luc Guermond Construction of suitable weak solutions for the 3D NSEs #12;Outline 1 BASIC FACTS

Guermond, Jean-Luc

471

3D MODEL RETRIEVAL BASED ON DEPTH LINE DESCRIPTOR Mohamed Chaouch and Anne Verroust-Blondet  

E-Print Network [OSTI]

3D MODEL RETRIEVAL BASED ON DEPTH LINE DESCRIPTOR Mohamed Chaouch and Anne Verroust-Blondet INRIA.verroust}@inria.fr. ABSTRACT In this paper, we propose a novel 2D/3D approach for 3D model matching and retrieving. Each model information provides a more accurate description of 3D shape boundaries than using other 2D shape descriptors

Paris-Sud XI, Université de

472

3D Graph Visualization with the Oculus Rift Virtual Graph Reality  

E-Print Network [OSTI]

3D Graph Visualization with the Oculus Rift Virtual Graph Reality Farshad Barahimi, Stephen Wismath regarding three- dimensional (3D) representations of graphs. However, the actual usefulness of such 3D reality environment such as a CAVE, or · printed as a physical model with a 3D printer. Early studies

Wismath, Stephen

473

3D Haptic Modeling System using Ungrounded Pen-shaped Kinesthetic Display  

E-Print Network [OSTI]

3D Haptic Modeling System using Ungrounded Pen-shaped Kinesthetic Display Sho Kamuro 1) Kouta-dimensional (3D) haptic modeling system that enables a user to create 3D models as though he/she is drawing and intuitively create various 3D shapes by drawing closed curves in air using the device. The created shapes

Tachi, Susumu

474

3D Engineered Models for Highway Construction Gabe Nelson, P.E.  

E-Print Network [OSTI]

3D Engineered Models for Highway Construction Gabe Nelson, P.E. Snyder & Associates, Inc. Overview of 3D Engineered Models for Highway Construction Module 1 Introduction #12;3D Engineered Models & Quality ­ Protect the Environment · Every Day Counts 2 included 3D Engineered Models for Construction

475

ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY  

E-Print Network [OSTI]

printing technology can help to visualize proofs in mathematics. This talk aims to illustrate how 3D Greece, models allows to make mathematics more accessible. The new 3D printing technology makes unmatched. 3D printers allow us to do that with relative little effort. 2. 3D printing The industry of rapid

Knill, Oliver

476

ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY  

E-Print Network [OSTI]

3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology that with relatively little effort. 2. 3D printing The industry of rapid prototyping and 3D printing in particular em

Knill, Oliver

477

InvenTcl: A Fast Prototyping Environment for 3D Graphics and Multimedia Applications  

E-Print Network [OSTI]

InvenTcl: A Fast Prototyping Environment for 3D Graphics and Multimedia Applications Sidney Fels1- sion of Open Inventor, a 3D graphics toolkit. To create InvenTcl, the Open Inventor toolkit is \\wrapped, easy prototyping of 3D graphics and animation, low bandwidth communication of 3D scenes and animations

British Columbia, University of

478

Fuzzy Control for Enforcing Energy Efficiency in High-Performance 3D Systems  

E-Print Network [OSTI]

to remove the heat from 3D ICs. 3D systems are also prone to large thermal variations; e.g., cores located and DVFS-based thermal management in 3D multicore systems [28], [8], [27]. However, as power densities micro- channels (or pin-fin structures) between the tiers of a 3D stack using a pump to remove the heat

Coskun, Ayse

479

A new graphical user interface for a 3D topological mesh modeler  

E-Print Network [OSTI]

of Silo, SLIDE, Google SketchUp, Cheetah 3D, k3dSurf, and Sculpture Generator. . . . . . . . . . . . . 13 7 Screenshots from Quicksilver pop-up CLI for OS/X and Launchy, a similar interface for Windows. . . . . . . . . . . . . . . . . . . . . . 14 8... of Silo, SLIDE, Google SketchUp, Cheetah 3D, k3dSurf, and Sculpture Generator. 5. Other Applications There are a wide variety of other 3D modeling applications that provide unique in- terfaces, such as Silo, SLIDE, Google Sketchup, Cheetah 3D, k3d...

Morris, David Victor

2008-10-10T23:59:59.000Z

480

Injection-controlled laser resonator  

DOE Patents [OSTI]

A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

Chang, J.J.

1995-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "3d laser imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

3D tomodosimetry using long scintillating fibers: A feasibility study  

SciTech Connect (OSTI)

Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm{sup 2} using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm{sup 3}. Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 10 cm{sup 2} field. The precision attained with this fiber configuration was less than 0.9% in the high dose, low gradient region of an IMRT segment for light acquisitions of 0.1 MU over a 360 degree rotation of the cylinder phantom. 3D dose interpolation for the IMRT clinical plan yielded an overall dose difference with the reference input of less than 1%, except in high dose gradients.Conclusions: Using long scintillating fibers inside rotating, concentric cylindrical planes, the authors demonstrate that their tomodosimetry method has the potential for high resolution, precise, and accurate 3D dosimetry. Moreover, because of its water-equivalence and rotational symmetry, this design should find interesting application for both treatment QA and machine commissioning.

Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc [Dpartement de Physique, de Gnie Physique et dOptique et Centre de Recherche sur le cancer, Universit Laval, Qubec, Qubec G1V 0A6, Canada, and Dpartement de Radio-Oncologie and CRCHU de Quebec, CHU de Qubec, 11 Cte du Palais, Qubec, Qubec G1R 2J6 (Canada)] [Dpartement de Physique, de Gnie Physique et dOptique et Centre de Recherche sur le cancer, Universit Laval, Qubec, Qubec G1V 0A6, Canada, and Dpartement de Radio-Oncologie and CRCHU de Quebec, CHU de Qubec, 11 Cte du Palais, Qubec, Qubec G1R 2J6 (Canada)

2013-10-15T23:59:59.000Z

482

THREE-DIMENSIONAL IMAGING OF NANOSCALE MATERIALS BY UISNG COHERENT X-RAYS  

SciTech Connect (OSTI)

X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-ray diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 ? resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.

Jianwei Miao

2011-04-18T23:59:59.000Z

483

A Multi-Step Explicit Stereo Camera Calibration Approach to Improve Euclidean Accuracy of Large-Scale 3D Reconstruction  

E-Print Network [OSTI]

: conventional calibration via scene constraints of objects with precisely known geometry; and self-calibration via SfM (scene geometry plus camera parameters). (Zhang, 2000) proposed a calibration technique that requires a camera to observe a planar grid... . 161-171. Liebowitz, D., 2001. Camera calibration and reconstruction of geometry from images, s.l.: PhD Thesis, University of Oxford. Mavrinac, A., Chen, X. & Tepe, K., 2010. An automatic calibration method for stereo-based 3D distributed smart...

Fathi, Habib; Brilakis, Ioannis

2015-01-01T23:59:59.000Z

484

TOWARDSAUTOMATICMODELING OF 3D CULTURAL HERITAGE M. Andreetto, R. Bemardini, G.M. Cortelazzo,L. Lucchese  

E-Print Network [OSTI]

by means of the "3D printing" devices used in mechanical rapid prototyping. Another one is that 3D objects

Abu-Mostafa, Yaser S.

485

3D J-Integral Capability in Grizzly  

SciTech Connect (OSTI)

This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

2014-09-01T23:59:59.000Z

486

Uncertainty Analysis of RELAP5-3D  

SciTech Connect (OSTI)

As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INLs massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

Alexandra E Gertman; Dr. George L Mesina

2012-07-01T23:59:59.000Z

487

Helmholtz Theorem for Differential Forms in 3-D Euclidean Space  

E-Print Network [OSTI]

There are significant differences between Helmholtz and Hodge's decomposition theorems, but both share a common flavor. This paper is a first step to bring them together. We here produce Helmholtz theorems for differential 1-forms and 2-forms in 3-D Euclidean space. We emphasize their common structure in order to facilitate the understanding of another paper, soon to be made public, where a Helmholtz theorem for arbitrary differential forms in arbitrary Euclidean space is presented and which allows one to connect (actually to derive from it) an improvement of Hodge's decomposition theorem.

Jose G. Vargas

2014-04-20T23:59:59.000Z

488

Mesh component design and software integration within SUMAA3d.  

SciTech Connect (OSTI)

The requirements of distributed-memory applications that use mesh management software tools are diverse, and building software that meets these requirements represents a considerable challenge. In this paper we discuss design requirements for a general, component approach for mesh management for use within the context of solving PDE applications on parallel computers. We describe recent efforts with the SUMAA3d package motivated by a component-based approach and show how these efforts have considerably improved both the flexibility and the usability of this software.

Freitag, L.

1999-01-13T23:59:59.000Z

489

Convergence of Ginzburg-Landau functionals in 3-d superconductivity  

E-Print Network [OSTI]

In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.

Sisto Baldo; Robert L. Jerrard; Giandomenico Orlandi; Mete Soner

2011-02-23T23:59:59.000Z

490

Customizing mesoscale self-assembly with 3D printing  

E-Print Network [OSTI]

Self-assembly due to capillary forces is a common method for generating 2D mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost 3D printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new ways to low cost microfabrication.

M. Poty; G. Lumay; N. Vandewalle

2013-10-17T23:59:59.000Z

491

3D Printed Car at the International Manufacturing Technology Show |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015 Information Management25thDepartment of Energy 3D

492

SciTech Connect: "3d printing"  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsisSchedules SchedulesSciPy IPython3d

493

3D Printing of nanostructured catalytic materials | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value4 3.P D AT E3D Printing

494

A non-conforming 3D spherical harmonic transport solver  

SciTech Connect (OSTI)

A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

Van Criekingen, S. [Commissariat a l'Energie Atomique CEA-Saclay, DEN/DM2S/SERMA/LENR Bat 470, 91191 Gif-sur-Yvette, Cedex (France)

2006-07-01T23:59:59.000Z

495

Sandia National Laboratories: measure 3-D wind flow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulative timemaximize energy3-D wind flow

496

3d mirror symmetry as a canonical transformation  

E-Print Network [OSTI]

We generalize the free Fermi-gas formulation of certain 3d ${\\cal N}=3$ supersymmetric Chern-Simons-matter theories by allowing Fayet-Iliopoulos couplings as well as mass terms for bifundamental matter fields. The resulting partition functions are given by simple modifications of the argument of the Airy function found previously. With these extra parameters it is easy to see that mirror-symmetry corresponds to linear canonical transformations on the phase space (or operator algebra) of the 1-dimensional fermions.

Drukker, Nadav

2015-01-01T23:59:59.000Z

497

Integration of photonic and passive microfluidic devices into lab-on-chip with femtosecond laser materials processing  

E-Print Network [OSTI]

Femtosecond laser materials processing is a powerful method for the integration of high resolution, 3D structures into Lab-On-Chip (LOC) systems. One major application of femtosecond laser materials processing is waveguide ...

Gu, Yu, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

498

Region-of-interest reconstructions from truncated 3D x-ray projections  

E-Print Network [OSTI]

This paper introduces a method of region-of-interest (ROI) reconstruction from truncated 3D X-ray projections, consisting of a wavelet-based regularized iterative reconstruction procedure that, under appropriate conditions, converges within the ROI to an exact or highly accurate solution. ROI tomography is motivated by the goal to reduce the overall radiation exposure when primarily the reconstruction of a specified region rather than the entire object is required. Our approach assumes that only the 3D truncated X-ray projections, i.e., the projection data restricted to the image of the ROI, are known and does not assume any previous knowledge about the density function, except for standard assumptions about integrability and regularity needed to ensure that forward and backward transforms are well defined. We provide rigorous theoretical justification for the convergence of our regularized reconstruction algorithm in the continuous setting and prove the existence of a critical radius of a spherical ROI that ensures the convergence of the algorithm. Theoretical results are validated numerically using simulated acquisition and truncation of projection data for various acquisition geometries and ROI sizes and locations. We provide a numerical analysis of the ROI reconstruction stability as a function of the ROI size, showing that our algorithm converges also for ROI sizes which are rather small with respect to the support of the density function.

Robert Azencott; Bernhard G. Bodmann; Demetrio Labate; Anando Sen; Daniel Vera

2015-02-04T23:59:59.000Z

499

Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications  

SciTech Connect (OSTI)

In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

Gao, Dengliang

2013-03-01T23:59:59.000Z

500

The emerging versatility of a scannerless range imager  

SciTech Connect (OSTI)

Sandia National Laboratories is nearing the completion of the initial development of a unique type of range imaging sensor. This innovative imaging optical radar is based on an active flood-light scene illuminator and an image intensified CCD camera receiver. It is an all solid-state device (no moving parts) and offers significant size, performance, reliability, simplicity, and affordability advantages over other types of 3-D sensor technologies, including: scanned laser radar, stereo vision, and structured lighting. The sensor is based on low cost, commercially available hardware, and is very well suited for affordable application to a wide variety of military and commercial uses, including: munition guidance, target recognition, robotic vision, automated inspection, driver enhanced vision, collision avoidance, site security and monitoring, terrain mapping, and facility surveying. This paper reviews the sensor technology and its development for the advanced conventional munition guidance application, and discusses a few of the many other emerging applications for this new innovative sensor technology.

Sackos, J.; Bradley, B.; Nellums, B.; Diegert, C.

1996-04-01T23:59:59.000Z